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Abstract
In many real data science problems, it is common to encounter a domain mismatch between the training and testing datasets,
which means that solutions designed for one may not transfer well to the other due to their differences. An example of such
was in the BirdCLEF2021 Kaggle competition, where participants had to identify all bird species that could be heard in audio
recordings. Thus, multi-label classifiers, capable of coping with domain mismatch, were required. In addition, classifiers
needed to be resilient to a long-tailed (imbalanced) class distribution and weak labels. Throughout the competition, a diverse
range of solutions based on convolutional neural networks were proposed. However, it is unclear how different solution
components contribute to overall performance. In this work, we contextualise the problem with respect to the previously
existing literature, analysing and discussing the choices made by the different participants. We also propose a modular
solution architecture to empirically quantify the effects of different architectures. The results of this study provide insights
into which components worked well for this challenge.

Keywords Multi-label classification · Signal processing · Domain mismatch · Convolutional neural networks

1 Introduction

Ecologists monitor bird influences in ecosystems. Histor-
ically, people have manually conducted bird monitoring
processes after learning to recognise birds by their vocali-
sations (calls) since visibility is often low in dense forests.
The use of machine learning (ML) methods to automate this
kind of process can save on human resources, reduce bias
in measurement, reach massive scale and target previously
inaccessible areas, such as reed ecosystems [31, 37].
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The recent BirdCLEF2021 Kaggle competition1 pro-
vided a great platform to deal with bird species identifica-
tion in audio data. In particular, the goal was to correctly
list all bird species that can be heard calling in a five-
second segment of audio. Thus, this falls into the category
of multi-label classification [20], with many quirks that
make it difficult to apply existing ML methods effectively,
providing in that way opportunities to create novel designs.

The data collected for this competition is comprised of
soundscapes and focals. Soundscapes contains up-to-10-
minute long audio files in which different bird calls and
background noises can be heard. However, focals contain
seconds-to-minutes long audio files in which one species
can be heard calling primarily, with minimal background
noise and potentially a list of secondary species that can
also be heard, but less loudly/often. Thus, the calls are often
easier to distinguish in focals compared to soundscapes, as
illustrated by their audio waveform patterns in Fig. 1.

To mimic the exact problem faced by scientists that
try to automate the monitoring of bird populations from
audio recordings, focals are provided as training data, and
soundscapes are used for test/validation. This becomes a
key challenge of this competition, as there is a domain
mismatch [27] between the training and validation/testing
datasets, which means that solutions developed for one may

1https://www.kaggle.com/c/birdclef-2021/overview
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Fig. 1 Illustrating the mismatch
between the focals training data
and the soundscapes
validation/testing data. Image
credit: ebird.org,
seecolombia.travel

not transfer well to the other due to differences in their
characteristics. We had access to 62,875 training instances,
but only twenty validation instances. This made it difficult
to use the validation dataset during training, even though it
is in the same domain as the testing dataset. Another big
issue for ML techniques is related to the class imbalance
[10, 30]. The class distribution is referred as long-tailed,
meaning that head/majority classes have many samples
(e.g. common bird species) while tail classes have very
few samples [35]. In addition, there is inconsistent label
distribution among audio segments. Last but not least, the
labelling of the data is considered weak, as this labelling
comes from a Citizen Science project. Those are likely to be
inexact and inaccurate (e.g. a sample may not have all bird
calls audible in the recording), resulting in weak labels that
highly complicate the learning process [29, 38].

A variety of solutions were proposed within this
competition. Although the data forms a time series because
microphones sample audio sequentially through time, most
of the solutions submitted split the training data into
five-second segments and classify them independently of
each other. This is useful because it matches the format
required in the validation/testing phase, and because a
lot of ML algorithms are designed for fixed-size input
vectors. A further popular processing step is to convert
each segment from an audio file into an image file. It is
achieved by applying a Short-Time Fourier transformation
(STFT) [28] and the result is called a spectrogram, which
visualises the intensity of different audio frequencies in
a two-dimensional colour graph. Overall, this strategy
allows discrete classification techniques from the field of
Computer Vision field to be applied to time series audio
data and demonstrates state-of-the-art performance [22]. A
simplified illustration is shown in Fig. 2.

Competitors implemented this strategy in various ways,
but it is unclear how different solution components

contribute to overall performance. Some teams created
complex architectures, while others achieved decent per-
formance with simple ones. In this work, we quantify the
effects of different architectures through empirical testing.
It is important to note that we do not aim to present a
new solution that performs significantly better than existing
solutions, but make further study of the techniques used in
this domain easier. The key contributions of this work are as
follows:

• We empirically investigate the importance of the differ-
ent solution components, such as external datasets, class
distribution statistics, machine learning models, etc., in
the existing solutions.

• We propose a modular solution which makes it easy
to evaluate the performance contributions of individual
components, as well as a simple-yet-effective baseline
solution.

• It was challenging to compare the solutions which were
publicly posted for this competition due to inconsistent
programming and documentation among competitors.
This paper may therefore be advantageous to readers

Fig. 2 A common technique to process bird call audio for automatic
recognition. The CNN pipeline includes data augmentation and
model ensembling. Note that the bird image is a representative
individual of the species for illustrative purposes (predictions are
made at the species-level, not the individual level). Image credit:
birdphotos.com
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Fig. 3 Categories of Data Science techniques in relation to target
data types and tasks. Each rectangle type is associated with a specific
section: double border with Section 2.1, bold border with Section 2.2,
grey fill with Section 2.3, and single thin border with Section 2.4

who want a broader review and comparison of high-
performing techniques for this task.

