
Engineering Applications of Artificial Intelligence 122 (2023) 106079

P
C
J
a

b

c

A

K
P
P
E
M
L

1

t
t
a
p
t
e
E
d
L

u
c
a
I
p
g
t
t
t
2
c

t

h
R
A
0
(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

hoton/electron classification in liquid argon detectors by means of Soft
omputing

avier León a,∗, Juan José Escobar b, Marina Bravo c, Bruno Zamorano c, Alberto Guillén a

Department of Computer Engineering, Automatics and Robotics, CITIC, University of Granada, Granada, Spain
Department of Software Engineering, CITIC, University of Granada, Granada, Spain
Department of Theoretical Physics and Cosmology, University of Granada, Granada, Spain

R T I C L E I N F O

eywords:
article Physics
hoton
lectron
achine learning

Ar time-projection chamber

A B S T R A C T

In the field of Particle Physics, the behaviors of elementary particles differ among themselves on subtle
details that need to be identified to further our understanding of the universe. Machine learning is being
increasingly applied in order to solve this task by extracting and extrapolating patterns from detector data.
This paper tackles the classification of simulated traces from a liquid argon container into photon- or electron-
induced events. Several viable dataset representations are proposed and evaluated on nine supervised learning
algorithms to find promising combinations. After that, a hyperparameter optimization step is applied on some
of the classifiers to try to maximize their accuracy. Random Forest and XGBoost achieve the best results with
roughly 88% test-set accuracy, which shows the potential of machine learning to solve a significant research
question in a subfield that is expected to keep growing in the coming years.
. Introduction

Neutrinos are one of the hot topics in Physics nowadays due to
he number and significance of the questions still unanswered about
hem, to the point that research on their properties earned T. Kajita
nd A. McDonald the 2015 Nobel Prize in Physics. The current neutrino
rogram in the United States includes the analysis of neutrino oscilla-
ions at both short (SBN, Short-Baseline Neutrino program) (Machado
t al., 2019) and long baseline (DUNE, Deep-Underground Neutrino
xperiment) (Abi et al., 2020). Despite their different baseline and
esign, both programs share a common detection technology based on
iquid Argon Time-Projection Chambers (LArTPCs) (Rubbia, 1977).

The working principle of LArTPCs consists in the application of a
niform electric field to a large volume of ultra-pure liquid argon. When
harged particles traverse the argon, they produce free electrons that
re drifted by the electric field and then collected by a network of wires.
n addition to this ionization, the passage of charged particles also
roduces an excitation of the atoms. The de-excitation of liquid argon
enerates ultraviolet light that travels much faster than charge through
he argon. This light can be used to precisely determine the starting
ime of neutrino interactions. Thanks to the precise measurement of
ime provided by the light detection system, and combining it with the
D footprint that the ionization produces in the wires, physical events
an be reconstructed in three dimensions.

∗ Corresponding author.
E-mail address: jleon@ugr.es (J. León).

1 The positron is the antiparticle of the electron. It has an electric charge of +1𝑒 and the same mass as an electron. When a positron collides with an electron
hey annihilate generating photons.

The aim of this paper is to propose a first approach in trying
to classify the particle that has generated the interactions inside the
LArTPC. In particular, we will focus on the problem of distinguishing
the signal left by electrons and photons. When either of these particles
interacts with the detector, it produces an electromagnetic shower.
However, depending on what the primary particle is, there are some
distinguishing features: if the primary particle is an electron, after trav-
eling some distance in the argon it will emit a high-energy photon that
will subsequently generate an electron–positron pair.1 These particles
can repeat the process for some generations, until the available energy
for secondary particles is below a threshold (called critical energy)
and the cascading process stops. If, instead, the process is started by a
photon, it will not produce any signal in the detector, and the generated
electron–positron pair will be the first visible signal coming from the
shower. Therefore, the very beginning of the electromagnetic shower
will consist in a single track-like deposition consistent with that of an
electron (whenever the primary particle is an electron), or a double sig-
nal produced by the electron–positron pair (if the primary is a photon).
This technique has been used in traditional analyses (Antonello et al.,
2013) to distinguish both primaries, with an efficiency of about 90%
and a photon contamination of a few percent for the composition of
the neutrino beam.
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In this work, we will address the problem of distinguishing the
ignal produced by electrons and photons using machine learning. The
ain contributions of this paper are:

• We provide successful classification results for photon/electron
from raw data considering different energy values. To do so
we define several viable representations of the original data in
a format that is appropriate for machine learning models. This
task is already a serious challenge considering that the number
of recorded bins greatly depends on the energy of the particle.
Nevertheless, to be applicable in real scenarios, models should be
accurate for a wide range of energy values, which leads to a large
variety of potential representations.

• The comparison of the resulting datasets with nine types of
classifiers, including traditional ones, bagging and boosting ap-
proaches, and convolutional neural networks.

• The optimization of the hyperparameters of the most promising
classifiers using a Tabu Search procedure to avoid the setting of
magic numbers in the definition of the models.

• An energy–time assessment that highlights the importance of
efficient computing and provides a baseline for future related
comparisons. To our knowledge, reporting this type of informa-
tion is uncommon in the literature, but it adds nuance to the
discussion, especially in terms of environmental and cost-saving
concerns.

The rest of paper is organized as follows: Section 1.1 analyzes pre-
ious work in the field of applied machine learning and soft computing
o Particle Physics, Section 2 will describe the data and formulate
he problem. Section 3 depicts the methodology followed, focusing
n how to represent the information generated from simulations, the
eature engineering process and a brief description of the classification
aradigms applied. Section 4 presents the results and discussion and,
inally, Section 5 draws conclusions.

.1. State-of-the-art

The fields of machine learning and Physics have become progres-
ively intertwined in the last years, with one inspiring or directly
roducing advances in the other (Carleo et al., 2019). From this topic
e are particularly interested in the application of machine learning

echniques to Particle Physics problems (Radovic et al., 2018). There
re two main areas where these techniques may be applied: generation
r refinement of simulated data (Paganini et al., 2018; Erdmann et al.,
018), event reconstruction (Huennefeld, 2017), and classification. The
atter can be broken down into many tasks: photon–hadron (Carrillo-
erez et al., 2021; Assunção et al., 2019), or photon–electron (the
roblem tackled in this paper), among others.

The classification task can be approached from many different
ngles depending on the characteristics of the data and the models
mployed. In Guillén et al. (2019), the signal of the entire event is
ummarized through integration, while in Carrillo-Perez et al. (2021)
he signal is processed by the classifier as a time series. Class imbalance
an also occur when the focus is on detecting signals from background
rocesses, as particle activity is much less common; XGBoost was used
n Cornell et al. (2022) in combination with F-score and other metrics
o overcome the drawbacks of evaluating classification performance via
ccuracy in this context.

With regard to the efficiency in the use of computational resources,
t is important to consider not only the ability of a machine learning
odel to produce accurate predictions, but also the associated costs.

or instance, in Guillén et al. (2020) a comparison of several machine
earning paradigms is made in terms of memory requirements, showing
ubstantial variations among them. In addition to memory, running
ime and also energy consumption are often overlooked in the liter-
ture. While the search for high accuracy rates is a demanding task in
tself, some effort is due in this aspect, since in the real world not all
omputing systems have enough resources to spare.
2

Fig. 1. Format of the original dataset.

2. Problem and data description

The data used throughout this paper was obtained using the spe-
cialized Physics simulation software GEANT4 (Agostinelli et al., 2003;
Allison et al., 2006, 2016), which simulates the passage of particles
through matter and is the standard tool in Nuclear and Particle Physics.
In particular, we have simulated an argon volume of 5 m in length,
4 m in height and 4 m in width, consistent with the dimensions of the
active volume of the SBN near detector (SBND, Short-Baseline Near
Detector) (Machado et al., 2019). In order to emulate the actual re-
construction carried out by LArTPC detectors, the ionization simulated
by GEANT4 is smeared using a resolution of 3 mm (consistent with
the spacing between wires in SBND). In addition, when the smeared
spatial energy deposition is above a fixed threshold, we define it as a
region of interest called hit, resembling the usual jargon used in LArTPC
reconstruction.

