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In the fuzzy theory of sets and groups, the use of α-levels is a standard to translate problems from the fuzzy to the crisp framework.
Using strong α-levels, it is possible to establish a one to one correspondence which makes possible doubly, a gradual and a
functorial treatment of the fuzzy theory. Te main result of this paper is to identify the class of fuzzy sets, respectively, fuzzy
groups, with subcategories of the functorial categories Set (0, 1], resp., Gr (0, 1]. In this line, the algebraic potential of this theory will
be reached, in forthcoming papers.

1. Introduction

1.1. Gradual Elements. Let X be a set, every subset S⊆X is
defned by its characteristic function χS: X⟶ 0, 1{ }, which

is defned by χS(x) �
1, if x ∈ S,

0, if x ∉ S.
􏼨 . Tus, the concept of

membership is exclusive. However, we can consider, in a
wider environment, diferent degrees of membership: 1
means that the element belongs to the subset; 0 means that it
does not belong, and any other real number 0< α< 1 would
mean a diferent degree of membership.

Te theory, in these terms, is due to Zadeh (see [1]) who
introduces a fuzzy subset of a given set X as a map
μ: X⟶ [0, 1]. From this primitive concept, we can develop
a whole theory of sets, relations, maps, numbers, and so on.

In this approach to the fuzzy theory, we begin by relating
various mathematical theories; this relationship is evident in
the crisp framework, but which in the fuzzy theory presents,
so far, some difculties.

Our approach to the fuzzy concept starts from the
defnition of a fuzzy element: we adopt the defnition given
by Dubois and Prade in [2] of a gradual element (if X is set, a
gradual element in X is a partial map ϵ: (0, 1]⟶ X); see also
[3] in which gradual elements are applied to gradual
numbers or [4] in which they are applied to build gradual

intervals so that a gradual element of a set X is given by a
collection of elements of X, each with a degree of mem-
bership, ranging in (0, 1]: there is always an element of the
set X that has a degree of membership 1, and, possibly, other
elements with other membership values, but never 0; that is,
we do not determine any element of X that has zero degree
of membership. Tis notion of gradual element has been
extended to study several problems (see [5]). Let X be a set. A
representation level (RL) of a fuzzy concept on X is a partial
map ε: [0, 1]⟶ P(X)) (see also [6, 7]). Nevertheless, we
have preferred to maintain the former one as when applying
to sets, groups, and other structures, it defnes canonically a
ground set, group, and so on which is an ambient object
suitable for working.

For a greater fexibility in the defnition, we may assume
that not all possible degrees are reached, so a gradual ele-
ment is given by a partial mapping from (0, 1] to X: we will
call it a partial gradual element. If ε is a partial gradual
element with defnition domain dom(ε)⊆ (0, 1], for its
study, we need to relate partial gradual elements to each
other. Te problem that arises is when two gradual elements
ε1 and ε2 are equal? It is clear that we can only compare ε1
and ε2 where they are defned, that is, in dom(ε1)∩ dom(ε2).

Tis defnition of equality is too weak. In fact, we are
more interested in knowing if ε1 and ε2 take equal values in a
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range [α, 1], for some α ∈ (0, 1]. Taking into account that
whenever β ∈ (0, 1] is very small, it is not relevant at all if
that ε1(β) and ε2(β) are the same or diferent; we are more
interested in knowing whenever ε1 and ε2 coincide for values
of β close to 1.

Tus, we extend the equality relation to the case, pre-
viously indicated, of values in an interval [α, 1]. In this way, a
relationship is obtained: ε1Rαε2 if

ε1|[α,1]∩dom ε1( )∩ dom ε2( ) � ε2|[α,1]∩dom ε1( )∩ dom ε2( ). (1)

However, this relation is not necessarily an equivalence
relation because it depends heavily on dom(ε1)∩ dom(ε2).
So, if we want to compare partial gradual elements, we must
standardize the defnition domain. In other words, we must,
for instance, extend dom(ε) to the whole (0, 1].

Tere is a standard method of doing this, consisting of,
given α ∈ dom(ε) such that ε is not defned in (β, α), de-
fning ε(c) � ε(α) for all c ∈ (β, α). Te condition that has
seemed most efcient forces to restrict the partial gradual
elements to those whose defnition domain verifes that for
every α ∈ (0, 1], there is a minimum ζ of [α, 1]∩ dom(ε), to,
in this way, extend ε to all (0, 1], defning ε(α) � ε(ζ). We
have called inf–compact the subsets of (0, 1] containing 1
and verifying this property. In this way, every partial gradual
element ε, with inf-compact defnition domain, can be ex-
tended, in a unique way, to a gradual element ε with def-
nition domain (0, 1]. We call ε the extended gradual element
of ε.

We defne a total gradual element as a map
ε: (0, 1]⟶ X, among which we have the extended of the
partial gradual elements; and denote byX the set of all total
gradual elements of X. Observe that, when working with
total gradual elements, the relation Rα is an equivalence
relation.

1.2. Gradual Subsets and Gradual Subgroups. Te next step
of complexity is to consider a binary operation ∗ in the
set X and extend it to gradual elements. Te standard
method is to defne (ε1 ∗ ε2)(α) � ε1(α)∗ ε2(α) for any
α ∈ (0, 1].

We have that if (X, ∗) has a more complex algebraic
structure, for example, if it is a group, a semilattice, the setX
of all gradual elements can have the same property. How-
ever, this has not been the line we followed for the study of
fuzzy structures in a set X, the reason is that when con-
sidering, for example, a ring structure inX, althoughX has a
ring structure, this is of little interest, since it has too many
zero-divisor elements.

We have chosen therefore to consider a greater degree of
abstraction and consider, given a group (G, ∗), not the set of
elements of G, but the setS(G) of all the subgroups of G. We
have an inclusion S(G)⊆P(G), in the powerset of G, and
the elements of S(G) are the nonempty subsets P ∈ P(G)

verifying: S∗ S⊆ S and S− 1 ⊆ S. When considering gradual
elements σ, σ1, σ2 of P(G)\ ∅{ }, we have new gradual ele-
ments: σ1 ∗ σ2 and σ − 1, and naturally the notions of gradual
subgroup and gradual subset appear.

A gradual subset of a set X is a gradual element σ of
P(X), and a gradual subgroup of a group G is a gradual
element σ ofP(X)\ ∅{ } which is a subgroup, i.e, it will be a
gradual element of S(G). Compare with the notion of RL
(representation by levels) introduced in [5].

Observe that in these situations, we have solved the
problem of extending partial gradual subsets or subgroups
because we can defne the image of any element in
(0, 1]\dom(σ) equals either ∅, for subsets, or e{ }, for
subgroups. Terefore, in Sections 3 and 4, we shall consider
only total gradual subsets and subgroups.

Tis study will lead us to relate gradual subgroups with
fuzzy subgroups and gradual groups with fuzzy groups, and
the same process will allow to relate other structures: rings,
modules, and so on.

In our exposition, we will try to establish a framework,
for future developments, based on a categorical structure
that allows to consider, not only gradual sets but also gradual
algebraic and geometrical structures. Before carrying out
this work, we have considered necessary to implement an in-
depth study that relates gradual and fuzzy sets and subsets.

In the set X of the gradual subsets of X, we defne a
closure operator σ↦ σc � ∪ σ(β)|β≥ α􏼈 􏼉. A gradual subset σ
will be a decreasing gradual subset if σ � σc. And in the set
J(X) of all decreasing gradual subsets of X, we defne an
interior operator σ↦ σd � ∪ σ(β)|β> α􏼈 􏼉; a decreasing
gradual subset σ will be a strict decreasing gradual subset
whenever σ � σd.

Associated to any fuzzy subset μ of X, we have a de-
creasing gradual subset σ(μ), defned σ(μ)(α) � μα, the α
–level of μ, for any α ∈ (0, 1], and a strict decreasing gradual
subset 􏽥σ(μ) � σ(μ)d, which is the strong α-level or strong α
-cut, of μ. Te map μ↦ σ(μ) does not preserve unions of
infnite families, and the map μ↦ 􏽥σ(μ) does not preserve
infnite intersections; hence, after modifying the intersec-
tion, we establish an injective correspondence, preserving
union and intersection, from fuzzy subsets to strict de-
creasing gradual subsets, and fnd conditions on strict de-
creasing gradual subsets to be in the image of this map; that
condition is property (inf-F). Which is important, in this
situation, is that we have an isomorphism, for intersections
and unions, between fuzzy subsets and strict decreasing
gradual subsets satisfying property (inf-F). As a conse-
quence, properties on fuzzy subsets can be studied via strict
decreasing gradual subsets.

In addition, we consider a generalization of the theory of
gradual subsets through the use of contravariant functors
from the category (0, 1] to the category Set of sets which
allow a functorial framework of both theories of gradual
subsets and of fuzzy subsets.

Tis theory, frst developed in a context of sets, can be
carried out to the more algebraic framework of groups, in
which we may establish also a bijection between fuzzy
subgroups and a specifc class of gradual subgroups and
contravariant functors. In particular, this bijection will allow
a functorial treatment of fuzzy groups.

Tis paper is organized in four sections. In the second
one, we study and establish the general theory of gradual
elements and introduce binary operations in the set of all
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gradual elements defned from binary operation in the
ground set X. In particular, if we start from a group G, we get
a structure of group in the set of gradual elements. Not in all
cases, this structure refects the properties of G and its
elements.

For this reason, to make an algebraic development later,
in the third section, we study gradual subsets and operators
in the set of gradual subsets that will allow to establish a close
relationship, an isomorphism, between the set of fuzzy
subsets and a set of gradual subsets. Tis study ends in
Teorem 2 in which an isomorphism is established; observe
that to obtain the isomorphism, we had to make use of the
strict decreasing gradual subsets. To do that, frst we consider
binary operations inP(X), the power set of X: the standard
ones are the meet (intersection) and the join (union) and
translate them to gradual subsets, which are noting more
than gradual elements of P(X). In this section, we also
identify a new type of objects through the use of contra-
variant functors from the category (0, 1] to the category of
sets. Tese contravariant functors, which are identifed with
directed systems, generalize gradual subsets and fuzzy
subsets and allow a functorial framework of these two ex-
amples, which will provide a tool capable of dealing with
other types of gradual and fuzzy objects such as groups,
rings, and so on, and that will allow to work, by using direct
limits, with gradual and fuzzy sets, instead of with gradual
and fuzzy subsets.

Te fourth section is devoted to study the more complex
example of gradual groups. After studying the diferent
concepts related to group theory, we establish the most
important result, Teorem 2, showing a bijection between
equivalence classes of fuzzy subgroups and some specifc
strict gradual subgroups. Tis gradual subgroups appear in a
natural way after studying two operator on gradual sub-
groups, one a closure operator and another one an interior
operator in the class of all decreasing gradual groups. Te
formulation of the theory in terms of operators allows to
develop a more abstract framework, in this case a functorial
one, and hence obtain new properties and relationships
between known objects.

