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Abstract

Schizophrenia has been associated with dysfunction in information integra-

tion/segregation dynamics. One of the neural networks whose role has been

most investigated in schizophrenia is the default mode network (DMN). In this

study, we have explored the possible alteration of integration and segregation

dynamics in individuals diagnosed with schizophrenia with respect to healthy

controls, based on the study of the topological properties of the graphs derived

from the functional connectivity between the nodes of the DMN in the resting

state. Our results indicate that the patients show a diminution of the modular-

ity of the DMN and a higher global efficiency, in sparse graphs. Our data

emphasise the interest in studying temporal changes in network measures and

are compatible with the hypothesis of randomization of functional networks

in schizophrenia.
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1 | INTRODUCTION

Schizophrenia (SCZ) is a complex, chronic mental
illness characterized by a series of symptoms, including
positive (e.g., hallucinations and delusions), negative
(e.g., diminished emotional expression and avolition) and
cognitive symptoms (e.g., disorganized speech, thought
and/or attention). Even today, the causes of schizophre-
nia remain subject of debate and research. Nevertheless,
it has been proposed that the pathophysiology of schizo-
phrenia may be associated with dysfunctional patterns of

integration/segregation in distributed neural networks,
rather than with the disruption of the function within
any specific structure (Friston & Frith, 1995; Wang
et al., 2015; Zhou et al., 2007).

One of the neural networks whose possible dysfunc-
tion has been frequently associated with diagnosis of
SCZ is the default mode network (DMN). The DMN is
a large-scale network that involves association cortex
and paralimbic regions but spare sensory and motor
cortex, located along the midline of the prefrontal
cortex, encompassing the rostral anterior cingulate
cortex, posterior cingulate cortex and precuneus
(Buckner et al., 2008). It has been proposed that this
network is responsible for mental simulations that are
used adaptively in internally oriented tasks

Abbreviation: BEM, boundary element method; DMN, default mode
network; EEG, electroencephalogram; HC, healthy controls; ICA,
independent component analysis; SCZ, schizophrenia.
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(Buckner, 2013; Spreng et al., 2009). The activation of
the DMN is anti-correlated with the activity of brain
networks responsible for external information proces-
sing (Bressler & Menon, 2010). Thus, in passive tasks
where the experimenter’s requirements are minimized,
the DMN is more active, and the activity in the areas
of the cortex responsible for sensory processing is
reduced (Uddin et al., 2009. Likewise, it has been
observed that the DMN shows a lower activation during
the performance of cognitive tasks than in the resting
state or in tasks that require internal concentration
(van Buuren et al., 2012).

DMN alterations have been associated with various
symptoms of schizophrenia, including positive (Rotarska-
Jagiela et al., 2010), negative (Wang et al., 2015) and cog-
nitive symptoms (Zhou et al., 2016). Individuals with an
SCZ diagnosis have a diminished capacity to deactivate
DMN during task performance (van Buuren et al., 2012;
Whitfield-Gabrieli et al., 2009; Whitfield-Gabrieli &
Ford, 2012) and elevated DMN resting-state functional
connectivity (Liu et al., 2012; Shim et al., 2010;
Skudlarski et al., 2010; Whitfield-Gabrieli et al., 2009).
However, the results are not univocal, and some studies
report decreased low-frequency resting-state functional
connectivity within the DMN (Hilland et al., 2022) or
widespread decreased connectivity including the DMN
(Liang et al., 2006).

The idea of coordination dynamics proposes that the
tendency of brain regions to express their specialized
functions (segregation) coexists with tendencies to coor-
dinate globally for multiple functions (integration) and
that this integration/segregation balance may have an
evolutionary function (Deco et al., 2015). In this sense,
some authors have proposed that an imbalance in inte-
gration/segregation capacity may be related to schizo-
phrenia (Friston et al., 1995; Hu et al., 2017; Liang
et al., 2006). The present work aims to explore the possi-
ble alteration of integration and segregation dynamics in
individuals with an SCZ diagnosis with respect to healthy
controls (HC), based on the study of the topological prop-
erties of graphs derived from the functional connectivity
between the nodes of the DMN in resting state. We start
from the assumption that the brain can be understood as
a complex network, and we use graph theory as a concep-
tual framework for studying the topological features of
these networks.

