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Abstract 

Background:  In December 2019, the first case of COVID-19 was described in Wuhan, 
China, and by July 2022, there were already 540 million confirmed cases. Due to the 
rapid spread of the virus, the scientific community has made efforts to develop tech-
niques for the viral classification of SARS-CoV-2.

Results:  In this context, we developed a new proposal for gene sequence representa-
tion with Genomic Signal Processing techniques for the work presented in this paper. 
First, we applied the mapping approach to samples of six viral species of the Corona-
viridae family, which belongs SARS-CoV-2 Virus. We then used the sequence downsized 
obtained by the method proposed in a deep learning architecture for viral classifica-
tion, achieving an accuracy of 98.35%, 99.08%, and 99.69% for the 64, 128, and 256 
sizes of the viral signatures, respectively, and obtaining 99.95% precision for the vectors 
with size 256.

Conclusions:  The classification results obtained, in comparison to the results pro-
duced using other state-of-the-art representation techniques, demonstrate that the 
proposed mapping can provide a satisfactory performance result with low computa-
tional memory and processing time costs.
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Introduction
The World Health Organization (WHO) declared, on January 30, 2020, that the COVID-
19 outbreak, a disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) virus, constituted a Public Health Emergency of International Concern 
(PHEIC), given the rapid spread of the virus, in such a way that two weeks after the first 
diagnosed case, other thousand patients tested positive for Coronavirus [1, 2]. In July of 
2022, the total number of reported cases of the disease surpassed the 540 million mark, 
with 6.3 million deaths caused by the virus. Because of the high spread rate associated 
with this disease, it is vitally important to diagnose the infected patients so that they are 
properly treated and isolated to avoid contagion to other individuals.
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In this scenario, the standard test adopted to perform the diagnosis based on the 
extraction of viral RNA is the Quantitative Reverse Transcription Polymerase Chain 
Reaction (qRT-PCR) [3]. However, the work presented in [4] found a false-negative rate 
of about 26.7% and 27% for critical and moderate cases, respectively. The study pre-
sented in [4] analyzed 866 samples of the qRT-PCR (from the respiratory tracts) of 213 
patients infected with the Coronavirus. All samples were collected from 0 to 7 days after 
the onset of the disease. This false-negative result is believed to be due to a specific RNA 
virus mutation, where SARS-CoV-2 has an average evolution rate of approximately 10−4 
substituted nucleotide per year [5].

In this context, the classification, description, and comparison of viral sequences 
based on their genomic characteristics can help study phylogenetic relationships and 
mechanisms of action of pathogens, contributing to the development of vaccines and 
other prophylaxis measures [6]. Thus, it is essential to improve techniques for analyz-
ing and classifying the viral genome, and in bioinformatics, this analysis is performed 
using two main methods. The first method is about techniques that use sequence align-
ments, such as BLAST [7] and BLAT [8]. Such algorithms look for matches of bases or 
groups of bases in the same order in two or more sequences. However, the disadvantages 
of such methods are the high computational cost required, which limits their use in 
large genomic databases [9], in addition to assuming that cDNA (complementary DNA) 
sequences are linearly arranged, which is not the case for viral sequences. Furthermore, 
the application of such methods is not suitable in scenarios where the sequences pre-
sent significant divergences or in comparing sequences with millions of nucleotides 
[10–12]. The second method encompasses techniques in which sequence alignment is 
not performed (free-alignment) [13]. This method was developed as an alternative for 
solving biological problems where alignment techniques have limitations. It has been 
applied in several studies, such as the analysis of the evolution of organisms and regula-
tory sequences as promoters and inhibitors, the identification of cis-regulatory modules 
(CRM), and the comparison of sequences using data from next-generation sequencing 
technologies [11].

Free-alignment techniques can be divided into two main categories. The first is based 
on word frequency and works by creating count vectors of pattern occurrences in 
sequences, then applying quantization metrics of similarity between sequences. The sec-
ond category includes techniques that do not depend on the resolution of the sequences. 
Instead, based on information theory, they seek to identify, focusing only on the rep-
resentation of the sequences, the information shared between the analyzed genomic 
data [13, 14]. Some of these techniques are based on the characteristics of genomic 
sequences, and such methods include the use of machine learning (ML) to classify viral 
sequences. This classification occurs in two stages, the first can be characterized as a 
mapping of biological sequences in a feature space, and the second stage consists of pro-
cessing the data by an ML technique [15, 16].

