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Abstract: Transparent conductive electrodes have become essential components of numerous op-
toelectronic devices. However, their optical properties are typically characterized by the direct
transmittance achieved by making use of spectrophotometers, avoiding an in-depth knowledge of the
processes involved in radiation attenuation. A different procedure based on the Double Integration
Sphere combined with the numerical Inverse Adding-Doubling (IAD) method is employed in this
work to provide a comprehensive description of the physical processes limiting the light transmit-
tance in commercial indium tin oxide (ITO) deposited on flexible PET samples, highlighting the
noticeable contribution of light scattering on the total extinction of radiation. Moreover, harnessing
their flexibility, the samples were subjected to different mechanical stresses to assess their impact on
the material’s optical and electrical properties.
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1. Introduction

Transparent conductive electrodes are receiving increasing attention as they play a
crucial role in multiple optoelectronic devices such as touch panels [1,2], e-paper [3], solar
cells [4,5], and light-emitting diodes [6]. To optimize their performance, it becomes manda-
tory to use materials that simultaneously combine high electrical conductivity with high
optical transparency, and ideally, to achieve greater versatility, they should also be flexible.
One of the drawbacks of using transparent oxide films is that they are brittle by nature and
therewith limit the flexibility of the device [7]. Tin (Sn) doped Iny O3 films, familiarly known
as indium tin oxide (ITO), have been widely studied and employed as transparent conduct-
ing electrodes (TCEs) for the last decades. This material has proven unique characteristics
such as reduced resistivity (as low as 1 m()-cm), high optical transmittance in the visible
wavelength range (>80%), and good adhesion to the substrate [8-10]. However, there is an
unavoidable trade-off between the electrical resistivity and the optical transparency, as to
increase the electrical conductivity, a thicker film is necessary and that, in turn, reduces the
material’s transparency [11].

A number of different techniques such as spray pyrolysis [12], electron beam evapo-
ration, colloidal synthesis [13], pulsed laser deposition [14], thermal evaporation, screen
printing, ion-assisted plasma evaporation [15], sol-gel process [16], chemical/physical
vapor deposition [17], etc., have been used to deposit ITO thin films. Besides all these
methods, spin coating [18] and magnetron sputtering [19] are the most common techniques
since they offer the optimum compromise to achieve high-quality films over wide area
substrates. The temperature employed in the fabrication process determines the microstruc-
ture of the material as low temperatures yield amorphous materials while the use of a
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high-temperature methodology gives rise to polycrystalline ITO [20]. In addition, it has
clearly been demonstrated that crystalline materials provide better performance than their
amorphous counterpart [20,21]. However, the maximum temperature of the fabrication
process could be limited by the substrate where ITO is deposited. On the other hand, for
flexible applications (e.g., wearables), the ITO microstructure could be altered by excessive
mechanical stress due to its inherent brittle nature. Kim et al. [22] demonstrated that the
electrical resistivity of a ZnSnO (20 nm)/Ag (10 nm)/ITO (30 nm) multilayer electrode on a
polyethylene terephthalate (PET) substrate was hardly affected by cyclic bending, whereas
a thicker ITO reference film showed a noticeable resistivity increase after several bending
cycles. However, the effect of the bending stress on the optical transparency of the ITO has
not been studied to date.

Several studies in the literature [18,22-24] have systematically determined and ana-
lyzed the optical properties of TCEs, and most of them have been mainly focused on the
evaluation of the direct optical transmittance and/or reflectance in the visible and/or near-
infrared wavelengths ranges making use of spectrometer measurements. Mahmouidi et al.
compared in [25] spectral transmittance values of different TCEs such as ITO, carbon nan-
otubes, Ag nanowires, organic materials, metal nanoparticles, aluminum-doped zinc oxide,
and graphene. All of them exhibited transmittance values within the range of 82% to 90%
(only graphene showed a value higher than 90%). However, this type of measurement does
not provide conclusive information to get a deep understanding of light interaction within
the material. This analysis of the optical properties of materials is commonly described
in terms of the absorption coefficient, p,, and the scattering coefficient, ys, according to
the radiative-transport equation [26]. The determination of these coefficients provides the
contribution of light scattering and absorption to radiation extinction (light transmittance).