Previous graph-theoretical research in SCZ and other
psychiatric disorders has demonstrated a disrupted bal-
ance between segregation and integration within the
functional brain networks. Thus, Rubinov et al. (2009),
analyzing weighted graphs, found that the group of indi-
viduals with an SCZ diagnosis displayed lower clustering
(an indicator of segregation) and shorter path lengths

(an indicator of integration) in comparison to the HC
group. Likewise, Vértes et al. (2012) found that
topological properties of clustering and modularity
(i.e., segregation) were somewhat reduced in childhood-
onset SCZ-diagnosed individuals. Studying the topologi-
cal properties of functional brain networks, (Lynall
et al., 2010; Rubinov et al., 2009) found that they were
less hierarchical, less small-world, less clustered and less
efficiently wired in individuals with an SCZ diagnosis.
Comparing HC and individuals with an SCZ diagnosis,
(Bassett et al., 2008) found reduced hierarchy and
increased connection distance in SCZ, and (Liu
et al., 2008) found that individuals with an SCZ diagnosis
exhibited lower clustering and lower path length than
HC, but no differences were found between groups in
efficiency. During a two-back working memory task,
Micheloyannis et al. (2006) found that individuals with
an SCZ diagnosis did not show small-world properties for
alpha, beta and gamma electroencephalogram (EEG) fre-
quency bands.

All these works show the benefits of graph theory
to characterize functionally complex networks.
However, most of them are focused on the study of the
brain system as a whole (e.g., Bassett et al., 2008;
Rubinov et al., 2009) or, at most, on the characteriza-
tion of interregional functional relationships (e.g., Liu
et al., 2008). Very few include, specifically, the study of
functional connectivity within the DMN. On the other
hand, although most of the cited works take advantage
of the high spatial resolution provided by fMRI, how-
ever, this high temporal resolution is at the cost of
lower temporal resolution. Furthermore, fMRI
measures activation-related hemodynamics rather than
neuronal activity in itself (Bullmore & Sporns, 2009).
Finally, most of these papers offer a stationary view of
the functional relationships between network commu-
nities, as they tend to calculate functional relationships
from measures based on averages of the recordings.
For these reasons, in the present work, we will use
EEG resting state recordings to compare the dynamical
topological properties of the DMN in patients with SCZ
and HC.

Specifically, we want to compare the dynamics of
integration (global efficiency) and segregation
(modularity) of the DMN in SC patients and HC. To this
end (see Figure 1, for a detailed workflow), we proceeded
to record the EEG of individuals with an SCZ diagnosis
and HC during 161 s of resting state. We then performed
the reconstruction of the cortical sources, which we
subsequently parceled into the 14 DMN regions using the
Desikan–Killiany atlas (Desikan et al., 2006). For each of
these regions and for each subject, using a sliding win-
dow system, we obtained 798 correlation matrices,
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corresponding to each one of the 798 sliding windows,
that we binarized using various thresholds (from 0.1 to
0.6). From each of these functional networks over time,
we obtained modularity and overall efficiency. For each
time series of these two measures (global efficiency and
modularity) that reportedly map integration and segrega-
tion, respectively, we calculated the coefficient of varia-
tion and the mean and then proceeded to compare them
between groups.

2 | METHODS

2.1 | Participants

The sample of this study consisted of a group of individ-
uals with an SCZ diagnosis and a group of healthy con-
trols. The group of individuals with an SCZ diagnosis
(hereinafter referred to as the SCZ group) consisted of
11 participants who were recruited at the Hospital Uni-
versitario San Agustín (Linares, Jaén). The inclusion cri-
teria for participation were an ICD-10 diagnosis of
schizophrenia (F20), psychotic disorder (F23) or schizo-
phrenic disorder (F25). The participant’s diagnosis was
made by the unit psychologist. The mean age of this
group was 36.27 years (SD = 10.28 years; min = 23,

max = 53). Out of all the participants, two (18.18%) were
women. All participants were dexterous. Regarding the
educational level of the participants, two had primary
education, eight had secondary education and one had
higher education. Regarding the medication,
all participants were receiving antipsychotic medication
(all atypical). In addition to antipsychotics, one of the
participants was receiving antidepressants. Due to differ-
ences in active principles, doses and administration
methods, we converted the doses of all antipsychotics
into chlorpromazine equivalents (M = 818.18 mg,
SD = 407.75 mg).

Twenty participants in the control group (hereinaf-
ter referred to as the HC group) were recruited from
the students of the University of Jaén, the staff of the
University St. Agustin Hospital of Linares (Jaén) and an
Adult School of Linares (Jaén). The average age of this
group was 40.72 years (SD = 11.96 years; min = 23,
max = 57). Out of all participants, seven (35%) were
women. Only two participants were left-handed.
Regarding the educational level of the participants, one
had primary education, 12 had secondary education
and seven had higher education. There was no
significant association between sex and group
(χ 2 [1, N = 31] = 0.97, p = 0.32) or between group and
education level (χ 2 [2, N = 31] = 3.29, p = 0.19). The

F I GURE 1 Principal steps in the workflow. (a) EEG measurement in HC and SCZ. (b) Source modeling. (c) Parcellation of the default

mode network. (d) We calculate with correlation coefficient the functional connectivity in time (798 matrices). (e) Binarize the matrices with

thresholds from 0.1 to 0.6. (f) We construct the functional networks (in time, one for each matrix and at each threshold). (g) We obtain for

each matrix and at each threshold, network measurements: modularity and global efficiency. (h) Characterize the dynamics of the series as

well as stationary measures. (i) Between-group comparisons. EEG, electroencephalogram; HC, healthy controls; SCZ, schizophrenia; ROI,

region of interest.
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groups did not differ significantly with respect to age
(t[29] = 1.03, p = 0.30).

