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Summary

Nowadays, one of the most widely used structural building systems consists of masonry infilled frames,
in which the walls are intended to protect the interior of the building from environmental conditions.
The construction of these walls is well known by practitioners and have been attractive for their low cost
and ability to isolate different environments of a building. In most cases, the aforementioned walls are
considered as non-structural elements; however, the observation made on the behaviour of this type of
structures, especially after the occurrence of seismic events, has shown that these elements have an effective
collaboration with the rest of the structure.

The structural system of masonry infilled frames has a large number of variables which condition its
behaviour. Among the most influential variables we can mention: (1) the masonry units: the variety of
materials used, the different forms of manufacture, quality and geometry, (2) the bonding mortar between
masonry units: the different materials and dosages used and the bonding quality achieved between the
masonry units, (3) the bonding quality between the wall and the portal frame: the existence of stress
transfer elements or the direct interaction of the mortar with the frame material, (4) the construction
process and the expertise of the workmanship, (5) the interaction between the behaviour of the wall in and
out of its plane, (6) the existence of openings (doors and/or windows) in the wall. The aforementioned
variables constitute sources of uncertainty which imply difficulty when characterizing the seismic-resistant
behaviour of this system.

The main objective of this thesis is to provide effective and cost-efficient tools to evaluate existing
masonry infilled frame structures. In this sense, the use of probabilistic tools has been explored to
propose techniques to predict the behaviour of infilled frame buildings with quantified uncertainty. First,
the use of approximate Bayesian computational algorithms is studied to infer non-linear numerical
modelling parameters of masonry infilled frames, taking as a reference the results of laboratory testing.
An improvement to the original ABC-SubSim algorithm is proposed, for ease of use by autonomously
estimating a series of meta-parameters that influence the speed of calculation and quality of the result.
This new algorithm has been named A2 BC-SubSim, and has been proven to achieve a balance between
computational speed and result quality, after the solution of some numerical examples. The proposed

algorithm has been applied to a Bayesian inference of multiple uncertain parameters from a non-linear



multi-story infilled frame model of a building, with high efficiency.

On the other hand, the application of neural networks to predict the constitutive behaviour of the
structural system was also explored. A database of existing tests has been collected in order to train such
networks; however, due to the limited number of tests available in the literature, it was chosen to work
with Bayesian neural networks, which have the advantage of also providing information on the quality of
the prediction made by quantification of the uncertainty. Additionally, up-to-date training methods of
the Bayesian neural networks have been tested. The prediction capabilities of the trained network has
been checked against measurements of laboratory tests that were not part of the training group, achieving
acceptable results in terms of interpolation of unobserved data, and extrapolation to unknown data.

Finally, dedicated laboratory tests have been performed to study the relationship between the out-of-
plane fundamental frequency of the wall versus the stiffness of the system in the plane of the wall. With
the results of these tests and a parametric study using complex numerical models, a semi-empirical non-
destructive methodology has been proposed to estimate the stiffness of existing masonry infilled frames. The
methodology has been checked with measurements of specimens tested on a seismic table, demonstrating
the feasibility of application of the proposed methodology for existing infilled frame structures whose

actual seismic behaviour want to be updated.
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Resumen

En la actualidad, uno de los sistemas estructurales de edificacién més utilizados globalmente consiste
en la construccién de pérticos cuyos espacios libres se rellenan con muros de fabrica (también conocidos
como muros de tabiqueria, de bloques, de ladrillos o de mamposteria), que tienen el objetivo de proteger
el interior de la edificacién de las condiciones ambientales. La construcciéon de estos muros es bastante
conocida por el sector constructivo y ha sido atractiva por su bajo costo y su capacidad para aislar distintos
ambientes de una edificacién. En la mayoria de los casos, las paredes mencionadas son consideradas como
clementos no estructurales; sin embargo, la observacion realizada sobre el comportamiento de este tipo
de estructuras, especialmente tras la ocurrencia de eventos sismicos, ha demostrado que estos elementos
colaboran efectivamente con el resto de la estructura en soportar el evento.

Al considerar a los pérticos rellenos con paredes de mamposteria como un sistema estructural, nos
encontramos con un gran nimero de variables que condicionan su comportamiento, lo que ha complicado su
caracterizacién. Entre las variables mds influyentes se pueden mencionar: (1) las unidades de mamposterfa:
la variedad de materiales que se utilizan, las distintas formas de fabricacién, calidad y geometria, (2) el
mortero de unién entre unidades de mamposterfa: los diversos materiales y dosificaciones que se utilizan y
la calidad de unién que se consigue entre las unidades de mamposterfa , (3) la calidad de unién entre la
pared y el pértico: la existencia de elementos de transferencia de esfuerzos o la interaccién directa del
mortero con el material del pértico, (4) el proceso construtivo y el expertise de la mano de obra, (5) la
interaccién entre el comportamiento de la pared en y fuera de su plano, (6) la existencia de aberturas
(puertas y/o ventanas) en la pared. Las mencionadas variables se constituyen en fuentes de incertidumbre
que denotan la dificultad de caracterizar el comportamiento sismo-resistente de este sistema y, sobre todo,
si esto se busca lograr con metodologias deterministas.

Esta tesis tiene como objetivo principal proporcionar herramientas para evaluar estructuras existentes de
porticos rellenos de mamposteria. En ese sentido se ha explorado el uso de herramientas probabilistas para
proponer técnicas que permitan predecir el comportamiento de edificaciones con este sistema estructural.
En primer lugar, se estudia el uso de algoritmos de célculo Bayesiano aproximado para inferir pardmetros
de modelacién numérica no-lineal de los pérticos con paredes de mamposteria, tomando como referencia los

resultados de mediciones tomadas sobre especimenes de laboratorio. Se propone una mejora al algoritmo
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ABC-SubSim, de manera que se facilita su uso al estimar de manera auténoma una serie de meta-pardmetros
que influyen en la velocidad de cédlculo y calidad del resultado. Dicho nuevo algoritmo se ha denominado
A?BC-SubSim, del cual se ha demostrado que permite conseguir un equilibrio entre la velocidad de célculo
y la calidad de resultado, tras la solucién de algunos ejemplos numéricos. Por otro lado, también se
exploré la aplicacién de las redes neuronales para predecir el comportamiento constitutivo del sistema
estructural, por lo que se elabor6 una base de datos de ensayos existentes para poder entrenar dichas
redes; sin embargo, por el limitado nimero de ensayos disponibles en la bibliografia, se opté por trabajar
con redes neuronales Bayesianas, que tienen la ventaja de proporcionar informacién sobre la calidad de
la prediccion. La capacidad de prediccion de la red entrenada se pone a prueba frente a mediciones de
ensayos que no formaron parte del grupo de entrenamiento, logrando resultados prometedores.
Finalmente, se realizaron ensayos para estudiar la relacién que existe entre la frecuencia fundamental
de la pared fuera de su plano frente a la rigidez del sistema en el plano de la pared. Con los resultados
de estos ensayos y un estudio paramétrico mediante modelos numéricos complejos, se ha propuesto una
metodologia semi-empirica y no destructiva para estimar la rigidez de pérticos rellenos de mamposteria
existentes. La metodologia fue puesta a prueba con mediciones de especimenes instalados sobre una mesa

sfsmica, logrando demostrar la factibilidad de aplicacién de la metodologia propuesta.

iv



Agradecimientos

Quisiera agradecer a mi director de mi Tesis, Dr. Manuel Chiachio Ruano, por el invaluable entrenamiento
relacionado a la preparacion y desarrollo de proyectos de investigacion, por la dedicacion, por la paciencia
y por el buen ejemplo de la biisqueda de la excelencia; en particular, agradezco especialmente el hacerme
parte del Laboratorio de Prondstico Inteligente y Sistemas Estructurales Ciber-fisicos, permitiéndome
aprender mucho més de lo esperado de mano de los colegas y amigos. Agradezco también a mi co-director,
Dr. Leandro Morillas, por compartir su amplia experiencia y conocimientos en la preparaciéon y desarrollo
de ensayos de laboratorio. A ambos les agradezco mucho por su gentileza y su muestra de amistad durante
mis estancias en Granada.

Agradezco mucho a mi familia y, en especial, a mi esposa Antonieta y a mis hijos por su apoyo y
paciencia durante este capitulo de nuestras vidas.

Agradezco al personal del laboratorio de estructuras de la Universidad de Granada, en particular a
Santiago Diaz Osuna y a su equipo de trabajo por su labor en la fabricacién, montaje y asistencia durante
la campana de ensayos en la mesa sismica. Asimismo, agradezco a Carlos Alberto Vargas y a su equipo de
trabajo en el laboratorio de estructuras de la Universidad Catdlica de Santiago de Guayaquil (UCSG), por
compartir sus experiencias y por su esmerada colaboracién durante la realizacién de los ensayos.

Agradezco a los ex-alumnos de la facultad de ingenieria de la UCSG, quienes contribuyeron en temas
especificos que se presentan en esta investigacién. Especificamente a: Frank Cabanilla, Joel Consuegra,
David Suco, Bryan Coello y Sahara Hidalgo.

Agradezco al Dr. Walter Mera, al Dr. Antonio Marin y a la Dra. Irene Trelles por hacer posible
el programa doctoral que he cursado. Este trabajo ha sido posible gracias al Programa de Formacién
Doctoral de la Universidad Catoélica de Santiago de Guayaquil, al proyecto SINDE Cod. Pres. # 491 y
Cod. Int. # 170 Influencia de las paredes de mamposteria en estructuras de porticos, al apoyo del proyecto
ENhANCE (https://h2020-enhanceitn.eu/) y el Seminario Permanente de Formacién e Investigacién
en Ingenierfa Civil UGR-UCSG.



Dedicatoria

A Dios y a la Virgen Auziliadora, por sus innumerables bendiciones y por cuidar de mi y de mi familia.
A mi esposa Antonieta Katherine y a nuestros hijos Susana Esperanza, Isabel Aurora, Maximiliano
Andrés, Maria De Los Angeles y Catalina De Lourdes.

A mis padres Jorge Alberto y Maria Lorna, y a mis hermanos Jorge Antonio y Maria Lorna.

vi



Contents

Summary i
Resumen iii
Agradecimientos v
Dedicatoria vi
List of Figures X
List of Tables Xiv
I Introduction 1
1 Context and motivation 2
2 Objectives 6
3 Outline of contributions 10
4 Theoretical fundamentals 13
4.1 Bayesian model updating by ABC-SubSim . . . . . .. ... . oL 13
4.2  Non-linear modelling of structures . . . . . . . . ... ... 19
4.2.1 Available frame models for reinforced concrete frames . . ... ... ... .. ... 19

4.2.2 Available equivalent strut models for MIF . . . . . . ... ... ... ... ..... 20

4.3 Artificial Neural Networks . . . . . . . . . . . . e 23
4.3.1 Concepts . . . . oo e 23

4.3.2 Hamiltonian Monte Carlo based-Bayesian Neural Networks . . . . .. ... .. .. 26

vii



IT Methodological Contributions 28

5 A2BC-SubSim 29
5.1 The A2BC-SubSim algorithm . . . . . . . .. ... ... . . 29
5.2 Hlustrative example . . . . . . .. . Lo 32
5.3 Hyper-parameters evaluation . . . . . . .. .. L Lo 35
5.4 Application examples - non-linear model calibration . . . .. .. .. ... ... ...... 39

5.4.1 Cantilever Reinforced Concrete Beam-Column with cyclic degradation. . . . . . . . 39
5.4.2 Group of structural tests . . . . . . ... 43
5.4.3 A one-bay one-story reinforced concrete frame . . . . ... ... ... ... 45
5.4.4 Complex structural model - 17 story building . . . . . ... ... ... ... .... 46
5.5 Discussion. . . . .. .. e e e 49
5.5.1 Comparison with current practice trial and error model calibration . . . . . . . . . 49
5.5.2 Model consistency evaluation . . . . . . .. .o L Lo o o 51
6 Numerical modelling of masonry infilled frames 54
6.1 Database of IP MIF laboratory tests and mechanical model . . . . ... ... .. ..... 54
6.1.1 Damage index formulation . . . . . . . ... 95
6.2 Training of the HMC-BNN with experimental data . . . . . . .. ... ... ... .. ... 60
6.2.1 Prediction capabilities of the HMC-BNN within the training database . . . . . .. 62
6.2.2 Extrapolation capabilities of the HMC-BNN . . . . . . ... ... ... ... .... 66
6.3 Case study and discussion . . . . . . . ... 67
6.3.1 Structural model . . . . . . .. L 68
6.3.2 Fundamental period . . . . . . . . ... 69
6.3.3 Collapse evaluation by non-linear time history analysis . . . . . .. ... ... ... 70

IIT Experimental contributions 74

7 Static tests 75
7.1 Description of the specimens . . . . . . . ... oL oL 75
7.2 Test procedure . . . . . . .. L e e e 77
7.3 OOP fundamental frequency identification . . . . . . . .. ... ... L oL 80
7.4 Proposed MIF modelling approach . . . . . . .. ... . L o 80
7.5 Parametricstudy . . . . ... 85

7.5.1 Masonry infilled frame model . . . . . . . . .. oL Lo 85
7.5.2 Influence of masonry height / length ratio . . . . . . ... ... .. ... ...... 87
7.5.3 Influence of masonry height / thickness ratio . . . . . .. .. ... ... ... ... 87

viii



7.5.4 Influence of masonry characteristic strength . . . . . .. ... ... ... ... ... 88

7.5.5 Influence of scaling . . . . . .. . .. . 89

7.6 Non-destructive test for indirect stiffness estimation . . . . .. .. . ... . ... ... .. 90
7.6.1 Proposed method . . . . . . . . . .. 91

7.6.2 Application examples . . . . ... 93

8 Dynamic tests on shake table 95
8.1 Description of the specimens . . . . . . . . .. Lo 95
8.2 Test set-up and instrumentation . . . . . . ... oL oo 96
8.3 Test procedure and general results . . . . . . . .. .. Lo Lo 97
8.3.1 Results in the IP direction . . . . . . . . . . . .. . 100

8.3.2 OOP fundamental frequencies . . . . . . . . . . . ... L 100

8.4 TP MIF mathematical models . . . . . . . .. .. .. ... .. . 101
8.4.1 Linear model with equivalent strut . . . . . .. ... ... ... ... ........ 101

8.4.2 Non-linear model calibrated with ABC . . . . . ... ... .. ... ... .. .... 102

IV Conclusions and future works 107
9 Conclusions and future works 108
10 Conclusiones y trabajo futuro 111
A Data records 114
B Summary of contributions 187
Bibliography 189

ix



List of Figures

1.1
1.2

1.3
14

4.1

4.2
4.3
4.4

4.6
4.7
4.8
4.9

4.10

5.1

5.2

(]
(98}

World map showing seismic-prone countries where MIFs were mentioned in damage reports.

Broken wall of the sixth floor department from an eight story building, located in the center
of Guayaquil city, after the seismic event of 2016. . . . . . . . . . . . . ... ... .. ...
Example of a structural collapse due to the MIF irregular vertical distribution of stiffness.

Examples of short column effect during 2016 Ecuadorian earthquake. . . . . . . . . . . ..

Example application of ABC-SubSim, on the inference of the non-linear modelling parameters

of a reinforced concrete column. . . . . . . . . ... e e

Acceptance rate of the reinforced concrete column inference problem solved with ABC-SubSim.

Results from the ABC-SubSim application example (reinforced concrete beam-column).

Scatter plot matrix results for 8; to 0 parameters in ABC-SubSim example application. .
MIF models used for comparison in Section 4.2.1. . . . . . . . . . . ... ... ... . ...
Example modelling of a building frame tested by Adachietal. . ... ... ... .....
Comparison of three MIF macro-models to the test results from Morandi. . . . . . .. ..
Example of an artificial neural network architecture. . . . . . . ... .. ... ... ....
Illustration about the mathematical formulation of a neuron within an artificial neural
network (drawings using Neutelings (2022) libraries). . . . . . . .. ... ... .. ... ..

Most commonly used activation functions in ANN. . . . . . ... ... ... ... ....

Plot of weighting function uy in terms of the acceptance rate («) for different values of o,
parameter. . . . ... oL e e
Comparison, in terms of the number of evaluations required to attain the tolerance value, of
the expected computational cost of A2BC-SS algorithm adopting different hyper-parameter
values. . . . . . e
A2BC-SubSim algorithm flow-chart. . . . . ... ... ... ... ... ...........
[lustration of a cantilever column with an unstable material subjected to a constant lateral

load at the top. . . . . . . . L

25
25

31

32
33



D
(@2}

5.6

5.7
9.8

ot
Nej

5.10

5.11

5.12

5.14

5.15

5.16

5.17

5.18

5.20

6.1
6.2

6.3
6.4
6.5

Comparative results after the application of A?BC-SubSim and ABC-SubSim algorithms to
the cantilever column example from Section 5.2. . . . . .. ... ... ... ...
Sensitivity study using box-plots of the A2BC-SubSim hyper-parameters taken from 100

independent runs of the algorithm. . . . . . . . ... oo oo

Examples of the evaluation of weighting function wy, for a number of {pg-k)}le candidates.

Results of p; and acceptance rate (a) per simulation level, from 100 independent runs using
AZBC-SubSim. . . . . . .
General geometry, reinforcement details, and test setup, adapted from Gill (1979).
Schematic view of the proposed non-linear model of a reinforced concrete beam-column
using OpPenSees. . . .« . v v i e e
Schematic illustration of the Hysteretic material behaviour and the influence of its constitu-
tive and degradation parameters. . . . . . . . ... L e
Scatter plot representation of the posterior PDF of 8 = {0y,0s,...,0g} as A?BC-SubSim
output (beam-column example). . . . . . ..o oL
Results on the parameter inference of a group of four beam-column tests. . . . . .. ...
Obatained MAP degradation parameters formulation for D1, D2 and 8 in terms of the axial
load ratio. . . . . . oL e e e
Model and example calibration results of a structural assemblage consisting of an one-bay
one-story frame test. . . . . . ...
Comparison of Fourier amplitude spectrum of the acceleration records of the test measure-
ments and those obtained from the inferred MAP model (17 story building example).
Comparison of the acceleration records of the test measurements to those obtained from the
inferred MAP model (17 story building example). . . . . . . ... ... .. L.
Comparison of the displacement records of the test measurements to those obtained from
the inferred MAP model (17 story building example). . . . . ... ... .. ... .....
Results of the comparative analysis of the non-linear mechanical calibration using A2BC-
SubSim method and a by-hand procedure. . . . . . . ... . ... ... . ... ... ...

Model results after calibration by ABC parameter estimation. . . . . . .. ... ... ...

Illustration of a MIF constitutive behaviour parameters. . . . . . . ... .. ... ... ..
Ditribution of the parameters within the database: masonry unit type, masonry failure
observed, height to thickness ratio, A parameter. . . . . ... ... ... ... . ......
Collapse prevention limit state CDF in terms of the proposed damage index formulation.

Nlustration of the geometric parameters of the MIF within the database. . . . . . . .. ..

Example prediction results of the constitutive values using BNN-HMC method. . . . . . .

xi

36

37
38

39
40

41

42

44

46

47

48

o1

52
93

95

60
61



6.6 Masonry infilled reinforced concrete frames test results, available macro-models estimation
and proposed BNN prediction comparison. . . . . . . . . . . ... ... ..
6.7 Masonry infilled steel frames test results, available macro-models estimation and proposed
BNN prediction comparison. . . . . . . . . . .. Lo e
6.8 BNN-HMC model prediction in comparison to real test results of masonry infilled steel and
reinforced concrete frame tests. . . . . . . ... oL L
6.9 Examples to test the extrapolation capabilities of the proposed BNN-HMC model.
6.10 Tlustration of the case study of a three story masonry infilled reinforced concrete frame. .
6.11 Comparison of the monotonic shear behavior of a laboratory tested MIF to two deterministic
models and the proposed probabilistic (Bayesian) approach. . . . . . . ... ... ... ..
6.12 Fundamental period distribution obtained from the BNN-HMC in comparison to the
deterministic model estimation. . . . . . . . ... oL oL o
6.13 Interstory drift results of each analysis model, for every seismic record of FEMA P695,
corresponding to maximum considered carthquake (MCE) hazard. . . ... ... ... ..
6.14 Top displacement PDF results of each analysis model, for every seismic record of FEMA
P695, corresponding to maximum considered earthquake (MCE) hazard. . . . . . ... ..

6.15 Comparison of Fragility Functions from the performed analyses. . . . . . . . .. ... ...

7.1 General geometric characteristics of the masonry infilled concrete and steel frame specimens. 76

7.2 Concrete and steel beam and column sections of the specimens. . . . . . . ... ... ...
7.3 Schematic view of the test layout. . . . . . . . .. ... oL oo
7.4 Layout of the test. . . . . . . . .
7.5 IP Test results of concrete plain frame and masonry reinforced concrete infilled frames. . .
7.6 IP Test results of structural steel plain frame and masonry infilled structural steel frames.
7.7 Power Density spectra of the OOP measurements of specimen S500 MIF, after each level of
IP deformation . . . . . . . . . . e e
7.8 Degradation of IP stiffness and reduction of OOP natural frequency in terms of attained IP
drift and type of frame. . . . . . ..o
7.9 Elastic IP macro model constructed in OpenSeespy. . . . . . . . . . o oo o
7.10 A flowchart explaining A2BC-SubSim algorithm. . . . . ... ... .. ... ........
7.11 Scatter plot representation of the posterior PDF of 8 = 6y, ..., 05 as A>BC-SubSim output.
7.12 Comparison of the calibrated model K;p prediction, against the measured test results. . .
7.13 Geometric representation of the MIF model implemented in OpenSeespy. . . . . . . . ..
7.14 Comparison of the calibrated model estimation against the laboratory test results.
7.15 Influence of masonry height / length ratio on the IP and OOP stiffness. . . . . . ... ..
7.16 Influence of masonry height / thickness ratio on the IP and OOP stiffness . . . . . . . ..

xii

76

79

84
84



7.17 Influence of the characteristic compressive strength of the masonry on the IP and OOP

stiffness. . . . . oL 90
7.18 Influence of the scaling factor of the masonry on the IP and OOP stiffness. . . . . .. .. 91
7.19 Functions of the modifier factors in terms of each influencing parameter. . . . . . . . . .. 92
8.1 Dynamic test set-up. . . . . . . . L 96
8.2 Structural elements conforming the MIF specimens. . . . .. ... .. ... ... ..... 97
8.3 Plan view of the dynamic test setup. . . . . . . . . . .. L oL 98
8.4 Typical frontal view of a wall with the location of the measuring devices. . . . ... ... 99
8.5 Original record of 2016 Ecuadorian Earthquake, from Pedernales station. . . . ... . .. 99
8.6 Summary of maximum IP measured response. . . . . . . ... ..o 101

8.7 Identified natural frequency (in Hz) of each specimen wall after the corresponding testing. 102

8.8 Estimated distribution of equivalent strut IP stiffness of the specimens. . . . . . ... .. 103
8.9 Probabilistic model estimation of deformation. . . . . .. ... ... 0000 104
8.10 Nonlinear model calibrated with ABC methodology. . . . . . ... ... ... ... .... 104

8.11 Comparison between the Fourier spectrum from the measurements during the 075-signal

test and the model fed with the MAP parameters values. . . . . ... ... ... ..... 105
8.12 Comparison between acceleration measurements during the 075-signal test (signal used for

calibration) and the model fed with the MAP parameters values. . . . .. ... ... ... 106
8.13 Comparison between acceleration measurements during the 100-signal test (signal not used

for calibration) and the model fed with the MAP parameters values. . . . . ... ... .. 106
8.14 Comparison between acceleration measurements during the 150-signal test (signal not used

for calibration) and the model fed with the MAP parameters values. . . . . ... .. ... 106

xiii



List of Tables

4.1
4.2
4.3
4.4

5.1

5.2

(2§
e

9.5
5.6
5.7

5.8

6.1
6.2
6.3
6.4

7.1

Parameter a priori information and posteriori results. . . . . . ... ... L. 16
Reinforced concrete concentrated hinge constitutive values. . . . . ... .. ... ... .. 19
Reinforced concrete and structural steel distributed plasticity uniaxial constitutive parameters. 20
Macro-model constitutive parameters for three deterministic models proposed by others

and used herein. . . . . . . . 22

Input parameter values of Concrete01 constitutive model taken for the engineering case
study of Section 5.4.1. . . . . . ..o 40
Nominal parameter values of Hysteretic constitutive model taken for the engineering case
study of Section 5.4.1. . . . . . . L 41
Hyper-parameter values adopted for the engineering case study of Section 5.4.1. . . . . . . 42

Interval definition of the @ parameter space for the case study of Section 5.4.1. Shown

values are dimensionless. . . . . . . . . L 42
Posterior 5y, and 95, percentiles, mean, standard deviation and @p;4p values of 8. . . . 43
Algorithm hyper-parameter values adopted for the example in Section 5.4.2. . . . . .. .. 44

Calibration results from by-hand and .A?BC-SubSim inference procedure. Results shown for
the A2BC-SubSim case correspond to the maximum a posteriori values of the posterior PDFs. 50

Posterior 5y, and 954, percentiles, mean, standard deviation and @ 4 p values of 8, including

concrete parameters. . . . ... L oLl e e e e e e 52
Database of experimental tests. . . . . . . . . . ... .. 55
Data of masonry infilled steel frame tests. . . . . . . . .. ... ... .. .. .. ... ... 56
Data of masonry infilled reinforced concrete frame tests. . . . . . ... ... ... ... .. 57
Data of masonry infilled reinforced concrete frame tests. . . . . . . . . ... ... ... .. 58

Mean values of the geometrical and mechanical parameters of the frames used for the case

study of Section 6.3. . . . . . . .. L e 68

Specimens material properties . . . . . . ... L e e 76



7.2
7.3

74
7.5

8.1
8.2
8.3

Parameter values of frame model. . . . . . . . . . .. oL o
OOP fundamental frequency comparison between Multi Pier model and laboratory test
MeASUremMent. . . . . . . . . L Lo e e
Summary of results of application examples for non-degraded MIFs from Section 7.6.2. . .

Summary of results of application examples for degraded MIFs from Section 7.6.2.

Summary of maximum IP measured response . . . . . .. ... ... oo
Identified natural frequency (in Hz) of each specimen wall after the corresponding testing
Prior distributions and MAP results of the parameters of the MIF non-linear model calibrated

with A2BC-SubSim algorithm. . . . . . .. ... ... ... ... ...