DNA holds genetic information in its molecules that systematise living organisms’ 
development and functioning and viruses. Techniques for mapping or representing 
DNA sequences, or cDNA, transform nucleotides into numerical information [17]. 
Numeric representations of genetic sequences can be divided into three categories: sin-
gle value mapping, in which each nucleotide will be associated with a unique value in 
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one-dimensional space; multidimensional sequence mapping, where each nitrogenous 
base will be replaced by a vector containing a point in multidimensional space; and 
cumulative mapping, where a random walk model will accumulate the contribution of 
consecutive values associated with the nucleotides to form a curve [18].

Genomic Signal Processing is based on the use of theory, algorithms, and mathemat-
ical digital signal processing methods for the analysis, processing and use of genomic 
data [15, 17–19]. GSP techniques can identify hidden periodicity and distribution prop-
erties. Therefore, the use of these tools in conjunction with numerical representations of 
DNA sequences can provide more information about the genetic profile of organisms, 
compared to conventional representation methods [17]. The proposal presented in [18] 
used GSP techniques to convert nucleotide sequences to a graphical representation to 
be used in classifying three types of functional genomes performed by a deep learning 
architecture. The work proposed in [20] developed a new form of numerical mapping of 
DNA sequences using a multidimensional representation associated with the Discrete 
Fourier Transform (DFT), one of the most consolidated and applied GSP tools, due to its 
ability to transform genetic sequences into the frequency domain to reveal features not 
displayed in the time domain. In the work presented in [21], GSP techniques for feature 
selection were used, together with machine learning methods, to develop an automatic 
classification system for SARS-CoV-2, SARS-CoV and MERS-CoV.

The use of machine learning based on deep neural networks has shown significant 
results in viral classification. The technique proposed in [16] uses a deep convolutional 
neural network (CNN) to perform viral classification, applying the method to dengue, 
HIV-1, influenza A, hepatitis B and C, and depending on the viral type and the number of 
associated subtypes, obtained an F1-score from 0.85 to 1.0. In turn, the work presented 
in [22] made use of a convolutional neural network based on text classification models 
to classify DNA sequences represented by one-hot encoding vectors. The method was 
tested in 12 datasets, with the average accuracy ranging from 88.99% to 99.06% , depend-
ing on the dataset. In the research carried out in [23], ViraMiner was developed, a viral 
identification method that contains two branches of CNNs designed to detect frequency 
patterns in metagenomic contigs, for contigs with 300 bp, the method achieved 0.923 for 
the area under the receiver operating characteristic (ROC) curve.

However, given the complexity of interpreting genomic sequences, which deal with 
large amounts of data, the performance of the machine learning techniques is directly 
associated with how the sequences are represented [24]. This way, this work aims to 
develop a new strategy for representing viral cDNA sequences, such as SARS-CoV-2, 
using a set of genomic signal processing techniques. The new strategy uses a pipeline 
of Chaos Game Representation (CGR) associated with Discrete Fourier Transform to 
be used in deep learning methods for viral classification. Such representation of genetic 
sequences generates a new viral signature containing the information in a new feature 
space that is considerably shorter in length than the original genomic sequence. This 
new representation can decrease the memory required for data handling, enabling the 
use of large amounts of genomic sequences in machine learning analyses. Consequently, 
the time cost required for viral classification is significantly lower, not exceeding 17  s 
per fold, for training the proposed network architecture. The main contributions of this 
paper are the following:
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•	 We propose a methodology for representing viral sequences with GSP tools to gener-
ate reduced viral signatures.

•	 We used the proposed methodology to classify the SARS-CoV-2 virus in a dataset 
containing samples from the same virus family and help discriminate SARS-CoV-2, 
which is strongly related to other coronavirus species.

•	 In the viral classification, we use Deep Learning architectures, which present per-
formance and implementation similar or superior to conventional machine learning 
techniques.

•	 We showed that the classifier could differentiate between species with high accuracy 
even with only 64 to 256 values in the viral signature vector.

•	 We compared the representation performance with techniques consolidated in the 
literature and showed that the proposed approach presents similar or superior per-
formance.

Representation proposal
Figure 1 illustrates the proposed representation technique, in which a sequence of cDNA 
of length N is expressed as

where each i-th element si represents one of the possible nucleotides of the cDNA 
sequence, i.e., si ∈ {A,C, T,G} . The proposal uses two techniques of processing genomic 
signals in cascade, aiming to create a unique signature for each i-th cDNA sequence. The 
processing techniques are CGR and DFT, which will be detailed in future subsections 
[25, 26].