For both groups, the exclusion criteria were either a
concurrent diagnosis of neurological disorder, a concur-
rent diagnosis of substance abuse disorder, a history of
developmental disability, an inability to sign informed
consent, vision disorders (vision disorders that, although
corrected with surgery, glasses or contact lenses, result in
a loss of visual acuity, e.g., cataracts) or hearing disorders
(unless corrected with hearing aids or surgery). In addi-
tion, an exclusion criterion for the control group was the
diagnosis of a mental disorder (as reported verbally by
the participants). All participants gave written informed
consent in accordance with the Declaration of Helsinki,
and the Jaén Research Ethics Committee approved the
study.

The Spanish version (Peralta & Cuesta, 1994) of the
Positive and Negative Syndrome Scale (PANSS, Kay
et al., 1989) was used to assess psychopathology. PANSS
consists of 30 items that evaluate schizophrenic syn-
drome, and each item is scored according to a scale of
7 degrees of intensity or severity, where 1 is equivalent to
the absence of the symptom and 7 to the presence with
severity. PANSS can be divided into three subscales: the
positive subscale of 7 items (M = 13.95, SD = 4.5), the
negative subscale of 7 items (M = 19.27, SD = 8.18), and
the general psychopathology subscale of 16 items that
evaluates the presence of other symptoms in the patient
(depression, anxiety and disorientation, among others)
(M = 29.36, SD = 7.06).

2.2 | EEG acquisition

EEG data were acquired while the participants were
instructed to rest with their eyes open and look at a sta-
tionary cross on a monitor. An active electrode cap
(actiCAP™) was used to acquire data from the interna-
tional 10–20 system of 32 scalp sites. All electrodes were
referenced to both mastoids. Electrode impedance was
kept lower than 5 kΩ. The EEG data were collected for
161 s at a rate of 500 Hz through a BrainAmps™ ampli-
fier. Data processing was performed with the Brain
Vision Analyzer software EEGLAB (Delorme &
Makeig, 2004) and MATLAB custom scripts. We applied
a bandpass filter with cut-off frequencies of 0.5 and
30 Hz. Blinks and other artefacts were extracted using
infomax independent component analysis (ICA) (Bell &
Sejnowski, 1995). ICA components with artefacts were
selected via visual inspection of the scalp topography,
power spectra and raw activity from all components.
Once all noisy components were selected, they were elim-
inated from the original signals.

2.3 | Source reconstruction

A source model consisting of 15,002 current dipoles was
used to calculate Kernel inversion matrices for each
subject with sLORETA implemented in Brainstorm
(Pascual-Marqui, 2002). As an MRI template, we used the
ICBM152 brain, distributed with the Brainstorm package.
Dipole orientations were constrained normal to the
cortex. Using the boundary element method (BEM) as
implemented in the OpenMEEG model (Corsi
et al., 2020; Kybic et al., 2005), the forward EEG model
was computed for each subject. We used the identity
matrix as the noise covariance matrix.

2.4 | Parcellation

The source model was then anatomically parcellated
using the Desikan–Killiany atlas (Desikan et al., 2006)
available in Brainstorm, as no individual anatomies of
the participants were available. Automated parcellation
by this method has been shown to be comparable to
manual labelling (Fischl et al., 2004). According to this
parceling scheme, the DMN was defined as the following
14 regions of interest (ROIs): Isthmus cingulate L, Isth-
mus cingulate R, Lateral orbito frontal L, Lateral orbito
frontal R, Medial orbito frontal L, Medial orbito
frontal R, Parahippocampal L, Parahippocampal R, Pos-
terior cingulate L, Posterior cingulate R, Precuneus L,
Precuneus R, Rostral anterior cingulate L and
Rostral anterior cingulate R (where L stands for left and
R for right).

2.5 | Functional connectivity

We calculated the Spearman correlation coefficient
between the 14 nodes of the DMN that we obtained after
parcellation. To take advantage of the temporal resolu-
tion of the EEG recordings and thus be able to explore
the temporal dynamics of integration and segregation in
the DMN, we used a sliding window of 2000 ms with a
90% of overlap on each step and obtained a total of
798 functional connectivity matrices for each participant.
The duration of the time series to which we applied the
sliding window was 161 s.

