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• Useful to estimate levels of drought alert
and anticipate management responses

• It integrates artificial neural networks,
geostatistics and climatic variables.

• NAR is the best approach in well locations
with lower R2 between GWL and P
and Pef.

• NARX and Elman approaches were se-
lected >70 % of the instances.

• We obtained amean RMSE of 0.90m fore-
casting test for the 51 wells studied.
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Groundwater plays a significant role as a strategic resource in reducing the impact of droughts. In spite of its impor-
tance, there are still many groundwater bodies in which there is not enough monitoring data to define classic distrib-
uted mathematical models to forecast future potential levels. The main aim of this study is to propose and evaluate a
novel parsimonious integratedmethod for the short-term forecasting of groundwater levels. It has low requirements in
term of data, and it is operational and relatively easy to apply. It uses geostatistics, optimal meteorological exogenous
variables and artificial neural networks. We have illustrated our method in the aquifer “Campo de Montiel” (Spain).
The analysis of optimal exogenous variables revealed that, in general, the wells with stronger correlations with precip-
itation are located closer to the central part of the aquifer. NAR, which does not consider secondary information, is the
best approach for 25.5 % of the cases and is associated with well locations with lower R2 between groundwater levels
and precipitation. Amongst the approaches with exogenous variables, the ones that use effective precipitation have
been selected more times as the best experiments. NARX and Elman using effective precipitation had the best ap-
proaches with 21.6 % and 29.4 % of the cases respectively. For the selected approaches, we obtained a mean RMSE
of 1.14 m in the test and 0.76, 0.92, 0.92, 0.87, 0.90, and 1.05 m for the forecasting test for months 1 to 6 respectively
for the 51 wells, but the accuracy of the results can vary depending on the well. The interquartile range of the RMSE is
around2m for the test and forecasting test. The uncertainty of the forecasting is also considered by generatingmultiple
groundwater level series.
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1. Introduction

One of themain challenges of water resourcemanagement in areas with
scarce resources is how to deal with droughts and their propagation (Barker
et al., 2016; Hidalgo-Hidalgo et al., 2022). These problems may become
exacerbated in the future due to climate change (Collados-Lara et al.,
2020, 2022), especially in the Mediterranean basin (Cramer et al., 2018;
Tramblay et al., 2020) and areas with conflicts between wetland conserva-
tion and intensive agriculture (Ahmadi et al., 2021; Pulido-Velazquez et al.,
2023). In these systems, groundwater may play a significant role as a
strategic resource to reduce the impact of droughts (Leduc et al., 2017;
Pulido-Velazquez et al., 2020).

In order to analyse the potential management strategies in a rational
way, in addition to performing continuous monitoring activities and
methods to estimate the hydrodynamic parameters in the aquifer (Dashti
et al., 2023), we need to use models which help to understand the system
behaviour better and to forecast the potential future status of the system
(Linés et al., 2018; Gomez-Gomez et al., 2022). The models are used to
assess the potential future long horizon impact, including the propagation
of climate change effects on aquifer recharge (Pardo-Igúzquiza et al.,
2019; Dubois et al., 2022) and groundwater levels (Moseki, 2018;
Pulido-Velazquez et al., 2018), but also for short-term future forecasts of
groundwater recharge or status (Zaadnoordijk et al., 2019). These short-
term predictions can even be applied to estimate levels of drought alert in
accordance with the historical and forecasted groundwater levels (Pham
et al., 2022; Mackay et al., 2015).

In this context, machine learning (ML) models are widely used for
predicting groundwater levels and dynamics, as they can capture complex
non-linear relationships between input and output variables. ML is a subset
of AI that involves the use of algorithms and statisticalmodels to enablema-
chines to learn from data without being explicitly programmed. Artificial
intelligence (AI) refers to the simulation of human intelligence in machines
that are programmed to perform tasks that would usually require human in-
telligence, such as decision-making.

Each ML model has strengths and limitations, and their performance
may depend on various factors such as data quality, model structure, and
parameter selection, amongst others. Many studies can be found in this re-
gard. In (Chen et al., 2020), the authors compare one numerical model and
three ML algorithms such as multi-layer perceptron, radial basis function
network and extreme machine learning to simulate the groundwater dy-
namics of the middle reaches in China. The authors of (Rohde et al.,
2021) used satellite-based remote sensing data to predict groundwater
levels under different ecosystems across California. They used random for-
ests to relate groundwater levels to vegetation indices. Finally, a systematic
review can be found in (Tao et al., 2022) of some studies that used ML
models for this purpose.