Dataset

For this study, each s , associated with one of the 12,467 viral genome sequence sam-
ples from 67 countries, were downloaded through the National Genomics Data Center 
(NGDC) database. All downloaded viral sequences are complete, have high-coverage and 
have N’s number less than 0.01% . The dataset contains samples from six species: Severe 
Acute Respiratory Syndrome-related Coronavirus (SARS-CoV-2); Betacoronavirus 1; Mid-
dle East Respiratory Syndrome-related Coronavirus (MERS-CoV); Human Coronavirus 
NL63 (HCoV NL63); Human Coronavirus 229E (HCoV 229E); and Human Coronavirus 
HKU1 (HCoV HKU1). Belonging to the Coronaviridae family, from the kingdom Riboviria, 
they have a genome length ranging from 26,000 to 32,000 bp. The sequences formed by 

(1)s = [s1, . . . , si, . . . , sN ]

CGR Complex
Number

DFT

Sorting

Viral
Signature

Sorted

Viral Signature
Resized

Fig. 1  Proposal sequence representation scheme. Where s represents a cDNA sequence applied in the 
proposed technique, axi  , a

y
i  , a , v , m , f  , p , g and r are vectors obtained after each operation mentioned inside 

the boxes and M represent the final sizes of the viral signature
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nucleotide bases are presented as character vectors, where each letter represents a specific 
nucleotide, guanine (G), adenine (A), thymine (T), and cytosine (C). Table  1 presents a 
summary of the data from the samples used in this work.

In the developed method, the viral signatures were classified into two classes. The first 
one has all 11,969 SARS-CoV-2 samples, containing only the original strain, which means, 
that no Coronavirus variant is present in the dataset. The other class has all the other virus 
species in the dataset combined, resulting in 498 sequences.

Chaos game representation (CGR)

Proposed in [27], the CGR is a methodology capable of providing numerical and graphical 
representations of genetic sequences through iterative function systems (IFSs) [20, 27]. The 
CGR maps the cDNA sequence characterized by the vector s (see Eq. 1) into a two-dimen-
sional space through the symbols axn and ayn , expressed as

and

where

and

In the proposed technique, the initial condition is assumed as ( n = 0 ), ax0 = 0 and 
a
y
0 = 0 [20, 25]. Thus, each base associated with a sn , will represent a point in the 

(2)axn =
1

2
sxn +

1

2
axn−1, for n = 1, . . . ,N

(3)a
y
n =

1

2
s
y
n +

1

2
a
y
n−1, for n = 1, . . . ,N

(4)sxn =

1 if sn = A
−1 if sn = T
−1 if sn = C
1 if sn = G

(5)s
y
n =











1 if sn = A
1 if sn = T
−1 if sn = C
−1 if sn = G

.

Table 1  Samples of viral sequences

Viral species Sequence information

Num. of seq. Seq. len. Seq. len.

min. (N) max. (N)

SARS-Cov-2 11,969 26,973 30,018

Betacoronarivus 1 140 30,536 31,029

MERS-CoV 258 29,267 30,150

HCoV NL63 55 27,302 27,832

HCoV 229E 27 26,592 27,307

HCoV HKU1 18 29,367 29,983
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two-dimensional space containing the coordinates axn and ayn , and these values will be 
related to a complex number in the form axn + ja

y
n , resulting in the vector a , expressed as

Figure 2 illustrates two examples of viruses from the Coronaviridae family, mapped with 
CGR, in which it is observed that each virus holds a distinct signature.

As shown in Fig. 1, in the next stage of the representation proposal, the vector a will be 
used in the DFT.

DFT and vector sorting

Based on the works presented in [20, 26], this proposal makes use of DFT, aiming to gener-
ate a signature in the frequency domain of the genomic signal, given that from the analysis 
of the spectrum provided, periodicities and latent information of the sequences of nucleo-
tides can be observed more easily than in time domain analyses [26, 28].

As illustrated in Fig. 1, the vector of complex numbers a of length N passes through a 
DFT generating the vector v , which can be expressed as

where each i-th element vi can be defined as

After calculating the DFT, because its data are in complex form, it is necessary to decom-
pose the modulus and phase components of the vector v , generating the vectors m and 
f  , respectively [29]. The vector m can be expressed as

where each i-th element mi is the amplitude at a given frequency an can be expressed as

(6)a =
[

ax1 + ja
y
1, a

x
2 + ja

y
2, . . . , a

x
N + ja

y
N

]

.

