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Abstract

We present a novel computational framework to simulate the electromechanical response of self-sensing carbon nanotube
CNT)-based composites experiencing fracture. The computational framework combines electrical-deformation-fracture finite
lement modelling with a mixed micromechanics formulation. The latter is used to estimate the constitutive properties of CNT-
ased composites, including the elastic tensor, fracture energy, electrical conductivity, and linear piezoresistive coefficients.
hese properties are inputted into a coupled electro-structural finite element model, which simulates the evolution of cracks
ased upon phase-field fracture. The coupled physical problem is solved in a monolithic manner, exploiting the robustness and
fficiency of a quasi-Newton algorithm. 2D and 3D boundary value problems are simulated to illustrate the potential of the
odelling framework in assessing the influence of defects on the electromechanical response of meso- and macro-scale smart

tructures. Case studies aim at shedding light into the interplay between fracture and the electromechanical material response and
nclude parametric analyses, validation against experiments and the simulation of complex cracking conditions (multiple defects,
rack merging). The presented numerical results showcase the efficiency and robustness of the computational framework, as
ell as its ability to model a large variety of structural configurations and damage patterns. The deformation-electrical-fracture
nite element code developed is made freely available to download.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
eywords: Carbon nanotubes (CNTs); Finite element analysis; Phase-field; Piezoresistivity; Smart materials; Fracture

1. Introduction

Recent advances in the development of nano-modified multifunctional materials such as self-sensing CNT-
ased composites have opened vast new possibilities in the realm of Structural Health Monitoring (SHM). These
nclude their use in laminated composites with superior stiffness/weight ratios for aeronautical structures [1,2], self-
iagnostic concretes [3–5], and smart clothing applications [6], just to mention a few. Among the multifunctional
roperties of CNT-based composites, their piezoresistive properties have garnered particular interest among the
cientific community due to their potential for the development of next-generation self-diagnostic materials. When
oping small dosages of CNTs in polymer or cementitious materials, the resulting composite exhibits strain self-
ensing properties through a piezoresistive effect [7–10]. This enables the development of smart load-bearing sensors
apable of monitoring its own strain condition through electrical resistivity measurements [11].

∗ Corresponding author.
E-mail address: e.martinez-paneda@imperial.ac.uk (E. Martı́nez-Pañeda).
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An essential step to model piezoresistive CNT-based composites consists in estimating their electromechanical
onstitutive properties. To this aim, several approaches have been proposed in the literature, two of the most
uccessful methods being molecular dynamics (MD) [12,13] and first principles-based approaches [14,15]. However,
hese atomic level calculations are limited in the time and space scales that can be addressed. An attractive and
omputationally efficient solution relies on mean-field homogenisation (MFH), which can simulate large and com-
lex composite microstructures in an analytical or semi-analytical fashion. In addition, multiple micromechanical
eatures can be incorporated in the simulation, including the geometrical properties of CNTs, filler waviness,
gglomeration and orientation distribution [16,17]. In this light, Hori and Nemat-Nasser [18] calculated the elastic
oduli of composites filled with nano-inclusions using the Mori–Tanaka homogenisation theory, considering the

xistence of an interphase coating between the matrix and the inclusions. Xu et al. [19] estimated the volume
raction of both soft and hard interphases for ellipsoidal inclusions. MFH approaches have also been applied to
stimate the electrical conductivity and the strain self-sensing properties of CNT-based composites. Experiments
ave shown that CNT-based composites exhibit two main conduction mechanisms as a result of their percolation-
ike nature [20,21]: conductive networking and electron hopping (or quantum tunnelling) [22,23]. Below a critical
olume fraction known as the percolation threshold, the conductive fillers are distant from each other and electrons
an only be transferred by trespassing the potential barrier of the matrix through a quantum tunnelling mechanism.
s the concentration of fillers approaches the percolation threshold, CNTs get in contact with each other creating a

ontinuous conductive path. The latter, also referred to as the conductive networking mechanism, results in sudden
ncreases in the electrical conductivity of the composite, which may be several orders of magnitude higher than that
f the pristine matrix phase. Feng and Jiang [24] built upon this physical understanding to estimate the electrical
onductivity of CNT-polymer composites through a micromechanics approach. A similar strategy was followed by
arcı́a-Macı́as et al. [25,26] to estimate the electrical conductivity and linear piezoresistivity coefficients of cement-
ased composites doped with CNTs. In regard to the fracture behaviour of CNT-based composites, experiments have
evealed a notable toughening effect due to CNT bridging mechanisms [27]. Micromechanical models have thus
een enriched to account for CNT bridging mechanisms such as CNT pull-out and rupture [28,29].

While considerable efforts have been exerted to estimate the constitutive properties of CNT-based composites,
he number of works addressing the role of defects on the electromechanical response of meso- and macro-scale
NT-based composites is considerably scarce. Negi et al. [30] used the extended finite element method (X-FEM)

o predict the influence of crack-like defects upon the mechanical response of composite plates doped with CNTs.
owney et al. [31] proposed a resistor network model to approximate the electric field in CNT-cement composites

nd conduct damage detection, localisation and quantification. Rodrı́guez-Tembleque et al. [32] used X-FEM to
investigate the role of cracks on the electrical output of CNT-based composite sensors. Exploiting the one-way
coupling of piezoresistive materials, their approach employed a sequential two-step procedure [33]: the mechanical
problem is solved first, and the resulting strain field is used to update the local electrical conductivity of the material
and subsequently obtain a solution for the electrical field. Despite these encouraging results, X-FEM is known to
suffer some computational limitations; these include the need for a-priori definition of the location and orientation
of the crack, challenges in handling 3D boundary value problems, and difficulties when dealing with multiple
interacting cracks, to mention a few. Alternatively, the so called phase-field fracture method has been proposed as
a powerful technique to simulate complex cracking phenomena in arbitrary geometries and dimensions [34–36].
Phase-field fracture modelling has attained remarkable popularity in recent years due to its robustness, ease of
implementation, high flexibility in simulating complex problems (crack branching, merging, complex trajectories),
and straightforward integration in coupled physical simulations [37]. Evidence of this is found in the multiple
recent applications of the phase-field to a wide variety of materials and fracture phenomena, including hydrogen
embrittlement [38–40], shape memory alloys [41,42], composite materials [43,44], iceberg calving [45,46], and Li-
ion batteries [47–49]. In the realm of CNT-based composites, a combined micromechanics and phase-field fracture
framework was very recently proposed by Quinteros et al. [50]. The work incorporated for the first time the main
bridging mechanisms and showcased the ability of the proposed framework to capture the sensitivity of the fracture
resistance to microstructural aspects such as filler aspect ratio, orientation distribution and agglomeration. However,
this work was limited to mechanical phenomena and the fracture-electromechanical interplay is yet to be explored in
CNT-based composites. In the context of electromechanical CNT-based composites behaviour, the piezoresistivity
effect, and its interplay with fracture, is of particular importance. This is yet to be explored in the context of

phase-field fracture modelling as the electromechanical phase-field fracture literature is limited to piezoelectric
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Fig. 1. CNT-based composites: (a) Sketch of an RVE of a homogeneous matrix material loaded with randomly oriented CNTs, and
b) fracture and toughening mechanisms relevant to CNT-based composites.

nd ferroelectric materials [51–54], whereby the influence on fracture of the interplay between electric fields and
eformation is assessed. In the context of piezoresistive materials, the interest is on the influence of the mechanical
oad on the material resistivity and on the degradation of electrical conductivity that results from material damage.