The source code of the proposed solution, as well as all
the results obtained in this paper, are available on GitHub2.

This paper is organised as follows. Section 2 introduces
the related work and discusses approaches followed by
the participants of the competition. Section 3 analyses the
data provided in this competition. Section 4 presents the
proposed solution and how we evaluate its performance.
Section 5 discusses the results obtained. Finally, Section 6
draws the main conclusions and insights learned from this
work.

2 Related work

This section contextualises our problem domain within
the larger taxonomy of Data Science. The subsections
traverse down the hierarchy shown in Fig. 3, leading from
broader to narrower levels of relevancy. Section 2.1 starts
generally with Time Series Data and Signal Processing.
Section 2.2 drills into audio signals specifically. Section 2.3
deals with a particular category of mixed type audio called
Environmental Sound Recognition. Section 2.4 covers the
most immediately relevant category of bird call recognition
in soundscapes. Finally, Section 2.5 explains some of the
techniques used to address the peculiarities and conditions
which the competitors of BirdCLEF2021 faced.

2https://github.com/KyleMaclean/Bird-Calls-Soundscapes

2.1 Time series data and signal processing

Time Series Forecasting is very popular, but recently, Time
Series Classification (TSC) has increased in popularity
significantly [15, 18] in various real-world applications
ranging from human activity recognition [14] to medical
diagnosis [19]. In this area, the use of ensemble learning has
been very common due to their high performance [1].

However, researchers moved away from large ensembles
for efficiency reasons and away from hand-crafted feature
extractors for performance reasons. The success of deep
CNNs in computer vision [12] inspired their utilisation
in other time series signal processing domains such as
natural language processing and speech recognition [24].
Bird call recognition is similar in principle because previous
sound samples greatly influence the meaning of subsequent
samples.

CNNs do well for signal-processing tasks, because
the convolutional layers can be specialised to compress
information into what is relevant for discriminating
particular signals. Without the convolutions reducing the
number of parameters, it would usually be computationally
infeasible to learn weights for the amount of parameters
that an image (whether a photograph, diagram, spectrogram,
etc.) would require [26]. The convolutions are also capable
of picking out features independently of where they are in
the space of the image [23]. The earlier layers in a CNN
learn more “primitive” image features, such as edges, and
the later layers learn more sophisticated shapes. We expect
diminishing returns after fifty layers for bird call recognition
because the details recognisable with that many layers are
not particularly relevant.

2.2 Understanding audio with CNNs

The two major techniques for analysing audio are with
amplitude over time or amplitude over frequency. Combin-
ing those three units into one measure yields the spectro-
gram. These measures grant an understanding of audio at
three different levels [7]:

1. Using the average frequency of a segment to understand
low-level acoustics.

2. By the short audio signature of an event, like a glass
shattering, to understand mid-level sound objects.

3. Analysing longer segments of audio to look for patterns,
like a crowd of people talking, of high-level scene
classes.

The time, amplitude and frequency measurements can be
used to develop audio features to describe the two major
types of audio, single type, which is linearly separable
in its feature space, and mixed type, which is not. It is
difficult to use some audio features, like zero crossing rate

https://github.com/KyleMaclean/Bird-Calls-Soundscapes
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(ZCR), to differentiate mixed type audio due to its non-
linearity [6]. ZCR is usually only applied to speech/music
recognition/understanding because it measures the rate that
the signal crosses negative to positive magnitudes [11].
Some of the “cleanest” focal recordings in our dataset can
be considered examples of this type, because different bird
species can exhibit different patterns in the ZCR statistic.
However, during preliminary experiments, we found no
distinguishable pattern when sampling different audio clips
of the Keel-billed Toucan and classifying them with the ZCR
statistic. Therefore, our data can generally be considered
mixed type audio.

Convolutional recurrent neural networks (CRNNs) have
shown high performance for Sound Event Detection (SED)
[4], but there is a difference between usual SED tasks and
ours. A usual SED example is: given a twenty second audio
clip, determine that footsteps were heard between seconds
four and fifteen and thunder was heard between seconds
twelve and seventeen. It is difficult to use these techniques
for our bird call recognition task because we have 397
classes of “sound events” (bird species), whereas these
models are often only shown to perform well with less than
ten. Also, many of these bird calls sound similar, whereas
the common SED classes are often quite different, as in the
example. Most mixed type audio fits into the category of
environmental sound recognition (ESR).

2.3 Environmental sound recognition

Broadly, environmental sounds are artificial or quotidian
“background sounds”. A survey [5] described solutions
to classify them as frame-based (where a frame is the
same as what we have referred to as a segment), in which
one classification is made per frame, or sub-frame-based,
where classifications of frames-of-frames (with or with-
out overlap) are combined by some means, or sequen-
tial, in which very small segments are classified. Envi-
ronmental sounds can be stationary, where the “phe-
nomena responsible for signal production do not vary
with time”. Researchers have generally found spectral
features to work very well to classify these sounds,
although at the time the survey was published (2014),
matching pursuit-based techniques, which use sparse sig-
nal representations with overcomplete dictionaries, were
better. The justification given was that spectra are
cursed by high dimensionality. However, it did not
account for later advancements in deep learning (start-
ing in 2015 [13]), which allowed efficient utilisation
of high-dimensionality data through convolutional layer
compression. These advancements led to an interest
in developing the bird call recognition subcategory of ESR,
due to the new potential for high performance.