(7)v = [v1, v2, . . . , vN ]

(8)vi =

N−1
∑

n=0

vne
−j 2πN in.

(9)m = [m1,m2, . . . ,mN ]

(10)mi = |vi|
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Fig. 2  Example of viral representation using CGR, where each point in the image is the mapping of a 
nucleotide. a SARS-CoV-2 Virus (GU553363). b Betacoronavirus-1 Virus (KX538977)
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The DFT phase, represented by the vector f  , is presented as

where each i-th element fi is the phase of the distributed transform from −π to π being 
expressed as

Figure 3 shows the DFT of two viral samples obtained from the CGR as shown previ-
ously in Fig. 2, where the first image of Fig. 3a, b presents the transform module ( m ), and 
the second panels of the images shows the phase ( f).

As seen in Fig. 3, response in module signatures, similar viruses have similar maxi-
mum frequency values, but in different phases. Therefore, an increasing sorting of the 
vector f  is performed, resulting in a vector of positions of the ordering p , represented 
as

and these positions are used to sort the vector module m , resulting in a new vector g , 
expressed as

(11)f = [f1, f2, . . . , fN ]

(12)fi = ∠vi.

(13)p = [p1, p2, . . . , pN ]
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Fig. 3  DFT module and phase response of viral samples. The left image presents the module response mi 
for each virus, the right image illustrates the transform phase fi , and inside the little window in this image 
shows a zoom in of the phase between 0.95× 10

4 Hz and 1.05× 10
4 Hz. a SARS-CoV-2 Virus (GU553363). b 

Betacoronavirus-1 Virus (KX538977)
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where each i-th element gi will be the amplitude value ordered according to its phase 
position, as seen

From the ordering of the vectors, a new vector g was obtained with the same modu-
lus function as the original, but with different positions, relative to the function of its 
phases, thus increasing the differentiation between signatures of similar viruses as is dis-
played in Fig. 4, which shows the new ordered viral signature of the samples presented 
in Fig. 3.

The works [20, 30–32] present strategies similar to those of the present study, applying 
the CGR and then calculating the DFT of the genetic sequences, however, the propos-
als do not make use of the DFT phase ordinate. The techniques developed by [20, 30] 
use the transform power spectrum, while [31] chose to use only the amplitude spectrum 
together with the Pearson correlation coefficient. In the proposal presented in [32], the 
average values of the smoothed DFT were calculated. Thus, it is important to highlight 
that not using phase information can disregard the location of local maximum frequency 
values, focusing only on their amplitude value. In Fig.  3, it is possible to observe that 
the two viral samples have frequency maxima around the values 0 Hz, 1× 104 Hz and 
2× 104 Hz, and that around of 1× 104 Hz and 2× 104 Hz, the amplitude for the two 
samples is similar, however, observing the phase around the frequency value 1× 104Hz, 
as shown in the image amplification in the right quadrant of Fig. 3, the two samples pre-
sent different phase profiles. As seen in Fig. 4, after sorting, the highest frequency values 
are no longer in similar positions.

Length reduction

Given that the ordered viral signature vector, g , have different lengths, as observed in 
Table 1, which presents the minimum and maximum values for N, and that due to the 
use of the DFT, the amount of relevant information is associated with a small num-
ber of maximum frequency values [28], a reduction in the data size was carried out 
until the vectors have the lengths 64 and 128 per signature. These length values were 

(14)g = [g1, g2, . . . , gN ]

(15)gi = mpi .
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Fig. 4  Ordered viral signatures. a SARS-CoV-2 Virus (GU553363). b Betacoronavirus-1 Virus (KX538977)
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chosen after experimenting with different sizes, as in the classification carried out by 
a CNN, they presented better results in the characterization of genetic data.

For this purpose, we selected the M highest values of g , where M assumes 64 or 128, 
generating the vector b and their positions in the original vector, which form the vec-
tor o , presented as

e

The vector of positions o was then ordered in ascending order and, similar to the order-
ing of the transform performed in the previous section  on the vector m , the new posi-
tions were used in the highest modulus values presented in vector b , getting the vector 
with reduced dimension r with size M, expressed as

where each element ri was given by

In this way, each point of r will be in position relative to the other maximum values of 
the original sequence g . For example, Fig. 5 shows the result of the compression of two 
viral samples for all sizes of M.

After the viral signatures reduction of the length of the vector, the technique of rep-
resentation of the cDNA sequences is finished, with this representation being then 
able to be analyzed by deep learning techniques.

