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Abstract
Brandy de Jerez is a unique spirit produced in Southern Spain under Protected Geographical Indication “Brandy de Jerez” 
(PGI). Two key factors for the production of quality brandies are the original wine spirit and its aging process. They are 
significantly conditioned by specific variables related to the base wine and the distillation method employed to produce the 
wine spirit used to obtain a finally aged brandy. This final beverage is therefore strongly influenced by its production process. 
The chromatographic instrumental fingerprints (obtained by GC FID) of the major volatile fraction of a series of brandies 
have been examined by applying a chemometric approach based on unsupervised (hierarchical cluster analysis and principal 
component analysis) and supervised pattern recognition tools (partial least squares–discriminant analysis and support vector 
machine). This approach was able to identify the fermentation conditions of the original wine, the distillation method used 
to produce the wine spirit, and the aging process as the most influential factors on the volatile profile.

Keywords  Distillation · GC-FID · Sulfur dioxide · Volatile compounds · Authentication · Wine spirits

Introduction

Brandy de Jerez is a unique spirit produced in Southern 
Spain under a Protected Geographical Indication “Brandy de 
Jerez” (PGI). As described in its Technical File (Consejería 
de Agricultura Pesca y Desarrollo Rural, 2018; Parlamento 
Europeo & Consejo de la Unión Europea, 2019), Brandy de 
Jerez can be elaborated from different types of wine spirits, 
as long as these wine spirits of medium and low alcoholic 
strength represent more than 50% of the alcoholic strength of 

the final brandy being recognized in this Technical File: (i) 
low alcohol content wine spirits, traditionally called “holan-
das,” with no more than 70% ABV (alcohol by volume); (ii) 
medium alcohol content wine spirits, with between 70 and 
86% ABV; and (iii) high alcohol content wine spirits, tradi-
tionally known as wine distillates, with an alcohol content 
between 86 and 94.8% ABV.

The distillation method used to produce the wine spirit is 
decisive regarding its organoleptic characteristics (Balcerek 
et al., 2017; Spaho et al., 2013; Tsakiris et al., 2014). Two of 
the most commonly used distillation techniques to produce 
wine spirits are continuous column distillation (Spaho, 2017; 
Tsakiris et al., 2014; Xiang et al., 2020) and pot still distilla-
tion, which can be performed in one or two steps (Balcerek 
et al., 2017). This is one of the most relevant factors associ-
ated to the production of wine spirits. Thus, when pot still 
distillation is employed, fruity aromas (primary aromas) can 
be perceived and the “memory” of the raw material in the 
distilled product is more accentuated. On the other hand, 
the distillates obtained by column distillation are usually 
richer in higher alcohols, since the very nature of the distilla-
tion process separates the rest of the compounds to a greater 
extent (Spaho, 2017).
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Grape variety (Cacho et al., 2013; Xiang et al., 2020), fer-
mentation conditions, and the oenological practices applied 
to obtain the wine to be distilled (Tsakiris et al., 2014; Xiang 
et al., 2020; Zierer et al., 2016) also have an influence on 
the character of the resulting wine spirit. Likewise, certain 
traditional oenological practices, such as the use of sulfur 
dioxide (International Organization of Vine & Wine, 2021), 
also affect the organoleptic properties of the wines (Korenika 
et al., 2020) and, as a consequence, that of the wine spirits 
produced from them (Tsakiris et al., 2014).

The character of brandies will also be shaped by another 
fundamental stage in its production process: aging. Accord-
ing to its Technical File, Brandy de Jerez must be aged in 
“properly seasoned cask wood.” So casks are crucial ele-
ments in the aging of brandies, since the botanical origin of 
the wood and the thermal treatment it is subjected to during 
its manufacturing process, as well as the particular seasoning 
of the wood (Sánchez-Guillén et al., 2019), have a definite 
saying on the specific compounds involved in the process 
and that might be transferred to the brandy during its aging.

Among the compounds that constitute the volatile frac-
tion of brandies, aldehydes, higher alcohols, and major esters 
are worth mentioning. These major volatile compounds that 
are found in brandies have their origin in the fermentation 
of the grape must (Berry & Slaughter, 2003; Swiegers et al., 
2005; Valero et al., 2002) and, subsequently, their greater or 
lesser presence in the distillate will be dictated by the dis-
tillation method employed (Silva & Malcata, 1999). Thus, 
the distillation method will also determine the volatile frac-
tion of the final brandies (García-Llobodanin et al., 2007; 
Hernandez-Gomez et al., 2003), given that the presence and 
concentration levels of these compounds in the aged product 
will depend on such method (Spaho et al., 2013).

