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The phase diagram of a para-H2 monolayer absorbed on an experimentally synthesized amorphous carbon
sheet was calculated using a diffusion Monte Carlo technique. We found that the ground state of that system
changed drastically from a perfectly flat substrate to a situation in which the carbon atoms were allowed a
certain degree of disorder in the z direction. In the first case, at zero pressure we have a glass of density
0.056 ± 0.003 Å−2 in equilibrium with an incommensurate solid of 0.068 ± 0.002 Å−2. At the equilibrium
density, the glass was found to have a tiny, but non-negligible superfluid fraction of less than 1% (0.44 ± 0.05%).
In the z-disordered substrate, we observe a significant enhancement of the superfluid fraction in the glass phase
as well as a smaller but not zero value in the incommensurate crystal.
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It is well known that the most stable form of carbon
is graphite. It is also well known that one can isolate one
of those single carbon layers and obtain a stable structure
termed graphene [1,2]. Even though the electric properties of
graphene are quite different from those of a three-dimensional
arrangement [3,4], theoretical calculations failed to find any
significant difference between the adsorption behavior of
quantum species (4He, H2, and D2) on graphene and graphite
[5–7].

The honeycomb structure of graphene is made up exclu-
sively of carbon hexagons, apart from occasional defects.
However, amorphous structures, in which we can have carbon
pentagons, hexagons, and even squares in addition to sixfold
rings, can be created by bombarding graphene with an elec-
tron beam [8,9] or synthesized directly by chemical vapor
deposition [10]. The main features of the latter structure can
be captured by a two-dimensional 40 × 40 Å2 patch (see Sup-
plemental Material of Ref. [10]) with no holes. The projection
of those carbon coordinates in the x-y plane is displayed in
Fig. 1 as blue squares.

The goal of this Letter is to study the behavior of H2

when adsorbed on an amorphous carbon surface. To do so,
we will consider a substrate that is adequately represented by
the above coordinates, but bearing in mind that the carbon
layer is not perfectly flat [10]. We solved the Schrödinger
equation that describes the set of H2 molecules on this adsor-
bent using the diffusion Monte Carlo (DMC) method both in
flat and corrugated carbon structures. Our results show that a
stable H2 glass phase is formed irrespectively of the substrate.
That glass has a tiny superfluid fraction if the underlying
carbon sheet is flat, a fraction that is considerably enhanced
for the z-disordered structure, i.e., we have a stable superglass.
In the case of H2, there is a previous theoretical work that
predicts a metastable three-dimensional superglass [11]. That
glass would present a sizable superfluid density around ∼1 K.

The DMC method allows for obtaining exactly the ground
state of an ensemble of interacting bosons, within the sta-
tistical uncertainties inherent to any Monte Carlo technique
[12]. To do so, first we have to write down the Hamiltonian
describing a monolayer of hydrogen on top of the amorphous
carbon substrate. This is

H =
N∑

i=1

[
− h̄2

2m
∇2

i + Vext (xi, yi, zi )

]
+

N∑
i< j

VH2-H2 (ri j ). (1)

xi, yi, and zi are the coordinates of the each of the N H2

molecules with mass m. Vext (xi, yi, zi ) is the interaction po-
tential between each molecule and all the carbon atoms in
the 40 × 40 Å2 patch that models the amorphous structure.
As in previous works [6,13,14], that interaction was chosen
to be of the Lennard-Jones type, with parameters obtained
from Ref. [15]. VH2-H2 is modeled by the standard Silvera and
Goldman potential [16]. As indicated above, we consider two
possibilities for the carbon substrate: A flat one, in which the
carbon atoms are located in the z = 0 plane, and an irregular
one, in which each z coordinate was chosen randomly in the
interval [−0.4, 0.4] Å. This z displacement is similar to the
vertical distortion of the lattice found in previous ab initio cal-
culations of amorphous graphite [17,18]. To avoid the effects
in the phase diagram of any particular z carbon distribution, all
the simulations were repeated ten times with different carbon
configurations and the results averaged over.