Deep neural network architecture
Following the literature proposals [15, 16, 33], this work employed genomic signal 
processing techniques to represent the genetic sequences together with a convolu-
tional neural network (CNN) to classify them into two classes: SARS-CoV-2 or other 
species. The architecture of the Deep Neural Network used is a one-dimensional 
convolutional network model, where the length of the viral signatures influenced the 
choice of some parameters, such as the input size, the number of layers, and the size 
of the filters. The classifiers provided discrete outputs characterized by the values 1 
and 0. Figure 6 present the proposed model architecture for the viral classification of 
SARS-CoV-2, where M × 1× 1 is the input dimension, Tn is the filter size of the n-th 
layer (convolutional layer), Qn is the number of filters of the n-th convolutional layer, 
Sn is the pool size of the n-th max pool layer, Pn is the number of neurons in the n-
th fully connected layer, and αn is the dropout percentage of the n-th dropout layer. 
The CNN proposed model architecture was designed with 25 layers with an input 
layer, four convolutional layers represented by Conv1D(Tn@Qn ) where n = 1, . . . , 4 , 
four batch normalization layers, four activation function layers represented by ReLu, 
four max pool layers represented by MaxPool1D(Sn ) where n = 1, . . . , 4 , four fully 

(16)b = [b1, b2, . . . , bM]

(17)o = [o1, o2, . . . , oM].

(18)r = [r1, r2, . . . , rM]

(19)ri = boi(ordered).
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Fig. 5  Size reduction of viral samples for all M. The first image shows the original viral signature gi , and 
the second presents the resized vector r(M) for M = 64 . The third image shows the resized vector r(M) for 
M = 128 . Finally, the last image shows the resized vector r(M) for M = 256 . a SARS-CoV-2 Virus (GU553363). b 
Betacoronavirus-1 Virus (KX538977)
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connected layers represented by FC(Pn ) where n = 1, . . . , 4 , four dropout layers repre-
sented by Dropout(αn ) where n = 1, . . . , 4 , and a softmax layer with output layer.

Several training and validation tests were carried out to reach the final CNN archi-
tecture. Initially, to define the size associated with convolution filter parameters, i.e., 
Conv1D(Tn@Qn ) where n = 1, . . . , 4 , four strategies were assembled, and the one with 
the best validation accuracy (ACC) was chosen. The parameters used for each strategy 
are presented in Table 2, and the ACC results are presented in Table 3 for each M value.

From the values presented in the Table 3, it was possible to observe that for all M sizes, 
strategy 2 offered the best accuracy values, being this the one chosen for the proposed 
architecture. The following parameter analyzed was the pool size of the all max pool 
layer, i.e., MaxPool1D(Sn ) where n = 1, . . . , 4 . As in the initial architecture, four layers of 
a one-dimensional max pool were used. The last two layers S3 and S4 needed to present 
a size equal to 2, given that the minimum input size limited the downsampling perfor-
mance. Then, in Table 4, the ACC values are presented for three pool size values, where 

Input ( M x 1 x 1)

BachNorm
ReLu

MaxPool1D
Conv1D 

BachNorm
ReLu

MaxPool1D

Conv1D 
BachNorm

ReLu
MaxPool1D

Conv1D 
BachNorm

ReLu
MaxPool1D

Dropout
FC1

FC2 

FC3 

FC4 

Dropout 

Dropout

SoftMax

1- SARS-CoV-2  
 0 - Other Species

Conv1D

Fig. 6  Convolutional Neural Network architecture used for classification of SARS-CoV-2
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only the values of the first two max pool layers were modified, MaxPool1D(S1 ) and Max-
Pool1D(S2 ), keeping the last two with pool length equal to 2.

Again, the three values of M presented higher validation accuracy values for the 
same configuration, with pool size set to 8 for S1 and S2 , which was subsequently cho-
sen for the final architecture. The last parameter analyzed was the size of FC layers. For 
FC(P1 ), FC(P2 ), and FC(P3 ) layers were made two strategies. In strategy one, it was used 
P1 = 64 , P2 = 128 , and P3 = 256 . In the other direction, the second strategy it was used 
P1 = 256 , P2 = 128 , and P3 = 64 . Table 5 presents the results associated with FC layers 
tests.

It was verified from the Table  5 that the strategy two ( P1 = 256 , P2 = 128 , and 
P3 = 64 ) showed better accuracy for M = 64 and M = 256 , so this was selected. From 
the information obtained in the experiments detailed above, the final architecture is 
shown in Table 6.