The complexity of the material structure hinders the analytical solution of this equation,
requiring the use of numerical iterative procedures such as the Inverse Adding-Doubling
(IAD) method [27]. This procedure must be applied in conjunction with reflection and
transmission measurements performed with an integrating sphere or a double integrating
sphere (DIS) system, to estimate the main optical properties of the media represented by
their scattering and absorption coefficients. Nevertheless, up to now, this methodology
has been mainly used for the determination of the optical properties of organic biological
tissues [28], and not for the investigation of the absorption and scattering characteristics of
inorganic TCEs.

One of the main advantages of the DIS system versus other procedures such as the
Kubelka-Munk method [29,30] and systems of reflection and transmission measurements,
is that the total reflectance and total transmittance are acquired simultaneously with the
sample in the same position, under the same illumination conditions and mechanical
constraints. Thus, the use of the DIS measurement system is favored due to its improved
accuracy [31]. Moreover, according to the numerous studies that make use of it, some
authors [31,32] describe the DIS measurement techniques as the “golden standard” method
for determining optical properties.

Hence, this work aims to investigate optical properties such as the absorption and
the scattering of incident light on ITO, considered the most representative material for
transparent conductive electrodes, making use of the numerical IAD method combined
with a DIS experimental setup. Additionally, the effect of flexural stress on the light
transmittance of the ITO films will be assessed for its potential use in flexible electronics.

2. Materials and Methods

Of the whole family of TCEs, we selected indium tin oxide (ITO) as the most commonly
used display application. In particular, we considered ITO deposited on polyethylene
terephthalate (PET) films, hereinafter referred to as ITO-PET, as raw materials in this work.
ITO-PET is commonly used in the fabrication of flexible organic light-emitting diodes
(OLED:s) [33], and also as a reference anode in conventional flexible polymer-based organic
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solar cells (OSCs) [34]. For this study, we have employed commercial samples provided by
two vendors [35-38] whose main properties are shown in Table 1.

Table 1. Properties of the raw materials employed in the study, as provided by the manufacturer.

60 O)/sq 80 O/sq 100 Q)/sq 300 O)/sq
Reference 639303 [35] [36] 639281 [37] 749796 [38]
Thickness 0.13 mm 0.175 mm 0.13 mm 0.13 mm
ITO Thickness 130 nm 23 nm 72 nm 24 nm
Transmittance
>78% >88% >78% >78%
(22550 nm) >78% >88% >78% >78%

It is a common practice to describe the optical properties of the ITO samples in
terms of their direct transmittance measured with a UV /visible spectrometer. However,
this procedure provides limited information on the physical processes determining the
optical performance of any material. Thus, to assess the optical properties of the ITO-PET
samples, the Inverse Adding-Doubling (IAD) method [27] was used in conjunction with
the experimental setup depicted in Figure 1 for measuring the total diffuse reflectance and
total diffuse transmittance of light transmitted through the samples under study.

Reflectance standard
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Figure 1. Schematic representation of the experimental setup depicting the double integrating sphere
(DIS). (a) reflection and transmission measurements of the sample; (b) reflection measurement of the
reflectance standard; (c) dark measurement for the reflection setup; (d) measurement with an empty
port corresponding to 100% transmission and (e) dark measurement for the transmission setup.

The double integrating sphere (DIS) measuring system [32], as represented in Figure 1a,
consisted of two spheres with the sample placed between them. Briefly, two 60-mm-
diameter integrating spheres (Oriel, model 70674, Stratford, CT, USA) each one with a
3-mm-diameter detector port, a 12.5-mm-diameter sample port with a baffle between
ports, and also a 12.5-mm-diameter entrance port, were used for total reflection and total
transmission measurements. A white light source (240-1100 nm, Thorlbas, Germany)
connected to the double integrating sphere system by an optic fiber (M92L01, & =200 pm,
0.22 NA) was used as a light source. The ITO-PET samples were sandwiched between two
optical borosilicate glass slides (1.1 mm thickness).

The total reflection measurements were carried out three times for each sample and,
in all the cases, the sample’s lateral size exceeded the diameter of the sphere sample port.
Reflection measurements of our samples were referenced to a 98% optopolymer reflectance
standard (OPST3-C, Optopolymer, Germany, Figure 1b) and a dark measurement, where
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the sample port was empty (Figure 1c). The total diffuse reflectance (Mg), was calculated
as a percentage according to the following expression:

R (rsdirect, ts, tsdirect, ts) _ R(O, 0,0, 0)

M P
R = Tstd ™ R roga, 7514,0,0) — R(0,0,0,0)

M

where 744 is the reflection of the reflectance standard, R (rgimt, ts, t‘s’liTECt, ts) is the reflection
measurement of the sample of interest, R(rgq, 7stq,0, 0) is the reflection measurement of
the reflectance standard, and R(0, 0,0, 0) is the dark measurement (sample port empty).