Fingerprinting is a very powerful methodology that is 
increasingly used by the food industry (Bagur-González 
et al., 2015; Bikrani et al., 2019; Ortega-Gavilán et al., 2020; 
Pérez-Castaño et al., 2019). It presents multiple advantages, 
as it does not require the calibration or quantification of the 
compounds in a product to characterize it, since it is based 
on its whole signal. Instrumental fingerprints are highly spe-
cific indicators, as when obtained under certain analytical 
conditions they are unique to each sample, which allows 
generating a robust model for the rapid classification and/
or quality control of the samples. The establishment of the 
robust model needs the use of data analysis approaches in 
order to (i) extract the maximum useful information, (ii) 
reduce the number of the variables of the system, and (iii) 
group and/or classify unknown samples with similar char-
acteristics (Pastor et al., 2016, 2020; Psodorov et al., 2015; 
Szymańska, 2018).

Consequently, with the above said, this work intends to eval-
uate the potential of chromatographic fingerprinting applied 
to the volatile compounds present in 14- and 28-months- 

aged brandies obtained from different types of wine spirit 
under a chemometric approach based on the use of differ-
ent patterns recognition techniques. The wine spirits were 
obtained from suitable for distillation wines produced under 
different fermentation conditions and distilled using differ-
ent techniques in order to evaluate the impact of these raw 
materials on the aged product. For this reason, unseasoned 
casks were used for the aging process, so that the impact  
of particular the wine spirit used to elaborate the brandies 
could be determined, but without having cask seasoning as an  
additional variable.

Material and Methods

Samples

The wine spirits, the oak casks, and the premises where this 
study was carried out were provided by Bodegas Fundador 
S.L.U., a winery that belongs to the Protected Geographical 
Indication “Brandy de Jerez.”

All the wines selected for the production of the wine spir-
its were suitable for distillation (volatile acidity of 0.28–0.51 
g acetic acid/L and without organoleptic defects) from the 
Airén variety (Castilla La Mancha, Spain). Table 1 shows 
the seven types of wine distillates studied.

The total sulfur dioxide (SO2) content of the wines 
selected for the production of the AG1, AG2, and AG3 wine 
spirits was less than 10 mg/L, while the total sulfur dioxide 
content of those selected for the production of the AG4 and 
AG6 wine spirits was 73 mg/L and that for the AG5 and 
AG7 wine spirits 36 mg/L.

The wines were distilled using four different distillation 
methods: double distillation in pot still, simple distillation 
in pot still, distillation with two pot stills in series, and con-
tinuous column distillation, resulting in seven types of wine 
spirits (AG1 to AG7).

The wine spirits were hydrated to the aging alcoholic 
strength by using demineralized water in those cases where 
it was necessary. The wine distillates, used for the different 
experiments, met the technical specifications set out in the 
regulations governing Brandy de Jerez (Consejería de Agri-
cultura Pesca y Desarrollo Rural, 2018; Parlamento Europeo 
& Consejo de la Unión Europea, 2019). Previous experiences 
internally carried out at the Bodegas Fundador, S.L.U. distill-
ery, have demonstrated that when sulfur dioxide is incorpo-
rated to the winemaking process during fermentation (AG4 
to AG7), the distillation of the wines can be carried out over 
a period of 1 to 6 months without any significant differences 
being observed in the brandies produced.

The brandies were aged in light- and medium-toasted 
350-L oak casks (Quercus alba, Quercus robur, and Quercus 
petraea) (filled up to 335 L). Likewise, in order to evaluate 
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the evolution of the brandies, three aging times were used: 
young brandies (unaged) T0, 14-month-old brandies T1, and 
28-month-old brandies T2. All the samples were analyzed 
in duplicate.

Chemicals and Reagents

The compounds used for both the identification of aldehydes 
and higher alcohols peaks analyzed by GC-FID were sup-
plied by Sigma-Aldrich (Saint Louis, MO, USA).

The hydroalcoholic mixtures of the compounds used for 
the identification of the peaks were prepared using ethanol, 
99.8%, supplied by Sigma-Aldrich (Saint Louis, MO, USA), 
and ultrapure water (EMD-Millipore, Bedford, MA, USA).

GC‑FID Analysis

An Agilent 7890B Gas Chromatograph (Agilent Technolo-
gies, Santa Clara, CA, USA) coupled to a flame ionization 
detector (GC-FID) was used to acquire the chromatograms. 
A DB-624 column (30 m × 250 μm × 1.4 μm, Agilent Tech-
nologies, Santa Clara, CA, USA) was employed to obtain the 
chromatograms corresponding to the aldehydes and higher 
alcohols. A CP-WAX 57 CB column (25 m × 250 μm × 0.2 
μm, Agilent Technologies, Santa Clara, CA, USA) was used 
to obtain the chromatograms corresponding to the major 
esters. The samples were directly injected.