Results
The algorithms of this work were implemented in Matlab 2020 (License: 596681) on a 
computer with the configurations: Intel Core i5-7200U with 2.50 GHz CPU and 8 GB 
RAM. As shown in section Dataset, the number of examples in the class ”Other Species” 
is 498. To balance the data and avoid bias, 400 cDNA sequences were selected for train-
ing and repeated five times, resulting in a set with 2000 samples. To gather the test set, 
the network selected all remaining samples of SARS-Cov-2 and 98 of the other unknown 
viruses. To evaluate the convolutional neural network model, k-fold cross-validation 
with k = 5 was used.

The network was trained during 50 epochs and used the RMSProp optimizer with a 
learning rate of 0.001 to minimize the loss function, which was the Cross-entropy func-
tion. Furthermore, the batch size chosen for the network training was equal to 512. 
Therefore, the time needed to process the representation was 0.006 seconds for each 
cDNA sequence, and the training lasted about 12 seconds (in mean) for M = 64 , 14 sec-
onds for M = 128 and 17 seconds for the size M = 256 , per fold.

Table 2  Convolutional filter parameters used in strategy tests

Strategy 1 Strategy 2 Strategy 3 Strategy 4

T1 = 8 and Q1 = 16 T1 = 4 and Q1 = 16 T1 = 8 and Q1 = 8 T1 = 4 and Q1 = 8

T2 = 4 and Q2 = 8 T2 = 4 and Q2 = 8 T2 = 4 and Q2 = 8 T2 = 4 and Q2 = 8

T3 = 2 and Q3 = 2 T3 = 2 and Q3 = 2 T3 = 2 and Q3 = 2 T3 = 2 and Q3 = 2

T4 = 2 and Q4 = 2 T4 = 2 and Q4 = 2 T4 = 2 and Q4 = 2 T4 = 2 and Q4 = 2

Table 3  ACC results for different convolutional filter strategy tests

Input size layer 
(M)

Strategy 1 (%) Strategy 2 (%) Strategy 3 (%) Strategy 4 (%)

64 83.62 97.64 97.62 96.23

128 97.00 97.00 90.38 93.40

256 96.75 98.05 94.50 95.12
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Besides cross-validation, three dropout layers were added to the final architecture, a 
technique that randomly ignores units and their connections during model training to 
avoid overfitting and improve the performance of the neural network. Figure 7 shows 

Table 4  Validation accuracy of different pool size for MaxPool1D(S1 ) and MaxPool1D(S2 ) layers

Input size layer (M) S1 = S2 = 2 (%) S1 = S2 = 4 (%) S1 = S2 = 8 (%)

64 93.25 97.00 97.50

128 89.00 90.62 96.88

256 87.75 96.75 92.25

Table 5  ACC for FC(P1 ), FC(P2 ), and FC(P3 ) layers

Input size layer (M) Strategy 1 Strategy 2
P1 = 64 , P2 = 128 , and P3 = 256 (%) P1 = 256 , P2 = 128 , 

and P3 = 64 (%)

64 98.00 98.60

128 98.12 97.38

256 98.80 99.12

Table 6  Final parameters of the Convolutional Neural Network architecture

Layer Description Values

Input

1 (M× 1× 1) M = 64 , 128 or 256

2 Conv1D T1 = 4 and Q1 = 16

3 BachNorm −
4 ReLu −
5 MaxPool1D S1 = 8

6 Conv1D T2 = 4 and Q2 = 8

7 BachNorm −
8 ReLu −
9 MaxPool1D S2 = 8

10 Conv1D T3 = 2 and Q3 = 2

11 BachNorm −
12 ReLu −
13 MaxPool1D S3 = 2

14 Conv1D T4 = 2 and Q4 = 2

15 BachNorm −
16 ReLu −
17 MaxPool1D S4 = 2

18 FC1 P1 = 256

19 Dropout α1 = 0.6

20 FC2 P2 = 128

21 Dropout α2 = 0.6

22 FC3 P3 = 64

23 Dropout α3 = 0.6

24 FC4 P4 = 2

25 SoftMax 2 classes
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the average curves with a standard deviation of the accuracy and loss for training and 
validation of the model. The presented in Fig.  7 show that the model does not suf-
fer from overfitting (high variance) or underfitting (high bias). The reduced difference 
between the training and validation curves consolidates the absence of overfitting.

