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Abstract: Food systems—encompassing food production, transportation, processing and consump-
tion, including food losses and waste—are currently not delivering what is expected or needed
to ensure their full contribution to societal well-being and ecological sustainability. In this paper,
we hypothesize that nature-based solutions (NBS; solutions that are inspired by, supported by, or
copied from nature) can overcome system challenges related to the functioning of the biosphere,
society, or economy (including governance arrangements), and support a transition to sustainable
climate-resilient food systems. We develop a conceptual framework to assess NBS contributions
to such transitions. Three types of NBS are evaluated: intrinsic NBS which make use of existing
ecosystems; hybrid NBS which manage and adapt ecosystems; and inspired NBS which consist of
newly constructed ecosystems. We show that inspired NBS in particular will increase opportunities
to achieve sustainable development in food systems. NBS can facilitate the much-needed transi-
tion to a different way of using our natural resources to reach the SDGs by 2030. We identify the
knowledge gaps that impede the development of NBS to support a transition towards sustainable,
climate-resilient food systems.

Keywords: food system transformation; climate change adaptation; ecosystem services; circular
food systems

1. Introduction

Food systems—encompassing food production, transportation, processing, and con-
sumption, including food losses and waste—are facing challenges that threaten their ability
to feed the population, deliver a healthy diet, sustainably maintain the environment, and
produce equal and equitable benefits [1]. New transition pathways need to be developed
that address one or more of these food systems challenges and transform how food is
produced, processed, transported, and consumed.

Climate change will add further stresses on food systems that already need to respond
to current and future trends of increasing population, changes in diet, and urbanisation.
The increase in frequency and severity of extreme weather events such as floods, storms
and droughts will impact all aspects of food security [2], including land degradation [3,4].
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The Food and Agricultural Organisation of the United Nations [5] estimated that at least
26% of the costs of damage and loss from climate-related disasters were absorbed by the
agricultural sector [5]. The increasing impacts of climate change are likely to threaten
current food systems’ resilience and will hamper their ability to adapt and shape their
operations in response to change and buffer shocks. To address this threatening situation,
researchers are studying how we can intentionally stimulate transformations in our food
systems and increase their climate resilience [6,7].

Only recently, nature-based solutions (NBS—in this paper, we use the acronym NBS
for nature-based solution (singular) and nature-based solutions (plural)), have been ex-
plicitly mentioned in relation to food security and particularly agriculture. NBS are so-
lutions for environmental and societal challenges based on processes and functions of
nature. The concept of NBS was introduced to promote nature as a source of inspira-
tion [8] or as a means [9] to provide solutions to climate challenges. NBS are accepted in
the water sector as measures to reduce disaster risk and improve water security [10–12].
Sonneveld et al. [13] highlighted the potential of NBS to positively contribute to food
security under water-stressed conditions. Other studies looked at NBS addressing multiple
societal issues such as biodiversity decline and sustainable development, in addition to
issues of food security [14–16]. Design of NBS that address multiple challenges needs to
consider the biophysical aspects, the socio-economic opportunities, and the limitations
of a system [17]. While the role of NBS has been studied in the context of disaster risk
management, water security, and landscape conservation, there is limited information on
how NBS can contribute to sustainability of entire or parts of food systems [18].

In this paper, we propose that NBS can achieve sustainable food systems under a
changing climate. We use the food systems framework [19] to demonstrate how NBS can
provide building blocks for the transition towards climate-resilient and sustainable food
systems. In earlier studies, frameworks have been used to assess the benefits of NBS for
other goals, such as flood prevention [20] or landscape planning [21], often in the context
of climate change adaptation. However, these studies have not looked at the benefits
NBS can provide for food and nutrition security. In the next section, we first explain the
concepts of NBS, followed by a definition of food systems and transformation pathways.
Section three presents the conceptual framework that is used to analyse how NBS can
contribute to transition pathways to food systems that can provide food and nutrition
security and a healthy diet, maintain and restore natural resources, and produce equal and
equitable benefits. The use of the food systems framework [19] is illustrated with examples
to highlight supporting and hindering factors in the implementation of NBS. In Section
four, we present the major knowledge gaps impeding implementation and scaling of NBS
in food systems. Section five concludes the paper.

2. Definitions and Methodology

Before discussing the contributions of NBS towards more climate-resilient food and
circular systems, there is a need to better understand (i) the underlying mechanisms of
NBS and the ecosystem services they can deliver; and (ii) the opportunities and limitations
for (implementation of) nature-based solutions in supporting food security and circularity
under climate change conditions.