XV



Part 1

Introduction



Chapter 1

Context and motivation

Earthquake engineering is a well-established research topic that is in constant evolution. Design and
construction of different structural systems have been adapted to correct the inadequate structural
behaviour observed after the occurrence of seismic events. In the particular case of masonry infilled frame
(MIF) structures, those masonry walls were usually considered as non-structural elements, and thus their
stiffness was not taken into account during structural design. Considering the existence of a large number
of buildings constructed with this structural system and criterion around the world and, particularly
concerning, in areas subject to high seismic hazard, it is necessary to provide procedures to reliably assess
the structural conditions of this kind of existing buildings. However, due to the occurrence of earthquakes
around the world in the last decades (see Figure 1.1), it has been recognized that such walls significantly
contribute to the dynamic response of buildings, and that this contribution can be cither positive or
negative.

' T
e

Figure 1.1: World map showing seismic-prone countries where MIFs were mentioned in damage reports:
Barbosa et al. (2017); Bennett et al. (1996); Fierro et al. (2011); Hak et al. (2018); Irfanoglu (2009); Kam
et al. (2010); Kaushik et al. (2006); Maidiawati and Sanada (2017); Perrone et al. (2018); Tarque et al.
(2015); Urich and Beauperthuy (2012); Villalobos et al. (2018).



Indeed, during the 2016 earthquake in Ecuador, specifically ocurred in Guayaquil city (200 km away
from the epicenter), several mid-rise structures suffered severe damage on the masonry infills, as shown
in the example of Figure 1.2. Clearly, the post-earthquake evaluation showed that the masonry wall
contributed to the overall lateral shear strength of the building, avoiding a worst scenario. On the other
hand, the masonry infill vertical irregular distribution along the height of a building may cause a neglected
drift concentration in floors that usually have much less partitions than others, for example: main hallways,
event rooms, ballrooms, among others. Figure 1.3 depicts one of such cases; in the right hand part of the
figure it can be seen that the upper floors of the building remained undamaged after the event, whilst the
ground level collapsed, showing that the lateral deformation was concentrated in that floor during the

event, leading to this undesirable behaviour.

Figure 1.2: Broken wall of the sixth floor department from an eight story building, located in the center of
Guayaquil city, after the seismic event of 2016.

Also, the presence of masonry infills may produce undesirable behaviour of the reinforced concrete
frames, as can be seen in Figure 1.4. In the first case, the high stiffness and strength of the wall causes
the well known ”short column” effect, leading to a shear failure of the reinforced concrete column frame,
demonstrating the need of considering the presence of these walls. On the other hand, notice that the
use of a full infilled frame does not assure that the short column effect will not occur, as depicted in
Figure 1.4b, where the same effect happened after the compressive crushing of the masonry corner. In

the particular case of Ecuador, current standards still do not consider the masonry infills as structural
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Figure 1.3: Example of a structural collapse due to the MIF irregular vertical distribution of stiffness
(Landivar, 2016).

elements and they are only taken into account as dead load during design phases.

(a) Short column effect due to masonry infilled lateral (b) Short column effect due to masonry infilled corner
restriction to the columns. compressive crushing.

Figure 1.4: Examples of short column effect during 2016 Ecuadorian earthquake.

In the past decade, most research efforts rely on the development of deterministic procedures to model
the complex non-linear behaviour of the MIFs. Models that consider in detail each component of the
system behaviour require prohibitive amount of information which, added to the characteristic complexity
of the model, makes its application limited to very rare building cases. In order to economically assess
the vulnerability of most buildings in a location, simpler models are preferred. However, simpler model
prediction capabilities are highly dependent on the amount of information used to calibrate the model
and how that information resembles to the conditions of the existing buildings, introducing unknown
uncertainties about the quality of the prediction. Therefore, the application of deterministic procedures
may lead to either unsafe or too expensive decisions to reduce the seismic risk of an existing structure.

In this thesis, probabilistic (Bayesian) procedures for the evaluation of MIF structures are explored
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to improve the quality of information to be used for decision making. Also, a novel non-destructive
test procedure is proposed to reliably estimate the stiffness of the walls, allowing to considerably reduce
time and costs related to the gathering of information of the building under evaluation. To attain these
objectives, an approximate Bayesian computation (ABC) algorithm, called A?BC-SubSim was developed

and applied.



Chapter 2

Objectives

The MIF structural system is influenced by a series of conditions that makes it difficult to predict its
mechanical behaviour. Estimating the behaviour of existing structural systems could be an expensive
task, mainly due to the need of acquiring enough information to properly feed complex and deterministic
numerical models. One way around to avoid those complexities is the application of simpler calibrated
models that account for the uncertainties, i.e. probabilistic models. Therefore, the main objective of this
thesis is to provide uncertainty quantification techniques to fairly predict the mechanical behaviour of
existing MIF buildings, accounting for the uncertainties of both the model and the knowledge about the
material properties and without the need of destructive tests. This main objective has been reached by

investigating against the following research premises:

1. ABC methods have been under continuous development since the last two decades, and a number of
ABC variants have been proposed in the literature by joining the ABC principles with variational
inference or Monte Carlo methods like the Kernel ABC (Park et al., 2016), Lazy ABC (Prangle,
2016), Coupled ABC (Neal, 2012), Empirical-likelihood ABC (Mengersen et al., 2013), or Bootstrap-
likelihood ABC (Zhu et al., 2016). Other variants combine the ABC approach with efficient sampling
algorithms like the ABC-Partial Rejection Control (Sisson et al., 2007), ABC-Sequential Monte Carlo
(Del Moral et al., 2012; Toni et al., 2009), ABC-Particle Monte Carlo (Beaumont et al., 2009), ABC-
Parallel Tempering (Baragatti et al., 2013), ABC by Simulated Annealing (Albert et al., 2015), and
ABC by Subset Simulation (Chiachio et al., 2014). The reader is referred to Sisson et al. (2018) for
a comprehensive overview of the ABC methods and to Karabatsos et al. (2018) for a comparative
review.

The majority of these ABC variants have been proposed in the form of new ABC algorithms which

have been successfully used for model inference and calibration in a wide range of application fields,

such as molecular dynamics (Dutta et al., 2018; Kulakova, 2017), biology (Bianconi et al., 2019),

hydrology (Kavetski et al., 2018), health sciences (Da Costa et al., 2018; McKinley, Trevelyan
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J. and Vernon, Ian and Andrianakis, Ioannis and McCreesh, Nicky and Oakley, Jeremy E. and
Nsubuga, Rebecca N. and Goldstein, Michael and White, Richard G., 2018; Rutter et al., 2019),
environmental radioactivity (Nishina et al., 2018), communications (Bharti and Pedersen, 2019)
and physics (Christopher et al., 2018). Engineering applications (Sala and Soriguera, 2020), and
particularly structural engineering applications, have also received attention from the ABC community
mainly to infer unknown structural performance parameters from non-linear models (Ben Abdessalem
et al., 2019; Betz, 2017; De et al., 2019; Lam et al., 2018; Song et al., 2019; Tiboaca, 2016).
Despite their successful contribution for solving complex problems in a wide range of applications,
the ABC variants available in the literature require the definition of a number of sensitive algorithm
hyper-parameters which highly influence the efficiency of the algorithm and also the quality of
the inferred solution. This drawback puts some extra difficulties for extending these algorithms
to real-world engineering problems since previous expertise is required to tune these parameters,
thus limiting its usefulness to experienced users who can provide key expert-knowledge about the
algorithm. In particular, the application of the ABC-SubSim algorithm is interesting, as it has been
proven to be one of the most efficient ABC algorithms available in the literature.

Hipothesis 1: The approximate Bayesian computation method ABC-SubSim may be improved
by implementing a self-adapting algorithm to avoid the case-dependent manual definition of the
hyper-parameters of the algorithm.

Research Objective 1: Develop a Markov chain based approach to infer the best choice of the
hyper-parameters of the ABC-SubSim method within each subset evaluation, and apply it to a

complex multi-dimensional non-linear MIF structural model calibration.

. The so called "Macro-models” rely on modelling the mechanical contribution of the masonry wall
through a number of equivalent struts in the direction of each diagonal of the wall. As an example,
some reference structural codes, like the Seismic Evaluation Standards, ASCE/SEI 41 (2017), adopt a
one-strut macro-model to consider the contribution of the MIF's in the seismic response of frame-based
buildings. Similar approaches can also be found in the recent literature about this topic (Bose et al.,
2019; Huang et al., 2020; Liberatore et al., 2018; Mohamed and Romao, 2018; Mohammad Noh et al.,
2017; Morandi et al., 2018b; O’Reilly et al., 2018). However, most of the referred methods in the
literature do not consider the sources of uncertainties of this complex structural system. Indeed,
recent works (Liberatore et al., 2018) claim about the need to consider the parameters uncertainties
after the observation of the high variability of the deterministic methods. Thus, a probabilistic
approach is required for the structural evaluation of existing MIF structures.

The use of artificial neural networks (ANN) in engineering applications is experiencing a significant
increase in recent years (Awodele and Jegede, 2009), resulting in extraordinary contributions. Their
success in the engineering field is remarkable when the complexity of a problem is such that known

physical laws struggle to provide acceptable solutions, hence they are an alternative given their
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data-driven approach. In the literature, some approaches can be encountered (Kalman Sipos et al.,
2013) which proposed the application of deterministic ANN to predict the behaviour of MIFs;
however, using deterministic neural networks carries the disadvantage of ignoring about the quality
of the prediction and, therefore, there is a need to research about the application of probabilistic
methods. In particular, Bayesian neural networks (BNN) have been demonstrated to be efficient in
the quantification of the uncertainty (Blundell et al., 2015; Ferndndez et al., 2022).

Hipothesis 2: The application of data-based models can be suitable to predict the non-linear
modelling parameters of uncertainty prone structural systems, such as MIFs.

Research Objective 2: Develop a database of available laboratory tests of MIFs, and train a
Bayesian neural network that is capable to predict the constitutive in-plane (IP) behaviour of a MIF

system with quantified uncertainty.

. Several modelling strategies have been proposed to estimate the IP constitutive behaviour of MIFs,
and they can typically be classified as micro, meso and macro modelling approaches (Mohammad
Noh et al., 2017; Tarque et al., 2015). Authors like Sattar and Liel (2016a) and Sattar and Liel
(2016b) have proposed the application of a strut model enhanced by the use of micro-modelling for
the seismic evaluation of MIF buildings. However, the known complexities of micro-models and
the big amount of input data requited (usually not available for existing old structures) limit their
applicability. On the other hand, current reference standards for the seismic evaluation of existing
buildings, like the ASCE/41-17 (ASCE/SEI 41, 2017), stipulate the need to “validate the use of
finite element models and strut models by considering published or project specific experimental
data from cyclic quasi-static or dynamic tests” for the MIF structural systems, due to their complex
behaviour and the uncertainties affecting their response. To attain this issue, an alternative is a
detailed characterization of the MIF, which would require a number of destructive tests to properly
estimate their influence within the structural behaviour (Ferretti et al., 2019; Mazzotti et al., 2014).
However, these tests involve a considerable increase in building assessment costs, making them
unfeasible for small and medium-sized structures. This problem reveals the need of low-cost and
non-destructive test for the structural evaluation of existing MIF, which can be easily applied in-situ
and without the need of complex, yet expensive, equipment.

Recently, it has been demonstrated experimentally (Cavaleri et al., 2020; De Risi et al., 2019; Misir
et al., 2016; Palieraki et al., 2018) that the IP and out-of-plane (OOP) strength and stiffness of
the wall are dependent of each other. As the OOP fundamental frequency can be obtained by
non-destructive testing using available system identification methods (Reynders, 2012), it is plausible
to use this tool to indirectly infer the IP stiffness of an existing wall.

Hipothesis 3: The characteristic IP-OOP interactive behaviour of the wall in a MIF can be exploited
to indirectly infer the IP stiffness of an existing wall.

Research Objective 3: Propose a field-based non-destructive semi-empirical methodology to
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predict the IP stiffness of existing MIF walls, based on the results obtained from a static and dynamic

test campaign.



Chapter 3

Outline of contributions

This chapter shows the outline of the contributions developed to solve the research questions raised in
Chapter 2, indicating where they appear in the text.

Research Objective 1: Development of a Markov chain algorithm approach to infer the best choice
of the hyper-parameters of the ABC-SubSim method within each subset evaluation.

An introduction to the original ABC-SubSim algorithm is presented in Section 4.1. Also, an example
application to infer the non-linear modelling parameters of a beam-column is presented. The importance
of the hyper-parameter py (conditional probability) is mentioned, along with its influence on the efficiency
of the method and the difficulties that arise to properly define it in practical engineering applications.
In Chapter 5, a Markov chain strategy to infer the best choice for pg is investigated and the algorithm
A2BC-SubSim is proposed. The main idea behind this algorithm consists of a random sclection of a group
of py’s that are tested on a portion of the total number of evaluations of the metric within each subset.
The selection is made by searching for a balance between simulation efficiency and computational cost,
and both conditions are achieved by exploiting the following facts: (1) the simulation efficiency can be
estimated in terms of how close the acceptance ratio is to the optimum value and, (2) the computational
cost may be reduced if the metric is more closely matched to the tolerance. The proposed algorithm
is tested in comparison to the original one, in terms of the quality of the posterior and the number of
evaluations of the metric (computational cost), showing that the former achieve better results with similar,
or even lesser, number of model evaluations. Notice that the main advantage of the proposed method
relies on the fact that there is no need of previous expert knowledge about the algorithm, nor the need to
preliminarily run tests, to properly define the pg parameter.

The proposed algorithm is further tested with some application examples about the inference of non-
linear models, namely: (1) a cantilever reinforced concrete beam-column with cyclic degradation (Section
5.4.1), (2) a group of cantilever reinforced concrete beam-columns with similar geometric characteristics,

subjected to different levels of constant axial load along with cyclic lateral deformation and degradation
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(Section 5.4.2), (3) a one-bay one-story reinforced concrete frame subjected to lateral cyclic deformation
(Section 5.4.3), and finally (4) a 17-story building subjected to impulsive seismic loading (Section 5.4.4).
Those examples demonstrates the broad applicability of the algorithm for the inference of structural
parameters of non-linear models. Finally, a comparison between trial and error model calibration and a

discussion about the importance of checking the consistency of the results, are presented in Section 5.5.

Research Objective 2: Development of a database of available laboratory tests of MIF's, along with
training of a Bayesian neural network that is capable to predict the constitutive IP behaviour of a MIF-wall
system.

First, an overview about Artificial Neural Networks (ANN), Bayesian Neural Networks (BNN) and, in
more detail, about the Hamiltonian Monte Carlo (HMC) is presented in Section 4.3.1. Training data are
required for the application of this method, hence, in Section 6.1, the data gathered from an extensive
literature review are described. Details about training and test are presented in Sections 6.2, 6.2.1 and
6.2.2. In Section 6.3, a case study of the seismic evaluation of an existing three story building is presented.

A summary about the existing modelling strategies available for MIF structures is also presented in
Sections 4.2.1 and 4.2.2, accompanied with some example applications. These models are later used in
Chapter 6 for comparison of the prediction capabilities of the proposed surrogate model obtained with
BNN-HMC. The gathered data are further exploited in Section 6.1.1, where a damage index formulation is
proposed to estimate the collapse probability of MIF elements.

Research Objective 3: Propose a field-based non-destructive test methodology to predict the IP
stiffness of existing MIF walls.

In the last few years, the study about the interaction between IP and OOP structural behaviour of
MIF's has gained special attention among researchers (Cavaleri et al., 2020; De Risi et al., 2019; Misir
et al., 2016; Palieraki et al., 2018). It has been shown that the degradation of IP stiffness and strength is
associated with an equivalent degradation of the OOP stiffness and strength, and vice-versa. Accordingly,
in Chapter 7, a campaign of laboratory tests was designed and performed to study the relationship between
the OOP fundamental frequency of the wall and the IP stiffness of a MIF. The specimens consisted on
reinforced concrete and structural steel frames infilled with un-reinforced concrete masonry units with
vertical hollows, as detailed in Section 7.1. In the test procedure (see Section 7.2), the use of low-cost
instrumentation was adopted so that, the method proposed later, has a broader coverage in terms of its
applicability. The OOP fundamental frequency is estimated by acceleration measurements and existing
system identification procedures available in the literature, as explained in Section 7.3. An equivalent strut
lincar-clastic model is calibrated from the laboratory test results, with the A2BC-SubSim algorithm. This
model could be used to perform an evaluation of an existing MIF building; however, due to the limited
data from the laboratory campaign, it can not be expected to be suitable for direct real application. To

expand its applicability, the results of the campaign in liaison with the application of a complex non-linear
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model of the structural system were used. A parametric study (see Section 7.5) was performed to gather
additional information that allow us to propose a non-destructive semi-empirical method that can be
applied to estimate the influence of a masonry infill on the stiffness of an existing moment frame building.

The proposed method is further validated with the dynamic tests described in detail in Chapter 8.
These tests were performed on the shake table of the Structures’ Laboratory in UGR and helped to further
validate the proposed method by considering larger scale specimens and cyclic IP degradation due to
dynamic loads. The specimens were also used to study the influence of cement-based plastering on the
OOP fundamental frequency. Results showed negligible influence and, hence, the proposed method does
not require any adjustment when cement-based plastering is present. Also, the dynamic test results were

used to validate the MIF models proposed throughout this thesis.
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Chapter 4

Theoretical fundamentals

4.1 Bayesian model updating by ABC-SubSim

The Adaptive Approximate Bayesian Computation by Subset Simulation algorithm proposed in the
following chapter is based on the structure of the ABC-SubSim method, which is a Bayesian updating
algorithm originally proposed in Chiachio et al. (2014). Thus, a description of ABC-SubSim is provided
here to confer the reader with the basis about the method under an unified notation.

The focus of Bayesian model updating is to update the prior information about the value of a set of
uncertain model parameters @ € @ C R™ from a parameterized model x = g(u,0) € X C R? based on the
information given by the data y € D C R, where g : R™*"» — R? u € R™ are input values to g, and D
is the observation space. Following the Bayesian formulation, the solution is not a single value of ; on the
contrary, Bayes’ Theorem (see Equation (4.1)) takes the initial quantification of the plausibility of 6, which
is expressed by the prior probability density function (PDF) p(0), and updates this plausibility using the
information in the dataset D through the likelihood function p(y|z,0) to obtain the posterior PDF of the
model parameters p(8]y). The interested reader is referred to Beck (2010) for further information about

Bayesian model updating.

p(x,0ly) x p(y|x, 8)p(x[0)p(0) (4.1)

However, there are situations where the likelihood function is unknown or analytically intractable,
for which the Approximate Bayesian Computation (ABC) methods Marjoram et al. (2003), also known
as likelihood-free computation algorithms, provide an efficient alternative. These methods bypass the
evaluation of the likelihood function using a simulation-based approach. Through a specific tolerance
parameter £, the method selects as posterior samples the pairs (x,60) € H C X x © such that the model
simulations x ~ p(x|0)p(0) lay within a specific region around y, namely Be(y {X €D:p(x,0,y) < 5}

where p(-) : R — R is a user-defined metric function used to measure the closeness of the simulated
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output x to the data y. By this means, the ABC marginal posterior of parameters is expressed as
pe(0) x P(x € Be(y)|0)p(0), where P(x € Be(y)|0) assigns the unity when p(x,0,y) < &, and 0 otherwise.

ABC-SubSim (Chiachio et al., 2014) exploits the efficient simulation framework of Subset Simulation,
originally proposed by Au and Beck (2001) as an estimator of small failure probabilities. By Subset
simulation, a rare event simulation problem is transformed into the product of a series of simulations with
larger probabilities whereby the computational effort is reduced. Indeed, in ABC-SubSim the region H of
possible solutions is assumed to be defined as the intersection of m nested regions in the X x © space, i.e.,

H12HJ22H7n:H where:

Hi={(x,0): p(x,0,y) <&} (4.2)

In the last equation, the tolerance values follow a decreasing sequence & > & ... > &, whose values
are adaptively determined such that the sample estimate P; £ P(H;|H;_1) satisfies P; = po, with
P (H;) =P ((x,0) € H;), and pg is a conditional probability acting as algorithm hyper-parameter defined
by the modeller. The algorithm 1 shows the process followed by the ABC-SubSim method.

As an illustrative example, the ABC-SubSim is applied here to infer the parameters of a non-linear
model of a structural reinforced concrete element tested in the laboratory. The element consist of a
cantilever beam-column subjected to constant axial load and cyclic lateral deformation. More details
about the test are presented in Section 5.4.1. The model consist of a distributed plasticity beam-column
with a flexible boundary dependent on the stiffness of the cross section, as shown in Figure 4.1a. The
reinforced concrete section is represented by a fiber section, where the cross-section is discretised in a
series of elements with uniaxial behaviour, such that the axial-flexural stiffness of the section is determined
by integration of the stiffness of the uniaxial elements over the section. Concrete behaviour is represented
by the Concrete01 constitutive model (see Figure 4.1b), using as inputs the recommendations proposed in
Karthik and Mander (2011) and the estimation of the confinement ratio proposed in Mander et al. (1988).
The steel reinforcement behaviour was modelled with the Hysteretic constitutive model (see Figure 4.1c¢)
and the recommended properties of the ASCE/COPRI (2014) regulations. All the materials constitutive’s
values were defined with the nominal resistance reported by Gill (1979). Note also that the Hysteretic
model allows considering resistance and stiffness deterioration by three parameters (see Figure 5.11): (1)
demanded ductility of the material (named as D;), (2) dissipated energy (called D5), and (3) by the
unloading stiffness degradation parameter (called 8). Through these three parameters, the degradation
of a reinforced concrete beam-column element can be modelled, which is a critical requirement for the
seismic performance evaluation of a structure (Harris et al., 2009; Haselton et al., 2008).

The ABC-SubSim hyper-parameters were set to N = 2000 samples and py = 0.2. The deviation of the
proposal PDF was set equal to the 10% of the standard deviation of the marginal PDF of each 6; from the

previous subset. Figure 4.2 depicts the acceptance rate obtained for 100 independent runs with py = 0.2,
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Algorithm 1 ABC-SubSim

Input: po € [0, 1]: defines the number of seeds by Npy and the number of Markov Chains for each subset by i
N: number of samples per intermediate level;
&¢, m: final tolerance value and maximum number of Subsets, for stopping criteria;
Objective Function: & = p (01,02, ...,0n,,)
Output: 601,02, ..., Bnp
Monte-Carlo Simulations
1: Sample [0;02, ...79572, ...ﬁg)] fori=1,...,np
2: forn=1,...,N do
3: Obtain the tolerance values: &™ = p (9%"1), 95“2) vy GY?LP)
4: end for
Subset Simulation

5. for j =2,...,m do
6 Renumber [95@1@” :1,..,N,i=1, .A..,np] so that 5;91 < 5;3)1 <..< f;ﬁq
7: for k=1,..., Npo do
8 Select (9;’6_)1» as a seed
Markov chain Monte-Carlo
9: forl=1,..., % do
10: Generate child conditional samples 951 from the seed 9;?71#
11: Evaluate tolerance value &
12: if & <= ¢ then
13: Accept the child sample 0;“, as new sample
14: else
15: Use seed 9;-“_171- as new sample
16: end if
17: end for
18: Reorder [9;{?’[ tk=1,..Npop;l=1,..., %] as [95}2, ,9;7)}

19: end for
20:  if €V7) < &5 then

21: End algorithm
22: end if
23: end for

along with the pg = 0.5 case. Although pg parameter selection will not considerably influence the final
results, it is important for the efficiency of the algorithm. As shown in the aforementioned figure, in this
particular case, the algorithm requires more subsets when pg = 0.5 to try to attain the same tolerance and,
in some cases (13%), did not even reached it. Considering that (1) the optimum acceptance rate should be
near 40% (Papaioannou et al., 2015), (2) that po highly influence the acceptance rate, and (3) for the same
po value, the acceptance rate changes as the number of subsets increases; it seems that, to attain better
efficiency, py should be selected according to the conditions of each subset. Notice that the maximum
number of Subsets was limited to m = 40, with a tolerance value €; given by the following metric function:

N*
) ®
i=1
N
where €7 = O.lOZ (F™), is the tolerance value, N* is the number of data points of the test results

=1
and F™* is the force data values resulted from the tests, and F is the force data values resulted from
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Figure 4.1: Example application of ABC-SubSim, on the inference of the non-linear modelling parameters
of a reinforced concrete column.

Table 4.1: Parameter a priori information and posteriori results.

01 02 03 04 05 06 07 0 [ 010 011 012 013

& Lower Bound 0.50 0.50 0.50 0.50 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.50 0.50
&

Upper Bound 1.50 1.50 1.50 1.50 0.50 1.00 0.25 0.25 0.25 1.50 1.50 1.50 1.50

MAP 111 1.07 120 102 050 070 0.011 0.212 0.189 0.73 1.34 093 0.57
Std (%) 0.73 127 064 3.00 0.56 084 0.03 1.07 0.46 028 0.70 1.14 0.98

the model. Thirteen model parameters have been selected for the model calibration (see Table 4.1), i.e.
0 ={61,02,...,013}. The parameters 6, to 6, correspond to coefficients of resistance and deformation of
steel reinforcement constitutive values, as shown in Figure 4.1c. Parameters 05 and g define the pinching of
the response of the steel reinforcement model (see Figure 5.11), 07 to 0y are degradation parameters of the
hysteretic model corresponding to D1, Dy and 3, respectively. Finally, parameters 619 to 613 correspond
to coefficients of the resistance and deformation values for the concrete constitutive behaviour, as shown in
Figure 4.1b.

Figure 4.3b compares the cyclic response of the column during the test with the maximum a posteriori
(MAP) model obtained from the ABC-SubSim algorithm results. Notice that the model response agrees to
the test data in terms of strength and deformation. Figure 4.3a depicts the objective function values per
simulation level showing that it gets minimized as the algorithm progress. For this example, after subset
number 15, the tolerance value reached almost a constant value.

Moreover, Figure 4.4 presents a multidimensional scatter-plot of the posterior samples of 6, to 0,
chosen for illustration purposes. A colour code of increasing intensity is used to differentiate between
subsets, where the darker colors correspond to the latest subset (154, subset). The diagonal shows the
probability density functions (PDFs) of each parameter, whilst the rest of the plots show paired scatter
dispersion plots for every pair of parameters. Note that the uncertainty of all parameters (which can
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Figure 4.2: Acceptance rate after 100 independent runs of the reinforced concrete column inference problem
solved with ABC-SubSim, with py = 0.2 and pg = 0.5

be noticed by considering the spread of each PDF) is significantly reduced as they are confronted with
experimental data. Also, the uncertainty is reduced as the algorithm progress towards deeper subsets,
meaning that there is an effective model learning from the data. Table 4.1 summarizes the values of each
model parameter at the beginning (by the a priori parameter range) and end of the process (by the MAP).
This results show that the resulting model using the MAP values as modelling parameters is the most

suitable one to reproduce the test data.
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(a) Evolution of model error during calibration process. (b) Comparison between test and calibrated model force-

displacement results.