2. Gradual Elements

2.1. Defnition of Gradual Elements

Defnition 1. Let X be a set, a total gradual element of X is a
map ε: (0, 1]⟶ X, and a partial gradual element of X is a
map ε: L⊆ (0, 1]⟶ X, defned on a subset L⊆ (0, 1] such
that 1 ∈ L. For simplicity, depending of the context, we use
gradual element to refer either to a total gradual element or
to a partial gradual element.

For any partial gradual element ε: L⊆ (0, 1]⟶ X, we
call L the defnition domain of ε and represent it by dom(ε).
We represent by X the set of all total gradual elements of X

and by Xthe set of all partial gradual elements.
A gradual element ε′ is an extension of the gradual el-

ement ε if ε|dom(ε)′ � ε.

Tere is a particularly useful method of extending a
partial gradual element ε to a total gradual one; this is the
case in which for any α ∈ (0, 1], there exists Min([α, 1]

∩ dom(ε)); then, we defne a new gradual element ε as
follows:

ε(α) � ε(ζ), being ζ � Min([α, 1]∩ dom(ε)). (2)

See Example 2 in which examples of extensions of partial
gradual elements appear. Another example is provided
whenever we consider the partial gradual element
ε: 1{ }⟶ a, b{ }, defned by ε(1) � a. In this case, an ex-
tension ε: (0, 1]⟶ a, b{ } is defned by ε(α) � a for any
α ∈ (0, 1]; the constant map equals to a.

A subset L⊆ (0, 1], containing 1, such that there exists
Min([α, 1]∩ L), for any α ∈ (0, 1], is named an inf-compact
subset of (0, 1].

Te following are examples of inf-compact subsets of
(0, 1]:

(1) Any compact subset C⊆ (0, 1], containing 1, is inf-
compact. In particular, any fnite subset and any
closed (in R) subset of (0, 1], containing 1, are inf-
compact

(2) Any ascending sequence in (0, 1], union with 1{ }, is
inf-compact

(3) Any interval [a, b)⊆ (0, 1], union with 1{ }, is inf-
compact

(4) Any union of fnitely many inf-compact subsets is
inf-compact

In the following, the domain of any partial gradual el-
ement will be an inf-compact subset of (0, 1], containing 1;
hence, any partial gradual element can be extended to a total
gradual element.

Lemma 1. If Ci|i ∈ I􏼈 􏼉 is a family of inf-compact subsets,
containing 1, then ∩ iCi is inf-compact.

Proof. For any α ∈ (0, 1], let ξ � Inf([α, 1]∩ (∩ iCi)), and
defne ξi � Min([ξ, 1]∩Ci); hence ξ ≤ ξi, for any i ∈ I. On
the other hand, since [α, 1]∩ (∩ iCi) � [ξ, 1]∩ (∩ i Ci)⊆ [ξ,

1]∩Ci, then Min([ξ, 1]∩Ci) � Inf([ξ, 1]∩Ci)≤ Inf([ξ, 1]

∩ (∩ iCi)) � ξ. In consequence, ξ � ξi for any i ∈ I.
For any element a ∈ X, there exists a partial gradual

element, which we represent by εa, with dom(εa) � 1{ }, and
defned by εa(1) � a. We denote also by εa the extension εa.
Without lost of generality, we may identify the element
a ∈ X and the gradual element εa ∈ X and denote them
simply by a.

In this way, a gradual element is nothing more than a
collection of elements of X, each one with a degree of
membership; thus, if ε is a gradual element, then ε(α) is an
element of X with membership degree α. Since ε(1) is
always defned, we have it as an element of X with the
highest membership degree; since ε(0) is not defned,
then there is no any element with zero membership
degree. □

Advances in Fuzzy Systems 3



2.2. Relations between Gradual Elements. For any α ∈ [0, 1],
in the set of all partial gradual elements, we defne a relation
Rα as, for partial gradual elements ε1 and ε2 of X, we say
ε1Rαε2 if

ε1|[α,1]∩dom ε1( )∩ dom ε2( ) � ε2|[α,1]∩dom ε1( )∩ dom ε2( ). (3)

Observe that if α ∈ (0, 1] and ε1, ε2 are total gradual
elements, then ε1Rαε2, whenever ε1|[α,1] � ε2|[α,1].

Lemma 2. For any α, β ∈ [0, 1], we have

(1) If α, β ∈ [0, 1] satisfes α≤ β, then Rα ⊆Rβ

(2) Te relation Rα is an equivalence relation in the set of
all total gradual elements

Te equivalence relation Rα indicates us when two
gradual elements are equal at a certain level. For instance,

(1) If α � 1, then we only have an equivalence class for
each element of X

(2) If α � 0, then two gradual elements belong to the
same equivalence class if, and only if, they coincide in
their defnition domains

It is necessary to remark that these equivalence relations
Rα are not compatible with the extension process. Indeed, if
ε1Rαε2, not necessarily ε1Rαε2 as the following example
shows.

Example 1. Let X � a, b{ }, and defne

ε1(δ) �

b, if δ � 1,

a, if
1
2
≤ δ < 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ε2(δ) �

b, if δ � 1,

a, if 0< δ ≤
1
2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

Ten, ε1Rαε2, for any α ∈ (0, 1], but ε1Rαε2 if and only if
α � 1.

Let f: X⟶ Y be a map between two sets.

(1) For any total gradual (resp., partial gradual) element
ε of X, we have a total gradual (resp., partial gradual)
element of Y defned by the composition
fε: dom(ε)⟶ X⟶ Y; we call fε the image of ε
by f.

(2) For any gradual element ε′ of Y, a gradual element ε
of X is an inverse image of ε′ if ε′ � fε

2.3. Binary Operations and Gradual Elements. Tere is an-
other method to relate gradual elements of a set X; this is the

case in which there exists a binary operation in X.
Let G be a set together a binary operation, say ∗, and

ε1, ε2 gradual elements of G, we defne a new gradual element
ε1 ∗ ε2 as

ε1 ∗ ε2( 􏼁(α) � ε1(α)∗ ε2(α), for any α ∈ dom ε1( 􏼁∩ dom ε2( 􏼁.

(5)

In the case of partial gradual elements ε1, ε2, we have that
dom(ε1 ∗ ε2) � dom(ε1)∩ dom(ε2).

Tis operation non necessarily is compatible with the
extension construction.

Te following example shows that if we start from two
partial gradual elements ε1 and ε2, then not necessarily we
have the equality: ε1 ∗ ε2 � ε1 ∗ ε2, i.e., then extension map is
not necessarily a homomorphism with respect to the binary
operation ∗.

Example 2. Let ε1, ε2 be partial gradual elements defned on
Z, defned as:

ε1(α) �

2, if
1
2
≤ α≤ 1,

1, if
1
10
≤ α≤

1
3
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε2(α) � 2, if
2
3
≤ α≤ 1.

(6)

In this case, we have

ε1 + ε2( 􏼁(α) � 4, if
2
3
≤ α≤ 1. (7)

and the extended gradual elements are

ε1(α) �

2, if
1
3
< α≤ 1,

1, if α≤
1
3
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε2(α) � 2, if α≤ 1,

ε1 + ε2( 􏼁(α) � 4, if α≤ 1.

(8)

On the other hand, we have

ε1 + ε2( 􏼁(α) �

4, if
1
3
< α≤ 1,

3, if α≤
1
3
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)
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ε1
2

1

11
2

1
3

1
10

ε1
2

1

11
3

ε2
2

12
3

ε2 2
1

ε1 + ε2
4

12
3

+ ε2ε1 43
11

3

ε1 + ε2 4
1

On the other hand, this operation is compatible with the
equivalence relations Rα.

Lemma 3. Let G be a set together a binary operation ∗, for
any α ∈ [0, 1] the relations Rα in the set of all total gradual
elements (resp., in the set of all partial gradual elements) are
compatible with the binary operation, i.e., for gradual ele-
ments ε, ε1, ε2 of G, if ε1Rαε2, then (ε∗ ε1)Rα(ε∗ ε2) and
(ε1 ∗ ε)Rα(ε2 ∗ ε).

Proof. Let ε1, ε2, ε be gradual elements such that ε1Rαε2, for
any β ∈ [α, 1]∩ dom(ε1)∩ dom(ε2)∩ dom(ε), we have

ε1 ∗ ε( 􏼁(β) � ε1(β)∗ ε(β)

� ε2(β)∗ ε(β)

� ε2 ∗ ε( 􏼁(β).

(10)

In some cases, in which G has a richer structure, this
structure could be inherited by the sets of gradual elements.
Let us show an example. □

Lemma 4. Let G be a group, with binary operation ∗ and
neutral element e, the following statements hold:

(1) Te set G of all total gradual elements is a group with
neutral element e, i.e., the total gradual element εe

(2) For any α ∈ [0, 1], we have that G/Rα is a group

Proof. For any ε, ε1, ε2 ∈ G, we defne, for any α ∈ (0, 1]:

ε1 ∗ ε2( 􏼁(α) � ε1(α)∗ ε2(α), and ε− 1
􏼐 􏼑(α) � ε(α)

− 1
.

(11)

(1) In G, the operation is associative and e is the neutral
element. For any ε ∈ G, we have ε− 1 the inverse of ε.
Terefore,G is a group, which is abelian whenever G

is.
(2) It is a direct consequence of being Rα a compatible

equivalence relation. □

Remark 1 (Te particular case of partial gradual elements).
Let G be a group, in the setG of all partial gradual elements,
we have an associative binary operation, (ε1 ∗ ε2)(α) �

ε1(α)∗ ε2(α) for any α ∈ dom(ε1)∩ dom(ε2), but we have
“many” possible neutral elements. Tus, to get a useful
structure, we must defne before an equivalence relation to
put together all of them. For instance, given two partial
gradual elements ε1, ε2, since ε1 ∗ ε2 is defned on
dom(ε1)∩ dom(ε2), there are three possible neutral ele-
ments: e|dom(ε1), e|dom(ε2) and fnally e|dom(ε1)∩ dom(ε2), which
are diferent two to two.

We can try to fx this problem in defning an equivalence
relation R in G generated by

ε1Rε2, if there is an inf − compact subsetC⊆ (0, 1]containing 1, such that ε1|C � ε2|C. (12)

With the relation R, the problem is that we may have
dom(ε1)∩ dom(ε2) � 1{ }, and this trivialize this relation.

Hence, to obtain a well-defned structure on partial
gradual elements, we may consider only special types of
partial gradual elements, for instance, the subset of G

constituted by those partial gradual elements who have the
same (inf-compact) domain containing 1.