2.1. Defining Nature-Based Solutions

Although some practices that are now seen as NBS have been used for centuries,
there is no consensus on the definition of the concept of NBS. Different descriptions
are used by organisations and communities in diverse contexts [22]. Water engineers
tend to describe NBS as sustainable engineering solutions such as sand nourishment
underpinned by a ‘building with nature’ principle to reduce flood risks, coastal protection,
and create opportunities for other sectors like recreation [23]. The IUCN and the European
Commission have developed their own definitions of NBS that share the overall goal of
addressing major societal challenges through the effective use of ecosystem processes and
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ecosystem services. The IUCN defines NBS as “actions to protect, sustainably manage, and
restore natural or modified ecosystems that address societal challenges effectively and adaptively,
simultaneously providing human well-being and biodiversity benefits” [24]. The definition of
the European Commission is somewhat broader and places more emphasis on applying
cost-effective interventions that are “inspired by, supported by, or copied from nature” and

“simultaneously provide environmental, social, and economic benefits and help build resilience” by
bringing “more, and more diverse, nature and natural features and processes into cities, landscapes
and seascapes” [25]. This study follows the EC definition.

The NBS concept builds on and supports other closely related nature-based con-
cepts, such as the ecosystem approach, ecosystem services, ecosystem-based adapta-
tion/mitigation, green and blue infrastructure, and biomimicry [25]. Applying NBS to
address food systems’ challenges means going beyond considerations of productivity, trade,
and socio-economic issues, and including biodiversity, climatic stresses, inclusiveness,
and equity [26].

To better understand how NBS can address food security challenges under climate
change conditions, we distinguish three major types of NBS (Figure 1).

1. Intrinsic NBS make better use of existing natural or protected ecosystems and processes
with no or minimal human intervention involved. This type of NBS promotes better
use of natural ecosystems for the delivery of multiple ecosystem services. Because of
the minimal intervention in intrinsic NBS, the performance is highly dependent on
uncontrollable factors.

2. Hybrid NBS are solutions related to managed ecosystems, for example (re-)establishing
agro-forestry systems based on commercial tree species, grazing, and arable systems.

3. Inspired NBS involves the creation of new ecosystems or process technologies mimick-
ing natural processes to provide sustainable solutions. Examples mimicking natural
processes are a constructed wetland, the use of UV radiation for disinfection as an
alternative for solar disinfection and bleaching, and the use of residual heat to purify
water by thermal processes.
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Figure 1. Typology for nature-based solutions: intrinsic, inspired and hybrid solutions.

This typology should not be considered a static representation of possible NBS inter-
ventions but as dynamic benchmarks for many hybrid NBS that exist along the gradients
used. The three types of NBS are determined by site-specific natural, cultural, and socio-
economic and institutional contexts, and draw on experiential and scientific knowledge.
They can be implemented alone or integrated with other solutions for societal challenges,
and are applied at different levels and scales.
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2.2. Food Systems and Food System Transitions

Food systems reflect how societies are organised to produce and consume food, includ-
ing social and environmental values and interactions [27]. In its simplest form, producers
and consumers will be the same person or household [28]. Today’s food systems are, how-
ever, often diverse and complex (Figure 2). In particular, markets and institutional networks
to govern food systems for health, livelihoods, and the environment are complex [29]. The
food systems’ framework presented in Figure 2 encompasses [30,31]:

1. Drivers including:

a. socioeconomic drivers such as urbanization, technological change, climate
change, and economic growth that lead to a change in food production and
consumption patterns, and

b. environmental drivers, such as climate, biodiversity, freshwater availability and
quality, natural reserves etc.;

2. Activities such as input supply, food production, transport, retail, and consumption;
3. Livelihood outcomes such as food security, including safe and healthy diets, and

sustainable and equitable food supply.

A systems approach to food systems maps activities, drivers, and outcomes, and
how they are linked. This helps us to understand how specific interventions or actions
might affect other parts of the system. Using a systems approach can help to identify
solutions in other parts of the system, sometimes far from the area where the problems
are manifested [32]. Moreover, the food systems’ framework clearly demonstrates the
links between food system outcomes and non-food related Sustainable Development
Goals (SDGs), see Figure 2. The SDGs provide an international set of targets for future food
systems. Food system targets of inclusiveness and equal benefits are linked to SDG 8 (decent
work), SDG 9 (industry, innovation and infrastructure), SDG 10 (reduced inequality), and
SDG 12 (responsible consumption and production). The key targets of food security and
safe and healthy diets are linked to SDG 2 (zero hunger), SDG 3 (health), and SDG 6
(clean water). Finally, sustainable and resilient food systems (lower right in Figure 2) are
connected to SDG 6 (clean water), SDG 13 (climate), SDG 14 (life in water), and SDG 15
(life on land).
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Climate change is one of the drivers shaping the performance and outcome of food
systems. Climate change impacts such as prolonged droughts, unreliable rainfall patterns,
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and floods have made the development of resilient food systems a top goal on development
agendas. A climate-resilient food system anticipates and acts on external shocks [1] and
retains essentially the same function, structure, identity, and feedbacks [33]. The list
of attributes that are considered to promote resilience of food systems under climate
change conditions is rapidly growing and includes increasing absorbing buffer capacities
(resources), reactive flexibility, restorative capacity, disturbance exposure, learning capacity,
robustness, redundancy, response diversity, autonomy, and independence, being modular
(not over-or under-connected), being able to respond quickly to shocks and changes in the
system, and being ready to transform if necessary [34–36].