After training, the network was tested, and the performance of the deep learning 
network in the classification of the COVID-19 virus was analyzed using the represen-
tation with the ordered phase. Table 7 presents the performance measures accuracy 
(ACC), sensitivity (SEN), specificity (SPE), precision (PRE), F1-score, and AUC. This 
metric will evaluate the training effects of the classifier for the dataset so that the 
higher the AUC value, the better its performance [34].

Fig. 7  Learning curve plot for accuracy(left) and loss(right) of the proposed model for the different sizes of M. 
a M = 64 ; b M = 128 ; c M = 256
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The ROC curve is a graph that presents the performance of a classifier, being produced 
by plotting on the y axis the true positive rate, that is, the sensitivity performance metric. 
On the x axis, the false positive rate, which represents 1− specificity , for the test values 
[35]. From this, the area under the curve (AUC) of the ROC curve performance metric 
was obtained.

The method was also validated by comparing genomic sequence representation tech-
niques already consolidated in the literature. For this, the same samples were used for 
training, validation, and testing, in addition to the proposed architecture, adopting the 
same parameters. Table 8 presents the results of the comparison in terms of the aver-
age processing time required to apply the representation in only one sequence, memory 
required to store 1,000 viral signatures obtained by mappings, DNN training time for the 
set of 3,200 samples, in addition to the performance metrics already exposed in Table 7.

The work presented in [21] used the EIIP representation. Already in [16] applied 
ASCII in the cDNA sequences for viral classification. The approaches presented [22, 
23] employ one-hot encoding to classify proteins and viruses, respectively. Observing 
Table 8, it’s possible to conclude that the proposed representation of sequences presents 
similar or superior performance to the consolidated techniques but with a lower compu-
tational cost and time.

Finally, it was conducted a performance comparison of COVID-19 virus classification 
algorithms available in the scientific literature, based on Machine Learning and Deep 
Learning, with the method proposed in the present work with the best performing M, as 
seen in Table 9.

Table 7  Comparison of the performance of the Learning Network rating for the dimension sizes 
M = 64 , M = 128 , and M = 256

M Performance metrics

ACC (%) SEN (%) SPE (%) PRE (%) F1-Score (%) AUC​

64 98.35 98.40 93.06 99.93 99.16 0.9834

128 99.08 99.12 93.88 99.94 99.53 0.9911

256 99.69 99.74 94.69 99.95 99.84 0.9950

Table 8  Comparison of the performance of the proposed method with other representations in the 
literature

Performance ASCII EIIP One-hot This work

Metrics [36] [37] Encoding
[38]

M = 64 M = 128 M = 256

Processing time p/sequence 0.0180 s 0.0181 s 0.648 s 0.0063 s 0.0063 s 0.0064 s

Memory required p/1000 vectors 8.86 MB 16.8 MB 16.9 MB 471 KB 941 KB 1.83 MB

Training time per fold 48.4 min 46.55 min 54.5 min 12 s 14 s 17 s

ACC​ 98% 98.5% 96% 98.35% 99.08% 99.69%

SEN 96.1% 98% 98% 98.40% 99.13% 99.74%

SPE 100% 99% 94.2% 93.06% 93.88% 94.69%

PRE 100% 99% 94.2% 99.93% 99.94% 99.95%

F1-score 98.01% 98.49% 96.06% 99.16% 99.53% 99.84%
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To perform the comparisons in the Table 9, only papers based on genome sequence 
analysis of the SARS-CoV-2 virus were selected. The dataset used by Arslan and 
Arslan [39] included the same species present in this work, based on the features 
extraction from the CpG island, obtaining a sensitivity of 99.2% . However, the method 
proposed in the present work had greater values for all performance metrics ana-
lyzed. Singh et al. [40] used data without any pre-processing to select 8 biomarkers to 
replace the need for whole genome analysis, reducing the processing consumption of 
the classifiers. However, their method obtained the lowest accuracy among the algo-
rithms exposed in Table 9, the low number of samples of viral sequences pointed out 
as one of the limitations of the work. The same limitation of the research by Rand-
hawa et al. [41] since they used only 29 SARS-CoV-2 sequences. Moreover, the result 
of 100% of accuracy obtained in the classification may be due to factors such as over-
fitting caused by the small number of samples in the dataset. As Lopez-Rincon et at. 
[7] that besides having a dataset with few samples it was still an unbalanced dataset 
but reached a specificity of 100% , which can mean that the primer sets developed did 
not present any false positive result.