2.4 Bird call recognition in soundscapes

As an alternative to CNNs, vision transformers (ViTs),
which have been largely used for natural language
processing have recently been applied to image recognition
[8]. In ViT, a vanilla/pure transformer yields classifications
after direct application to a spectrogram. ViT are better than
CNNs because they use a lot less computational resources
during inference and are more appropriate in principle, since
CNNs are designed to learn patterns independently of their
orientation (it is nonsensical to translate the axes of spectra
because one measures time and the other frequency). In
fact, one team in BirdCLEF2021 [17] claimed that ViT are
able to be somewhat competitive with CNNs specifically
because the former does not learn pitch-invariant patterns.
However, the top ten solutions for BirdCLEF2021 all used
CNNs.

It is difficult for either method to consider the temporal
nature of our data. Actually, these techniques ignore it in the
sense that segments of audio are classified in isolation of
each other. Hearing a bird call in one segment will probably
increase the chances that the same bird call will be heard
in the subsequent segment, but without other stages in the
pipeline to account for this, the information is lost. As
mentioned in Section 2.2, CRNNs have been used to utilise
this temporal information.

In soundscapes, different birds can often be heard calling
simultaneously. To teach a classifier to recognise multiple
classes, the Mix Up technique takes examples from different
classes and blends them together to create new examples
with labels from their constituents. Synthetic (e.g., pink or
brown) noise can also be introduced. This technique was
used widely by competitors, as well as other techniques
which were specialised to the specific datasets of the
competition. We discuss these in the following section.

2.5 Problem-specific challenges

2.5.1 Class imbalance

The nocall class was highly imbalanced compared to
all the other classes (bird species), occurring in 63.7%
of the five-second training segments. To decrease this
imbalance, teams used external data as extra nocall
examples. (See lib/external-datasets.txt in the
GitHub repository).

A primary focus of our solution was the systematic
development of the various models used in our ensemble of
classifiers. We emphasised this process because ensemble
classifiers have been shown to be more effective than
data sampling techniques to enhance the classification
performance of imbalanced data [9].
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2.5.2 Labelling issues

Training is difficult because focals may not necessarily
contain calls when divided into segments to generate
spectra. They may even contain calls from other birds.
When selecting the size of a spectrogram segment, or how
much a focal ought to be trimmed, the trade-off is between
getting a clip which is long enough to make it more likely
that a call occurs in it and that is short enough to not have
too much background noise distracting the model from the
call. To make the prediction, a straightforward approach is
to globally pool all a focal’s segments into a single logit
to be transformed by a sigmoid. The pooling operation
would ideally be a compromise between average (which
would cause weak predictions to be made uniformly over
all the segments) and max (which would be like saying
that a bird only calls in a single five-second segment). The
teams dealt with segments potentially not having calls in
various ways, such as: manually selecting segments where
the target bird was present, using stochastic sub-sampling,
or only using the results of training as “pseudo-labels” to be
processed during later stages into “cleaned labels”. The last
is called “self-distillation” or “multistep train-segment-shift
training” [21]. It regularises predictive uncertainty, similar
to label smoothing, thereby increasing predictive diversity
without requiring another model to act as a teacher [36].

2.5.3 Domain mismatch

An example of the domain mismatch is that focals are
recorded with directional microphones, intending to pick
up a particular bird, and therefore pick up less noise than
the less directed microphones used to record soundscapes.
Mix Up techniques described in the previous section can
help to address this. Another example is that birds are
generally further away in the soundscape recordings, and
high frequencies have lower volume than low frequencies
as distance to the microphone is increased. A team from the
2020 competition proposed to reduce the volume of high
frequencies to address this3. Overall, the authors’ intentions
for both types of audio are different: the training data is
intended to provide the cleanest examples of particular
species’ calls, whereas the validation/testing data is not
specific to particular birds.

2.5.4 Advanced classifier co-operation

Many teams found it beneficial to develop different
classifiers for different stages of their workflow. To reduce
false positives and false negatives, some used a component

3https://www.kaggle.com/c/birdsong-recognition/discussion/183269+

to distinguish between segments with calls and those
without. To ensure that long- and short-term information
is properly utilised, one team [16] determined the list of
species present in an entire focal, and then tried to detect
which species from that list were present in each of the
spectrogram-length segments which constituted that focal.
A common technique for ensembling was to average the
logits from the networks and then threshold them. One team
commented explicitly that this performed better than the
other way around. We follow this method in our performant
solution.

2.5.5 Location metadata

There were multiple ways that teams utilised the location
metadata provided with the focals, such as:

• Disregarding it.
• Weighting predictions which were associated with sites

that were geographically closer to the testing site propor-
tionally higher than those that were far away [16].

• Including it as feature(s) in ML systems [25].