Providing nutritious and affordable and healthy diets for all are the desired key
functions or outcomes of the food system. There is a constant need to have physical and
economic access to sufficient amounts of safe and nutritious food to meet global dietary
needs and food preferences for an active and healthy life [10,37]. Currently, food systems
are challenged to produce higher quantities to nourish the growing world population [1].
In addition, the produced food may have a low nutritional quality with serious implications
for human health [38–40]. Affordable and nutritious diets for good health are, however, not
always the only or even the most dominant outcome. Depending on political and societal
priorities, other desired outcomes can be defined. Therefore, food production might be
inadequate because production is focused on calories rather than micro-nutrients (too
many calories, too little micro-nutrients). Nutrition may be inadequately distributed due to
affordability and accessibility issues.

Food systems’ activities also generate socio-economic outcomes such as jobs and incomes.
Gaitán-Cremaschi et al. [41] highlighted the need for addressing food systems’ diversity to
produce equal and equitable benefits. Present food systems increasingly show inequality
and inequity not only in relation to food access, but also in relation to the economic and
social inequalities and inequities due to, for example, gender issues, land tenure systems,
food processing multinationals and market power over activities (e.g., increasing control
of the agro-chemical or seed sectors—[42]). Food systems have environmental outcomes;
they are sometimes positive, but predominantly negative. Most human activities related
to food systems such as consumption, production, processing, and retail will impact the
environment through food waste, misuse of agrochemicals, deforestation, soil degradation,
depletion of freshwater, reduction in biodiversity, and greenhouse gas emissions.

Different pathways to support a transition to climate resilient food systems have
been proposed, including a need for dietary changes, climate smart agriculture, circular
agriculture, and regenerative agriculture, among others [1,43,44]. However, a food systems
transition will require a reconfiguration of the system [45], including alternative possible tra-
jectories for knowledge, interventions, and change, which prioritize different goals, values,
and functions (‘transition pathway’) [46].The literature shows that transition pathways do
not follow a linear and predictable pathway, but are unpredictable and complex processes
in which diverse societal forces come together [47–50]. Transition pathways typically follow
several phases (green curve in Figure 3). First, new sustainable strategies are developed in
an ‘experimental phase’, followed by ‘acceleration’ and ‘emergence’ [47], Figure 3). The
‘experimental’ phase is characterised by niche innovations: new approaches that challenge
dominant patterns and paradigms. In the ‘acceleration’ phase, the new approach is picked
up by a larger part of the market or society, but remains a niche approach. In the ‘emergence’
phase, the approach takes off and new connections are made, but, perhaps due to lock-ins
at individual, institutional, or external levels, implementation can be impeded e.g., [51]. To
make the next step to the upper part of the green curve in Figure 3, enabling conditions at
all levels are needed to allow the new strategy to scale up to become the new normal by
institutionalizing and finally stabilizing the new approaches.
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However, promoting only the transition process (green curve in Figure 3) is not enough.
The new sustainable management strategies need to replace the old ones in most cases, and
therefore it is important to pay attention to the phasing out of old, unsustainable strategies
(blue curve in Figure 3). Dominant shared ways of thinking and acting that go largely
unquestioned can potentially hinder the emergence and growth of alternative approaches.
In a reaction to societal challenges, attempts may be made to optimize the business-as-usual
system, to correct current approaches to make them less damaging to the environment, or
to reduce social and economic dependencies of people working with the old systems [34,53].
These barriers and dependencies can often be for economic reasons but can also stem from
the lack of awareness of the damages that unsustainable management is causing [54], or a
lack in social acceptance or perception of a new production system [55].

The transition towards a new sustainable food system is not as linear or smooth as the
two curves suggest; examples are present everywhere in the curve at the same time, and the
actual transition may be chaotic. In this paper, we argue that nature-based solutions (NBS)
can be a successful component in a variety of transition pathways supporting a wider food
systems transition process.