In summary, each instance of a particle (namely, either an electron
or a photon) entering the LArTPC is called an event and it consists of

ultiple hits, which are defined by their time and space coordinates
nd the deposited energy. The original dataset structure is made up of
ne row per hit, where each hit has the following 7 features:

• Event ID: the identifier of the event which contains the hit. It is
common to all hits of the same event.

• PDG code: an integer that unequivocally identifies the primary
particle, as standardized by the Particle Data Group (Zyla et al.,
2020). In this case, it represents either an electron (PDG code =
11) or a photon (PDG code = 22).

• Event energy: energy of the event that contains the hit (expressed
in MeV). Thus, the value is shared by all the hits in the same
event. This feature cannot be used in the problem-solving stage,
as it would not be known for real-world measurements outside
the simulations.

• 𝑥: horizontal coordinate of the hit in the detector with range:
[−200, 200] cm.

• 𝑦: vertical coordinate of the hit in the detector with range:
[−200, 200] cm.

• 𝑧: depth coordinate of the hit in the detector with range: [0, 500]
cm.

• Hit charge: the density of energy deposited in the spatial sur-
roundings of the hit, measured in arbitrary units.

The data arrangement described above can be visualized in Fig. 1.
s can be seen, hits from the same event are stored consecutively; their
rrangement within the event is chronological.

Tables 1 and 2 show brief statistical descriptions of the original data
or the variables that will be used later.



J. León, J.J. Escobar, M. Bravo et al. Engineering Applications of Artificial Intelligence 122 (2023) 106079

t
a

a
t
e
s

t
f

3

t
l
f
p
m

3

3

b

i
r
o
(
d
a

i
a
a
a

f

A
b
c

s
b

s
i
b
o
w

o

m
p

Table 1
Statistical summary of variables for the Electron class.

Electron Min. Max. Avg. Median SD

Energy 0.05 0.30 0.20 0.21 0.07
Charge 1.26 32,900 794.14 538.32 893.69
x −115.76 199.13 102.10 102.48 19.16
y −188.78 197.64 0.09 0.01 19.93
z 46.93 458.73 249.87 249.93 24.05

Table 2
Statistical summary of variables for the Photon class.

Photon Min. Max. Avg. Median SD

Energy 0.05 0.30 0.20 0.22 0.07
Charge 1.31 34,032 845.75 578.99 957.82
x −127.09 199.11 101.61 102.14 27.67
y −193.63 192.79 0.06 0.18 29.18
z 29.83 499.63 250.78 250.53 35.75

The original dataset consists of 19,900 events: 10,000 correspond
o photon particles and 9900 to electron particles. No missing values
re present, and therefore no removal or imputation is necessary.

From a research standpoint, the problem to be solved here is the sep-
ration of events into two classes: electron events and photon events. As
heir behaviors inside the detector are extremely similar to the human
ye, machine learning is a highly promising approach to extract the
ubtle but useful patterns that differentiate the two classes.

The separation into classes can be understood both as a classifica-
ion and a regression problem. In the present paper we have chosen the
ormer, as it is the most straightforward given the data.

. Methodology

This section is devoted to four main aspects of the experimenta-
ion pipeline: the preprocessing of the original dataset, the machine
earning paradigms initially considered for the classification task, the
urther hyperparameter optimization performed on the most promising
aradigms, and the metrics used to evaluate the results throughout the
anuscript.

.1. Data preprocessing and problem encoding

.1.1. Preprocessing
The data in its original form presents two main issues that need to

e addressed before its use in machine learning:

• The rows contain individual hits instead of events. Since each
event is conceptually one instance of the final dataset, an aggre-
gation of hits into events is necessary.

• There are two files that contain hit information: one for the
Electron class, and one for the Photon class. In both files the event
IDs start at 0, so merging as-is would cause clashes.

These issues can be solved as follows: firstly, the hits are aggregated
nto events independently in each of the two files; secondly, the two
esulting partial datasets are merged by (i) offsetting the event IDs
f one of them by the size of the other and concatenating them;
ii) adding the corresponding class labels to each row of the final
ataset by looking at the PDG (particle ID) feature: class 0 for photons
nd class 1 for electrons.

The first step (aggregation of hits into events) requires filtering the
nformation of every hit row. As the event ID, event energy, and PDG
re properties of the whole event, only the coordinates and the charge
re added to each event row on a per-hit basis. The event energy is
ppended at the end of every row.

The operations described above leave the dataset in a standard
ormat of instances × features. In addition to them, two more
3

Fig. 2. Dataset A: concatenation of hit features grouped by event.

steps are performed to prepare the data for use in machine learning:
the creation of the training, validation, and testing splits; and data nor-
malization. The training split contains 70% of the instances, whereas
the validation and testing ones contain 10% and 20%, respectively. The
coefficients for a z-score normalization are calculated from the training
instances and applied to all three splits (i.e., training, validation, and
testing).

3.1.2. Problem encoding
The contents of the dataset obtained at the end of Section 3.1.1 can

be arranged or extended in many ways. In this section we discuss some
of them.

Before that, let us have a brief recap of the information that is kept
for each hit: its 𝑥, 𝑦, and 𝑧 coordinates, as well as its charge. As stated
before, the energy, apart from being an attribute of the events, cannot
be used to solve the problem since a real-world detector would only
yield a reconstructed estimate of this observable.

The first and simplest of the problem encodings shown here is to
keep that format mostly unchanged. As can be observed in Fig. 2, the
four features of a hit are grouped by type instead of by the hit they
correspond to.

One detail to consider is the fact that events vary in length, i.e., num-
ber of hits. In this encoding, the solution is to add padding at the end
of events smaller than the largest one. More precisely, the padding is
added after every block of values of the same feature. We will call this
generic encoding Dataset A.

Another relevant aspect of the dataset is the explicit ordering of the
hits inside each event. This is not a trivial issue: apart from the ordering
being a source of information in itself, hits that are given lower priority
may be left out of the dataset if a hit cap is enforced.

By default, the hits are chronologically sorted; let us call this Dataset
Achrono. In order to explore the importance of explicit ordering for the
hits of an event, two alternate versions called Dataset Acharge and Dataset
random have also been created. Both have the same dimensionality
ut the hits of each event have been rearranged using different order
riteria.

The hits inside each event of Dataset Arandom have been randomly
orted. As there is no discernible pattern behind it, this serves as a
aseline against which the rest of ordering criteria are tested.

Dataset Acharge (Fig. 3) consists of events whose hits have been
orted by charge in descending order. There are admittedly three other
mmediate ways to sort the hits in an event using the current attributes:
y 𝑥, 𝑦, or 𝑧 coordinates. Nonetheless, it is not clear from the semantics
f such criterion how it would improve the dataset: it should not matter
here in the detector a given particle happens to land.

One of the experiments in this paper is devoted to the assessment
f the differences between these three dataset variants.

That said, the instances of Dataset A have some drawbacks. The
ain one is the way the width of the dataset is determined: at this
oint, it is dictated by the size of the largest event in the dataset. For
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Fig. 3. Dataset Acharge: concatenation of hit features grouped by event and sorted by
ecreasing hit charge.

Fig. 4. Dataset B: concatenation of hit features grouped by event and cropped at a
certain threshold.

Fig. 5. Dataset C: concatenation of hit features grouped by event, cropped at a certain
threshold, and with the original number of hits as the last feature.

events smaller than that, padding solves the issue; however, for new,
larger events there is no choice but to crop them at this arbitrary length.
In addition, depending on the size of the largest event, concerns about
computational costs can arise. Therefore, finding an alternate way to set
a per-event hit cap is highly desirable. The particular method employed
here will be discussed in detail in Section 4.

Regardless of how the limit is set, let Dataset B be a modified version
of Dataset A where a pre-determined hit cap has been set that does not
necessarily rely on the size of the largest event. Dataset B is depicted
in Fig. 4.

A potential side effect of limiting the amount of hits per event is the
loss of relevant information. Any variant of Dataset A is susceptible to it
when transformed into Dataset B since, a priori, it is unknown whether
important features are being left out in favor of uninformative ones.
The enforcement of a per-event hit limit rests upon a suitable ordering
of the hits. This is why exploring alternatives in this regard is beneficial.

Finally, since adding back the hits is not an option, some kind of
feature engineering could prove helpful to mitigate information loss.
One of the most straightforward examples is Dataset C (Fig. 5), where
he original hit count has been included as a feature at the end of each
ow. This transformation can be applied to any instance of Dataset B,
ut the precise ones for this paper are decided empirically in Section 4.