Figure 4.3: Results from the ABC-SubSim application example.

It can be noticed that the uncertainty reduction of parameter 04, which corresponds to the coefficient

of the nominal ultimate deformation of the steel reinforcement, is significantly less than the others. Indeed,
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Figure 4.4: Scatter plot matrix results for 6; to 65 parameters. Axes in the diagonal display the density
plots of the corresponding parameter (only 6 parameters and the initial 14 subsets are presented for
clarity).

the standard deviation values of the posterior PDF's taken from table 4.1 corroborate this appreciation,
showing the highest standard deviation value for #4. This means that this parameter is relatively insensitive
to the information provided by the data and, therefore, its variation has less effect on the force-deformation
response of the tested element. This result is consistent with the physical condition of the test, as this
parameter modifies the ultimate deformation capacity of the steel reinforcement, which corresponds to a
deformation level not reached during the test, and thus, not observed in the data.

The presented example demonstrated the capabilities of the ABC-SubSim algorithm to infer the
distribution of the non-linear modelling parameters based on test results. As it was mentioned before, the
definition of the conditional probability hyper-parameter, pg, has major influence on the efficiency of the
algorithm and minor, on the results, provided that a sufficient amount of simulations are employed (which
some times, might be huge). Therefore, its definition should be made with caution and on a case-by-case
basis. Notice that this requires to perform several runs of the problem with different py values, in order to

define the best choice. In Chapter 5, the algorithm is enhanced to avoid the manual selection of py.
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4.2 Non-linear modelling of structures

4.2.1 Available frame models for reinforced concrete frames

Two different approaches are adopted in this thesis to represent the behaviour of the reinforced concrete
frames, namely: (1) models with concentrated hinges at the ends of beam-column elastic elements, following
the recommendations by Haselton et al. (2008); and (2) models based on beam-column elements with
distributed plasticity. These two models are applied throughout this thesis, so they are summarized here
for the ease of the reader. Table 4.2 shows the general formulation to obtain the constitutive parameters
of the nonlinear hinges, whereas Figure 4.5a depicts the general geometry and characteristics of the model.
Notice that the second approach is also used by Liberatore et al. (2018), where the concrete and steel
constitutive uni-axial behaviour is discretized within the cross section, to be further integrated over the
length of the beam column element. This allows us to directly consider the distribution of plasticity along
the element. A similar approach was applied to model the steel frames. Additionaly, Table 4.3 and Figure
4.5b show the general geometry and characteristics of the model. The shear behaviour of the columns is

not explicitly modelled since the tests within the database do not include cases with that type of failure.

Table 4.2: Reinforced concrete concentrated hinge constitutive values.

Description of constitutive parameters

11EIL

ko, =1.1

Y 0.98P
Elgy = |—0.02 +
40 Agfc

M, according to Panagiotakos and Fardis (2001)

L,
+ o.ogﬁ} E.l,

M. =1.25 (0,89)ﬁ (0.91)0.01]06 M,
B = 6, +0.12 (1.55) (0.16) 7% (0.02 + 40psp)**? (0.50)°°1+ (0.66)%1* (2.27)% Fy ur

0, = 0, +0.76 (0.031) %7 (0.02 + 40pp)""

Formulation of non-linear hinges according to Haselton et al. (2008), in units of N, mm and MPa. L,: shear length, P: axial
load, Ag: gross area of the cross section, f.: concrete characteristic compressive strength, H: height of the cross section, pgp:
transverse steel ratio, sn: rebar buckling coefficient according to Dhakal and Maekawa (2002), p: ratio of tension
reinforcement, Figy pr: factor to consider asymmetric arrangement of flexural reinforcement.

As an example application of these modelling approaches for reinforced concrete frames, the test
performed by Adachi et al. (2000) is modelled here with both strategies. Figure 4.6a depicts the general
geometry of the model, for the concentrated hinge case. Notice that the distributed plasticity model had
the same concept without the non-linear plastic hinges. The frame consisted of 200x220 mm cross-section
columns with 14 longitudinal reinforcement rebars with 10 mm diameter, and 4 mm diameter stirrups with
150 mm spacing. The mid-floor beam consisted of 160x290 mm cross-section beams with 7 longitudinal
rebars with 10 mm diameter as top and bottom reinforcement, and 4 mm diameter stirrups with 80 mm

spacing. The concrete had a characteristic compressive strength of 18 MPa and the yield strength of
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Table 4.3: Reinforced concrete and structural steel distributed plasticity uniaxial constitutive parameters.

Concrete Steel
Peak/Yield stress fe fy
. : 105 + f. fy

Peak/Yield st = ————— €, =

eak/Yield strain € ~0000 €y 2
Ultimate stress 12
Ultimate strain D€,
Strain hardening ratio £ =0.001
OpenSeespy model Concrete01 Steel02

Parameter formulation according to Karthik and Mander (2011), in units of N, mm and MPa. Recommended values of
Ry =18, CR1 = 0.912 and CR2 = 0.15, of Steel02 model, were adopted.

the reinforcement was 342 MPa. Figure 4.6b, shows a comparison of the shear and lateral deformation

behaviour of both models against the test. From the results, it can be concluded that:

e The concentrated hinge model usually over-predicts the initial stiffness of the structure and, in this
particular case, also over-predicts the maximum lateral response. However, it has the capability
to consider the strength degradation due to cyclic deformations, making it particularly useful to
estimate the probability of collapse of this type of structures. Notice that, this phenomenological
model was obtained from regression analysis of an arguably limited laboratory data; therefore, the

quality of a blind prediction is not expected to be perfect.

e The distributed plasticity model slightly under-predicts the initial stiffness of the structure and, in
this particular case, also under-predicts the maximum lateral response. Notice that this model turns
to be a better representation of the physical behaviour of the materials; however, results are also

dependent on the assumptions made on their constitutive behaviour.

e Even though the estimations of the models do not perfectly match the laboratory measurements,
considering the sources of uncertainties (i.e the selection of parameters, modelling assumptions,
neglected sources of nonlinear behaviour, the uncertainties on the laboratory measurements, to name
but the most important), both models are capable to fairly predict the behaviour of reinforced

concrete frames.

4.2.2 Available equivalent strut models for MIF

To physically model the shear behaviour of the MIF structural system, the framework OpenSeespy (Zhu
et al., 2018) is used here, where a macro-modelling approach with a single strut per diagonal is applied
according to three different models proposed by other researchers in Liberatore et al. (2018), Huang et al.
(2020) and ASCE/SEI 41 (2017). Pinching4 constitutive behaviour is used herein to construct the model.

For the ease of the reader, the formulation of these models are summarized in Table 4.4 under a unified
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Figure 4.5: MIF models used for comparison in Section 4.2.1. (a) Frame model with concentrated hinges
at the ends of beam-column elements, with a (c) tri-lineal constitutive behaviour. (b) Frame model with
distributed plasticity beam-column elements, with a (e) fiber section discretized with uniaxial stress-strain
behaviour of (f) concrete and (g) steel. (d) Equivalent strut shear-deformation behaviour.
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Figure 4.6: Example modelling of a building frame tested by Adachi et al. (2000).

notation. The shapes of their constitutive behavior are given in Figure 4.5d. The first model, proposed by
Liberatore et al. (2018), consists of a 4-lines backbone curve where the strength is estimated according to

four possible failure modes, namely: bed-joint sliding, diagonal tension, diagonal compression, and corner
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compression. The formulation of the failure modes are adapted from Decanini and Fantin (1986), and
corrected by a regression study using the laboratory test data of this work.

The second strut model, proposed in Huang et al. (2020), also consists of a 4-lines backbone curve;
however, the characteristic strength and deformation values were obtained by a multivariate regression
analysis. Finally, the third strut model, proposed in ASCE/SEI 41 (2017), consists of a 2-line backbone

curve, as shown in Figure 4.5d.

Table 4.4: Macro-model constitutive parameters for three deterministic models proposed by others and
used herein.

Liberatore et al. (2018) Huang et al. (2020) ASCE/SEI 41 (2017)
Strength -15¢ stiffness drop 0.40V}, 0.72F, -
Strength -2"¢ stiffness drop 0.85V}, - -
. min (Vs, Ve, Ve, Vee 0.196,0.867;0.792

Maximum strength Vp = ( 1.(152 de ) F. = f'";ggiﬂgd Ve = vmLmtm
Residual strength 0 0.40F, 0

0.72F,
Deformation -1°¢ stiffness drop 0.00025H,, TC

e
Deformation -2"¢ stiffness drop 0.0013H,,, -
E70'197H0'978L70‘978 \%
Deformation - max. strength 0.00294H,, §o = 2 m m min Lit ,6T>
0 60F64‘94 K,

Maximum deformation 0.0344H,, 'K €46

pc

fm, Em: masonry characteristic compressive strength and elastic modulus, respectively. tn,: thickness of the wall, 4, 0:
length and direction of the diagonal of the wall, respectively. Hy,, Lym,: height and length of the wall, respectively.

Vs =[(1.2sin 60 + 0.45 cos 0) 79 + 0.30y] tyn Lim: bed-joint sliding failure mode; Vg = (0.67pm0 + 0.30y) tm Lim: diagonal
tension failure mode; V. = 1.16 tan 6 ()\h)_l fmtmLm: diagonal compression failure mode;

Vee = 1.12sin 6 cos 9)\;0'88fmtmLm: corner compression failure mode. 79: bed joints basic shear strength, 7,,0: shear
strength from diagonal compression test, oy: vertical stress, Aj,: Stafford-Smith coefficient (see Equation (6.1)).

Ke = 0.0143E9,i618t9,i694H,;] 'OQGL}WLO%: initial stiffness of the compressive strut, according to strut model 2.

Kpe = —1.278f;10'357t7}0'517K5: post-capping stiffness, according to strut model 2. K,, =1/ (k;l + ks_l): stiffness of the
MIF system as a serial combination of frame stiffness (k) and shear wall stiffness (ks). d,: residual deformation as a
function of columns shear strength and stiffness and wall shear strength and stiffness, according to ASCE/SEI 41 (2017).
As an example application, the aforementioned models were put to the test in a blind estimation of
the laboratory experiment carried out by Morandi et al. (2018b). The specimen consisted on a reinforced
concrete frame with an infill wall made of clay masonry units. The columns were 350x350 mm cross section
with 2.48 % of longitudinal reinforcement ratio and two 8 mm diameter stirrups at 90 mm spacing. The
beam was 350x350 mm crosss section with 0.503 % of both superior and inferior longitudinal reinforcement
ratio, with two 8 mm diameter stirrups at 70 mm spacing. The characteristic compressive strength of the
concrete was 34 MPa, and the reinforcement yield strength was approximately equal to 500 MPa. The
characteristic compressive strength of the masonry wall system was reported equal to 3.86 MPa. The
masonry units were 235x235x350 mm, where 350 mm corresponds to the thickness of the wall. In Figure
4.7, a comparison is shown of the estimations of the three models against the test result. The following

conclusions can be made:

22



e The ASCE/SEI and Liberatore models do a fair prediction of the initial stiffness of the frame.

However, Huang model sub-estimates this characteristic.

e Both Liberatore and Huang models over-estimate the ultimate shear strength of the system. On the

other hand, the ASCE/SEI model sub-estimates the shear strength.

e Both Liberatore and ASCE/SEI models seem to properly capture the strength degradation of the
system, as the strength drops at about 40 mm of lateral deformation. In the case of Huang model,

the lateral strength does not degrades during the history of deformation.
e None of the models properly captures the pinching effects.

e Even though these models have some limitations, they constitute a fair balance between simplicity of

modelling and quality of the prediction. Their application on a probabilistic framework is preferable.
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Figure 4.7: Comparison of three MIF macro-models to the test results from Morandi et al. (2018b).

4.3 Artificial Neural Networks

4.3.1 Concepts

Artificial neural networks (ANN) are a numerical method that combines machine learning and data science.
In a simplified way, they can be defined as a black box model, in which a series of data are inserted, from
which one or several results are obtained. However, the main strength of this black box model is that its
formulation is based on observation. Internally, the model can be represented in a graph similar to the one
shown in Figure 4.8, where data travels trough links from node to node, each node receives that input data,

performs a task and delivers an output (see Figure 4.9). This inter-connection between nodes resembles
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that between neurons in the brain, hence the name. The following characteristics can be observed in the

aforementioned Figure:

hidden layers

layer ag) agg)

output

layer

Figure 4.8: Example of an artificial neural network architecture (drawings using Neutelings (2022) libraries).

A
=
fSI
N
E

e Nodes or neurons: these are representations of mathematical functions that use the weighted sum of
input values and the bias to calculate the output result by means of the activation function. The
bias is a parameter associated to each node. Figure 4.10 shows some of the most common activation
functions that are used within a neuron. Mathematically, the behavior of a neuron can be represented

by the following equation:
y; =0 (Z aw; + b]) (4.4)

Where y; is the output, a; and w; are each of the ¢ inputs of the neuron with their corresponding

weights, b; is the bias associated with neuron j and () is the activation function of that neuron.

e Links: these lines represent the path that the data take between nodes. Each link is associated to a
parameter, known as weight, which defines the contribution of the output data of a previous neuron

into the next.

e Layers: these are a set of nodes that share the arrival of the same input data. The architecture of an
ANN must always contain at least one input layer and one output layer. The intermediate layers

between the two previous ones are known as hidden layers.

For the ANN model to meet its objective, it is necessary to generate the parameters w; for each link
and b; for each neuron. The process to obtain these parameters is called training. For this purpose,
there are some algorithms that optimize the parameter values to represent the input-output relationship

of known conditions. Among the existing algorithms we can mention (Bhatt and Shrivastava, 2021):
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Figure 4.9: Illustration about the mathematical formulation of a neuron within an artificial neural network
(drawings using Neutelings (2022) libraries).
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Figure 4.10: Most commonly used activation functions in ANN.

Levenberg-Marquardt, conjugate gradient, quasi-Newton and gradient descent. These models have a wide
range of applications such as (Goodfellow et al., 2016) computer vision, speech recognition and natural
language processing.

However, notice that the parameters defining an ANN model result from an optimization process and,
therefore, do not contain information about the uncertainty inherent in a prediction (Ferndndez et al.,
2023). This can be a disadvantage, especially when predictions are made outside the range of training
data, since the model does not provide any information about the accuracy of the prediction. A particular
neural network called a Bayesian Neural Network (BNN), can give a sense of accuracy of a prediction. In
the BNNs, the parameters of the model are set as a distribution of plausible values and, therefore, the

output is also a distribution.
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4.3.2 Hamiltonian Monte Carlo based-Bayesian Neural Networks

Identifying the degree of belief in the predictions made by any model is of great importance (Ghahramani,
2015) and can be critical in the subsequent decision-making stage. Thus, BNN have been chosen as the
data-driven method.

Among the state-of-the-art training algorithms for BNN, the Hamiltonian Monte Carlo (HMC) method
(Neal, 1996), a variant of Markov Chain Monte Carlo (MCMC) (Gilks et al., 1996; Neal, 1993), is gaining
importance and seems to be the gold standard nowadays (Benker et al., 2020). As other Bayesian training
algorithms, HMC aims to find an approximation of the posterior distribution p (8|D, M) by sampling from
a Markov Chain, where § = {w,b} € © C R? represents the weights (w) and biases (b) of the BNN, D the
data, and M the model class, which in this case is related to the BNN architecture.

The Hamiltonian method, in a context of conservative dynamics, is built on the premise that volumes
are preserved. Every particle is defined by its position and momentum, and as a consequence, any
change in the position space needs to be compensated with a change in the momentum space, so that the
position-momentum phase space is maintained. In the Hamiltonian Monte Carlo context (Betancourt,
2017), the position space is replaced by the parameter space, and an auxiliary momentum variable p is
adopted, hence any parameter value 6 is associated with a momentum leading to the pair (6, p). Once
the momentum variable has been included and the parameter space converted to a phase space, namely

0 — (0, p), a joint probability distribution, namely the canonical distribution is defined as follows:

m(0,p) = 7 (0lq) w(q) = e P (4.5)

where H(0, p) is the Hamiltonian function, also called as the energy at that point, and can be expressed as:

H(0.p) = —logm(f,p) = —logm (0]q) —log 7 (6) (4.6)

with 7 (0|¢) often assumed a Gaussian distribution A (p|0, M) with covariance matrix (also known as mass
matrix) M, and p ~ N(0,I). In this method, new samples §,, are drawn using the leapfrog integrator
(Betancourt, 2017), with a step size € and a path length L, as depicted in Algorithm 2. These samples are
then accepted with probability «, as per Equation 4.7.

Algorithm 2 Leapfrog Integrator

1: Obtain initial samples 8y < 6 and pg < p
2: for 0 <n < L/e do
edV

3: pn+% <~ Pn — iﬁ(an)
4: 9n+1 «— 60, + Epn_._%
edV
5 Dl € Pnyy — 5 g (Onia)
6: end for
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) T(Ont1, —pn+1)>
a=min|l, ——————
( W(gnvpn)
) exp(—H (0p 41, —pn+1))>
=min |1,
< exp(—H (0, pn))

(4.7)

The HMC algorithm is very sensitive to small variations in the step size and path length hyperparameters,
thus finding the right values is a critical aspect of this method. The open source software hamiltorch' has
been used in this thesis for the implementation of the HMC algorithm. The hyperparameters have been
chosen as follows: step size € = 0.001, leapfrog steps L = 10, the prior PDFs of 6, namely, p(f), are chosen
as Gaussian with prior precision for the parameters 7 = 1, likelihood output precision 7., = 100 and 500
samples where 250 are burned. The chosen activation function for the hidden layers is the Rectified Linear

Unit ReLu and the activation function for the output layer is the Sigmoid.

'https://github.com/AdamCobb/hamiltorch
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Chapter 5

A’BC-SubSim

In this chapter, a new Approximate Bayesian Computation algorithm with reduced hyper-parameter scaling
and its application to non-linear structural model calibration problems, is presented. The algorithm initially
takes the ABC-SubSim algorithm structure and sequentially estimates the algorithm hyper-parameter
by autonomous adaptation following a Markov Chain approach, thus avoiding the error associated to
modeller’s choice for these hyper-parameters. The resulting algorithm, named ” Adaptive Approximate
Bayesian Computation by Subset Simulation” or A2BC-SubSim, simplifies the application of ABC-SubSim
method for new users whilst ensuring better measure of accuracy in the posterior distribution and improved
computational efficiency. A first numerical application example is provided for illustration purposes and
to provide a comparative and sensitivity analysis of the algorithm with respect to initial ABC-SubSim
algorithm. Morcover, the efficiency of the method is demonstrated in two non-linear structural calibration
case studies where the A2BC-SubSim is used as a tool to infer structural parameters with quantified
uncertainty based on test data. The results confirm the suitability of the method to tackle with a real-life
damage parameter inference and its superiority in relation to the original ABC-SubSim. Most of the
content of this chapter have been covered in a publication by the author (Barros et al., 2021); however,

additional examples, discussion and details are presented here for completeness.

5.1 The A’BC-SubSim algorithm

As seen above, the conditional probability py in ABC-SubSim is an hyper-parameter which needs to be
fixed in advance. As shown in Chiachio et al. (2014), py has a strong influence on the computational
burden of the algorithm along with the quality of the ABC posterior approximation. The Adaptive
Approzimate Bayesian Computation by Subset Simulation method avoids the manual tuning of py by
numerical adaptation, as shown next.

First, let us consider that Pj is not fixed to a specific value pg and that a sequence that follows a Markov
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chain, as P, P, ..., Pj, ..., P, whose initial state P, = p; is known, whilst the rest Pj =pj,j =2, are

randomly chosen from a truncated normal probability density function (PDF) given by:

N*((l,b7,l,b70'):l qs(z_;&)

7o (t5) — o ()

where a and b are the lower and upper truncation values, p and ¢ are the mean and standard deviation

(5.1)

respectively, ¢(-) is the standard normal PDF, and ¢(-) is its cumulative distribution function.

Next, let us consider that a sample of K values pg.l),p;?), e ,pgk), e ,pﬁK), distributed following
Equation (5.1) are available as possible candidates for any subset j > 2. To determine the best choice
for p;, let us now introduce a weighting function wy : R — [0, 1], which assigns a value within the [0, 1]
interval to each sample p§k), so that the chosen p; = pg.k) is selected with probability wy among the K

samples. This weighting function is defined based on the following criteria:

e The expected acceptance ratio of the Markov chain Monte Carlo (MCMC) algorithm, «, which

should be as near as possible to an optimum value;

e The selected pj;, which should preferably produce an associate tolerance value §; as close as possible

to the final tolerance, ;.

The first criterion is based on Papaioannou et al. (2015) observations on the optimum acceptance ratio
of a MCMC algorithm, where o = 0.40 is recommended to maximize the efficiency of the Subset Simulation
method; note that this allows the modeller to avoid some required pre-runs to set a hyper-parameter for the
original ABC-SubSim (Chiachio et al., 2014), like the variance in the proposal PDF. The second criterion
is proposed to minimize the amount of subsets required to reach the final tolerance &; thus increasing the

computational efficiency. Therefore, the weighting function can be mathematically expressed as:
Wg = Uk - Vg (52)

where u; and vg are ad-hoc functions to take into account the first and second aforementioned criteria,
respectively. The uy factor can be any concave downward function whose maximum is located near the

recommended value 0.40. In this work, the following expression is adopted for uy (see Figure 5.1):

U = exp <M> (5.3)

202

«

where @y is the sample estimate acceptance ratio when p(.k)

J is adopted, and o, is a factor to set the

influence of uy in wg. Further insight about the influence of o, on the computational efficiency is provided

in Section 5.3.

30



1.0 -
= 0.8
2
3
=]
2 0.6
on
£
=
on
‘T 0.4
= — 0=0.1
S< — 0=0.2
0.2+ —— 0=0.5
— 0=1.0
0.0 - — 0=10.0
1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Qa - Acceptance Rate

Figure 5.1: Plot of weighting function u in terms of the acceptance rate («) for different values of o,
parameter.

For the second factor vy, a distance function is proposed as follows:

gmax - gmin

v, =1— (5.4)
where &nin and &nax represent the minimum and maximum metric values obtained for the {pgk)}szl
samples. Note that Equation (5.4) makes unity when the intermediate tolerance flgk) associated to a trial
pg-k) equals &in and zero in the opposite case. Note that the weighting function wy conveys a healthy
balance between simulation efficiency and computational cost, which adaptively penalises the p; values
whose associated uy or vi are low and favours those whose balance is high. This observation is further

discussed in Section 5.3, specifically in Figure 5.6¢c.
(k)

Finally, note that the choice of p;™ constitutes a stochastic random process and, therefore, the shape
of ug and v functions will not have significant influence on the behaviour of the algorithm, as long as
their values lay within those proposed in Section 5.2. For instance, taking a different weighting function

uy, like the one in Equation (5.5), leads to similar results as denoted in Figure 5.6¢, when comparing u}

to oo = 0.10.
5ap — 1 if 02 <dap <04
up =< 3— 5y if 0.4 < ay <0.6 (5.5)
0.01 otherwise
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Similarly, taking a different weighting function v}, as the following:

51(“ — &

where &5 is the final tolerance value and & is the initial metric attained during the Monte-Carlo initialization

Vg =

of the algorithm, leads to similar results as depicted in Figure 5.2, where a comparison of the required
number of evaluations is presented for 8 cases: (1-3) using vi* formulation with ns equal to 0.01, 0.05
and 0.10, (4-6) using vy formulation with ng equal to 0.01, 0.05 and 0.10, and (7-8) using the original
ABC-SubSim algorithm with py equal to 0.20 and 0.50, respectively.
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Figure 5.2: Comparison, in terms of the number of evaluations required to attain the tolerance value, of
the expected computational cost of A?BC-SS algorithm with ny equal to 0.01, 0.05 and 0.10, using vy*
and vy factors. ABC-SubSim results are shown for py equal to 0.20 and 0.50.

An algorithmic description of A?BC-SubSim is presented as Algorithm 3. The adaptive selection
process of p; values is shown in steps 8 to 22. Note that the hyper-parameter K is used to set the amount
of p; candidates to be evaluated in every subset, whereas n; sets the algorithm runs needed to estimate
the functions u; and vi. To alleviate computational cost, the algorithm is implemented so that similar
p; candidates (say, with less than 1% difference) are evaluated only once. A flowchart of the proposed
algorithm is presented in Figure 5.3, which also depicts how the ABC-SubSim steps are integrated into the
A?BC-SubSim.

5.2 Illustrative example

Let us consider a cantilever prismatic column (see Figure 5.4) with 0.4 [m] square cross section, 2 [m] length
which is loaded at the top with a force F' =1 [kN]. For the sake of illustration, let us also consider that
the structural material degrades at a unknown constant rate ¢ affecting the Young modulus by reducing it
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s Xj=1

for j=1:m

Evaluate and renumber metric:

Sample {p"}< , from:
p;") =p (B;i)l,x_ﬁ)l.D) ,n=1...N 18 {1‘7 Yiea

N(a =0.1,b=0.5, pp,_,,0p; 1)

so that p{V < pi? < ... < pi™ Use U (a = 0.1,b=0.5), for j = 1
1
- Evaluate: acceptance ra-
Use hyper-parameters py and the tio () and intermediate
variance of the proposal PDF tolerance (5](1")), from Nny
. random seeds, using MMA
; ]

Np,+1) Evaluate weigths uy, vy, and wy
Pi Select p; with prob. min = {1,w;}

L .l Re-populate 8 from Np; i
7 first values, using MMA AIBC-Slifia

A?BC-SubSim

[}

Figure 5.3: A?BC-SubSim algorithm flow-chart. Dashed arrows show the path of the original ABC-SubSim
whilst solid ones display the proposed parameter auto-tunning steps.

from an initial value Ey = 40 [MPa] following the exponential function:
Tn=c Tp_1—+ Un (5.7)

where subscript n € N denotes time in weeks, x refers to the Young’s modulus prediction and v is a model
error term, which is assumed to follow a Gaussian distribution with zero mean and unknown standard
deviation o, i.e. v, ~ N (0,0). Also, a sensor is assumed to be available at the top of the column to

measure weekly deflections é,, following a measurement equation, as follows:

Yn=h (xn) + (58)

where y, refers to the measured deflection §, and 1, denotes the measurement error term, which is
assumed as a Gaussian zero-mean distribution with a known standard deviation, i.e. ¢, ~ N (0,0) where
oy = 107%, expressed in meters units. In Equation (5.8), the function h : R>¢g — R>g and can be expressed
from elasticity theory as h = %’ where I is the inertia momentum of the cross section.