2.3. Research Methods and Approach

Different types of NBS can be used to support the transition needed to address food
system failures and reach the SDGs. We illustrate the potential contributions of NBS to
improved food system outcomes (Figure 2) with three case studies of NBS, representing
intrinsic, hybrid, and inspired NBS. Using the conceptual framework presented in Figure 4,
we evaluate the potential of NBS to support a transition towards more climate-resilient
food systems. The three case studies used in this paper originate from a project running
at Wageningen Research (see acknowledgements) that focuses on NBS in food systems.
The project used a mixed methods approach including in-depth literature research and
dialogue with experts. Workshops held during the project were attended by a broad scope
of experts from different backgrounds, including economics, social science, animal science,
and environmental science. In addition, the project worked with policy makers, farmers,
farmer organisations, and water boards to consider NBS as possible building blocks for
their implementation plans to transition to a sustainable climate-resilient food system.
We developed a framework that integrates food systems’ outcomes and different NBS
to explore their potential in achieving desired food systems’ goals. Based on the work-
shop’s outcomes, a set of specific NBS were chosen to be studied in the field. From these
field sites, three examples were selected to showcase different types of NBS: an intrinsic,
inspired, and hybrid one; in combination with the food system elements we wanted to
address: For each of the three different types of NBS, we discuss the following four aspects:
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(i) what food system failures are addressed (inclusiveness and equality, food security, and
sustainability and resilience), (ii) what sort of NBS is used in the transition (intrinsic, in-
spired, hybrid), (iii) what the multiple benefits for the system are (and links to SDGs), and
(iv) in what phase of the transition process we are, and what the enablers and challenges
to (further) NBS implementation are. For each example, the impact of the NBS within the
food systems framework was determined to be a direct positive effect; an indirect positive
effect (as a consequence of implementing the NBS); an ambiguous or negative effect; or no
(known) effect). These impacts were qualitatively assessed during workshop session within
the project.
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the transition of food system (elements) to become more climate resilient and circular.

The limitations of our methodology relate to the fact that the framework we developed
was only explored with the examples to assess the potential of the framework. This has
shown the links between food systems and NBS, but solid testing of the framework on
case studies has not been done. The framework has the potential to be used as a guiding
principle to design and/or select the most suitable NBS. Furthermore, the framework could
be developed into a monitoring and evaluation tool. Future research will need to test the
framework using data-rich case studies, where the benefits of NBS for mitigating food
system failures can be measured.

3. Conceptual Framework: How Nature-Based Solutions Build Climate-Resilient
Circular Food Systems

In the three examples in this section, we illustrate our framework by describing how
different types of NBS (intrinsic/hybrid/inspired) can help to make the transition towards
climate-resilient and circular food systems.

In the first example, we present how an intrinsic NBS can help to create a more climate-
resilient agricultural system by using rainwater harvesting techniques. The second example
shows a hybrid nature-based solution that advocates for Integrated Pest Management
(IPM) as a holistic strategy to combat plant pests with minimal applications of chemical
pesticides. The third example is an inspired NBS of water- and nutrient-reuse between agro-
food industries and agriculture. Green elements indicate positive impacts, grey elements
indicate that the impact is undefined or might even be negative. When implementing the
NBS, these negative impacts might have to be overcome during implementation. We focus
on NBS examples in the primary production domain of food systems. Examples of using
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NBS in storage, processing, retail, packaging, and consumption are beyond the scope of
this paper.

3.1. Intrinsic NBS: Rainwater Harvesting as a Nature-Based Solution
3.1.1. Food System Failures and Targets

Rainwater harvesting is a practice that dates back to prehistoric times, and still forms
an integral part of many domestic and agricultural systems in arid and semi-arid regions
where rainfall is insufficient for crop growing [56,57]. It is practiced in many different ways
and for several purposes [58]. As we are mainly interested in the linkages between NBS
and the food system, we focus on Rain Water Harvesting practices for Irrigation (RWHI),
which implies harvesting, storing, and conserving rainwater directly at the farm or the
run-off derived from a catchment area or reservoir from which individual farmers can
benefit [59,60]. The main food system challenge targeted by RWHI is overcoming food
security risks for smallholder farmers posed by climate change (e.g., more extreme weather
events, less rain, longer periods of droughts, and higher temperatures). With that, the
NBS is aimed at reaching societal targets like improving food security, but also creating
opportunities for decent work and economic growth (SDG 2, 8,9,10,12).