2.5.6 Data augmentation

To help their models generalise, teams applied various
augmentations to the spectra, such as: constructing the mel
filterbank on the fly where the minimum and maximum
frequencies were scaled randomly (to adjust the pitch of
the sound) [16], and, as described above, dampening higher
frequencies and mixing up the training examples with each
other and with noise. Surveying some teams’ experiments,
it seems that the augmentations generally did not improve
performance individually, but did when used in different
amounts across ensembled networks, perhaps because the
networks themselves became more diverse and therefore
more robust in aggregate.

2.5.7 Post-processing

There were some interesting post-processing steps that the
teams performed, such as:

• Increasing prediction probability according to a partic-
ular species’ prevalence in the training data

• Distilling labels using smoothing, where the labelling
errors which the humans made can be seen as a kind of
beneficial regularisation

• Weighting predictions according to location/time-of-
year metadata

2.5.8 Summary

The main challenges faced during the competition were:

https://www.kaggle.com/c/birdsong-recognition/discussion/183269+
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• Incorporating temporal context. For example: if a
specific bird is heard in an audio recording, then it is
more likely that the same bird will be heard later in that
recording too.

• High-performing SED techniques are not suited to this
problem. They are only suited to datasets which have
fewer classes and where the classes are much more
distinctive, compared to ours.

• Label distribution among audio segments. It is more
likely that a bird is not calling in the training data: when
the recordings are split into five-second segments, most
of those segments do not contain a bird call. This is
especially detrimental when labels are distributed to all
the segments.

• The labelling is weak. For example: other bird calls
which are not labelled may be audible in the recording,
or the bird call which the author knew was there may be
very difficult to hear in the recording.

3 Data analysis

In this section, we comment on some statistical properties
of the datasets. There are 62,874 focals with metadata, such
as location and time of recording, available for training.
The labels are provided through “Citizen Science” on
Xeno Canto4, where amateurs and professionals contribute
through a system of tagging, discussing, flagging and
reviewing. They are only at the audio file level, without
timestamps of when exactly the call can be heard. There
are 397 unique classes to classify, and 264 of them have
at least 100 instances. Datasets like this are known as
“long-tailed” because there is a class imbalance which can
be visualised as shown in Fig. 4. It is generally harder
to achieve high performance with such datasets [32]. The
competition organisers capped the number of focals per
species to 500 because they thought that having more would
not reveal much more discriminatory information.

There are twenty soundscapes available for train-
ing/validation, each with a list of bird species that can be
heard (or nocall if there are none) in every five-second seg-
ment. The labels are quite strong since they are provided
by The Cornell Lab of Ornithology. The hidden testing data
consists of approximately eighty soundscapes. There are
397 species but this is a 398-class problem due to the spe-
cial nocall class which is only predicted when all other
classes are not predicted. Since there could be many birds
calling simultaneously, this is a multi-label problem. The
soundscape data was recorded only at four separate sites:
Colombia (COL), Costa Rica (COR), Sierra Nevada (SNE)

4https://xeno-canto.org/+

Fig. 4 Number of focals per species. Due to space constraints, x-axis
labels are omitted and only every fifth bar is plotted

s

and Sapsucker Woods (SSW). The hidden test set con-
tains instances from all four, but the twenty soundscapes
that were provided for training/validation only contained
examples from COR and SSW.

It is not straightforward to know how to use the
secondary labels provided in the focals during training.
The calls of the primary species are dominant because the
authors’ intentions were to capture them. By definition, the
secondary species are difficult to hear in the recordings,
so trying to train a model to recognise such a weak signal
(so weak that it might be almost indistinguishable from
noise) may lower its performance. However, because the
soundscape data is not recorded to emphasise particular bird
calls, models might be helped in transferring to this domain
through training on weak signals. We counted the number
of times each label appears in the focal secondary label
lists and found that since there are 62,874 focals, there are
twelve secondary labels that appear in at least 1% of them.
See diagrams/tangential−analysis.ipynb in the source
code for more analysis like this.

This analysis provides the following key insights:

• The labels are sometimes provided by amateurs and
always at the audio file level, i.e., without granular
labelling at different timestamps within the audio file.

• The training data is long-tailed, so we do not have a lot
of instances for every class.

• There is a domain mismatch between the training and
validation/testing data and it is difficult to train a model
which works well in both domains.

• The miscellaneous secondary labels supplied with the
training data could be more harmful than useful for
training certain predictors.

https://xeno-canto.org/+
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4 Solution architecture

This section explains how a baseline solution might be
designed and how we constructed our modular, high-
performing solution, which can be split into six logical
phases.

The baseline solution converts focals into spectra to train
a CNN, which is used directly to make predictions on
soundscapes. The network is:

• convolutional to reduce the feature vector size of the
spectra.

• residual to help it converge faster and not suffer from
vanishing/exploding gradients.

• deep because many layers are required to extract the
fine detail of the spectrogram pattern.