The topological properties of the networks obtained
after binarizing the matrix of interregional correlations
will depend on the choice of the threshold value. In this
sense, if the threshold is high and the resulting number
of edges is low, the network will be poorly connected and
some regional nodes may be disconnected. On the other
hand, if the threshold is low, and the number of edges is
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high, the network will be more densely connected but
will also have a random topology (Bassett et al., 2008).
Following the recommendation of Rubinov and Sporns
(2010) that networks should ideally be characterized
across a broad range of thresholds, in this paper, we used
thresholds from 0.1 to 0.6 in steps of 0.1. Thresholds of
0.1–0.6 produce networks limited to 90–40% of the
120 possible edges in a fully connected network of
14 nodes. Following Su et al. (2015), we have selected this
range of costs because they cover the spectrum of
meaningful networks for resting state data. Thus, we
obtained a total of 798 binary matrices (unweighted and
undirected) for each of the six thresholds explored. In this
study, we removed negative connections from the
network to avoid interference (Murphy & Fox, 2017;
Rubinov & Sporns, 2010).

2.6 | Graph measures

For each binary graph, at each threshold level, we calcu-
late the global efficiency and the network modularity.
The graph measures were calculated with the Brain Con-
nectivity Toolbox, a MATLAB toolbox developed by
(Rubinov & Sporns, 2010). These data, anonymized, are
stored in Figshare (DOI: 10.6084/m9.figshare.21975899)
and also the scripts (DOI: 10.6084/m9.figshare.21990005).
Both will be available upon reasoned request.

According to Rubinov and Sporns (2010), the
functional segregation metrics capture the ability of a
network to perform specialized processing. The presence
of clusters in functional networks is interpreted as an
indication of segregated neural processing. In this paper,
we will measure network segregation using modularity.
Modules in networks correspond to clusters of nodes that
are internally strongly coupled but externally only weakly
coupled (Sporns & Betzel, 2016). According to Simon
(1962), modularity is a distinctive characteristic of com-
plex systems, and the importance of modular brain net-
works in shaping brain dynamics has been identified as a
powerful incentive to empirically study changes in brain
modularity in mental disorders (Fornito et al., 2015).
Heuristically, modularity compares the number of edges
inside a cluster with the expected number of edges that
one would find in the cluster if the network were a ran-
dom network (with the same number of nodes, but ran-
domly attached). According to Newman and Girvan
(2003), modularity can be quantified by the following
expression:

Q¼ 1
2E

X

ij

Aij�eij
� �

δ mi,mj
� �

:

where Aij is the ij element of the adjacency matrix of the
graph G (the connection status between i and j: Ai = 1
when link ij exists; Aij = 0, otherwise), eij is the fraction
of edges in the network that connect vertices in the same
community and δ (mi, mj) is the Kronecker delta function
and equals 1 if nodes i and j belong to the same module
(i.e., mi = mj) and 0 otherwise.

On the other hand, the integration metrics capture
the ability to rapidly combine specialized information
from distributed brain regions. In this work, we selected
global efficiency as the measure of network integration.
A larger global efficiency value of the brain network rep-
resents a higher information transmission efficiency and
a higher integration degree of the brain network. In func-
tional brain networks, global efficiency is inversely
related to the topological distance between nodes
(the path length) and provides a measure of the overall
capacity for parallel information transfer and integrated
processing among distributed components of the system
with the advantage over the average path length that it
can be calculated in disconnected networks (Bullmore &
Sporns, 2012; Latora & Marchiori, 2001). The network
can be represented as a graph G(N, M) with N nodes and
M edges. The global efficiency is defined as follows:

Eglob ¼ 1
N N�1ð Þ

X

j≠ i � G

1
lij

where lij is the mean of the shortest path length (the aver-
age number of steps along the shortest paths for all possi-
ble pairs of network nodes) between nodes i and j. For an
undirected graph of N nodes, the mean of the shortest
path length is as follows:

lij ¼ 1
N N�1ð Þ

X

j≠ i � G

dij

where dij is the length of the shortest path between nodes
i and j.

For a more technical description of graph-based met-
rics frequently used in brain networks, see Bullmore and
Sporns (2009) and Rubinov and Sporns (2010). A graphic
representation of these concepts can be found in
Figure 2.

3 | DATA ANALYSIS AND
RESULTS

From the binary graphs, we obtained the dependent
variables (efficiency and modularity) both static and
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dynamic. These data were analyzed using mixed-effects
analysis of variance with, group, threshold and their
interaction as fixed factors and participants as random
factors. Analyses were performed in R using the lmer()
function of the lme4 package (Bates et al., 2015). Post hoc
comparisons and interaction analyses were made using
emmeans package (Lenth, 2021). To control the error
type I due to the number of comparisons we used the fdr
procedure (Benjamini & Yekutieli, 2001).