In spite of their utility, there are still many groundwater bodies inwhich
there is not enoughmonitoring and/or there are nomathematicalmodels to
forecast future potential levels (Mengistu et al., 2021). In recent years, there
has been an increased application of ML approaches (Jimeno-Sáez et al.,
2017; Martinsen et al., 2022) in addition to the classical stochastic models,
such as auto-regressive models, in the hydrology field for basin (Senent-
Aparicio et al., 2018; Pulido-Velazquez et al., 2008) and aquifer scale
(Llopis-Albert and Pulido-Velazquez, 2015; Baena-Ruiz et al., 2018)model-
ling. However, errors in the structure of the model, parameters, and data
can lead to both random and systematic errors in the output of a calibrated
model (Xu et al., 2014). Therefore, there is a need for improved modelling
techniques that can better account for these uncertainties and provide accu-
rate forecasts of groundwater levels.

Recent advances in ML techniques have shown promise in the field of
hydrology as an alternative to traditional numerical models for forecasting
future groundwater levels (Tao et al., 2022; Aguilera et al., 2019). One ad-
vantage of the ML approach is that it requires less data and time for model
definition and calibration, compared to the classical distributed models
(Tao et al., 2022; Aguilera et al., 2019). In these lines, an artificial neural
network (ANN) is a type of ML algorithm that is inspired by the structure
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and function of the human brain. It consists of interconnected nodes, or
neurons, which are organised into layers that process information and can
learn to recognize patterns in data, making it a powerful tool for hydrology
applications. Coupling wavelet analysis with ANNs has also been explored
as a way to enhance the accuracy of the predictions (Adamowski and
Chan, 2011). ML is also combined with other methods to model the spatio-
temporal dynamic (Nourani andMousavi, 2016) to improve the accuracy of
the simulations. ANNs can be used as a surrogate model in hydrological
processes (Zhang et al., 2020). Surrogate modelling is a technique com-
monly used in engineering and scientific applications to model complex
systems when direct measurement or computation of the outcome is diffi-
cult or costly (Razavi et al., 2012). The surrogate model serves as a proxy
for the original system and can be used to make predictions or optimize
the system with a reduced computational burden. The surrogate model is
built based on a limited set of input/output data pairs from the original sys-
tem and can be constructed using various methods (Zhang et al., 2020).
Similarly, response surface modelling (Kay et al., 2021) is a mathematical
and statistical technique useful for developing and improving processes. It
is used to analyse the complex relationships between multiple independent
variables and their effect on the variable of interest. It may help to identify
the optimal values of the independent variables that maximise or minimise
the response variable. This technique is particularly useful when multiple
input factors are expected to have an impact on the output.

ML approaches have been used to consider different exogenous vari-
ables, such as climate variables, which can improve the accuracy of the
forecast (Hussein et al., 2020).The most commonly used exogenous vari-
ables for hydrological modelling are precipitation and temperature, but in
some cases, combined variables such as effective precipitation have also
been used (Tao et al., 2022). Exogenous variables may also help to under-
stand the variability of groundwater quantity and quality in the same way
as groundwater clustering techniques (Nourani et al., 2022). However,
these exogenous or target variables may require additional processing
using geostatistical techniques to convert them into useful information for
the proposed forecast approach (Collados-Lara et al., 2018; Bhat et al.,
2015).Most of themodels aim at assessing the potential impact of droughts
for management purposes operate at a monthly scale (Mukherjee et al.,
2018). This is because extreme events such as droughts are not character-
ized by a fast response of the system, unlike flood analyses that require
consideration at daily or even smaller temporal resolutions to simulate
potential impacts (Didovets et al., 2019). Analyses of droughts and their
propagation are usually performed by aggregatingmonthly results into sea-
sonal, yearly (the most common approach), or longer periods.

In this study, we propose a novel methodological framework for short-
term forecasting of groundwater levels (GWL) on a monthly scale by
using meteorological data, geostatistics and artificial neural networks
(ANN). Generally, for a specific problem, multiple ANN structures can sat-
isfactorily represent the training data, and for each structure, there are
many appropriate sets of network weights and biases (Razavi et al.,
2012). In this study, we have tested different ANN approaches, exogenous
variables, number of neurons and delays.

The aim of this study is to propose and analyse the potential of a novel
parsimonious integrated method for short-term forecasting of groundwater
levels. It has low requirements in terms of data, and it is operational and rel-
atively easy to apply. The main novelty of our method with respect to pre-
vious research studies is that it integrates (1) an ordinary krigging
procedure to complete gaps in GWL series, (2) a novel approach to select
optimal exogenous variables based on GWL response time to meteorologi-
cal forcing, (3) a detailed analyses of several ANN approaches and exoge-
nous variables within each well location has also been performed, and
(4) it generates multiple simulations of future GWL series in order to take
into account uncertainty within forecast systems. The proposed methodo-
logical framework is illustrated through the analysis of the case study of
the Campo de Montiel groundwater body (GWB), which is located in the
Upper Guadiana basin (south-eastern Spain). This area highlights a conflict
between groundwater-dependent ecosystems and groundwater pumping to
supply irrigation demands and the proposed approach could be very useful
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to estimate levels of drought alert and anticipate the management re-
sponses. However, our method is a parsimonious approach (from the
point of view of the needed data) which can easily be applied to any case
study.