In this example, the degradation rate and the standard deviations of the model error term are selected
as unknown model parameters, so that 8 = {61,62} = {(,o}. The uniform PDFs p(6;) = /[0.0001, 0.02]

and p(f2) = U[0.01, 2], respectively, are considered as prior PDFs for the model parameters. The data for
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Algorithm 3 A2BC-SubSim algorithm

Input: N {number of samples per intermediate level}, np{size of the model parameters 8 vector}, K {number of trial
samples of p;}, ny {fraction of N to define the amount of MCMC chains in each trial}, {; {final tolerance value}, m
{maximum number of simulation levels allowed}, P; = p; € [0, 1] {Unconditional probability from first simulation level.
Can be fixed to 1 }, 0a, {influence parameter from Eq. (5.3) }.

Output: 6 = (05,1,) (1)) ..... (0<N), (N))

Algorithm

1: Sample (Oﬁl),xgln e <9(1N), ng)), where (0, x) ~ p(x|0)p(0)
Subset Simulations

2: for j=1,...,m do

3: forn=1,...,N do

4: Evaluate p;") <0§")1, ]")1, ’D)
br ond for () DIPNe) ™)
n n
6: Renumber [((JJ X5 1) n: 1,...,N] so that p; Spj <... SP]-
7 Set &min = p(l) Emax = pEN)
Adaptively select Dj

8: Sample {p(.k)}le, if j =1, from: U (a = 0.1,b = 0.5), and from: N (a = 0.1,b = 0.5,1p;_1,0p;_, ), otherwise

9: for all £ do . "
(o NptF) 1

10: Set £ = (pj B

11: Randomly select Nny seeds (0(1)1, (1) ) R (G;JX?W, xgi’?k))

12: Set ¢ = 0 (Auxiliary variable)

13: fori=1,...,Nn; do

14: Generate Ceil[l/p§k>] states of a Markov chain from the seed <0§.':>1,x§.l)1) (e.g. using Modified Metropolis

; ; 1/p4F)
Algorithm (MMA) Au and Beck (2001)): [(e§>x§))] ’
5=

15: Evaluate the metric p( DR <0§Z)’S,xgl)’s,D)

16: if pg Dok <= ffk) then

17: g+—q+1

18: end if

19: end for
20: Calculate the acceptance ratio as &y = 4

nkN

21: Evaluate ug, vg, and wy (use Egs. (5.3), (5.4) and (5.2), respectively)
22: Set p; = p( ) with probability min = {1,wy}

23: end for

K 2
k k
Z ( ) Z ( ( >—MPJ)
24: Evaluate pp; = :Ki and op; = % for each pair of (pék),wk> (used further in step 8 for
2 Wk
k=1
next j)
. Np, Np;+1
25: Fix §; = % (pj P +p; Pi )
26: for /=1,...,Np; do
0,1 _(0),1 ) )
27: Select as seed (0; ) ,xg. ) ) (Bg )1, ( ) ) € H;
1/p;
28: Run MMA to generate Ceil[l/p;] Markov chain states lying in #: [(954)@7}(;2),5)] 1’11
29: ond for 08 () ) ) S?N)
30: Renumber [(9]3 "’,xj' > :£=1,...,Npj;s = 1,...,1/pj] as [(9]. )X ) ey (9]. )X )]
31: if §; <&y then
32: End algorithm
33: end if
34: end for

this example are synthetically generated from Equations (5.7) and (5.8), considering 6,4 = (0.005,0.1)
for a time period of 200 [weeks], i.e. D = {3,}°%% as shown in Figures 5.5¢ and 5.5d (refer to the blue

plot).
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.

707

Figure 5.4: Illustration of a cantilever column with an unstable material subjected to a constant lateral
load at the top.

In this exercise, the ABC-SubSim and the A?BC-SubSim algorithms are comparatively used to estimate

the approximate posterior pg(0|D), with £y = 80 [MPa], N = 5000 (amount of samples per intermediate
200

level), and using a LL; —norm as metric function, i.e., px,0,0) = E | X, — z,||, where X, is the Young
n=0

modulus obtained from Equation (5.7) using Oy4e, acting as measured Young modulus during the 200
weeks period. The ABC-SubSim algorithm is used with pg = 0.2, whereas the A>BC-SubSim is scaled
using o, = 0.1, K = 3, and n; = 0.02, according to the suggestions given in Section 5.3.

The ABC-SubSim and the A2BC-SubSim results are presented in Figure 5.5. In panels (a), (b) circles
represent samples in the model parameter space, whereas the brighter grey circles correspond to prior
samples. To reveal the uncertainty reduction, the intermediate posterior are superimposed in increasing
grey tones. The results show that the approximate posterior samples (in yellow) are close to the yyye in
both cases. Panels (c) to (f) provide comparative analysis in terms of model accuracy and cumulative
error with respect to the data. In this numerical example, the ABC-SubSim required m = 5 simulation
levels with 25,000 model evaluations to reach the desired tolerance, whereas A?BC-SubSim employed
17,016 model evaluations and m = 3 simulation levels. Observe that the A?BC-SubSim posterior samples
are substantially closer to @y, hence better model response can be obtained if posterior samples from

A?BC-SubSim are used to reproduce the model.

5.3 Hyper-parameters evaluation

The A2BC-SubSim is presented in this thesis as a variant to the original ABC-SubSim algorithm to
circumvent the need of manually scaling the hyper-parameter pp; however Section 5.1 has shown that new
control parameters are required, namely K, n, and o,. In this section, a sensitivity analysis is presented
to show the influence of the aforementioned A2BC-SubSim control parameters whereby recommendations
to fix their values can be obtained.

To this end, let us start by investigating the influence of K, which sets out the amount of p; trial

samples produced at the ji, simulation level. Figure 5.6a shows the statistics taken from 100 independent
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Figure 5.5: Comparative results after the application of A2BC-SubSim and ABC-SubSim algorithms to
the cantilever column example from Section 5.2. Panels (a) and (b) show scatter plots of posterior samples
of @ for intermediate levels, the final level (in yellow) and the true values (in red). Panels (c) and (d)
represent evaluation of model response using the Mazimum a Posteriori (MAP) values of the inferred
model parameters 8. Panels (e) and (f) represent the comparative error on the simulation of the deflections.

runs of the algorithm using K = {3, 5,10}, whereas the rest of hyper-parameters are fixed to o, = 0.1,
n, = 0.04, and N = 2000. The results are presented for the number of subsets required to reach the desired

tolerance &5 = 80, amount of model evaluations, and metric evaluation. As expected, the higher the K,
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the more amount of model evaluations are needed; however, the results also show that this parameter has
negligible influence on the mean value and spread of the metric p and on the amount of required subsets.

Hence, a natural rescarch question arises about whether a minimum K value can be defined in A2BC-
SubSim. To this end, the weighting function w (recall Equation (5.2)) is evaluated for two cases using
K =3 and K = 10. The results, shown in Figure 5.7 reveal that there are cases where the w(*)-values can
be fitted using a quadratic downward concave function, whose global maximum lies within any intermediate
point of the p;k) values (panels (a) & (c)); in other cases (panels (b) & (d)) the maximum lies above the
pg-k) trials, corresponding to the one with higher w-value. This suggests that, when using a quadratic

downward function, K = 3 is enough to obtain the global maximum by interpolation.
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Figure 5.6: Sensitivity study using box-plots of the A4?BC-SubSim hyper-parameters taken from 100
independent runs of the algorithm using £y = 80.0 and N = 2000 for the cantilever example from Section
5.2. Panel (a) shows the algorithm response under variation of K. In panel (b), the hyper-parameters
are fixed to K = 3, and o, = 0.10, whereas ny = {0.04,0.08,0.10}. In panel (c), ng = 0.04, K = 3,
and o0, = {0.1,0.3,10}. The term uj in panel (c) refers to an alternative piecewise linear function
used for comparison (refer to section 5.1). Panel (d) shows the original ABC-SubSim response using
po = {0.10,0.20,0.30}. Panel (e) shows a comparative analysis between ABC-SubSim and .A?BC-SubSim
using a more restrictive tolerance {; = 30, and py = 0.2 for the ABC-SubSim, and K = 3, n; = 0.04, and
o = 0.1 for the A2BC-SubSim.

Besides, panels (b) and (c) from Figure 5.6 show summarising statistics of the A?BC-SubSim output
after the 100 runs by varying ny, and o4, respectively, whereas panel (e) shows the comparative performance
of ABC-SubSim versus A*BC-SubSim using a more demanding tolerance, namely & = 30. As with K, the
results show that the larger the ng, the higher the amount of model evaluations required; however, its

37



1.0 1.0 1.0 1.0 <
. P X
081 Fi‘ K =10 0.8 K=10 0.8 K=3 0.8 . K=3
¥0-6 X Selected pj K0»6’ o K0.6’ ¥0.6*
3 3 . 3 3
o4f 0.4 0.4 0.4
021] = 0.2 RS 0.2 : 0.2
e RN ., . N
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
(3 k k
P P P P
(a) (b) (c) (d)

Figure 5.7: Examples of the evaluation of weighting function wy for a number of {pgk)}le candidates,
where K = 10 for panels (a,b) and K = 3 for panels (c,d).

influence is negligible on the metric distribution and on the amount of subsets. Hence, a proper way to fix
ny is through a sampling formula like the Yamane’s formula (Israel, 1992), which give us an estimation of

a sample size based upon an error. Thus, the sample size ny N can be obtained as follows:

N

Y
M 1+ NE?

(5.9)

where E is the admissible margin of error, which has been fixed to £ = 0.1 in this work. Note from the
last equation that the adopted N = 2000 and F = 0.1 lead to an estimated nj ~ 0.04.

Moreover, the results reveal that the algorithm efficiency is, in general, insensitive to the variation of o,
and also that, irrespective of the o, adopted, the algorithm behaviour is comparable to the ABC-SubSim
behaviour when py = 0.1, near the recommended value, as depicted in panel (d). Additionally, panel (e)
shows that A?BC-SubSim turns to be considerably more efficient than ABC-SubSim when the algorithm is
subjected to a more demanding tolerance. In this particular case, the results show that ABC-SubSim was
unable to attain the required tolerance £f = 30 after 80 simulation levels whereas A?BC-SubSim reached
it using a mean of 30 simulation levels.

In summary, this analysis shows the small influence of the A2BC-SubSim hyper-parameters on the
algorithm behaviour, hence a recommendation is to fix them to K = 3, g, = 0.1, whereas nj can be set
using Yamane’s formula with an admissible margin of error equal to 10%.

In addition, a comparison in terms of computational cost is carried out between A2BC-SubSim, using
the recommended hyper-parameters (see the first result of either panel a, b or ¢ in Figure 5.6) and the
original ABC-SubSim (see panel d on the same Figure) using pg = 0.2, as recomended in Chiachio et al.
(2014). The results show that, in average, the former required 12% less evaluations than the latter, depicting
an improved computational efficiency. Using an Intel® Core™ i7-7700K CPU, 4.20 GHz processor, with
64 GB of RAM running on Windows 10-64 bits, on Python 3.8.3, Spyder 4.1.4, the ABC-SubSim required
504 seconds for the metric evaluations of 100 runs, while A?BC-SubSim required 441 seconds. Also, the
A2BC-SubSim got better measure of the accuracy in the posterior distribution, as the metric function

reached 17% lower values. These results, which demonstrate some improvement of both accuracy and
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efficiency, are in addition to the significant computational savings obtained by avoiding the manual scaling
of the hyper-parameter pq.

As final excrcise, the sequence of p; has been obtained to show how these values evolve as the algorithm
progresses. The results are presented in Figure 5.8a after 100 independent runs of the A2BC-SubSim
algorithm. Note that, in average, the p; sequence follows a random path with a marked tendency to lie
within the range of p; = [0.2,0.3]. Figure 5.8b shows the corresponding acceptance rate (o) per simulation
level. Displayed in Figure 5.8b are also shown the mean acceptance rate values obtained from ABC-SubSim
algorithm after 100 independent runs using pp = 0.1 (in blue squares dotted line) and py = 0.3 (green
rhomboids dotted line). Observe that the mean acceptance rate values of ABC-SubSim constitute average

bounds of the A2BC-SubSim mean acceptance rate.

0.5 0.6
A?BCSS i run
04. A —e— A?BCSS Mean
~A R —a- ABCSS Mean pg =0.10
03] 047 . - 4- ABCSS Mean pg = 0.30
X
0.21 F____,____*,———"
™ run
0.11 —e— Mean
—-«- Mean * Std
0.0+ : : : : . : : BLEE
1 2 3 4 5 6 7 8 8

Subset Subset

(a) Sequence of p; values per simulation level (b) Acceptance rate (o) per simulation level

Figure 5.8: Results from 100 independent runs using A?BC-SubSim, with K = 3, n,, = 0.04 and o, = 0.10
for the column example from Section 5.2. Also shown the equivalent mean results using ABC-SubSim with
constant pg = 0.10 and py = 0.30.

5.4 Application examples - non-linear model calibration

5.4.1 Cantilever Reinforced Concrete Beam-Column with cyclic degradation.

In this section the A2BC-SubSim algorithm is used to infer damage parameters from a non-linear mechanical
model of a reinforced concrete column subjected to a constant axial load and cyclic lateral deformation.
The column is 3300 [mm] high and 550x550 [mm)] cross section, with longitudinal reinforcement ratio of
0.019 and 50 [mm] of coating, as depicted in Figure 5.9. The average compressive strength of the concrete
is 23.1 [MPa] whereas the yield strength of longitudinal steel is 375 [MPa]. The transverse reinforcement is
made of two 10 [mm] diameter stirrups with 297 [MPa] of yield strength and arranged as shown in Figure

=

5.9.
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Figure 5.9: General geometry, reinforcement details, and test setup, adapted from Gill (1979). Length
units are expressed in millimetres.

Non-linear forward model

The non-linear model consists of a force-based beam-column type element in cantilever along with a
rotational spring modelled as a zero-length finite element, as depicted in Figure 5.10. The numerical
implementation is carried out using the OpenSeespy software (Zhu et al., 2018). Thus, the reinforced
concrete section is modelled by an OpenSees fibre section as shown in Figure 5.10 using the Concrete01
material, whose input values are given in Table 5.1 for the cases of confined and unconfined concrete. These
values have been set following the recommendations proposed by Karthik and Mander (2011) and the

estimation of the confinement ratio proposed by Mander et al. (1988). The steel fibres for the longitudinal

Table 5.1: Input parameter values of Concrete01 constitutive model taken for the engineering case study
of Section 5.4.1.

Concrete . [MPa] feu [MPa] €co [%0] €xu [0

Confined —34.70 —23.60 —0.641 —7.110

Unconfined —23.10 —12.00 —0.183 —0.582
f‘;: concrete peak stress, fe,: concrete ultimate stress €c0: concrete strain at peak stress, €q,: concrete ultimate strain

steel reinforcement are modelled using the OpenSees Hysteretic material and the recommended properties
by the ASCE/COPRI (2014) regulations.

Three damage types are adopted to model the structural deterioration, namely: (1) damage due
to ductility, (2) damage due to dissipated energy, and (3) unloading stiffness degradation (3), where
parameters D1, Do, and 3, are involved, respectively, as shown in Figure 5.11. The non-linear model is
parameterized with a set of model parameters @ = {61,6,...,0s}, where 6; to 04 act as modifying factors
of the physical parameters {Fy, Fsp, €y, €sn}, whilst 5 to g represent the parameters {py,py. D1, D2},
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Figure 5.10: Schematic view of the proposed non-linear model of a reinforced concrete beam-column using
OpenSees. On the right-side, plots of the constitutive material monotonic behaviour are presented, which
include information about model parameterization.

respectively. The parameter 8 was also set equal to fg. The reader is referred to Figures 5.10 and 5.11
for a schematic description of these parameters within the context of the constitutive equations of the
hysteretic material whereas the nominal values adopted for the physical parameters are provided in Table
5.2. Finally, for the case of the rotational spring element, the Bond SP01 OpenSeces material has been

Table 5.2: Nominal parameter values of Hysteretic constitutive model taken for the engineering case study
of Section 5.4.1.

Steel F, [MPa] Fy;, [MPa] €y (%) esn [%0]
Reinforcement 375.00 468.80 0.188 1.5

adopted using the recommendations by Zhao and Sritharan (2007) to model the steel, which allows us
to take into consideration the effect of strain penetration happening in the anchorage length of the steel
reinforcement. Also, the recommendations by Coleman and Spacone (2001) have been adopted to define
the ultimate strain corresponding to the constitutive behaviour of concrete fibres, as a function of the size

of integration points of the frame beam-column elements (i.e. regularisation). In this work, Newton-Cotes
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Figure 5.11: Panel (a): Schematic illustration of the in-cycle Hysteretic material behaviour. Panel (b):
Schematic representation of the cyclic degradation (damage) parameters Dy, Do, and 3. The terms €, £
and &y, refer to the yield deformation, the i**-cycle absorbed energy, and the maximum available energy,

respectively.

Table 5.3: Hyper-parameter values adopted for the engineering case study of Section 5.4.1.

Parameter K ng Oa N &y m

Value 3 0.05 0.10 2000 27550 [N] 30

integration method with five integration points is used. Indeed, the €}, values shown in Table 5.1 are
obtained after the aforementioned regularisation procedure.
Then, through inference of the referred model parameters, the non-linear mechanical model can be

updated based on experimental data.

Results

For the inference of parameters 0, force-displacement pairs taken from the column shown in Figure 5.9
are considered as data D. The values are taken specifically from the specimen #1 in Berry et al. (2004)
open-access database. Such specimen was axially loaded with 1815 [KN] and also subjected to a lateral
cyclic displacement varying from + 5 [mm] to + 35 [mm]. Further information about the test and the data

can be found in Berry et al. (2004). The A2BC-SubSim algorithm is applied by using the configuration

Table 5.4: Interval definition of the 8 parameter space for the case study of Section 5.4.1. Shown values
arc dimensionless.

Parameter 91 02 93 94 95 06 07 98

Lower bound 0.50 0.50 0.50 0.50 0.00 0.50 0.00 0.00
Upper bound 1.50 1.50 1.50 1.50 0.50 1.00 0.25 0.25

given in Table 5.3 and adopting a IL; norm as metric function over the force-displacement pairs, i.e.:,

ng

px0.0) = O i = vill (5.10)
=1
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where y; is the i*? lateral force data value from the test results, and z; is the OpenSees iy, force value
response obtained according to model parameters 8. Uniform PDF's taken over the intervals shown in
Table 5.4 are adopted as a prior distribution of the model parameters 6 .

The A?BC-SubSim results are presented in Figure 5.12 in terms of approximate posterior PDF p¢(6|D),
whilst Table 5.5 provides some summarising statistics about the aforementioned PDFs. Note from
Figure 5.12 that the approximate posterior of 84 and fg are less informative than their component-wise
counterparts, meaning that they capture less information from the data, thus their influence within the

model to reproduce the data are comparatively lower. Moreover, Figure 5.20a depicts the hysteretic

Table 5.5: Posterior 5;, and 95y, percentiles, mean, standard deviation and 0, 4p values of 6.

Parameter 91 92 93 94 95 96 97 08

5% 0.715 1.212 0.906 0.529 0.306 0.511 0.002 0.008
958 0.968 1.485 1.032 1.473 0.457 0.666 0.020 0.183
Mean (1) 0.837 1.362 0.964 0.988 0.378 0.580 0.009 0.091
Std. (o9) 0.095 0.091 0.047 0.384 0.057 0.054 0.005 0.064
Opap 0.898 1.481 0.992 1.369 0.443 0.668 0.02 0.144

response predicted by the model using the MAP of the model parameters @ obtained by A2BC-SubSim
versus the test curve showing that the model inferred using A2BC-SubSim algorithm can satisfactory
reproduce the hysteric response, and that this model response is more accurate than the one using the

current practice of a time-consuming and costly by-hand calibration method.

5.4.2 Group of structural tests

From the previous examples, it has been demonstrated that the A?BC-SubSim can be effectively used to
infer structural non-linear modelling parameters from test data. In correspondence with current practice,
where this kind of calibrations requires to be performed in a database of test results (Haselton et al., 2008),
in the following example, the capacity of the algorithm is explored by performing a multiple-test calibration.
Therefore, the data of four similar columns specimens were taken from Berry et al. (2004). All of the
columns were selected from the work of Gill (1979), where the influence of axial load ratio on the flexural
behaviour of reinforced concrete columns was studied. Concrete strength, transverse steel characteristics,
and axial load ratio were the variables of the aforementioned investigation. The A?BC-SubSim is applied
to calibrate the four models, assuming the axial load ratio as an independent variable to calculate the
degradation parameters. The hyper-parameters of the algorithm were set as shown in Table 5.6, whereas

the formulation for the degradation parameters were set as follows:

P

Dy = ——
LA

07 + 014 (5.11)
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Table 5.6: Algorithm hyper-parameter values adopted for the example in Section 5.4.2.

Parameter K nE O N &y m
Value 3 0.05 0.10 5000 0.12 18
P
Dy = ,98 + 015 (5.12)
Ay fl
P
B =——709+ bic (5.13)
Agfl
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where Dy, Dy and f3 are the degradation and damage parameters (see Figure 5.11), whereas A, denotes the
concrete gross area of the cross section. Prior PDFs of parameters 67, 0g, 09 and 614, 015,016 are assumed
as p(07) = p(0s) = p(fy) = U(—1.00, 1.00), and p(614) = p(615) = p(616) = U(0.00,0.30), respectively. The
rest model parameters along with their prior PDF definitions are considered the same as in Section 5.5.2.

To directly consider the contribution of the four models, the metric is defined with the following equation:

g

J J
4 Z i =Y
—
pxory =1- ] |1 - FF—— (5.14)
j=1 J
! > v
i=1
where j = 1,...,4 is the index to consider each test contribution, and yf and Lf are the iy, corresponding
force value from the ji;, test and model, respectively.
1000
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Figure 5.13: Results on the parameter inference of a group of four beam-column tests. The red dashed
lines correspond to the MAP model results.

The lateral force vs deformation results are shown in Figure 5.13 denoting good agreement between
the MAP model and the test results of each column of the group. The normalised difference between test
and predicted model resulted equal to 16.90%, 10.15%, 9.97% and 11.80% for tests 1 to 4, respectively,
achieving similar tolerance as the calibrations done in previous sections. Finally, Equations (5.11), (5.12)
and (5.13) with the inferred parameters (see Figure 5.14) may be used to construct a column model that

accounts for the influence of axial load ratio in the degradation of strength and stiffness.

5.4.3 A one-bay one-story reinforced concrete frame

The test configuration and results of an assemblage consisting of a single-story and single-bay reinforced
concrete frame structure, subjected to a vertical constant load and a cyclic history of lateral deformation,
tested by Morandi et al. (2018a), were selected from available data in the literature to demonstrate the
capabilities of the proposed method.
The columns were 2950 [mm] clear high and 350x350 [mm] cross section, with longitudinal reinforcement
ratio of 0.025 and 50 [mm)] of coating. The beam is 4220 [mm] clear length and 350x350 [mm] cross section,
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Figure 5.14: Obatained MAP degradation parameters formulation for Dy, Dy and 3 in terms of the axial
load ratio.

with flexural reinforcement ratio of 0.006 for both negative and positive flexure. The average compressive
strength of the concrete was 34 [MPa], whereas the yield strength of longitudinal steel reinforcement was
530 [MPa]. A constant compressive load of 400 [kN] was applied and maintained to both columns during
the test. The frame was subjected to several cycles of lateral deformation, where the shear force response
was reported.

Parameter were set as shown in Figure 5.10 for both beam and columns, giving a parameter space of
size n, = 26. Figure 5.15a depicts the numerical model. Figure 5.15b demonstrates that the blind model
can predict the dissipated energy of the assemblage only during the first cycles of lateral deformation
and, after some cycles of deformation, this model under-predicts the behaviour of the frame, whereas the
MAP model predictions get better agreement with the data during the entire test. Figure 5.15¢ shows a
comparison of the reported shear force from the test, the calibrated model response using MAP values and
the same model using nominal values without degradation (called Blind model). As can be noticed on
the left panel of Figure 5.15¢, the blind model is able to estimate the shear response of the assemblage
at the first cycles of lateral deformation; however, after several cycles (see right panel), the blind model
under-predicts the behaviour of the frame. Clearly, the MAP model prediction using A2BC-SubSim
outperforms that of the blind model.

5.4.4 Complex structural model - 17 story building

In this section, the A?BC-SubSim algorithm is applied to infer several uncertain modelling parameters
of a complex non-linear dynamical model. The data have been taken from a dynamical structural test
performed by Pratap and Pujol (2021) over a 17-story physical model. In that investigation, the physical
model was subjected to seismic records produced by a shake table. In this experiment, every story has
approximate mass equal to 250 [kg]. Raw data from measurments, pictures and videos about this test
are available at https://datacenterhub.org/deedsdv/publications/view/564. In this study, data

from TS1-Run2 experimental run was used to infer the modelling parameters. The data contain full
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Figure 5.15: Model and example calibration results of a structural assemblage consisting of an one-bay
one-story frame test.

records of accelerations and displacements of the following stories: 4-th, 8-th, 9-th, 13-th, and 17-th. Raw
measurements were read with a frequency rate equal to 1000 [Hz]. Some ppreprocessing of the data was
required to eliminate noise, reduce the size of the records and rectify the condition biased results after
integration of the acceleration signals; accordingly, the following post-processes were performed to the
records: (1) a band-pass third-order butterworth filter between the range of frequencies 0.10 to 20 [Hz], (2)
a downsampling to a frequency of 100 [Hz], and (3) a base-line correction of the acceleration records.

The mathematical model is conceived as a 17 in-series mass-spring-dashpots, where the springs are
assumed to have an elastic-perfectly plastic behaviour. The parameters included in the inference are the
elastic stiffness, yield strength of each floor (i.e. 61 to 617 and (615 to 034), for each story stiffness and yield
strength, respectively), and a unique damping coeflicient for every dashpot (f35). The aforementioned
parameters are unknown a priori, as that information is not available in the original data.