To actually solve the Schrödinger equation defined by the
many-body Hamiltonian in Eq. (1), one uses a trial wave
function to reduce the variance to a manageable level. We use
a symmetrized Nosanow-Jastrow wave-function split as the
product of two terms, the first one being

�J (r1, . . . , rN ) =
N∏

i< j

exp

[
− 1

2

(
b

ri j

)5]
(2)
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that depends on the distances ri j between each pair of H2

molecules and on b, a variationally optimized parameter
whose value was found to be 3.195 Å [6,14]. The second one
is

�s(r1, . . . , rN )

=
N∏
i

NC∏
J

exp

[
− 1

2

(
bC

riJ

)5]

×
N∏

I=1

[
N∑

i=1

exp{−c[(xi − xsite,I )2 + (yi − ysite,I )2]}
]

×
N∏
i

exp[−a(zi − zsite )2]. (3)

Here, bC was chosen to be 2.3 Å, as in previous works [6,14].
The zsite and a values that minimize the energy in the infinite
dilution limit were zsite = 2.94 Å and a = 3.06 Å−1. If we
consider the H2 phase to be translationally invariant, c = 0,
otherwise (i.e., for a solid or glass), c = 0.61 Å−2. The latter
value for c was taken from Ref. [6] in which it was variation-
ally optimized for a incommensurate solid; nevertheless, we
checked that changes in its value of up 50% always produced
worse energies when used in DMC. For both values of c
the form of the trial function allows the H2 molecules to be
involved in exchanges and recover indistinguishability, which
is necessary if we are to consider the possibility of a stable
superfluid. The same form of the trial function was used both
for the flat and corrugated carbon substrates.

In Eq. (3), (xsite, ysite ) are the positions of the nodes that
define the network we are interested in. For a incommen-
surate hydrogen solid, those will be the coordinates of the
crystallographic sites of the quasi-two-dimensional triangular
lattice. On the other hand, the glass is defined by a set of local
energy minima irregularly arranged. To define those min-
ima, we created a two-dimensional grid of regularly spaced
points at a distance zsite above the carbon layer and calculated
Vext (x, y, zsite ) at such positions. After that, we chose the point
of the grid for which Vext is minimum. Then, we searched
for the point in the grid with the next-to-minimum value of
the external potential located at a distance from the first of at
least σC-H2 (Lennard-Jones parameter of the C-H2 interaction,
2.97 Å [15]). This is done to avoid H2 − H2 interactions that
would contribute with positive terms to the total energy in the
full DMC scheme. The entire process is iterated until it is not
possible to locate more hydrogen molecules at distances of at
least σC-H2 from each other. After that, we are left with a list
of (xsite, ysite ) positions ordered from minimum to maximum
potential energy. However, what we need is to have a list of
nodes ordered from lowest to highest total energy. To ob-
tain it, we performed DMC calculations including one single
molecule on each of those sites and reordered the list with
respect to those total single-molecule energies. By following
that procedure we minimize the risk of getting metastable
states once we start filling that network with H2. This is so
because the difference between the full DMC energy of a
system of N molecules and the set of N increasing individual
energies provided in the algorithm just described comes from
the H2 − H2 interaction. This contribution relays less and less

FIG. 1. Reconstruction of a monolayer amorphous carbon layer
as given in Ref. [10]. Blue squares: carbon atoms. Solid red circles:
adsorption positions for H2 molecules at the equilibrium density of
the glass for a planar surface.

on the details of the network for increasing density, since
it depends primarily on the average first-neighbor distances.
The number of maximum nodes found using this procedure
was 104, and that was the maximum number of molecules
used to describe the liquid and glass phases for the density
range displayed in Fig. 2. On the other hand, that number
oscillated between 90 and 120 for the incommensurate solid,
the number of walkers in the DMC procedure being 300. The
remaining simulation details are similar to those in Ref. [14]
and omitted here for simplicity. The locations of the nodes
of the glass are displayed in Fig. 1 as red circles on top of

FIG. 2. Energy per H2 molecule as a function of the density for
hydrogen on top of flat graphene (open symbols) and amorphous car-
bon (solid symbols). Circles, quasi-two-dimensional liquid; squares,
incommensurate triangular solid; solid triangles, glass structure;
open triangle,

√
3 × √

3 structure on graphene. When not shown,
error bars are of the size of the symbols.
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the carbon coordinates (blue squares). To be sure that the
choice of the cutoff distance does not change the nodes of the
glass network, we repeated the entire procedure for exclusion
values σC-H2 ± 10%, finding exactly the same positions for the
minima. We checked also that for the densities considered in
Fig. 2 to fill the glass network in a different order than the one
described above, or to consider a different set of nodes (by
starting to build up from another node), did not alter the total
energies in the density range displayed there.