The total diffuse transmittance was measured under the same setup conditions, mak-
ing use of the DIS setup with collimated light. Transmittance measurements of the samples
were referenced to 100% with the illuminating source activated and the sample port empty
(Figure 1d) and a dark measurement was carried out with an open port without any il-
lumination source (Figure 1le). The total diffuse transmittance was calculated, also as a
percentage, using the following expression:

T(rgirECt/ rS/ tgirECt/ tS) - Tdurk (OI 0/ O/ 0)

M =
T T(0,0, 1,1) — Ty,%(0,0,0,0)

()

where T(r’s’liVECt, Ts, t‘s’liVECt, ts) is the transmission measurement of the sample of interest,
T(0,0, 1,1) is the transmission measurement of the empty sample port, and T, (0,0,0,0)
is the dark measurement with an open port without any illumination.

From the diffuse reflectance (Mg) and diffuse transmittance (My) measurements, the
absorption coefficient (y,) and the reduced scattering coefficient ((.”; = us(1— g), where
g is the scattering anisotropy factor) were determined using the IAD method [39]. With
values of p, and yls obtained numerically, we can calculate new values of Mg and Mr
that will be compared with the measured ones. According to the IAD algorithm [27], this
process is iterated until the calculated and experimentally obtained values of Mg and
M are within a specified tolerance (for this work the tolerance default value was set to
0.01%). A flowchart of the IAD algorithm is shown and explained in Figure S1 of the
Supplementary Information.

To solve the inverse problem, knowledge of the refractive index of the sample is
required. Changes in the refractive index over the range of wavelengths employed in the
present study were assumed negligible and, therefore, we consider the refractive index
n = 1.827 for A = 590 nm as the mean value for the visible range [40]. To determine
the scattering anisotropy factor, we employed a customized goniometric optical setup
(Figure S2) to measure the angular distribution of scattered light within the angular range
of 0-175° [41]. The g values obtained are indicated in Table 2:

Table 2. Scattering anisotropy factor (g) for the different samples measured.

Rs(QY/sq) 60 O/sq 80 O)/sq 100 Q)/sq 300 Q/sq
g 0.985 £ 0.011 0.987 £ 0.016 0.989 +£ 0.021 0.989 + 0.014

The key role played by the absorption and the scattering processes in the extinction
of the light when passing through the analyzed sample, is evaluated with the albedo
coefficient (a) that can be calculated in terms of y, and te, according to the following
equation [42]:

a=— Fs
"ls + ﬂa
In addition, to determine the level of similarity regarding the spectral behavior of

different optical magnitudes, the Variance Accounting For (VAF) coefficient with Cauchy-
Schwarz inequality is used. This statistical parameter is defined as follows [43]:

®)
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where ay, is the spectral value of Mg, Mr, p, and s (for wavelengths from 380 to 780 nm)
and by, is the equivalent parameter for the measurement to be compared. The closer this
coefficient gets to unity (100%), the more similar the two curves become.

Finally, to investigate the effect of mechanical flexibility on light transmittance, the di-
rect transmittance (T%) of radiation propagating throughout the visible spectral range
was calculated from the incident and transmitted intensities measured using a spec-
trometer (Thorlabs CCS200/M, 200-1000 nm) with a spectral light source (BDS130 Deu-
terium/Tungsten, 190-2500 nm) as:

VAF =

4)

I

T=1 (5)

where Ij is the incident light intensity, and I is the transmitted light intensity. Transmittance
was a measure for tensile and compressive strain using customized circular brackets,
providing four different radii of curvature, 37.5, 75, 150, and 300 mm, respectively as shown
in Figure 2. For the sake of completeness, the resistance of the strained samples was also
measured for each curvature. The double-integrating sphere measuring system does not
allow the coupling of customized brackets, therefore, the ITO-PET samples under bending
stress were measured only for their direct transmittance.

S Light source

Figure 2. Schematic representation of the experimental setup employed to measure the different
strained samples.