3.1.2. Description of NBS

RWHI is based on the natural event of precipitation, and it relies on characteristics
of the landscape such as the slope of the land [60,61], and the texture and structure of the
soil [62,63]. Its objective is to collect run-off during the rainy period of the year and from
outlying areas where the water is not used, store it, and make it available where and when
there is a scarcity of water [57,60,64] for crop growth (agricultural production in green in
Figure 5). Less (ground)water will be abstracted from the water system (water in green in
Figure 5). Some infrastructure may be required to collect rainwater (e.g., stone or earth
bunds, small terraces, or Fanja Juu—Figure 6). RWHI improves the efficiency of available
water and is often implemented to secure agricultural production in case of water scarcity
(resilience in green in Figure 5). Nature and biodiversity might be affected as well, although
whether this impact is positive or negative is not yet clear [65], see grey box in Figure 5.
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3.1.3. Multiple Benefits of NBS to Support the SDGs

Rainwater harvesting is a well-proven concept in many countries, especially in the
developing world. The implementation of RWHI has multiple benefits [63,66], particularly
targeting SDG 2 (Food Security) by: (i) making agricultural production possible in dry
areas which rely on rainfall; (ii) increasing agricultural productivity in areas with high
variability of precipitation; and (iii) facilitating the cultivation of water-intensive, higher
value crops on a commercial basis or for personal use [67]. In addition, the landscape
variability associated with rainfall harvesting infrastructure reduces flood risks by reducing
overland flow and related erosion [68]. It also contributes to the improvement of soil health
(defined as the capacity of a soil to provide the maximum amount of ecosystem services at
that location) over the long term [69], as soils with more nutrients and higher water holding
capacity result in higher yields for farmers (Land and soils in Figure 5). The reduced
erosion and nutrient losses due to higher infiltration help the soil maintain its health and
even improve it through the build-up of organic matter. This creates a positive feedback
loop, as a healthier soil will increase the infiltration capacity of the soil, providing better
water harvesting.

3.1.4. Phase of Transition, Enablers and Challenges to NBS Implementation

The fact that rainwater harvesting is a relatively well-accepted technique means
that this NBS does not suffer from the niche innovation problems that new technologies
experience in the first phases of the transition (Figure 3). A challenge in this example is
related to the lack of knowledge about the benefits of the NBS for farmers in areas that are
newly affected by droughts. Once these land-managers and farmers are more experienced
with the cost-reduction benefit that RWHI can bring, the transition towards accepting
this methodology in new regions will be easier. Another challenge to implementing
rainwater harvesting structures is the loss of land which, in many food-insecure countries,
is predominantly used for agricultural production. Furthermore, it may take time to reap
the likely benefits of improved soil health because the soils need time to recover [69]. We can
enable the implementation of RWHI by providing financial support and training to farmers
to build and maintain infrastructure, or to compensate for the loss of land, particularly in
early stages where benefits may not be immediately apparent [70].
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From a food systems perspective, RWHI are currently mainly used by smallholders in
rain-fed areas, who are involved in subsistence agricultural production.

3.2. Hybrid NBS: Pest Management
3.2.1. Food System Failures and Targets

A sustainable food system should be able to provide enough healthy food for con-
sumers and a safe livelihood for producers. The current (over-)use of agro-chemicals in
food production systems to combat pests and diseases have negative impacts on human
health and the environment. Agro-chemicals often affect natural enemies of pests, may
adversely affect pollinators, and lead to development of resistance in pests. The ongoing
process of understanding pest management without the use of agrochemicals is called
Integrated Pest Management (IPM) and is advocated as a holistic approach to combat
plant pests with minimal applications of crop protecting agents. However, most cropping
systems still heavily depend on chemical pesticides [71].

In this example, the promotion of natural pest control is presented as a solution for
phasing out agrochemicals to mitigate the unsustainable use of the biosphere resources,
improving resilience of the system to climate change impacts, and provide safe and healthy
diets (SDGs 2, 6, 13, 14 and 15, Figure 7).
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3.2.2. Description of NBS

The re-introduction and implementation of IPM as a NBS that exploits agro-ecological
relationships and in some cases, mimic natural systems or landscapes, is now of great
importance to sustainably combatting crop pests and diseases. Examples of existing IPM
strategies are netting, bird kites, sterile insects, crop rotations, intercropping, and creating
natural refuges for predators that feed on pests (Figure 8). Other options are related to
landscape management to attract predator species (e.g., insects and birds), by managing
hedges and flower strips, or by creating wind profiles and crop diversity through, for
example, strip-cropping that are unfavourable to crop pests [72,73]. Crop characteristics
play a role in attracting natural enemies of pest insects [74,75]. Research on characterising
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such important factors for pest control; and subsequently breeding for improved attraction
by crops, could lead to novel approaches in IPM. This will also improve the quality of the
agricultural products as well as the safety of the food consumed (Figure 7).
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3.2.3. Multiple Benefits of NBS to Support the SDGs

With increased understanding of the risks and scales needed to manage pests, the
potential for a nature-based approach is extensive and not confined to agricultural land.
IPM can be applied to nature reserves and can integrate ecosystem services at the landscape
level. For successful IPM, a landscape management approach is needed. The impact of
wider landscape management on the relationship between crop, pest, and natural enemies
has the potential to reduce or eradicate crop pests (and diseases) to minimal levels, where
farm-scale IPM may have previously failed.