Tus, we can extend Lemma 4 to consider gradual el-
ements defned on an inf-compact subset containing 1.

Proposition 1. Let G be a group, and let C⊆ (0, 1] be an inf-
compact subset containing 1. IfG be the set of all partial gradual
elements whose domain is C, the following statements hold:

(1) For any α ∈ C, the relation Rα is an equivalent re-
lation in G

(2) In G, we have an associative operation
(3) Te extending map from G to G is a group

monomorphism
(4) For any α ∈ C, the equivalence relation Rα in G is

compatible
(5) Te groups G and G /Rα are abelian whenever G is

Proof

(1) It is refexive and symmetric, and obviously it is
transitive as the domain is the whole set C.

(2) It is evident as the product is defned
componentwise.

(3) Letε1, ε2 ∈ G, and ξ � Min([α, 1]∩C), then

Advances in Fuzzy Systems 5



ε1 ∗ ε2( 􏼁(α) � ε∗ ε2( 􏼁(ξ)

� ε1(ξ)∗ ε2(ξ)

� ε1(α)∗ ε2(α).

(13)

(4) It is similar to the proof on Lemma 3.
(5) It is evident as the product is defned

componentwise.

It is clear that it is better to consider total gradual ele-
ments instead of partial gradual elements and therefore work
in G.

If the groupG has e as neutral element and for anyα in [0, 1]
we consider the equivalence relationRα, wemay rewrite Lemma
3 obtaining a fltration of subgroups of G. □

Proposition 2. Let G be a group with neutral element e, if for
any α ∈ [0, 1], we defne

Gα � ε ∈ G | εRαe􏼈 􏼉. (14)

Ten, we have

(1) For each α ∈ (0, 1], the subgroupGα ⊆G is a normal.
(2) Tere is a fltration Gα|α ∈ [0, 1]􏼈 􏼉 where Gα ⊆Gβ if

α≤ β.
(3) We have inclusions: G0 ⊆Gα ⊆G1 ⊆G, and surjec-

tive group homomorphisms:
G

G0
⟶

G

Gα
⟶

G

G1
� G. (15)

Observe that in all these examples, it seems that the way
to defne an operation on gradual elements is to defne it
componentwise.

If the base set X has a more richer structure, for instance,
if it is a ring R, then the corresponding sets R and R are
rings, but there are in these rings many elements which are
zero-divisor. So, in this case, the use of gradual elements is
not a good option. For that, in this and forthcoming papers,
we shall develop a diferent approach to study algebraic
structures. Before doing that, let us study the simplest notion
of gradual subset, and after doing this we shall return to
consider a set endowed with one or several binary opera-
tions, for instance, a group.

3. Gradual Subsets

Once we have established the notion of gradual element of a
set X, we shall apply it to defne new objects. If we consider a
set X and the power set P(X), we can study gradual ele-
ments of P(X), thereby the concept of gradual subset
appears.

3.1. Defnition of Gradual Subsets

Defnition 2. Let X be a set, and letP(X) be the power set of
X, i.e., P(X) � S|S is a subset of X{ }. We defne a gradual
subset of X as a gradual element of P(X). We represent by
σ: (0, 1]→P(X)a gradual subset of X.

Troughout this section, we follow the same assump-
tions used for gradual elements in the previous section. In
this way, we have defned partial gradual subsets and total
gradual subsets.

In some sense, gradual subsets are a generalization of
gradual elements. Tus, for any gradual element ε and any
gradual subset σ, we say ε belongs to σ if for any
α ∈ dom(ε)∩ dom(σ)⊆ [0, 1], we have ε(α) ∈ σ(α) and write
ε ∈ σ. In the same way, given two gradual subsets σ1, σ2, we say
that σ1 is a subset of σ2 if σ1(α)⊆ σ2(α) for any
α ∈ dom(σ1)∩ dom(σ2), we write σ1 ⊆ σ2.

In general, for any gradual subset σ and elements
α, β ∈ dom(σ) such that α≤ β, we have no information
about the relationship of σ(α) and σ(β). In some cases, as in
the classical one of α-levels in fuzzy set theory, there is an
evident relationship, as we shall see later. To work with them,
frst we introduce the following defnitions that refect toe
order existing in (0, 1].

Let σ be a gradual subset of X, we say σ is

(1) Increasing if for any α, β ∈ dom(σ) such that α≤ β,
we have σ(α)⊆ σ(β). For any increasing gradual
subset σ de X, if ζ � Min(dom(σ)), then σ(ζ)⊆ σ
(α)⊆ σ(1) for any α ∈ dom(σ).

(2) Decreasing if for any α, β ∈ dom(σ) such that
α≤ β, we have σ(α)⊇σ(β). For any decreasing
gradual subset σ de X, we have σ(1)⊆ σ(α) for any
α ∈ dom(σ).

Let us show some examples of decreasing gradual
subsets.

Example 3. Let μ be a fuzzy subset of X, i.e., a map
μ: X⟶ [0, 1] that we assume it is not constant equal to 0.
For any α ∈ (0, 1], we defne

(1) α-level of μ as μα � x ∈ X|μ(x)≥ α􏼈 􏼉. In this case,
we have a decreasing gradual subset σ(μ), defned
σ(μ)(α) � μα for any α ∈ (0, 1].

(2) Strict α-level (or strong α-level) of μ as 􏽥μα �

x ∈ X|μ(x) > α􏼈 􏼉. In this case, we have a decreasing
gradual subset 􏽥σ(μ), defned as

􏽥σ(μ)(α) �
􏽥μα, for any α ∈ (0, 1), and,

μ1, if α � 1.
􏼨 (16)

(3) Let μ the fuzzy subset defned by μ(x) � 1 − μ(x), for
any x ∈ X; the α-levels of μ defne a decreasing
gradual subset σ(μ)(α) � x ∈ X|μ(x)≤ 1 − α􏼈 􏼉.
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(4) Inverse α-level of μ as μα � x ∈ X|μ(x)≤ α􏼈 􏼉. In this
case, we have an increasing gradual subset τ(μ)

defned τ(μ)(α) � μα for any α ∈ (0, 1].

3.2. Operators on Gradual Subsets. Te following are ex-
amples of constructions that can be carried out for any
gradual subset, which will be useful in their study.

Let σ be a gradual subset of X, associated to σ, we defne
two new gradual subsets:

(1) Te accumulation σc of σ is

σc
(α) � ∪ σ(β)|α≤ β ∈ dom(σ)􏼈 􏼉, for any α ∈ dom(σ).

(17)

It is clear that for any gradual subset σ, the accu-
mulation σc is a decreasing gradual subset, and a
gradual subset σ is decreasing if and only if, σ � σc.
For any gradual subset σ, we have σ ⊆ σc � σcc.

(2) Te strict accumulation σd of σ is

σd
(α) �

σ(1), if α � 1,

∪ σ(β) | α< β ∈ dom(σ)􏼈 􏼉, if α ∈ dom(σ)\ 1{ }.
􏼨

(18)

It is clear that for any gradual subset σ, the strict ac-
cumulation σd is a decreasing gradual subset and σd ⊆ σc. In
general, σ ⊈ σd.

Tus, we have an operator, c, on gradual subsets: σ↦ σc.
Te behaviour of c is refected in the following lemma.

Lemma 5. Let X be a set, for any gradual subsets σ1, σ2, σ of
X, the following statements hold:

(1) σ ⊆ σc

(2) σc � σcc

(3) If σ1 ⊆ σ2, then σc
1 ⊆ σc

2

(4) σc is the smallest decreasing gradual subset containing
σ
Proof. (1), (2), and (3) are easy

(5) Let τ be a decreasing gradual subset such that σ ⊆ τ,
then σc ⊆ τc � τ.

Tismeans that the operator c is a closure operator in the
set X of all gradual subsets of X.

Remember that a closure operator in a poset (partial
ordered set) P is a map c: P⟶ P satisfying

(1) p≤ c(p) for any p ∈ P

(2) For any p1, p2 ∈ P such that p1 ≤p2 we have
c(p1)≤ c(p2)

(3) c(p) � cc(p) for any p ∈ P

Te elements p ∈ P such that c(p) � p are named the c

–closed elements. Tus, the gradual subsets which are closed
for the operator c are the decreasing gradual subsets. Let us
denote byJ(X) the set of all decreasing gradual subsets of X.

In the same way, we may consider the operator d, de-
fned as σ↦ σd; its behaviour is refected in the following
lemma.

Lemma 6. Let X be a set, for any gradual subsets σ1, σ2, σ of
X, the following statements hold:

(1) σd ⊆ σc

(2) If σ1 ⊆ σ2, then σd
1 ⊆ σd

2

(3) σd � σd d � σc d � σdc

Proof. (1) and (2) are easy. (3) Indeed, for any α ∈ (0, 1], we
have

σd d
(α) � ∪ σd

(β)|β> α􏽮 􏽯

� ∪ ∪ σ(c)|c> β􏼈 􏼉|β> α􏼈 􏼉

� ∪ σ(β)|β> α􏼈 􏼉

� σd
(α).

(19)

In the same way, for any α ∈ (0, 1], we have

σc d
(α) � ∪ σc

(β)|β> α􏼈 􏼉

� ∪ ∪ σ(c)|c≤ β􏼈 􏼉|β> α􏼈 􏼉,

� ∪ σ(β)|β> α􏼈 􏼉,

� σd
(α).

(20)

A gradual subset σ is an strict decreasing gradual subset
if σ � σd. We have □

Lemma 7. For any gradual subset σ, the following statements
hold:

(1) σd is the smallest strict decreasing gradual subset
contained in σc

(2) σ is a decreasing gradual subset non strict decreasing
if, and only if, σd⊊σc

Proof. Let τ be a strict decreasing gradual subset such that
τ ⊆ σc, then τ � τd ⊆ σc d � σd.

Tis means that the operator d is an interior operator in
the set of all decreasing gradual subsets of X.

Remember that an interior operator in a poset P is a map
d: P⟶ P satisfying

(1) d(p)≤p for any p ∈ P

(2) For any p1, p2 ∈ P such that p1 ≤p2, we have
d(p1)≤d(p2)

(3) d(p) � d d(p) for any p ∈ P

Te elements p ∈ P such that d(p) � p is named the d

–open elements. Tus, the decreasing gradual subsets open
for the operator d are the strict decreasing gradual subsets.
Let us denote byJd(X) the set of all d-open (strict) de-
creasing gradual subsets. □

Remark 2. Inspired in these constructions, we consider a
new construction of a gradual subset from a partial gradual
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subset that allows us to avoid the initial restriction of inf-
compact in the domain of defnition of partial gradual
elements.