In this work, we present the first computational framework for modelling deformation-electrical-fracture phe-
omena in CNT-based composites. The framework combines MFH, electromechanical piezoresistivity modelling,
nd a phase-field description of fracture that accounts for CNT toughening effects. The MFH formulation, used to
stimate relevant electrical, mechanical and fracture properties, is presented in Section 2. The electromechanical
hase-field framework is subsequently described in Section 3, including details of the numerical implementation
nd the interaction between electrical permeability/conductivity and phase-field damage. The results obtained are
hown in Section 4. Five case studies are investigated, which include an experimental validation and the simulation
f various electrical-cracking phenomena in 2D/3D geometries containing multiple defects. Finally, the manuscript
nds with concluding remarks in Section 5.

. Mean-field electromechanical homogenisation of CNT-based composites

This section briefly overviews the micromechanics modelling approach used to estimate the constitutive properties
f CNT-based composites. Specifically, the modelling of the mechanical and electrical properties are independently
resented in Sections 2.1 and 2.2, respectively. For the sake of simplicity, CNTs are assumed to be straight, well-
ispersed, and randomly oriented. Nevertheless, waviness and agglomeration effects can be readily incorporated in
he MFH as shown elsewhere (see e.g. [25,50]).

.1. Mechanical properties of CNT-based composites

.1.1. Elastic tensor
Let us consider a representative volume element (RVE) of a matrix phase doped with CNT as sketched in Fig. 1a.

he RVE is assumed to satisfy three main assumptions: (i) it contains a sufficient amount of CNTs so that the overall
roperties of the composite are statistically represented; (ii) the CNT length Lcnt and diameter Dcnt are constant;

and (iii) the fillers are randomly oriented. The orientation of each CNT is described with a local coordinate system
K′

≡
{
0; x ′

1x ′

2x ′

3

}
defined by two Euler angles γ1 and γ2. CNTs are taken to be analogous to homogeneous inclusions

urrounded by finite elastic coatings with thickness t , so as to simulate the matrix/filler load-transfer properties.
herefore, the composite material is defined as a three-phase medium, including the matrix, fillers and interphases,
ith elastic tensors Cm , C p and C i , respectively. Subscripts p, i , and m relate the corresponding magnitudes to the
filler, interphase and matrix phases, respectively.
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Following the notation of Hori and Nemat-Nasser [18], every CNT and its surrounding interphase is defined as
double inclusion. In this regard, the effective constitutive tensor of the composite C can be written as [16,19]:

C =
(

fm Cm + fi ⟨C i : Ai ⟩ + f p
⟨
C p : Ap

⟩)
:
(

fm I + fi ⟨Ai ⟩ + f p
⟨
Ap

⟩)−1
, (1)

where f p, fi , and fm denote the volume fraction of the fillers, the interphases, and the matrix, respectively; the
colon operator denotes the tensorial inner product between two tensors, (A : B)i jmn ≡ Ai jkl Bklmn; and tensors Ai

and Ap refer to the concentration tensors for interphases and inclusions, respectively. The concentration tensors can
be expressed by the corresponding dilute concentration tensors, Adil

i and Adil
p , as:

Aχ = Adil
χ :

(
fmI + fi Adil

i + f p Adil
p

)−1
, χ = p, i (2)

Adil
χ = I + S : Tχ , χ = p, i (3)

here,

Tχ = −
(
S + Mχ

)−1
, χ = p, i (4)

Mχ =
(
Cχ − Cm

)−1
: Cm, χ = p, i (5)

Angle bracket operators ⟨·⟩ in Eq. (1) represent orientational average, which can be defined for an arbitrary field
F as:

⟨F⟩ =

∫ 2π

0

∫ π/2

0
F(γ1, γ2)Ω (γ1, γ2) sin(γ2)dγ2dγ1, (6)

where Ω (γ1, γ2) stands for the orientation distribution function (ODF) of the fillers. In general, CNTs are randomly
oriented when dispersed into polymer or cement matrices and the ODF takes the shape of an uniform distribution
with a constant value within the whole Euler space, that is Ω (γ1, γ2) = 1/2π .

Interfacial effects between the CNTs and the matrix must be accounted for, as models neglecting these have
hown to overestimate the elastic properties of the composites [55]. In particular, interfaces are found to constitute
eak zones with limited load-transfer properties determined by van der Waals interaction forces. In the realm of
NT-based composites, interfaces can be simulated through compliant penetrable interphases with low stiffness. The

ormula of the volume fraction of finite soft interphase fi around ellipsoidal particles was derived by Xu et al. [56]
s:

fi = (1 − f p)
(

1 − exp
{
−

6 f p

1 − f p

[
η

n(κ)
+

(
2 +

3 f p

n2(κ)(1 − f p)

)
η2

+
4
3

(
1 +

3 f p

n(κ)(1 − f p)

)
η3

]})
, (7)

ith η being the ratio of the interfacial thickness t to the equivalent diameter Deq (i.e. η = t/Deq ). The equivalent
iameter denotes the diameter of an equivalent sphere with the same volume as the particles [57] and can be deter-
ined for CNTs with aspect ratio κ = Lcnt/Dcnt > 1 as Deq = Dcntκ

1/3. The term n(κ), representing the sphericity
f the CNTs, denotes the ratio of the surface area between the equivalent sphere and that of the particles, which is:

n(κ) =
2κ2/3 tan (arcos(1/κ))

tan (arcos(1/κ))+ κ2arcos(1/κ)
. (8)

.1.2. Fracture energy: Pull-out and rupture
Nanotubes and nanofibers are responsible for several toughening mechanisms, including debonding, pull-out, and

upture [58]. For CNT composites in particular, pull-out and rupture are believed to be the main contributions to
racture resistance [59]. Both mechanisms are sketched in Fig. 1b. Accordingly, the material toughness or critical
nergy release rate Gc can be expressed as the contribution of the matrix material and the CNT bridging mechanisms
s [29]:

Gc = G0 + Gbr = G0 + G Po + G Fr (9)

here G0 is the matrix fracture energy, and Gbr is a term encapsulating the two main toughening mechanisms: the
upture and pull-out of CNTs, denoted by G Fr and G Po, respectively. CNT pull-out occurs due to the interfacial

riction between the CNT and matrix, which develops across the high specific surface area of the nanotubes, and its
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dominance relative to the CNT rupture mechanism is dependent on the nanotube characteristics and the interfacial
bond strength. The pull-out mechanism occurs if the embedment length l of a CNT oriented at a certain angle θ is
equal or lower than a critical length Lcθ/2, otherwise CNT rupture will take place [28]. The critical length Lcθ is
given by:

Lcθ =
σultθ Dcnt

2τint exp (µθ)
, (10)

here τint is the interfacial shear stress, which can be obtained using atomic force microscopy [60], µ is the snubbing
riction coefficient for misaligned CNTs [61], and σultθ is the fracture stress of an oblique CNT, which is given by:

σultθ = σult (1 − Atanθ ), (11)

ith σult being the ultimate tensile strength and A a constant determining the inclined fibre strength. Then, the work
one by the pull-out and fracture of CNTs can be written as a piecewise function of the embedment length l as:

W (l, θ) =

{
l2τintπDcnt exp(µθ )/2 if l < Lcθ/2
πD2

cntσ
2
ult Lcnt/ (8Ecnt ) if l ≥ Lcθ/2

, (12)

with Ecnt being the Young’s modulus of the CNTs. Finally, the fracture energy considering straight CNTs can be
obtained as [62]:

Gbr =
2 f p

Acnt Lcnt

∫ π/2

θ=0

∫ Lcnt /2

l=0
W (l, θ)g(θ ) cos(θ ) dldθ, (13)

here g(θ ) represents the orientation distribution. Despite the orientation of CNTs being eminently three-
imensional, several studies showed that just an angle θ suffices to describe the orientation between the loading
irection and the fibre axis [28,63], as illustrated in Fig. 1b. Then, g(θ ) is defined as [64]:

g(θ ) =
[sin(θ )]2p−1[cos(θ )]2q−1∫ θmax

θmin
([sin(θ )]2p−1[cos(θ )]2q−1)dθ

, (14)

where θmin ≤ θ ≤ θmax and p ≥ 1/2, q ≥ 1/2 are parameters that determine the shape of the distribution.