The GC-FID methodology used was the one previously 
described by Valcárcel-Muñoz et al. (2021).

Data Processing

The data were acquired using the software application Open-
LAB CDS Chemstation (Agilent Technologies, Santa Clara, 
CA, USA). To obtain the chromatographic profiles, i.e., 
the instrumental fingerprints, all the chromatograms were 
exported into CSV format. For the construction of the two 

fingerprint matrices corresponding to the brandies under 
study, the first one related with the higher alcohols and alde-
hydes chromatograms and the second one to the major esters 
chromatograms, the procedure described by Bagur-González 
et al. (2015) was followed.

Two 232 × 8520 and 232 × 20,100 fingerprint matrices 
were obtained respectively for aldehydes and higher alco-
hols and for major esters. A representative fingerprint of 
each family of compounds has been included in the Online 
Resource 1 (Fig. OR1).

The data were preprocessed by means of MATLAB 
R2013b (Mathworks Inc., Natick, MA, USA), by apply-
ing the specific script known as “Medina” (version 14) 
(Pérez-Castaño et al., 2015) in accordance to the procedure 
described in previous works (Ortega-Gavilán et al., 2020; 
Pérez-Castaño et al., 2019). This script takes advantage of 
different functions in Matlab Bioinformatics Toolbox to fil-
ter, smooth, and correct the signal baseline and also to per-
form the normalization of the intensity values with respect 
to the intensity of the internal standard. As a last step, this 
script uses the “icoshift” algorithm to align the peaks in the 
chromatograms (Tomasi et al., 2011).

Previously to applying pattern recognition techniques, 
each matrix was mean centered using the PLS_Toolbox 
software, as a final pre-processing stage.

Results and Discussion

In order to evaluate the usability of the encrypted informa-
tion in the instrumental fingerprints (that corresponded not 
only to clear markers but also to unknown compounds) to 
obtain information about the natural grouping trends of the 
heterogeneous samples set (i.e., seven wine spirits from dif-
ferent wines fermented either with or without the addition of 
sulfur dioxide, subjected to five different distillation meth-
ods, and aged at two alcoholic strengths), hierarchical cluster 

Table 1   Description of the types of spirits used and the experiences studied

a In these samples, the unaged starting spirits have also been analyzed
b In the wine fermentation
c Time after fermentation

Testa SO2 additionb Time of wine 
distillationc

Distillation type Alcohol content of 
spirits

Ageing graduation

AG1 No 1 month Double distillation in pot still 70% ABV 55% ABV
AG2 No 1 month Simple distillation in pot still 65% ABV 55% ABV
AG3 No 1 month Distillation with two pot stills in series 65% ABV 55% ABV
AG4 Yes 6 months Continuous column distillation 77% ABV 55% ABV
AG5 Yes 6 months Distillation with two pot stills in series 65% ABV 55% ABV
AG6 Yes 6 months Continuous column distillation 77% ABV 65% ABV
AG7 Yes 6 months Distillation with two pot stills in series 65% ABV 65% ABV
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analysis (HCA) and principal component analysis (PCA) 
were applied. In addition, partial least squares–discriminant 
analysis (PLS-DA) and support vector machine (SVM) were 
employed as the tools to evaluate the discriminating/classify-
ing suitability of the fingerprints used.

Unsupervised Pattern Recognition Methods

The analysis of the natural grouping trends could allow 
establishing a correlation between the data in the instru-
mental fingerprints and their impact on some of the experi-
mental variables in the production process. This would lead 
to discerning which ones are of relevance with regard to the 
production of a quality Brandy de Jerez.

Hierarchical Cluster Analysis of the Chromatographic Fingerprints

First of all, an HCA was performed using the data matrices 
that had been previously defined (Fig. 1a, b). In this analy-
sis, Ward’s method and Euclidean distance were used as 
the linkage criterion and the measure of distance between 
pairs of observations respectively. To select the number of 
clusters, a Dlinkage = 2/3 of the Dmax was used as internal 

criterion. It could be observed that the brandies clustered 
naturally according to the addition or not of sulfur dioxide 
to the fermenting base wine.

Regardless of the instrumental fingerprint used (either 
higher alcohols and aldehydes or esters), the brandies 
grouped mainly into two large clusters: (i) the first one 
included those brandies whose wine spirit had been obtained 
from a wine that SO2 had not been added to, and also whose 
SO2 content was below 10 mg/L (cluster I); and (ii) the sec-
ond one included those brandies produced from SO2-treated 
wines and with a sulfur dioxide content ranging between 36 
and 73 mg/L (cluster II).