Let σ: (0, 1]→P(X) be a partial map defned at 1,
i.e., 1 ∈ dom(σ)⊆ (0, 1], and such that dom(σ) is not
necessarily inf-compact, we may extend σ to all (0, 1]
simply defning σ(β) � ∅ if β ∉ dom(σ). Te decreasing
gradual subset associated to σis σc: (0, 1]→P(X) defned
as

σc
(α) � ∪ σ(β)|β≥ α, β ∈ dom(σ)􏼈 􏼉, for any α ∈ (0, 1].

(21)

Te use of decreasing gradual subsets is due to the fact
that gradual subsets are wild structures that one can
not be managed, in which there is no relationship
between its components. On the other hand, when
studying subsets of a given set, it seems natural to
impose some inclusion relationships and that these in-
clusions should be parameterized by the order relation in
(0, 1].

Remark 3. Observe that we may extend any gradual subset
σ on X to σ on the whole interval [0, 1], in defning σ(α) �

∪ σ(β)| α≤ β ∈ (0, 1]􏼈 􏼉, if α ∈ (0, 1],

∪ σ(β)|β ∈ (0, 1]􏼈 􏼉, if α � 0,
􏼨 for any α ∈ [0, 1].

In consequence, we may consider also decreasing gradual
subsets as maps from [0, 1] to X.

3.3. Te Algebra of Gradual Subsets. Tere is a natural re-
lationship between gradual elements and gradual subsets
of a given set X. Tus, for any partial gradual element ε, we
may defne a unitary partial gradual subset σ(ε) as
σ(ε)(α) � ε(α){ }, for any α ∈ dom(ε). As we point out
before, we have ε ∈ σ if, and only if, σ(ε)⊆ σ, for any
gradual subset σ.

In the set P(X), there are two operations: the inter-
section and the union; thus, we can translate these two
operations to gradual subsets as did in the frst section.
Following this line, we defne, for any gradual subsets, σ1 and
σ2:

(1) Te intersection, σ1 ∩ σ2, as (σ1 ∩ σ2)(α) � σ1
(α)∩ σ2(α), for any α ∈ dom(σ1)∩ dom(σ2)

(2) Te union, σ1 ∪ σ2, as (σ1 ∪ σ2)(α) � σ1(α)∪ σ2(α),
for any α ∈ dom(σ1)∩ dom(σ2)

In this way, we may consider the algebra of gradual
subsets of a given set X with respect to intersection and
union.

Te defnition of intersection and union can also be
extended to arbitrary families of gradual subsets. Let
σi|i ∈ I􏼈 􏼉 be a family of gradual subsets.

(1) Te intersection ∩ iσi is defned as (∩ iσi)(α) � ∩ iσi

(α), for any α ∈ (0, 1]

(2) Te union ∪ iσi defned as (∪ iσi)(α) � ∪ iσi(α), for
any α ∈ (0, 1]

Let μi|i ∈ I􏼈 􏼉 be a family of fuzzy subsets of a set X, the
union, ∨iμi, and the intersection, ∧ iμi, are the fuzzy subsets
defned by

∨iμi( 􏼁(a) � ∨iμi(a) � Sup μi(a)|i ∈ I􏼈 􏼉, for any a ∈ X,

∧ iμi( 􏼁(a) � ∧ iμi(a) � Inf μi(a)|i ∈ I􏼈 􏼉, for any a ∈ X.

(22)

Example 4. Let X � a, b{ } be a set, for any n ∈ N\ 0, 1{ }, we
defne μn: a, b{ }⟶ [0, 1] by μn(a) � 1 and μn(b) � (1/2) −

(1/2n). We have

(1) (∨nμn)(a) � 1 and (∨nμn)(b) � (1/2)

(2) σ(∨nμn)(δ) �
X, if δ > (1/2),

a{ }, if δ ≤ (1/2),
􏼨

(3) (∪ nσ(μn))(δ) �
X, if δ ≥ (1/2),

a{ }, if δ < (1/2),
􏼨

Tis shows that the inclusion σ(∨nμn)⊇∪ nσ(μn) is
proper.

In the same line, we have a similar situation for 􏽥σ and the
intersection.

Example 5. Let X � a, b{ } be a set, for any n ∈ N\ 0, 1{ }, we
defne μn: a, b{ }⟶ [0, 1] by μn(a) � 1 and μn(b) � (1/2) +

(1/2n). We have

(1) (∧ nμn)(a) � 1 and (∨nμn)(b) � (1/2)

(2) 􏽥σ(∧ nμn)(δ) �
X, if δ ≥ (1/2),

a{ }, if δ < (1/2),
􏼨

(3) (∩ n􏽥σ(μn))(δ) �
X, if δ > (1/2),

a{ }, if δ ≤ (1/2),
􏼨

Tis shows that the inclusion 􏽥σ(∧ nμn)⊆ ∩ n􏽥σ(μn) is
proper.

In the setJd(X) of all strict decreasing gradual subsets
of X, we defne two new operations: intersection: ∧ iσi �

(∩ iσi)
d, and maintain the old union: ∨ iσi � ∩ iσi, for every

family σi|i ∈ I􏼈 􏼉 of strict decreasing gradual subsets of X.
With these defnitions, we have the following.

Proposition 3. Te union and intersection of strict de-
creasing gradual subsets are compatible with the union and
intersection of fuzzy subsets via the gradual subset 􏽥σ(μ), i.e.,
for any family of fuzzy subsets μi|i ∈ I􏼈 􏼉, we have

(1) ∨ i􏽥σ(μi) � 􏽥σ(∨iμi)

(2) ∧ i􏽥σ(μi) � 􏽥σ(∧ iμi)
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Proof. For any α ∈ (0, 1], we have

􏽥σ ∨iμi( 􏼁(α) � a ∈ X| ∨iμi( 􏼁(a)> α􏼈 􏼉

� a ∈ X|∨iμi(a)> α􏼈 􏼉,

� ∪ a ∈ X|there exists i such that μi(a)> α􏼈 􏼉

� ∪ i􏽥σ μi( 􏼁( 􏼁(α)

� ∨ i􏽥σ μi( 􏼁( 􏼁(α).

(23)

In the same way, we can prove the case of 􏽥σ(∧ iμi)(α).
From this point of view, strict α-levels should be a

suitable tool for studying the algebra of fuzzy subsets via
decreasing gradual subsets. □

3.4.Maps. In order to relate two gradual subsets, a standard
method consists in defning a map from one to the other. In
this context, frst we consider a map between the underlying
sets containing each gradual subset; the following result
show how to associate gradual subsets to gradual subsets via
a map.

Lemma 8 (Direct image). Let f: X⟶ Y be a map and
denote by f the induced map from P(X) to P(Y), the
following statements hold:

(1) For every gradual element ε of X, we have that
fε: dom(ε)⟶ Y is a gradual element of Y.

(2) Let σ be a gradual subset of X, then
fσ: dom(σ)⟶ P(Y) is a gradual subset of Y.
And we have a map f∗: X⟶Y defned f∗(σ) �

fσ for any σ ∈ X.
(3) Let σ be a gradual subset of X, then f∗(σc) � (f∗

(σ))c.

In addition, if ε ∈ σ, then fε ∈ fσ.

Lemma 9 (Inverse image). Let f: X⟶ Y be a map and
denote by f− 1: P(Y)⟶ P(X) the induced map. For any
gradual subset τ of Y, we have that f∗τ: dom(τ)⟶ P(X),
defned as f∗τ(α) � f− 1(τ(α)), for any α ∈ dom(τ), is a
partial gradual subset of X. Tus, we have a map
f∗: Y⟶ X, defned f∗(τ) � f∗τ, for any τ ∈ Y.

In particular, for any gradual subset τ of Y, we have
f∗(τc) � (f∗(τ))c.

Since every element of X and every element of Y are
gradual elements and the same for gradual subsets, the
notions of injective map and surjective map applied either to
gradual elements or gradual subsets are equivalent. In the
case of gradual subsets, we have

Lemma 10. Let f: X⟶ Y be a map, then

(1) f is injective if, and only if, f∗°f∗ � idX
(2) f is surjective if, and only if, f∗°f ∗ � idY
Our aim will be to establish maps between gradual sets

instead of between gradual subsets, i.e., leave out the ground

set X and use only the subsets σ(α)|α ∈ (0, 1]{ }. However, we
postpone it until the point in which we change the paradigm
introducing these gradual sets.

Remark 4. A gradual subset σ of a set X is just a family
σ(α)|α ∈ (0, 1]{ } of subsets, indexed in (0, 1]. Tere are
particular types of gradual subsets, as decreasing gradual
subsets, in which, for any α, β ∈ (0, 1], α≤ β, there exists a
map jα,β: σ(β)⟶ σ(α): the inclusion, satisfying jα,βjβ,c �

jα,c whenever α≤ β≤ c. In some sense, decreasing gradual
subsets are gradual subsets enriched with a family of maps
jα,β|α, β ∈ (0, 1], α≤ β􏽮 􏽯 satisfying the above conditions
and compatible with the inclusions in X. Tus, we may work
with these enriched gradual subsets of X.

An enriched gradual subset of X is a gradual subset σ
together with a family of maps fα,β|α, β ∈ (0, 1], α≤ β􏽮 􏽯

satisfying

(1) fα,β: σ(β)⟶ σ(α)

(2) fα,βfβ,c � fα,c whenever α≤ β≤ c

(3) if jα: σ(α)⟶ X is the inclusion, for any α ∈ (0, 1],
then jαfα,β � jβ, whenever α≤ β

Observe that, as a consequence of (3), each fα,β is an
injective map. In particular, enriched gradual subsets are just
the decreasing gradual subsets. See also Remark 7.

3.5. Gradual Quotient Sets. Te same technique we used to
introduce gradual subsets can be applied to defne quotient
gradual sets of a given set X.

Remember that if X is a set, a subset S⊆X is an
equivalence class in the class of all injective maps (i, Y)|i: Y{

⟶ X injective}, whenever we consider the equivalence
relation: (i1, Y1) ∼ (i2, Y2) if there exists a bijective map
b: Y1⟶ Y2 such that i1 � i2b.

Y1
i1

b

Y2
i2

X

Dually, a quotient set of X is an equivalence class in the
class of all surjective maps (Z, p)|p: X⟶ Z surjective􏼈 􏼉

when we consider the equivalence relation: (Z1, p1) ∼ (Z2,

p2) if there exists a bijective map b: Z1⟶ Z2 such that
p2 � bp1.

X
p1

p2

Z1

b

Z2

Te set of all subsets of X is represented by P(X), and
there exists a bijective correspondence between P(X) and
2X. Te set of all quotient set of X will be represented by
Q(X), and for any element Z ∈ Q(X), we have

(1) A surjective map p: X⟶ Z
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(2) An equivalence relation Rp in X defned as xRpy if
p(x) � p(y)

(3) A partition of X into the equivalence classes defned
by a relation R.