These five datasets (Datasets Achrono, Acharge, Arandom, B, and C) will
be used throughout the experimentation both to extract insights about
the data and to solve the classification problem.

3.2. Classification paradigms

Initially, up to nine different classification algorithms (paradigms)
will be tested on the datasets, of which the most promising according
4

to the experiment results will undergo a hyperparameter optimization
phase: the linear Support Vector Machine (SVM) (Cortes and Vapnik,
1995); Logistic Regression (LR) (Cramer, 2002); Multi-Layer Perceptron
(MLP) (LeCun et al., 2015); AdaBoost (Freund et al., 1996; Freund
and Schapire, 1997); Gradient Boosting (Friedman, 2001, 2002); XG-
Boost (Chen and Guestrin, 2016); Bagging (Breiman, 1996); Random
Forest (Breiman, 2001); and CNN (Guo et al., 2016).

3.3. Hyperparameter optimization

Depending on the outcomes of previous stages of the experimen-
tation, some of the techniques described above will undergo hyperpa-
rameter optimization. The hyperparameters of a learning algorithm are
those parameters that need to be set before training begins, i.e., that are
not learned but instead have influence on the learning process.

Hyperparameter optimization is far from trivial, since at its core it is
a combinatorial optimization problem. A given classifier can have many
such hyperparameters with discrete or continuous value ranges, which
often results in intractably many potential solutions. As brute-force
exact approaches are out of the picture, a number of major optimization
paradigms have been proposed over the last decades: Evolutionary Al-
gorithms (Eiben et al., 2003), Particle Swarm Optimization (Poli et al.,
2007), Simulated Annealing (Kirkpatrick et al., 1983), Ant Colony
Optimization (Dorigo et al., 2006), or Tabu Search (Glover and La-
guna, 1998), among others. These algorithms and their subsequent
variants have achieved state-of-the-art results in many applications
including hyperparameter optimization. We have chosen the last one,
Tabu Search, for the task.

Tabu Search is a widely-used metaheuristic for many applications,
be it as a standalone method or in combination with other ones
(e.g., with Genetic Algorithms): a search for the term in Scopus returns
over two thousand matches in titles, abstracts, and keywords for the last
five years, which proves the relevance of this technique in the literature
to this day. Although other alternatives like Evolutionary Algorithms
boast great popularity in recent times, no method is necessarily the best
for all problems (Shalev-Shwartz and Ben-David, 2014), and empirical
evidence is needed to inform the conclusions.

Tabu Search sequentially explores the solution space by moving
from one point in space (solution) to another according to a guiding
criterion. This criterion is applied on a neighborhood of closely-related
solutions to select the most appropriate from among them. To encour-
age novel exploration paths, recently visited solutions are penalized
with an intensity chosen by the user. Recent solutions are stored in
a tabu list either in full or split into parts depending on the desired
granularity.

Notice that Tabu Search appears remarkably similar to a local
search. However, it was designed with the ability to escape local optima
in mind, and it achieves that purpose through several mechanisms:
(i) already explored regions are explicitly penalized via the tabu list;
(ii) when deciding the next move, a solution can be chosen even if it is
worse than the current one; and (iii) the search can be restarted from
another point in the solution space.

Going into more detail, its main elements are the following (de-
picted in Fig. 6):

• Initialization: creates a valid solution that will serve as the start-
ing point of the search procedure. As the procedure usually
enforces limits for the values of the attributes, ‘valid’ means
correctly formatted and within the range of allowed values.

• Reinitialization: creates a valid solution that will serve as a new
starting point of the search procedure. The main goal of reinitial-
ization is to escape from local optima.

• Neighborhood generation: creates a pool of variations (the neigh-
borhood) of a given solution from which the next solution will
be chosen. Note that, although the notion of neighbor may imply
spatial closeness, this relationship can follow any pattern the
designer deems appropriate for the problem.
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Fig. 6. Overview of the tabu search algorithm. A small T in the lower right corner of
an element indicates that its output may be included in the tabu list.

• Neighborhood evaluation: evaluates the neighborhood using a
predefined fitness metric.

• Neighbor selection: once the neighborhood has been evaluated,
chooses the next solution based primarily on fitness. Several
variations exist depending on the penalty attached to a solution
included in the tabu list.

• Stopping criteria: check whether the search procedure should
finish.

• Reinitialization criteria: check whether the current search path
should be abandoned and a new one started.

Regarding the computational complexity of the algorithm, it is
difficult to calculate for the general case because some of its elements
can belong to a wide range of complexity classes depending on the
problem. Most notably, the fitness function is usually a bottleneck in
metaheuristics applied to machine learning due to the cost of model
training. This is the case here, as Tabu Search is used to optimize
hyperparameters and the evaluation is carried out after training the
corresponding model.

Assuming limits 𝑚 and 𝑛 in the number of iterations and the number
of neighbors generated at each iteration, respectively, there would be
𝑚×𝑛 evaluations of the fitness function, giving 𝑂(𝑚×𝑛×𝑂𝑓𝑖𝑡𝑛𝑒𝑠𝑠). Since
the fitness function is the element most directly affected by the size of
the problem (i.e., the size of the dataset), the choice of classifier is of
utmost importance in this respect.

The configuration of the Tabu Search in the context of hyperparam-
eter tuning will be described in Section 4.1.2.

3.4. Performance metrics

Several metrics are employed in this paper to assess the strengths
and weaknesses of machine learning models. While some of them are
straightforward, a brief description is provided below for each one.
Remember that the positive class or 1 corresponds to electrons, and
the negative class or 0 corresponds to photons.

• Accuracy: the rate of correctly classified entries without focus on
any particular class.
5

• Recall: TP
TP+FN . It is the rate of positives (electrons) discovered with

respect to the total amount of positives in the sample.
• Precision or Positive Predictive Value (PPV): TP

TP+FP . It tells the
purity in the classification of positives, which penalizes negatives
(photons) wrongly labeled as positives (electrons).

• Specificity: TN
TN+FP . The equivalent of recall for the negative class

(photons).
• Negative Predictive Value (NPV): TN

TN+FN . The equivalent of preci-
sion for the negative class (photons).

• Execution time: the running time of a given experiment, not
including data preprocessing/loading nor subsequent operations
on the results.

• Energy consumption: the energy consumption of a given ex-
periment, again not including data preprocessing/loading nor
subsequent operations on the results.

4. Experiments and discussion

4.1. Experimental setup

4.1.1. Code and computing resources
All the code is written in Python 3.6.8 and is available on GitHub.2

Some state-of-the-art machine learning and data science libraries have
been used as well: Scikit-Learn 0.24.2 (Pedregosa et al., 2011), NumPy
1.19.5 (Harris et al., 2020), TensorFlow 2.6.2 (Abadi et al., 2015), and
Keras 2.6.0 (Chollet et al., 2015). The paired permutation test (Pit-
man, 1937) is part of Mlxtend (Raschka, 2018). Bayesian tests are
implemented in the R library rNPBST (Carrasco et al., 2017).

The experiments have been run in homogeneous cluster nodes with
the following specifications:

• 2x Intel Xeon Silver 4214 @ 2.2 GHz: 24 threads/12 cores and a
Thermal Design Power (TDP) of 85W.

• 64 GB of DDR4 RAM.
• NVIDIA Quadro RTX 6000: 1.77 GHz, 4,608 CUDA cores, 24 GB

of GDDR6 RAM, and a TDP of 295W.

Except for the experiments with Tabu Search, every machine learn-
ing model is run with the default hyperparameters specified by the
library that implements it, as they are assumed to be a fair starting
point. However, Keras does not have defaults for all hyperparameters
of CNN, so a single convolutional layer with 300 filters and a filter size
of 3 was chosen as a reasonable default.

4.1.2. Hyperparameter optimization
As the final step of the experimentation, two classifiers (Random

Forest and XGBoost) are selected from the nine candidates for a final
hyperparameter tuning procedure. For Random Forest, the hyperpa-
rameters are the following (Anon, 2022a):

• n_estimators: number of trees in the forest.
• max_features: size of the subset of features considered when

splitting a tree node.
• min_samples_leaf: minimum amount of samples in each

branch of a node to consider it a leaf node.
• min_samples_split: minimum amount of training samples

needed to split a node.