3. Results and Discussion

Figure 3 depicts the spectral diffuse reflectance (Mp) and diffuse transmittance (Mr)
of the four ITO-PET samples in the visible range (400-780 nm). The diffuse reflectance
distributions of the ITO-PET electrodes display a similar spectral behavior for all the surface
resistances analyzed (VAF > 99.0%), with values ranging between 6.7% (ITO-PET 100 /sq
at 777 nm), and 4.3% (ITO-PET 80 (3/sq at 400 nm). Furthermore, for the whole wavelength
range, the reflectance shows a lower value for the 80 (1/sq samples, as this material was
provided by a different provider. In general, spectral reflectance increases for the initial
range from 400 nm to 450 nm, keeps a gentle reduction in the central portion of the visible
spectrum, and then shows a slight upswing above 675 nm. On the other hand, the diffuse
transmittance increases from 400 nm to 500 nm. For higher wavelengths, the transmittance
remains approximately constant for the 100 (3/sq and 300 ()/sq ITO-PET electrodes, while
for the lower resistance values, 60 (}/sq and 80 )/sq, Mt displays a smooth reduction.
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The Mr values ranged between 64.0% (ITO-PET 100 (/sq at 400 nm) and 77.1% (ITO-
PET 300 (}/sq at 546 nm). Also, as for Mg, the spectral transmittance showed similar
spectral behavior for all the surface resistivity analyzed. This conclusion was statistically
corroborated by a VAF value of 99.0%.

0.80 - -

0.75 -

0.70 - 0.05 -

065 -

Diffuse Transmittance
1
Diffuse Reflectance

0.60 - -

——60Q/sq [—s600/sq
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0.50 1 | 1 1 | 1 I 1 0.00 L L L L L L L 1
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(a) (b)

Figure 3. Spectral diffuse reflectance (a) and diffuse transmittance (b) for each one of the ITO-PET
electrodes. Solid lines correspond to the mean value extracted from the measurements and their
standard deviation is also indicated as vertical lines.

Figure 4a,b shows the spectral distribution of the scattering and absorption coefficients
for the ITO-PET electrodes evaluated. The spectral behavior of the reduced scattering
coefficient, y;, displayed higher values, ranging between 7 cm~! (ITO-PET 100 Q/sq at 652
nm) and 14 cm~! (ITO-PET 60 Q/sq at 774 nm) than the absorption coefficient, g1, 4 cm ™!
(ITO-PET 80 Q)/sq at 598 nm) and 8 cm~! (ITO-PET 60 Q/sq at 689 nm) for the visible
range analyzed in this study. The scattering coefficient of the analyzed ITO-PET showed
similar spectral behavior for high and low resistivity (VAF > 99.0%). The highest values of
scattering and absorption for the ITO-PET of 60 ()/sq explain the lower transmittance of
this electrode, a behavior related to the higher ITO coating thickness (130 nm) [44].

T T T 16 T T T T T T T

T
[—s60csq
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14 - 14 ——1000sq| ]
— 300€/sq
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1
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(a) (b)

Figure 4. Reduced scattering coefficient (a) and absorption coefficient (b) of the ITO-PET electrodes.
Solid lines correspond to the mean value extracted from the measurements and their corresponding
standard deviation is also indicated as vertical lines.

According to Figure 4, scattering is the most relevant optical extinction phenomenon
that occurs when light interacts with the ITO-PET samples. This conclusion is corroborated
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by the albedo coefficient shown in Figure 5, with values above 0.6 regardless of the electrode
resistivity. The high values of the anisotropy coefficient, g, obtained in this study (Table 2),
close to one for all the ITO-PET electrodes highlight the anisotropy of this material explain-
ing the prevalence of the scattering over the absorption for the light transmitted through
these materials. This optical behavior follows a trend similar to that observed in translucent
biological tissues [28,42] and dental zirconia [45], where the scattering coefficient is usually
higher than the absorption. Anisotropic materials and materials with complex structures
display higher scattering properties. Although the present study does not contemplate
the evaluation of the structure and morphology of ITO thin films, previous studies [46,47]
determined these characteristics, confirming their complex structure.