2. Methodology

The methodological framework proposed (Fig. 1) requires (1) the com-
pletion of the GWL data, (2) the analysis of the correlations of GWL data
with precipitation and effective precipitation to obtain the optimal exoge-
nous variable, and (3) the application of the ANN approach proposed.
These methodologies are explained in the following sub-sections.

2.1. GWL data completion

We applied two completion procedures, a temporal linear interpolation
procedure applied to eachwell location and a geostatistical spatio-temporal
interpolation applied to the whole well location. The linear interpolation
was applied to the data gaps lower than or equal to 6 months. The
geostatistical interpolation was applied to the remaining gaps in the GWL
data. GWL is a variable with spatial continuity which changes gradually.
The ordinary kriging (OK) approach takes into account the spatial correla-
tion information to estimatefields (Collados-Lara et al., 2018). OKuses data
of the target variable to obtain the estimates and the variogram to quantify
the spatial correlation. In our case study, we fitted a Gaussian variogram to
the mean GWL data. We tested two approaches based on OK, applied to the
GWL data and applied to the difference between the GWL data and the
average GWL data for each well location. Both procedures were compared
through a cross-validation procedure. In geostatistics the cross-validation
(Chilès and Delfiner, 1999) is generally accepted as the following the
procedure which is also known as the leave-one-out cross-validation:
0) The variogram of the variable of interest (GWL in our case) is estimated
using the complete set of n experimental data, 1) one datum is eliminated
from the data set, 2) the rest of the n-1 data are used to produce an estimate
of the target variable at the location where the datum was eliminated,
3) the true error incurred in this process is calculated by the difference
between the actual value and the estimated value). 4) Steps 1 to 3 are
repeated for the n experimental data. 5) Cross-validation statistics are
calculated by using the n true errors. In this study we used two statistics:
the mean error (ME) and the root mean squared error (RMSE). The ME is
the bias of the estimation, where the value should be around zero. The
RMSE is the accuracy of the estimate and the value should be as small as
possible.
Fig. 1. Flow chart of the proposed method.
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2.2. Analysis of the correlation of GWL with exogenous variables

The correlation of GWL vs. precipitation (P) and effective precipitation
(Pef) were analysed for all the well locations to obtain the exogenous vari-
ables that can explain in part the GWL dynamics. Pef was calculated using P
and potential evapotranspiration on a daily scale. Potential evapotranspira-
tion was calculated from the temperatures by using the Hargraves method
(Hargreaves and Allen, 2003). We accumulated P and Pef considering dif-
ferent backwards windows of time (see Fig. 1). Thus, if we consider accu-
mulation periods up to the last 24 months we have 24 time series of P
and Pef. The correlation coefficient (R2) of GWL vs. P and Pef was calcu-
lated for each well location by using the different accumulated series.
Note that depending on the well location the relationship with the studied
exogenous variables maybe different. The GWL can be explained in part by
P or Pef ifwe obtain highR2 or less clearly ifwe obtain lowR2. The response
of GWL to the changes of P or Pef can be fast if we are able to obtain higher
correlations for lower accumulation periods or slow if we obtain higher cor-
relations for higher accumulation periods.

