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Off-shell effects in generalized parton distributions (GPDs) of the pion, appearing, e.g., in the Sullivan 
process, are considered. Due to the lack of crossing symmetry, the moments of GPDs involve also odd 
powers of the skewness (longitudinal momentum transfer) parameter, which results in emergence of 
new off-shell form factors. With current-algebra techniques, we derive exact relations between the four 
off-shell gravitational form factors of the pion, in analogy to the electromagnetic case. Our results place 
stringent constraints on the off-shell GPDs of the pion. We provide an explicit realization in terms of 
a chiral quark model, where we show that the off-shell effects in GPDs are potentially significant in 
modeling physical processes and should not be neglected.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
In recent papers [1,2], accessibility of the pion GPDs [3,4] via 
the Sullivan process [5] in future electron-ion colliders has been 
studied, with the conclusion that it may soon fall within ex-
perimental reach. Since the corresponding amplitude involves an 
off-shell pion (cf. Fig. 1), one needs to care about the possible 
off-shellness issues in such processes and in the GPDs themselves. 
Whereas these admittedly unmeasurable effects would cancel in an 
ultimate complete calculation of e+ p → e+π+nγ ,1 they unavoid-
ably do show up in phenomenological approaches which treat the 
building blocks p → π+∗n and γ ∗π+∗ → γπ+ as independent 
subprocesses.

The pion, being a pseudo-Goldstone boson of the spontaneously 
broken chiral symmetry, is by far the simplest hadron. Yet, its non-
perturbative structure is rich, as can be revealed with the methods 
involving GPDs (the 3D hadronic tomography [6]). In this Letter 
we show that relations between various off-shell form factors of 
the pion (electromagnetic, gravitational) provide highly non-trivial 
constraints for the structure of the off-shell GPDs. These relations, 
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Fig. 1. Sullivan process for the pion electroproduction off the proton, containing the 
deeply virtual Compton scattering (DVCS) amplitude involving GPDs. Asterisks indi-
cate off-shellness.

which we extend to the case of the four off-shell gravitational form 
factors, follow from the Ward-Takahashi identities (WTI).

The off-shell quark and gluon GPDs of the pion are defined, in 
the notation of [7], via the matrix element of bilocal fields

δabδαβ H0(x, ξ, t, p2
i , p2

f ) + iεabcτ c
αβ H1(x, ξ, t, p2

i , p2
f ) =∫

dz−

4π
eix P+z−〈πb(p f )|ψα(− z

2 )γ +ψβ( z
2 )|πa(pi)〉

∣∣∣∣z+=0
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,
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dz−
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+( z
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where ψ indicates the quark field, F μν is the gluon field tensor, 
a, b, and c are the isospin indices of the pion, α and β are the 
quark flavors, and summation over color is implicit. The subscripts 
0, 1 denote the isospin of the quark GPDs. The light-cone indices 
are v± = (v0 ± v3)/

√
2. In the assumed light-cone gauge the link 

operators do not appear. The adopted symmetric notation for the 
kinematic variables is

Pμ = 1
2 (pμ

f + pμ
i ), qμ = pμ

f − pμ
i , ξ = − q+

2P+ , t = q2. (2)

In the partonic interpretation (in the on-shell case) p2
f = p2

i = m2
π , 

while (x + ξ)P+ is the longitudinal momentum carried by the 
struck parton. The GPDs H0, H1 and H g are scale dependent ob-
jects which follow the DGLAP-ERBL QCD evolution equations [8,7]. 
We note that off-shellness of the initial and final hadronic states 
(pions) does not affect the QCD evolution kernel in the assumed 
Bjorken limit.