In Fig. 2, we show the energy per H2 molecule as a function
of the two-dimensional density for the three phases considered
in this Letter: a liquid (solid circles), an incommensurate tri-
angular solid (solid squares), and a glass (solid triangles) on a
carbon flat amorphous substrate. In that figure, we display also
the results for graphene, taken from Ref. [6]. Since both the
graphene and the amorphous substrate have the same carbon
density, 0.38 Å−2, this will allow us to assess the effects of
the randomness on the phase diagram of the two-dimensional
H2. What we see is that, at least in this case, the disorder
in the substrate makes both the liquid and solid phases more
stable than their corresponding counterparts in graphene. In
any case, the triangular solid is still more stable that the liquid
by 3.1 K at the densities corresponding to zero pressure (liquid
binding energy, 453.8 ± 0.5 K; solid binding energy 456.9 ±
0.5 K). Obviously, the lack of periodicity makes it impossible
to have a commensurate structure, its place being taken by a
glass arrangement of variable density. According to Fig. 2,
the maximum binding energy for this structure is 457.0 ±
0.5 K at a density of ρ = 0.056 ± 0.003 Å−2. This density is
appreciably smaller than the 0.068 ± 0.002 Å−2 correspond-
ing to the solid at the minimum of its curve, but equal to
the one corresponding to the liquid structure (ρ = 0.057 ±
0.003 Å−2). However, the irregularity of the substrate pro-
duces a less stable phase than the

√
3 × √

3 solid in graphene.
In any case, from the results displayed in Fig. 2 we can draw a
horizontal double-tangent Maxwell construction line between
the minima of the glass and solid curves. This means that
between 0.056 and 0.068 Å−2, we would have a mixture of a
glass and a triangular solid in adequate proportions to produce
a system with the desired density. From 0.068 ± 0.002 Å−2 on
up, the stable phase will be a triangular solid.

A very recent calculation [14] suggests that we can find su-
persolid behavior for a H2 second layer adsorbed on graphite
in a very narrow density window around 0.1650 Å−2. By a
supersolid we mean a solid structure (diagonal order) with
a superfluid fraction different from zero (off-diagonal long-
range order). By extension, a superglass would be a phase
in which the molecules are arranged in an amorphous setup
with a superfluid fraction larger than zero. Following the same
procedure as in that work we estimated that fraction ρs/ρ both
for the equilibrium densities of the glass and incommensurate
triangular solids. To do so, we used, as in previous literature
for similar systems [14,19], the zero-temperature winding
number estimator derived in Ref. [20],

ρs

ρ
= lim

τ→∞ α

(
Ds(τ )

τ

)
, (4)

with τ the imaginary time used in the quantum Monte
Carlo simulation. Here, α = N2/(4D0), D0 = h̄2/(2m), and
Ds(τ ) = 〈[RCM(τ ) − RCM(0)]2〉. RCM is the position of the

FIG. 3. Estimator of the superfluid density for the glass phase at
its equilibrium density. Solid squares, simulation results. The straight
line represent a linear least-squares fit to the symbols displayed for
τ > 3 K−1. Since the slope is different from zero, the disordered
structure is a superglass.

center of mass of the N H2 molecules considering only their x
and y coordinates. The results are shown in Fig. 3 for the glass
phase. Each symbol corresponds to an average of ten indepen-
dent Monte Carlo histories for each value of imaginary time,
the straight line being a least-squares fit to those points. The
error bars correspond to the statistical noise. The superfluid
fraction is the slope of the curve in the limit τ → ∞. In Fig. 3
we represent that value instead of the equivalent average of
αDs(τ )/τ for each value of τ because in that way it is easier to
appreciate the superfluid fraction when its value is very small.
The slope for the glass implies ρs/ρ = 0.44 ± 0.05%, of the
same order as the result in the second layer of graphite. To
increase the number of Monte Carlo histories does not change
the superfluid fraction within the error bar given for that
magnitude. The corresponding curve for the incommensurate
solid, not shown for simplicity, is completely flat, indicating a
normal solid.

