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Abstract—The development of autonomous or self-driving
networks is one of the main challenges faced by the telecom-
munication industry. Future networks are expected to realise
a number of tasks, including network optimization and failure
recovery, with minimal human supervision. In this context,
the network community (manufacturers, operators, researchers,
etc.) is looking at Machine Learning (ML) methods with high
expectations. However, ML models can only be as good as the
data they are trained on, which means that autonomous networks
also require a sound autonomous procedure to assess, and if
possible improve, data quality. Although the application of ML
techniques in communication networks is ample in the literature,
analyzing the quality of the network data seems an ignored
problem. This paper presents work in progress on the application
of permutation testing to assess the quality of network datasets.
We illustrate our approach on a number of simple synthetic
datasets with pre-established quality and then we demonstrate
its application in a publicly available network dataset.

Index Terms—data quality assessment, permutation testing,
anomaly detection, classification, network data, autonomous net-
works, self-driving networks

I. INTRODUCTION

There is an increasing interest in the development of new
machine learning (ML) methods to improve the performance
of communication networks in tasks like network monitoring,
troubleshooting and optimization [1]. Massive amounts of data
can be easily gathered from network deployments [2], and
there is the (sometimes naive) belief that every time enough
data are available, ML tools can be a suitable problem-solving
tool. However, the well-known phrase ”garbage in - garbage
out” (GIGO) reflects the general agreement that ML tools can
only be as good as the data they are trained on, and so we need
high-quality datasets [3] [4]. GIGO is a very relevant concept
in the study of autonomous networks, which are expected to
operate with minimum human intervention. For that purpose,
autonomous networks need to generate data to train and
update ML models. In this context, data quality problems, like
mislabeling, incompleteness or lack of generalization, need to
be identified in the generated datasets, which calls for means
to assess data quality [5].

A lot of effort has been devoted by the scientific community
to improve the quality of ML models from low-quality datasets
[6]. In order to improve model quality, operations like data

cleaning and optimization of hyperparameters are usually
performed. While the effects of duplicates, outliers or missing
values are relatively easy to fix, the general characteristics of
the dataset such as completeness, accurateness, consistency,
variety or uniqueness, remain difficult to assess [7]. Moreover,
class imbalance [8], class overlapping [9], noise in data [10],
incorrect labeling [11] or even the size of the dataset [12]
can also affect the training of ML models. As shown in [13],
permutation testing [14] [15] can be a useful tool to evaluate
the impact of noisy data on the model performance.

Contrary to previous work, our goal in this paper is to assess
the quality of the dataset, rather than the quality of a model.
The quality of the dataset affects the development of any
model trained from it, and thus we believe it is a more general
problem. Dataset quality evaluation is key in the analysis
and modeling of big data [16], and it is of interest when
developing new benchmarking datasets, critical for network
research. Recently, metamorphic testing has been proposed
for validating the variety, fidelity and veracity of a model in
connection with the data [17]. This approach detects errors
in the training dataset verifying the relationships between
the input and output data. In turn, crowdsourcing improves
the quality of the dataset by taking human knowledge into
account [18].

This paper introduces a novel approach for the application
of permutation testing to assess the quality of network datasets.
Preliminary results show a promising performance of the
proposed method in both synthetic and real data and for
tasks like anomaly detection and classification. The rest of
the paper is as follows: Section II introduces the proposed
permutation approach for dataset quality assessment, Section
III presents the results of the experiments and Section IV
draws the conclusions.

II. PROPOSED APPROACH

Permutation testing [14] is a simple and intuitive form of
non-parametric inferential statistics. Thus, it is used for the
computation of probabilities and p-values that are specifically
tailored to the dataset at hand, without any assumption about
the null distribution. We can use this method to evaluate to
which extent a model performance figure (e.g, classification
accuracy, correlation coefficients, etc.) is the result of chance.978-1-6654-0601-7/22/$31.00 © 2022 European Union



The permutation testing is a resampling approach. Take for
instance a dataset X with N observations from two variables.
We can test whether the correlation between these variables
is significantly high by creating a large number of permuted
instances of X where the order of the observations in (only)
the first variable is randomly shuffled. This would produce
one hundred new correlation coefficients, one per permuted
dataset, representing a null distribution of the correlation
coefficients we can expect in a dataset like X. If our true
correlation is above, say, 99 of the 100 resamples, then we can
say it is statistically significantly high with a p-value ≤ 0.01.

In a labelled dataset, where observations belong to a set of
predefined classes (like normal vs anomalous) we can compute
permutation tests in different ways. A first choice is to permute
only the labels, which can be useful to check whether the
dataset at hand, X, is able to predict a wider set of different
labeling instances. This would indicate that the content of
the data in X is not specific of the true labeling, but rather
general, and in turn that the association created in ML models
trained with this data is only the (partial) result of chance.
Alternatively, we can permute the X block to check how easily
can we predict the true labeling by using randomized data, in
turn assessing again the significance of the association of the
true data with the labeling. Both possibilities are tailored to the
data that remains unaltered: the X block in the first approach,
and the labeling in the second. In this work in progress, we are
interested in the first form of permutation, where only labels
are permuted.