2.3. ANN application

MLmodels are widely used in hydrological modelling to learn the statis-
tical correlation between random variables of interest, such as rainfall, run-
off, water level, water quality, etc. (Yang and Chui, 2021). Some of the
common ML models that have been applied in this field are ANN, support
vector machines (SVM), random forests (RF) k-nearest neighbours (kNN)
amongst others (Herath et al., 2021; Shen et al., 2021). These models
have different advantages and disadvantages in terms of accuracy, com-
plexity and interpretability. In this context, ANNs are often more suitable
for non-linear and dynamic problems (Essenfelder and Giupponi, 2020)
though they may also suffer from overfitting or lack of transparency. An-
other ANN-based technique is deep learning widely used to learn complex
patterns from large amounts of data (Shen and Lawson, 2021). However,
we did not select deep learning for our problem because it requires more
computational resources, data availability and domain knowledge than
other models. Thus, we selected three types of ANNs: NAR, NARX and
Elman neural networks. These models can capture the temporal dependen-
cies and feedback in hydrological systems using recurrent connections or
exogenous inputs. We applied the three types of ANNs for each well loca-
tion. In the cases of NARX and Elman we tested the time series of P and
Pef (Section 2.2) as exogenous variables. The ANN approaches were ap-
plied by using the functions narnet, narxnet and elmannet available in
Matlab®. In addition to the traditional procedure for modelling with
ANN (training, validation, and test) we included a forecasting test (see
Fig. 2). Note that in training, for the validation and test the estimated
value is obtained by using the previously available data and the objective
of this paper is to obtain a forecast of 6 months. In the forecasting test we
performed 7 forecasts of 6 months by using the last 12 months of the
GWL series (Fig. 2). The rest of the time series of GWL (N-12 months)
were used to perform the training, validation and test experiments (we
used a random procedure to split the N-12 months into three parts). The al-
gorithm Levenberg-Marquardt was used for the training of the ANN. The
statistic of goodness of fit used for the training, validation, test, and fore-
casting test was the mean squared error (MSE). The application of the
ANN was done by using normalized series (from 0 to 1) of GWL and exog-
enous variables.

For each well location and ANN approach (5 in total, NAR, NARX P,
NARX Pef, Elman P, Elman Pef) we performed 100 experiments varying
the delay (1−10) and neurons (1–10). We repeated each experiment 20
times in order to obtain a representative MSE. Note that the modelling of
ANN includes random procedures that can vary the MSE in each execution
using the same configuration. The selection of the best experiment for each
well location and ANN approach was done by considering the mean value
of MSE in the test and forecasting test. The configuration of the best exper-
iments was used to model GWL from data 1 to N-12 and to perform 7 fore-
casts by using the last 12 months (see Fig. 2). We repeated the best



Fig. 2. Dataset use scheme in the ANN application.
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experiments 200 times to obtain a range of uncertainty associated with the
modelling. To account for these inherent uncertainties in the modelling
process, we carried out a simulation approach. We generated multiple sim-
ulations of GWL series and predictions based on different input data sets.
This allowed us to capture the range of potential outcomes and estimate
the uncertainty associated with each forecast. To assess the consistency of
our predictions across different forecast horizons, we conducted sensitivity
analyses. By examining the prediction intervals of our simulations, wewere
able to gain insights into the sources and magnitudes of uncertainty associ-
ated with the forecasting process.

3. Case study and data

The Campo de Montiel groundwater body (GWB) is located in the
Upper Guadiana basin (south-eastern Spain) (see Fig. 3). The elevation
varies from 657 to 1098 m a.s.l. in the GWB and it has a surface of around
2220 km2. In this GWB there is a strong natural interaction between the
groundwater and the surface water. Note that the Lagunas de Ruidera
Fig. 3. Location of the case study, w
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wetland (Natural Park and a Ramsar area) and Peñarroya reservoir are lo-
cated in this area (Collados-Lara et al., 2021). This area highlights a con-
flict between groundwater-dependent ecosystems and groundwater
pumping to supply demands (mainly irrigation demands). The site is
critical for the functioning of the regional hydrological system and
serves as an important water reservoir in this semi-arid region. The
mean temperature in the GWB in the period 1950–2015 was14.2 °C
and the mean minimum and maximum temperatures were 7.9 °C and
20.5 °C respectively. The mean annual precipitation is 503 mm/year
and the effective precipitation is 331.0 mm/year. The main geological
formations are limestone and dolomite and the GWB behaves like a
free aquifer. The recharge of the GWB occurs only through direct infiltra-
tion of the rainfall, whilst the discharge is carried out fundamentally
through the drainage of the GWB towards the surface water courses, result-
ing in the source of the Guadiana Alto-Pinilla, Azuer (and Cañamares) and
Córcoles rivers. Furthermore, another part of the discharge of the GWB is
the groundwater flow to the GWB Mancha Occidental I and II, and a third
part feeds the wetlands.
ell locations, and elevation map.



Fig. 5. Mean error and root mean squared error obtained in the cross validation
experiment for the OK applied to GWL and OK applied to the difference of GWL
and mean GWL.
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The climatological variables, precipitation and temperature (mean,
maximum and minimum) were obtained from the Spain02 (v5) project
(Herrera et al., 2016; Kotlarski et al., 2019). The groundwater levels
(GWL) data in the 51 well locations (Fig. 3) were provided by the
Guadiana Hydrographic Confederation (https://www.chguadiana.es/).
We considered that the availability of GWL data before January 2000 was
not enough to apply our method. Therefore we considered as a study
time period from January 2000 to January 2020 (252 months). The avail-
able monthly GWL data in this period (Fig. 4) is different for each well lo-
cation and require additional geostatistical processing techniques to
obtain complete series.