3.1 | Dynamic measures

In order to study the temporal dynamics of modularity
and efficiency, for both metrics we calculated the varia-
tion coefficient (VC), and these data were summited to a
mixed model with intercept as a random factor and group
and threshold as fixed factors. The VC allows to compare
the variability of the series independently of the means of
each group.

The results of the coefficient of variation of
modularity (see Figure 3) showed a significant effect for
group (F[1,31] = 5.25; p = 0.02), a significant effect for
threshold (F[5155] = 9.64; p < 0.01) and a significant
effect for the interaction (F[5155] = 2.29; p = 0.04).
Pairwise comparisons over the interaction revealed
that for threshold values of 0.6, the variability in modu-
larity was significantly higher (t[199] = 3.80; p < 0.01)

for HC (M = 98.6, SD = 111.0) than for SCZ
(M = 36.5, SD = 36.3).

The results of the coefficient of variation of efficiency
(see Figure 4) showed a significant effect for threshold
(F[5155] = 3.85; p < 0.01). No significant effect for group
(F[1,31] < 1) neither for the interaction (F[5155] = 1.03,
p = 0.39) was found. Post hoc comparisons showed the
following significant differences in VC depending on
threshold: T1 < T3 (t[145] = 3.39, p < 0.01), T1 < T4
(t[145] = 2.95, p < 0.01), T2 < T3 (t[145] = 2.32,
p = 0.02) and T6 < T4 (t[145] = �2.41, p = 0.01). Signifi-
cant contrasts are shown in Table 1.

3.2 | Stationary measures

We also calculated the means across all time windows of
modularity and efficiency and these data were summited
to a mixed model with intercept as a random factor and
group and threshold as fixed factors.

The results of the mean of modularity (see Figure 5)
showed a significant effect for group (F[1,31] = 7.43;
p = 0.01) and a significant effect for threshold (F[5155]
= 27.69; p < 0.01), but no significant effect was found for
the interaction (F[5155] = 2.25; p = 0.051). Post hoc
comparisons showed the mean of modularity was
significantly (t[33.1] = 2.63; p = 0.01) higher for the HC
group (M = 0.99, SD = 0.02) than for the SCZ group

F I GURE 2 Network topologies and

graph measures. (a) Network topology

examples: Random networks, with

randomly determined connections, have

high global efficiency, as shown by the

many connections crossing the center of

the graph, and low modularity, as

shown by the relatively few connections

between nearby nodes. Lattice networks

show the reverse pattern. (b) A

simulated network is used to illustrate

common terms in network analysis.

Nodes are represented as circles, and

edges are represented as lines.
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(M = 0.89, SD = 0.03). Significant post hoc comparisons
for threshold are shown in Table 2.

The results of the mean of efficiency (see Figure 6)
showed a significant effect for threshold (F[5155]
= 342.83; p < 0.01) and a significant effect of interaction
(F[5155] = 2.41; p = 0.03). No significant effect for group
(F[1,31] < 1) was found. Pairwise comparisons over the
interaction revealed that for a threshold value of 0.5, the
mean in efficiency was significantly lower (t[89.5] = 2.00;

p = 0.04) for HC (M = 0.16, SD = 0.01) than for individ-
uals with an SCZ diagnosis (M = 0.19, SD = 0.01).

3.3 | Relationship with symptom
severity

To study the possible relationship between schizophrenia
symptom severity and graph measures, we calculated

F I GURE 4 Main effect for the

coefficient of variation of efficiency

depending on threshold. VC, variation

coefficient.

F I GURE 3 Main effects and

interaction for the coefficient of

variation of modularity depending on

group and threshold. (a) Interaction

group by threshold. (b) Main effect of

group. (c) Main effect of threshold. SCZ,

schizophrenia; VC, variation coefficient.
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Spearman’s correlation coefficient between PANSS sub-
scales and the measures of integration and segregation.
In addition, we included the chlorpromazine equivalent
dose and the age of the patients. The results are presented
in Table 3.

As can be seen in the table above, no significant rela-
tionships were found between network measures and
symptomatology. These results are in line with those
obtained by other authors (Lynall et al., 2010; Shon
et al., 2018), who also found no significant relationship
between symptom severity and modularity or efficiency.

4 | DISCUSSION

The healthy human brain operates in a permanent
dynamic of segregation and integration of information
from internal and external sources. This capacity for
dynamic integration–segregation can be considered an
evolutionary success, necessary for survival in an ever-

changing environment (Deco et al., 2015). The course of
certain mental illnesses, however, could affect this
dynamic. In this sense, it has been proposed that SCZ
could be related to an imbalance in the information
integration–segregation dynamics (Friston & Frith, 1995).
Specifically, DMN functioning has been found to be
abnormal in schizophrenia (Hu et al., 2017).