Since we are interested in assessing the quality of the data,
rather than of a particular model, our approach includes a
pool of classifiers ranging from simple to complex (non-linear)
classifiers. The motivating assumption is simple: if all models
perform bad, then the data is of bad quality; but if a subset of
models perform good, then the data is of good quality. This
assessment is limited by the availability of good modelling
approaches. To assess the quality of a dataset (e.g., a bench-
mark), the pool of classifiers can incorporate state-of-the-art
models as they are published, so that we guarantee that the
evaluation includes the best possible modelling approaches. In
this work-in-progress, we did not look in detail the sensitivity
of the approach to the specific choice of classifiers.

Using the classifiers, we obtain a pool of performance
measures for the dataset. To test whether this performance
is significant, we apply permutation testing to percentages of
the observations (from 100% to 1%) so that we can evaluate
the loss of performance (if any) when only part of the data
is permuted. This allows us to assess the relevance not only
of the entire dataset, but also parts of it, in order to assess
the accuracy of the labeling throughout the entire data. This
approach limits the concept of data quality to problems like
unsupervised anomaly detection and supervised classification,
and the quality dimension assessed is whether the data contains
enough information to predict a specific labelling.

An advantage of permutation testing in comparison to the
other methods for data quality assessment mentioned in the
introduction, is that the former creates a null distribution that

allows us to test the statistical significance of the pool of
classifiers fitted from the model.

III. EXPERIMENTS AND RESULTS

To illustrate our approach, we use the Weles tool [19] and a
pool of classifiers with default metaparameters: the K Nearest
Neighbours (KNN), Gaussian Naive Bayes (GNB), AdaBoost
(Adab), Decision Tree (DT), Random Forest (RF) and the
Multi-Layer Perceptron (MLP). We apply stratified cross-
validation and consider the F-measure (F1) as performance
value. Our approach can also be used with other classifiers
and performance measures.

A. Toy datasets

We created four random datasets with two variables and
200 observations evenly distributed in two classes. The four
datasets are depicted in Figure 1. The first dataset represents
good-quality data which can be linearly separated. This is the
simplest case for a ML model. The second dataset is arguably
of mid-quality, since both classes are partially overlapping.
Given that we control the data generation mechanism and that
there are no additional variables in the data, we know for
certain that no non-linear model can separate the classes in
the overlapping region in a systematic way. This situation is
even worse in the linear bad-quality dataset, the third example,
where observations are drawn from a common distribution and
are randomly assigned to a class. Finally, the fourth example
is a good-quality non-linear dataset, which requires non-linear
ML models for classification. These examples illustrate that
our concept of quality is not synonym for complexity: the
non-linear data is complex to model, but quality remains good.

The results of the data evaluation with our permutation
approach is shown graphically in Figure 2 and numerically
in Table I. The permutation charts in the figure show the
F1 obtained for each classifier on the true data (diamonds)
and on the data after partial permutation (circles). Considered

(a) Linear good-quality (b) Linear mid-quality

(c) Linear bad-quality (d) Nonlinear good-quality

Fig. 1: Toy datasets: two variables and 200 observations, half
of them belonging to one in two classes.



percentages for permutation are: 100%, 50%, 25%, 10%, 5%,
1%, for each of which we compute 100 resamples (600 in
total). In the abscissas, each permutation is located depending
on the correlation between the true labeling and the permuted
one [20], so that resamples of 100% of permutation are located
around the 0 correlation, while those for 1% are close to
correlation 1. The tables show the corresponding p-values,
obtained as:

P = (No. of (F1∗ ≥ F1)+1)/(Total no. of F1∗+1) (1)

where F1 refers to the statistic computed from the real data
and F1∗ stands for the statistics of the permutations.

Figure 2a shows that all classifiers obtain an optimal per-
formance in the linear good-quality dataset: this is seen in the
fact that all diamonds are set to 1 and all permuted results
are below that value. The corresponding table shows that
results are statistically significant even for 1% of permutation,
and therefore when very small inconsistencies in the data
are induced. Thus, this dataset is of optimal quality and also
simple to model, since all classifiers perform optimally. Figure
2b reflects that the quality of the data is not that good. In the
corresponding table we can see that none of the classifiers are
significant for 10% or below, which should be understood as
the result of the overlapping region in Figure 1b. Figure 2c
and the corresponding table show that the performance of the
classifiers is not significant for any 100% of the permutation,
reflecting that there is no useful information in the bad-quality
dataset to predict the labelling. Finally, Figure 2d and the
corresponding table show that only a sub-set of classifiers
can perform well at all permutation percentages. This reflects
that the data is of optimal quality (at least one classifier is
significant at 1%) but complex (not all classifiers perform
well).