2.2. Electrical properties of CNT-based composites

2.2.1. Electrical conductivity
The modelling of the electrical conductivity of CNT-based composites follows a similar micromechanical

procedure to the one previously presented in Section 2.1. Note that f p(ε) and fc(ε) are both functions of
he mechanical strain, whose dependency will be explained later. Percolation theory indicates that the electrical
onductivity mechanism depends on the filler volume fraction in a non-linear way. Specifically, if the CNT filler
ontent f p(ε) is below the percolation threshold fc(ε), then the fibres are too distant from each other and electrons
an only be transferred through the matrix by a quantum tunnelling effect. However, for filler contents above the
ercolation threshold, CNTs tend to contact each other forming conductive networks as shown in Fig. 2a. The
raction of percolated CNTs can ξ (ε) be approximated as [65]:

ξ (ε) =

⎧⎨⎩0 0 ≤ f p(ε) < fc(ε)
f p(ε)1/3

− f 1/3
c (ε)

1− f 1/3
c (ε)

fc(ε) ≤ f p(ε) ≤ 1
(15)

In this light, the modelling of the electrical conductivity of CNT-based composites should account for fillers
contributing through electron hopping (non-percolating) and conductive networking (percolating mechanisms). This
can be formalised through MFH as [25,26,66],

σ e f f (ε) = σ m + σ N P (ε) + σ P (ε), (16)

σ P (ε) = ξ (ε)
⟨
f p(ε)(σ P

C N T (ε) − σ m)AP
⟩
, (17)⟨ N P ⟩
σ N P (ε) = (1 − ξ (ε)) f p(ε)(σ C N T (ε) − σ m)AN P , (18)

5
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Fig. 2. Schematic illustration of: (a) the electron hopping and conductive networking mechanisms governing the overall electrical conductivity
of CNT-based composites, and (b) the strain-induced filler reorientation effect, in a l0 × l0 × l0 cubic deformable cell.

here the terms σ m , σ N P and σ P correspond to the conductivity tensor of the matrix, the non-percolating (NP)
ontribution and the percolating (P) contribution, respectively. The tensors σ N P and σ P are calculated using the

transversely isotropic electrical conductivity tensor of an equivalent solid cylinder accounting for the electrical
conductivity of CNTs and the surrounding volume of matrix material, where electron hopping may develop (refer
to Appendix for further details). The quantities in σ N P are computed assuming the aspect ratio of a prolate ellipsoid
with a2 = a3 = Dcnt/2 and a1 = L , while the terms in σ P consider a2 = a3 = rc and a1 → ∞. The concentration
ensor A j , with j being N P or P is estimated as:

A j = Adil (
(1 − f p(ε))I + f Adil)−1

, Adil
= (I + Sσ−1

m (σ f − σ m))−1, (19)

here I is the 3 × 3 identity matrix and S = diag(S11, S11, S33) is the shape-dependent Eshelby’s tensor. The
omponents of S are given by [67,68]:

S11 =
s

2(s2 − 1)3/2

[
s(s2

− 1)1/2
− cosh−1(s)

]
, S33 = 1 − 2S11, (20)

with s being the filler aspect ratio.
An important aspect of Eq. (16) is the conductivity dependence on the strain tensor ε, which induces a

iezoresistive effect into the composite [66]. Three main mechanisms are consistently identified in the literature
riving such an effect, namely: (i) volume expansion, (ii) filler reorientation, and (iii) variation of the percolation
hreshold. The first mechanism considers that strains alter the volume fraction of the fillers f p(ε), which in turn

odifies the fraction of percolated fillers ξ . Following the formulation by Garcı́a-Macı́as et al. [69], the dependency
etween f p, the unstrained fibre volume fraction f p(0), and a general strain state ε reads:

f p(ε) =
f p(0)
ε̄1ε̄2ε̄3

=
f p(0)

tr(ε) + det(ε)tr(ε−1) + det(ε) + 1
. (21)

ith ε̄1 = ε1 + 1, ε̄2 = ε2 + 1 and ε̄3 = ε3 + 1. Here, ε1, ε2, ε3 are the three principal strains, and det(·) and
r(·) denote the determinant and trace operators, respectively. The filler reorientation induced by mechanical strain
s sketched in Fig. 3b. Note that mechanical strains tend to decrease the randomness in the distribution of the
llers orientation. Under the assumption of rigid rotations of inextensible fibres, Garcı́a-Macı́as and co-authors [69]
escribed the relationship between an arbitrary strain state ε and the ODF to be used in the orientational averages
n Eq. (16) as:

w(ε̄1, ε̄2, ε̄3|γ1, γ2) =
ε̄2

1 ε̄
2
2 ε̄

2
3[

2 2 2 2
(

2 2 2 2
) 2 ]3/2 (22)
ε̄1 ε̄2 cos (γ2) + ε̄3 ε̄1 sin (γ1) + ε̄2 cos (γ1) sin (γ2)
6
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Finally, the reorientation of fillers induces a change in the percolation threshold, which can be formulated
ollowing the percolation theory set out by Komori and Makishima [70] as:

fc =
π

5.77s I
, (23)

with

I =

∫ π

0

∫ π

0
J (γ1, γ2)ŵ(γ1, γ2) sin(γ2)dγ1dγ2, (24)

J (γ1, γ2) =

∫ π

0

∫ π

0
sin τ (γ1, γ

′

1, γ2, γ
′

2)ŵ(γ ′

1, γ
′

2) sin(γ ′

2)dγ ′

1dγ ′

2, (25)

and

sin τ =

[
1 −

(
cos(γ2) cos(γ ′

2) + cos(γ1 − γ ′

1) sin(γ2) sin(γ ′

2)
)2

]1/2
, (26)

where ŵ is the normalised ODF from Eq. (22).

2.2.2. Piezoresistivity coefficients
Under the assumption of small strains, it can be stated that the strain and the electrical resistivity are related by

linear isotropic tensor Π referred to as the piezoresistivity tensor, such that:⎡⎢⎢⎢⎢⎢⎢⎣
∆ρ11/ρ0
∆ρ22/ρ0
∆ρ33/ρ0
∆ρ23/ρ0
∆ρ13/ρ0
∆ρ12/ρ0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

λ11 λ12 λ12 0 0 0
λ12 λ11 λ12 0 0 0
λ12 λ12 λ11 0 0 0
0 0 0 λ11−λ12

2 0 0
0 0 0 0 λ11−λ12

2 0
0 0 0 0 0 λ11−λ12

2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε1
ε2
ε3

2ε23
2ε13
2ε12

⎤⎥⎥⎥⎥⎥⎥⎦ . (27)

Then, an overall electrical resistivity tensor, ρe f f , can be defined as the inverse of the conductivity tensor σ e f f ,
iven in (16). In the absence of mechanical loading, the electrical resistivity tensor ρe f f takes the form of a scalar

matrix with diagonal terms ρ0, i.e. ρ11 = ρ22 = ρ33 = ρ0 and ρ23 = ρ13 = ρ12 = 0. Once the composite is subjected
o mechanical straining, the components of the resistivity matrix change as follows:

ρe f f = ρ0 (I + r) . (28)

The term r denotes the tensor of relative change in resistivity and can be related to the mechanical strain tensor
as r = Π : ε. Since the piezoresistivity tensor Π is isotropic [66], only two piezoresistivity coefficients (λ11 and

12) suffice to describe it, with the shear coefficient being obtained as λ44 = (λ11−λ12)/2. The closed-form solutions
or the effective electrical conductivity and piezoresistivity coefficients presented by Buroni and Garcı́a-Macı́as [66]
re used in this work.