For p2
f = p2

i the crossing symmetry (time-reversal) makes the 
amplitudes in Eq. (1) even functions of the skewness parameter 
ξ . This feature no longer holds with general off-shellness, when 
p2

f �= p2
i , as happens in the Sullivan process of Fig. 1. In particular, 

in that case the x-moments of the GPDs involve also odd powers 
of ξ ,

1∫
−1

dx x j Hs(x, ξ, t, p2
i , p2

f ) =
j+1∑
i=0

As
j,i(t, p2

i , p2
f )ξ

i, (3)

where s = 0, 1, g . Among the generalized (off-shell) form factors 
As

j,i , those related to the conserved electromagnetic and energy-
stress tensor currents (the two lowest x-moments) are particularly 
important. They do not depend on the factorization scale, and 
therefore are independent of the QCD evolution. Explicitly,

1∫
−1

dx H1 = 2(F − Gξ), (4)

1∫
−1

dx x[H0 + H g] = θ2 − θ3ξ − θ1ξ
2,

where the form factors are functions of (t, p2
i , p

2
f ). Thus the above 

conditions depend nontrivially on t and the off-shellness parame-
ters.

From a dynamical point of view, the complementary role of 
the electromagnetic and gravitational form factors at zero mo-
mentum transfer, ensuring a proper normalization of the Bethe-
Salpeter bound state equation for on-shell states, was recognized 
long ago [9]. Here we consider a general off-shell case. First, we 
recall for completeness the results obtained for the off-shell effects 
in the pion charge form factors [10,11]. The (one-particle irre-
ducible, renormalized) pion-photon vertex (we take the positively 
charged pion for definiteness) has the general covariant structure


μ(pi, p f ) = 2PμF (t, p2
i , p2

f ) + qμG(t, p2
i , p2

f ). (5)

Next, one considers the WTI for the full ππγ vertex (with unam-
putated external pion propagators):

(2π)4δ(4)(p f − pi − q)Gμ(pi, p f ) =
∫

d4x d4 y d4z

× ei(p f ·x−pi ·y−q·z)〈0|T (
φ+(x)φ−(y) Jμ(z)

) |0〉, (6)

where the standard use of the covariantized time order product 
(or the T ∗ product), with the time derivatives pulled outside, is 
2

understood from now on. Using the current algebra of the vector 
and axial currents [12], one finds

(2π)4δ(4)(p f − pi − q)qμGμ(pi, p f ) = i

∫
d4x d4 y

×
(

eip f ·(x−y) − eipi ·(x−y)
)

〈0|T (
φ+(x)φ−(y)

) |0〉, (7)

which yields qμGμ(pi, p f ) = �(p2
f ) −�(p2

i ), where �(p2) denotes 
the pion propagator. Next, one passes to the irreducible vertex 
μ

by the standard leg amputation procedure, namely


μ(pi, p f ) =
(

i�(p2
f )

)−1
Gμ(pi, p f )

(
i�(p2

i )
)−1

, (8)

which finally gives the WTI of [11],

qμ
μ(pi, p f ) = �−1(p2
f ) − �−1(p2

i ), (9)

with �(p2) denoting the pion propagator. From Eq. (5) one finds 
that qμ
μ = (p2

f − p2
i )F + tG , hence the relation

(p2
f − p2

i )F (t, p2
i , p2

f ) + tG(t, p2
i , p2

f ) = �−1(p2
f ) − �−1(p2

i )

(10)

follows. At t = 0 (under the natural assumption that G(t, p2
i , p

2
f ) is 

not singular) one obtains

�−1(p2
f ) − �−1(p2

i ) = (p2
f − p2

i )F (0, p2
i , p2

f ), (11)

therefore

G(t, p2
i , p2

f ) = (p2
f − p2

i )

t

[
F (0, p2

i , p2
f ) − F (t, p2

i , p2
f )

]
(12)

and G(0, p2
i , p

2
f ) = (p2

i − p2
f )dF (t, p2

i , p
2
f )/dt|t=0. The simplicity of 

the result should not cover up its depth, namely, the off-shell G
form factor is completely expressible via the off-shell F form fac-
tor. Further, at the pion pole � −1(m2

π ) = 0, hence one finds from 
Eq. (11) that the half-off shell form factors at t = 0 are

F (0,m2
π , p2) = F (0, p2,m2

π ) = �−1(p2)

(p2 − m2
π )

. (13)

Taking the limit p2 → m2
π one gets F (0, m2

π , m2
π ) = 1, which is 

the charge normalization of the pion. For equal off-shellness of the 
initial and final pion, Eq. (12) yields immediately G(t, p2, p2) = 0, 
which is a manifestation of the crossing symmetry. The form factor 
G(t, p2, m2

π )/p2 has been recently studied phenomenologically in 
a quark model in [13].