In the case of higher alcohols and aldehydes (Fig. 1a), the 
degree of variability of the instrumental fingerprints of bran-
dies from wines without SO2 addition was much lower than 
the variability of those brandies whose base wines had SO2 
added. This fact is justified by the distance considered until 
nesting occurs, which is substantially shorter in this cluster, 
probably because of the lesser differences in SO2 content.

Regarding the clustering of the brandies attending to 
their major esters content (Fig. 1b), it can be observed that 
those brandies from wines with added SO2, a previous par-
tial clustering takes place according to both their distillation 
method and their SO2 content level as follows: serial pot 

Fig. 1   Dendrograms from the 
HCA of the analyzed brandies 
using aldehydes and higher 
alcohols fingerprints matrix (a) 
and the major ester fingerprints 
matrix (b)
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stills (brandies AG5 and AG7) with 36 mg/L of SO2 and 
column distillation (brandies AG4 and AG6) with 73 mg/L 
of SO2. These sulfur dioxide contents have an influence on 
the initial clustering of the brandies with different aging 
alcoholic strengths (55% ABV or 65% ABV).

Therefore, it should be noted that, regardless of the aging 
time in the cask, the use of SO2 during the wine fermentation 
and the distillation method used to obtain the wine spirit 
are the factors with the most significant influence on the 
volatile fraction of the brandies. In other words, the starting 
raw material (wine and wine spirit) has a greater impact on 
the brandies’ major volatile compound content of the aged 
brandies than the aging process itself.

Principal Component Analysis

PCA of Aldehydes and Higher Alcohols Chromatographic 
Fingerprints  When PCA was applied to the matrix of the 
instrumental fingerprints of the higher alcohols and alde-
hydes, 3 principal components (PCs) were obtained which 
explained 98.12% of the variance of the model for the bran-
dies. PC1 explained 94.76% of the total variance of the sys-
tem, while the other two principal components explained 
respectively 2.61% and 0.75% of the remaining variance.

Figure 2a illustrates the scores received by the brandies 
in the space of the first two components (PC2 vs. PC1). In 
this figure, it can be observed that, similarly to what occurs 
when HCA is applied, the brandies are once again grouped 
according to the addition of SO2 during the fermentation 
of the base wine. It can also be seen that the brandies from 
the wines without SO2 addition received negative scores for 
PC1 (group I), while the brandies from the wines which 
had SO2 added scored positively for this component (group 
II). A common trend to separate some brandies as potential 
“outliers” can be observed in both groups. These scores cor-
respond to the unaged brandies, which could explain this 
behavior. In addition, with respect to the brandies in group 
I, a second effect attributable to the number of times the 
distillation is carried out in the pot stills can be observed. 
Thus, certain differences among brandies from wine spirit 
obtained by double or serial distillation (AG1 and AG3 
respectively) and the brandies from wine spirit obtained by 
single distillation (AG2) can be observed.

Figure 2b displays the graphical representation of the 
scores received by the brandies in the PC3 vs. PC1 space. 
Considering the distribution of the brandies’ score along 
the PC1 space, once again, the same main grouping that 
attends to the SO2 treatment of the base wine (groups I and 
II) can be observed. In the case of group II, a new subgroup-
ing is observed, which can be explained attending to the 
distillation process. Thus, the brandies from the wine spirit 
obtained through column distillation (AG4 and AG6) had 
positive PC3 scores, while those brandies from distillates 

obtained by means of serial pot stills (AG5 and AG7) were 
in the most negative area of this component. Furthermore, in 
this same group, it could be also observed that as the alcohol 
content of the aging wine spirit increases, the higher PC1 
positive scores are given to the brandies. The new described 
trends could be explained attending to those fingerprint 
regions that have minimum variations on the total variance, 
i.e., minimum differences among fingerprints.

When the PCA corresponding to the aging times was 
completed, it could be observed that the brandies repre-
sented in the new PC2 vs. PC1 plane could be differentiated 
according to their aging time in the casks (Fig. 2c). Thus, 
each of the different types of brandies considered received 
increasingly positive PC2 scores as aging time was longer. 
This new PCA corroborates not only the scores received by 
those brandies that were further away from the rest of the 
clusters observed in the previous model, but also allows to 
identify each type of starting wine spirit used to produce the 
brandy (Fig. 2a, b).