For XGBoost the hyperparameters are (Anon, 2022b):

• n_estimators: amount of gradient-boosted trees.
• learning_rate: shrinkage factor for feature weights used to

prevent overfitting.
• subsample: ratio of subsampling for the training instances.
• max_depth: maximum tree depth.

2 https://github.com/aguillenATC/photon-electr-clasif-LArTPC

https://github.com/aguillenATC/photon-electr-clasif-LArTPC
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Table 3
Classification accuracy (validation, 10 runs) ± standard deviation of each model in Datasets Achrono, Arandom, and Acharge.

Dataset
variant

AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

Dataset Achrono 0.7887 0.8592 ± 0.0036 0.77 ± 0.0151 0.8418 0.5002 ± 0.0083 0.503 0.5068 ± 0.0102 0.8897 ± 0.0016 0.8817
Dataset Arandom 0.7634 0.8487 ± 0.006 0.7468 ± 0.045 0.8509 0.5044 ± 0.0092 0.5061 0.5066 ± 0.007 0.8603 ± 0.0021 0.8771
Dataset Acharge 0.7639 0.8235 ± 0.0052 0.7539 ± 0.0537 0.8392 0.5008 ± 0.0044 0.5076 0.509 ± 0.0058 0.8552 ± 0.0026 0.8827
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The optimization is done through 200 Tabu Search iterations, where
solution consists of each hyperparameter (attribute) mapped to a

alue. Initialization and reinitialization are both random. The reinitial-
zation criterion is triggered when fitness has stagnated after a certain
umber of iterations. The neighbors of a given solution are found by
dding and subtracting from the value of a numerical attribute, or by
wapping for another possibility when an attribute is categorical. The
ext solution is chosen from non-tabu neighbors, except if the best
abu neighbor has higher fitness than the best solution found so far.
abu inclusion is on a per-attribute (versus per-solution) basis, and each
ttribute has its own tabu tenure. The fitness of a solution is computed
s the classification performance on the validation set.

.2. Results

The experiments carried out seek to answer a number of research
uestions while helping to incrementally build a solution to the classi-
ication problem. The first two experiments focus on the assessment of
ome characteristics of the original data, as well as the evaluation of
ifferent problem encodings; the next two deal with the selection and
ptimization of a machine learning algorithm that maximizes classifi-
ation accuracy on the chosen problem encoding; the penultimate one
ntroduces an alternate optimization stage based on the context of the
pplication; the last one explores the computational cost of finding such
machine learning model in terms of time spent and energy consumed.

.2.1. Analysis of hit order
The original dataset contained hits sorted chronologically in the

ontext of each event. The reason behind this arrangement is solely
ecause of the output format of the simulations. Therefore, a good
uestion is to what extent this particular ordering is relevant for
he classification task. This experiment is aimed at examining how
atasets Achrono and Acharge compare against Dataset Arandom, which
cts as a control group. The learning algorithms described previously
ave been trained and evaluated 10 times on each dataset in order
o obtain an estimate of the gaps in classification accuracy. Table 3
ontains the results.

A trend in favor of Dataset Achrono can be readily spotted: AdaBoost,
agging, CNN, MLP, Random Forest and XGBoost score higher when
rained and tested with it instead of Dataset Arandom. On the other hand,
he opposite occurs for Gradient Boosting, Linear SVM and Logistic
egression; however, note that in this case the advantage is much
maller and that three of those classifiers are just above a coin toss in
ccuracy. The performances on Datasets Acharge and Arandom are very
imilar, and it could even be said that Dataset Acharge looks inferior.
dmittedly, though, the performance of Dataset Arandom may be partly
ue to mere chance in this particular random arrangement of the hits
only one hit randomization is carried out).

Hypothesis testing can help shed more light on this issue, although
t should not be the only or even the main criterion. Let the null
ypothesis be that the results for the two compared datasets have
een sampled from the same distribution. Given the small sample
ize, as well as the non-normality of the data distribution, a paired
ermutation test is more appropriate. For each classifier, its accuracy in
ne dataset is matched (paired) with its accuracy in the other, as they
re dependent samples. Two tests have been carried out to compare
ataset Achrono and Dataset Acharge to Dataset Arandom.

The first test outputs a p-value of 0.078. For a 95% significance
evel, this means that the equivalence of Datasets A and A
chrono random

6

annot be ruled out. A reasonable take in light of the results and
he p-value would be that the chronological order appears to have an
nconclusive advantage over a random one. Perhaps the classifiers are
till able to derive useful bits of information implicit in the chronology
o matter how the hits are arranged in the working dataset; or, perhaps,
hronological order is relevant but only secondary.

The output of the second test is a p-value of 0.5703, which again
eans that we cannot reject the hypothesis that Datasets Acharge and
random are equivalent. It is worth noting, though, that the gap between
atasets Acharge and Arandom is much smaller than the gap between
ataset Achrono and Arandom.

Dataset Achrono appears to be the obvious choice for two main
easons. Firstly, assuming the equivalence of the three datasets, it is the
nly one that does not require further preprocessing in order to obtain
he desired hit order: the original data is already structured in that way.
econdly, if we instead acknowledge the limitations of the test for such
small sample size, the accuracy results suggest that Dataset Achrono

as an advantage. Therefore, it will be the starting point of the next
xperiment.

.2.2. Determining a suitable number of hits
As discussed in Section 3.1.2, the choice of how many hits are

ncluded in the dataset is not trivial: every additional hit brings more
nformation to the table (i.e., more features for the dataset), but more
oes not always equal better: the utility of the new information and the
dded computational complexity have to be taken into account.

We have evaluated the accuracy of the classifiers in several variants
f Dataset B. Remember that each variant consists in a cropped version
f Dataset Achrono according to a different number of hits per event.
ig. 7 shows the results. As can be observed, there are two main
roups that follow opposite trends. The first one is composed of bagging
nd boosting algorithms and CNN, whose performance goes up as the
vailable hits increase. Conversely, the second group appears to suffer
rom heavy overfitting; this is especially noticeable for MLP, which
tarts off with a similar degree of accuracy as the first group but quickly
oses out. This phenomenon is common, as not all hits in an event are
ecessarily informative for the classification problem and could even
ntroduce noise. The exact results are shown in Table 4. Notice there
hat the standard deviations are small, meaning that the numbers are
table and telling of what to expect in the average run.

Further elaborating on the performance of the algorithms, there
re some interesting details worth mentioning if we take a look at
ables A.10, A.11, A.12, and A.13 (included in the Appendix). SVM

s consistently bad in all metrics on average, but especially at detecting
ll instances of the negative class (photons); however, it is somewhat
etter at detecting all instances of the positive class (electrons). Logistic
egression has a promising start for recall that contrasts with the

ow specificity values, although in general the performance is still
nderwhelming. MLP is more balanced in the sense that all metrics start
elatively high and follow a similar descending trend with occasional
umps. What is really peculiar, though, about SVM and MLP is the
arge standard deviation in recall and specificity, which suggests that
hey alternate between mislabeling photons or electrons depending on
nitialization.

Regarding the bagging and boosting models, there is a clear trend
here recall and NPV are initially low but they quickly pick up as
ore hits are added to the dataset. In other words, with fewer hits

hese models fail more at spotting all electrons and at preventing false
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Table 4
Classification accuracy (validation, 10 runs) ± standard deviation of each model for different hit caps. The best result for each column is highlighted in bold.