Now we pass to novel results for the off-shell gravitational form 
factors. The gravitational vertex has the general tensorial structure


μν = 1
2 [(q2 gμν − qμqν)θ1 + 4Pμ Pνθ2

+ 2(qμ Pν + qν Pμ)θ3 − gμν θ4], (14)

The form factors θ1 and θ2 are even under the crossing symmetry, 
whereas θ3 and θ4 are odd. The WTI for the gravitational vertex 
can be derived as follows: the full vertex is defined as

(2π)4δ(4)(p f − pi − q)Gμν(pi, p f ) =
∫

d4x d4 y d4z

× ei(p f ·x−pi ·y−q·z)〈0|T (
φ+(x)φ−(y)�μν(z)

) |0〉, (15)

where �μν is the energy-stress tensor (involving quarks and glu-
ons), obtained by differentiating the action with respect to the 
metric tensor. It is conserved, ∂μ�μν = 0. Current algebra yields 
the relation (holding for the PCAC pion, not necessary an elemen-
tary field) [14]
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(2π)4δ(4)(p f − pi − q)qμGμν(pi, p f ) = i

∫
d4x d4 y ×

(
pν

i eipi ·(x−y) − pν
f eip f ·(x−y)

)
〈0|T (

φ+(x)φ−(y)
) |0〉, (16)

hence qμGμν(pi, p f ) = pν
i �(p2

i ) − pν
f �(p2

f ). Finally, the irre-
ducible gravitational vertex becomes

qμ
μν(pi, p f ) = pν
i �−1(p2

f ) − pν
f �

−1(p2
f ) = (17)

Pν [�−1(p2
f ) − �−1(p2

i )] − 1
2 qν [�−1(p2

f ) + �−1(p2
i )].

Remarkably, this relation was first obtained by Brout and En-
glert [15] using just the general gravitational covariance. On the 
other hand, from Eq. (14) we get

qμ
μν = (p2
f − p2

i )Pνθ2 + [t Pν + 1
2 (p2

f − p2
i )q

ν ]θ3 − 1
2 qνθ4.

(18)

Since the four-vectors P and q are linearly independent, comparing 
their coefficients in Eqs. (17) and (18) we arrive at two relations:

(p2
f − p2

i )θ2 + tθ3 = �−1(p2
f ) − �−1(p2

i ), (19)

(p2
f − p2

i )θ3 − θ4 = −[�−1(p2
f ) + �−1(p2

i )], (20)

which is our key result.
Next, we carry out the procedure presented earlier for the 

charge form factors, now for the case of Eq. (19). At t = 0 we have 
(p2

f − p2
i )θ2(0, p2

i , p
2
f ) = � −1(p2

f ) − � −1(p2
i ), therefore

θ3(t, p2
i , p2

f ) = (p2
f − p2

i )

t

[
θ2(0, p2

i , p2
f ) − θ2(t, p2

i , p2
f )

]
, (21)

with θ3(0, p2
i , p

2
f ) = (p2

i − p2
f )dθ2(t, p2

i , p
2
f )/dt|t=0. Moreover, com-

paring to Eq. (11), we find a relation between the off-shell gravita-
tional and charge form factors at t = 0,

θ2(0, p2
i , p2

f ) = F (0, p2
i , p2

f ), (22)

while for the half-off shell case

θ2(0,m2
π , p2) = θ2(0, p2,m2

π ) = �−1(p2)

(p2 − m2
π )

, (23)

with θ2(0, m2
π , m2

π ) = 1 expressing the momentum sum rule. From 
Eq. (20) we find that

θ4(t, p2
i , p2

f ) = (p2
f − p2

i )θ3(t, p2
i , p2

f ) + �−1(p2
f ) + �−1(p2

i ).