If the loading plots for each component (Fig. OR2 in 
Online Resource 1) are analyzed based on Fig. OR2a, it can 
be observed that the PC1 loadings would allow identifying 
those variables that explain the grouping of the brandies 
according to the use of SO2 during the fermentation of the 
base wine. The variables associated to the areas of the fin-
gerprint in which the isoamyl alcohols (3-methyl-1-butanol 
and 2 methyl-1-butanol) appear have a positive influence on 
this component. Isobutanol, n-propanol, methanol, acetalde-
hyde, and its corresponding diethyl-acetal also contribute 
to these groups. Furthermore, the sub-groupings related to 
the alcoholic degree of the distillates to be aged can also 
be caused by the aforementioned compounds. On the other 
hand, the greater positive contribution of the acetaldehyde 
and diethyl acetal areas and the negative contribution of 
the isoamyl alcohols to the PC1 loadings indicate that the 
scores received by the brandies are affected by the alcoholic 
strength of the distillates.

An analysis of the loadings plot that corresponds to PC2 
(Fig. OR2b) reveals that aging is reflected by the positive 
trend in the area of the fingerprint where ethyl acetate and 
n-butanol appear. In addition, with the passing of time, vari-
ations take place in the areas corresponding to acetaldehyde, 
n-propanol, and diethyl acetal. The initial ethyl acetate con-
tent in wine spirits depends, on the one hand, on the addi-
tion of SO2 to the wine used to obtain the distillate, and on 
the other, on the distillation method used, where a greater 
or lesser separation of the head compounds determines its 
content (Balcerek et al., 2017; Louw & Lambrechts, 2012; 
Xiang et al., 2020). Likewise, ethyl acetate is involved in 
numerous esterification reactions between acetic acid (gen-
erated during aging) and ethanol. Guerrero-Chanivet et al. 
(2020) proved that wood is also capable of transferring ace-
tic acid into the wine spirit being aged, thus accounting for 
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the fact that brandies have a higher acetic acid content than 
young wine spirit. This implies that a greater amount of 
ethyl acetate is generated by esterification as time goes by, 
which makes this compound a marker of brandies’ age.

Finally, Fig. OR2c (loading plot related to PC3) shows 
the positive influence on the areas of the fingerprints cor-
responding to acetaldehyde, and its corresponding diethyl 
acetal, n-propanol, ethyl acetate, and isobutanol, in addition 
to the negative influence on the area of the fingerprint cor-
responding to isoamyl alcohols and methanol, would explain 
the impact attributable to the distillation method on the pro-
duction of brandies. The positive influence of the instrumen-
tal fingerprint region where acetaldehyde and its correspond-
ing diethyl acetal appear can be explained by the fact that, 
when using SO2-added wine for the production of Brandy de 
Jerez, the resulting distillates have more head, i.e., they are 
richer in these compounds. If this is taken into account, it 
would also explain how in Fig. 2a, brandies AG4 and AG6, 
obtained from column distillates, are further right than bran-
dies AG5 and AG7, which had been obtained by pot still dis-
tillation (where the wines with low SO2 and consequently a 
low acetaldehyde content could only be subjected to a limited 
removal of their heads if the aromatic quality of the distillate 
was to be preserved). Contrarily, when column distillation is 
used, some compounds, such as aldehydes or methanol, are 
more abundant in the head. Although distillation columns are 
more versatile, they are also used to distill wines with higher 
sulfur dioxide content. In turn, the wine spirits obtained from 
distillation columns are richer in higher alcohols in compari-
son to those obtained in a more traditional manner such as pot 
stills (where once the “heart” fraction has been obtained, the 
following fraction, called “tail,” continues presenting some 
higher alcohol content).

PCA of Major Esters Chromatographic Fingerprints  By apply-
ing PCA to the matrix of the instrumental fingerprints rela-
tive to the major esters, 10 principal components (PCs) were 
obtained that explained 95.44% of the model variance attrib-
uted to the brandies. Since the PCA model is strongly influ-
enced by the use of SO2 in the base wine (as is the case for 
aldehydes and higher alcohols), in order to find natural groups 
that explained the influence of other variables, it was necessary 
to turn to the representations of other PC scores.

Figure 3 shows the scores received by the brandies in the 
PC4 (8.14% of the variance) vs. PC1 (40.93% of the vari-
ance) space. This figure again exhibits two groups according 
to whether or not the base wine was treated or not with SO2 
during its fermentation. As in the previous section, group I 

presented negative PC1 values, while group II showed posi-
tive or negative values close to 0 for this component. In this 
case, the brandies in group I exhibit a greater dispersion of the 
scores, with sample AG1 presenting a noteworthy dispersion.

Furthermore, as in Fig. 2c, it can be observed that those 
brandies with a final alcohol content of around 65% ABV 
presented positive or slightly negative values for this com-
ponent regardless of the distillation method used, while the 
brandies with an alcohol volume of around 55% ABV pre-
sented negative values for this component. In this case, no 
groupings were observed based on their aging process.

