SUPPLEMENTARY MATERIAL

Genotoxicity and endocrine disruption potential of haloacetic acids in human placental and lung cells.

Elisabet Pérez-Albaladejo¹, Raquel Pinteño¹, María del Carmen Aznar-Luque¹, Marta Casado¹, Cristina Postigo^{2,3,1*}, Cinta Porte¹

¹Environmental Chemistry Department, IDAEA –CSIC-, C/ Jordi Girona 18-26, 08034 Barcelona, Spain

² Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada, 18071, Spain

³ Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada, 18071, Spain

*Corresponding author: cristina.postigo@ugr.es

Number of total pages: 6

Number of tables:3

Number of figures:2

Table S1. Main physical-chemical properties of the investigated haloacetic acids.3

- Table S2. Taqman gene expression assays for RT-PCR analysis and efficiency obtained from a pool of one replicate of each sample. The selected genes encode enzymes involved in steroidogenesis and are relatively highly expressed in JEG-3 placental cells.

 4

Acronym	Compound	Structure	CAS	Average mass (g/mol)	рКаª	log Kow ^b	Solubility (mol/L) ^b	Vapor pressure (mmHg) ^b
CAA	Chloroacetic acid	CI	79-11-8	94.50	3.1	0.210 (0.220)	2.12 (8.51)	0.259 (0.065)
BAA	Bromoacetic acid	Br OH	79-08-3	138.95	2.6	0.469 (0.410)	1.48 (12.6)	0.119 (0.118)
IAA	lodoacetic acid	P∕OH	64-69-7	185.95	3.0	0.660	0.643	0.099
ТВАА	Tribromo- acetic acid	Br OH	75-96-7	296.74	0.7	2.66	0.346 (0.674)	0.021
CIAA	Chloroiodo- acetic acid	CI OH	53715-09- 6	220.39	2.3	1.10	1.15	0.002
DIAA	Diiodo- acetic acid	и он	598-89-0	311.85	2.3	2.21	0.172	0.015

Table S1. Main physical-chemical properties of the investigated haloacetic acids.

^a ACE and JChem acidity and basicity calculator – <u>www.chemicalize.com</u>

^b CompTOx Chemicals Dashboard - Average predicted values (average experimental values) (Williams et al., 2017)

Table S2. Taqman gene expression assays for RT-PCR analysis and efficiency obtained from a pool of one replicate of each sample. The selected genes encode enzymes involved in steroidogenesis and are relatively highly expressed in JEG-3 placental cells.

Gene	Assay ID	Efficiency	Error	Slope	y intercept
cyp19a1	Hs00903413_m1	1.938	0.085	-3.479	36.9
hsd3b1	Hs00426435_m1	1.880	0.086	-3.647	38.9
hsd17b1	Hs00166219_g1	2.017	0.026	-3.283	36.4
hsd17b7	Hs04937189_g1	2.339	0.170	-2.709	37.0
hsd17b12	Hs00275054_m1	2.066	0.004	-3.173	34.4
gadph	Hs02786624_g1	2.016	0.003	-3.285	26.2

Table S3. Concentration of haloacetic acids that leads to a 50 % decrease in cell viability (EC₅₀) in JEG-3 cells (24 h of exposure), expressed in μ M as mean \pm SD (n = 3).

	IAA	BAA	TBAA	CAA	DIAA	CIAA
AB	7.06 ± 0.20	20.3 ± 0.85	458 ± 31.2	> 500	> 500	> 500
CFDA-AM	7.69 ± 0.31	25.3 ± 3.13	258 ± 44.2	> 500	> 500	> 500

Figure S1. Experimental overview of the in vitro assays conducted.

Figure S2. Summary of the steroid synthesis pathways investigated in JEG-3 placental cells (Karahoda et al., 2021; Samson et al., 2009).

References

- Karahoda, R., Kallol, S., Groessl, M., Ontsouka, E., Anderle, P., Fluck, C., Staud, F., & Albrecht, C. (2021). Revisiting Steroidogenic Pathways in the Human Placenta and Primary Human Trophoblast Cells. In *International Journal of Molecular Sciences* (Vol. 22, Issue 4). https://doi.org/10.3390/ijms22041704
- Samson, M., Labrie, F., & Luu-The, V. (2009). Specific estradiol biosynthetic pathway in choriocarcinoma (JEG-3) cell line. *The Journal of Steroid Biochemistry and Molecular Biology*, *116*(3), 154–159. https://doi.org/https://doi.org/10.1016/j.jsbmb.2009.05.009
- Williams, A. J., Grulke, C. M., Edwards, J., McEachran, A. D., Mansouri, K., Baker, N. C., Patlewicz, G., Shah, I., Wambaugh, J. F., Judson, R. S., & Richard, A. M. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. *Journal of Cheminformatics*, 9(1), 61. https://doi.org/10.1186/s13321-017-0247-6