Since the amorphous carbon layer is not flat [10], we
introduced some disorder in the z direction to assess the ef-
fects of that randomness in the calculated observables. The
results for the energies show again the same two stable
structures. A double-tangent Maxwell construction indicates
a first-order phase transition between a glass of density
0.055 ± 0.003 Å−2, and a two-dimensional incommensu-
rate crystal with ρ = 0.0650 ± 0.0025 Å−2. This means that
the locus of the coexistence region is basically untouched by
the introduction of disorder in z. However, the change in the
superfluid character of the two phases is very relevant. The
results obtained are shown in Fig. 4. This figure is similar to
Fig. 3 but, instead of depicting the movement of the center
of mass, it shows the full superfluid estimator as defined in
Eq. (4). The values represented are ρs/ρ = 0.21 ± 0.05 for
a glass of density 0.053 Å−2 (upper triangles), and ρs/ρ =
0.14 ± 0.05 for a triangular solid with ρ = 0.065 Å−2. There-
fore, our results show that we should have a superglass around
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FIG. 4. Superfluid fraction for the irregular substrate. for two
different phases and densities. Solid triangles, glass phase of density
ρ = 0.053 Å−2; solid squares, triangular solid with ρ = 0.065 Å−2.

a density around 0.055 Å−2, independently of the disorder of
the substrate in the z direction. Moreover, the disorder in z
induces supersolidity also in the incommensurate solid phase,
in contrast with the flat adsorption surface.

The finite value of the superfluid fraction in both phases
means that the particles do not remain isolated around the

lattice points but interchanges are possible. To show how
this feature is observed in the DMC simulations, we plot in
Fig. 5 some snapshots for both the glass and incommensurate
crystal for the z-disordered carbon substrate. Different colors
stand for different sets of walkers (particle configurations)
corresponding to different Monte Carlo steps along the sim-
ulation. The spreading of every cloud is an indication of the
quantum delocalization of the particles. One can see that these
clouds are mainly located around the nodes of the respective
lattices (glass or incommensurate), but that we also have dis-
placements between different sites. This is the key signal for
superfluidity. We also show in the same figure the x-y static
structure factors for both phases. As expected, the one for the
glass does not show any Bragg peak and looks rather similar
to S(k) for a liquid at the same density. Instead, the triangular
crystal shows a clear Bragg peak, but relatively small due to
the delocalization of particles.

In this Letter, we have studied the adsorption of H2 on
an amorphous substrate. To do so, we have used a set of
coordinates that were supposed to model adequately an ex-
perimentally obtained amorphous two-dimensional carbon
material [10]. We considered both a flat substrate and a cor-
rugated one. Surprisingly, the results are quite similar in one
important way: There is at least a region around 0.055 Å−2

for which we have a stable glass. We have also found that
the superfluid density of that glass can be tiny or sizable, but
not zero. This result is compatible with a recent calculation
for the second layer of H2 on graphite [14] that found a tiny
supersolid density in a very thin density region. As in that

FIG. 5. (a) Snapshots representing different sets of x-y configurations corresponding to different Monte Carlo steps for a glass phase of
density 0.055 Å−2. Different colors stand for different simulation steps. The yellow squares represent the positions of the nodes of the glass
network. (b) Same for an incommensurate solid of density 0.065 Å−2. Now the squares correspond to the crystallographic positions of a
triangular lattice. (c), (d) Static structure factors for the glass and incommensurate crystal, respectively.
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work, we can ascribe the superfluidity to the relatively low
density of the glass at equilibrium. This prompts us to suggest
that we can expect to find a superglass in a real disordered
substrate similar to that of Ref. [10]. In the worst case sce-
nario, a superfluid density of the order of the one we found for
the flat substrate can be detected using the perfected torsional
oscillator technique used in Ref. [21] for 4He on graphite.
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