Both the ABC-SubSim and the A2BC-SubSim algorithms are applied to infer the referred 35 model
parameters of the model. In the case of the A?2BC-SubSim, the following hyper-parameters were adopted:
N = 3000, & = 0.04, m = 20, along with the values recommended in Section 5.3 for the rest of
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Figure 5.16: Comparison of Fourier amplitude spectrum of the acceleration records of the test measurements
and those obtained from the inferred MAP model. The results are presented for stories 4, 8, 9, 13 and 17.
Also, the model results using 25th and 75th percentiles of the parameters, are presented.

hyper-parameters. Uniform PDFs are considered as prior PDFs of the model parameters, such that
p(61) = p(fa) = ... = p(b17) = U[3-10°,3-10%]; p(b1s) = p(b19) = ... = p(f4) = U[5-10°,5 - 10%], and
finally p(635) = U[1-10%,1-10°], where the units are expressed in SI. In the case of the ABC-SubSim
algorithm, the conditional probability was set as po = 0.2 and the rest of the parameters were adopted in
correspondence with the A2BC-SubSim case. The metric is defined as the relative difference of the Fourier
amplitude spectrum of the modelled and measured accelerations, respectively, which is mathematically

described as follows: ) )
al — at
Al

p=>

i

(5.15)

In the last equation, the vectors &* and a* contain the Fourier amplitude spectrum of the modelled and
measured accelerations of the i-th story, respectively, whereas A’ is the resulting sum of the components
of the vector a’. The index i = {4,8,9,13,17} in correspondence with each story with available data.
The results of the inference using the A?BC-SubSim algorithm are shown in Figure 5.16a which provides
a comparison of the Normalized Fourier amplitude spectrum of the accelerations obtained from the inferred
MAP model, the 25th and 75th percentiles, and the spectra calculated from the measured results. Figure
5.16b shows the same results for the inference performed using the ABCSS algorithm. Notice that the

MAP model obtained with the A?BC-SubSim algorithm outperforms the one with ABCSS.
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Besides, Figures 5.17a and 5.18a respectively show the accelerations and displacements obtained after
the model inference done with the A2BC-SubSim, in comparison to their corresponding experimental
values. Note that these results are satisfactory since the algorithm has effectively inferred the model
parameters so as to reproduce the experimental data with precision, measured by the MAP predictions.
Notice that the inference with the ABCSS is also satisfactory but the obtained parameters resulted in a
model where the second fundamental frequency becomes more participative, giving an apparent noise in
the MAP model results (see Figure 5.17b), in correspondence with the results in Figure 5.16b. Similar
conditions are depicted in Figures 5.18a and 5.18b

Finally, as mentioned in Barros et al. (2021), in average, the A2BC-SubSim algorithm required 3.5 - 103
[s] to perform the model inference of the 35 model parameters from this complex structural application, in
contrast to the 4.0-10? [s] required by the original ABC-SubSim algorithm (approximately 15% difference).
These results, which have been obtained using an Intel®Core™ i7-7700K CPU, 4.20 GHz processor, with
64 GB of RAM running on Windows 10-64 bits, and using Python 3.8.3, demonstrate that the proposed
algorithm is able to perform inference in complex non-linear models with a feasible computational cost.
Also, the results confirm again that the computational burden is improved with respect to the original

ABC-SubSim algorithm.

5.5 Discussion.

5.5.1 Comparison with current practice trial and error model calibration

As a first step to compare the potential of the proposed methodology, a comparative analysis is carried out
by considering the non-linear model response calibrated using the MAP of 8 from A?BC-SubSim algorithm,
and the one manually calibrated following Barreiro (2018), taken as reference. In Barreiro (2018), an
ad-hoc trial and error methodology enriched with some mechanical constraints was carried out obtaining a
reasonable good model calibration using data from Berry et al. (2004). Similar handy calibrations were
used by others on different structural models (i.e. Haselton et al. (2008); Sattar and Liel (2016b)) with
analogous results. As pointed-out in the last section, results shown in Figure 5.19 reveal a better accuracy
of the model response to the data when using the inferred parameters from the A?BC-SubSim method. To
quantify the model prediction improvement, the Equation (5.10) is used to quantify the mismatch between
the predicted and test data, rendering an output of 27, 357[N| of accumulated error for the A?BC-SubSim
inference procedure against 37,265[N] for the by-hand method by Barreiro (2018). This difference can
be attributed to simplifications required for the manual scaling process leading to cumulative modelling
errors. Indeed, in Barreiro (2018), parameters 01 to 0 were directly fixed from their nominal values and,
therefore, they were not considered during the calibration process. Also, both the damage due to energy
and the unloading stiffness degradation parameter (recall Figure 5.11) were constrained to be equal values.

The output of the calibration in terms of model parameter values are shown in Table 5.7 for both methods.
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Figure 5.17: Comparison of the acceleration records of the test measurements to those obtained from the
inferred MAP model and the 25th and 75th percentiles. The results are presented for stories 4, 8, 9, 13
and 17.

Parameters 6; to 6y in Table 5.7 refer to damage due to ductility, damage due to energy, and unloading
stiffness degradation, respectively (note that the latter two parameters are now differentiated into fg and

09, respectively).

Table 5.7: Calibration results from by-hand and A2BC-SubSim inference procedure. Results shown for the
A?BC-SubSim case correspond to the maximum a posteriori values of the posterior PDFs.

Parameter 01 02 63 04 (95 06 97 08 69
A?BC-SubSim  0.893  1.453 0.992 1.276 0.425 0.657 0.017 0.149 0.149
By-hand 1.000 1.000 1.000 1.000 0.250 0.700 0.006 1.000 0.210

The results demonstrate that the proposed inference procedure using the A?BC-SubSim algorithm has
the capability to reduce the human-factor error and reproduce the test data with higher accuracy than the
case of using a by-hand calibration. Moreover, these results also show that an indirect inference of the
model parameters can be obtained through the proposed method with quantified uncertainty, whereby

robust predictions can be obtained. Thus, a richer knowledge of the actual behaviour of the constitutive
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Figure 5.18: Comparison of the displacement records of the test measurements to those obtained from the
inferred MAP model and the 25th and 75th percentiles. The results are presented for stories 4, 8, 9, 13
and 17.

materials is possible through the information provided by the ABC posterior inference, which can be used

for structural diagnostics purposes, among others.

5.5.2 Model consistency evaluation

The results shown in Sections 5.4.1 and 5.5.1 illustrate how the proposed algorithm can efficiently obtain
model parameter inference for a non-linear structural case study using real-world data. However, it is
worth mentioning that for this particular application the algorithm itself is unable to give a physically
consistent response should the model parameters and their validity range are not properly selected. Thus,
engineering judgement is required to validate the results of the model parameter inference. To illustrate
this aspect, the steel constitutive model is reproduced after considering the posterior of model parameters
0 inferred using A2BC-SubSim. Figure 5.20a shows the inferred MAP value of the elastic module of the
steel corresponding to the combined influence of parameters 6; and 2 (in red) which results about 40%

lower than its nominal value (in blue). Note that the latter is inconsistent with the physical reality of the
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Figure 5.19: Results of the comparative analysis of the non-linear mechanical calibration using (a) A?BC-
SubSim method and (b) the by-hand trial and error procedure by Barreiro (2018). The blue line represents
the displacement-shear force dataset from Berry et al. (2004).

steel behaviour, and an explanation to this can be given in terms of the algorithm response, which tries to
converge to posterior values of the steel in liaison to the low stiffness values of the concrete due to the
induced hysteretic damage.

To overcome this misbehaviour, the inference is performed again here including the following modification
of model parameterization: (i) A new parameter 6y is used to replace 65 for the § parameter shown in
Figure 5.11, using p(fy) = U (0.00,0.25) as prior PDF; (ii) Parameters 619 and 612 are introduced as
modification factors for peak and ultimate stress values of the concrete constitutive model, as shown in Figure
5.10. The prior distributions adopted for these new parameters are taken as p(610) = p(612) = U (0.50, 1.50);
(iil) Analogously, parameters 611 and 613 are used as modification factors for the strain values corresponding
to peak and ultimate strain values of the concrete constitutive model, as shown in Figure 5.10. The
prior distributions adopted for these parameters are assumed as p(611) = p(613) = U (0.50,1.50). The

Table 5.8: Posterior 5y, and 95, percentiles, mean, standard deviation and @74 p values of 8, including
concrete parameters.

61 02 05 n 05 0Os 07 s 09 010 011 012 013

58, 1106 1.052 1.204 1.022 0.481 0.670 0.010 0.205 0.178 0.718 1.327 0.898 0.570
959, 1.131 1.093 1.222 1.128 0.499 0.699 0.011 0.240 0.194 0.727 1.350 0.931 0.594
n 1.119 1.072 1.214 1.08 0.491 0.683 0.010 0.227 0.186 0.723 1.338 0.914 0.581
o 0.007 0.013 0.006 0.030 0.006 0.008 0.000 0.011 0.005 0.003 0.007 0.011 0.010
Orapl.115  1.066 1.205 1.006 0.497 0.704 0.011 0.209 0.186 0.725 1.340 0.933 0.568

A?BC-SubSim algorithm configuration taken for this study is the same as the one shown in Section
5.4.1 (recall Table 5.3) except for the following changes: n, = 13, £; = 20000 [N] and m = 15. Note
that, in this case, £ is set to a lower value with respect to the one chosen in Section 5.4.1, since the
new parameterization allows reducing it to £y = 20000 [N] with similar computational cost. Results are
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tion given in Section 5.4.1.

Figure 5.20: Model results after calibration by ABC parameter estimation.

displayed in Table 5.8. Note that in this case, the inferred elastic module of the steel reinforcement is
consistent with the expected steel behaviour, as shown in Figure 5.20b. Also, the new results are consistent
with the typical dispersion expected in material stiffness, particularly for the 45% reduction of the concrete
stiffness from its nominal value, which is an acceptable value. Also, a closer approximation was achieved
in terms of the mismatch function, with an error equal to 23724 [N] (i.e. {¢ =~ 11.3%). In summary, this
discussion reveals that the solely use of A2BC-SubSim algorithm, as with many other inference algorithms,
is not enough for an effective material diagnostics and further model calibration of complex non-linear

models, and that engineering judgement is required to make the algorithm outputs consistent with the

physics of the problem.
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Chapter 6

Numerical modelling of masonry

infilled frames

6.1 Database of IP MIF laboratory tests and mechanical model

A database of eighty five laboratory test results available in the literature has been used as input data
for the analysis shown in the following sections. The tests within the database consist of one-bay and
one-story MIF's, subjected only to IP lateral cyclic deformation. Table 6.1 provides an overview of the
dataset considered with specification of the type of frame, masonry unit, amount of tests of each reference
and presence of wall-openings. The selection of the data was limited to reported tests with complete
information about the resistance and geometry of the materials, along with the force-displacement results
(either graphics or tables). A summary of the information about the test can be found in Tables 6.2, 6.3
and 6.4.

The mechanical model consists of a shear one-dimensional non-linear spring with a tri-linear constitutive
behaviour, as shown in Figure 6.1, which represents the shear response of the frame and the wall system
as a whole. Figure 6.2 shows a distribution of a number of descriptive parameters of the MIF within the
database. These parameters are the masonry unit type, failure type observed, height-to-thickness ratio,

and a frame-infill stiffness relation, originally proposed by Stafford Smith and Carter (1969), also referred

Bty sin 27
A = o Ll ——— 1
V' 4AE.I.h,, (6.1)

In the last equation I. is the inertial momentum of the frame’s columns, whereas F,, and F. are the

to as A, which is given as follows:

Young’s moduli of the infill and frame, respectively. The terms t,,, h,, and 7, are the thickness, height

and the slope of the representative diagonal of the infill, respectively.
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Table 6.1: Database of experimental tests.

Reference NT® Frame / Masonry TWO?
Flanagan and Bennett (1999) 13 Steel / Horizontal hollow clay brick 1
Markulak et al. (2013) 5  Steel / AAC and hollow clay bricks 0
Schneider et al. (1998) 5  Steel / Solid clay bricks 5
Tasnimi and Mohebkhah (2011) 5 Steel / Solid clay bricks 4
Morandi et al. (2018a) 4 RC / Hollow clay bricks 1
Basha and Kaushik (2016) 6  RC / Fly ash bricks 0
Calvi et al. (2004) 7  RC / Hollow clay bricks 0
Gazi¢ and Sigmund (2016) 9  RC / Solid and hollow clay bricks 0
Guerrero et al. (2014) 3 RC / Hollow concrete bricks 0
Haider (1995) 4  RC / Solid clay bricks 0
Jiang et al. (2015a) 6 RC/AAC 0
Mansouri et al. (2014) 4 RC / Solid clay bricks 3
Mehrabi et al. (1996) 6  RC / Solid and hollow concrete bricks 0
Sigmund and Penava (2014) 8  RC / Hollow clay bricks 8
¢NT: Number of tests
YNumber of tests with openings
8e, Vo
Ass, Vas)
g fo.v
E =0.85V¢

Lateral Deformation

Figure 6.1: Tlustration of a MIF constitutive behaviour parameters. The pairs (A, V) indicate the
coordinates of lateral deformation (A) and shear (V') at key indicative points, namely yielding (Ay, V}),
capping (A, V.), and residual point (Ags, Vas).

6.1.1 Damage index formulation

The damage index formulation stems from the well-known formulation in Park and Ang (1985); Park et al.
(1985), where the damage of reinforced concrete components is quantified as a linear combination of two
functions: (1) deformation ductility, i.e., the ratio of maximum deformation to yield deformation under
monotonic loading, and (2) the dissipated hysteretic energy relative to the maximum energy that can
be absorbed under monotonic loading. In this section, the damage index is used to set a threshold to
the performance objective defined as ”collapse prevention” according to ASCE/SEI 41 (2017). Here, the

original equation is modified given the difficulty to determine a yield condition for a brittle element as a
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Figure 6.2: Ditribution of the following parameters within the database: (a) Masonry unit type, (b)
Masonry failure observed, (c) Height to thickness ratio, (d) A parameter. SC: Solid Concrete, HC: Hollow
Concrete, FA: Fly Ash, SCl: Solid Clay, HCl: Hollow Clay, AAC: Autoclaved Aerated Concrete; CC:
Corner Crushing, DC: Diagonal Cracking, BJF: Bed-Joint Failure.

masonry wall. Therefore, the following modified equation is proposed:

&

Fmamémam

DI =mD1+n2D2 =m + 172 (6.2)

Omaz
where Fiae and 0,4, are the maximum shear strength and the corresponding lateral deformation,
respectively; ¢; and &; are the maximum deformation and the dissipated energy by deformation attained
until step 4, respectively; and finally n; and 72 are experimentally determined coefficients which allow the
normalization of the damage index value to unity. In this work it is assumed that the acceptance criteria

for the collapse prevention performance level corresponds to the deformation at the point of maximum
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strength, as suggested in the experimental based method in ASCE/SEI 41 (2017).

A generalized reduce gradient procedure (Lasdon et al., 1974) is used to estimate the optimum values of
the parameters 7; and 75. The contribution of both terms is maximized restricted to the condition that the
mean of the damage indices should be equal to 1.00. By applying the generalized reduce gradient procedure
on the set of experimental data presented here, it is found that optimization results are 77 = 0.4948,
12 = 0.1159, whilst the standard deviation of the damage index leads to o = 0.184. Figure 6.3 shows the
conditional probability of reaching the collapse prevention damage state C'P as a function of the damage
index DI, namely P(CP|DI), along with the contribution of each term 7; D; and 73Ds to the damage
index.

Equation (6.2) and the calibrated parameters 1; and 72 allow the estimation of the probability of
collapse of a MIF, using only the force-deformation global results obtained from a time-history analysis. In

Section 6.3, this formulation is applied to assess the seismic capacity of the MIFs of a three story building.

1.0

08 -

0.6 1

PICPIDIy

0.4 -

0.2 -

0.0 ==

0.0 0.5 1.0 15 2.0
Damage Index, D

Figure 6.3: Collapse prevention limit state CDF in terms of the proposed damage index formulation.

6.2 Training of the HMC-BNN with experimental data

Here, the experimental database presented in Section 6.1 is employed to train a HMC-BNN which, as
already stated above, will act as synthetic data-based model to estimate the constitutive parameters of
MIFs in a probabilistic fashion.

The resulting experimental values of the constitutive behaviour of each test are summarised in Tables
6.2, 6.3 and 6.4. The HMC-BNN model consists of one input layer with ten neurons, two hidden layers
with 40 neurons each, and one neuron output layer, making a total of 2121 parameters to be learned
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for each constitutive value. A ReLU activation function is assigned to the neurons of the hidden layers,
whilst a Sigmoid function is applied to the neuron in the output layer, as indicated in the previous section.
The input layer includes neurons to account for the height-thickness ratio (hn,/tm), height-length ratio

(hm/Lm), A parameter (see Equation (6.1)), axial load-strength ratio (P/A,, fi), equivalent infill strut

!/
m

area (4;s), masonry unit type, masonry characteristic compressive strength (f/,), a gross parameter to
consider the stiffness of the columns of the frame (E.I.), a gross parameter to consider the strength of
the columns (f.I. for reinforced concrete and fy 1. for structural steel columns), and the length of the
wall (L,,). For clarity, some of those parameters have been represented in Figure 6.4. In this work, the
equivalent infill strut area A;s is obtained as the masonry area within the equivalent strut width w,,
(Holmes, 1961), whereas wy, is obtained as one third of the lenght of the wall diagonal (d.,, as indicated in

Figure 6.4). This parameter is normalized to the gross area of the masonry wall and allows us to consider

the presence of openings in the wall, including a way to differentiate the asymmetric cases.

P/2 1 P/2
l (AIS Arls i
)
| S = A
L i T

a8 < Vilm = hm

‘ ] L I~ |
Lm

Figure 6.4: Illustration of the geometric parameters of the MIF within the database.

Correspondingly, the output layer accounts for the point of first stiffness drop (A, V}), capping point
(A., V.) and residual strength (Ags, Vgs) pairs of lateral deformations and shear forces (refer to Figure 6.1
for further details). Here, the capping point is defined as the A,V pair of the maximum strength of the
envelope line of the test. The first stiffness drop corresponds to the intersection of the elastic part of a
bi-linear approximation with the envelope curve of the test (similar to a yield point for ductile structural
systems), whereas, the residual is the point within the envelope behaviour that is lower or equal to the
85th percent of the maximum strength.

Once trained, the HMC-BNN provides a probabilistic prediction of the three constitutive (A, V)
pairs of a MIF characterized by specific geometrical and mechanical parameters, acting as inputs to the
BNN. Figure 6.5 shows an example prediction of the trained HMC-BNN for a hollow concrete masonry
infilled concrete frame with 300x300 [mm] columns. The results are obtained using the following inputs:
hm = Ly, = 3000 [mm)], ¢, = 100 [mm], f,, = 10 [MPa], E,, = 9 [GPa|, f. = 20M Pa, and E, = 21.0
[GPa]. Notice that the prediction denotes the high level of uncertainty that affects this structural system.
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Also, observe that the method allows us to perform a probability analysis of a MIF by representing the

lateral behaviour of the structural system with a single shear spring.

HMC BNN
600
= HsnN
=== Mann £ Osnn
500 4 Yield I
Maximum I
Residual
400 1 0 200 400 6000 200 400 6000 200 400 600
Vy (kN) Ve (kN) Vi (kN)
=3
X 300 A (b)
>
200 A ~ J
~
S,
0 T T
4 5

0 50 100 1500 50 100 1500 50 100 150
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(a) (c)

Figure 6.5: Example prediction of the constitutive values using Bayesian Neural Networks (BNN) with
the Hamiltonian Monte Carlo (HMC) method. (a) Constitutive (V,A) pairs of the system, (b) probable
distribution of the characteristic shear and (c) lateral deformation values of the trilineal approximation.

6.2.1 Prediction capabilities of the HMC-BNN within the training database

Using the modelling approaches presented in Sections 4.2.1 and 4.2.2, four MIF models are constructed
and further compared to the proposed approach presented in Section 6.1. The aforementioned models are

as follows:

1. Concentrated hinges frame model with a quadrilinear constitutive equivalent strut Liberatore et al.

(2018);
2. Concentrated hinges frame model with a trilinear equivalent strut Huang et al. (2020);
3. Fiber section based frame model with the same equivalent strut of the first model;

4. Fiber section based frame model with a bilinear constitutive equivalent strut ASCE/SEI 41 (2017).

The BNN results are presented by its mean response and also by the scatter plots of each characteristic
(V, A) value. Notice that the BNN model is only a one-dimensional shear spring and does not consider the
separate behaviour of the frame and the infill as usual in macro-models.

Figures 6.6a to 6.6d depict the comparative results using laboratory test within the database (see

Section 6.1), along with the estimation of the four models previously described, and the prediction of the
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BNN. All tests correspond to reinforced concrete fully infilled frames, where solid clay, hollow clay, solid
cement and hollow cement masonry units were used, respectively. From these results, the following aspects

can be highlighted:

e Model 1 correctly estimates the initial stiffness and maximum strength of the system in the case of
solid clay MIF. However, note that the model is not capable to capture the mechanical response after
the degradation of the structure. For the cases of solid cement, hollow clay and hollow cement units
MIF, the model under-predicts the initial stiffness and is not capable to capture the degradation of

the system.

e Model 2 correctly captures the initial stiffness of the MIF with solid clay, solid cement and hollow
cement units. However, the model over-predicts the strength of the system for solid and hollow clay
units MIF, and under-predicts the strength of solid and hollow cement units MIF. In all cases, the

model does not capture the mechanical response after the degradation.

e Model 3 correctly estimates the initial stiffness and maximum strength of the system with solid clay
units; although, it is not capable of capturing the degradation of the structure. In the case of hollow
clay units, the initial stiffness is under-predicted, whilst the maximum strength and deformation
capacity is over-predicted. Finally, for the cases of solid and hollow cement units, the model under-
predicts the initial stiffness and maximum strength, and does not capture the degradation of the

system.

e Model 4, under-predicts in all cases the initial stiffness and maximum strength, over-predicts the

deformation capacity, and does not capture the mechanical response after degradation.

e Observe that the proposed BNN model correctly predicts the initial stiffness of the system in average,
for the cases of the usage of solid clay, solid cement and hollow cement units, and only under-predicts
the initial stiffness of the system when hollow clay units are used. The model fairly predicts the
maximum strength and captures the degradation of the system for solid clay, solid cement and hollow
cement units. However, we note that for the case of hollow clay units, the BNN mean model does

not properly captures the characteristic deformation nor the degradation of the system.

In general, the previous observations demonstrate that the level and sources of uncertainties of the
MIF structural system should be considered when performing a structural evaluation of a building, since
none of the available deterministic models can capture all of the properties of the lateral response of the
system for all of the masonry unit types. On the other hand, the scatter points obtained after simulating
our proposed BNN model, presented in Figures 6.6a to 6.6d, clearly capture all of the characteristics of the
lateral response of the system within the prediction range. As also mentioned by Liberatore et al. (2018),

this uncertainty should be accounted for to properly evaluate an existing structure.
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Figure 6.6: Masonry infilled reinforced concrete frames test results, available macro-models estimation and
proposed BNN prediction comparison.

Figure 6.7a shows the measured results from a laboratory test for a case with steel frame with hollow

clay masonry units. BNN mean results and scatter points are drawn along with the prediction of models 3
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and 4. Model 2 was adapted by using the fiber section approach to model the behaviour of the frame. As
can be seen, models 2 and 3 over predict the maximum strength and the initial stiffness of the system and
do not properly capture the degradation of the structure. Model 4, on the other hand, fairly predicts the
initial stiffness and maximum strength of the system, but it also fails to reproduce the degradation. The
BNN mean model properly captures the maximum strength and degradation of the mechanical system,
although it over-predicts the initial stiffness. Again, note that the proposed model provides a quantification
of the uncertainty of the system.

Besides, Figure 6.7b shows the measured results from a laboratory test of a steel frame with hollow
clay units with a non-symmetric window opening located at the upper corner of the wall. Only the model
4 can account for the reduced strength of the system due to the presence of the opening. Accordingly, only
the prediction of that model is compared to the BNN model. Clearly, model 4 does not properly captures
the behaviour of the system. However, observe that the BNN mean model captures the initial stiffness of
the wall in the direction where the compression strut is not affected by the opening; notwithstanding, note
that the stiffness is over-predicted for the opposite case. The BNN model also over-predicts the maximum
strength and does not properly captures the degradation. Notwithstanding, the result is better than the

available model of the literature.
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Figure 6.7: Masonry infilled steel frames test results, available macro-models estimation and proposed
BNN prediction comparison.

Notice that the experimental tests shown in Figures 6.6b to 6.7b were part of the training set of the
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BNN, whilst the one in Figure 6.6a was part of the test set of the BNN. Figure 6.8 compares the prediction
of the proposed BNN model with the force results of the first steel and concrete MIF tests from the
database, showing that the probabilistic prediction of the model provides a valid envelope (represented
using grey lines) of the expected real result. These results demonstrate the capabilities of the proposed
BNN model to be applied on the structural probabilistic evaluation of the lateral strength of MIF existing
buildings.
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Figure 6.8: BNN-HMC model prediction in comparison to real test results, (a) a masonry infilled steel
frame tested by Flanagan and Bennett (1999), (b) a masonry infilled concrete frame tested by Morandi et
al. (2018a).

In the following section, the extrapolation capabilities of the model is further discussed.

6.2.2 Extrapolation capabilities of the HMC-BNN

Experimental test out from the database presented in Section 6.1 were selected to evaluate the prediction
capabilities of the proposed method. First, the results of a shake-table test, performed by Benavent-Climent
et al. (2018), are compared to those predicted by the proposed BNN model. According to the authors, the
reinforced concrete frame was part of 11 previous seismic simulations before the masonry wall was built
and, therefore, some level of degradation of the columns was expected (the authors report 1.5% maximum
inter-story drift and 0.12% of residual inter-story drift). Therefore, instead of using the gross inertia as an
input to the BNN model, a cracked section was used, assuming 30% of the gross section as effective. The
masonry infill was tested as a retrofit system. They used 40 mm thick hollow clay units to build the wall.
The beam and columns cross sections were 120x120 mm and 120x100 mm, respectively. Concrete strength
was measured equal to 40 MPa on the test day. The height and length of the wall were 1400 mm and 2000

mm, respectively. As shown in Figure 6.9a, the proposed model over-predicts in average the maximum
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strength, however the scatter points clearly envelopes the behaviour of the test. Considering the fact that
shake-table tests introduce additional sources of uncertainties in addition to those related to the damage
history of the frame, it can be concluded that the prediction obtained from the proposed BNN model is
satisfactory.