In order to evaluate which areas of the chromatographic 
instrumental fingerprints of the major esters exerted the 
greatest influence on the clusters that had been observed, 
the loading plots corresponding to the PC1 (Fig. OR3a) 
and to the PC4 (Fig. OR3b) components were examined. 
Thus, the groupings of the brandies displayed in Fig. 3 can 
be explained by the positive influence that the areas of the 
fingerprint where ethyl lactate, hexanol, diethyl succinate, 
and 2-phenylethanol appear have on PC1. The areas where 
ethyl hexanoate, ethyl octanoate, ethyl decanoate, ethyl 
dodecanoate, and ethyl tetradecanoate are present also con-
tribute to this grouping through their negative influence on 
this PC; these compounds being esters derived from fatty 
acids are responsible for the fruity aromas of brandy. This 
fact corroborates the actual impact from the use of SO2 dur-
ing the fermentation of the base wines as a key factor for 
this clustering, since the brandies that come from the wine 
spirits that had not been treated with SO2 present a greater 
dispersion, as they contain yeast residues that would result 
in ester-rich distillates. This fact, together with the use of pot 
stills, means that very little head is removed, which means 
that the distillates are very rich in fruity compounds with a 
high aromatic complexity.

On the one hand, when Fig. OR3b is more deeply exam-
ined, the sub-groupings that can be observed in the SO2 
brandies group and that are based on the final alcoholic 
strength of the brandies would be explained by the positive 
influence from the areas of the fingerprints correspond-
ing to ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl 
decanoate, ethyl dodecanoate, 2-phenylethanol, and ethyl 
hexadecanoate, in addition to the negative influence from 
the fingerprint areas corresponding to hexanol, furfural, and 
diethyl succinate. On the other hand, the positive influence 
of the former on PC4 may explain the distribution of the sub-
groups observed according to the aging alcoholic strength 
within the group of brandies produced from SO2-added 
wines. Furthermore, low alcoholic brandies have a lower 
pH, which results in a higher hydrolysis of the esters at 55% 
ABV than at 65% ABV. This fact explains why the bran-
dies in group I present positive PC4 values equal to those of 
the brandies in group II, which have an alcohol content of 
around 65% ABV.

Fig. 2   Score plots of the brandies in the plane PC2 vs. PC1 (a), the plane 
PC3 vs. PC1 (label information according to the wine spirits employed) 
(b), and the plane PC2 vs. PC1 changing the label information according 
to their aging time (c)

◂
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Supervised Pattern Recognition Techniques

In order to verify that the groupings obtained by unsuper-
vised pattern recognition allow the experimental variables 
studied to be regarded as classificatory variables, different 
binary (one input class) discrimination/classification models 
were developed using both PLS-DA and SVM.

In all the cases, the original instrumental fingerprints 
matrices were divided into two subsets: (i) the first one, con-
stituted by a matrix of 163 instrumental fingerprints used 
to establish the model and for internal cross-validation (for 
PLS DA Venetian blinds, data Split 10, and leave one out 
for SVM); and (ii) the second subset constituted by a matrix 
of 69 instrumental fingerprints used for the external valida-
tion of the models at the prediction stage. This subset was 
obtained by applying Kennard-Stone’s algorithm.

Partial Least Squares–Discriminant Analysis

PLS‑DA Model According to the Use of Sulfur Dioxide Dur‑
ing the Base Wine Fermentation Stage  This model was built 
using the matrix of the instrumental fingerprints correspond-
ing to the major esters, while considering the use of SO2 to 
produce the base wines of the young wine spirits as the input 
class. Three latent variables were selected, which explains 
66.06% of the total variance in the matrix of the instrumental 
fingerprints used in the training stage, and 93.90% of the total 
variance of the class.

When the binary classification plot (Fig. OR4a) was 
examined, it could be seen that the model allows the use of 
the instrumental fingerprints of the major esters to discrimi-
nate/classify and correctly predict brandies according to the 
use of SO2 for the production of the base wine that gives rise 
to the initial distillates. The quality metrics of the proposed 
model are shown in Table OR1 in Online Resource 2.

PLS‑DA Model According to the Distillation Method  This 
model was built using the matrix of the instrumental finger-
prints corresponding to the aldehydes and major alcohols, 
while considering the use of distillation columns as input 
class. For this purpose, 3 latent variables that explained 
97.90% of the instrumental fingerprint matrix total variance 
and 93.85% of the total variance of the class were selected.