# hits AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

10 0.7508 0.7399 ± 0.0069 0.7215 ± 0.0051 0.7649 0.5668 ± 0.0049 0.5622 0.734 ± 0.0095 0.7663 ± 0.0036 0.7604
20 0.7508 0.7547 ± 0.0042 0.7259 ± 0.0118 0.7765 0.551 ± 0.0132 0.5662 0.713 ± 0.0116 0.7825 ± 0.0047 0.7674
30 0.7599 0.7662 ± 0.0057 0.7274 ± 0.0082 0.7807 ± 0.0002 0.5532 ± 0.0097 0.5839 0.6875 ± 0.0099 0.7951 ± 0.0027 0.777
40 0.7664 0.79 ± 0.0066 0.7171 ± 0.0239 0.7907 0.5445 ± 0.0149 0.5758 0.661 ± 0.0081 0.8191 ± 0.003 0.8028
50 0.771 0.802 ± 0.0058 0.7347 ± 0.0116 0.8049 0.5328 ± 0.0144 0.5551 0.6467 ± 0.0139 0.8356 ± 0.0035 0.815
60 0.7715 0.8135 ± 0.0056 0.7326 ± 0.0247 0.8145 0.5482 ± 0.0153 0.541 0.6186 ± 0.0154 0.8454 ± 0.0031 0.8291
70 0.7892 0.825 ± 0.0051 0.7415 ± 0.02 0.8251 0.537 ± 0.0152 0.5162 0.6007 ± 0.0151 0.8528 ± 0.0029 0.8392
80 0.7811 0.8353 ± 0.0031 0.7573 ± 0.0109 0.8263 ± 0.0002 0.5395 ± 0.0109 0.5212 0.5874 ± 0.0107 0.8671 ± 0.0031 0.8584
90 0.7811 0.8447 ± 0.0046 0.7598 ± 0.0126 0.8316 0.5247 ± 0.0122 0.5121 0.5631 ± 0.0099 0.8729 ± 0.003 0.8635
100 0.7907 0.8465 ± 0.0042 0.7535 ± 0.019 0.8377 ± 0.0002 0.5237 ± 0.0105 0.5086 0.5553 ± 0.0165 0.8757 ± 0.0025 0.868
110 0.7897 0.8545 ± 0.0038 0.7569 ± 0.0233 0.8354 ± 0.0002 0.5178 ± 0.0117 0.5025 0.5494 ± 0.0141 0.8853 ± 0.0021 0.8756
120 0.7922 0.8593 ± 0.0034 0.7456 ± 0.0212 0.8407 0.5176 ± 0.0143 0.499 0.5325 ± 0.0158 0.8881 ± 0.0019 0.867
130 0.7826 0.8591 ± 0.0046 0.7658 ± 0.0116 0.8418 0.5109 ± 0.0157 0.498 0.5292 ± 0.0084 0.8895 ± 0.0037 0.8817
140 0.7867 0.8599 ± 0.0039 0.7623 ± 0.0158 0.8392 0.5108 ± 0.0104 0.5061 0.523 ± 0.0145 0.8904 ± 0.0013 0.8862
150 0.7887 0.8603 ± 0.0041 0.7605 ± 0.0139 0.8458 0.5108 ± 0.0105 0.5066 0.5236 ± 0.0153 0.8897 ± 0.0024 0.8766
175 0.7887 0.8606 ± 0.0039 0.7644 ± 0.0127 0.8433 0.5161 ± 0.0113 0.501 0.5059 ± 0.0139 0.8907 ± 0.0032 0.8862
200 0.7887 0.8606 ± 0.004 0.7691 ± 0.011 0.8433 0.5108 ± 0.0079 0.504 0.5072 ± 0.0111 0.8896 ± 0.0011 0.8751
250 0.7887 0.8614 ± 0.0032 0.7578 ± 0.0134 0.8418 0.5018 ± 0.005 0.5035 0.5037 ± 0.0059 0.8885 ± 0.0035 0.8817
Fig. 7. Average classifier accuracy in the validation set for each hit cap tried. Shaded
areas represent standard deviation.

negatives, as they are labeling more particles as photons. All models of
this type exhibit the same behavior, but the most remarkable example
of this change in performance is Random Forest, which goes from 0.72
to 0.91 in recall and from 0.74 to 0.91 in NPV.

Finally, CNN lies in a middle ground of not being particularly good
or bad at any metric; as more information (hits) becomes available, its
performance increases, which is normal in this model because it has its
own built-in feature selection mechanisms.

Note that there is no single best method to choose the hit cap. Al-
though we have focused on classifier performance, training cost is also
a sensible metric, especially since some algorithms scale better than
others. Moreover, choosing a single cap would simplify the workflow
but at the expense of a suboptimal outcome, as evidenced by the results.

After finding an appropriate cutoff point for the size of the events,
a related issue arises: is there a way to mitigate the information loss
that inevitably occurs with the hit cap? The answer, if affirmative,
probably involves adding back compressed information to the dataset
rows. This is because we do not want to fully negate the reduction in
computational cost and overfitting. In this paper, we explore a straight-
forward alternative (Dataset C): an additional feature that represents
the original amount of hits of each event. This covers the possibility
of event size being relevant on its own while still keeping dataset
dimensionality in check.

The average accuracy of the nine classifiers in the corresponding
validation split of Datasets B and C can be seen in Table 5. The num-
bers suggest that there are no apparent advantages to adding the hit

count as a feature. Rather, it even shows notably poorer performance
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for some classifiers (CNN, Linear SVM, Logistic Regression). A paired
permutation test produces a p-value of 0.2734. The evidence is not
strong enough to reject this kind of feature engineering in a general
context, but the results do not encourage its use either. In this particular
context, and assuming the equivalence of both alternatives, Dataset B
is preferable as less processing is required.

4.2.3. Which learners are more promising in this context?
From the experiments performed up to this point it is already pos-

sible to observe significant differences among the classifiers. Although
an exhaustive exploration of the potential of every one of them would
be the ideal course of action to maximize accuracy, it is not feasible
in most real-world circumstances. With the partial results obtained up
to this point in mind, we have chosen Random Forest and XGBoost
for the next step: hyperparameter optimization. Not only are these the
two highest-performing algorithms in the group in terms of accuracy,
but they can be parallelized by design, which will allow for a larger
experimental scale. Moreover, they represent two different approaches
to the bias–variance tradeoff: bagging and boosting, respectively.

Nevertheless, it is only fair to acknowledge some important nuances
in this decision: XGBoost and Random Forest have been chosen for their
classification accuracy, but other contexts may call for alternative cri-
teria. For example, let us consider training times, which are depicted in
Fig. 8 for increasing hit caps. There are four algorithms that score above
80% in accuracy, but when we consider the ratio of both metrics it is
easy to see that Gradient Boosting would be the worst choice. On the
opposite side, the low-performing algorithms, although comparatively
cheap, do not come up to standard in accuracy.

Given the similar accuracy of Random Forest and XGBoost and the
availability of a high-performance computing cluster, we can afford to
optimize them both. With severe enough computational constraints,
Random Forest would be the most sensible choice in light of the
information we have.

There is one last detail to acknowledge before closing this Section:
the training time for CNN presents an anomaly in the lower end of
dataset sizes (hit caps). Since it does not make much sense for that to
happen in view of the other values of the series, it is likely to be caused
by the Tensorflow library.

4.2.4. Tabu search-based hyperparameter tuning for the selected learners
The two previous experiments tackled the choice of the best dataset

from a set of proposals with different structures and features. Thus
far, the classifiers have only used default parameters, which are not
necessarily the most adequate for this application.

As stated in Section 3.3, the choice of a suitable set of hyperpa-
rameter values entails the resolution of a combinatorial optimization
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Table 5
Classification accuracy (validation, 10 runs) ± standard deviation of each model in Datasets B and C with their best hit cap.

Dataset variant AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

Dataset B 0.7922 0.8614 ± 0.003 0.7691 ± 0.011 0.8458 0.5668 ± 0.005 0.5839 0.7340 ± 0.010 0.8907 ± 0.003 0.8862
Dataset C 0.7846 0.8600 ± 0.003 0.7365 ± 0.041 0.8423 0.5039 ± 0.01 0.5546 0.7534 ± 0.01 0.8885 ± 0.002 0.8883
Table 6
Average classification accuracy (test, 50 runs) ± standard deviation, and maximum and minimum accuracy of Tabu Search-optimized
Random Forest and XGBoost with their best hit cap. Baseline with default parameters added for comparison.
Classifier Avg. accuracy

(baseline)
Min. & max.
accuracy (baseline)

Avg. accuracy
(opt.)

Min. & max.
accuracy (opt.)

Random Forest 0.8786 (0.8741, 0.8847) 0.8819 ± 0.001 (0.8794, 0.8837)
XGBoost 0.8746 (0.8746, 0.8746) 0.8823 ± 0.003 (0.8705, 0.8882)
Fig. 8. Average classifier training time (10 runs) for each hit cap tried. Shaded areas
represent standard deviation.

problem. Thus, both manual and brute-force search are out of the
question, although for different reasons: manual search is slow, arbi-
trary, and hardly reproducible; brute-force search is computationally
expensive for any serious attempt at optimizing a Random Forest or
XGBoost model.