To further check the efficiency of the proposed method, a second example is selected from a full-scale
cyclic IP loading test performed by Furtado et al. (2018). According to the authors, the specimen consisted
of a double-leaf MIF with hollow clay units. The wall was composed by a 150 mm thick external leaf, and
a 110 mm thick internal leaf, with a gap of 40 mm between the leafs. Notice that the database does not
consider any case of double-leaf MIF, however, the prediction was made assuming an input thickness of
the masonry wall equal to the sum of the leafs of the tested system. The beam and columns cross sections
were 300x500 mm and 300x300 mm, respectively. Concrete strength was measured equal to 26.8 MPa. The
height and length of the wall were 2300 mm and 4200 mm, respectively. Figure 6.9b shows the BNN mean
model prediction against the laboratory test results. As can be seen, the proposed model fairly predicts
the initial stiffness of the system and the initial strength. Unfortunately, the test was stopped until the

specimen reached 0.5% drift, so it can not be compared for the cases of ultimate strength and deformation.
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Figure 6.9: Examples to test the extrapolation capabilities of the proposed BNN-HMC model.

6.3 Case study and discussion

In this section, the proposed numerical model (hereafter called “probabilistic model” to differentiate from
other models) and damage index formulation are used to evaluate the seismic collapse probability of a
three story masonry infilled reinforced concrete frame building. Results are compared to a code-based
evaluation with ASCE/SEI 41-17, using a deterministic model available in the literature. In order to gain

objectivity on the conclusions of this study, the characteristics of the building are selected to match the
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properties of a one-bay and one-story laboratory test by (Morandi et al., 2018a). Accordingly, Table 6.5

shows the geometric and materials characteristics of the structure. The building is considered as 14x14
of Section 6.3. Length units are expressed in [mm], whereas strength and stiffness values (rows 9¢, to 12¢y,)

Table 6.5: Mean values of the geometrical and mechanical parameters of the frames used for the case study
arc given in [MPa]. The parameters ppeqm and peo; are dimensionless.

[m] plan with two MIF's as lateral resisting structure. The total mass of each floor is taken as 62000 [kg].

Figure 6.10 shows an elevation of one of the MIFs.
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Figure 6.10: Illustration of the case study of a three story masonry infilled reinforced concrete frame.

Seismic collapse probability evaluation is estimated by means of non-linear time history analyses using

the seismic records are considered by means of the factors defined in Table A-3 of the aforementioned
document. In the following section, three structural models are constructed, one using the proposed
probabilistic approach and two deterministic models taken from the literature and adapted to ASCE 41

far-field records data set of FEMA P695 document (Harris et al., 2009). Normalization and scaling of
(ASCE/SEI 41, 2017) provisions.

Structural model

6.3.1

The probabilistic model is constructed using three sets of three in-parallel one-dimensional springs connected

in-series to three equal masses.
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Two deterministic models are constructed for comparison purposes. The first model corresponds to
a blind prediction using a regression-based deterministic model (Huang et al., 2020), and the second
model (hereafter called “deterministic modified model”) is similar to the previous one but including
some corrections on the constitutive values of the masonry strut, based on available laboratory test data.
Figure 6.11 shows the constitutive behavior of the probabilistic estimations and the deterministic models
predictions. Both deterministic models are defined using 2D elastic beam-column elements connected to
nonlinear rotational springs at the ends; those springs account for beam and columns flexure inelastic
behavior, using the formulation proposed by Haselton et al. (2008); a nonlinear compression strut in each
principal diagonal of each frame is used to model the masonry wall effect according to Huang et al. (2020).
Columns shear behavior can also be modelled according to the authors but, for this case study, shear
failure is not expected because of the application of capacity design principles. The mass of each floor is

set equal to that of the probabilistic model.
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Figure 6.11: Comparison of the monotonic shear behavior of a one-bay and one-story of a laboratory tested
MIF by Morandi et al. (2018a) to two deterministic models and the proposed probabilistic (Bayesian)
approach.

6.3.2 Fundamental period

The distribution of fundamental period of the probabilistic model is drawn in Figure 6.12, where it can be
seen that the most likely period for that structure is around 0.30 and 0.40 seconds. The deterministic (Ty)
and deterministic modified (Tyy,,) fundamental period estimations are shown, and resulted as T,; = 0.091 [s]

and Ty, = 0.11 [s]. Also, according to American Society of Civil Engineers (2016) provisions, in equation
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12.8-9 reproduced here for ease of the reader, a lower bound estimation of the fundamental period can be
evaluated:
Cy 0.0058hA,

T, = hy, = — 6.3
e (63)

@i; {1+0.83(’g;)2]

2

where Ap is the area of the base of the structure in m=, x is the number of shear walls in the direction
under consideration, A; and D; are the web area (in m?) and the length of shear wall i (in m), respectively,
and h,, is the structural height of the building in m, resulting T;, = 0.32 [s].

Considering the factors that affect the estimation of the structural period, i.e. epistemic uncertainties
in the calculation of the mass of the structure and uncertainties in the estimation of the stiffness of
the structure, related to soil stiffness, soil-structure interaction and relative deformations in wall-frame
joints, among others, it is hard to conclude that the estimated fundamental period from the deterministic
models matches the real structure without performing a measurement in the real structure. Therefore,
approximations based on data taken from measurements of similar real structures are still more reliable.
Notice that the result of Equation (6.3) lays within the range of most probable fundamental period
estimated from the probabilistic model. Also, a three story building was evaluated by Varum et al. (2017)
after Ghorka 2015 earthquake. Ambient vibration test were performed to identify the natural period of the
structure. One of the buildings reported similar structural conditions as the presented case study. Values
equal to 0.27s and 0.38s were reported for a moderate damaged structure.

A proper estimation of the fundamental period is important to perform an adequate seismic evaluation
of the structure, as it directly affects the evaluation of expected deformation and, therefore, influences the
damage forecast. In this particular case, considering the possibility that the fundamental period estimation
of the deterministic model is low, results could lead to an underestimation of the seismic effects. Care
must be taken when using deterministic models for prediction and it is strongly suggested that those
models account for lower and upper bounds of the constitutive parameters or to complement the prediction
with data measures taken from the real structure to be evaluated (for instance, ambient vibration of the
structure).

These results suggest that the proposed model better predicts the dynamic properties of a MIF building,
in comparison with the deterministic modelling approach; however, more data is required in order to

achieve a more precise model.

6.3.3 Collapse evaluation by non-linear time history analysis

Non-linear time history analyses are performed using the deterministic, deterministic modified and

probabilistic models presented in Section 6.3.1, and FEMA-P695 far-field records. Figure 6.13 shows the
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Figure 6.12: Fundamental period distribution obtained from the BNN-HMC in comparison to the deter-
ministic model estimation.

interstory drift results corresponding to the spectral acceleration of the Maximum Considered Earthquake
(MCE) level, and Figure 6.14 depicts the PDFs of the top displacements (also for MCE), for each model.
Results show the impact of the overestimation of the stiffness of the structure, where the deterministic
model depicts unexpected (almost negligible) deformations. The results of the deterministic modified
model shows that a minimal change in the dynamic characteristics of the model (i.e. fundamental period
changed from 0.091 s to 0.11 s after the modification explained in section 6.3.1), considerably modified
the response of the model. Therefore, the lack of knowlegde about the dynamic characteristics of this
buildings could lead to a false sense of security. Results from the probabilistic model depicts the level
of uncertainty on the estimation of the behaviour of this kind of structures, even though that model is
enriched with data. This results depicts the need of more investigation about this structural system.
According to ASCE 41 provisions, the deformation limit for collapse prevention performance criterion
can be set from the point of maximum strength of the constitutive behavior of a structural element,
based on laboratory test results. Notice that current structural evaluation provisions define deformation
capacities of the structural elements in a deterministic fashion, in term of parameters that are subjected
to uncertainties. This approach could lead to biased results. As shown in Figure 6.15, the deterministic
model over-predicts the seismic capacity of the building, in comparison to the results obtained from
the deterministic modified model (here assumed as the “true” result). In this example, it is shown the
importance of obtaining reliable constitutive parameters for seismic evaluation of structures. Median
regression-based parameters should be used with caution for seismic evaluation of structures.
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Figure 6.13: Interstory drift results of each analysis model, for every seismic record of FEMA P695,
corresponding to maximum considered earthquake (MCE) hazard.

Figure 6.15 also shows the results obtained using the probabilistic approach with the presented
probabilistic model. The damage index formulation presented in Section 6.1.1 is used here as the collapse
prevention performance limit criterion, allowing to consider the uncertainties of the system also in the
expected deformation capacity. Notice that the results from the deterministic modified model lay within
the confidence interval of the probabilistic model blind-prediction. Also, the probabilistic model prediction
depicts high uncertainties, giving to the structural engineer some insight about the knowledge of the

expected behavior of the structure and the need for increase that knowledge in order to get a more confident

result.
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Figure 6.14: Top displacement PDF results of each analysis model, for every seismic record of FEMA
P695, corresponding to maximum considered earthquake (MCE) hazard.

==

1.4 1 1
r*.‘r-
e
-
o3 1 o 1
i'l"
n ¢
g; o8+ |
]
5
T na {
4
24 — Ealresan |
P Bayesian g+ o
o === Deterrninists - Huang et al
0.0 4 g | — Deterriinists - modfied |

an o5 14 15 2.4 2.5 34 3.5 4.4
GHLE
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Chapter 7

Static tests

This chapter presents a number of static tests developed during the work course of this thesis. The main
objective of these tests is to propose a non-destructive and non-invasive test methodology to estimate the
IP stiffness of the infills through the OOP wall dynamical response. This IP-OOP interaction has been
experimentally demonstrated in some recent works (Cavaleri et al., 2020; De Risi et al., 2019; Misir et al.,
2016; Palieraki et al., 2018) which state that it is possible to indirectly infer the IP stiffness of an existing
wall by identifying the OOP fundamental frequency. Here, the aforementioned characteristic behaviour
of the masonry wall is exploited to infer the IP stiffness of the element by a correlation with the OOP
fundamental frequency of the wall. The OOP fundamental frequency can be obtained by non-destructive
testing using available system identification methods (Reynders, 2012). An experimental campaign was
carried out to identify correlation between the IP stiffness of the system with the identified OOP frequency

of the wall.

7.1 Description of the specimens

Five one-fourth scale, one-bay and one-story MIFs were tested in the Structures Laboratory of the Catholic
University of Santiago of Guayaquil, as shown in Figure 7.1. Three specimens consisted of reinforced
concrete frames whereas two of them were made of structural steel. The infill walls were constructed
with hollow concrete masonry units of 100x50x50 [mm], covering a wall of 750 [mm] clear height, and
{500, 750,1000} [mm] clear bay for the three concrete frames, and {500,1000} [mm)] for the steel frames,
respectively.

Concrete columns were 75x75 [mm)] cross section with longitudinal reinforcement ratio of 0.024 (i.e.
four 6.5 [mm] diameter bars) and 10 [mm)] of cover; transverse reinforcement consisted on one 3.5 [mm|]
diameter stirrup with separation of 18 [mm]. Top beam was 62.5x87.5 [mm)] cross section with two 5.5

[mm] and two 4.5 [mm] bars as top and bottom reinforcement, respectively; transverse reinforcement
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Figure 7.1: General geometric characteristics of the masonry infilled concrete and steel frame specimens.

consisted on one 2.5 [mm] diameter stirrup at 18 [mm]| of separation. Steel frame columns consisted of HSS

75x75x3 [mm]|, and the top beam, an IPN-100 cross section. Both concrete and steel structural sections

are shown in Figure 7.2.
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Figure 7.2: Concrete and steel beam and column sections of the specimens.

In all of the specimens, a 250x250 [mm] reinforced concrete beam with four 18 [mm] diameter longitudinal

reinforcing bars and 5.5@150 [mm] stirrups was used as the bottom beam; this beam was anchored to the

reaction frame with two 24 [mm]| bars, as shown in Figure 7.3. Table 7.1 shows the material properties of

the specimens. Additionally, two specimens of bare frames (without walls) were tested.

Table 7.1: Specimens material properties

Element Test Mean Results (MPa) Standard Deviation (MPa)
Mortar Flexure 4.1 1.517
Compression 12.0 4.909
Masonry Compression 0.1 0.038
Wall Indirect tension 1.5
Steel Reinforcement:
3.5 mm* Yield tension 441.7
4.5 mm? Yield tension 466.3
5.5 mm? Yield tension 568.8
7.5 mm® Yield tension 699.6

“Only one coupon was tested for each size of steel reinforcement.
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Figure 7.3: Schematic view of the test layout. Left side: frontal view, right side: lateral view.

(b) Lateral view.

(a) Frontal view.

Figure 7.4: Layout of the test.

7.2 Test procedure

The test procedure designed to assess the IP-OOP interaction behaviour of the masonry walls, has the

following characteristics:
1. The MIF was anchored to the rigid frame and the measuring devices were installed.

2. The top beam of the MIF is laterally restrained against OOP movement, as shown in Figure 7.3.

The plates, bolts and braces act as a restrain to the OOP movement of the top beam, modelling the
restriction of an upper floor slab.
3. OOP acceleration was measured at the center point of the wall using a GY-61 arduino with an

ADXIL335 triaxial accelerometer (Analog Devices, 2009). A series of fists were performed with a
7



rubber hammer in order to induce readings of OOP acceleration of the wall. These measurements
are later used to identify some of the OOP modal frequencies of the wall (see Section 7.3 for more
details about the modal identification process). The aforementioned accelerometer has sufficient
capabilities to identify the fundamental frequency of the down-scaled walls, with the advantages of

low-cost and simple implementation.

4. After the reading of the acceleration, the bolts are released and the plates are removed. Then, IP
monotonic loading is applied to the top beam until a determined lateral drift is reached, followed by
the unloading. Force and deformation pairs are recorded during loading and unloading. Force was
indirectly measured using a pressure gauge installed in the hydraulic jack, and top displacement was

measured using a MIRAN Linear Position Sensor (Miran Sensor, 2016).

These steps were taken with increasing IP displacement cycles in order to capture the IP degradation
of the wall and the corresponding OOP modal frequencies. Figures 7.5 and 7.6 display the IP force-
displacement test results of the reinforced concrete MIFs and structural steel MIF's, respectively. Also,
concrete and structural steel bare frames are shown in those figures. Figure 7.8 shows the secant IP
stiffness in terms of the maximum deformation, J, for each test; the tendency functions to predict IP
stiffness k;p are taken of the form:

k]p=A€Bé+C (71)

where A and B can be obtained by a non-linear least squares optimization and C' is set as the initial
stiffness of the frame without infills (in [kN/mm]). Figure 7.8 also depicts a similar tendency of the
OOP fundamental frequency, foop, in terms of the maximum deformation demand §, with the following
equation:

foop = DeP® — F (7.2)

where D, E and F can also be obtained by non-linear least squares fitting. Similar tendencies on the
stiffness degradation due to the maximum attained IP deformation were also observed by other authors
(Cai and Su, 2017; Jiang et al., 2015b; Mansouri et al., 2014; Misir et al., 2016; Morandi et al., 2018b;
Tasnimi and Mohebkhah, 2011; Zovkic et al., 2013). These tests results show the plausibility of the
indirect inference of krp in terms of the foop and the length of the wall. In the following section, the

post processing methodology applied to identify the OOP fundamental frequency is described.
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7.3 OOP fundamental frequency identification

As mentioned before, the acceleration induced by an impulsive force applied perpendicularly to the mid
point of the wall was measured in the OOP direction. This procedure is similar to EMA (Experimental
Modal Analysis) method, but without an exact coincidence of the location of the application of the force
and the point of measurement of the response (Allemang, 1983). The impulsive force is applied to induce
energy into a broader frequency band, allowing the identification of lower frequencies. This procedure
was applied to five of the specimens, after subjecting them to incremental levels of deformation on the IP
direction.

Each of the acquired acceleration signals (i.e. each frame and each level of IP deformation) were
subjected to a base-line correction and later passed through a band-pass filter with cutoff frequencies
of 32 and 512 Hz. The cutoff frequencies were defined from an estimation made using a finite element
model of the walls, where the higher cutoff frequency was set so that the first five OOP vibration modes
of the stiffest specimen lie in that range. As mentioned in the third step of Section 7.2, the specimens
were subjected to several impulsive hammer loading during the recording of the OOP accelerations. The
measured response was split in separate impulses and the results were later used to confirm the obtained
frequency from the complete record.

The Frequency Domain Descomposition (FDD) method was used here to identify the natural frequencies
of the specimens. This is a non-parametric identification procedure in the frequency domain (Brincker
et al., 2000), which states that the dynamic response of a system can be obtained from the convolution, in
the frequency domain, between the excitation signal and the response of an unitary impulse. Then, the
power density spectrum (PDS) gives the energy level of the response of the system for each frequency.
Figure 7.7 depicts the PDS of the steel frame specimen S500, for each level of IP deformation. Notice
that a moving average post-process was used to locate the maximum values of the PDS, along with a
normalization to the maximum value. The right panel of Figure 7.8 shows the results of the identified

fundamental frequencies of all specimens in terms of the maximum lateral demand.

7.4 Proposed MIF modelling approach

This section formulates the IP stiffness model based on OOP fundamental frequency of the wall, and
defines a macro-model based on the aforementioned IP-OOP relation. This model is parameterized by a set
of uncertain parameters, which are further inferred through Bayesian inference using the experimental data
described in the previous section. A strut-based model, commonly known as macro-model (Tarque et al.,
2015), has been adopted here to idealize the stiffening effect of the frame caused by the masonry infills. To
this end, a 2D model was defined using OpenSeespy (Zhu et al., 2018), which consisted of an elastic truss
element disposed along the principal diagonal of the frame bay, as shown in Figure 7.9. The strut section

is modelled as A,, = t,;,w.,, where t,, is the thickness of the wall and w,, is assumed as one-third of the
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Figure 7.7: Power Density spectra of the OOP measurements of specimen S500 MIF, after each level of TP
deformation: (a) Undamaged, (b) to (e) depicts the results after each increasing deformation.

length of the wall’s diagonal. The strut, the beam, and the frame columns of this model are considered
as elastic elements. For the stiffness krp of this strut, the exponential decay relations between the IP
and OOP behaviour, observed in the previous sections (recall Equations (7.1), (7.2), and Figure 7.8), are
used. Indeed, note that according to these observations, both the IP stiffness and the OOP fundamental
frequency decay with the increase of lateral IP deformation. To model this fact, Equations (7.1), (7.2) are

rearranged as follows:

1
kip —C\ B
6=In| ——— 7.3
n < 1 ) (7.3)
1
foor —F\E
0=In| ——— 7.4
n (£o0r, (7.4
These equations can be combined to obtain the K;p as a function of foop, as follows:
B
—F\#n
kip— A (fOOPT> ELo (7.5)

Finally, with no loss of generality, the last equation can be simplified using only three parameters, now

called as 64, 05, 03 leading to the following expression:

krp =01 (foor — 92)93 (7.6)
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Figure 7.9: Elastic IP macro model constructed in OpenSeespy.

In the last equation, the parameters 6, to f3 are uncertain parameters and can be inferred using the tests
results, as described in the following section. Additionally, the strut macro-model considers two extra
parameters to account for the concrete and steel stiffness. In total, five uncertain parameters comprise the
proposed strut macro-model, namely 0= {64, ...,05}, where 6; to 03 are to consider the elastic modulus of
the equivalent strut, based on the OOP fundamental frequency, 6, is a concrete frame stiffness modifier to
consider the stiffness reduction due to cracking, and finally 05 is a steel frame stiffness modifier, to account

for base plate rotational flexibility.
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Figure 7.10: A flowchart explaining A?BC-SubSim, Barros et al. (2021). 8 parameters are defined as the
modifiers of Equation (7.6). Ag, I,, E, L are the gross area, gross inertia, elastic modulus and length of
the beam-column elements of the frame, respectively.

From the tests results described in Section 7.1, the model was calibrated using the approximate Bayesian
computation method (ABC) called A2 BC-SubSim presented in Chapter 5. The following function was
adopted as the metric:

|k%[)odel _ k}"]gst"| (77)

p= Z [ Test
P 1P
where i denotes cach of the tests of the experimental campaign, k%! and k75" are the numerically
estimated and the experimentally measured IP stiffness of the system, respectively.

Figure 7.11 depicts the prior and the posterior distribution of the inferred parameters. Figure 7.12
shows the estimated IP stiffness results from the calibrated model in comparison to the measured stiffness
from the laboratory tests. These results demonstrate the plausibility to infer the IP stiffness of a MIF
by identifying the OOP fundamental frequency, and using Equation (7.6) (notice that the parameters
were calibrated to estimate the stiffness in units of %V) However, the parameters of that equation were
set for a unique kind of masonry characteristics and, therefore, they are not expected to be suitable for
direct application to other masonry characteristic strength or geometry. To overcome to this limitation,
in the following sections a non-linear model is presented, along with its calibration to the observed data,
to be used within a parametric study. The results of the parametric study are used latter to expand the

applicability of the proposed method.
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7.5 Parametric study

There are several techniques to model the behaviour of MIF's, as mentioned in Chapter 2. In this thesis, the
application of a meso-model called Multi Pier, originally proposed by Pirsaheb et al. (2020), is explored.
Accordingly, the masonry wall is modelled as a 3D truss, allowing to directly incorporate the IP-OOP
behaviour interaction of the masonry wall, with the advantages of being computationally cheap, robust
and casily implementable in any software. In this investigation, this model was built using OpenSeespy,
and was properly calibrated to capture the behaviour of the specimen RC750. In the following section,
the implemented model is described and later used to study the influence of geometric parameters in the

prediction of Equation (7.6). Only reinforced concrete frames were included in this study.

7.5.1 Masonry infilled frame model

The MIF model is built in OpenSeespy and consists of two main parts: (1) the reinforced concrete frame
model and (2) the masonry wall model. Both parts are joined together using equal degree of freedom
constraints, therefore assuming a perfect bond between the reinforced concrete frame and the masonry
wall. Accordingly, the discretization of both parts of the model are defined as geometrically coincident.

Figure 7.13 shows the geometric representation of the MIF model.
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Figure 7.13: Geometric representation of the MIF model implemented in OpenSeespy.

The first part of the model consists of distributed plasticity displacement-based beam-column elements
with uni-axial constitutive models by means of a fiber section. Concrete01 and Steel02 constitutive models
were adopted to estimate the concrete and steel reinforcement behaviour, respectively. Parameter values

were evaluated from the equations proposed by Karthik and Mander (2011). Strain penetration effects
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are also considered by means of a rotational spring at the base of the column. The parameters of the
rotational spring are calibrated according to the bare frame test results (see Figure 7.5 and Section 7.1).
The rotational spring is defined by a Zero-Length element and the Hysteretic constitutive model. Table 7.2
shows the parameter values of the fiber section and the rotational spring after the calibration process.
Table 7.2: Parameter values of frame model.
Hysteretic - Zero-Length element

G{Ot M1 650t MQ PZ?’LChI Pinchy D1 DQ 6
0.01008 1.52 0.32215 13.05 0.06200 0.29760 0.24010 0.12173  0.26799

Concrete01 - Column Section Steel02 - Column Section
fc €0 fcu € fu Es b
-20.0 -0.00200 -5.00 -0.01000 500.0 200.00 0.140

The second part of the model consists of a 3D truss, composed by horizontal, vertical and diagonal
elements with uni-axial behaviour. Concrete02 constitutive model was selected for every truss. Maximum
compressive strength was assumed to be equal to the characteristic compressive strength of the masonry
(see Table 7.1). Notice that the characteristics of the material are defined in terms of stress and strain;
however, truss models require an input in terms of force and deformation. The formulation applied for
that conversion is described in detail by the original authors of the model, and the interested reader is
referred to Pirsaheb et al. (2020) for additional details. RC750 specimen test results were used to calibrate
the model. The tensile strength of the masonry struts was taken as 5% of the compressive strength. The
compressive strain at maximum strength was set equal to 0.2%. The calibrated model was adapted to
RC500 and RC1000 geometries to evaluate its prediction capabilities. Figure 7.14 depicts the comparison
of the model prediction against the IP test results, and Table 7.3 shows the prediction capabilities on the
OOP fundamental frequencies. It can be concluded that the model is representative of the behaviour of
the MIF structural system. In the following sections, the calibrated model is applied to study the influence

of geometric and strength parameters on the IP-OOP behaviour.

Table 7.3: OOP fundamental frequency comparison between Multi Pier model and laboratory test
measurement.

010) Model Test Error (%)
test  Ras00 RC750 RC10000 RC500 RC750 RC1000 RC500 RC750  RC1000
1 150 102 85 129 101 115 16.3 1.0 26.1
2 128 81 63 105 87 117 21.9 6.9 46.2
3 91 79 62 90 69 117 1.1 14.5 47.0
4 79 73 48 57 56 83 386 304 422
5 79 73 59 36 339  102.8
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Figure 7.14: Comparison of the calibrated model estimation against the laboratory test results.

7.5.2 Influence of masonry height / length ratio

Using the model described in the previous section, the following parameters were set as constants: f,, = 1.0
MPa, t,, = 50 mm, H,, = 750 mm, where f,, is the characteristic compressive strength of the masonry
wall, t,,, H,, and L,, are the thickness, height and length of the wall, respectively. Accordingly, the
Hm /1 ratio was defined for several L,, values, giving the range between 0.4 and 2.0, approximately.
Figure 7.15a depicts the OOP expected fundamental frequency in terms of the maximum attained IP drift
and the adopted L,, values. As expected, the increasing deformation induces degradation on the wall,
reducing the OOP stiffness and, therefore, the fundamental frequency.

Figure 7.15b depicts the OOP fundamental frequency in terms of the =/ = ratio, for the case of a
non degraded wall (i.e. IP drift equal to 0). The /1 tendency equation in terms of the OOP frequency
is also shown in that figure, where it is demonstrated that the OOP frequency increases with an increment
of the =/, ratio. Comparing these results to the measured behaviour in Figure 7.8, secems that the
RC1000 does not follow the tendency of the model. This condition may be caused by the fact that the joint
between the wall and the upper beam of the frame is usually difficult to construct properly, meaning that
the assumption made about the perfect bond between the frame and the wall may not be representative for
the upper joint in that case. To address this issue, it would require additional tests and, as a consequence,

it is left as future work of this thesis.