4.1 Phases of the performant solution

The performant solution incorporates more datasets and
techniques to achieve high performance on the Kaggle
Public Leaderboard. The proposed process can be described
in six phases and is drawn simply in Fig. 5 and in more detail
in Fig. 6:

1. Convert all the audio we will use into spectra
images: Since our approach benefits from the pattern-
recognition machinery which has been advanced in the
field of Computer Vision, we convert all the audio
data that we use in our solution into the spectrogram
image representation. We can then treat our problem as
an image classification task and utilise effective CNN
workflows. The three main audio repositories to convert
are:

Fig. 5 The proposed performant solution architecture at a high level.
Datasets are inputs in this procedure and are shown with bold borders,
while the processing machinery (models) have double borders and the
output artefacts (tables) are filled with grey. This formatting shows
how some inputs are used at multiple stages and how the outputs from
one procedure may be used as inputs in another

(a) The freefield1010 data: used in Phase 2 to build the
nocall discriminator, which will make predictions
on the focals in Phase 3 to re-weight their
probabilities in Phase 4

(b) The focals data: used in Phase 4 to help the
multi-label classifier learn the calls of the different
species

(c) The validation data from BirdCLEF2020 which
is only tagged with nocall: used to enhance the
training of the multi-label classifier in Phase 4 by
providing more examples of what environments
without bird calls sound like

This process involves splitting each audio file into its
constituent segments of equal length and applying the
Fourier transformation to those, yielding a spectrogram
image from each. This overall process is known as the
STFT, as described in Section 1.

2. Discriminate the presence of calls: Once all the data
is in image format, we can train our first model. It
is a binary classifier which just determines whether
a bird call can be “seen” in a given spectrogram.
Having this expertise helps to augment the subsequent
model, which is a multi-label classifier, by increasing
our confidence in its species labels. The freefield1010
dataset is separated into those instances that are tagged
with “birds” (where birds can be heard in the audio)
from those instances that are not, to create a binary
classification dataset. The nocall detector that we train
with this new dataset is a CNN that learns when a visual
pattern in the spectrogram is likely to represent a bird
call’s frequency intensities or not.

3. Predict whether focals have calls: the nocall discrim-
inator created in Phase 2 is used to produce likelihoods
for whether each focal segment has a bird call in it.
These probabilities will influence the predictions made
in Phase 4 to improve their accuracy. Thus we have used
some of our data (freefield1010 divided into instances
that had birds calling and those that did not) to train the
nocall detector, and another part of our data (focals),
with which to perform inference using that model. In
other words, we train an expert binary classifier to label
our training data. We will use that list of labels as a
new feature in the subsequent two phases. Therefore,
this training is a kind of “pre-work” before we train the
models which will be used on testing data.

4. Train the multi-label classifier using a combination
of datasources: In our case, this classifier is actually
an ensemble of classifiers, but the modularity of our
solution supports any artifact which is capable of
outputting a list of species labels. We use the following
datasources to train it: the spectra of the focals (Phase
1), the spectra of the nocall examples from the
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Fig. 6 The proposed performant solution architecture in detail. The numbered phases on the left of the diagram correspond with the phases
described in Section 4.1

freefield1010 and BirdCLEF2020 validation datasets,
and the list of probabilities for whether each focal
segment contains nocall (Phase 3). This combination
mitigates class imbalance by giving the “super class” of
all 397 bird classes more nocall counter-examples. The
labels of the training data which are fed into the multi-
label classifier are assigned a weight equal to the nocall
probabilities, so that, the multi-label classifier treats the
labels of segments which have a lower weight “less
seriously”. This paradigm allows us to fit the secondary
labels into our training process by assigning them a low
confidence score by default.

5. Predict each species’ probability: the multi-label
classifier model from Phase 4 predicts which species
are present in segments of focals. We output these
results in tables for each model configuration, where
each row in those tables represents a single segment
from a focal. Each will have 397 columns to represent
the probability of that species being audible in the
segment. The row will be appended with the metadata

of the focal from which the segment was extracted and
the call probability that was assigned by the nocall
discriminator which was created in Phase 2. This can
be thought of as a version of the workflow described
in Phase 4 which has been modified to perform testing
and post-processing on the results. It is another sub-
process which involves inference that is part of the
overall training process.

6. Make predictions on testing data: the probabilities for
each species and the metadata from Phase 5, together
with the classifier models from Phase 4, are used to
make predictions on the given testing data. The proba-
bilities incorporate information about the popularity of
different birds for re-weighting predictions. For exam-
ple, two candidates may sound similar but one might be
a lot more rare to encounter in general, so it should be
a less likely prediction. The metadata contains latitudi-
nal and longitudinal information from the focals to help
make decisions when encountering the site information
from the soundscapes. As a post-processing step, the
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technique in which a nocall label is added to the lists of
predictions with a particularly low confidence, is per-
formed. More details on this technique are given below.

To evaluate the classification performance, the micro-
averaged F1-score was used in the competition. This
metric evenly blends precision and recall measurements
and aggregates the binary classification comparisons into
a single score for a multi-label task. It accounts for
proportional class contributions, which is useful for
our imbalanced dataset, and emphasises common class
performance, as opposed to the macro-averaged F1-score,
which emphasises uncommon class performance [33].

One team [25] used an interesting technique to improve
their score. To the list of predictions, they added the
nocall label if the other predictions were of a sufficiently
low confidence, even though this yields in a prediction
list that can never be totally correct because there cannot
simultaneously be calls and nocall in a training example.
The justification is that data points with only one correct
label will be given no score if that label is not predicted
but a data point with multiple correct labels will get a non-
zero score if at least one of them was predicted. The nocall
label is popular, so predicting it more often is strategically
advantageous. We copy this score-optimising strategy in
the performant solution. A straightforward way to address
this loophole in the metric is to add some custom logic to
penalise predicting nocall in conjunction with other classes.