. A phase-field electromechanical model for the fracture of piezoresistive materials

.1. Governing equations

Let us consider a solid domain Ω , whose surface is denoted by ∂Ω with a normal vector n, as sketched in
ig. 3a. The domain also includes a discontinuous surface Γ representing the crack surface. The displacement
eld and electrical potential are denoted by u and ϕ, respectively. An auxiliary phase-field variable φ is defined,
ith values ranging from φ = 0 to φ = 1, which correspond to the intact and fully broken states of the material,

espectively. The phase-field provides a regularisation of the crack surface, whose size is governed by the length scale
[71,72]. Regarding the displacement field, the external surface can be decomposed into two parts, a section where

he displacements are imposed ∂Ωu , and a second one where the traction boundary conditions h are imposed ∂Ωh

Fig. 3a). In addition, an arbitrary crack surface inside the solid Γ can be prescribed, and a fracture microtraction

fφ can be prescribed on ∂Γ f (Fig. 3b). In turn, a current density Jn entering the boundary ∂ΩJn can be prescribed,

7
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Fig. 3. Schematic representation of the three-field boundary value problem: (a) deformation, (b) phase-field, and (c) current conservation.

hereas the electric potential can be prescribed in the boundary ∂Ωϕ (Fig. 3c). In this framework, the principle of
irtual work can be formulated, in the absence of body forces, as:∫

Ω

(σ : δε − J · δ∇ϕ + ω · δφ + ζ · δ∇φ) dV =

∫
∂Ω

(
h · δu + Jnδϕ + fφδφ

)
dS, (29)

here the operator δ denotes first-order variations, σ is the Cauchy stress tensor, J is the flow of electrical current,
and ω and ζ stand for the microstress work quantities conjugate to the phase-field φ and the phase-field gradient ∇φ,
respectively. Then, applying the Gauss’ divergence theorem to the previous expression and using the fundamental
lemma of the calculus of variations, one reaches the balance of local forces, which is given by:

∇ · σ = 0
∇ · J = 0 in Ω ,

∇ · ζ − ω = 0
(30)

with the natural boundary conditions,

σ · n = h on ∂Ωh,

−J · n = Jn on ∂ΩJn ,

ζ · n = fφ on ∂Ω f .

(31)

3.2. Constitutive equations

The deformation-electrical-fracture couplings are as follows. In the first place, the piezoresistivity effect results
in an influence of mechanical strains ε on the electrical field E. Also, mechanical straining leads to an increased
stored energy ψ0 (strain energy density), which is available to nucleate and grow cracks, increasing the magnitude
of the phase-field φ. Finally, the presence of cracks impacts the electric conductivity, as captured by degrading the
current flux with the phase-field by using an ad hoc degradation function. These and other constitutive choices are
detailed below.

3.2.1. Mechanical deformation
The strain field under the assumption of small displacements is expressed as:

ε =
1
2

(
∇uT

+ ∇u
)
, (32)

nd, assuming a linear elastic relationship between the strains and the undamaged stress tensor σ 0, the mechanical
ehaviour of the solid is given by

σ = h1(φ)σ 0 = h1(φ)C : ε, (33)

here C is the linear elastic stiffness tensor, and h1(φ) is a degradation function that relates the phase-field variable
ith the material stiffness.
8
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3.2.2. Electrical conductivity
The relation between the electric field E and the electric potential ϕ is given by:

E = −∇ϕ, (34)

hile the constitutive equation is given by the linear relation between the conductivity σ e f f (ε), which is the inverse
f the electrical resistivity ρe f f given in Eq. (28) (i.e. σ e f f (ε) = ρ−1

e f f ), and the electric current J, which is given
y:

J = h2(φ)σ e f f (ε)E. (35)

ere, h2(φ) represents a second degradation function that affects the material conductivity, so as to simulate the
hanges in electrical permeability that take place within cracks. The weak form of the electrical problem can be
eadily obtained by considering the strong form, Eq. (30)b, and making it hold for any admissible δϕ. Thus, applying
ivergence theorem and considering the constitutive definitions (34) and (35), one reaches∫

Ω

(δ∇ϕ) h2(φ)σ e f f (ε)∇ϕ dV =

∫
∂ΩJn

Jn dS. (36)

It is worth noting that the degradation function h2 can modulate sudden changes in electrical conductivity. Thus,
hile phase-field damage will result in a loss of stiffness and thus high strains, this will not result in a high electric

urrent.

.2.3. Phase-field fracture
The phase-field fracture model predicts the evolution of cracks as an exchange of stored and fracture energies,

uilding upon the rigorous thermodynamical balance first presented by Griffith [73,74]. For a cracked solid with
train energy Ψ (ε) subjected to a prescribed displacement, Griffith’s energy balance can be expressed as the
ollowing variation of the total potential energy of the solid E due to an incremental increase in crack area dA:

dE
dA

=
dΨ (ε)

dA
+

dWc

dA
= 0, (37)

here Wc is the work required to create new surfaces, with the fracture resistance of the solid (or material toughness)
eing given by Gc = dWc/dA. Eq. (37) can be formulated in a variational form as:

E =

∫
Ω

ψ (ε) dV +

∫
Γ

Gc dΓ , (38)

here ψ is the strain energy density of the solid, such that Ψ =
∫
ψdV . Then, to make the minimisation of (38)

computationally tractable, the phase-field paradigm is introduced, whereby an auxiliary variable φ is used to smear
an otherwise discrete interface and track the evolution of that interface. Accordingly, a regularised functional can
be formulated as:

Eℓ =

∫
Ω

[
h1(φ)ψ0 (ε)+ Gc

(
φ2

2ℓ
+
ℓ

2
|∇φ|

2
)]

dV . (39)

where ψ0 denotes the strain energy density of the undamaged material, which for an elastic solid reads:

ψ0 =
1
2

εT
: C : ε. (40)

In this work, the regularising term multiplying Gc in (39) is chosen in agreement with the so-called AT2 phase-
field model [71]. Note also that for piezoresistive materials, the electrical field does not affect the phase-field
equation (unlike piezoelectric materials [52]). Then, the phase-field constitutive equations can be derived following
thermodynamically consistent criteria [75]. Thus, the total potential energy of the solid is given by the sum of the
stored and the fracture energy densities as:

W(ε, φ,∇φ) = h1(φ)ψ0(ε) + Gc

(
1
2ℓ
φ2

+
ℓ

2
|∇φ|

2
)
. (41)

he scalar microstress ω and the vector microstress ζ are then derived from the total potential energy as

ω =
∂W

=
∂h1

ψ0 + Gc
φ
, and ζ =

∂W
= Gc ℓ ∇φ. (42)
∂φ ∂φ ℓ ∂∇φ

9
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Fig. 4. Degradation functions employed to interpolate the phase field, h1(φ), and the electric conductivity, h2(φ, k, n), with the latter being
dependent on the parameters k and n.