On the other hand, research on brain organization
based on the resting state has largely ignored the poten-
tial for temporal variability, implicitly assuming that the
relationships between and within the different brain net-
works are stationary across the duration of the recordings
(Allen et al., 2014). However, some research that has

F I GURE 5 Significant Main effects

for the mean of modularity depending

on group and threshold. (a) Main effect

of group. (b) Main effect of threshold.

SCZ, schizophrenia.

TABL E 2 Significant post hoc comparisons for the mean of

modularity depending on threshold.

Contrast df t ratio p value

0.1–0.4 166 �2.71 0.01

0.1–0.5 166 �5.72 <0.01

0.1–0.6 166 �8.92 <0.01

0.2–0.4 166 �2.75 <0.01

0.2–0.5 166 �5.76 <0.01

0.2–0.6 166 �8.96 <0.01

0.3–0.5 166 �4.71 <0.01

0.3–0.6 166 �7.91 <0.01

0.4–0.5 166 �3.00 <0.01

0.4–0.6 166 �6.20 <0.01

0.5–0.6 166 �3.20 <0.01

TAB L E 1 Significant post hoc comparisons for the mean of

efficiency depending on threshold.

Contrast df t ratio p value

0.1–0.3 166 �3.39 <0.01

0.1–0.4 166 �2.95 <0.01

0.2–0.3 166 �2.32 0.02

0.3–0.6 166 2.84 <0.01

0.4–0.6 166 2.41 0.01
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explicitly studied resting-state functional connectivity
dynamics of the DMN has clearly shown the time-varying
nature of connectivity (Chang & Glover, 2010), even in
individuals with an SCZ diagnosis (Sako�glu et al., 2010).

In the present work, we aimed to explore the dynam-
ics of integration–segregation in the DMN of patients and
healthy controls. For this purpose, from EEG recordings,
we obtained functional networks over time from which
we calculated the global efficiency and modularity using
different thresholds to binarise the matrices. To study
the temporal evolution of these indicators, we calculated
the coefficient of variation and compared it depending on

the groups of participants (SCZ and HC), the thresholds
(0.1 to 0.6), and the interaction between these factors.

The results we obtained regarding the variability of
the modularity, indicate a larger repertoire of states of
connectivity in the HC group than in the group of indi-
viduals with an SCZ diagnosis, particularly in the adja-
cency matrices obtained at higher thresholds. These
results could suggest altered dynamic performance of
brain graphs in individuals with an SCZ diagnosis and
are in line with previous work (Alexander-Bloch
et al., 2010; Rottschy et al., 2012; Yu et al., 2015) in which
also has been found that the connectivity states of HCs

F I GURE 6 Significant main effects

and interaction for the mean of

efficiency depending on group and

threshold. (a) Interaction group by

threshold. (b) Main effect of threshold.

SCZ, schizophrenia.

TAB L E 3 Correlation coefficients and p values (between brackets) for PANSS, dynamical and stationary measures of modularity and

efficiency, age of participants and medication (CPZ).

PANSS P PANSS N PANSS G
Modularity
M

Modularity
VC

Efficiency
M

Efficiency
VC CPZ

PANSS N 0.43 (0.18)

PANSS G 0.79* (< .01) 0.74* (0.01)

Modularity M �0.27 (0.43) 0.25 (0.47) 0.01 (0.98)

Modularity
VC

0.21 (0.52) �0.26 (0.43) �0.20 (0.55) �0.57 (0.07)

Efficiency M 0.36 (0.26) 0.21 (0.53) 0.48 (0.14) 0.22 (0.52) �0.71* (0.02)

Efficiency VC 0.33 (0.31) 0.05 (0.89) 0.48 (0.14) 0.17 (0.61) �0.62* (0.05) 0.90* (< .01)

CPZ 0.39 (0.23) 0.44 (0.18) 0.36 (0.28) �0.08 (0.82) 0.42 (0.21) �0.30 (0.37) �0.30 (0.38)

Age �0.28 (0.41) 0.31 (0.36) �0.17 (0.63) �0.16 (0.65) 0.36 (0.27) �0.70* (0.02) �0.72* (0.02) 0.51 (0.11)

Abbreviations: CPZ, chlorpromazine equivalent; Modularity and Efficiency M, mean measures of modularity and efficiency; Modularity and
Efficiency VC: variation coefficient measures of modularity and efficiency; PANSS, Positive and Negative Syndrome Scale; PANSS G: general
psychopathology; PANSS N, negative symptoms; PANSS P, positive symptoms.