7.5.3 Influence of masonry height / thickness ratio

Similar to the analysis of the previous section, the following parameters were set as constants: f,, = 1.0
MPa, L,, = 750 mm, H,, = 750 mm. Accordingly, the =/, ratio was defined for several t,, values,
giving the range between 11 and 30, approximately. Figure 7.16a depicts the OOP expected fundamental
frequency in terms of the maximum attained IP drift and the adopted t,, values. Consistent results were
obtained in terms of the IP deformation and OOP fundamental frequency.
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Figure 7.15: Influence of masonry height / length ratio on the IP and OOP stiffness.

Figure 7.16b shows the OOP fundamental frequency in terms of the = /; ratio, for the case of a non
degraded wall. The = /, ~tendency equation in terms of the OOP frequency is also shown in that figure,

where it is demonstrated that the OOP frequency increases as the =/, ratio decays.

7.5.4 Influence of masonry characteristic strength

Similar to the analysis of the previous section, the following parameters were set as constants: H,, = 750
mm, ¢, =50 mm, L,, = 750 mm. Accordingly, the f,, characteristic strength was defined in the range
between 1 and 8 MPa. Figure 7.17a depicts the OOP expected fundamental frequency in terms of the

maximum attained IP drift and the adopted f,, values. Consistent results are obtained in terms of the IP

deformation and OOP fundamental frequency.

Figure 7.17b shows the OOP fundamental frequency in terms of the f,, value, for the case of a non
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Figure 7.16: Influence of masonry height / thickness ratio on the IP and OOP stiffness

degraded wall. The f,, tendency equation in terms of the OOP frequency is also shown in that figure,

where it is demonstrated that the OOP frequency increases as the f,, value gets higher.

7.5.5 Influence of scaling

Similar to the analysis of the previous section, the following parameters were set as constants: H., /Ly, = 1,
H,,/tm =15 and H,, = 750 mm for the original scale. Accordingly, the scaling factor was defined in the
range between 1 to 5. Figure 7.18a depicts the OOP expected fundamental frequency in terms of the
maximum attained IP drift and the adopted scaling factors. Consistent results are obtained in terms of
the IP deformation and OOP fundamental frequency.

Figure 7.18b shows the OOP fundamental frequency in terms of the scaling factor, for the case of a

non degraded wall. The scaling factor tendency equation in terms of the OOP frequency is also shown in
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stiffness.

that figure, where it is demonstrated that the OOP frequency decreases as the scaling factor gets higher.

7.6 Non-destructive test for indirect stiffness estimation

The parametric study of the previous section demonstrated that the OOP fundamental frequency is related
to the maximum historic IP drift, the strength of the materials of the wall, the boundary conditions and
the geometric characteristics of the wall. This section describes a method to estimate the TP stiffness of

the wall in terms of geometric parameters and OOP fundamental frequency measure.
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Figure 7.18: Influence of the scaling factor of the masonry on the IP and OOP stiffness.

7.6.1 Proposed method

To consider the influence of height, length, thickness, strength and scaling of the masonry wall, Equation

(7.6) is modified as follows:

kip = 61 (foor — 62)" - Jayn - fupe fr, o Fscale (7.8)

m

where the factors fr/r, fa/, fr;, and fscate are modifiers of the IP stiffness of the simplified strut model
that account for height/length ratio, height/thickness ratio, the strength of the wall and the scaling factor,
respectively.

The modifier factors were obtained from the results of the parametric study, using the following process:

1. For each model, the IP secant stiffness was obtained for the different levels of drift and different
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values of the parameters (i.e. length, thickness and strength).

The stiffness was normalized to the obtained stiffness of a basic case, considering the corresponding
attained IP drift. For the fg,; modifier, H/L = 1.00 was adopted as the basic case, as shown in
Figure 7.19a. Similarly, for the fg/; modifier, H/t = 13.63 was adopted as the basic case, as shown
in Figure 7.19b. For the fscqie modifier, Scale = 0.25 was adopted as the basic case, as shown in
Figure 7.19c. Finally, for the f;, modifier, f;, = 1.00 MPa was adopted as the basic case, as can
be seen in Figure 7.19d. In all cases, the basic condition was adopted from the model closer to the
RC750 specimen, as it was used for the calibration of the model and, therefore, its results are the
most reliable.
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7.6.2 Application examples

Four additional models were constructed using the Multi Pier methodology (see Section 7.5.1, to check the
effectiveness of the proposed method defined by Equation (7.8) and Figures 7.19a to 7.19d. These models
are used here as if they were existing MIF elements of a structure, where measured data is gathered. The
geometric characteristics of each MIF are presented in Table 7.4. The OOP fundamental frequency and
the TP tangent stiffness of the structural system, according to the numerical model, is also shown in that
table. Finally, the modifier factors and the estimation of IP stiffness of the proposed method are presented.

The cases were selected with the following criteria:

1. All cases are real size structures. Notice that the scale factor shown in the table are defined as either
0.83 or 1.00. Those values are obtained considering that a 0.25 scale corresponds to a wall height

equal to 750 mm.

2. Column and beam sizes were defined equal for cases 1 and 2, and 3 and 4, respectively. Typical sizes

for low-rise structures were assumed.

3. Case 1 is a tall wall, i.e the length is smaller than the height. Case 2 is a short wall, where the length
is higher that the height. Cases 3 and 4 were set as squared walls.

4. Cases 1 and 2 are set to have a small height to thickness ratio, whilst cases 3 and 4 are set to a

higher value.

5. Cases 1 to 3 use walls with characteristic masonry strength equal to 1.00 MPa (equal to the ones

that were tested). Case 4 considers a higher strength.

6. All cases were assumed as non-degraded walls for the calculations presented in Table 7.4. Table 7.5
presents the same cases, where the MIF were subjected to a relative deformation less than 1.00% of

the height.

As shown in Table 7.4, a fair prediction was obtained for the case of non-degraded MIF's, showing a
difference of 4%, 15%, 25% and 34% for ecach case, respectively. For degraded MIF's, differences were 70%,
25%, 38% and 5%, respectively. These results are promising and seems that the proposed methodology
would be a powerful tool for the stiffness evaluation of existing structures; however, it requires further

laboratory testing to support some of the assumptions made.
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Table 7.4: Summary of results of application examples for non-degraded MIFs from Section 7.6.2.

Parameter Case 1 Case 2 Case 3 Case 4

Column (mm)  400x400 400x400 300x300 300x300
Beam (mm) 300x400 300x400 250x350  250x350

Frame sections

Ly, (mm) 2000 4000 3000 3000

H,, (mm) 2500 2500 3000 3000

trm (mm) 200 200 150 150

Wall geometry fm (MPa) 1.00 1.00 1.00 5.00
Hy /Lo, 1.25 0.63 1.00 1.00

Hyp, [t 12.50 12.50 20.00 20.00

Scale factor 0.83 0.83 1.00 1.00

. foor (Hz) 44.6 29.1 17.6 38.4
Multi Pier model krp (kN/mm)  15.4 29.7 8.9 41.2
fayL 0.90 1.25 1.00 1.00

. . foye 1.05 1.05 0.78 0.78
Geometric modifiers oot 1.95 195 9.90 9.90
fm 1.00 1.00 1.00 3.20

I kmean (kN/mm) — 16.0 25.4 6.7 27.2
Stmplified model kstd (kN /mm) 1.30 1.91 1.17 1.22

Table 7.5: Summary of results of application examples for degraded MIFs from Section 7.6.2.

Parameter Casel Case2 Case3d Case4
Multi Pier foor (Hz) 26.44 20.5 13.5 27.8
model krp (kN/mm) 7.3 15.9 4.7 22.2
Simplified kmgem (kN/mm) 12.5 20.0 2.9 21.1
model k%&i (kN /mm) 1.95 2.73 0.60 0.80
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Chapter 8

Dynamic tests on shake table

During the last part of the thesis’ work, an experimental campaign about dynamical tests on shake table

were carried out. The main objectives of these tests were:

e To gather additional information about the IP-OOP interaction of MIF walls described in the
previous chapter, but under excitation conditions equivalent to those encountered during a seismic

event.

e To study the influence of cement-based mortar plastering on the IP initial stiffness and OOP

fundamental frequency of MIFs.

e To study the influence of cement-based mortar plastering reinforced with natural fibers on the TP

initial stiffness and OOP fundamental frequency of MIFs under seismic excitation.

The experimental campaign consisted on a series of dynamic tests performed on the seismic shake table
of the University of Granada. Three 3/5 scaled MIFs were built with the same geometry and materials;
however, the first wall was not plastered, whereas the other two were plastered with and without natural

fiber reinforcement, respectively.

8.1 Description of the specimens

Three 3/5 scale, one-bay and one-story MIFs were installed on the shake table of the University of Granada,
as shown in Figures 8.1a, 8.1b and 8.1c. All specimens consisted of reinforced concrete frames with infill
walls constructed with hollow concrete masonry units of 400x200x90 [mm], as shown in Figure 8.2a. The
clear height of the wall was 1520 mm and the clear bay length, 2090 mm. Concrete columns were 172x172
[mm] cross section with longitudinal reinforcement ratio equal to 0.0153 (i.e. four 12 [mm] diameter bars)
with 15 [mm)] cover; transverse reinforcement consisted on one 6 [mm| diameter stirrup with separation
of 75 [mm]|. The top beam was 140x175 [mm)] cross section with two 10 [mm] and two 8 [mm] bars as
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top and bottom reinforcement, respectively. The transverse reinforcement consisted on 6 [mm)] stirrups at
90 [mm)] of separation. Figure 8.2 depicts the cross section and general geometry of the MIF specimens.
Nominal strength of the concrete was obtained by compressive cube testing, resulting in 20 [MPa]. Nominal
compressive strength of the masonry units and yield strength of steel reinforcement are defined by suppliers
as 10 [MPa] and 420 [MPa], respectively.

The construction of the walls was performed after the formwork removal of the reinforced concrete
frames, following the usual construction practice in Ecuador. After completion of the three walls, each one
was treated separately. The first wall was not plastered. A cement-based N-type (TMS 402/602, 2016)
mortar with 1:6 proportion (i.e. 1 part of cement and 6 parts of sand) was used for plastering the second
wall. The third wall was plastered with a mortar with similar proportions but adding abaca fibers as part

of a parallel research.

(a) Frontal view of the reinforced concrete frames, before
the construction of the walls. (c) Lateral view of the MIF specimens.

Figure 8.1: Dynamic test set-up.

8.2 Test set-up and instrumentation

The MIF specimens were installed on the biaxial shake table of Granada University, which contains

sensors to measure the displacement, acceleration and the induced force of the actuators, in both ”x” and
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Figure 8.2: Structural elements conforming the MIF specimens.

7y” directions. Figures 8.1 and 8.3 depicts the set-up of the MIF specimens on the shake table. Four
3000x500x35 mm steel plates were anchored to the top of the MIFs to act as additional mass (approximately
1650 kg).

Each wall was instrumented as follows (the reader is referred to Figure 8.4 for a schematic view of the

sensor deployment over the walls):
e Two IL-600 laser sensors to measure displacements on the base and the top of the wall.

e One uniaxial seismic accelerometer and one uniaxial piezo-electric accelerometer installed on the top

of the wall, with the measuring direction aligned to the wall length, i.e. IP direction.

e One uniaxial piezo-electric accelerometer installed in the mid lenght and height fo the wall, with the

measuring direction aligned to the thickness of the wall, i.e. OOP direction.

e Two strain gauges installed on the external side longitudinal reinforcement of the MIF columns, near

the bottom beam of the concrete frame.

e A strain gauge installed on the first stirrup of each column, taken from the bottom beam of the
frame. An additional strain gauge was installed to the first stirrup of one of the columns, taken from

the upper beam of the frame.

e Two linear variable displacement transducers (LVDT) installed on the external side of the MIF to
measure vertical elongation. This measurement will be used later to estimate the rotation at the

base of the wall.

The sampling rate was set to 600 Hz for every measuring instrument.

8.3 Test procedure and general results

During the dynamical tests, the specimens were subjected to a scaled acceleration record corresponding
to the 2016 Ecuadorian earthquake (Singaucho et al., 2016), obtained in the Pedernales station (namely
APED, East direction). To consider the dynamic influence of the downscaled geometry of the specimens,
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Figure 8.3: Plan view of the dynamic test setup.

the time step of the seismic record was also scaled by applying the scaling laws (Ghosh, 2011), i.e. the
time was factored by \/% Figure 8.5 depicts the original accelerogram along with the corresponding
pseudo-acceleration and pseudo-displacement response spectra.

The specimens were subjected to incrementally scaled acceleration of the original record by 25%, 50%,
75%, 100% and 150% of the original amplitude history. Correspondingly, each test is referred to as 025,
050, 075, 100 and 150, respectively. Thereafter, a large amplitude sine sweep was applied after the
aforementioned increments. In addition, low amplitude white noise records were applied consecutively to
the 050, 075, 100 and 150. These records are labelled here as WN1, WN2, WN3 and WN4, respectively.
Finally, a high amplitude white noise record was applied after the sine sweep and, correspondingly labelled
as WN5. White noise records were used to identify the fundamental frequency of the structural system
after the occurrence of the corresponding seismic acceleration. Appendix A shows all of the records
obtained after each dynamic test, for both raw and post-processed data. The post-processing consisted on

performing an interpolation to get equally spaced data, a rolling average removal and a down-sampling to
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a frequency rate of 100 Hz.

In the following sections, a general summary of the most important results are presented.

8.3.1 Results in the IP direction

Table 8.1 and Figure 8.6 summarize the maximum readings taken from the seismic accelerometers, the
piezo-electric accelerometers and the difference between top and bottom displacements from the IL-600
sensors (i.e. drift) of each specimen. Notice that, in general, the white noise seismic signal test readings
from both kind of accelerometers are very similar, except for the last white noise record. As can be seen in
the Appendix A, most high amplitude readings from the seismic accelerometers made them overflow and,
therefore, maximum values of these accelerometers are not trustworthy. On the other hand, the double

integration of piezo-electric accelerometers readings are consistent with IL-600 displacement readings.

Table 8.1: Summary of maximum IP measured response

. Wall 1 Wall 2 Wall 3
Slgndl a(slis agiezo Ac a’gis agiezo A a’(slis agiezo Ac
025 093 069 190|077 069 206|080 074 1.18
050 1.05 138 266 | 08 139 225|101 333 194
WN1 030 033 165|093 033 18|08 044 1.09
075 1.23 199 313|108 2.07 228|110 428 2.13
WN2 029 031 140|073 028 186|085 045 092
100 1.30 252 297 | 1.08 207 272|133 240 2.70
WN3 028 029 171|070 031 165|100 0.39 1.00
150 1.16  3.13 336 | 1.28 454 338 | 139 3.22 3.67
WN4 028 031 156|051 027 194|087 038 1.16
Sine Sweep | 1.46 6.15 3.8 | 1.29 6.04 3.18 | 1.28 6.57 1.65
WN5H 1.23 483 298 | 1.25 433 242 | 125 1.82 140

% Results from uniaxial seismic accelerometer, in units of g.
b Results from uniaxial piezo-electric accelerometer, in units of g.
¢ Interstory drift (i.e. difference from top and bottom measurements taken from the IL-600 laser sensors), in units of mm.

8.3.2 OOP fundamental frequencies

Appendix A also shows the OOP acceleration records of the three specimens. From the post-processing of
the accelerograms, the identification of the fundamental frequency of each wall is summarized in Table
8.2 and Figure 8.7. No visible damage was found in any of the specimens and, consequently, the OOP
fundamental frequency stayed without variation. Also, notice that the presence of the plastering had
negligible influence on the OOP fundamental frequency. Table 8.2 shows the identified frequency using two
methods, namely: (1) counting the number of zero-crossings (ZC) and the frequency domain decomposition
method by computing the power density spectrum (PDS).

Using Equation (7.8) and the results from Table 8.2, the mean IP stiffuess of the wall can be estimated
as kip = 700m_]7\7[1' In Section 8.4.1, the models proposed in Chapter 7 are compared to the measurements

obtained from the tests.
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Figure 8.6: Summary of maximum IP measured response.

Table 8.2: Identified natural frequency (in Hz) of each specimen wall after the corresponding testing

Signal Wall 1 Wall 2 Wall 3
ZC PDS ZC PDS ZC PDS
025 30.52  34.01 | 34.70 2292 | 3297 27.87
050 30.17 39.12 | 30.92 21.67 | 30.62 27.87
WN1 31.06 34.89 | 33.69 22.84 | 31.90 25.85
075 29.22 3595 | 27.61 27.58 | 30.19 20.95
WN2 30.98 35.75 | 36.08 28.03 | 35.04 25.57
100 30.02  49.97 | 26.45 33.20 | 29.44 21.68
WN3 31.49 36.63 | 35.06 21.42 | 34.72 24.14
150 29.36 40.53 | 26.50 22.75 | 30.87 21.73
WN4 32.68 44.88 | 36.60 22.51 | 36.10 23.70
Sine Sweep | 31.33 23.37 | 27.67 22.64 | 32.81 22.38
WN5 17.07 21.61 | 27.13 21.80 | 26.26 21.80

8.4 IP MIF mathematical models

In this section, two modelling strategies were applied to predict the behaviour of the specimens. First, the
method to indirectly estimate the IP stiffness of the wall from the identified OOP fundamental frequency,
presented in Chapter 7 is studied and, second, a non-linear model of the MIF is proposed and calibrated

with the algorithm presented in Chapter 5.

8.4.1 Linear model with equivalent strut

The model shown in Figure 7.9 is applied here. A modal damping was used and defined equal to 2%
of the critical damping. From Table 8.2, notice that the fundamental OOP frequency of the walls are
similar to each other. Taking all the values of the Wall 1 specimen, the mean resulted equal to 32.7 Hz,

with a standard deviation equal to 7.0 Hz. Wall 2 and 3 fundamental frequency resulted 15% less than
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Figure 8.7: Identified natural frequency (in Hz) of each specimen wall after the corresponding testing.

Wall one, meaning that the cement-based plastering did not contribute to the stiffness of the wall, but
only to the mass. Figure 8.8 depicts the IP stiffness distribution estimation obtained from Equation 7.8,
where the OOP fundamental frequency was randomly modelled assuming a normal distribution with the
aforementioned mean and standard deviation. In this model, § values of Figure 7.11 were used, along with
the modifier factors of Figure 7.19, namely: fg/; = 1.198, fg/ = 0.87, f, = 3.15 and fscate = 1.42.
Figure 8.9 shows the IP deformation results obtained, with a close-up view of the time interval in which
the maximum response occurs. Notice that the mean result of the proposed model is a fair prediction
of the response of an existing MIF. Also, the measured result is mostly bounded within the mean + one

standard deviation of the model estimation.

8.4.2 Non-linear model calibrated with ABC

The model is a more elaborated version of the first model presented in Section 8.4.1. Here, the equivalent
strut is modelled in both directions and considered as compression-only struts with dash-pots connected in
parallel. Also, the base of the MIF is modelled with a spring and dash-pot that considers the plausible
relative movement between the surface of the shake table and the specimen. As no visual damage was
observed on the concrete frame, beam and columns are modelled as elastic elements, with a reduction
factor (applied to the gross inertia) to consider the influence of cracking, along with a horizontal dash-pot
connected to a external fixed node. The aforementioned dash-pots are proposed as an alternative to the
classical methods of damping modelling (i.e. Rayleigh or modal damping), considering that the damping
characteristics can be inferred by applying Bayesian methods. To define the constitutive behaviour
parameters of the springs and dashpots, Equations (8.1) and (8.2) were applied to avoid issues due to

scaling of the lower and upper bounds of the assumed uniform distribution. Figure 8.10 depicts the
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Figure 8.8: Estimated distribution of equivalent strut IP stiffness of the specimens.

geometry and general assumptions of the model.

K =k x 10%2 (8.1)
de\ ™
C =c; x 10% (d—i) (8.2)

The A?BC-SS algorithm was used to obtain the parameters of the model. Fourteen parameters,
namely 0 = 01,0, ...,014, were defined as shown in Table 8.3, where the lower (L) and upper(U) bounds
of the prior uniform distribution are presented, along with the maximum a posteriori (MAP) results.
Figure 8.11 compares the Fourier spectrum resulted from the test measurements to the model prediction.
As can be seen, the model captures the dynamic properties of the specimen, showing a good match
around the fundamental frequency. Figures 8.12, 8.13 and 8.14 compare the results from the non-linear
model (for both MAP and a set of individual estimation from the parameters distributions) and the
measurements, demonstrating that the proposed model can fairly estimate the expected acceleration of the
MIF system. Notice that the calibration of the model was performed only with the 075 signal and, even on

the extrapolation cases shown in Figures 8.13 and 8.14, the model has a good match to the measurments.
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Table 8.3: Prior distributions and MAP results of the parameters of the MIF non-linear model calibrated
with A?BC-SubSim algorithm.

Prior
0 L U MAP Part of the model
1 0.010 10.000 3.34 Base sprine. ki
2 | 0.010  10.000 4.80 S¢ Spring, f, N2
3 | 1000.0 1000000.0 | 322228.0 | Base maximum lateral force
4 0.010 10.000 5.00
5 0.010 10.000 9.32 Base dash-pot, ¢, co, c3
6 0.100 1.500 0.69
7 0.010 2.000 0.045 Frame stiffness modifier
8 500.0 10000.0 9382.30 P dash-pot
9 | 0.500 1.800 0.78 fame Gasti-pot, c1, €3
10 | 0.010 10.000 5.70 .
11 | 0.010  10.000 2.45 Wall spring, k1, >
12 | 0.010 10.000 1.89
13 0.010 10.000 0.71 Wall dash-pot, ¢1, c2, c3
14 | 0.500 1.500 1.44
1.0 A Test
=== Model
0.8
«? 0.6
E 0.4
E
2 .
0.2 !
0.0 A -
0 2 4 6 8 10 12 11

Frequency (Hz)

Figure 8.11: Comparison between the Fourier spectrum from the measurements during the 075-signal test
and the model fed with the MAP parameters values.
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Part IV

Conclusions and future works
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Chapter 9

Conclusions and future works

In this thesis work, at first, the methodological basis for the calibration of numerical models based
on observational data is provided. The calibration method using the A?BC-SubSim algorithm has the
advantage of dealing with the parameters of the model in a probabilistic way, allowing direct consideration
of the uncertainty generated by the assumptions adopted in a model. Based on this algorithm, two
methodological proposals have been developed for the evaluation of existing masonry infilled frame
structures.

The first one, which consists on the estimation of constitutive parameters by means of BNN-HMC,
allowing a fast evaluation of an existing structure based on information that can be collected in a very easy
and economical way. This methodology will be very practical for those who manage cities and have the
responsibility of preparing and implementing programs for the seismic rehabilitation of existing structures,
since, at present, the definition of the sequence in which the possible interventions should be carried
out is done by means of qualitative methods. Considering that the proposed model is not complex and
its application is straightforward, it is estimated that it will constitute a tool that will provide more
information for making this type of decisions at the macro level.

The second, which consists on the indirect measurement of the in-plane stiffness of the wall by means of
a non-destructive test, allows an economic evaluation of an existing structure, helping engineers in practice
to internalize the problems of masonry-filled frames and to incorporate their influence in the analyses
carried out for the rehabilitation of existing structures. The simplicity of the test will allow to contemplate
the influence of these walls even for minor structures.

The following are concluding remarks specialized on the scientific contributions of this thesis. About

the proposed ABC algorithm, the following conclusions have been drawn:

e The algorithm is a variant of ABC-SubSim that overcomes the need to tune the hyper-parameter
po, which highly controls the efficiency of the algorithm. This is carried out by an original adaptive

selection of this parameter based on a partial evaluation of the next subset.
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e The examples provided demonstrate both efficiency and efficacy for structural nonlinear model
calibration based on test results. A comparison of calibrations done by conventional methods (i.e.,
“by-hand”) demonstrate the advantages of A?BC-SubSim algorithm for this purpose; however, it is

also advised that the specialist’s judgment is required to attain consistency in the results.

e The method is extended to perform the calibration of a set of tests, allowing the inference of
degradation parameters that are difficult or impossible to estimate using conventional methods. The
method is applied on a complex structural application to show the capacity to perform the inference
within large multi-dimensional nonlinear models using real-world structural health monitoring data.
Finally, the method is applied on the calibration of a MIF model from a test performed on a seismic

shake table, obtaining a close match of the numerical estimation with the measurements.

About the simplified shear spring model, where the parameters of the constitutive behaviour are

predicted by a BNN;, the following conclusions arise from this investigation:

e After quantifying the sources of uncertainty that affect the seismic behaviour of MIFs, the application
of deterministic models to estimate the behaviour of this kind of structures, is not recommended.
Indeed, results demonstrate that the application of deterministic models may lead to an incorrect
estimation of the lateral initial stiffness and/or maximum strength and/or the degradation of the

structure, depending on the applied model and on the type of masonry unit of the system.

e Available data about the MIF structural system are scarce and, therefore, insufficient to properly
develop a good model. However, the probabilistic model proposed herein helps to better capture the
expected IP lateral behaviour of the structure, with the additional advantage of giving information

about the uncertainty of the prediction.

About the proposed procedure to indirectly infer the IP stiffness of MIFs by means of the OOP

fundamental frequency:

e Using an experimental campaign of five one-fourth scaled MIFs, a simplified model was proposed and
inferred to the data to indirectly predict the IP stiffness based on the identified OOP fundamental

frequency.

e The applicability of the method was futher extended to properly cover model predictions out-of the
configuration range given by the experimental data, by means of a physics-based parametric study
performed with a MIF meso-model. By this means, influencing coefficients were obtained to consider
the effects of height-length ratio, height-thickness ratio, the masonry characteristic strength and the
scale size of the MIF. A number of applicaion examples were presented, demonstrating the capability

and adequacy to predict the IP stiffness of MIFs from their OOP fundamental frequencies.

e The proposed linear model with an equivalent strut is capable to fairly reproduce the dynamic

properties of the dynamic experimental results obtained with the seismic shake table.
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Once the conclusions are given as a summary of the potential of the research of this thesis along with

as discussion about its limitations, a number of future works arise as desirable next steps for this thesis:

e To explore the application of physics-guided neural networks to exploit the modelling capabilities of

micro or meso-models within the framework of artificial neural networks.

e The proposed method to indirectly estimate the IP stiffness of a wall in terms of the OOP fundamental
frequency requires additional laboratory testing to confirm the results obtained here by numerical
modelling and to better capture the influence of different damage scenarios of the mansonry walls to
the MIF structural system. Thus, desirable future work includes a larger scale MIF structures with

consideration of varying frame-wall bond condition, among other variables.

e Case study applications of the proposed methods of structural evaluation of MIF structures of

Chapters 6 and 7 demonstrated their capabilities.

e During the course of this thesis, some dynamic model parameter inference applications using the
A2BC-SubSim algorithm, were presented. The study of the inference of these models and, after
several trials to get better results with the obtained parameters, it seems that classical methods to
model damping are not always the best choice. This last statement was not proven specifically, as
it is out of the scope of this investigation. However, the algorithm could be an appropriate tool to
search for alternative modelling strategies of the natural decaying effect of the response of civil and

building structures.
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Chapter 10

Conclusiones y trabajo futuro

En el presente trabajo de tesis, en primer lugar, se proporciona la base metodolégica para realizar la
calibracién de modelos numéricos en base a datos obtenidos por medio de observacién. El método de
calibracién utilizando el algoritmo A?BC-SubSim tiene la ventaja de tratar a los pardmetros del problema
de manera probabilista, lo que permite considerar de manera directa la incertidumbre generada por las
suposiciones adoptadas en un modelo. Sobre la base de este algoritmo, se han desarrollado dos propuestas
metodoldgicas para la evaluacion de estructuras existentes de porticos rellenos de mamposteria.