(24)

We note that θ4 vanishes if both the initial and final pions are on 
mass shell, θ4(t, m2

π , m2
π ) = 0, but in general is non-zero if either 

pion is off mass shell. The right-hand side can be expressed via θ2

only,

θ4(t, p2
i , p2

f ) = (p2
f − p2

i )
2

t

[
θ2(0, p2

i , p2
f ) − θ2(t, p2

i , p2
f )

]

+ (p2
i − m2

π )θ2(0, p2
i ,m2

π ) + (p2
f − m2

π )θ2(0,m2
π , p2

f ). (25)

We remark that θ4 does not contribute to the moment in Eq. (3)
upon the light-cone projection, as nμgμνnν = n2 = 0, where nμ =
(1, 0, 0, −1)/P+ . Note that θ1, which corresponds to a transverse 
tensor, does not enter into any constraints from the current con-
servation. In the chiral limit and the on-shell case of m2

π = 0 one 
has the low-energy theorem θ1(0, 0, 0) = θ2(0, 0, 0) [16].

In the last part of this Letter, we illustrate the above general re-
sults in a quark model with spontaneously broken chiral symmetry, 
3

Fig. 2. Half-off-shell effective GPDs of the pion obtained in SQM in the chiral limit 
for ξ = 0.5, t = 0, and evolved to μ2 = 4 GeV2. Line types distinguish the off-
shellness, whereas the three bundles correspond to the quark isovector GPD, quark 
isoscalar GPD, and the gluon GPD multiplied with x.

treated at the one-loop (leading-Nc) level. One can straightfor-
wardly obtain expressions for the off-shell charge and gravitational 
form factors in terms of the appropriate Passarino-Veltman func-
tions and explicitly verify that they comply to all the relations 
provided above. The formulas become particularly simple in the 
chiral limit in the Spectral Quark Model (SQM) [17], which is a 
one-loop chiral quark model with the spectral function chosen in a 
way that enforces the vector meson dominance of the pion charge 
form factor. The model is consistent with the chiral, gauge and 
Lorentz invariance. In the chiral limit, mπ = 0, manageably short 
expressions emerge for the half-off-shell case:

F (t, p2,0) = M4
V(

M2
V − p2

) (
M2

V − t
) , (26)

G(t, p2,0) = p2M2
V(

M2
V − p2

) (
M2

V − t
) ,

θ1(t, p2,0) =
M2

V

[
p2(t−p2)

M2
V −p2 + (t − 2p2)L

]
(
t − p2

)2
,

θ2(t, p2,0) =
M2

V

[
p2(p2−t)
M2

V −p2 + tL

]
(
t − p2

)2
,

θ3(t, p2,0) = p2M2
V

[
p2 − t + (M2

V − p2)L
]

(
t − p2

)2 (
M2

V − p2
) ,

θ4(t, p2,0) = p2M2
V

[(
p2 − t

)
(2p2 − t) + p2(M2

V − p2)L
]

(t − p2)2(M2
V − p2)

,

with L = log
M2

V −p2

M2
V −t

and MV denoting the ρ meson mass. We note 
that while in this model, where the inverse pion propagator is 
� −1(p2) = M2

V p2/(M2
V − p2), the charged form factors exhibit a 

factorized form, this is not the case of the gravitational form fac-
tors. The above formulas satisfy all the general relations above, 
namely Eqs. (12), (21), (22), (24) and (25). It is thus tempting to 
make a first estimate of the off-shell effects in the pion GPDs in a 
model implementing these new constraints.