An IPM technique that has proven to be successful in arable land is strip-cropping.
Strip-cropping has the benefit of retaining the area of productive land. The higher diversity
of crops in one field attracts natural predators, which reduces the amount of pesticides
needed. Hence, IPM does not only address the sustainability of food production, but can
also increase biodiversity (SDG 15). As a result, the risk of polluting water resources and
will be diminished (Figure 7).

3.2.4. Phase of Transition, Enablers and Challenges to NBS Implementation

The use of natural predators for crop protection is still in its emerging phases in many
areas, and still needs to be fine-tuned in terms of effectiveness and scale of implementation.
Although the system has proven its usefulness and success, the transition to institutionalis-
ing the NBS (Figure 3) still needs to be facilitated. Adoption of IPM by farmers will require
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a change in management, including—in some cases—new machineries to enable no-till or
strip-cropping. Furthermore, implementing IPM involves a change in mindset for farmers,
who may prefer to keep their field ‘clean’ and have control over their pest management
instead of relying on natural predators. Local champions, demonstration sites, and capacity
building will be essential to encourage institutionalisation of this NBS.

Earlier studies on farm and field strategies in Europe indicated that compensation
could incentivise farmers to use field margins and hedges to host and attract predators
e.g., [76]. This could be turned around, by requiring farmers to pay a fee for the environ-
mental damage caused using agrochemicals. Such a push mechanism could provide an
immediate incentive to manage the land differently; and transfer the real costs of environ-
mental damages onto farmers and, in turn, consumers. Other regulatory drivers, such as
the EU’s ambition to have 25% of all farms organically managed [77], will further institu-
tionalise new methodologies for crop protection and associated land management [78,79].
The current knowledge gaps are still impeding large scale uptake, but under push from
policy, this NBS has high potential to bring the trust in ecosystem services of the landscape
back to farmers. This NBS needs to be supported by enabling policies and governance
for upscaling of the new sustainable methodology and phasing out the old unsustainable
management strategies and technologies.

3.3. Inspired NBS: Wastewater Reuse in the Netherlands
3.3.1. Food System Failures and Targets: Increasing Access and Availability of Freshwater
for Agricultural/Agro-Industrial Use

In many river delta regions, water availability for food production is coming under
increasing pressure from climate change, sea-level rise, and related increased saltwater
intrusion. This is especially the case in regions where water supply is mainly dependent on
rainwater [80]. The risk of yield reduction and drought damage within the food supply
chain increases as a result. In the Netherlands, freshwater supply from rivers for agri-
culture is good under average climatic conditions. However, in situations with a low
river discharge and high precipitation deficits, freshwater supply cannot meet agricultural
freshwater demand during the growing season [81]. In this example, the NBS aims to
reduce the amount of water and nutrients used for agricultural production as well as by
food processing industries and drinking water production. The drinking water supply
factory EVIDES uses a water reservoir, situated in a bird and habitat directive area, as a
pre-purification (5 months) of water from the river Meuse. These reservoirs, including the
marshland borders, could be seen as a constructed wetland. Pilots are currently conducted
at other drinking water plants to improve these systems [82], not only to pre-purification,
but also biodiversity values [83]. Another specific example concerns a sugar factory in
the south of the Netherlands. Wastewater from this factory is used as irrigation water
for nearby greenhouse horticulture. Sugar beets are processed in autumn and winter,
while horticulture irrigation water is processed in spring/summer. Since 2016, the purified
wastewater is stored within the aquifer during winter, and the water can be recovered in
spring and summer by aquifer storage and recovery (ASR) technology for irrigation [84].
The temporary storage of water in the subsurface can also be regarded as an inspired NBS.
Wastewater and nutrients in the wastewater are re-used to increase circularity, reduce the
ecological footprint, and improve the food system’s quality, which makes food production
more sustainable and resilient and contributes to life on land and below water (SDGs 2, 6,
12, 14; Figure 9).
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3.3.2. Description of the NBS

Current, conventional wastewater treatment plants are large installations where all the
water is collected and treated to a defined quality standard fit for discharge. Water quality
for reuse is not yet considered. The example of an inspired NBS uses constructed wetlands
or microbial systems to enable the reuse of wastewater streams. Wastewater purification
that NBS uses resembles ecological nutrient uptake processes and sedimentation of sus-
pended solids that occur in aquatic ecosystems. In constructed wetlands, these uptake
processes can be optimized [85].