.3. Degradation functions

It remains to define the degradation functions h1(φ) and h2(φ) introduced in Eqs. (33) and (35), respectively.
he former describes the loss of stiffness associated with the degradation of material due to damage. For this, we
dopt the widely used quadratic function

h1(φ) = (1 − φ)2. (43)

On the other side, a degradation function h2(φ) must be defined to account for the variation in electrical
ermeability due to cracks. To capture the significant increase in local electrical resistivity observed when the
aterial fractures, we propose the following two-parameter exponential function:

h2(φ, k, n) =
1 − exp (−k(1 − φ)n)

1 − exp (−k)
. (44)

The parameters k and n control the shape of the degradation function h2(φ, k, n), as illustrated in Fig. 4. It can
e seen that the shape parameters k and n enable modelling a large variety of degradation functions. For instance,
aking n = 6 and increasing k enables simulating more permeable cracks (higher h values for a given φ). The
arameter n instead controls the smoothness of the degradation function, achieving sharp decreases in the electrical
onductivity for low values (e.g. k=50 and n=4), and smooth decreases for large values (e.g. k=50 and n=8). Finite
lement predictions will be obtained for various k and n choices to illustrate their influence. As discussed below, the
hoices k = 50 and n = 6 are found to deliver sensible results while ensuring robustness. Thus, they are adopted
hroughout this work, unless otherwise stated.

It is also important to note that, for numerical reasons, a small regularisation parameter ϵ = 10−7 has been added
o both h1(φ) and h2(φ, k, n) to keep the system of equations well-conditioned.

.4. FE implementation

The finite element (FE) method is chosen to discretise and solve the governing equations provided in Section 3.1.
he field variables are the displacement, electric potential and phase-field, which are discretised as:

u =

m∑
i=1

Ni ui , ϕ =

m∑
i=1

Niϕi , φ =

m∑
i=1

Niφi , (45)

here m denotes the number of nodes within an element, Ni are the shape functions, and Ni corresponds to diagonal
matrices with the nodal shape function N on each component. The strain ε, electric field E = −∇ϕ, and phase-field
i

10
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gradient ∇φ are accordingly interpolated as:

ε =

m∑
i=1

Bu
i ui , E = −

m∑
i=1

Biϕ, ∇φ =

m∑
i=1

Biφi , (46)

where Bi are the spatial derivatives of the shape function and Bu
i denotes the standard strain–displacement matrices.

Using the expression for the momentum equilibrium, phase-field, and electrical current conservation from Eq. (30),
the weak form corresponding to each of the primary fields can be formulated as:∫

Ω

h1(φ)σ 0 : δε dV −

∫
∂Ωh

h · δu dS = 0, (47)∫
Ω

[
h2(φ, k, n) (δ∇ϕ) · σ e f f (ε)∇ϕ

]
dV −

∫
∂ΩJn

δϕ Jn dS = 0, (48)∫
Ω

[
∂h1

∂φ
δφψ0 + Gc

(
1
ℓ
φδφ + ℓ∇φ · δ∇φ

)]
dV −

∫
∂Ω f

fφδφ dS = 0. (49)

Then, the FE discretisation of the residuals can be expressed as:

Ru
i =

∫
Ω

h1(φ)(Bu
i )T σ 0 dV −

∫
∂Ωh

NT
i h dS, (50)

Rϕi =

∫
Ω

[
h2(φ, k, n)BT

i σ e f f (ε)∇ϕ
]

dV −

∫
∂ Jn

N T
i Jn dS, (51)

Rφi =

∫
Ω

[
Gc

(
1
ℓ

Niφ + ℓBT
i ∇φ

)
+
∂h1

∂φ
NiH

]
dV −

∫
∂Ω f

Ni fφ dS, (52)

in which we adopt the so-called history variable H [76] to ensure damage irreversibility, such that H =

maxt∈[0,tt ]ψ(t) for a time t within a total time tt . Finally, the corresponding stiffness matrices can be stated as:

K u
i j =

∂Ru
i

∂u j
=

∫
Ω

h1(φ)(Bu
i )T C Bu

j dV, (53)

Kϕ

i j =
∂Ru

i

∂ϕ j
=

∫
Ω

h2(φ, k, n)(Bi )T σ e f f (ε)B j dV, (54)

Kφ

i j =
∂Rφ

i

∂φ j
=

∫
Ω

[(
2H +

Gc

ℓ

)
Ni N j + GcℓBT

i B j

]
dV . (55)

nd thus the deformation-electrical-damage FE system can be expressed as⎧⎨⎩ u
ϕ

φ

⎫⎬⎭
t+∆t

=

⎧⎨⎩ u
ϕ

φ

⎫⎬⎭
t

−

⎡⎣ K u 0 0
0 Kϕ 0
0 0 Kφ

⎤⎦−1

t

⎧⎨⎩ Ru

Rϕ

Rφ

⎫⎬⎭
t

. (56)

he system given in Eq. (56) is fully coupled. Mechanical deformation influences both the phase-field variable
nd the electrical potential by means of the strain energy density and the piezoresistive properties, respectively.
n addition, the phase-field degrades the stiffness of the solid and the electrical conductivity by means of the
egradation functions described in Section 3.2.3. These couplings are taken care of by using a monolithic scheme
hat ensures unconditional stability. Robustness and efficiency within a monolithic solution scheme are achieved
y approximating the stiffness matrix in Eq. (56) by means of quasi-Newton methods. Specifically, the Broyden–
letcher–Goldfarb–Shanno (BFGS) algorithm is used, as it has proven to lead to efficient and robust monolithic
hase-field fracture implementations [77,78]. The deformation-electrical-fracture model is implemented into the
nite element package Abaqus as a user-element (UEL) subroutine, which is openly shared.1 For generality, the
nite element implementation is carried out in a linear brick element with 8 nodes, full integration and 5 degrees-
f-freedom (DOFs) per node (ux , u y , uz , ϕ, φ). However, the implementation is also particularised to 2D scenarios
s some of the case studies considered below.

1 The UEL subroutine developed can be found in www.imperial.ac.uk/mechanics-materials/codes and www.github.com/L-Quinteros.
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Table 1
Material parameters and micromechanical variables adopted. The values chosen correspond to those of MWCNT/epoxy composites, and are
taken from Refs. [29,80].

Name Symbol Value Name Symbol Value

Volume fraction f p 1% Length of MWCNT Lcnt 3.21 µm
Outer diameter of MWCNT Dcnt 10.35 nm Cut-off distance for tunnelling effects dc 0.22 nm
Height of the potential barrier λ 0.69 eV Elastic modulus of CNT Ecnt 700 GPa
Elastic modulus of epoxy Em 2.5 GPa Electrical conductivity of MWCNT σc 100 S/m
Electrical conductivity of epoxy σm 1.036E−10 S/m Poisson’s ratio of MWCNT νcnt 0.3
Poisson’s ratio of epoxy νm 0.28 Interphase thickness t 31.00 nm
Elastic modulus of interphase Ei 2.17 GPa Strength of CNT σcnt 35 GPa
Interfacial shear strength τcnt 47 MPa Fracture energy of pristine epoxy Gce 133 J/m2

Experimental orientation limit angle A 0.083 Minimum CNT orientation angle θmin 0
Maximum CNT orientation angle θmax π/2

4. Results

In this section, we evaluate the performance of the model in simulating crack initiation and propagation and their
ffects upon the electromechanical response of epoxy composites doped with multi-walled CNTs (MWCNTs). The
lectromechanical properties of the constituents of the considered composites have been taken from the literature
nd are collected in Table 1. Parametric analyses to evaluate the effect of the filler volume fraction and CNT aspect
atio are firstly reported in Section 4.1. Then, five case studies are presented. The first case study validates the
roposed formulation against the experimental data reported by Esmaeili et al. [79] (Section 4.2). Further insight
s gained by considering three case studies involving plane boundary value problems with different configurations
f initial defects (Sections 4.3 to 4.5). Finally, three-dimensional crack nucleation and growth is investigated in
ection 4.6.