The goal of this experiment is to find a hyperparameter combination
through Tabu Search that is able to improve classification accuracy.

The test-set results of 50 runs of the Tabu Search for each classifier
can be found in Table 6, alongside those of 50 runs of the baseline un-
optimized models. Two things stand out: the first is that both classifiers
achieve a nearly identical performance on average; the second one is
that the hyperparameter optimization procedure is not able to improve
the results by any large margin.

The first one can be studied in more detail by observing Fig. 9. The
averages are quite similar, but XGBoost is more unstable in comparison:
it achieves the highest and lowest accuracy of the two. However, it is
also worth saying that the vertical axis exaggerates the differences for
the sake of the analysis by focusing on a narrow range of values.

A Bayesian Signed-Rank Test (heatmap in Fig. 10) with a region
of practical equivalence of (−0.01, 0.01) tells us that the differences
between Random Forest and XGBoost are negligible: it assigns a prob-
ability of 99.93% to their practical equivalence. This is readily noticed
when looking at the heatmap, as the point cloud is at the top vertex of
the triangle.

For completeness, the Random Forest model with the highest test-
set accuracy had the following hyperparameter values (default values
shown in brackets):

• n_estimators: 920 (100).
• max_features: square root (square root).
• min_samples_leaf: 2 (1).
• min_samples_split: 8 (2).
8

Fig. 9. Test-set accuracy distribution of the 50 optimization trials for each classifier.

Fig. 10. Heatmap of the Bayesian Signed-Rank Test that compares Random Forest
to XGBoost. Proximity of the point cloud to a vertex indicates a greater probability of
prevalence for that option. In this case, the test strongly suggests practical equivalence.

For XGBoost, the values for the best model are:

• n_estimators: 838 (100).
• learning_rate: 0.0169 (0.3).
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Fig. 11. Instantaneous power over time for one run of hyperparameter optimization
for Random Forest and XGBoost.

• subsample: 97.92% (100%).
• max_depth: 10 (6).

As acknowledged earlier, the hyperparameter optimization proce-
dure does not achieve a very noticeable accuracy improvement in
relation to the baseline, especially in the case of Random Forest. There,
the overall performance sees a small increase, but the maximum accu-
racy was achieved by one of the unoptimized models (this is possible
because different seeds were used, as what matters is the population
as a whole). For XGBoost, the procedure appears to be more effective,
but it is still a modest gain of 0.8 percentage points of accuracy. In
general, what the optimization procedure does consistently produce is
more robust outcomes (i.e., with smaller standard deviation).

The cause of such a small improvement could be a combination
of several potential factors. Firstly, that better models do exist and
the Tabu Search has not been able to find them with the current
configuration. Secondly, that these two models achieve near-maximum
performance out of the box (i.e., with default hyperparameters) and
there is not much margin for improvement with this dataset represen-
tation. Thirdly, that this dataset representation has its limit around
88%–89% of accuracy and we have already reached it. The first is
an issue of finding a more effective optimization procedure, while
the second and third concern the use of other classifiers or dataset
representations.

Regardless of the cause of the small performance gain, few alterna-
tives are left as the second and third possible origins are restricted by
problem formulation and the first one could involve an unreasonable
amount of computation by carrying out a brute force approach.

To conclude this section, Table 7 contains additional test-set metrics
about the optimized models. As can be observed, Random Forest wins
in NPV and recall, which means that it is slightly better at selecting
a very pure sample of photons, and at not missing true electrons,
respectively. On the contrary, XGBoost wins in precision and specificity:
it is better at simultaneously selecting electrons without a photon
contamination and at not missing true photons. In other words, each
algorithm is better at isolating instances of one class and detecting a
higher number of instances of the opposite class.

This mix of strengths in different classes could seem strange, but
it has some logic. The pairs precision–recall and NPV-specificity tend
to generate conflicts of interest: predicting all instances of a class and
predicting only true instances of that class is usually a trade-off. Thus,
if for example one algorithm is good at finding all the electrons, it may
introduce some false positives along the way; the opposite is also true.

Depending on the application, the emphasis can be placed on some
metrics over others. The next experiment elaborates on this topic in the

context of our problem.
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Table 7
Average classification performance for different metrics (test, 50 runs)
± standard deviation of Tabu Search-optimized Random Forest and
XGBoost with their best hit cap.
Metric RF XGBoost

NPV 0.8990 ± 0.001 0.8884 ± 0.005
Precision 0.8661 ± 0.001 0.8765 ± 0.004
Recall 0.9029 ± 0.001 0.8896 ± 0.005
Specificity 0.8610 ± 0.001 0.8752 ± 0.006

Table 8
Average classification performance for different metrics (test, 50 runs)
± standard deviation of Tabu Search-optimized Random Forest and
XGBoost with their best hit cap. Here, the fitness function is precision
×recall.
Metric RF XGBoost

Accuracy 0.8817 ± 0.001 0.8823 ± 0.004
NPV 0.8987 ± 0.002 0.8883 ± 0.004
Precision 0.8659 ± 0.002 0.8765 ± 0.004
Recall 0.9025 ± 0.002 0.8894 ± 0.005
Specificity 0.8610 ± 0.002 0.8752 ± 0.005

4.2.5. Alternate hyperparameter tuning in the context of particle physics
Bearing in mind the physical motivation of the problem at hand,

an alternative to optimizing a classifier by maximizing the accuracy is
optimizing the statistical significance of a given signal (e.g., electrons)
over an undesired selected background (photons). Under the assump-
tion of a Poisson-distributed number of entries in each of the samples,
this is mathematically equivalent to maximizing the product of recall ×
precision. This choice can also be justified intuitively: in the example,
recall represents the efficiency of the classifier in selecting electrons,
whereas precision measures the purity of the final selection. Ideally,
one would aspire to maximize both metrics simultaneously; however,
as stated in the previous section, increasing one generally comes at the
prize of reducing the other, and a compromise can be found through
the maximization of their product.

In line with this reasoning, we have applied the Tabu Search pro-
cedure again to Random Forest and XGBoost with exactly one change:
accuracy has been swapped for the product of recall and precision as
the fitness function.

Table 8 contains the test-set metrics for this experiment. When com-
pared to the results found in Tables 6 and 7, it becomes apparent that
the differences are minimal; the same conclusions from Section 4.2.4
can be extracted from these numbers. The hypothesis of the limit of
the dataset stated there, though, becomes a bit more likely due to the
now multiple occurrences of values in a narrow range.

The previous result does not necessarily imply that maximizing the
product of precision and recall has no benefits. Given that our dataset
comes from simulations, aspects like class balance are under control.
However, in the real-world counterpart of this type of application, some
particles may be much costlier to generate or much rarer than others,
which would create large class imbalances. In these situations, if the
goal was to detect the minority class, metrics that prioritize it would
be sensible choices. If an additional goal was to also not overestimate
the findings for the target class, the precision × recall product would
work in that direction.

4.2.6. The cost of hyperparameter tuning
As stated earlier in this work, a balance between classification

accuracy and computational cost has to be decided on; this balance will
depend on the circumstances of the application. In this section, we want
to provide a brief energy–time analysis of the most time-consuming part
of the experimentation.

Table 9 contains the average energy and time consumption of the
hyperparameter optimization step of both Random Forest and XGBoost.
Vast differences can be seen in both metrics, which indicates that
XGBoost is clearly more resource-intensive in these terms.
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Table 9
Average time and energy consumption (5 runs) ± standard deviation, and maximum and minimum values for the hyperparameter optimization
experiment using Tabu Search.
Classifier Avg. time (s) Min. & max. time (s) Avg. energy (𝑊 ⋅𝐻) Min. & max. energy (𝑊 ⋅𝐻)

Random Forest 5335 ± 400 (4649, 5695) 374 ± 40 (314, 423)
XGBoost 43977 ± 5000 (38394, 48168) 2768 ± 300 (2377, 3069)
Table A.10
Classification NPV (validation, 10 runs) ± standard deviation of each model for different hit caps. The best result for each column is highlighted in bold.