4. Results

4.1. GWL data completion and exogenous variables

TheOKwas applied to the GWLandGWL-GWL (see Section 2.1) to com-
plete the data. The second procedure shows the best results in the cross-
validation experiment in terms of ME and RMSE. The ME applying OK to
GWL is 0.77 m whilst the RMSE when OK is applied to GWL-GWL is
0.02 m (Fig. 5). In the case of RMSE these values are respectively 27.9
and 2.9 m. Therefore, the second procedure was used to complete the
GWL series. The completed GWL series (Fig. 6a–d) vary from 620 to
1015 m a.s.l. The Pef series (calculated as explained in Section 2.2) are rep-
resentedwith P series in Fig. 6e. For the case study the Pef represent 65.8%
of P.

4.2. Analysis of the correlation of GWL with exogenous variables

The R2 of the GWL with P varies from 0.13 to 0.73 in the 51 well loca-
tions, the mean value is 0.47 and the median is 0.53 (Fig. 7a). The accumu-
lation period for which this R2 is reached varies from 3 to 30 months, the
mean value is 14.3 and the median 16 (Fig. 7a). The R2 of the GWL with
Pef varies from 0.13 to 0.81 in the 51 well locations, the mean value is
0.50 and the median is 0.58 (Fig. 7b). The accumulation period for which
this R2 is reached varies from 3 to 30 months, the mean value is 14.4 and
the median 12 (Fig. 7b). In the case of P 82.4 % of the well locations
show a moderate correlation (r > 0.5) and a 41.2 % show a strong correla-
tion (r > 0.75). The values in the case of Pef are higher, 88.2 % and 52.9 %
respectively. The spatial distribution of thewell locations according to their
Fig. 4. GWL data availabilit
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correlation with Pef is shown in Fig. 8. In general the wells with stronger
correlations are located closer to the central valley of the GWB (see
Fig. 3) and the wells with weak correlations are located close to the GWB
boundaries.

4.3. The application of artificial neural networks

In order to test the performance of the proposed models, we used a sys-
tematic testing approach to determine the optimal ANN parameters. Specif-
ically, we focused on two key parameters, the number of neurons in the
hidden layer and the delay parameter, which controls the number of lagged
inputs to the ANN. We used a trial-and-error approach to test various num-
bers of neurons and delays and evaluated their performance using statistical
metrics such as RMSE, MSE and R2. Although other ANN parameters, such
as learning rate and momentum, can also influence model learning, we
were unable to include them in our analysis due to length restrictions.
The application of the ANN was performed by using normalized series
(from 0 to 1) of GWL, P and Pef but the final results are presented as
denormalized. As explained in Section 2.3, for each well location and
ANN approach (5 in total, NAR, NARX P, NARX Pef, Elman P, Elman Pef)
we performed 100 experiments varying the delay (1–10) and neurons
y in each well location.

https://www.chguadiana.es/


Fig. 6. Completed groundwater levels series for the studied period (2000–2020) (a) series with mean value between 620 and 700m a.s.l, (b) series withmean value between
740 and 840 m a.s.l, (c) series with mean value between 860 and 960 m a.s.l, (d) series with mean value between 970 and 1005 m a.s.l, and precipitation and effective
precipitation for the GWB in the period (1997–2020) (e).

A.J. Collados-Lara et al. Science of the Total Environment 881 (2023) 163328
(1–10). Note that the proposed methodology was applied for each well lo-
cation. However we also analysed the patterns of the whole case study by
studying mean values of MSE. The mean MSE for the test and forecasting
test for the different months of the forecast (from 1 to 6months) of each ex-
periment and ANN approach is shown in Fig. 9. In general the MSE of the
test and the forecast of month 1 are similar or even lower for the forecast
and it increases with the months of forecast for all the experiments and
ANN approaches. In the case of NAR the lowest MSE is obtained for the ex-
periment with delay = 1 and neurons = 1 and it increases with neurons
(Fig.10a) and delays. The same pattern is observed for NARX P (Fig. 10c
and d) and NARX Pef (Fig. 10e and f). In the case of Elman P and Elman
Pef the MSE also increases with the neurons (Fig. 10g and i respectively)
but a pattern is not observed with respect to the number of delays
(Fig. 10h and j).