.1. Estimation of constitutive properties

The formulation previously presented in Section 2 is adopted to estimate the elastic moduli, critical energy
elease rate, electrical conductivity, and linear piezoresistivity constant λ11 of epoxy/MWCNT composites for a

wide range of filler volume fractions and aspect ratios AR = Lcnt/Dcnt , as reported in Fig. 5. The results show that
the effective elastic modulus and the fracture energy follow a linear fashion, whereas the electrical conductivity and
the piezoresistivity coefficient λ11 exhibit non-linear behaviour. The elastic modulus and the fracture energy increase
with the volume fraction, while the opposite behaviour is observed for increasing aspect ratios (ARs). It is noted in
Fig. 5a that the elastic modulus shows a fast convergence rate for increasing ARs (no significant enhancements are
found for ARs above 300), while a slower convergence is observed for the fracture energy Gc. The fracture energy is
mainly governed by the pull-out mechanism from Eq. (12) showing a critical embedded length dependency which,
in turn, has a diameter dependency, increasing this value at low aspect ratios. A very different trend is observed for
the electrical conductivity and the piezoresistivity coefficient λ11. Firstly, they show almost no sensitivity for low
volume fractions, where the electron hopping mechanism dominates. However, a significant rise is observed when
the CNT volume fraction reaches the percolation threshold, representing the onset of the networking mechanism.
It is also interesting to note in the insert in Fig. 5d the variation of the percolation threshold fc as a function of
the filler aspect ratio. This result evidences the fact that fillers with large aspect ratio favour the development of
conductive networks, which in turn manifests as lower percolation thresholds.

4.2. Experimental validation

The following case study presents the validation of the proposed model using the experimental data presented in
the work of Esmaeili et al. [79]. Those authors reported the electromechanical characterisation of dog-bone samples
made of bisphenol A diglycidyl ether (DGBEA) epoxy doped with single and double walled CNTs (SWCNTs–
DWCNTs) subjected to tension until failure. The specimen dimensions are shown in Fig. 6a. In the numerical model,

the sample is discretised using a total of 197,120 DOFs, with the characteristic element length in the relevant regions

12
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Fig. 5. Electromechanical properties of epoxy/MWCNT composites estimated by the presented micromechanical framework, including:
a) the elastic modulus, (b) fracture energy, (c) electrical conductivity, and (d) the piezoresistivity coefficient λ11, with the insert representing

the variation of the percolation threshold fc as a function of the filler aspect ratio (AR).

Fig. 6. Experimental validation: (a) test dimensions (units in mm) and configuration, contours of (b) the phase-field variable, and (c) the
lectrical potential, before (ε1 = 0.0123) and after (ε1 = 0.0124) cracking.

being 7 times smaller than the phase-field length scale (ℓ = 0.0012 mm). The structure is subjected to vertical
displacements on its top edge, while the bottom edge is pinned. The electrodes are located at 5 cm from each other
and subjected to a potential difference of 1.7 mV applied in a 13 × 5 mm2 area. The mass fraction of CNTs is 0.5
wt% and the remaining micromechanical parameters in Table 2 were obtained by curve fitting with the experimental
13
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Table 2
Micromechanical variables adopted for the experimental validation against tests on a DGBA/DWCNT composite. The values used lie within
the range reported for DGBA/DWCNT composites in the literature [29,79,80].

Name Symbol Value Name Symbol Value

Mass fraction wp 0.5% Length of CNT Lcnt 5.39 µm
Outer diameter of CNT Dcnt 1.203 nm Cut-off distance for tunnelling effects dc 2.739 nm
Height of the potential barrier λ 1.93 eV Elastic modulus of CNT Ecnt 950 GPa
Elastic modulus of epoxy Em 2.79 GPa Electrical conductivity of CNT σc 764.91 S/m
Electrical conductivity of epoxy σm 1.00E−12 S/m Poisson’s ratio of CNT νcnt 0.3
Poisson’s ratio of epoxy νm 0.285 Interphase thickness t 31.00 nm
Elastic modulus of interphase Ei 2.24 GPa Density of CNT ρcnt 1.35 g/cm3

Interfacial shear strength τcnt 47 MPa Fracture energy of pristine epoxy Gce 220 J/m2

Experimental orientation limit angle A 0.083 Minimum CNT orientation angle θmin 0
Maximum CNT orientation angle θmax π/2 Density of epoxy ρm 1.15 g/cm3

Strength of CNT σcnt 120 GPa

Fig. 7. Comparison between experimental [79] and numerical predictions of DGBA/DWCNT composite behaviour: (a) stress–strain curve,
and (b) relative variation of the electrical resistance versus externally applied strain.

results, using typical values reported in the literature for DGBA epoxy and CNTs. The electrical resistance reported
in the experiments between the electrodes was about 8500 �, while the resistance predicted by the numerical
model is 8485 �, demonstrating the effectiveness of this model regarding the unstrained state of the composite.
The phase-field and electric potential contour plots are reported in Figs. 6b and c, respectively. The stress–strain and
the relative resistance–strain curves are shown in Figs. 7a and b, respectively. Both curves show good agreements
with the experimental data. It is noted that the numerical stress–strain curve exhibits a slight decrease at high tensile
strains unlike the experimental results, which exhibit a clear linear tendency. These differences are ascribed to the
assumed quadratic degradation function of the stiffness and the use of the so-called AT2 model, which lacks a
purely elastic domain. The results in Fig. 7b evidence the presence of a slightly more marked non-linear behaviour
in the experimental data compared to the numerical simulation. In the literature, the presence on non-linearities in
the strain sensing curves has been identified to be driven by strain-induced variations in the contribution by the
electron hopping mechanism. In the context of the implemented micromechanics approach in Section 2.2, this may
indicate some limitations in the theoretical definition of the strain dependency of the resistivity properties related
to the quantum tunnelling effects (refer to e.g. [26] for further discussion in this regard). Nonetheless, the accuracy
of the adopted micromechanics approach is considered sufficient for the aim of the present work, especially for the
analysis of strain sensing applications where non-linear effects in the piezoresistive CNT-based composites are very
limited.

4.3. Mixed-mode fracture of a thin plate containing an initial crack

The second case study involves a 10 cm by 20 cm notched plate with a thickness of 0.5 cm subjected to vertical

displacements on the top edge and pinned on the bottom edge. The notch is imposed geometrically, and the electric
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Fig. 8. Schematic of the plate geometry and boundary conditions of three plane case studies consisting of: (a) a plate containing an inclined
rack, (b) a plate containing an inclined crack and multiple holes, and (c) a plate containing a random distribution of holes. All are under
he same electric and displacement boundary conditions.

otential is imposed using two electrodes as shown in Fig. 8a. The upper electrode is grounded while a differential
otential of 10 V is applied at the bottom edge. In the following analyses, a volume fraction of f p = 1%, and
he degradation parameters k = 50 and n = 6 are considered. In this and all remaining case studies, the material
roperties employed are those provided in Table 1. In this regard, it is worth noticing that the CNT aspect ratio
ssumed Lcnt/Dcnt = 310, lies within the regime where fibre pull-out dominates over the fibre rupture mechanism,
s per the sensitivity analyses conducted in Ref. [50].