When examining the classification graph (Fig. OR4b), 
it can again be observed that the established model allows 
the use of the instrumental fingerprint of aldehydes and 
major alcohols to discriminate/classify and correctly pre-
dict the brandies according to the type of distillation method 
employed to obtain the initial wine spirits. The quality met-
rics of the proposed model are shown in Table OR2.

It can be seen that for these two models all the parameters 
related to the error measurement at all the stages (calibra-
tion, cross-validation, and prediction/external validation) 
used in model development are close to 0; meanwhile, sen-
sibility and specificity are equal to 1. These facts show the 
goodness of the model, which is confirmed by data con-
tained in confusion tables.

Fig. 3   PC4 vs PC1 score plot of the brandies analyzed labeled according to the wine spirits employed in the elaboration process
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PLS‑DA Model According to the Aging Time of the Bran‑
dies  Considering the aging time of the brandies as an 
input class, new discrimination/classification models were 
developed. For this purpose, the instrumental fingerprint of 
higher alcohols and aldehydes, which was affected by the 
aging time variable, was used. Binary models (one input 
class) were developed according to the following values: 
T0 (0 months); T1 (14 months), and T2 (28 months). The 
binary classification plots obtained for the three models are 
shown in Fig. 4a–c.

The model for the discrimination between young and 
aged wine spirits (T0–Not T0) was constructed based on 11 
latent variables that explained 99.70% of the variance of the 
instrumental fingerprints of the samples and 78.04% of the 
variance of the modeled class. By looking into the binary 
classification plot of this model (Fig. 4a), we can see that 
both the samples used as the training set as well as the pre-
diction set appear to be correctly assigned to this modeled 
class. This fact demonstrates once again that the variation 
experienced in the chromatographic fingerprint of aldehydes 
and higher alcohols allows a clear discrimination between 
young brandies and aged brandies.

The model to discriminate between 14-months-aged wine 
spirits (T1–Not T1) and the rest of the samples was con-
structed from 15 latent variables that explained 99.90% of 
the variance of the samples’ instrumental fingerprints and 
75.40% of the variance of the modeled class. A higher vari-
ability among the different samples can be observed in the 
binary classification plot of this model (Fig. 4b). In fact, in 
this figure, the misclassification of some of the samples used 
for both calibration and prediction (indicated in the figure 
by a blue arrow) can be observed. It is also worth noting 
that both, the target class as well as the rest of the samples, 
present certain proximity to the threshold. The samples that 
were misclassified correspond to both young wine spirit 
(T0) and brandies aged for a period of 28 months. This fact 
suggests that after 14 months of aging, the chromatographic 
instrumental fingerprints of some of the samples either did 
not evolve with respect to the initial young brandies or 
underwent a series of aging processes that made them more 
similar to brandies aged for a longer period of time.

Finally, Fig. 4c shows the binary classification plot of the 
model that had been constructed taking T2 as input class. 
This model was developed by selecting 13 latent variables 
which explained 99.85% of the total variance of the samples 
and 82.80% of the total variance of the class. As with the 
model built for the T0 class, we can consider that this model 
discriminates/classifies correctly, even though a certain 
confusion between some samples could be detected during 
the cross-validation and prediction stages. This confusion 
among samples was again attributable to the brandies that 
had been aged for 14 months which, in this case, exhibited 
a greater similarity with the target class.

The quality metrics of the different models can be seen in 
Tables OR3 to OR5. In general terms, it should be pointed 
out that the best metrics are obtained from the model 
established to distinguish between young and aged spirits 
(Table OR3), whereas the worst are those arising from the 
model where the mid-aging time is considered.

Support Vector Machine

The SVM models generated were uncompressed, i.e., with-
out any reduction of the data dimensions, applying the 
radial basis function (RBF) as Kernel algorithm and using 
the PLS_Toolbox default values for the gamma and cost 
parameters. As in the PLS-DA models, two strategies were 
followed to evaluate the classifying ability of the experimen-
tal variables that give rise to the different natural groupings 
that were identified from both HCA and PCA: (i) using the 
instrumental fingerprints of the major esters to determine 
the effect from the use of distillates derived from wines with 
and without added SO2 on the brandies, and (ii) using the 
instrumental fingerprints of aldehydes and higher alcohols 
to evaluate both distillation method and aging time. All the 
models developed were one input class.

SVM Model Attending to the Use of Sulfur Dioxide During 
the Base Wine Fermentation Stage  Using the class predic-
tion probability graph (Fig. OR5a), it can be appreciated 
that all the samples were successfully classified as in or out 
of the target class, similar to the corresponding PLS-DA 
model. However, the model obtained by SVM exhibited a 
lower dispersion when predicting class membership (target 
and non-target classes). In all the cases, the samples present 
values close to 1 for the target class and close to 0 for the 
non-target class. The quality metrics of the proposed model 
are presented in Table OR6.