Each equivalence relation R in X is a subset of X × X

satisfying the properties refexive, symmetric and transitive.
Hence,Q(X) is in bijection with a subset ofP(X × X). If we
call Q(X × X) this subset, it is constituted by all the
equivalence relations in X.

A gradual quotient set of X is a gradual element of Q(X)

or equivalently of Q(X × X). We represent by ρ a gradual
quotient set of X.

3.6. Gradual Subsets and Fuzzy Subsets. As an example of
application of the gradual subset theory, let us establish a
correspondence between fuzzy subsets and enriched gradual
subsets. As we had shown before, see Proposition 3; if we
consider the strict decreasing gradual subset 􏽥σ(μ), the
correspondence μ↦ 􏽥σ(μ) is a homomorphism with respect
to arbitrary union and intersection.

In addition, the gradual subsets σ(μ) and 􏽥σ(μ) are related
in a strong way: 􏽥σ(μ) � σ(μ)d ⊆ σ(μ)c � σ(μ), using the
interior and closure operator. Also, these gradual subsets
satisfy the following properties:

(1) μ(x) � Max α|x ∈ σ(μ)(α)􏼈 􏼉, for any x ∈ X

(2) μ(x) � Inf α|x ∉ 􏽥σ(μ)(α)􏼈 􏼉, for any x ∈ X

We say

(1) A decreasing gradual subset σ satisfes property (F) if
there exists Max α|x ∈ σ(α){ } for every x ∈∪ α|α{

∈ (0, 1]}

(2) A strict decreasing gradual subset σ satisfes property
(inf-F) if Inf α|x ∉ σd(α)􏼈 􏼉 � β satisfes x ∈ σ(β), for
every x ∈∪ α|α ∈ (0, 1]{ }

As a consequence, we have the following result.

Lemma 11. Let σ be a decreasing gradual subset, not strict
decreasing gradual subset, the following statements are
equivalent:

(i) σ satisfes property (F)
(ii) σd satisfes property (inf-F)
(iii) ∪ α∈(0,1]σ(α) � ∪

•

α∈(0,1](σc(α)\σd(α)) (the disjoint
union)

Proof. By the hypothesis, we have σd⊊σc � σ.

(i) ⇒ (ii) Let β � Max α|x ∈ σ(α){ } and c � Inf α|x ∉{

σd (α)}, then x ∉ σ(δ) for every δ > c. Since σ is
decreasing, β≤ c. If β< c, for any ω such that
β<ω< c, we have x ∉ σ(ω), hence c≠ Inf α|x{

∉ σd(α)}, which is a contradiction.
(ii) ⇒ (i) Let β � Sup α|x ∈ σ(α){ } and c � Inf α|x{

∉ σd(α)}. Since σ is decreasing, β≤ c. If β< c, for
any ω such that β<ω< c, we have x ∈ σ(ω) and
β≠ Sup α|x ∈ σ(α){ }, which is a contradiction.

(i) ⇒ (iii) One inclusion is obvious. Otherwise, if
x ∈ ∪α∈(0,1)σ(α), let β � Max α|x ∈ σ(α){ }, then
x ∉ σ(c) for any c> β; hence, x ∉ σd(β) and
x ∈ ∪

•

α∈(0,1](σc(α)\σd(α)).
(iii) ⇒ (i) Let x ∈ X, if x ∉ ∪α∈(0,1)σ(α), then either

x ∈ σ(1), and there exists Max α ∣ x ∈ σ(α){ } � 1 or
x ∉ ∪α∈(0,1]σ(α) and Max α|x ∈ σ(α){ } � 0. Other-
wise, if x ∈ ∪α∈(0,1)σ(α) � ∪

•

α∈(0,1](σc(α)\σd(α)),
there exists α such that x ∈ σ(α)\σd(α), hence
Max α|x ∈ σ(α){ } � α. □

Remark 5
(1) As a consequence of this result, for any decreasing

nonstrict decreasing gradual subset, satisfying
property (F), we have Max α|x ∈ σ(α){ } � Inf
α|x ∉ σd(α)􏼈 􏼉 for any x ∈ X

(2) In the case of a strict decreasing gradual subset
satisfying property (inf-F), we have that it also sat-
isfes property (F); hence the following equalities
hold: Max α|x ∈ σ(α){ } � Inf α|x ∉ σd(α)􏼈 􏼉 for any
x ∈ X

Now, we are going to establish correspondences between
fuzzy subsets and strict decreasing gradual subsets, which
preserves union and intersection. Te following result, for
fnite unions, is well known.

Theorem 1. Let X be a set, the following statements hold:

(1) Te map ]: μ↦ σ(μ) associates to any fuzzy subset μ
of X a decreasing gradual subset satisfying property
(F), σ(μ) of X, defned σ(μ)(α) � x|μ(x)≥ α􏼈 􏼉, and it
preserves intersections and fnite unions.

(2) Te map υ: σ↦ μ(σ) associates to any decreasing
gradual subset σ � σc, satisfying property (F); a fuzzy
subset μ(σ) is defned as follows:

μ(σ)(x) � Max α|x ∈ σ(α){ }. (24)

In addition, we have ]°υ � id and υ°] � id, and they
preserve fnite unions and intersections.

Te behaviour with respect to infnite unions can be
solved using only strict decreasing gradual subsets instead of
decreasing gradual subsets.

Theorem 2. Let X be a set, the following statements hold:

(1) Te map ]: μ↦ 􏽥σ(μ) associates to any fuzzy subset μ
of X a strict decreasing gradual subset 􏽥σ(μ) of X,
defned 􏽥σ(μ)(α) � x|μ(x)> α􏼈 􏼉, and it preserves ar-
bitrary unions and intersections.

(2) Te map υ: σ↦ 􏽥μ(σ) associates to any strict de-
creasing gradual subset σ � σd, satisfying property
(inf-F); a fuzzy subset 􏽥μ(σ) is defned as follows:

􏽥μ(σ)(x) � Inf α|x ∉ σ(α){ }. (25)

In addition, we have ]υ � id and υ] � id.
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Proof. We had already studied the map ] in Proposition 3.
Te map υ is well defned due to Teorem 2. Now, we

check that the compositions are the identity.
Let μ be a fuzzy subset of X, for any x ∈ X, we have

υ°](μ)(x) � 􏽥μ((􏽥σ(μ))x

� Inf α|x ∉ 􏽥σ(μ)(α)􏼈 􏼉

� Inf α|μ(x)≤ α􏼈 􏼉

� μ(x).

(26)

On the other hand, let σ be a strict decreasing gradual
subset, and α ∈ (0, 1], we have

]°υ(σ)(α) � 􏽥σ(􏽥μ(σ))(α)

� x|􏽥μ(σ)(x)> α􏼈 􏼉

� x|Inf β|x ∉ σ(β)􏼈 􏼉> α􏼈 􏼉.

(27)

If Inf β|x ∉ σ(β)􏼈 􏼉 � δx, then δx > α; since σ satisfes
property (inf-F), then x ∈ σ(δx)⊆ σ(α). Otherwise, if
x ∈ σ(α) � σd(α) � ∪ σ(β)|β> α􏼈 􏼉, there exists c> α such
that x ∈ σ(c), hence Inf β|x ∉ σ(β)􏼈 􏼉> c> α, and we have
the other inclusion.

As a consequence, we have the fnal result that estab-
lishes an isomorphism between the two lattices. See Prop-
osition 3. □

Corollary 1. Let X be a set, there is an isomorphism between
the lattice of all fuzzy subset of X and the lattice of all strict
decreasing gradual subset of X, satisfying property (F), and
they preserve arbitrary unions and intersections.

3.7. A Functorial Interpretation. Let us consider (0, 1] as a
category whose objects are the elements of (0, 1] and ho-
momorphisms: only one, fα,β, from α to β whenever α≤ β
and the obvious composition.

Let F: (0, 1]⟶ Set a contravariant functor from the
category (0, 1] to the category of sets. Indeed, F(α)|α{

∈ (0, 1]} is a directed system with maps
F(fα,β): F(β)⟶ F(α), if α≤ β. Let D � lim

⟶
F be the direct

limit of this system.
Let us remember the defnition of the direct limit, D �

lim⟶ F. First, we consider the disjoint union, ∪
•

F(α), of
the family of sets F(α)|α ∈ (0, 1]{ } and in it; the equivalence
relation R generated by a ∈ F(α) is related with b ∈ F(β) if
either α≤ β and F(fα,β)(b) � a or β≤ α and F(fβ,α)(a) � b.

Let p: ∪
•

F(α)⟶ (∪
•

F(α))/R be the canonical projec-
tion, iβ: F(β)⟶ ∪

•
F(α) be the inclusion, for any

β ∈ (0, 1], and qβ � piβ the composition.

F (β)

iβ

qβ

qα

F (α) p D

iα

F (α)

F (fα,β)

Te pair (D, pα|α ∈ (0, 1]􏼈 􏼉) satisfes the corresponding
universal property of the direct limit.

In the particular case in which every map F(fα,β) is
injective, then every qα is also injective; this means that we
can consider every F(α) as a subset of D. Terefore, we have
that F defnes a decreasing gradual subset of D � lim

⟶
F, or

more generally, a decreasing gradual subset of any overset of
D and represent it by (F, lim

⟶
F).

Tis allows to give an interpretation of decreasing gradual
subsets in terms of contravariant functors. If we start from a
decreasing gradual subset of a set X, then σ(α)|α ∈ (0, 1]{ },
together with the family of inclusions, is a directed system,
and if jα: σ(α)⟶ X, for every α ∈ (0, 1], is the inclusion,
then we have a commutative diagram

σ (β)

iβ qβ

jβ

qα

σ (α) p D Xh

iα
jα

σ (α)

σ (fα,β)

and an inclusion h: D⟶ X, from the direct limit D to X,
being h(D) � Im(h) the union of the family of the subsets
σ(α)|α ∈ (0, 1]{ }.

Taking into account this construction, we may show that
a decreasing gradual subset σ of a set X is nothing more than
a contravariant functor F: (0, 1]⟶ Set of this shape, to-
gether with an injective map D � lim

⟶
F⟶ X. As a con-

sequence, we may consider contravariant functors as the
central element in the study of decreasing gradual subsets.

Hence, we may defne a gradual set as a contravariant
functor F: (0, 1]⟶ Set and a decreasing gradual set as a
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gradual set such that each map F(fα,β), whenever α≤ β, is
injective.

Given two gradual sets F1 and F2, a map from F1 to F2 is
just a natural transformation θ: F1⟶ F2, i.e., a set of maps
θα|α ∈ (0, 1]􏼈 􏼉 such that each diagram commutes, whenever
α≤ β.