La primera, que consiste en la estimacién de pardmetros constitutivos por medio de las BNN-HMC,
permite una evaluacién rapida de una estructura existente a partir de informacién que se puede levantar
de una manera muy facil y econdémica. Esta metodologia resultard muy practica para aquellas personas
que administran ciudades y tienen la responsabilidad de preparar ¢ implementar programas para la
rehabilitacién sismica de estructuras existentes, ya que, actualmente, la definicion del orden en que se
deben realizar las posibles intervenciones se realiza por medio de métodos cualitativos. Considerando que
el modelo propuesto no es complejo y su aplicacion es directa, se estima que constituye en una herramienta
que dard mayor informacién para la toma de este tipo de decisiones a nivel macro.

La segunda, que consiste en la medicién indirecta de la rigidez en el plano de la pared por medio de
un ensayo no-destructivo, permite una evaluaciéon econémica de una estructura existente, ayudando a los
ingenieros de la practica a interiorizar la problematica de los porticos rellenos de mamposteria e incorporar
su influencia en los andlisis que se realizan para la rehabilitacién de estructuras existentes. La simplicidad
del ensayo permitirda contemplar la influencia de estas paredes incluso para estructuras menores.

Sobre el algoritmo ABC propuesto, se han extraido las siguientes conclusiones:

e El algoritmo es una variante de ABC-SubSim que evita la necesidad de afinar el hiperparametro py,
que controla en gran medida la eficiencia del algoritmo. Esto se lleva a cabo mediante una original
seleccién adaptativa de este parametro basada en una evaluacion parcial del siguiente subconjunto

de prueba.
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e Los ejemplos proporcionados demuestran tanto la eficiencia como la eficacia para la calibracion
de modelos estructurales no lineales basados en resultados de pruebas. Una comparacién de las
calibraciones realizadas por métodos convencionales (es decir, ”a mano”) demuestra las ventajas del
algoritmo A2BC-SubSim para este fin; sin embargo, también se hace notar que se requiere el criterio

del especialista para lograr consistencia en los resultados.

e El método se extiende para realizar la calibracion de un conjunto de pruebas, permitiendo la
inferencia de pardmetros de degradacion que son dificiles o imposibles de estimar utilizando métodos
convencionales. Por tdltimo, el método se aplica en un caso de estudio complejo para demostrar la
capacidad de realizar la inferencia dentro de modelos no lineales multidimensionales, utilizando datos

de monitorizacion de la salud estructural.

En cuanto al modelo simplificado de resorte de corte, en el que los parametros del comportamiento

constitutivo se predicen mediante una BNN, de esta investigacion se desprenden las siguientes conclusiones:

e Después de considerar todas las fuentes de incertidumbre que afectan al comportamiento sismico de
los MIF's, no se recomienda la aplicacién de modelos deterministas para estimar el comportamiento
de este tipo de estructuras. Los resultados demuestran que la aplicaciéon de modelos deterministas
puede conducir a una estimacién incorrecta de la rigidez lateral inicial y/o de la resistencia maxima
y/o de la degradacién de la estructura, dependiendo del modelo aplicado y del tipo de unidad de

mamposteria del sistema.

e Los datos disponibles sobre el sistema estructural del MIF son escasos y, por tanto, insuficientes para
desarrollar adecuadamente un modelo preciso. Sin embargo, el modelo probabilistico que aqui se
propone ayuda a captar mejor el comportamiento lateral esperado en el plano de la estructura, con

la ventaja adicional de dar informacién sobre la incertidumbre de la prediccién.

Sobre el procedimiento propuesto para inferir indirectamente la rigidez IP de los MIFs mediante la

frecuencia fundamental fuera del plano:

e A partir de los resultados de la campana experimental de cinco MIF's a escala de un cuarto, se
propuso un modelo simplificado que fue calibrado a los datos para predecir indirectamente la rigidez
en direccién paralela al plano de la pared, basandose en la frecuencia fundamental identificada en la

direccién perpendicular al plano de la pared.

e La aplicabilidad del método se amplié para cubrir adecuadamente las predicciones del modelo fuera
del rango de configuracién dado por los datos experimentales, mediante un estudio paramétrico
realizado con un meso-modelo basado en la fisica del MIF. Se obtuvieron coeficientes de influencia
para considerar los efectos de la relacion altura-longitud, la relaciéon altura-espesor, la resistencia

caracteristica de la mamposteria y el tamano a escala del MIF. Se presentaron varios ejemplos de
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aplicacién, demostrando la capacidad y eficacia para predecir la rigidez en el plano de los MIFs a

partir de sus frecuencias fundamentales fuera del plano.

e El modelo lineal propuesto con un puntal equivalente es capaz de reproducir razonablemente las

propiedades dindmicas del modelo experimental dindmico.
A continuacién se enumeran algunos trabajos futuros deseables:

e Explorar la aplicaciéon de redes neuronales guiadas por la fisica para explotar las capacidades de

modelacién numérica de micro o meso-modelos en el marco de las redes neuronales artificiales.

e El método propuesto para estimar indirectamente la rigidez en el plano de un muro en términos de
la frecuencia fundamental fuera del plano requiere ensayos de laboratorio adicionales para confirmar
los resultados obtenidos aqui mediante modelacién numérica y para captar mejor la influencia de
diferentes escenarios de dano de los muros de mamposteria en el sistema estructural MIF. En esa
direccion, resulta interesante realizar ensayos sobre especimenes de mayor escala de estructuras MIF

con la consideracién de la variacion de la condiciéon de unién marco-pared, entre otras variables.

e Sc presentaron casos de estudio en los que se aplicaron los métodos propuestos en los capitulos 6 y 7,

para la evaluacién estructural de edificios MIF, en donde se demuestra su potencial.

e A lo largo de esta tesis se han presentado algunas aplicaciones de inferencia de pardmetros de modelos
dindmicos, utilizando el algoritmo A%2BC-SubSim. El estudio de la inferencia de estos modelos y,
después de varios ensayos para obtener mejores resultados con los parametros obtenidos, pareceria
que los métodos clasicos para modelar el amortiguamiento no son siempre la mejor opcién. Esta
dltima afirmacién no se demostré especificamente, ya que estéd fuera del alcance de esta investigacion.
Sin embargo, se hace notar que el algoritmo podria ser una herramienta adecuada para buscar
estrategias alternativas de modelacién numérica del efecto de decaimiento de las respuesta de las

estructuras.
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Appendix A

Data records

This appendix shows the seismic excitation and the measured response of the specimens described in

Chapter 8. For each test, the following data are shown:

e Data from shake table instrumentation (in z and y directions):

Displacement

— Acceleration

— Force

— Fourier spectra of the acceleration records

— Acceleration and displacement response spectra of the acceleration records, corresponding to
5% of the critical damping

e Data from instrumentation installed on each wall:

— In-plane (IP) acceleration at the top of the wall recorded with a seismic accelerometer

IP acceleration at the top of the wall recorded with a piezo-electric accelerometer

Out-of-plane (OOP) acceleration at the mid height of the wall recorded with a piezo-electric

accelerometer

— IP displacement at the base of the wall

IP displacement at the top of the wall

IP drift

— Fourier spectra from the acceleration records at the top of the wall (IP) and at the mid height

(OOP)

— Power density spectra from the acceleration records at the top of the wall (IP) and at the mid

height (OOP)
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1 Data obtained from shake table instrumentation
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Figure 1: Shake table instrumentation data from 025 record.
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Figure 2: Shake table instrumentation data from 050 record.



Data from shake table instrumentation - WN1 record
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Figure 3: Shake table instrumentation data from W N1 record.
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Figure 4: Shake table instrumentation data from 075 record.



Data from shake table instrumentation - WN2 record
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Figure 5: Shake table instrumentation data from W N2 record.
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Figure 6: Shake table instrumentation data from 100 record.




Data from shake table instrumentation - WN3 record
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Figure 7: Shake table instrumentation data from W N3 record.
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Figure 8: Shake table instrumentation data from 150 record.



Acceleration X (g)
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Figure 9: Shake table instrumentation data from W N4 record.
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Data from shake table instrumentation - WN5 record
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Figure 11: Shake table instrumentation data from W N5 record.
1.1 Fourier spectra from acceleration records
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Figure 12: Fourier spectra from 025 record.
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Fourier spectra - 050 record
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Figure 13: Fourier spectra from 050 record.
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Figure 14: Fourier spectra from W N1 record.
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Fourier spectra - WN2 record
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Figure 16: Fourier spectra from W N2 record.
Fourier spectra - 100 record
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Figure 17: Fourier spectra from 100 record.
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Figure 18: Fourier spectra from W N3 record.



Fourier spectra - 150 record
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Figure 19: Fourier spectra from 150 record.
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Figure 20: Fourier spectra from W N4 record.
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Figure 21: Fourier spectra from Sinesweep record.




0.06

(8)

Acceleration

0.04 1

0.02 1

0.00 1

Fourier spectra - WN5 record

3.0

2.51

2.01

1.5 1

0.5 1

0.0 1

—— Raw data
~—— Processed data

gy

=

50

T
100

T T T T
150 200 250 300
Frequency (Hz)

T T T T T
0 50 100 150 200 250 300
Frequency (Hz)

Figure 22: Fourier spectra from W N5 record.

1.2 Response spectra from acceleration records
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Figure 23: Response spectra from 025 record.
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Figure 24: Response spectra from 050 record.
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Figure 25: Response spectra from W N1 record.
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Figure 26: Response spectra from 075 record.
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Figure 27: Response spectra from W N2 record.




Response spectra - 5
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Figure 28: Response spectra from 100 record.
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Figure 29: Response spectra from W N3 record.
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Figure 30: Response spectra from 150 record.
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Figure 31: Response spectra from W N4 record.
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Figure 32: Response spectra from Sinesweep record.
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Figure 33: Response spectra from W N5 record.



2 Data from instrumentation of Wall 1

2.1 Acceleration records
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Figure 34: Acceleration records of wall 1 from 025 record.
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Figure 35: Acceleration records of wall 1 from 050 record.
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Figure 36: Acceleration records of wall 1 from W N1 record.
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Figure 37: Acceleration records of wall 1 from 075 record.
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Figure 38: Acceleration records of wall 1 from W N2 record.
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Figure 39: Acceleration records of wall 1 from 100 record.
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Figure 40: Acceleration records of wall 1 from W N3 record.
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Figure 41: Acceleration records of wall 1 from 150 record.
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Figure 42: Acceleration records of wall 1 from W N4 record.
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Figure 43: Acceleration records of wall 1 from Sinesweep record.
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Figure 44: Acceleration records of wall 1 from W N5 record.
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Figure 45: Acceleration records of wall 1 from 025 record.

Lateral displacements - Wall 1 - 050 record

——— Processed data - laser

T
20 40 60 80 100

—— Processed data - laser
——— From acc. processed data - sis
—— From acc. processed data - piezo

-

20 40 60 80 100

—— Processed data

20 40 60 80 100
Time (sec)

Figure 46: Acceleration records of wall 1 from 050 record.
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Figure 47: Acceleration records of wall 1 from W N1 record.
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Figure 48: Acceleration records of wall 1 from 075 record.
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Figure 49: Acceleration records of wall 1 from W N2 record.
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Figure 50: Acceleration records of wall 1 from 100 record.
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Figure 51: Acceleration records of wall 1 from W N3 record.
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Figure 52: Acceleration records of wall 1 from 150 record.
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Figure 53: Acceleration records of wall 1 from W N4 record.
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Figure 54: Acceleration records of wall 1 from Sine,weep record.
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Figure 55: Acceleration records of wall 1 from W N5 record.

2.3 Fourier analysis results from acceleration records
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Figure 56: Fourier transformation of wall 1 from 025 record.
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Figure 57: Fourier transformation of wall 1 from 050 record.
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Figure 58: Fourier transformation of wall 1 from W N1 record.
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Figure 59: Fourier transformation of wall 1 from 075 record.
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Figure 60: Fourier transformation of wall 1 from W N2 record.
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Figure 61: Fourier transformation of wall 1 from 100 record.
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Figure 62: Fourier transformation of wall 1 from W N3 record.



Fourier spectra - Wall 1 - 150 record

1.0 T T T 1.0 T T
= Processed data - Sis = Processed data - OOP
—— Processed data - Piezo
0.8 0.8 17—
k)
=
3
2
£ 06 0.61
©
o
[
N
= 0.4 4 0.4 14—
€
S
=
0.2 4 024
0.0 - 0.0
60 80 100 0 20 40 60 80 100
Frequency (Hz) Frequency (Hz)
Figure 63: Fourier transformation of wall 1 from 150 record.
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Figure 64: Fourier transformation of wall 1 from W N4 record.
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Fourier spectra - Wall 1 - WN5 record
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Figure 66: Fourier transformation of wall 1 from W N5 record.

2.4 Power density spectra (PDS) from acceleration records
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Figure 67: Power density spectra of wall 1 from 025 record.
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Figure 68: Power density spectra of wall 1 from 050 record.
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Figure 69: Power density spectra of wall 1 from W N1 record.
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Figure 70: Power density spectra of wall 1 from 075 record.
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Figure 71: Power density spectra of wall 1 from W N2 record.
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Figure 72: Power density spectra of wall 1 from 100 record.
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Figure 73: Power density spectra of wall 1 from W N3 record.
Power spectral density - Wall 1 - 150 record
1.0 1.0
= Processed data - Sis = Processed data - OOP
~ Processed data - Piezo
0.8 0.8
A
0.6 0.6 1
o
(5
N
©
E 0.4 0.4
o
z
0.2 1 0.2 1
0.0 - |l T T T 0.0 = T T T
20 40 60 80 100 0 20 40 60 80 100

Frequency (Hz)

Figure 74: Power density spectra of wall 1 from 150 record.
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Figure 75: Power density spectra of wall 1 from W N4 record.
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Figure 76: Power density spectra of wall 1 from Sine weep record.
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Figure 77: Power density spectra of wall 1 from W N5 record.



3 Data from instrumentation of Wall 2
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Figure 78: Acceleration records of wall 2 from 025 record.
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Figure 79: Acceleration records of wall 2 from 050 record.
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Figure 81: Acceleration records of wall 2 from 075 record.
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Figure 82: Acceleration records of wall 2 from W N2 record.
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Figure 83: Acceleration records of wall 2 from 100 record.
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Figure 84: Acceleration records of wall 2 from W N3 record.
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Figure 85: Acceleration records of wall 2 from 150 record.
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Figure 86: Acceleration records of wall 2 from W N4 record.
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Figure 87: Acceleration records of wall 2 from Sinesweep record.
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Figure 88: Acceleration records of wall 2 from W N5 record.
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Figure 89: Acceleration records of wall 2 from 025 record.
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Figure 90:

Acceleration records of wall 2 from 050 record.
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Figure 91: Acceleration records of wall 2 from W N1 record.
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Figure 92: Acceleration records of wall 2 from 075 record.
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Figure 93: Acceleration records of wall 2 from W N2 record.
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Figure 94: Acceleration records of wall 2 from 100 record.
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Figure 95: Acceleration records of wall 2 from W N3 record.
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Figure 96: Acceleration records of wall 2 from 150 record.
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Figure 97: Acceleration records of wall 2 from W N4 record.
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Figure 98: Acceleration records of wall 2 from Sine,weep record.
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Figure 99: Acceleration records of wall 2 from W N5 record.

3.3 Fourier analysis results from acceleration records
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Figure 100: Fourier transformation of wall 2 from 025 record.
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Figure 101: Fourier transformation of wall 2 from 050 record.
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Figure 102: Fourier transformation of wall 2 from W N1 record.
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Figure 103: Fourier transformation of wall 2 from 075 record.



Fourier spectra - Wall 2 - WN2 record
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Figure 104: Fourier transformation of wall 2 from W N2 record.
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Figure 105: Fourier transformation of wall 2 from 100 record.
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Figure 106: Fourier transformation of wall 2 from W N3 record.



Fourier spectra - Wall 2 - 150 record
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Figure 107: Fourier transformation of wall 2 from 150 record.
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Figure 108: Fourier transformation of wall 2 from W N4 record.
Fourier spectra - Wall 2 - Sine_sweep record
1.0 T T T 1.0 T T
= Processed data - Sis = Processed data - OOP
= Processed data - Piezo
0.8 0.8
L)
=
3
2 | |
- |
206 0.6
©
o
[
N
= 044 0.4
£
S
=
0.294— 0.2 1
0.0 =1 0.0 -

20

40 60 80 100
Frequency (Hz)

20

40 60 80 100
Frequency (Hz)

Figure 109: Fourier transformation of wall 2 from Sinesweep record.



Fourier spectra - Wall 2 - WN5 record
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Figure 110: Fourier transformation of wall 2 from W N5 record.

3.4 Power density spectra (PDS) from acceleration records
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Figure 111: Power density spectra of wall 2 from 025 record.
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Figure 112: Power density spectra of wall 2 from 050 record.
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Figure 113: Power density spectra of wall 2 from W N1 record.
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Figure 114: Power density spectra of wall 2 from 075 record.
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Figure 115: Power density spectra of wall 2 from W N2 record.
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Figure 116: Power density spectra of wall 2 from 100 record.
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Figure 117: Power density spectra of wall 2 from W N3 record.
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Figure 118: Power density spectra of wall 2 from 150 record.
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Figure 119: Power density spectra of wall 2 from W N4 record.
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Figure 120: Power density spectra of wall 2 from Sinesweep record.
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Figure 121: Power density spectra of wall 2 from W N5 record.




4 Data from instrumentation of Wall 3

4.1 Acceleration records
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Figure 122: Acceleration records of wall 3 from 025 record.
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Figure 123: Acceleration records of wall 3 from 050 record.
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Figure 124: Acceleration records of wall 3 from W N1 record.



OOP mid (g)

OOP mid (g)

IP top (g) - Sis

IP top (g) - Piezo

IP top (g) - Sis

IP top (g) - Piezo

Acceleration - Wall 3 - 075 record

80

=
[V
f=}

100

80

o 4
no
(=]

T
100

o
o
L

—— Processed data

o
o
L

|
o
o

L

60

o 4
no
=]

Time (sec)

Figure 125: Acceleration records of wall 3 from 075 record.
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Figure 126: Acceleration

records of wall 3 from W N2 record.
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Figure 127: Acceleration records of wall 3 from 100 record.
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Figure 129: Acceleration records of wall 3 from 150 record.
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Figure 130: Acceleration records of wall 3 from W N4 record.
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Figure 131: Acceleration records of wall 3 from Sinesweep record.

Acceleration - Wall 3 - WN5 record

0 20 40 60 80 100 120

<
S
L

o
o
L

|
<
o

f

= Processed data

0 20 40 60 80 100 120
Time (sec)

Figure 132: Acceleration records of wall 3 from W N5 record.
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Figure 133: Acceleration records of wall 3 from 025 record.
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Figure 134: Acceleration records of wall 3 from 050 record.
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Figure 135: Acceleration records of wall 3 from W N1 record.
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Figure 136: Acceleration records of wall 3 from 075 record.
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Figure 137: Acceleration records of wall 3 from W N2 record.
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Figure 138: Acceleration records of wall 3 from 100 record.
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Figure 139: Acceleration records of wall 3 from W N3 record.
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Figure 140: Acceleration records of wall 3 from 150 record.
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Figure 141: Acceleration records of wall 3 from W N4 record.
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Figure 142: Acceleration records of wall 3 from Sine weep record.
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Figure 143: Acceleration records of wall 3 from W N5 record.

4.3 Fourier analysis results from acceleration records
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Figure 144: Fourier transformation of wall 3 from 025 record.
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Figure 145: Fourier transformation of wall 3 from 050 record.
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Figure 146: Fourier transformation of wall 3 from W N1 record.
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Figure 147: Fourier transformation of wall 3 from 075 record.
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Figure 148: Fourier transformation of wall 3 from W N2 record.
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Figure 149: Fourier transformation of wall 3 from 100 record.
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Figure 151: Fourier transformation of wall 3 from 150 record.
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Figure 152: Fourier transformation of wall 3 from W N4 record.
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Figure 153: Fourier transformation of wall 3 from Sinesweep record.
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Figure 154: Fourier transformation of wall 3 from W N5 record.

4.4 Power density spectra (PDS) from acceleration records
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Figure 155: Power density spectra of wall 3 from 025 record.
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Figure 156: Power density spectra of wall 3 from 050 record.
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Figure 157: Power density spectra of wall 3 from W N1 record.
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Figure 158: Power density spectra of wall 3 from 075 record.
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Figure 159: Power density spectra of wall 3 from W N2 record.
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Figure 160: Power density spectra of wall 3 from 100 record.
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Figure 161: Power density spectra of wall 3 from W N3 record.
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Figure 162: Power density spectra of wall 3 from 150 record.
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Figure 163: Power density spectra of wall 3 from W N4 record.
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Figure 164: Power density spectra of wall 3 from Sinesweep record.
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Appendix B

Summary of contributions

Journal Articles

e Arroyo, O., Barros, J., Ramos, L. Comparison of the reinforced concrete seismic provisions of the
design codes of the United States, Colombia and Ecuador for low-rise frames. Earthquake Spectra,

Vol 34, pag 441-458, 2018. https://doi.org/10.1193/102116EQS178EP

e Barros, J., Chiachio, M., Chiachio, J. and Cabanilla, F. Adaptive approximate Bayesian computation
by subset simulation for structural model calibration. Comput Aided Civ Inf. 2021; 1- 20. https:
//doi.org/10.1111/mice.12762

e Barros, J., Chiachio, M., Ferndndez, J., Morillas, L. and Consuegra, J. Probabilistic shear response

modelling of masonry infilled frames. Submitted to Computers and Concrete.

e Barros, J., Chiachio, M., Morillas, L., Torres, W. and Suco, D. A novel semi-empirical approach
to non-destructively evaluate the effect of infills on frame buildings. Submitted to Engineering

Structures.

e Ferndndez, J., Chiachio, J., Chiachio, M., Barros, J. and Corbetta, M. Physics-Guided Bayesian
Neural Networks by ABC-SS: Application to reinforced concrete columns. Engineering Applications
of Artificial Intelligence. March 2023. Volume 119. https://doi.org/10.1016/j.engappai.2022.
105790

Conference Proceedings (full-papers)

e Rojas, P., Miranda, E., Barros, J., Rosero, D., Marquez, W. and Garcfa, L. Seismic performance and
rehabilitation of the port of manta after the 2016 Ecuador Earthquake. Ports 2019: Port Engineering,
15th Triennial International Conference, September 15-18, 2019, Pittsburgh, Pennsylvania. ISBN:
9780784482612, pag. 603-615. https://doi.org/10.1061/9780784482612.057.
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e Chiachio, M., Barros, J. and Chiachio, J. Probabilistic Safety Assessment of concrete columns by
approximate bayesian computation. ESREL 2020 and PSAM 15, The 30th European Safety and
Reliability Conference, The 15th Probabilistic Safety Assessment and Management Conference, 1-6
Nov., 2020, ISBN: 978-981-14-8593-0. https://www.rpsonline.com.sg/proceedings/esrel2020/
pdf/4974 . pdf.

e Rojas, P., Retamales, R., Miranda, E., Caballero, M., Barros, J. and Garcia, L. Seismic Performance
and Rehabilitation of the Solca Hospital Main Buildings after the 2016 Pedernales Earthquake. In
proceedings of the 10th International Conference on Behaviour of Steel Structures in Seismic Areas

(STESSA), 2022. ISBN: 9783031038112.

e Rojas, P., Miranda, E., Barros, J., Rosero, D., Marquez, W. and Garcia, L.. Case History of a
Rehabilitated Port Facility after the 2016 Ecuador Earthquake. Ports 2022: Port Engineering, 16th
Triennial International Conference, September 18-21, 2022, Honolulu, Hawaii. ISBN: 9780784484395,
pag. 93-103. https://doi.org/10.1061/9780784484395.010.

International Conferences

e Ponce, G., Barros, J., Blondet, M. and Chiachio, M. Modelling Cyclic Degradation of Bridge
R.C. Columns Subjected to Concurrently Seismic Events. 17th World Conference on Earthquake
Engineering (WCEE17), 2021, September 27th to October 2nd, Sendai, Japan.

e Barros, J., Chiachio, M., Barreiro, J. and Consuegra, J. Calibracién automatizada de modelos
numéricos en base a ensayos de columnas de hormigén. Yachana, Vol. 8 No. 2, pag. 109-118,
2019. ISSN: 1390-7778 (ISSN elctrénico: 2528-8148). http://revistas.ulvr.edu.ec/index.php/
yachana/article/view/602/345

Technical seminars as invited speaker

e José Barros. Inferencia de pardmetros de modelos numéricos usando ABC. Universidad Técnica de

Manab{ (UTM). By invitation of Ing. Edgar Menéndez.

e José Barros. Métodos Bayesianos para calibracion de modelos y andlisis probabilistico de estructuras.

Universidad de las Fuerzas Armadas, ESPE. By invitation of Prof. Dr. Roberto Aguiar Falconi.

e José Barros. Evaluacion de la probabilidad de colapso de estructuras de porticos con mamposteria
frente a sismos. Universidad Catélica de Santiago de Guayaquil (UCSG). By invitation of Prof. Dr.
Walter Mera Ortiz.

e José Barros. Evaluacion sismica de estructuras de pdrticos con mamposteria usando ensayos no

destructivos. Escuela Politécnica del Litoral (ESPOL). By invitation of Ing. Hugo Landivar.
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