# hits AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

10 0.7392 0.7092 ± 0.0056 0.7291 ± 0.0099 0.7612 0.591 ± 0.0056 0.5906 0.7456 ± 0.0069 0.7459 ± 0.0049 0.7481
20 0.7415 0.722 ± 0.005 0.7378 ± 0.0145 0.7708 0.5782 ± 0.0176 0.5776 0.7369 ± 0.0107 0.7603 ± 0.0045 0.7524
30 0.7459 0.7338 ± 0.0056 0.7322 ± 0.0214 0.777 ± 0.0003 0.5754 ± 0.0085 0.5863 0.6988 ± 0.0106 0.7734 ± 0.0036 0.7652
40 0.7472 0.7557 ± 0.0074 0.718 ± 0.0327 0.7829 0.5612 ± 0.0118 0.5774 0.6937 ± 0.0324 0.8011 ± 0.0035 0.7953
50 0.7531 0.7706 ± 0.006 0.7443 ± 0.033 0.802 0.5574 ± 0.0265 0.5532 0.652 ± 0.022 0.8251 ± 0.0045 0.8083
60 0.7592 0.7866 ± 0.0073 0.7407 ± 0.0566 0.8124 0.556 ± 0.0178 0.5399 0.6657 ± 0.0594 0.8444 ± 0.0055 0.8228
70 0.7845 0.801 ± 0.005 0.7525 ± 0.0386 0.8299 0.5526 ± 0.0179 0.5157 0.6236 ± 0.059 0.8612 ± 0.0035 0.8478
80 0.7722 0.8126 ± 0.0033 0.7753 ± 0.0363 0.8313 ± 0.0004 0.549 ± 0.0267 0.5204 0.6099 ± 0.0657 0.8811 ± 0.0052 0.8645
90 0.7744 0.8236 ± 0.0052 0.778 ± 0.0267 0.8433 0.5334 ± 0.0122 0.5116 0.6148 ± 0.0723 0.8864 ± 0.0036 0.8622
100 0.7869 0.8259 ± 0.0042 0.7657 ± 0.0285 0.8473 0.529 ± 0.0193 0.5086 0.5937 ± 0.0542 0.8908 ± 0.0022 0.8731
110 0.7842 0.834 ± 0.0046 0.7732 ± 0.0523 0.8426 ± 0.0004 0.5281 ± 0.0196 0.5029 0.6012 ± 0.0543 0.9012 ± 0.0032 0.8819
120 0.783 0.8422 ± 0.0046 0.7631 ± 0.0548 0.8497 0.5201 ± 0.0166 0.4995 0.5765 ± 0.0696 0.9062 ± 0.0027 0.8744
130 0.775 0.842 ± 0.0055 0.7977 ± 0.035 0.8545 0.5211 ± 0.027 0.4986 0.5644 ± 0.0699 0.9086 ± 0.0051 0.8881
140 0.7768 0.8442 ± 0.0047 0.7815 ± 0.0425 0.8544 0.5126 ± 0.0168 0.5059 0.5427 ± 0.047 0.9116 ± 0.002 0.8947
150 0.7793 0.8437 ± 0.0055 0.758 ± 0.047 0.8571 0.5107 ± 0.0139 0.5066 0.5257 ± 0.0251 0.9111 ± 0.0041 0.883
175 0.7793 0.8448 ± 0.0057 0.7668 ± 0.039 0.8564 0.5211 ± 0.0156 0.5015 0.5072 ± 0.013 0.9134 ± 0.0035 0.8947
200 0.7793 0.8442 ± 0.0048 0.7778 ± 0.0352 0.8564 0.5275 ± 0.021 0.5045 0.5206 ± 0.0329 0.9119 ± 0.0027 0.8826
250 0.7793 0.8455 ± 0.0033 0.782 ± 0.0517 0.853 0.5474 ± 0.0814 0.5041 0.4985 ± 0.0219 0.9122 ± 0.0056 0.8881
Table A.11
Classification precision (validation, 10 runs) ± standard deviation of each model for different hit caps. The best result for each column is highlighted in bold.

# hits AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

10 0.7636 0.7814 ± 0.0114 0.7156 ± 0.0148 0.7688 0.5528 ± 0.0047 0.5471 0.7246 ± 0.0204 0.7905 ± 0.0022 0.774
20 0.7608 0.799 ± 0.0062 0.7176 ± 0.0233 0.7826 0.5379 ± 0.011 0.5576 0.6953 ± 0.023 0.809 ± 0.0068 0.7845
30 0.7755 0.8092 ± 0.0064 0.7258 ± 0.0199 0.7844 0.542 ± 0.0112 0.5816 0.6796 ± 0.0214 0.8207 ± 0.0042 0.79
40 0.789 0.8353 ± 0.0065 0.7299 ± 0.0523 0.799 0.5375 ± 0.0183 0.5743 0.6456 ± 0.0309 0.8396 ± 0.0035 0.8108
50 0.7917 0.8419 ± 0.0074 0.7329 ± 0.0307 0.8078 0.5238 ± 0.0116 0.5572 0.6523 ± 0.0387 0.8468 ± 0.0034 0.8219
60 0.7851 0.8463 ± 0.0053 0.741 ± 0.0323 0.8165 0.5476 ± 0.0225 0.5421 0.6126 ± 0.0496 0.8465 ± 0.0032 0.8357
70 0.794 0.8533 ± 0.0069 0.7444 ± 0.0467 0.8204 0.5342 ± 0.0203 0.5167 0.6257 ± 0.0671 0.8447 ± 0.0029 0.831
80 0.7906 0.8617 ± 0.0061 0.7485 ± 0.0293 0.8214 0.5489 ± 0.0287 0.5222 0.6308 ± 0.0746 0.8542 ± 0.0027 0.8526
90 0.7882 0.8688 ± 0.0055 0.7476 ± 0.0255 0.8208 0.5293 ± 0.0218 0.5127 0.5838 ± 0.078 0.8603 ± 0.0039 0.8648
100 0.7947 0.87 ± 0.0052 0.7448 ± 0.0247 0.8285 ± 0.0002 0.5242 ± 0.014 0.5086 0.5765 ± 0.0634 0.8618 ± 0.0033 0.8631
110 0.7955 0.8779 ± 0.0046 0.753 ± 0.0269 0.8284 0.5157 ± 0.0099 0.5021 0.5612 ± 0.0552 0.8707 ± 0.0019 0.8695
120 0.8021 0.8784 ± 0.0037 0.7501 ± 0.0528 0.8322 0.5304 ± 0.0344 0.4984 0.5442 ± 0.039 0.8716 ± 0.003 0.86
130 0.7906 0.8782 ± 0.0056 0.7441 ± 0.0222 0.8299 0.5119 ± 0.0247 0.4973 0.5926 ± 0.0777 0.8721 ± 0.0033 0.8755
140 0.7973 0.8771 ± 0.0047 0.7556 ± 0.0392 0.8252 0.5245 ± 0.0245 0.5063 0.5464 ± 0.0712 0.8712 ± 0.0023 0.8781
150 0.7987 0.8788 ± 0.0049 0.7743 ± 0.0296 0.8351 0.5214 ± 0.03 0.5066 0.5723 ± 0.0699 0.8705 ± 0.0025 0.8705
175 0.7987 0.8782 ± 0.0058 0.7691 ± 0.025 0.8311 0.5194 ± 0.0134 0.5005 0.5465 ± 0.0549 0.8703 ± 0.0039 0.8781
200 0.7987 0.8787 ± 0.0062 0.7674 ± 0.0278 0.8311 0.5083 ± 0.0089 0.5036 0.512 ± 0.016 0.8695 ± 0.0023 0.8679
250 0.7987 0.8789 ± 0.0059 0.7509 ± 0.0427 0.8312 0.5198 ± 0.0426 0.503 0.5585 ± 0.1016 0.8673 ± 0.0029 0.8755
If we take a look at the behavior over time (Fig. 11), a perhaps
urprising detail can be spotted: although XGBoost optimization takes
uch longer to complete, it is Random Forest optimization that aver-

ges higher instantaneous power consumption. This fact has the impli-
ation that Random Forest (in this particular case) is more efficient at
aking advantage of available computing resources.

Nonetheless, from an accuracy-per-watt perspective, it is clear that
andom Forest outperforms XGBoost in the application at hand: both
chieve similar test-set accuracy rates but Random Forest takes roughly
2% of the time XGBoost needs.