The NBS links actors in the food system that can reuse wastewater from residential
or food processing streams within the factory or by primary producers (e.g., horticulture,
livestock, onshore aquaculture, cattle). This reuse of wastewater reduces the dependence on
groundwater and surface water, and can be used as a climate adaptation strategy. Regarding
circularity and sustainability, it is interesting to explore trade-offs between, for example,
water reuse and energy requirements between food industry, nature, and agriculture.

3.3.3. Multiple Benefits of NBS to Support the SDGs

When freshwater sources (river water, rainwater, groundwater) do not meet (future)
water demands in terms of quantity and quality, nature-based treatment options can
provide alternative water resources. Reuse of wastewater and components present in the
water (raw or partially treated) for crop production, industry, or environmental flows
prevents the discharge of nutrients and other valuable components into nature as occurs in
conventional wastewater plants. When food processing industry and farming activities
become less dependent on natural water resources, there is more water available for other
purposes (Figure 9), such as restoring or protecting estuarine dynamics. Depending on the
design, regional biodiversity could also benefit from these constructed wetlands.

3.3.4. Phase of Transition, Enablers and Challenges to NBS Implementation

While using wastewater for irrigation is still in its emerging phases in the Netherlands,
the technology is becoming more mainstream in countries like Tunisia and Israel [86,87].
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However, food industries are interested in the technology and are considering making this
part of their normal business [88].

At present, social acceptance of using wastewater for agricultural food production
and processing is still low [89]. People may have the perception that produced food may
be contaminated, hampering adoption of these types of NBS. Therefore, more research
and communication must show food safety and the applicability of this methodology to
convince all stakeholders involved. In this context, it is important to distinguish different
uses of the water. Reusing wastewater for cooling or cleaning processes may be more easily
accepted than reusing water for food production and processing. We expect that the use
of NBS treated wastewater will increase for at least some processes as regions experience
more frequent dry summers—putting pressure on traditional water sources.

A potential second constraint lies in the availability of space to realize constructed
wetlands for the food processing industry (especially in densely populated countries like
the Netherlands). One potential could be vertical flow constructed wetlands, whose design
reduces their footprint [90]. Furthermore, the accumulation of substances like residues
from medicines and pesticides may pose a threat to these systems. Finally, legislative
requirements could present a barrier to the development of NBS. Some environmental
regulation, like the EU Water Framework Directive, requires continuous functioning of
water treatment processes, which may be challenging in a constructed wetland that is
exposed to natural dynamics. Because of this, it is necessary to retain back-up systems
through water buffers and technological purification methods.

4. Discussion and Knowledge Gaps
4.1. Main Benefits and Challenges of NBS for Food Systems

The examples show the potential of NBS to help overcome the challenges of food
system in terms of food security, safe and healthy diets, and sustainability and resilience,
contributing to the transition to a climate-resilient food system. The main benefits of NBS
lie in the fact that NBS can serve multiple goals at the same time. For instance, the rainwater
harvesting techniques in Example 1 will contribute to food security, but also provides many
other ecosystem services: lower flood risk, better soil health, carbon sequestration for
climate change mitigation, aesthetic landscapes, and higher soil biodiversity. The hybrid
NBS example of pest management not only focuses on the transition from chemical to
nature-based crop protection, but also delivers enhanced biodiversity benefits and a more
attractive landscape. Another benefit of NBS is their longevity. If set up properly, natural
process will serve to maintain the NBS [17].

NBS also have several challenges. For example, they use space that cannot be used in
another way anymore, and it will take some time for natural processes to be established—
which means that the sustainability benefits of NBS are not immediately experienced. NBS
are also more difficult to accurately manage, which may lead to a sense of loss of ‘control’
for farmers. Moreover, managing NBS needs new skills that, in some cases, farmers do not
yet have. Capacity building and trials to demonstrate the benefits of NBS will be required to
overcome such challenges. Combining NBS with technological innovations (e.g., robotics,
Internet of Things) may also help to overcome barriers related to precision farming, space
requirement, and time management.

An interesting feature here is that the intrinsic NBS that uses existing ecosystems target
societal or economic goals (food security), while the hybrid and inspired/newly developed
ecosystems aim to improve biosphere conditions, at least in the evaluated examples in this
paper. The inspired type of NBS will be a valuable addition to the ‘toolbox’ of NBS, as it
specifically seeks to improve the delivery of multiple key ecosystem services. Therefore,
finding NBS that potentially use aspects of all three types of NBS appear promising in the
strive for climate-resilient and circular food systems.
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4.2. Knowledge Gaps Impeding the Implementation of NBS in Food Systems

In this section, we offer our view of what NBS offers to food systems when transition-
ing into more climate-resilient and circular systems, and which major knowledge gaps are
impeding implementation (and scaling) of NBS.