IGLESIAS-PARRO ET AL. 9
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changed more frequently than SCZ-diagnosed individ-
uals. This reduced variability of modularity in the SCZ-
diagnosed group could be an indicator of rigidity in the
segregation–differentiation dynamic within the DMN,
which entails the breakdown of the encapsulation of
information between brain subsystems specialized in the
performance of different tasks. In other words, the SCZs
DMN seems to remain in a relatively static connectivity
state, characterized by a reduced modularity, whereas
HCs dynamically switch between different connectivity
states and are therefore faster in recruiting the necessary
for the segregated functions of the brain to be performed
(Mears & Pollard, 2016). These findings are consistent
with previous work on the ‘subtle randomization’ of
brain networks in schizophrenia (Lo et al., 2015).

Regarding the results based on averages, similar to
what was obtained with the variability measures, we
found higher mean modularity in the functional
connectivity-based network for the HC group, although,
in this case, regardless of the threshold. Here, again,
these results seem in agreement with previous results
using stationary measures (Alexander-Bloch et al., 2010;
Bassett et al., 2008; Bullmore & Sporns, 2009; Liu
et al., 2008; Lynall et al., 2010; Rubinov et al., 2009;
Vértes et al., 2012), showing that individuals with an SCZ
diagnosis and high-risk relatives exhibit lower modularity
than healthy controls.

Modular networks promote metastability, a measure
of dynamical flexibility (Wildie & Shanahan, 2012) that
allows faster adaptation of the system in response to
changing environmental conditions. The loss of modular-
ity would prevent any neural activity from remaining
locally encapsulated and would fall between the extremes
of ceasing quickly and spreading throughout the entire
network (Meunier et al., 2010). From this point of view,
our results regarding modularity are also consistent with
previous work in which an increase in the complexity of
cortical activity has been found in individuals with an
SCZ diagnosis (Iglesias-Parro et al., 2020) and are consis-
tent with previous studies pointing to ‘subtle randomiza-
tion’ of brain networks topology in schizophrenia
(Alexander-Bloch et al., 2010; Liu et al., 2008; Lo
et al., 2015; Lynall et al., 2010; Vértes et al., 2012).

Segregation is supported by densely connected net-
work communities (i.e., hubs, modules of densely intra-
connected nodes that are sparsely inter-connected with
nodes in other modules) (Deco et al., 2015), and the
reduction in segregation is attributed to the decrease in
the strength of short-range connections (Mears &
Pollard, 2016). Accordingly, our results regarding modu-
larity may indicate that people with schizophrenia tend
to have a profile of the DMN functional connectivity
associated with a less hub-dominated configuration.

Hubs are particular brain areas, which are heavily impli-
cated in the integration of information. In the normal
organization of brain networks, hub areas show a high
degree of clustering, and a high degree of centrality, and
it is suggested that they are regions that contribute to
information integration. In view of our data, however, it
appears that in the patient group, a decreased ‘segrega-
tion’ of neural processing with the weakening of short-
range connections is observed.

Global efficiency has been proposed as a measure of
integration, whereby a high efficiency would indicate a
high capacity of the network for parallel information
transfer (Alexander-Bloch et al., 2010; Latora &
Marchiori, 2001). The results we obtained regarding the
dynamic of efficiency showed no differences between
groups in the variability of efficiency. Although station-
ary measures of efficiency indicated a general decrease in
this variable as the threshold increases, at high thresh-
olds, efficiency was higher in the SCZ-diagnosed group.
These results contrast with the efficiency data published
in previous studies (Li et al., 2012; Liu et al., 2008; Su
et al., 2015), in which a decrease in overall efficiency was
found in individuals with an SCZ diagnosis. However, in
all these works, efficiency was not calculated for the
DMN specifically but for the whole brain. Moreover, they
were based on fMRI data and used metrics that were
obtained from averages. In contrast, other studies have
found higher efficiency in individuals with an SCZ diag-
nosis (Alexander-Bloch et al., 2010; Hadley et al., 2016;
Lo et al., 2015; Lynall et al., 2010). However, the increase
in long-range connectivity has been documented in many
other papers (Lo et al., 2015; Xia et al., 2019). A first
explanation for these data is that the networks of SCZ-
diagnosed individuals are better configured for global
communication. Increased long-distance strength
(i.e., Increased global efficiency) implies higher wiring
costs may cause higher network integration (Mears &
Pollard, 2016). However, these results are also compatible
with research that has found elevated connectivity in the
DMN of patients with schizophrenia, which in turn has
been related to the inability of patients to allocate
resources away from internal thoughts (mind wandering)
and towards external stimuli in order to adaptively per-
form complex tasks (Iglesias-Parro et al., 2020; Whitfield-
Gabrieli & Ford, 2012).