F2 (α)

F1 (α)F1 (β)

F2 (β)

F1 (fα,β)

F2 (fα,β)

θβ θα

Te contravariant functors from (0, 1] to Set, i.e., the
gradual sets, constitute a category that we shall denote by
Set(0,1]. Te class of all decreasing gradual sets defnes a full
subcategory of Set(0,1], and it is closed under (fnite and
infnite) unions and intersections. Let us call J this
subcategory.

In the subcategory J, we defne an interior operator,
d: F↦Fd, as follows:

F
d
(α) � ∪ F(c)|c> α􏼈 􏼉

� lim
⟶ (α,1]

F(c),
(28)

and if α≤ β, then there is an inclusion functor (β, 1]→ (α, 1]

and a natural map from Fd(β) � lim
⟶ (β,1]

F(c) to Fd(α) �

lim
⟶ (α,1]

F(c).

Proposition 4. Let F be a decreasing gradual set and
θ: F1⟶ F2 be a decreasing gradual set map. Te following
statements hold:

(1) Fd is a contravariant functor from (0, 1] to Set; hence,
it is a gradual set

(2) If α≤ β, the natural map Fd(β)⟶ Fd(α) is injec-
tive; hence, Fd is a decreasing gradual set

(3) Tere exists a natural map θd: Fd
1⟶ Fd

2 , defned, for
every β ∈ (0, 1], as the only mapmaking commutative
the following diagram.

(4) d defnes an endofunctor of J, which is an interior
operator in J.

F1 (γ) = Fd1 (β)

F2 (γ) = Fd1 (β)

θd (β)θβ

lim

lim

lim

lim

F1 (γ)

F2 (γ)F2 (γ)

F1 (γ)

(β, 1]

(β, 1] (0, 1]

(0, 1]

A decreasing gradual set F is an strict decreasing gradual
set whenever F � Fd and satisfes property (F) if D � lim

⟶
F �

• ∪ F(α)\Fd(α)􏼈 􏼉, where the union is taken in D.
By the relationship between (inf-F) and (F) properties,

we may defne a fuzzy set as a strict decreasing gradual set
satisfying property (inf-F). In particular, strict decreasing
gradual sets satisfying property (inf-F) constitute a full
subcategory of J.

As a consequence, we have the following result.

Theorem 3. Let F be a gradual set.

(1) Te following statements are equivalent:

(a) F is a strict decreasing gradual set
(b) Te pair (F, lim

⟶
F) is a strict decreasing gradual

subset of D � lim
⟶

F

(2) Te following statements are equivalent:

(a) F is a strict decreasing gradual set satisfying
property (inf-F), i.e., F is a fuzzy set

(b) Te pair (F, lim
⟶

F) is a strict decreasing gradual
subset of D � lim

⟶
F satisfying property (inf-F)

Remark 6. Te use of decreasing gradual sets allows to avoid
the use of decreasing gradual subsets. Indeed, a decreasing
gradual subset is, in some sense, more natural: we can build
the category of decreasing gradual sets as a subcategory of the
functor category Set(0,1]. Otherwise, decreasing gradual
subsets are referenced to a set, the same does not happen with
decreasing gradual sets; although, as we have the direct limit,
the direct system itself acts as a real set.With fuzzy subsets, we
have the same situation. Observe that in the fuzzy situation,
whenwe consider the directed systems and the direct limit, we
are considering only those elements with a positive, nonzero,
membership degree, i.e., we do not consider those with zero
membership degree. See also Remark 4.

Remark 7. In looking for an abstract model for gradual
subsets of a set X, our frst candidate was the functor cat-
egory Set(0,1]. However, unfortunately, with this category, we
do not obtain faithful representation of all gradual subsets.
One may consider the gradual subset σ of a nonempty set

Xdefned by σ(δ) �
X, if δ � (1/2),

∅, if δ ≠ (1/2).
􏼨 . Obviously, we can

not obtain σ using contravariant functors from the category
(0, 1]: the reason is that there are no maps from X to∅ (it is
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not an enriched gradual subset). Tis have been overcome
when we consider enriched gradual sets. Tis model works
perfectly and meets all our expectations whenever we
consider decreasing gradual subsets.

Remark 8. Observe that in our construction, we have fxed the
categories Set and (0, 1] and considered contravariant functor.
If we change contravariant for covariant, we get increasing
gradual sets. On the other hand, the category Set has some
peculiarities: one is that there ∅ which is an initial and not a
fnal object; the other is that there are objectsA andB such that
HomSet(A, B) � ∅; these force the use of increasing or de-
creasing gradual sets to assure writing the theory in a functor
language using the usual order relation in (0, 1]. Some of these
restrictions will be removed once we change the category Set
for another category as Gr (the category of groups) or Mod −

A (the category of right A–modules).

4. Gradual Subgroups

In Section 2.3, we have studied gradual subsets ofP(X) for
any set X and considered in P(X) the operations:

intersections and union. We can repeat the same procedure
whenever we have a binary operation in X and translate it
into P(X), or a subset of P(X), in the natural way. Tus,
our aim in this section is to study gradual subsets of a given
set X, together with an additional algebraic structure in X; to
do that we shall consider the simplest example of groups.

4.1. Gradual Subgroups. Let X be a nonempty set with a
binary operation ∗, we defne inP(X)\ ∅{ } new binary and
unary operations by

S1 ∗ S2 � s1 ∗ s2 | si ∈ Si􏼈 􏼉, for every S1, S2 ∈ P(X)\ ∅{ } and,

S
− 1

� s
− 1

| s ∈ S􏽮 􏽯, for every S, ∈ P(X)\ ∅{ }.
(29)

Tus, we may defne an operation on gradual subsets of
X (for simplicity, in this section, for a set X, a gradual subset
of X is a gradual element of P(X)\ ∅{ } ) by

σ1 ∗ σ2( 􏼁(α) � σ1(α)∗ σ2(α), for every σ1, σ2 and α ∈ (0, 1],

σ − 1
(α) � σ(α)

− 1
, for every σ and α ∈ (0, 1].

(30)

Defnition 3. Let G be a group (we eliminate the symbol ∗
and represent the product just as juxtaposition); a gradual
subgroup of G is a gradual subset σ of G, satisfying

(1) σ ∗ σ ⊆ σ
(2) σ− 1 ⊆ σ

Proposition 5. Let e be the neutral element of a group G and
σ a gradual subgroup, the following statements hold:

(1) e ∈ σ(α) for any α ∈ (0, 1]

(2) σ(α) is a subgroup of G for any α ∈ (0, 1]

Terefore, if S(G) is the set of all subgroups of G, a gradual
subgroup of G is just a gradual element of S(G).

Proof

(1) Let a ∈ σ(α), then a− 1 ∈ σ(α); hence, e � a∗ a− 1

∈ σ(α)

(2) Let a, b ∈ σ(α), then b− 1 ∈ σ(α); hence, a∗ b− 1

∈ σ(α)

If ε is a gradual element of a group G, for any α ∈ (0, 1],
we defne 〈ε〉(α) � 〈ε(α)〉, the gradual subgroup of G

generated by ε. A gradual subgroup σ of G is cyclic if there
exists a gradual element ε such that σ � 〈ε〉.

Wemay also defne fnitely generated gradual subgroups:
a gradual subgroup σ is fnitely generated if there are
gradual elements ε1, . . . , εt such that for any α ∈ L we have

σ(α) � 〈ε1(α), . . . , εt(α)〉. We represent this σ simply as
〈ε1, . . . , εt〉. □
Proposition 6. Let σ be a gradual subgroup of a group G. Te
following statements are equivalent:

(i) σ is fnitely generated
(ii) Tere exist gradual elements ε1, . . . , εt such that

σ � 〈ε1, . . . , εt〉

(iii) Tere exists a positive integer t such that each sub-
group σ(α) can be generated by t elements

Observe that due to Proposition 5, gradual subgroups of G

can be identifed with subgroups of the direct product, indexed
in (0, 1], of copies of G.

4.2. Normal Gradual Subgroups. By the aforementioned
identifcation, the study of gradual subgroups is very simple.
Tus, a gradual subgroup of a group G is normal if for any
α ∈ (0, 1], we have that σ(α)⊆G is a normal subgroup of G.
If σ is a normal gradual subgroup of G, for every α ∈ (0, 1],
we have a quotient group G/σ(α).

Let σ be a normal gradual subgroup of G, for every
α ∈ (0, 1], we have a gradual quotient group G/σ(α); hence,
a gradual quotient set ρ of G is defned as ρ(α) � G/σ(α), for
every α ∈ (0, 1]. We may represent it also by G/σ. For every
α ∈ (0, 1], there is a group homomorphism G⟶ G/σ(α) �

(G/σ)(α).
We defne a gradual quotient group of G a gradual

quotient set η of G such that for every α ∈ (0, 1], the pro-
jection p(α): G⟶ η(α) is a group homomorphism.
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Proposition 7. Let G be a group, then

(1) For every normal gradual subgroup σ of G, we have
G/σ a gradual quotient group of G

(2) For every gradual quotient group η of G, there is a
normal gradual subgroup κ of G, defned
κ(α) � Ker(G⟶ η(α)), for any α ∈ (0, 1]

Lemma 12. Let f: G⟶ G′ be a group homomorphism.

(1) For any gradual subgroup σ of G, we have that
f∗σ: (0, 1]⟶ G′, defned f∗(σ)(α) � f(σ(α)) as
a gradual subgroup of G′

(2) For any gradual subgroup τ of G′, we have that
f∗τ: (0, 1]⟶ G, defned f∗τ(α) � f∗(τ(α)) as a
gradual subgroup of G

(3) If τ is normal, then f∗τ is normal

Let σ1, σ2 be gradual subgroups of G, we defne σ1 ⊆ σ2
and say σ1 is a subgroup of σ2, if σ1(α)⊆ σ2(α) for any
α ∈ (0, 1].

Lemma 13. Let σ1, σ2 be normal gradual subgroups of G, the
following statements are equivalent:

(i) σ1 ⊆ σ2
(ii) For any α ∈ (0, 1], there exist group homomorphisms

hα such that the following diagrams commute

hα

σ2 (α)

σ1 (α)

G/σ2 (α)G

G 0

0

1

1

G/σ1 (α)

Remark 9. In consequence, to include G/σ2 inside this
theory, we could introduce the notion of gradual quotient
group of a gradual quotient group G/σ1; hence, study
gradual objects which are not related to an ambient group.
Te same can be done in considering gradual subgroups.
Tus, we could introduce the notion of gradual group or
enriched gradual group, in a similar way as we did for
gradual subsets and sets.