The on-shell GPDs are obtained in SQM at the quark model 
scale [18], μ0, where the valence quarks carry 100% of the mo-
mentum, and are subsequently evolved to a higher scale μ with 
the leading-order DGLAP-ERBL equations [19]. The half-off-shell 
GPDs at μ0 involve rather lengthy analytic formulas (not shown 
here for brevity) and display a lack of factorization in x, t , or p2. A 
sample result (with t = 0 and ξ = 0.5) at μ = 2 GeV is presented 
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in Fig. 2. We note a significant dependence on the (space-like) off-
shell parameter p2. For the difference at the maxima of the curves 
at p2 = −0.2 GeV2 and p2 = 0 we note the relative effect of 10% 
for the isovector GPD, and somewhat larger 18% for the isoscalar 
GPDs. For p2 = −0.4 GeV2 the effects, are, correspondingly, 20% 
and 35%. As expected, the size depends on p2, which is controlled 
by the kinematics of the Sullivan process. The effect reflects qual-
itatively the change of normalization with p2 according to Eq. (4). 
This feature becomes exact at μ → ∞, as then the GPDs become 
localized in the ERBL region |x| ≤ ξ (see e.g. [18]), with the nor-
malization given by Eq. (4), and the relative normalization of xH0

and xH g given by the ratio 3N f /16, where N f = 3 is the number 
of active flavors.

The sources of model uncertainty to absolute (not relative) val-
ues of the GPDs include the value of the vector meson mass in 
SQM (which attributes a roughly 10-15% effect to form factors [20]
and to parton distributions), the approximation of the exact chi-
ral limit (about 5% [21]), and the uncertainty in the value of the 
quark-model scale (about 10% [18]).

Finally, we wish to digress on a relevant methodological point, 
along the lines of [22], concerning evaluation of amplitudes such 
as in Fig. 1. The off-shellness affects, in general, all the com-
ponents of the diagram. In our case, it influences the GPD (as 
discussed above), hence the DVCS amplitude, but also the pion 
form factor (as well as the pion nucleon form factor, not dis-
cussed here). The leg amputation procedure of Eq. (8) presumes 
that in the propagator attached to the vertex is the full pion 
propagator, with off-shell effects, and not its pole approxima-
tion. Hence we should just use �(p2) to maintain consistency. 
If however, as is typically done phenomenologically, one admit-
ted the pion pole term only, 1/(p2 − m2

π ), one would miss the 
factor �(p2)(p2 − m2

π ) = 1/F (0, p2, m2
π ). This factor could be con-

ventionally attributed to the half-off-shell vertex, by introducing 

∗μ(t, p2, m2

π ) ≡ 
μ(t, p2, m2
π )/F (0, p2, m2

π ), to be used in calcu-
lations with the attached pion propagators taken as a pole term. In 
our case, for the charge form factor we have


∗μ(t, p2,m2
π ) = 2Pμ F (t, p2,m2

π )

F (0, p2,m2
π )

(27)

− qμ p2

t

[
1 − F (t, p2,m2

π )

F (0, p2,m2
π )

]
.

If the dependence on t and p2 in F (t, p2, m2
π ) factorizes (as is the 

case of SQM in the chiral limit but not in general), then the only 
dependence on p2 sits in front of the factor associated with the 
qμ part, which is always present for virtual photons (for a real 
photon it may be removed by the choice of gauge [22]). This would 
result in a p2 independent form factor G/p2, as considered in [13]. 
Similarly to Eq. (27), one could attribute the propagator correction 
1/F (0, p2, m2

π ) to the half-off-shell GPDs.
Finally, we remind that as discussed in [23], the deeply virtual 

Compton scattering (DVCS) amplitude, involving the GPDs, enters 
the cross section formula for the Sullivan process via interference 
with the Bethe-Heitler amplitude, thus uncertainties in the GPDs 
carry over linearly to the cross section. That way, the off-shellness 
contributes to the uncertainties encountered in the modeling of 
the Sullivan process, together with such quantities as the parton 
distributions (taken on shell), pion propagator (possibility of inclu-
sion of the excited states) or the pion-nucleon form factor.