4.2 How the key challenges of this competition
are mitigated

Section 3 showed how the dataset presents challenges in that
it is labelled by amateurs at a non-ideal granularity, has a
long-tailed class distribution, creates a domain mismatch,
and that some features may confuse the learning process.
These are some strategies to deal with those challenges:

• The undesirable effects of labels being at the audio
file level can be mitigated by globally pooling all
the segments into which a focal is divided, the “self-
distillation” technique, and others as described in
Section 2.5.2.

• The technique which most significantly mitigated the
negative effects on learning potential of the long-
tailed class distribution is the introduction of more
nocall instances. Additionally, the organisers of the
competition have already applied undersampling to deal
with the class imbalance. This is evident in Fig. 4 where
the number of instances for each species is shown to be
capped at 500.

• The ability of CNNs to transfer their learning between
mismatched domains [2] is one reason why our solution

and almost every solution submitted to the Kaggle
competition were based on CNNs.

• A popular design choice was to not use the information
provided by the secondary labels because of the risk
that they may add more confusion than desirable
discriminatory powers to the process. We took the
approach of [25] to model our lack of confidence
with the secondary labels by assigning a lower weight
to them than the primary labels in our system of
weighting the labels that were used to train the multi-
label classifier.

• Oversampling is a popular technique to deal with
imbalanced data in general [3]. However, teams in this
competition did not benefit much from this technique,
and the majority of the top solutions did not use it.
Data augmentation techniques were popular among the
competitors though; we normalised and decreased the
standard JPG compression amounts in our solution by
following the successes of [25].

5 Results and discussion

This section’s results pertain to the training and evaluation
of the performant solution. We did not achieve significant
increases in performance compared to the top Kaggle
solutions. Our solution performed approximately 4% worse
than the best score on the Public Leaderboard but was able
to do better than the best score on the Private Leaderboard
by approximately 1%. Table 1 shows the differences. Note
that our goal is not to outperform the Kaggle solutions, but
to investigate the impact of different solution components
and provide a convenient framework for similar future
study. The competition did not have any comparison of the
techniques which the competitors used; this paper addresses
that gap.

5.1 Developingmulti-label classifiers

The multi-label classifier can utilise up to four different
datasets in the training process. They are (as shown in
Fig. 5): focals, focal call probabilities, freefield1010 no
call and 2020 validation no calls. The first two are crucial
because they are derived from the training data provided in
the competition. The last two contain recordings of ambient
noise in which no birds can be heard calling. They can help
to give the model more examples of the dominant nocall
class. We evaluate all four combinations of including or not
including these two datasets as architectural components
in the training process. Since we repeat all experiments in
this section for each of the four configurations, Figs. 7 to
9 have the same legend, where ¬ denotes “not using”, “f”
denotes the freefield1010 dataset and “v” denotes the dataset
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Table 1 Comparing some of
our preliminary solutions with
the best on Kaggle

Solution Private Score Public Score

Ours: ResNeSt-26 #1 0.7045 0.7554

Ours: ResNeSt-50 #1 0.6968 0.7482

Ours: ResNeSt-50 #2 0.6942 0.7448

Team: Dr. 0.6932 0.7736

Ours: ResNeSt-26 #2 0.6926 0.7678

Team: new baseline 0.6893 0.7998

Team: Shiro 0.6891 0.7919

Team: Third time’s the charm. 0.6864 0.7897

Team: Kramarenko Vladislav 0.682 0.7897

Ours: simple baseline 0.5511 0.6131

We sort by Private Leaderboard score because that is how the winners of the competition were decided

constituting the nocall instances from the 2020 competition.
The micro-averaged F1 score is calculated using five-fold
cross validation using the soundscape data.

5.1.1 Which is the best CNN?

There are three popular pre-trained CNNs which were used
most frequently in the competition for transfer learning [34].
They are: ResNeSt-26, ResNeSt-50 and efficientnet. We train
them for 100 epochs and analyse the statistics of the scores
for the best 50 epochs with these fixed hyper-parameters:
{α = 0.5, ¬g} (see Section 5.1.2 for more details).

Figure 7 shows that ResNeSt-50 is better than the other
two CNNs because its lower quartiles are greater than all
the other upper quartiles. It is less obvious which is better

between the other two, but we may say that ResNeSt-26
is more “consistent” because: its minima are greater than
efficientnet’s except for {¬f, v}; its maxima are mostly less
than efficientnet’s, and the differences between its lower and
upper quartiles are less than efficientnet’s. It makes sense
that the network with the most layers performs the best. The
values in this comparison are shown in Table 2.

5.1.2 How do different hyper-parameters perform?

We explore the performance of different hyper-parameters
for ResNeSt-50, which had the highest performance among
those tested in Section 5.1.1. We are not particularly
interested in the “best” hyper-parameters because it is
beneficial to use an ensemble of models with a mixture