If σ1 and σ2 are gradual subgroups of G, we have a
gradual subset σ1σ2 of G and not necessarily a gradual
subgroup; we get a gradual subgroup whenever one of
them is normal and, in this case, we have the following.

Lemma 14. Let σ1, σ2 be gradual subgroups of G such that σ1
is normal, then

(1) σ1σ2 is a gradual subgroup of G

(2) σ1σ2/σ1 defned (σ1σ2/σ1)(α) � σ1(α)σ2(α)/σ1(α) is
a gradual subgroup of G/σ1

Tis theory can be enriched whenever we consider maps
between the diferent σ(α)’s, i.e., enriched gradual subgroups.
For instance, when there is an inclusion, σ(β)⊆ σ(α)

whenever α≤ β.

4.3. DecreasingGradual Subgroups. A gradual subgroup σ of
G is decreasing if for any α, β ∈ (0, 1] such that α≤ β, we
have σ(β)⊆ σ(α). For any decreasing gradual subgroup σ of
G, for every α ∈ (0, 1], we have that σ(1)⊆ σ(α).

Let σ be a gradual subgroup, we defne the accumulation
σc of σ as

σc
(α) � 〈∪ σ(β)|β≥ α􏼈 􏼉〉, for anyα ∈ (0, 1]. (31)

It is clear that σc is a decreasing gradual subgroup, and a
gradual subgroup σ is decreasing if, and only if, σ � σc. In
particular, we have the following properties of the operator
σ↦ σc.

Lemma 15. Let G be a group, for every gradual subgroups
σ, σ1, σ2, the following statements hold:

(1) σ ⊆ σc

(2) σc � σcc

(3) If σ1 ⊆ σ2, then σc
1 ⊆ σc

2

(4) σc is the smallest decreasing gradual subgroup con-
taining σ

(5) If σ is a normal gradual subgroup, then σc is a normal
subgroup and σc(α) is the set of all products of ele-
ments in ∪ σ(β)|β≥ α􏼈 􏼉 for any α ∈ (0, 1]

Proof. Each element of 〈∪ σ(β)|β≥ α􏼈 􏼉〉 is a product
a1 ∗ · · · ∗ at, for some ai ∈ σ(βi), and βi ≥ α. For any b ∈ G,
we have g∗ a1 ∗ · · · ∗ at ∗g− 1 � (g∗ a1 ∗g− 1) ∗ · · · ∗
(g∗ at ∗g− 1) ∈ 〈∪ σ(β)|β≥ α􏼈 􏼉〉.

Tis means that the map σ↦ σc is a closure operator in
the setG of all gradual subgroups of G which is compatible
with the product in G. Te set of all c-closed gradual
subgroups of G is denoted by J(G). □

Proposition 8. Let σ1, σ2 be gradual subgroups of G, then
〈σ1σ2〉

c � 〈σc
1σc

2〉. In addition, if either σ1 or σ2 is normal,
then (σ1σ2)

c � σc
1σc

2.

Proof. In fact, we have that both 〈σ1σ2〉
c(α) and 〈σc

1σ
c
2〉(α)

are the subgroup generated by the subset ∪ σ1(β)∪ σ2􏼈

(β)|β≥ α}.
Since σ1 is normal, each element of (σ1 ∗ σ2)

c(α) is a
product a∗ b; for a ∈ σc

1(β) and b ∈ σc
2(c), some β, c≥ α is

formed, then a∗ b ∈ σc
1(α)∗ σc

2(c). Te converse is
similar.

In the same way, we may defne the strict accumulation
σd of σas

σd
(α) �

σ(1), if α � 1,

〈∪ σ(β)|β> α􏼈 􏼉〉, for any α ∈ (0, 1).
􏼨 (32)

We have that σd is a decreasing gradual subgroup and σd

is normal whenever σ is. Some properties of the operator
σ↦ σd are the following, whose proof is similar to the proof
of Lemma 15 and Proposition 8. □
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Lemma 16. Let G be a group, for any gradual subgroups
σ, σ1, σ2, the following statements hold:

(1) σd ⊆ σc.
(2) If σ1 ⊆ σ2, then σd

1 ⊆ σd
2 .

(3) σd � σd d � σc d � (σc)d.
(4) If σ is a normal gradual subgroup, then σd is a normal

subgroup, and σc(α) is the set of all products of ele-
ments in ∪ σ(β)|β> α􏼈 􏼉 for any α ∈ (0, 1].

(5) (σ1σ2)
d � 〈σd

1σd
2〉. In addition, if either σ1 or σ2 is

normal, then (σ1σ)d � σd
1σ

d
2 .

A gradual subgroup σ is an strict decreasing gradual
subgroup whenever σ � σd, and we have the following.

Lemma 17. For any gradual subgroup σ, we have that σd is
the biggest strict decreasing gradual subgroup contained in σc.

Tese results mean that the map σ↦ σd is an interior
operator in the set Jd(X) of all decreasing gradual sub-
groups of G.

4.4. Gradual Subgroups and Fuzzy Subgroups. We shall show
that there exists a strong relationship between gradual
subgroups of a group G and fuzzy subgroups of G. Re-
member that if G is a group, a fuzzy subgroup μ of G is a
nonconstant, equal to 0, map μ: G⟶ [0, 1] satisfying
μ(xy− 1)≥ μ(x)∧ μ(y), for any x, y ∈ G. In particular, if e is
the neutral element of G, then μ(e)≥ μ(x) and
μ(x) � μ(x− 1) for any x ∈ G. Our aim is to identify fuzzy
subgroups with some particular decreasing gradual
subgroups.

First, we need to realize somemodifcations to have well-
defned gradual groups starting from a fuzzy group.

In the set of all fuzzy subgroups μ of G, we defne a
equivalence relation: μ1 ∼ μ2 if μ1(x) � μ2(x) for any x≠ e.
In order to choose a canonical element in each equivalence
class, following an idea in [8], for any fuzzy subgroup μ, we

defne μ1 as follows: μ1(x) �
μ(x), if x≠ e,

1, if x � e.
􏼨 . Observe

that each equivalence class [μ] has a unique element of the
shape μ1, whenever μ1 is a fuzzy subgroup.

Lemma 18. Let μ be a fuzzy subgroup of a group G, then μ1 is
a fuzzy subgroup and μ1 is normal whenever μ is.

Proof. Let x, y ∈ G, then μ1(xy− 1) � μ(xy− 1)≥ μ(x)

∧ μ(y) � μ1(x)∧ μ1(y) whenever x, y, xy− 1 ≠ e. On the
other hand, if xy− 1 � e, then μ1(xy− 1) � 1≥ μ1(x)∧ μ1(y);
if x≠ e, y � e, then μ1(y) � 1≥ μ1(x), and we have
μ1(xy− 1) � μ1(x) � μ1(x)∧ μ1(y).

A decreasing gradual subgroup σ satisfes property (F) if
there exists Max α|x ∈ σ(α){ } for every x ∈ ∪ ασ(α). An
strict decreasing gradual subgroup σ satisfes property (inf-
F) if c � Inf β|x ∉ σd(β)􏼈 􏼉 satisfes x ∈ σ(c) for any x ∈ G.

Let σ be a decreasing gradual subgroup; let us denote σ∗
(α) � σc(α)\σd(α), the diference set, for every α ∈ (0, 1]. □

Lemma 19. Let σ be a decreasing gradual subgroup such that
σc ≠ σd; the following statements are equivalent:

(a) σc satisfes property (F)
(b) σd satisfes property (inf-F)
(c) ∪

•

α∈(0,1]σ∗(α) � ∪ σ(α)| α ∈ (0, 1]{ }

Let [μ] be the equivalence class of the fuzzy subgroup μ; we
defne a gradual subset σ(μ) of G by

σ(μ)(α) � x ∈ G|μ1(x)≥ α􏽮 􏽯. (33)

Lemma 20. Temap ]: [μ]↦ σ(μ) is well defned, and σ(μ)

is a decreasing gradual subgroup satisfying property (F).

Proof. Observe that for any class [μ], there exists only one
fuzzy subgroup μ such that μ � μ1.

Let σ be a decreasing gradual subgroup satisfying
property (F); we defne a fuzzy subset μ(σ) by

μ(σ)(x) �
Max c|x ∈ σ(c)􏼈 􏼉, if x≠ e,

1, if x � e.
􏼨 (34)

□

Lemma 21. With the above notation, μ(σ) is a fuzzy sub-
group, and we have a map υ: σ↦ [μ(σ)] from the set of all
decreasing gradual subsets satisfying property (F) to the set of
all classes of fuzzy subgroups.

Now, we have the announced relationship of gradual
subgroups and fuzzy subgroups.

Theorem 4. Let G be a group, the maps ]: [μ]↦ σ(μ) and
υ: σ↦ [μ(σ)] defne a bijective correspondence between the
following:

(1) Equivalence classes of fuzzy subgroups [μ] of G

(2) Descending gradual subgroups σ of G satisfying
property (F)

Proof. Let μ � μ1 be a fuzzy group, for any x ∈ G, we have

μ(σ(μ))(x) � Max α|x ∈ σ(μ)(α)􏼈 􏼉,

� Max α|α≤ μ(x)􏼈 􏼉,

� μ(x).

(35)

On the other hand, let σ be a decreasing gradual sub-
group satisfying property (F), for any α ∈ (0, 1], we have

σ(μ(σ))(α) � x|μ(σ)(x)≥ α􏼈 􏼉,

� x|Max β|x ∈ σ(β)􏼈 􏼉≥ α􏼈 􏼉,

� σ(α).

(36)

□
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Lemma 22. Let μ1, μ2 fuzzy subgroups; let us defne [μ1][μ2]
as [μ1μ2].

Proof. Te product [μ1][μ2] is well defned. Let [μ] � [μ′],
for any μ2, we have

μμ2(x) � Sup μ(y)∧ μ2(z)|yz � x􏼈 􏼉,

� Sup μ′(y)∧ μ2(z)|yz � x􏼈 􏼉,

� μ′μ2(x).

(37)

□

Remark 10. Unfortunately, in Teorem 4, the map ] is not a
homomorphism with respect to the product of classes of
fuzzy subgroups. Indeed, for any μ1, μ2, we have

σ μ1( 􏼁σ μ2( 􏼁( 􏼁(α) � σ μ1( 􏼁(x)σ μ2( 􏼁(α),

� x|μ1(x)≥ α􏼈 􏼉 x|μ2(x)≥ α􏼈 􏼉,

⊆ x|Sup μ1(y)∧ μ2(z)|yz � x􏼈 􏼉≥ α􏼈 􏼉

� x| μ1μ2( 􏼁(x)≥ α􏼈 􏼉,

� σ μ1μ2( 􏼁(x).

(38)

Tis inclusion could be strict as the following example
shows.