It is worth highlighting the results obtained in
Table 3 regarding the negative correlation between over-
all efficiency and age. Most previous studies on global
efficiency have shown a reduction in global efficiency in
older adults (Achard & Bullmore, 2007; Chong
et al., 2019; but see Geerligs et al., 2015). In general, the
idea is that brains maximise cost-efficiency by favoring
dense short-range connections and sparse long-range

10 IGLESIAS-PARRO ET AL.
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connections because the latter are more costly
(Bullmore & Sporns, 2012). Our results suggest a decrease
in long-range connections with age. These connections
are more costly but greatly increase the speed of informa-
tion transfer. Reduced global efficiency with age may
involve higher wiring costs and a less efficient informa-
tion flow among distributed networks of the global brain
system (Bullmore & Sporns, 2012). In other words, with
age, the efficient transfer of information between net-
works is impaired, resulting in slower processing because
the information exchange involves more steps. This pro-
cess of loss of global efficiency has been interpreted by
some researchers as evidence of the topological marginal-
ization of some brain areas because of the aging process.

Also interesting is the negative correlation observed
between the variability of modularity and the variability
of global efficiency (see Table 3). The idea of coordination
dynamics proposes that the tendency of brain regions to
express their specialized functions (segregation and mod-
ularity) coexists with tendencies to coordinate globally
for multiple functions (integration and efficiency). Thus,
dense intra-module connections increase local clustering,
facilitating functional specialization within the module,
whereas sparse inter-module connections optimize net-
work path length and provide the basis for global infor-
mation integration and increase overall efficiency.
According to (Kashtan & Alon, 2005), changes in modu-
larity may allow the brain to adapt to multiple and dis-
tinct selection criteria over time. In this sense, this
reduction in modularity in schizophrenia had already
been proposed as a neuropsychological theory
(David, 1994), implying the breakdown of information
encapsulation between specialized brain subsystems to
perform different tasks.

Overall, our results from the dynamic and stationary
measures seem to indicate that the functional networks
of patients are less well configured for segregated infor-
mation processing, that is, for local communication, than
those of healthy controls. However, this pattern is
reversed for global communication (i.e., global effi-
ciency). Thus, patients, relative to controls, show func-
tional networks, with higher global efficiency and
therefore better configured for global communication.
These results are congruent with other schizophrenia
resting state studies (Alexander-Bloch et al., 2010; Liu
et al., 2008; Lynall et al., 2010). This imbalance between
the integration and segregation of information in patient
networks is consistent with the hypothesis of randomiza-
tion of functional network topology in SCZ (Alexander-
Bloch et al., 2010; Liu et al., 2008; Lynall et al., 2010;
Rubinov et al., 2009). These results are also consistent
with a model of schizophrenia in which DMN dysfunc-
tion is closely linked to deficits in the maintenance of the

integrated self. Thus, insofar as DMN is intimately
related to internally directed or self-related cognition, the
observed altered dynamics could explain the lack of inte-
gration of inner activity (van der Meer et al., 2013).

4.1 | Limitations

The results of this work should be interpreted consider-
ing some limitations. First, the participants in our study
were a group of patients from St. Agustin Hospital, but
the recruitment was not randomized; therefore, selection
bias must be considered. In addition, the sample size was
relatively small, and care must be taken in generalizing
our results to patients undergoing different treatments.
In addition, medication is a potential confounding factor
regarding the control group. However, antipsychotic dos-
age (in chlorpromazine equivalents) was not significantly
correlated with any of the network metrics.

Second, graph measures, such as efficiency and mod-
ularity, depend on how the networks are defined. We
began with EEG data, with a limited spatial resolution
(albeit high temporal resolution), and reconstructed the
sources without individualised anatomical data, and par-
cellation of the ROIs was performed using an atlas. Cau-
tion should be observed when comparing the results of
this study with those of studies that defined the networks
using another methodology.

Finally, one of the issues in the analysis of neural net-
works based on functional connectivity is the replicability
of the results obtained, due to the presence of false posi-
tive links (Buchanan et al., 2020). These false positives
are edges in the network that do not represent true con-
nections. In this sense, a higher proportion of false posi-
tive connections results in more random network
topology, and the differences between groups could sim-
ply reflect different noise levels, rather than genuine
topological differences. The most common solution to
reduce false positives is to employ thresholding by
removing ‘weak’ connections. One difficulty with thresh-
olding is that, with small densities of links (which occur
with high thresholds), it can result in networks that have
disconnected nodes. Disconnection of networks can affect
the quantitative values of many network metrics. Gener-
ally, as network sparsity was increased, network effi-
ciency decreased.
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