Table 2 Tabular representation of the statistics graphed in Fig. 7

Models Datasets q0 q1 q2 q3 q4 mean

ResNeSt-26 ¬f, ¬ v 0.5046 0.5097 0.5135 0.5198 0.5264 0.5145

ResNeSt-26 ¬f, v 0.5055 0.5119 0.5170 0.5205 0.5328 0.5169

ResNeSt-26 f, ¬ v 0.5039 0.5079 0.5126 0.5177 0.5357 0.5140

ResNeSt-26 f, v 0.5034 0.5074 0.5091 0.5128 0.5237 0.5106

ResNeSt-50 ¬f, ¬ v 0.5206 0.5251 0.5287 0.5348 0.5472 0.5301

ResNeSt-50 ¬f, v 0.5269 0.5333 0.5388 0.5424 0.5491 0.5380

ResNeSt-50 f, ¬ v 0.5224 0.5257 0.5293 0.5339 0.5447 0.5302

ResNeSt-50 f, v 0.5195 0.5283 0.5335 0.5363 0.5458 0.5324

efficientnet ¬f, ¬v 0.4904 0.5003 0.5061 0.5121 0.5284 0.5067

efficientnet ¬ f, v 0.4930 0.5053 0.5082 0.5180 0.5301 0.5103

efficientnet f, ¬ v 0.4931 0.5012 0.5089 0.5178 0.5386 0.5095

efficientnet f, v 0.4994 0.5060 0.5128 0.5212 0.5444 0.5144

q0 is the zeroth quartile (minimum), q1 is the first quartile (lower quartile), q2 is the second quartile (median), q3 is the third quartile (upper
quartile), q4 is the fourth quartile (maximum). The values are F1 scores
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Fig. 7 Determining the best CNN when different supplemental
datasets are or are not included during training. The box-and-whisker
diagram plots the F1 scores

of hyper-parameters among them, as demonstrated in
Section 5.2.1. However, we would like to compare their
performance to help us decide which to use in our ensemble.

Figure 8 splits the results of evaluating the combinations
into two graphs. The hyper-parameters are:

• Whether to include the nocall detector’s probabilities
for weighting the predictions of the multi-label classi-
fier to help reduce false positives. The models in Fig. 8a
do not use the nocall detector (¬nc) while the models
in Fig. 8b do (nc).

• The α coefficient of the Mix Up data augmentation
process where some spectra and their labels are
combined to create new training instances to help the
models learn to identify simultaneous bird calls.

• Whether to split the recordings uploaded by the same
author on Xeno Canto across different folds (¬g) or
not (g). By not allowing this split, i.e. “grouping by
the author” (g), it becomes more likely that different
microphones and recording idiosyncrasies would have
been used to record the audio between the training
and validation sets because it is more likely that
the same author will use the same microphone and
recording habits. This may prevent over-fitting to
specific microphones.

The performance with the nocall detector is consistently
lower than without it. This observation is discussed in
contrast to the results from the hidden test sets on Kaggle
in Section 5.2.1. When the same author’s data is allowed to
appear in the training and validation sets, we observe the
highest performance increase in these experiments. This is
expected because the model may be learning peculiarities
of different authors instead of the bird call patterns. The

Fig. 8 Performance of ResNeSt-50 using different hyper-parameters

performance of the different α coefficients is similar, but the
5.0 value slightly outperforms the 0.5 value more often.

5.1.3 How do different hyper-parameters affect training
time?

It is common to examine “online” inference time of ML
systems because this indicates what resources are required
when the systems are deployed and will be relevant for the
entire life cycle of the systems. It is also useful to consider
“offline” training time even though it is a “once off” factor
because the resource costs can be significant when there is
a lot of data and the models are complex.

Figure 9 shows the average time taken to train one epoch
of each model on our computing cluster, where up to two
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Fig. 9 The average time taken to train one epoch for a variety of CNNs
and supplemental datasets as hyper-parameters

NVIDIA RTX 2080 Ti GPUs, 24GB RAM and four CPU
cores were available. Grouping by CNN, we find that the
better a model performs (see Fig. 7), the slower it is to
train. Since efficientnet is significantly faster to train than
ResNeSt-26, we would recommend using efficientnet when
training resources are at a premium because the two perform
similarly. The two models not using f are 8% faster than
the other two that do, probably because it takes a significant
amount of time to consider the 7,690 instances in the f

dataset. The p-value in a Student’s T-Test comparing the
training times for these two groups is 0.607, so we fail
to reject the null hypothesis that there is no difference in
training time between them.

5.2 Testing the entire system on Kaggle

In the following experiments, we test the entire system
where only the configuration of the multi-label classifier
ensemble is varied. The results come from the Kaggle
Public Leaderboard. Since the competition is over, we have
access to the Private Leaderboard scores, but it is not good
practice to tune solution settings using this dataset. We
could not learn much from doing so anyway, because the
Public and Private testing datasets should be drawn from the
same distribution. Our best Public scores were 4% worse
and our best Private scores were 1% better than the best on
the Leaderboards.

5.2.1 How does ensemble diversity affect performance?

The models in an ensemble can have the same or different
hyper-parameters. We hypothesised that having a high
“diversity” in the ensemble (i.e., where each ensemble
consists of different amounts of models which each have
different hyper-parameters) would lead to better overall

performance because models trained with different hyper-
parameters may be better, in aggregate, at classifying a
wider variety of test set inputs. The reason for this may
be because more hyper-parameter diversity may be able to
accurately model the outputs of more diverse inputs. To
test this hypothesis, we chose the best-performing epoch for
each of three different levels of model amounts and diversity
in hyper-parameter combinations to constitute an ensemble.
In other words, we trained ensembles which were composed
of three different amounts and configurations of models
and compared them. Figure 10 shows the performance of
these. In its legend, the first letter refers to each of the three
diversity levels, which are defined as:

′l′ : low : {α = 5.0,¬g, ¬v, ¬f }
′m′ : medium : {α = 0.5,¬g,¬v, ¬f }, {α = 5.0,¬g,¬v, ¬f },
{α = 5.0, g, ¬v, ¬f }, {α = 5.0, g, v, f }
′h′ : high : {α = 0.5,¬g,¬v, ¬f }, {α = 0.5,¬g,¬v, f },
{α = 0.5,¬g, v, f }, {α = 0.5, g, ¬v, ¬f }, {α = 0.5, g, v, f },
{α = 5.0,¬g,¬v, ¬f }, {α = 5.0,¬g, v, f }, {α = 5.0, g, v, ¬f },
{α = 5.0, g, ¬v, ¬f }, {α = 5.0, g, v, f }

Along with diversity, we also compare the performance
of models using or not using a nocall detector. The
difference between the {nc} and {¬nc} pairs (distinguished
by black and grey colouring in Fig. 10) was the opposite
of what we found during local validation testing (discussed
in Section 5.1.2). nc leads to a performance increase of
between 1.218 and 1.811 times, depending on ensemble

Fig. 10 Performance of the entire system on the hidden test with
different multi-label classifier ensemble diversities. The black points
represent solutions which included the nocall detector while the
solutions in grey did not. The three letters (l, m, h) represent different
solution diversities, about which more details are given in the text body
of Section 5.2
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Fig. 11 Kaggle runtime (left,
scatteered dots) compared to
accuracy (right, scattered
crosses) with different
high-diversity ResNeSt-50
ensemble sizes

diversity. This is most likely due to the inclusion of the focal
metadata which occurs in Phase 5 (see Section 4), which
helps to make better predictions based on time (season) and
location (geography). Other potential reasons could be:

• There is a difference between the soundscape data
provided for training/validation and the hidden test set.
For example:

– There could have been more noise in the test
set instances, meaning that the nocall detector
could have been a lot more valuable as an
expert system dedicated to avoiding being
fooled by these noises.

– Since the training/validation data is only
sampled from two of the four recording
locations, we may have missed the opportunity
to learn features which were present in the
other two locations.

• Other hyper-parameters which we did not test that could
have reduced/neutralised/reversed this performance
difference could already have been discovered by the
competitors and fixed. For example:

– We also used the ADAM optimiser and a
Cosine Annealing Warm Restarts scheduler for
training without experimenting with alterna-
tives.

– Competitors may have tried other popular
CNNs but found that the three which were used
most commonly in the competition had the
best test set performance despite having lower
validation performance.

Unfortunately, we cannot investigate these other potential
reasons because we do not have access to the hidden test set.

Note that whenever the ensemble size is larger than the
number of hyper-parameter combinations, we choose the
next-best epochs as the other models.

The best score recorded during testing is 1.272 times the
value of the best score recorded during validation. {m, ¬nc}
decreases in performance after more than six models are
present. In the nc configurations, the m ensembles are 1.012
times as good as the s ensembles but the h ensembles are
only 0.996 times as good as the m ensembles. The top four
scores overall were achieved with m ensembles. Therefore,
for nc, it seems that increasing up to, approximately, the top
four unique model configurations, increases performance,
but adding more models with worse hyper-parameters
hinders performance after that. However, for ¬nc, we see
that h continues to climb in performance up to about
ten models. This may be because there is still a lot of
performance to gain when the system does not benefit from
the nocall detector’s expertise. With that expertise, we seem
to reach the peak in performance with this paradigm much
faster.

5.2.2 What is the relationship between performance
and inference time?

Figure 11 helps in assessing the trade-off between
performance and “online” inference time requirements. The
dots show how performance increases with ensemble size
and then plateaus at around size ten. The crosses show the
somewhat linear relationship between inference time and
ensemble size. We thought it necessary to test up to forty
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models in the ensemble because a small amount of data is
anomalous and we wanted to be sure that the general trend
is linear. These anomalies may be due to inconsistent loads
on Kaggle’s servers.

6 Conclusion

In this work, we have investigated the identification of bird
species in audio recordings. To do so, we have focused on
the BirdCLEF2021 Kaggle competition, analysing related
works and discussing the most popular solutions adopted
by the participants in order to understand how to solve this
challenge. We have utilised publicly-available competition
solutions to devise a code-base which can be altered in
a modular fashion to easily experiment with different
architectural components. We conducted a thorough set
of experiments, which, in addition to standard parameter
tuning, investigated the individual contributions of entire
architectural components.

We chose ResNeSt-26 for the nocall detector because it
performed the best during preliminary experiments. We did
not change it in the experiments that were performed for
later components in the pipeline. However, ResNeSt-50 was
found to be better as the multi-label classifier. Thus, there
is an opportunity to explore other models for the nocall
detector.

In summary, our study yields the following key insights:

1. It is beneficial to use the nocall detector due to its
high performance on the testing dataset even though not
using it may seem better according to its performance
on the validation dataset.

2. Testing dataset performance is correlated to the degree
of diversity in the multi-label classifier ensembles when
the nocall detector is not used, but ensemble diversity
is much less important when the nocall detector is
included. This may indicate a ceiling in what can be
reliably learned from our datasets.

3. Whether the nocall detector was used or not, perfor-
mance on the testing dataset plateaus after ten ensem-
bled multi-label classifiers.
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