Mechanisms: To be able to implement NBS successfully, we need to improve our
understanding of the underlying mechanisms of nature-based solutions to support food
systems’ transformation. We need to address different forms of diversity: crop, genetic,
social, and financial.

Effectiveness and diversity in NBS: We defined three types of NBS, ranging from
making better use of an existing ecosystem (intrinsic NBS), to designing and managing
a newly formed ecosystem (inspired NBS), and an intermediate form where an adapted
ecosystem is used (hybrid). These three types will vary in their applicability to different
food systems and sectors. Identifying the long-term (biophysical, socio-economic, and
governance) potential and limitations of different NBS (be they intrinsic, hybrid, or inspired)
will aid decisions around their implementation in different sectors and biophysical/socio-
economic contexts. Mapping the potential contribution of NBS to food systems’ circularity,
demonstrating how NBS can increase climate resilience in the short and long term, and
transdisciplinary collaboration across sectors and NBS are core to increasing learning
and adoption.

Develop tools: to improve NBS to make them more acceptable and usable for various
stakeholders, thus fostering their uptake and transition towards a sustainable food system.
For this it is important to embed NBS-based innovations in multiple networks of societal
partners and government institutions. Transition pathways or food systems innovations
concern a large variety of stakeholders; hence it is important to develop appropriate
boundary-spanning processes, methods, and tools, e.g., a decision tree that supports the
selection of NBS at various scales. A collaborative or participatory approach will be the
desired approach to the development of such tools. The socioeconomic viability needs to be
assessed; potentially by using an economic framework that goes beyond monetary value.

Develop indicators: to monitor and evaluate the functioning, costs and benefits, lock-
ins, and trade-offs of an implemented NBS, we not only need a thorough knowledge
base of the soil, water, and sediment systems, but also the socio-economic situation of
the area. SMART indicators that consider the wider societal and institutional context in
which NBS are implemented (including governance arrangements, economic viability, and
socio-cultural considerations, such as power imbalances) will enable a full scope assessment
of the area.

Barriers and opportunities: it is important to improve our understanding of the factors
supporting and hindering the design and implementation of NBS that contribute to food
systems’ transformation (e.g., lock-ins, leverage points, enabling environments). This in-
cludes the development of supportive policies, programmes, and governance mechanisms
that foster the transition of food systems and implementation of NBS. Further opportunities
may arise from synergies by embedding multiple NBS strategies within a single landscape
or system. In addition, to date, very few industries or consultancies specialize in developing
or selling NBS for food producing systems. This is likely due to the lacking business models
for current industry. Social acceptance is equally important and therefore relevant actors
need to be engaged and encouraged to apply/participate in the implementation of NBS to
foster acceptance.

Contribution of NBS to circularity and climate resilience of food systems: improve our
understanding of the contribution of nature-based solutions to food systems’ circularity,
climate resilience on the short and long term, and map potential optional NBS for specific
needs and situations. Furthermore, it is necessary to develop a decision tree to select the
type of NBS (intrinsic/hybrid/inspired) that is best suited in each situation.
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5. Conclusions

In this paper, we illustrate how different types of nature-based solutions (NBS) can
serve as mechanisms to address a range of food system challenges and achieve more
sustainable climate-resilient food systems. In addition to (relatively widely accepted)
intrinsic NBS that make use of existing ecosystems, we also evaluated inspired NBS and
hybrid combinations that adapt and make use of processes based on nature, but are newly
constructed ecosystems. We propose a conceptual framework (Figure 4) that is used to
assess: (1) what food system challenge is addressed; (2) what type of NBS is employed;
(3) what objectives are targeted and how these link to the Sustainable Development Goals;
and (4) what stage of the transition process the NBS may be in. We discussed the multiple
benefits that NBS provide and identified challenges to adoption. Based on our evaluation,
we conclude that all three types of NBS (intrinsic, hybrid, and inspired) provide solutions
for food system challenges. The more ‘traditional’ intrinsic NBS are often used to address
multiple environmental challenges and supply a range of ecosystem services. NBS that are
‘inspired’ by nature can be of specific interest to the food processing industry, as they are
targeted, better manageable, and therefore potentially seen as more reliable. Our framework
is a useful tool to facilitate the implementation and scaling of NBS for sustainable climate-
resilient food systems because it provides a common understanding of the food system
challenges addressed and the opportunities provided by different types of NBS. We argue
that the enhanced ecosystem services resulting from better functioning natural systems
will directly feed into the realization of the United Nation’s Sustainable Development
Goals, not only by improving food security, but also by increasing the sustainability of
production and strengthening food systems’ resilience to climate change. NBS can be
used as building blocks for a sustainable climate resilient food system by facilitating the
much-needed transition to a better way of using our natural resources to reach the SDGs
by 2030.
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