B. Case study 2 - the inSDN dataset

The second experiment was conducted on the publicly
available inSDN dataset [21]. This dataset was recently pub-
lished to provide attack-specific Software Defined Networking
(SDN) data to the research community and it is attracting a
moderate interest. The data comprises traffic flows of normal
(legitimate) traffic and of a number of attacks. We considered
the complete dataset, with nearly 350K flows (68.424 normal
and 275.465 attacks), and also another instance of the dataset
where only DoS attacks are considered (68.424 normal and
53.616 attacks), and evaluated the quality of the data for the
problem of classifying attacks from normal traffic. Due to
the data size, we compute 25 resamples per each permutation
percentage considered before (a total of 150).

The results of the data evaluation with our permutation
approach is shown in Figure 3 and in Table II. Looking at
the table, the dataset could be considered of high quality, since
most classifiers attain significant performance for any percent-
age of permutation. However, the permutation chart shows
an interesting pattern: several permuted models achieve better
quality for 100% of permutation than for 50%. This behaviour
is particularly pronounced in the dataset with all the attacks,
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Fig. 2: F1 permutation charts: true performance is shown with
diamonds and horizontal lines, resamples with circles, the
minimum performance is also represented by a horizontal line.

TABLE I: P-values computed in the permutation. Symbol .
should be read as <0.01. All p-values above 0.05 are in red.

Linear good-quality dataset Linear mid-quality dataset
100% 50% 25% 10% 5% 1% 100% 50% 25% 10% 5% 1%

KNN . . . . . . . . . .14 .27 .44
GNB . . . . . . . . . .06 .16 .26
Adab . . . . . .04 . .02 .02 .11 .26 .40
DT . . . . .04 .15 . .03 .05 .12 .17 .30
RF . . . . . . . .02 .06 .28 .28 .55
MLP . . . . . . . . . .07 .13 .22

Linear bad-quality dataset Non-linear good-quality dataset
100% 50% 25% 10% 5% 1% 100% 50% 25% 10% 5% 1%

KNN .23 .33 .33 .23 .23 .53 . . . . . .
GNB .73 .54 .41 .50 .52 .61 . . . . .03 .11
Adab .75 .82 .67 .60 .72 .78 . . . . .02 .11
DT .71 .82 .68 .56 .65 .81 . . . . . .05
RF .23 .43 .34 .20 .23 .43 . . . . . .02
MLP .42 .42 .24 .14 .18 .10 . . . .03 .09 .30

where most permuted models at 100% of permutation show
an F1 around 0.8. Interestingly, from 50% of permutations,
results follow a similar pattern to the one found in good-
quality synthetic datasets. Our intuition is that the data is rich
in patterns that can predict almost any labelling of the flows,
explaining the good performance at 100% of permutations.
When we only use partial permutations, the performance is
decreased as both correct and permuted labels reflect contra-
dictory patterns. We speculate that this behaviour can pose
a relevant problem in unsupervised anomaly detection, when
the labelling is not explicitly used in model training. Our
initial attempts to build anomaly detection models in this data
agree with this conclusion, but more experiments are needed
to validate this conclusion.

IV. CONCLUSIONS AND FUTURE WORKS

Suitable evaluation of the quality of a dataset is critical for
building high-quality machine learning models that can be put
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(b) InSDN with all attacks

Fig. 3: F1 permutation charts in the inSDN dataset [21].

TABLE II: P-values for the inSDN dataset [21]. Symbol .
should be read as <0.05. All p-values above 0.05 are in red.

InSDN with DoS InSDN with all attacks
100% 50% 25% 10% 5% 1% 100% 50% 25% 10% 5% 1%

KNN . . . . . . . . . . . .
GNB . . . . . . . . . . . .
Adab . . . . . .12 . . . . . .35
DT . . . . . . . . . . . .
RF . . . . . . . . . . . .
MLP . . . . . .19 1.00 . . . . .

into production, which in turn is mandatory for the develop-
ment of autonomous networks. This paper presents work in
progress to develop a methodology to evaluate the quality of
a dataset based on a pool of classifiers and permutation testing.
We have shown that the approach can successfully differentiate
between quality and difficulty of classification of a dataset in
both simulated and real data.

The main limitation of this approach is the computational
cost, which is intensive and renders the method (as it is
now) not applicable with computationally expensive (e.g.,
deep learning) classifiers or in massive datasets. However, full
paralelization is always a posibility to speed up computation.
Another limitation is the assumption that the dataset quality
depends on the performance of the pool of classifiers. It may
be the case that a good quality dataset cannot be classified with
state-of-the-art machine learning methods. However, under this
circumstance, the dataset itself is of little practical use for
the training of those methods. Finally, the approach requires
a labelled dataset, which can be hard to obtain but is also
required in several practical applications.

As future work, we would like to test our approach on
several real data sets more; validate our conclusions on the
InSDN dataset; and derive a figure of merit to assess the
quality of a dataset using the permutation approach: a scalar
value that can complement the visualization and the table with
p-values.
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