Aswe pointed out before, all the ANN approacheswere applied for each
well location. The results of the best ANN approach for each well location
6

are summarized in Fig. 11 and Table 1. The ANN approach that shows
the lowest mean RMSE in the test is NARX Pef (Fig. 12a). However NAR
shows the lowest mean RMSE for the forecasting test (Fig. 12a). NAR,
which does not consider secondary information fromP or Pef, is the best ap-
proach in 25.5 % of the cases and is associated with well locations with
lower R2 with P and Pef (Fig. 12a). Amongst the ANN approaches with ex-
ogenous variables, the ones that use Pef have been selected more times as
the best experiments. NARX Pef and Elman Pef are the best ANN ap-
proaches with 21.6 % and 29.4 % of the cases respectively. On the other
hand, NAR P and Elman P are the best ANN approaches with13.7 % and
9.8 % of the instances.

For the selected ANN approaches in each well location we obtained a
mean RMSE of 1.14 m in the test and 0.76, 0.92, 0.92, 0.87, 0.90, and
1.05 m for the forecasting test for the months from 1 to 6 respectively
(Fig. 12b). However the accuracy of the results can be considerably differ-
ent depending on the well location (Fig. 11). Note that the interquartile



Fig. 7. Correlation coefficient obtained for the groundwater levels relationship with the tested exogenous variables: a) precipitation, b) effective precipitation for each well
location.
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Fig. 8. Groups of well locations according their correlation with effective
precipitation.

Fig. 9.Average (for all 51well locations) MSE obtained in the different experiments (del
of the ANN approaches.
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range of the RMSE is around 2 m for the test and forecasting test (Fig. 12b).
In addition to the RMSE we calculated two information criteria that take
into account the number of parameters used by the ANN for the selected ap-
proaches (Table 1), the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). In general, ANN approaches with higher num-
bers of neurons and delays have a higher number of parameters and there-
fore the performance regarding the AIC, and BIC is worse. However, in this
study the numbers of parameters were not considered to select the optimal
ANN approaches.

For eachwell location and its corresponding best ANN approach and ex-
periment (delay, neurons) we generated multiple estimations (a battery of
200) of the GWL series in order to take into account the modelling uncer-
tainty. In all the cases the performance is very good. Fig. 13 shows the ob-
served, multiple series and the average of the multiple series for four well
locations. For the well location 001 (NAR approach, delay 2, neurons
2) the ensemble of the multiple series has a RMSE with respect to the ob-
served series of 0.49 m. In the case of well 009 (NARX Pef approach,
delay 3, neurons 1), well 034 (Elman P approach, delay 1, neurons 1),
and well 224 (Elman Pef approach, delay 1, neurons 1) the RMSE is 0.55,
1.07, and 0.58 m respectively. We also generated multiple forecasts for all
the well locations using the ANN approach and experiment (delay,
ay, number of neurons) for the test and the forecasting test (for the different months)



Fig. 10. Average (for all 51 well locations) RMSE obtained in the experiments varying the delay and neurons for the test and the forecasting test (for the different months) of
the ANN approaches.
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Fig. 11. The best experiments (delay, number of neurons and ANN approach) and MSE (for the test and forecasting) for each well location.
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neurons) selected. We generated 7 forecasts of 6 months in length (Fig. 2).
The first forecast (months 230 to 235) of four well locations is represented
in Fig. 14. We represent the observed, multiple series, and the average of
the multiple series for four well locations. In these cases, we show the re-
sults of well 012 (NARX Pef approach, delay 2, neurons 9), well 015
(NARX P approach, delay 7, neurons 1), well 019 (Elman Pef approach,
delay 1, neurons 1), and well 228 (NARX P approach, delay 4, neurons
1). The ensemble of these multiple forecasts has a RMSE of 0.49, 0.62,
0.72, and 0.70 m respectively.