The domain is discretised with approximately 100,000 DOFs, with the characteristic element size in the potential
rack growth regions being equal to 0.002 mm, three times smaller than the phase-field length scale ℓ. Fig. 9 shows
he contour plot of the phase-field variable and the electrical potential. Fig. 9a shows the evolution of the phase-field
ariable φ at three different instants with imposed displacements u y = 0.1975 mm, u y = 0.1875 mm, and u y = 0.19
m. The phase-field value increases around the crack tip and then the crack is shown to propagate horizontally.
efore complete failure, the phase-field barely affects the electrical potential and only linear variations induced by
iezoresistivity are observed. However, once the plate cracks, sudden decreases in the electrical current flowing
hrough the electrodes are noted. This is evidenced in the contour plot of electric potential in Fig. 9(b), in which,
nce the crack develops all throughout the specimen, two distinct zones are noted with electric potentials of 0 and
0 V due to the very low electrical permeability (or very high electrical resistivity) of the cracked domain.

The impact of the shape parameters k and n of the degradation function h2(φ, k, n) on the electrical current
owing between the electrodes is investigated in Fig. 10a. Note that all the curves correspond to the same load–
isplacement curve presented in Fig. 10c. For all cases, the results shown in Fig. 10a show that the curves slightly
ecrease until the plate cracks, provoking a steep descent of the conductivity. It can be observed that the slope of the
lectrical conductivity changes noticeably depending on k and n. In practice, the degradation function h2(φ, k, n)
ay be calibrated by fitting experimental data. Fig. 10b presents the relative variation of the electrical resistance,
hich is calculated using the unstrained resistance R0 and the instantaneous electrical resistance R as (R − R0)/R0.

n this case, the results show a dramatic increase of the electrical resistance as soon as the displacement reaches
he fracture displacement.

Fig. 11 shows the effects of the CNT volume fraction on the electrical current flowing between the electrodes, the
orresponding relative variation of electrical resistance, and the load–displacement curve. In Fig. 11a, it can be seen
hat the consideration of higher CNT volume fractions increases the electrical current, as a result of the enhanced
ffective conductivity of the composite. In this figure, two distinct regimes of behaviour are clearly noticeable: before

nd after crack initiation. The first regime is dominated by linear decreases driven by the piezoresistive property
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l

Fig. 9. Mixed-mode fracture of a plate with an initial crack. Contours of (a) the phase-field variable φ, and (b) the electric potential ϕ, for
two values of the remote displacement (before and after full fracture).

Fig. 10. Effect of the degradation function h2(φ, k, n) on: (a) the electrical current, (b) relative resistance ∆R/R0, and (c) its corresponding
oad–displacement curve.

Fig. 11. Effects of the filler volume fraction f p upon: (a) the electrical current–displacement curve, (b) the relative resistance ∆R/R0, and
(c) the load–displacement curve.

of the composite. Instead, once the crack initiates, the electrical conduction through the specimen is dominated
by the permeability of the crack. For instance, in the case of epoxy doped with f p = 4% CNTs at the beginning
of the displacement load process, the electrical current is 5.8782 mA and it decreases to 5.8604 mA, right before
fracture. Finally, the electrical current goes to zero when the crack crosses the whole cross-section of the specimen,
indicating the complete interruption of the current flow. Fig. 11b shows the relative resistance versus the imposed
displacement u y , for different filler volume fractions. It is observed in this figure that the addition of higher volume
fractions leads to higher piezoresistivity coefficients, as indicated by the larger slopes of the first linear range. The
addition of higher concentrations of CNTs also enhances the effective mechanical properties of the composite, as
evidenced by the increases of the slopes of the load–displacement curves of Fig. 11c. Note that the addition of
CNTs diminishes the displacement u in which the plate breaks, which can be readily explained from an energetic
y
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Fig. 12. Effect of the crack angle α on: (a) the relative resistance–displacement curves, and (b) the load–displacement curves.

standpoint. As the improvement in the elastic modulus induced by the addition of CNTs increases, the area under
the load–displacement curve raises and, consequently, the fracture displacement decreases. Note in Fig. 5b that
the critical energy release rate experiences comparatively smaller raises in magnitude for increasing filler contents,
relative to the elastic modulus.

The effect of the crack inclination angle α is studied in Fig. 12. The relative resistance can be observed in Fig. 12a
as a function of the displacement. It is noted in Fig. 12b that increasing the notch angle α raises the ultimate load
capacity and the critical displacement at failure. This is due to the reduction of the stress concentration at the crack
tips as the projection of the crack surface with respect to the direction of the imposed displacement decreases (a
move from mode I fracture to mixed-mode conditions). This effect is also evident in Fig. 12a in terms of relative
variations of the electrical resistance of the specimen. As the notch angle increases, the degradation of the electrical
conductivity induced by damage appears for higher imposed displacements. These results demonstrate the usefulness
of electrical resistivity measurements to infer the appearance and geometrical properties of crack-like defects.

4.4. Fracture of a thin plate containing an initial crack and nearby circular defects

This case study considers the exact same geometry as in the previous one but with the addition of four holes
around the notch. The material parameters reported in Table 1 are adopted herein. A total of approximately 90,000
DOFs are used to discretise the model, with the phase-field length scale (ℓ = 0.006 mm), being more than three
times larger than the characteristic element size. A plate with an inclined crack of 30 degrees is studied first.
Fig. 13a shows the phase-field φ at two stages, where the displacement at the top edge during the loading process
is u y = 0.17 mm and when it equals u y = 0.1725 mm. Fig. 13b instead shows the electrical potential ϕ during
the fracture process. It is noted in Fig. 13a that the breakage of the plate develops in two phases. Firstly, the crack
propagates from the notch to the holes closest to the notch along the diagonal, to then propagate until crossing
the whole plate. Finally, once the plate is fully cracked, the electrical flow between the electrodes is interrupted as
evidenced by the contour plot in Fig. 13b for u y = 0.1725 mm where the crack concentrates the voltage drop from
10 to 0 V.

The effect of the crack inclination angle is investigated in terms of the relative variation of the electrical resistance
and the load–displacement curve of the plate in Figs. 14a and b, respectively. The results show that there are some
critical angles that induce an early breakage of the plate as a result of the combination of the stress concentrations
around the notch and the holes. This is the case of α = 30◦, which leads to a premature interruption of the current
flow throughout the material as shown in Fig. 14a. In this case, the crack propagates at an imposed displacement
of u y = 0.1725 mm, growing across the plate along the direction of maximum energy release rate, as shown in

Fig. 13.
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Fig. 13. Fracture of a plate containing an initial crack and nearby circular defects. Contours of (a) the phase-field variable φ, and (b) the
lectric potential ϕ, for different values of the remote displacement. Representative results obtained for a crack inclination angle of α = 30◦.

Fig. 14. Effect of the crack inclination angle on: (a) the relative resistance ∆R/R0 and (b) load–displacement curves.