SVM Model According to the Distillation Method  When ana-
lyzing the class prediction probability graph (Fig. OR5b), it 
can again be observed that the model established allows the 
use of the instrumental fingerprint of aldehydes and major 
alcohols to correctly classify and predict brandies produced 
according to the distillation method. As with the previous 
model, SVM again shows less dispersion of the classifica-
tion results with respect to the equivalent PLS-DA model. 
The quality metrics of the proposed model are included in 
Table OR7, with similar results with respect to the previous 
model (section A).

In the same fashion as PLS-DA, it can be observed that 
all the parameters related to the error measurement at all the 
stages used in model development are close to 0; meanwhile, 
sensibility and specificity are equal to 1. Once again, these 
facts show the goodness of the model, which is confirmed 
by data contained in confusion tables.
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Fig. 4   Binary classification 
plots obtained from the PLS-DA 
models T0 – Not T0 (a), T1 – 
Not T1 (b), and T2 – Not T2 (c)
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SVM Models According to the Aging Time of the Bran‑
dies  Similar to the PLS-DA model, these classification mod-
els were developed based on the aging time of the brandies by 

means of SVM. In the same way, the models were established 
as binary models (one input class) based on the following 
classes: T0 (0 months), T1 (14 months), and T2 (28 months). 

Fig. 5   Classification predic-
tion probability plots obtained 
from the SVM models: T0 (0 
months) – Not T0 (14 months 
and 28 months) model (a), T1 
(14 months) – Not T1 (0 months 
and 28 months) model (b), and 
T2 (28 months) – Not T2 (0 
months and 14 months) (c)
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Figure 5a–c shows the respective class prediction probability 
graphs obtained for each case.

Based on the classification model for the unaged wine 
spirit (Fig. 5a), it could be verified that both the samples 
used as the training set and those used for the prediction set 
appeared to be correctly classified. Once again, the disper-
sion of the results was considerably lower than those shown 
in the corresponding PLS-DA model. This fact remained 
invariable for the rest of the models developed.

Regarding the brandies with 14 months of aging (Fig. 5b), 
it can be clearly seen that some misclassified samples 
appeared. The dispersion of the results is much greater 
compared to the corresponding PLS-DA model, where the 
misclassified samples are not only dispersed but also close 
to the correctly classified samples.

Finally, we can see from Fig. 5c how class predictions 
improved with respect to the PLS-DA model, given that only 
one sample was misclassified and another one was scored 
very close to its classification threshold. These two samples 
coincided with those that had been misclassified using the 
previous model (T1). The quality parameters of these three 
models are shown in Tables OR8 to OR10. In general terms, 
it was observed that the models created using SVM were 
more reliable than those ones developed by PLS-DA.

Conclusion

The chemometric study of the instrumental fingerprints 
obtained for the volatile fractions corresponding to alde-
hydes and higher alcohols as well as the major esters showed 
that for the experimental variables studied, i.e., the use of 
SO2 during the fermentation process of the wines that give 
rise to the wine spirit, the distillation method applied to the 
base wines and the aging time of the wine spirit allowed us 
to discriminate and classify the brandies studied.

In addition, the different areas of the instrumental fin-
gerprints allowed us to rank them in order of importance. 
Thus, by means of the unsupervised techniques used (HCA 
and PCA), it was demonstrated that the most influential vari-
able identified was the use of SO2 during the fermentation 
stage of the base wine, followed by the distillation method 
employed to obtain the wine spirit to be aged and, finally, 
the aging time in the cask. Nevertheless, although to a lesser 
extent, some differences can also be observed according to 
the alcoholic strength of the wine spirit to be aged.

By applying supervised techniques such as PLS-DA and 
SVM, we have obtained models to discriminate (PLS-DA) 
and classify (SVM) the brandies according to the aforemen-
tioned most influential variables. Furthermore, the models 
generated by means of SVM were more reliable in terms of 
the quality of their metrics.

This research confirms that the use of SO2 during the 
fermentation process of the base wine to be used for the 

production of brandies has an impact on the major vola-
tile compound profiles of the final products. Even after 28 
months of aging, SO2 is still an important variable to be 
taken into account when selecting wines to be distilled for 
the production of Brandy de Jerez.

Finally, it should be emphasized that the fingerprinting 
methodology has been proven to be really suitable for the 
analysis of this type of matrices since it allows to take into 
account not only the compounds that have been identified 
and considered to be the most influential markers, but also 
those compounds that, without having to be identified, allow 
the fingerprints to be associated to the brandies studied. This 
should be considered as a very useful feature, in terms of 
internal control, for brandy producers.
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