To summarize, we have considered, on a general footing, the 
off-shell GPDs of the pion and the related electromagnetic and 
gravitational form factors. We have shown that the WTI for the 
energy-stress tensor results in relations between the four off-shell 
gravitational form factors, in analogy to the case of the two off-
shell electromagnetic form factors. These relations may serve as 
4

consistency constraints in constructing phenomenological off-shell 
GPDs. We have employed a simple chiral quark model to illustrate 
the general formalism, as well as to assess the actual size of the 
effects after the QCD evolution to the scale μ = 2 GeV. We find a 
non-negligible (roughly, 10%) influence already at off-shellness of 
the order of −0.2 GeV2, especially when ξ is not close to 0. We fi-
nally note that our analysis can be straightforwardly extended to 
the other members of the pseudoscalar nonet, in particular the 
kaons, for which the Sullivan process at the EIC is also currently 
being considered [24].

We are grateful to Krzysztof Golec-Biernat for providing us with 
his QCD evolution code. VS acknowledges the support by the Pol-
ish National Science Centre (NCN), grant 2019/33/B/ST2/00613, WB 
by National Science Center, grant 2018/31/B/ST2/01022, and ERA 
by project PID2020-114767GB-I00 funded by MCIN/AEI/10.13039/
501100011033 as well as Junta de Andalucía (grant FQM-225).

Declaration of competing interest

The authors declare the following financial interests/personal 
relationships which may be considered as potential competing in-
terests:

Wojciech Broniowski reports financial support, administrative 
support, and travel were provided by Polish National Science Cen-
tre. Vanamali Shastry reports financial support was provided by 
Polish National Science Centre. Enrique Ruiz Arriola reports finan-
cial support was provided by Junta de Andalucia. Enrique Ruiz 
Arriola reports financial support was provided by MINECO.

Data availability

No data was used for the research described in the article.

References

[1] A.C. Aguilar, et al., Pion and kaon structure at the electron-ion collider, Eur. 
Phys. J. A 55 (2019) 190, https://doi .org /10 .1140 /epja /i2019 -12885 -0, arXiv:
1907.08218.

[2] J.M.M. Chávez, V. Bertone, F. De Soto Borrero, M. Defurne, C. Mezrag, H. 
Moutarde, J. Rodríguez-Quintero, J. Segovia, Accessing the pion 3D structure at 
US and China electron-ion colliders, Phys. Rev. Lett. 128 (2022) 202501, https://
doi .org /10 .1103 /PhysRevLett .128 .202501, arXiv:2110 .09462.

[3] X.-D. Ji, Deeply virtual Compton scattering, Phys. Rev. D 55 (1997) 7114–7125, 
https://doi .org /10 .1103 /PhysRevD .55 .7114, arXiv:hep -ph /9609381.

[4] A.V. Radyushkin, Nonforward parton distributions, Phys. Rev. D 56 (1997) 
5524–5557, https://doi .org /10 .1103 /PhysRevD .56 .5524, arXiv:hep -ph /9704207.

[5] J.D. Sullivan, One-pion exchange and deep-inelastic electron-nucleon scattering, 
Phys. Rev. D 5 (1972) 1732–1737, https://doi .org /10 .1103 /PhysRevD .5 .1732.

[6] M. Burkardt, Impact parameter dependent parton distributions and off forward 
parton distributions for ζ → 0, Phys. Rev. D 62 (2000) 071503, https://doi .org /
10 .1103 /PhysRevD .62 .071503, arXiv:hep -ph /0005108, Erratum: Phys. Rev. D 66 
(2002) 119903.

[7] M. Diehl, Generalized parton distributions, Phys. Rep. 388 (2003) 41–277, 
https://doi .org /10 .1016 /j .physrep .2003 .08 .002, arXiv:hep -ph /0307382.

[8] D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořejši, Wave functions, 
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