5. Discussion

We propose a novel methodological framework for short-term fore-
casting of GWL. It should also contribute to a better understanding of
the behaviour of groundwater systems. It does not have demanding
data requirements (a parsimonious approach), it is operational and rel-
atively easy to apply. In recent years, several studies have used artificial
neural networks (including exogenous precipitation data) to forecast
groundwater levels (e.g. Guzman et al., 2017; Roshni et al., 2020).
Few of these studies included temperature or potential evapotranspira-
tion as exogenous variables (e.g. Di Nunno and Granata, 2020; Wunsch
et al., 2021). We have investigated whether effective precipitation,
which is obtained from precipitation and evapotranspiration (obtained
from temperature), provides better results than precipitation. In our
case study, effective precipitation was selected as an exogenous variable
more times than precipitation. Note that effective precipitation is the
amount of precipitation that is actually added and stored in the soil
and may contribute to the groundwater resources. Moreover, as far as
we know, none of these previous studies considered the possible delay
between precipitation or effective precipitation and the aquifer re-
sponse to select the optimal period of aggregation for the exogenous
10
variable time series. In our case study, this delay (time to reach the max-
imum correlation) varies from 3 to 30 months depending on the well lo-
cation. In general, the wells with stronger correlations with effective
precipitation are located closer to the central valley of the GWB and
the wells with weak correlations are located close to the GWB bound-
aries. As found in previous studies, in general considering meteorologi-
cal exogenous variables improves the forecasting of GWL (Wunsch et al.,
2021). In our case study the artificial neural networks that consider ex-
ogenous variables were selected for 75 % of the cases. ANN provides
both, excellent prediction capability, and valuable sensitivity analyses,
which can support the definition of more appropriate ground water
management strategies (Coppola et al., 2005). On the other hand, in-
complete data has been recognized as one of the fundamental chal-
lenges in ML (Goodfellow et al., 2016), and it is very common to have
gaps in GWL series. Our methodological framework also proposes a
geostatistical approach by using ordinary kriging to complete the GWL
data. We found that better results are obtained in the completion if the
target variable is configured as the difference between the groundwater
level and the average groundwater level for each location. We also pro-
pose the generation of multiple groundwater levels simulated series to
take into account the forecast uncertainty coming from the models.
The results demonstrate the potential of the proposed neural network
approach to simulate GWL within a historical period, where the forecast
can be validated, due to the existence of real climate and GWL monitoring
data. The analysis of the results has allowed us to study the forecast uncer-
tainty of the applied approach. The results show (see Fig. 4) that it can be
used to simulate GWL, providing information about the risk of GWL deple-
tion, and therefore, the necessity of applying pumping rate constraints to
define sustainable water resource management in order to avoid undesir-
able impacts (e.g. in groundwater dependent ecosystems in our case
study). Nevertheless, future research should be carried out to study the



Table 1
The best experiments (delay, number of neurons, and ANN approach), number of parameters of the ANN and RMSE, AIC and BIC for the forecasting of each well location.

Piezometer Delay Neurons ANN approach Number of parameters RMSE (m) AIC BIC

04.04.226 1 1 ELMAN Pef 6 0.73 −52.13 −35.41
04.06.001 2 1 NAR 5 0.23 −310.84 −296.90
04.06.002 9 1 NAR 12 0.70 −59.50 −26.05
04.06.003 1 6 NARX P 25 0.84 30.36 100.04
04.06.004 4 6 NARX Pef 61 1.47 217.72 387.76
04.06.009 3 1 NARX Pef 9 0.45 −167.11 −142.02
04.06.010 10 3 NARX P 67 1.89 288.12 474.88
04.06.011 2 1 ELMAN Pef 7 1.68 140.31 159.82
04.06.012 2 9 NARX Pef 55 0.82 81.51 234.82
04.06.013 1 1 ELMAN P 6 0.44 −182.24 −165.51
04.06.014 2 1 ELMAN Pef 7 0.95 5.72 25.23
04.06.015 7 1 NARX P 17 0.93 23.54 70.92
04.06.016 1 10 NAR 31 0.67 −32.89 53.52
04.06.017 2 1 ELMAN Pef 7 0.82 −32.25 −12.74
04.06.019 1 1 ELMAN Pef 6 0.82 −27.20 −10.47
04.06.020 1 1 ELMAN Pef 6 1.27 84.21 100.94
04.06.021 1 7 NAR 22 0.61 −67.31 −5.99
04.06.023 1 1 NAR 4 2.16 196.84 207.99
04.06.024 1 1 ELMAN Pef 6 1.85 162.02 178.75
04.06.025 9 3 NARX Pef 61 1.05 135.60 305.64
04.06.026 2 3 NARX Pef 19 1.75 174.40 227.36
04.06.027 1 5 NARX Pef 21 0.54 −94.67 −36.13
04.06.028 1 1 ELMAN Pef 6 0.54 −131.61 −114.89
04.06.029 1 1 ELMAN P 6 1.45 104.25 120.97
04.06.030 1 6 NAR 19 0.18 −365.44 −312.47
04.06.031 3 1 NAR 6 0.12 −480.53 −463.80
04.06.032 2 7 NAR 29 0.64 −48.99 31.85
04.06.033 2 1 ELMAN Pef 7 1.00 17.82 37.33
04.06.034 1 1 ELMAN P 6 0.64 −93.10 −76.38
04.06.035 1 5 NARX Pef 21 1.10 65.85 124.38
04.06.112 1 1 NARX P 5 0.15 −439.24 −425.31
04.06.114 10 1 NAR 13 0.19 −362.79 −326.55
04.06.115 2 1 ELMAN Pef 7 0.69 −72.67 −53.16
04.06.201 1 1 ELMAN P 6 1.01 14.98 31.71
04.06.206 1 1 ELMAN Pef 6 1.25 70.91 87.64
04.06.207 1 3 NARX Pef 13 0.54 −118.74 −82.51
04.06.208 2 4 NARX P 25 1.81 205.82 275.51
04.06.209 1 8 NAR 25 0.49 −117.08 −47.39
04.06.211 1 7 NARX Pef 29 0.24 −266.07 −185.23
04.06.213 1 1 ELMAN Pef 6 1.82 160.00 176.73
04.06.214 4 2 NAR 13 0.73 −46.58 −10.34
04.06.216 5 1 NARX P 13 1.03 36.62 72.85
04.06.218 6 1 ELMAN P 11 3.10 298.77 329.44
04.06.221 1 1 ELMAN Pef 6 1.31 78.51 95.24
04.06.224 1 1 ELMAN Pef 6 0.19 −385.25 −368.53
04.06.227 1 1 NAR 4 0.24 −322.81 −311.66
04.06.228 4 1 NARX P 11 0.74 −45.91 −15.25
04.06.229 7 5 NARX Pef 49 0.63 −9.48 127.11
04.06.234 1 1 ELMAN Pef 6 0.34 −236.89 −220.17
04.06.237 5 2 NARX Pef 25 0.63 −48.20 21.49
04.06.238 2 3 NAR 13 0.65 −72.06 −35.83
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impact of other sources of uncertainty, in real future horizon forecast, such
as the one due to the exogenous variables. These short-term predictions can
be even applied to estimate future levels of drought alert in accordance
with the historical and forecasted groundwater levels (Pham et al., 2022).