4.5. Fracture of a thin plate containing a random distribution of defects

This case study investigates the electromechanical response of CNT-reinforced plates with a random distribution
of defects, as sketched in Fig. 8c. The holes are located in the area highlighted in red in Fig. 8c, following
a random uniform distribution until subtracting 1% of the total volume of the plate. The defects radii follows
a normal distribution with mean and standard deviation values of 2 mm and 1.2 mm, respectively. The finite
element model uses a total of 500,000 DOFs, with the phase-field length scale (ℓ = 0.0005 mm) being five
imes larger than the characteristic element length. Figs. 15a and b show the contour plots of the phase-field
nd the electrical potential after the failure of two sample plates with different distributions of defects. The
ncertainty in the electromechanical response is quantified through direct Monte Carlo simulations in terms of
elative variation of resistance–displacement and force–displacement curves, as shown in Figs. 16a and b. A total of
1 simulations have been conducted, and the histogram of the ultimate fracture displacements is reported in Fig. 16c.
hese results demonstrate the flexibility of the proposed approach to simulate crack initiation and propagation of
iezoresistive materials with arbitrary crack patterns, allowing to conduct uncertainty propagation analyses without
ime-consuming mesh adaptation requirements.
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Fig. 15. Contour plots after crack propagation of two representative simulations of CNT/epoxy composite plates with a random distributions
of defects: (a) phase-field φ, and (b) electric potential ϕ.

Fig. 16. Fracture of a plate containing a random distribution of defects: (a) probabilistic analysis of the relative variation of electrical
resistance ∆R/R0, (b) load–displacement curves of CNT/epoxy composite plates with random distribution of defects, and (c) the corresponding
histogram of the ultimate fracture displacement. Grey and red lines in (a) and (b) correspond to the conducted Monte Carlo simulations and
their mean values, respectively.

4.6. 3D crack growth in a cracked cylinder

This last case study is aimed at illustrating the ability of the proposed approach for simulating the electrome-
chanical response of self-sensing piezoresistive materials with arbitrary geometries and complex crack propagation
patterns. Specifically, a three-dimensional cylinder with a radius of 2 cm and a length of 5 cm is investigated,
as illustrated in Fig. 17a. The sample is pinned at one end, while a controlled displacement is imposed at the
other end. A potential difference of 10 V is also imposed between the two bases of the cylinder. Five random
notches are placed on the surface of the cylinder by defining the phase-field variable equal to φ = 1 as an initial
ondition (see Fig. 18a). The material properties used for this case study are those from Table 1 with a CNT volume
raction of 1%. The finite element mesh comprises approximately 320,000 DOFs, with the characteristic element
ength being at least four time smaller than the phase-field length scale (ℓ = 0.001 mm). The evolution of the
hase-field variable and the electric potential are shown in Fig. 18. It can be readily observed how the phase-field
ariable starts propagating around the areas of the notches to coalesce and finally cross the entire cross-section of
he structure. The corresponding force–displacement curve and the relative variation of the electrical resistance of
he structure are depicted in the 3-axis plot of Fig. 17b. It is shown in this figure that the relative variation of the
lectrical resistance first exhibits a quasi-linear behaviour dominated by piezoresistance before the defects start to
ropagate. Once the defects start propagating, the electrical resistance starts to raise in a non-linear way, according
o the implemented degradation function. Finally, once the crack crosses completely the structure, the current flow

etween the electrodes is interrupted and the electrical resistance tends to infinite.
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Fig. 17. Boundary conditions of the 3D case study of a CNT/epoxy cylinder: (a) initial crack distribution, as highlighted with red colour,
and (b) three-axis plot reporting the relative variation of electrical resistance and load–displacement curves.

Fig. 18. 3D crack growth in a cracked cylinder. Contours of crack evolution, as denoted by the phase-field φ, and electric potential ϕ in a
3D CNT/epoxy composite cylinder.

5. Concluding remarks

We have presented a novel formulation to simulate electromechanical fracture in piezoresistive composite mate-
rials. The model combines mean field homogenisation (MFH) and phase-field fracture within a structural–electrical
framework. The formulation has been particularised to CNT-based composites, and a complete micromechanics
framework has been used to estimate the effective constitutive properties of the composite material, including the
elastic tensor, electrical conductivity, and linear piezoresistivity tensor. The proposed approach allows relating the
macroscopic response to the fundamental features of the composite microstructure such as the filler volume fraction
and geometry, or to the individual material properties of the constituent phases. Then, the governing equations
of fracture of linear piezoresistive materials using linear electromechanics and the phase-field method have been
derived. The proposed formulation has been numerically implemented using the finite element method, and the
resulting code is made freely available to the scientific community. To assess the accuracy and capabilities of the

proposed approach, detailed parametric analyses and five different case studies of increasing complexity have been
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presented. The presented numerical results have demonstrated the accuracy and flexibility of the proposed approach
to predict the electromechanical response of smart piezoresistive structures with general geometries and experiencing
arbitrary crack propagation patterns. The presented formulation is envisaged to serve as a valuable computational
tool to generate accurate digital twins with large applicability for design optimisation of self-diagnostic composites
and signal processing for SHM applications.
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ppendix. CNT-based composite model

Two mechanisms govern the electrical conductivity in CNT-based composites, namely electro hopping (EH) and
onductive networking (CN). The probability of electro hopping depends on the average distance between tubes
a,χ (ε), which has been reported to follow a power-low relationship as [24],

da,χ (ε) =

⎧⎨⎩dc χ = E H

dc

(
fc(ε)
f (ε)

)1/3
χ = C N

(A.1)

with dc being the maximum separation between CNTs that allows the electron transfer. This effect can be modelled
with a continuum interphase layer coating the CNTs, using the generalised Simmons formula as [81],

Rint,χ
(
ε, da,χ (ε)

)
=

da,χ (ε)h̄2

ae2(2 mλ)1/2 exp
[

4πda,χ (ε)
h̄

(2 mλ)1/2
]

(A.2)

where m and e are the mass and electric charge of an electron, λ is the height of the tunnelling potential barrier, a
s the contact area of the CNTs, and h̄ is the reduced Plank’s constant. The thickness of the conductive interphase
nd its electrical conductivity is given by [82],

tχ =
1
2

da,χ (ε), σint,χ =
da,χ (ε)

a Rint,χ
(
ε, da,χ (ε)

) . (A.3)

The proposed interphase layer is modelled as an effective composite solid cylinder. Therefore the conductivity
tensor of the equivalent solid cylinder is defined as transversely isotropic with effective longitudinal and transverse
electrical conductivities, denoted by σ̃ L

χ and σ̃ T
χ , respectively. Then, applying Maxwell’s equations and the rule of

mixtures,

σ̃ L
χ (ε) =

(
L + 2tχ (ε)

)
σint,χ (ε)

[
σ L

c r2
c + σint,χ (ε)

(
2rctχ (ε) + t2

χ (ε)
)]

2σ L
c r2

c tχ (ε) + 2σint,χ (ε)
(
2rctχ (ε) + t2

χ (ε)
)

tχ (ε) + σint,χ (ε)L
(
rc + tχ (ε)

)2 (A.4)

σ̃ T
χ (ε) =

σint,χ (ε)
L + 2tχ (ε)

[
L

2r2
c σ

T
c +

(
σ T

c + σint,χ (ε)
) (

t2
χ (ε) + 2rctχ (ε)

)
2r2

c σint,χ (ε) +
(
σ T

c + σint,χ (ε)
) (

t2
χ (ε) + 2rctχ (ε)

) + 2tχ (ε)

]
. (A.5)

he resultant filler is larger than the original, due to the interphase, and thus it must be updated as,

fe f f,χ (ε) =

(
rc + tχ (ε)

)2 (
L + 2tχ (ε)

)
2 f (ε). (A.6)
rc L
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