Discussion
The machine learning performance is directly associated with how genomic data 
chains, which deal with voluminous amounts of data, are mapped to a new feature 
space [24]. It is possible to observe this relationship between sequence representa-
tion and classifier performance with the results obtained by the DNN developed to 
detect SARS-CoV-2. Where it’s evident an increase, even if tenuous, of the values of 
the adopted metrics with the growth of the M value so that M = 256 presented supe-
rior results of accuracy, sensitivity, specificity, precision, F1-score, and AUC, since it 
presented fewer false-positive and false-negative results.

The information obtained by DFT reflects the periodicities and distributions of the 
nitrogenous bases in the sequences. As the proposed representation method selects 
only the largest M values of the modulus after DFT transform, it can be assumed 
that the 256 vector size potentially presents more intrinsic features for each spe-
cies, making it easier for DNN to classify them. However, considering that all sig-
nature sizes showed AUC greater than 0.900, it can be concluded that the proposed 
method can represent cDNA sequences even after significant size reduction so that 
the length of the final vectors obtained by the mapping is less than 1% of the original 
sequence size of the Coronaviridae family viruses. In addition, it was also found that 

Table 9  Comparison of the performance of SARS-CoV-2 classification algorithms

Reference Methodology ACC​ SEN SPE PRE F1-Score

Arslan and Arslan [39] CpG based features, KNN 98.4% 99.2% – 98.4% 98.8%

Singh et al. [40] Three-base periodicity, Random Forest 97.47% 96.19% 98.25% – –

Randhawa et. al. [41] k-mers, six supervised learning models. 100% – – – –

Lopez-Rincon et at. [7] Primer design, CNN. 98.73% – 100% – –

This work GSP, CNN. 99.69% 99.74% 94.69% 99.95% 99.84%
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all false-positive results obtained in the classification were viral sequences belonging 
to the genus Betacoronavirus containing the SARS-CoV-2 virus. And all samples from 
the genus Alphacoronavirus were classified correctly.

Furthermore, from the Tables  8 and 9 analyses, we can see the classifier efficiency 
compared to other algorithms for the detection of COVID-19. In the 8 table, six rep-
resentations of cDNA sequences methods were tested to the same supervised learning 
model. And remarkably, the computational and time consumption for the three values of 
M is lower than for other techniques, without significant differences in the performance 
metrics, so the accuracies for M = 128 and 256 were the highest presented in the table. 
Similarly, compared to other works that performed the classification of SARS-CoV-2 
with machine learning techniques, seen in Table 9, the results obtained in the present 
work have similar or superior performance, including the papers that used a resembling 
dataset to the one used in this work.

However, the low number of samples in the dataset was one of the limitations encoun-
tered in the research development, especially for the other species class, which was 
counteracted by data balancing tactics. Even so, it is essential to use more data to testify 
to the effectiveness of the representation method. Another difficulty identified was the 
limitation of the biological interpretation of the results provided by the DNN since it’s 
impossible to know the rules used to generalize the data, generating a Black Box effect of 
the model.

Conclusion
The pandemic caused by the spread of the SARS-CoV-2 virus significantly impacted the 
health and economic scenery worldwide. Thus, studying its phylogenetic characteristics 
and evolutionary behavior is of utmost importance in combating viral proliferation. So, 
in this work, a new representation of cDNA sequences was proposed, based on the use 
of genomic signal processing techniques, applied to viral sequences of the Coronaviridae 
family for the classification of the COVID-19 virus, and later, applied to the analysis of 
variants of the SARS-CoV-2 virus. Initially, CGR was applied to the genomic sequences, 
obtaining spatial coordinates and applying to DFT. Compared to other works that used 
Fourier transform in preprocessing genetic data samples, the present method uses the 
phase information in combination with the amplitude information of the signals to 
increase the sample’s differentiation.

The size reduction of the viral signature vectors allows a viral classification with low 
computational cost, both in the training time of the classification model and in the 
amount of memory required for storage, relevant characteristics in the treatment of 
large amounts of data, as is the case of genomic sequences available by next-generation 
sequencing technologies. Despite the low processing cost, the method had no perfor-
mance loss, reaching an accuracy of 98.35% , 99.08% and 99.69% , and AUC of 0.9834, 
0.9911, and 0.9950 for vector length equal to 64, 128, and 256, in the classification, per-
formed with SARS-CoV-2 viruses and other species from the same family, such as Betac-
oronarivirus 1, MERS-CoV, HCoV NL63, HCoV 229E, and HCoV HKU1.
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