Example 6. We defne fuzzy subgroups μ1 and μ2 of Z as
follows:

μ1(x) �

0, if x ∈ Z\2Z,

1 −
2t

3t, if x ∈ 2t
Z\2t+1

Z,

1, if x � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2(x) �

0, if x ∈ Z\3Z,

1
2

−
1
3t, if x ∈ 3t

Z\3t+1
Z,

1, if x � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

We claim (μ1 + μ2)(2) � Sup μ1(y)∧ μ2(2 − y)| y􏼈

∈ Z}≤ (1/2). Indeed, we have two possibilities:

(1) μ1(y)> 1/2, then y ∈ 4Z, i.e., there exists k ∈ Z such
that y � 4k. Hence, μ2(2 − y) � μ2(2 − 4k) �

μ2(2(1 − 2k))< 1/2 as 2 − y≠ 0.
(2) μ1(y)< 1/2.

In both cases, we have μ1(y)∧ μ2(2 − y)< 1/2. In ad-
dition, we can choose y such that μ1(y)∧ μ2(2 − y) is as
closed to 1/2 as we desire. For any 2≤ t, s ∈ N, there exist
k, h ∈ Z such that 2t− 1k − 3sh � 1; hence, 2 − 2tk � 2(1 −

2t− 1k) � 3sh; now, if we take y � 2tk, then μ1(y)≥ 1 − (1/3t)

and μ2(2 − y)≥ (1/2) − (1/3t). In consequence,
(1/2)> μ1(y) ∧ μ2(2 − y)≥ (1/2) − (1/3t), which implies
that (μ1 + μ2) (2) � (1/2) and 2 ∈ (μ1 + μ2)(1/2). On the

other hand, we have (μ1)(1/2) + (μ2)(1/2) � 4Z and
2 ∉ (μ1)(1/2) + (μ2)(1/2).

We shall change the assignation defned by ] to consider
􏽥]: [μ]↦ 􏽥σ(μ), in which 􏽥σ(μ) is a strict decreasing gradual
subgroup satisfying property (inf-F) and is defned by

􏽥σ(μ)(α) �
x ∈ G|μ1(x)> α􏽮 􏽯, if α≠ 1,

x ∈ G|μ1(x) � 1􏽮 􏽯, if α � 1,

⎧⎪⎨

⎪⎩
(40)

whose inverse is 􏽥υ: σ↦ [􏽥μ(σ)], defned as

􏽥μ(σ)(x) �
Inf c|x ∉ σ(c)􏼈 􏼉, if x≠ e,

1, if x � e.
􏼨 (41)

Tus, we have the following theorem.

Theorem 5. With the above notation, we have

(1) 􏽥σ(μ) is a strict decreasing gradual subgroup satisfying
property (inf-F), and 􏽥] is well defned.

(2) 􏽥μ(σ) is a fuzzy subgroup.
(3) Te maps 􏽥] and 􏽥υ defne a bijective correspondence

between equivalence classes of fuzzy subgroups [μ] of
G and strict descending gradual subgroups σ of G

satisfying property (inf-F).
(4) 􏽥] is a homomorphism with respect to the product of

classes of fuzzy subgroups.

Proof

(1) First, we observe that 􏽥σ(μ) � σ(μ)d; hence, it is a
strict gradual subgroup, and by Lemma 19, it satisfes
property (inf-F). It is well defned as σ(μ) is uniquely
defned; hence, it is 􏽥σ(μ).

(2) It is a direct consequence of Lemma 16.
(3) We can mimic the proof of Teorem 4.
(4) For any μ1, μ2, we have

σ μ1( 􏼁σ μ2( 􏼁( 􏼁(α) � σ μ1( 􏼁(x)σ μ2( 􏼁(α),

� x|μ1(x)> α􏼈 􏼉 x|μ2(x)> α􏼈 􏼉,

� x|Sup μ1(y)∧ μ2(z)|yz � x􏼈 􏼉> α􏼈 􏼉,

� x| μ1μ2( 􏼁(x)> α􏼈 􏼉,

� σ μ1μ2( 􏼁(x).

(42)

□

4.5. Normal Fuzzy Subgroups. A fuzzy subgroup μ of a group
G is normal if μη � ημ for any fuzzy subset η or equivalently if
μ(xy) � μ(yx) for any x, y ∈ G (see [9]). We are interested in
relating normal fuzzy subgroups and normal gradual subgroups.
We have defned a gradual subgroup σ to be normal if σ(α)⊆G

is a normal subgroup for any α ∈ (0, 1].

Lemma 23. Let μ1, μ2 be a fuzzy subgroup such that μ1 ∼ μ2
and μ1 is normal, then μ2 is normal.
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Proof. By hypothesis μ1(xy) � μ1(yx) for every x, y ∈ G, if
xy, yx≠ e, then μ2(xy) � μ2(yx). If xy � e, then x � y− 1,
hence yx � e, and we have μ2(xy) � μ2(yx).

As a consequence, if μ is a normal fuzzy subgroup, then
every fuzzy subgroup in [μ] is normal; in particular, μ1 is
normal. □

Theorem 6. Let μ be a fuzzy subgroup, the following
statements are equivalent:

(i) μ is normal
(ii) 􏽥σ(μ) is normal

Proof. We may assume, without loss of generality, that μ �

μ1. Let g ∈ G and let us consider the fuzzy subset η(g)

defned as the characteristic function of g􏼈 􏼉, then

(η(g)μ)(x) � Sup η(g) x1( 􏼁∧ μ x2( 􏼁|x � x1x2􏼈 􏼉

� η(g)(g) ∧ μ g
− 1

x􏼐 􏼑

� μ g
− 1

x􏼐 􏼑,

(43)

and in the same way (μη(g))(x) � μ(xg− 1). Ten,

􏽥σ(μ) � 􏽥σ η g
− 1

􏼐 􏼑μη(g)􏼐 􏼑

� 􏽥σ η g
− 1

􏼐 􏼑􏼐 􏼑􏽥σ(μ)􏽥σ(η(g))

� g
− 1􏽥σ(μ)g.

(44)

Terefore, 􏽥σ(μ) is normal. Conversely, if 􏽥σ(μ) is normal,
for any element g ∈ G, we have g− 1􏽥σ(μ)g � 􏽥σ(μ); hence,
η(g− 1)μη(g) � μ, and μ is a normal fuzzy subgroup. □

4.6.GradualGroups. From any decreasing gradual subgroup
σ of a group G, we have two families: one σ(α)|α ∈ (0, 1]{ } is
a family of groups and the other iα,β: σ(β)⟶ σ(α)|α≤ β􏽮 􏽯

is the family of the inclusions. To include these objects inside
a more general theory, we shall consider contravariant
functors from (0, 1] to Gr, the category of groups.

For any contravariant functor F: (0, 1]→Gr and every
α≤ β, we have now a group homomorphism from F(β) to
F(α), and the pair ( F(α)|α ∈ (0, 1]{ }, F(fα,β)| α≤ β􏽮 􏽯) is a
direct systems of groups and group homomorphisms; hence,
there exists its direct limit, say lim

⟶
F.

We defne a gradual group as a contravariant functor
F: (0, 1]→Gr, and a gradual group homomorphisms from
F1 to F2 is just a natural transformation from F1 to F2.
Terefore, we can consider the category of gradual groups
and gradual group homomorphisms, which we denote byG.

An example of such a gradual group is provided by any
decreasing gradual subgroup σ of a group G. In this case, the
direct limit lim

⟶
σ is isomorphic to a subgroup of G; indeed,

it is the union ∪ σ(α)|α ∈ (0, 1]{ }.
Following this example, for any arbitrary gradual group F,

we say F is a decreasing gradual group whenever each F(fα,β),
for α≤ β.Te class of all decreasing gradual groups is denoted by
J. To well understand the structure of decreasing gradual
groups, we build an operator (an endofunctor) d in J, defned
on objects as follows: for any F ∈ J, we defne

Fd(α) � lim⟶ (α,1]F(c), for every α ∈ (0, 1]. We collect these
results in the following proposition, whose proof, after the theory
developed in Section 3, is straightforward.

Proposition 9. Let F be a decreasing gradual group and
θ: F1⟶ F2 be a decreasing gradual map. Te following
statements hold:

(1) Fd is a decreasing gradual group
(2) d is an endofunctor of the full subcategory J of G
(3) d is an interior operator in J.

A strict decreasing gradual group is a decreasing gradual
group F such that F � Fd.

At this point, it is convenient to remark that we have
gradual groups and gradual subgroups. Contrary to de-
creasing gradual subgroups, that need of an ambient or a
ground group, decreasing gradual groups have it in-
cluded: it is the direct limit of the direct system that the
gradual group defnes. Tis situation allows us to for-
mulate a more attractive category theory of gradual
objects which includes the usual constructions of the
category of groups. In this context, decreasing gradual
groups, strict decreasing gradual groups and fuzzy groups
can be identifed with adequate subcategories; see the
forthcoming paper [10], in which we study gradual and
fuzzy modules over a ring.

5. Conclusion

Our goal in this article has been to introduce more general
notions than the fuzzy subset in order to fnd a framework in
which to develop a simpler theory that allows testing new
techniques and establishing new results in fuzzy theory. In
this sense, we start from the concept of gradual element with
the goal of introducing gradual subsets. At this point, we
establish a bijective correspondence between fuzzy subsets
and a particular kind of gradual subsets (strictly decreasing
gradual subsets), that satisfes property (inf-F). Te more
interesting property of this correspondence is that it pre-
serves arbitrary unions and intersections of fuzzy subsets.

In a second degree of abstraction, we consider a gradual
subset as a contravariant functor from the category (0, 1] to
the category of sets, which allows us to defne the notion of
fuzzy and gradual sets without the use of an ambient set.Tus,
we have three degrees of abstraction, the frst one corresponds
to fuzzy subset; the second one to gradual subsets, identifying
fuzzy subsets as some particular gradual subsets; and the third
one to contravariant functors from (0, 1] to the category of
sets, or directed systems of sets, identifying decreasing gradual
subsets as those systems with injective maps. Observe that in
each abstraction level, we have the objects studied in the
previous one. We also establish the corresponding theory for
groups in two diferent but compatible ways (1) defning
contravariant functors to the category of groups; Gr(0,1], and
(2) defning groups in the functor category Set(0,1].

One of the goals of this paper was to fnd a framework to
study together the two crisp sets associated with each fuzzy
set, and we have proven that groups and gradual groups
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allow it to do so. On the other hand, the use of category
theory tools will allow to extend this working method to
other structures, of which the sets and groups studied are
only an example.
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“FQM-266-Anillos y Módulos.” Tis work was supported by
grant A-FQM-394-UGR20 from Programa Operativo
FEDER 2014–2020 and Consejeŕıa de Economı́a, Con-
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