10 ——m————

08 [~ -

06 [~

04 4

Albedo Coefficient

02 [~ -
——60Q/sq
——80Q/sq
——1000Ysq
—— 3000sq

0.0 1 " 1 " 1 " 1 n 1 " 1 " 1 L 1 L
400 450 500 550 600 650 700 750 800

Wavelength (nm)

Figure 5. Spectral distribution of albedo coefficient for the different ITO-PET electrodes. Solid lines
correspond to the mean value extracted from the measurements and their standard deviation is also
indicated as vertical lines.

To assess the impact of mechanical stress on the transmittance (T%) and resistivity of
the electrodes, both compressive (C) and tensile (T) strains corresponding to four different
radii of curvature: 37.5 mm, 75 mm, 150 mm, and 300 mm were applied, and the direct
transmittance measured as shown in Figure 6.

These results show that the analyzed samples present the same spectral behavior
for both, compressive and tensile strain (VAF > 99.1%) for all ITO-PET samples and all
the curvatures under study. Direct transmittance increases rapidly for increasing wave-
length up to 500 nm from which a gentle increase is observed up to 780 nm. The 60(}/sq
sample shows a different behavior with a peak near 450 nm and a smooth variation up
to 780 nm, a feature that agrees with previous studies on MOCVD-ITO grown on sap-
phire [48]. This behavior can be explained by attending to the absorption coefficient shown
by this material in Figure 4, as the obtained transmittance follows a reverse trend with the
absorption coefficient.

It has to be highlighted that direct transmittance does not show a clear modification as
a consequence of the substrate curvature as all of them depict similar behavior. According
to the manufacturer indications [35-38], a radius of curvature of up to 75 mm would not
damage the ITO coating, and in our case, we have not observed significant modifications of
both, optical and electrical performance when halving this radius to 37.5 mm.
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Figure 6. Direct transmittance was measured for different ITO-PET samples and four radii of curvature.
Along with the optical characterization, the surface resistivity of the ITO-PET samples
was measured (Keysight E4980AL Precision LCR Meter and Keysight 16089B Kelvin Clip
Leads) for the aforementioned radius, and the obtained values are summarized in Table 3.
Table 3. Results obtained from the measurement of the surface resistivity ((2/sq) of the ITO-PET samples
under different radii of curvature. Measurements are expressed as (€)/sq) and dispersion as %.
Compressive Strain Tensile Strain
300 mm 150 mm 75 mm 37.5 mm 300 mm 150 mm 75 mm 37.5 mm
60 ()/sq 141 +9 137 £ 3 172 £ 10 162 £17 150 £5 153+ 6 151 £ 6 167 £ 10
80 Q2/sq 557 £ 1 645+ 5 624 £3 593 + 4 600 £ 3 653 +£3 559 + 1 639 £ 4
100 Q3/sq 291 +£10 299 12 280 +3 282 + 4 284 + 4 265 + 8 279 £1 289 + 6
300 Q) /sq 1080 £1 1285 £ 3 1165 £ 3 1157 £ 8 1095 £ 5 1012 + 4 1411 £ 2 1238 + 15

The fluctuations in the data are due to variability among the samples rather than the

impact of the mechanical deformation of the experiments as a definite trend is not observed.

Moreover, these measurements were repeated two months after the initial ones without any
noticeable variation. These results prove that the ITO-PET samples are not degraded when
mechanical strain is applied up to a minimum radius of 37.5 mm, providing a technological
option for conformal electrodes in slightly curved surfaces.
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4. Conclusions

This work provides a methodology to carry out a comprehensive optical charac-
terization of transparent conductive electrodes (TCEs) that goes well beyond the usual
measurements of direct transmissions making use of spectrometers. From this optical
characterization, we can evaluate the scattering and the absorption coefficients of different
ITO-PET samples, the TCE was chosen for this study, as they give insight into the physical
mechanisms limiting the radiation transmittance through the material of interest. It can be
concluded that scattering is the most relevant optical extinction phenomenon that occurs
when light interacts with the ITO-PET samples, a conclusion corroborated by the albedo
coefficient. This technique can be applied to arbitrary TCEs and relate the values attained
for both coefficients with the processes followed in their fabrication. Moreover, we have
also analyzed the impact of mechanical stress on the optical and electrical properties of the
ITO-PET with different electrical resistance, up to a curvature radius of 37.5 mm without
observing a noticeable degradation.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/mal6041425/s1, Figure S1. Flowchart representing the Inverse
Doubling-Adding algorithm; Figure S2. Schematic representation of the experimental setup employed
to measure the scattering anisotropy factor.
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