6. Conclusions

In this study, we propose a novel integrated methodological frame-
work for short-term forecasting of groundwater levels by using
geostatistics, optimal exogenous variables and artificial neural net-
works. The methodology is illustrated through the analysis of the aquifer
Campo de Montiel (south-eastern Spain). The method is a parsimonious
approach (from the point of view of the needed data) that can be applied
to any case study.

By using OK for the completion of the GWL data we obtainedmuch bet-
ter results by using as the target variable the difference between GWL
values and the average value than GWL values directly.
11
In the analysis of optimal exogenous variables, in general Pef
showed higher correlations with GWL than P and the accumulation pe-
riod for which the maximum correlations are reached depends on the
well location (it varies from 3 to 30 months). In general, the wells
with stronger correlations are located closer to the central valley of
the GWB and the wells with weak correlations are located close to the
GWB boundaries.

We propose applying the different ANN approaches to each well lo-
cation in order to find the optimal approach. NAR, which does not con-
sider secondary information from P or Pef, is the best approach for
25.5 % of the cases and it is associated with well locations with lower
correlations with P and Pef. The approaches that consider exogenous
variables were selected for 74.5 % of the instances. Amongst them,
the ones that use Pef have been selected more times as the best exper-
iments. We obtained a mean RMSE of 1.14 m in the test and 0.76,
0.92, 0.92, 0.87, 0.90, and 1.05 m for the forecasting test for the
months from 1 to 6 respectively but the accuracy of the results can be



Fig. 12. a) Number of instances when each ANN approach is the best experiment, RMSE of the test, and forecasting test, and mean R2 with P and Pef and b) box-whiskers of
the RMSE for the test and forecasting test for the selected experiments.
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considerably different depending on the well location. For each well lo-
cation and its corresponding best ANN approach and experiment
(delay, neurons) we generated multiple estimations (a battery of 200)
of the GWL series and forecast in order to take into account the model-
ling uncertainty.

The proposed methodological framework has shown satisfactory re-
sults and is relatively easy to apply, it is operational, and does not have
demanding data requirements. Thus, it is recommended for a better un-
derstanding of the behaviour of groundwater systems and to forecast the
potential future status of the system in order to anticipate management
responses.
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Fig. 13.Observed data of groundwater level,multiple estimated series, and ensemble of themultiple series using the best experiments and ANNapproaches for well locations
a) 001 (delay= 2, neurons= 1, ANN approach=NAR), b) 009 (delay=3, neurons=1, ANN approach=NARX Pef), c) 0034 (delay= 1, neurons= 1, ANN approach=
ELMAN P), and d) 224 (delay = 1, neurons = 1, ANN approach = ELMAN Pef).

Fig. 14. Observed data of groundwater level, multiple forecast series, and ensemble of the multiple forecast series using the best experiments and ANN approach for well
locations a) 012 (delay = 2, neurons = 9, ANN approach = NARX Pef), b) 015 (delay = 7, neurons = 1, ANN approach = NARX P), c) 0019 (delay = 1, neurons = 1,
ANN approach = ELMAN Pef), and d) 228 (delay = 4, neurons = 1, ANN approach = NARX P).
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