. Conclusions and future work

The analysis of subatomic particles through data obtained from
etectors and its subsequent processing by machine learning techniques
as been gaining traction in the last few years. In this work we have
ocused on the classification of simulated showers produced by either

photon or an electron inside a liquid argon container.
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The creation of viable dataset representations is no easy task, as
there are particular issues and trade-offs to manage: the variable size of
dataset entries may require a cutoff to standardize the dimensionality;
some representations may benefit some classifiers more than others;
or the processing of the original data should be scalable to much
larger datasets, which might discourage overly complex operations or
inefficient data structures. In this paper, we have proposed a core
dataset representation scheme whose variants achieve varying levels
of success when applied to a classification task via machine learning.
All in all, with a test-set accuracy of roughly 88% for the best models,
we consider this a promising starting point for further research.

An immediate area of improvement would be the hyperparameter
optimization step. Although Tabu Search, as configured in this work,
has produced slight benefits, more experiments are required to explore
the potential impact of this step. This might include other configura-
tions of the Tabu Search procedure or completely different approaches
such as evolutionary algorithms or Bayesian optimization.

Another area of interest is the generalization capabilities of the

procedures proposed in this paper. This field of application is still
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Table A.12
Classification recall (validation, 10 runs) ± standard deviation of each model for different hit caps. The best result for each column is highlighted in bold.

# hits AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

10 0.7257 0.6656 ± 0.0086 0.7361 ± 0.0236 0.7571 0.6968 ± 0.0154 0.7166 0.7564 ± 0.0187 0.724 ± 0.0072 0.7348
20 0.7308 0.68 ± 0.0089 0.7482 ± 0.0323 0.7652 0.7229 ± 0.0288 0.6366 0.7613 ± 0.0275 0.7391 ± 0.0063 0.7368
30 0.7308 0.6961 ± 0.0077 0.7334 ± 0.0421 0.7735 ± 0.0004 0.6955 ± 0.0527 0.5951 0.7131 ± 0.033 0.7547 ± 0.0056 0.754
40 0.7267 0.722 ± 0.0105 0.7077 ± 0.0833 0.7763 0.6764 ± 0.0868 0.583 0.7303 ± 0.08 0.7886 ± 0.0045 0.7895
50 0.7348 0.7432 ± 0.0085 0.7455 ± 0.0648 0.7996 0.7386 ± 0.0734 0.5324 0.6502 ± 0.0841 0.819 ± 0.0055 0.8036
60 0.747 0.7658 ± 0.0103 0.7263 ± 0.1142 0.8107 0.5994 ± 0.1119 0.5213 0.7065 ± 0.152 0.8434 ± 0.007 0.8188
70 0.7804 0.7846 ± 0.0063 0.7504 ± 0.0724 0.832 0.6553 ± 0.1547 0.4858 0.6021 ± 0.1944 0.8641 ± 0.0037 0.8512
80 0.7642 0.7985 ± 0.0049 0.7815 ± 0.0653 0.8334 ± 0.0005 0.55 ± 0.197 0.4879 0.5467 ± 0.239 0.8851 ± 0.0057 0.8664
90 0.7682 0.8116 ± 0.0064 0.788 ± 0.0439 0.8482 0.6047 ± 0.2176 0.4696 0.6576 ± 0.2505 0.8901 ± 0.004 0.8613
100 0.7834 0.8145 ± 0.0049 0.7731 ± 0.0417 0.8512 0.5479 ± 0.1414 0.4798 0.6294 ± 0.2621 0.8947 ± 0.0022 0.8745
110 0.7794 0.8233 ± 0.0057 0.7715 ± 0.0961 0.8455 ± 0.0005 0.5982 ± 0.1909 0.4798 0.6857 ± 0.2661 0.9049 ± 0.0034 0.8836
120 0.7753 0.8338 ± 0.0057 0.7572 ± 0.1082 0.8532 0.4972 ± 0.2211 0.4696 0.6238 ± 0.2759 0.9101 ± 0.003 0.8765
130 0.7682 0.8336 ± 0.0069 0.8134 ± 0.0514 0.8593 0.5987 ± 0.2243 0.4666 0.4664 ± 0.3588 0.9127 ± 0.0052 0.8897
140 0.7682 0.8366 ± 0.0056 0.7852 ± 0.0713 0.8603 0.4261 ± 0.2446 0.4504 0.5418 ± 0.2661 0.916 ± 0.0022 0.8968
150 0.7713 0.8356 ± 0.0069 0.7421 ± 0.0831 0.8613 0.4288 ± 0.2353 0.4686 0.4482 ± 0.2953 0.9155 ± 0.0043 0.8846
175 0.7713 0.8371 ± 0.0075 0.76 ± 0.0666 0.8613 0.4517 ± 0.2629 0.4858 0.3417 ± 0.3255 0.918 ± 0.0035 0.8968
200 0.7713 0.8363 ± 0.0061 0.7772 ± 0.0572 0.8613 0.6192 ± 0.2881 0.5 0.6257 ± 0.2888 0.9165 ± 0.003 0.8846
250 0.7713 0.838 ± 0.0044 0.785 ± 0.0863 0.8573 0.4599 ± 0.4331 0.5081 0.3925 ± 0.3638 0.917 ± 0.0057 0.8897
Table A.13
Classification specificity (validation, 10 runs) ± standard deviation of each model for different hit caps. The best result for each column is highlighted in bold.

# hits AdaBoost Bagging CNN Gradient
Boosting

Linear SVM LogReg MLP RF XGB

10 0.7758 0.814 ± 0.0127 0.707 ± 0.0303 0.7727 0.4372 ± 0.0203 0.4081 0.7117 ± 0.0352 0.8085 ± 0.0018 0.7859
20 0.7707 0.8292 ± 0.0072 0.7037 ± 0.0487 0.7879 0.3795 ± 0.0412 0.496 0.6647 ± 0.0469 0.8258 ± 0.0077 0.798
30 0.7889 0.8362 ± 0.0059 0.7214 ± 0.0418 0.7879 0.4112 ± 0.0678 0.5727 0.662 ± 0.0489 0.8355 ± 0.0052 0.8
40 0.8061 0.858 ± 0.0059 0.7266 ± 0.0984 0.8051 0.4128 ± 0.1124 0.5687 0.5918 ± 0.0944 0.8496 ± 0.0039 0.8162
50 0.8071 0.8607 ± 0.0075 0.7239 ± 0.0637 0.8101 0.3275 ± 0.0866 0.5778 0.6431 ± 0.1072 0.8521 ± 0.0036 0.8263
60 0.796 0.8612 ± 0.0056 0.7389 ± 0.0811 0.8182 0.4971 ± 0.1324 0.5606 0.5308 ± 0.1695 0.8474 ± 0.0042 0.8394
70 0.798 0.8654 ± 0.0072 0.7325 ± 0.0994 0.8182 0.419 ± 0.1742 0.5465 0.5993 ± 0.2206 0.8415 ± 0.0031 0.8273
80 0.798 0.872 ± 0.0069 0.7332 ± 0.0601 0.8192 0.529 ± 0.2092 0.5545 0.628 ± 0.2523 0.8492 ± 0.0032 0.8505
90 0.7939 0.8777 ± 0.0057 0.7317 ± 0.051 0.8152 0.4449 ± 0.2382 0.5545 0.4688 ± 0.2656 0.8558 ± 0.0047 0.8657
100 0.798 0.8785 ± 0.0053 0.734 ± 0.0389 0.8241 ± 0.0003 0.4996 ± 0.1414 0.5374 0.4813 ± 0.2851 0.8568 ± 0.0039 0.8616
110 0.8 0.8857 ± 0.0048 0.7424 ± 0.063 0.8253 0.4376 ± 0.1871 0.5253 0.4133 ± 0.281 0.8659 ± 0.0022 0.8677
120 0.8091 0.8847 ± 0.004 0.734 ± 0.1054 0.8283 0.5381 ± 0.2239 0.5283 0.4413 ± 0.2957 0.8662 ± 0.0037 0.8576
130 0.797 0.8845 ± 0.0059 0.7183 ± 0.0485 0.8242 0.4233 ± 0.2137 0.5293 0.5919 ± 0.3658 0.8665 ± 0.0036 0.8737
140 0.8051 0.883 ± 0.005 0.7394 ± 0.0783 0.8182 0.5953 ± 0.2482 0.5616 0.5042 ± 0.272 0.8648 ± 0.0029 0.8758
150 0.8061 0.8849 ± 0.0054 0.7789 ± 0.0603 0.8303 0.5925 ± 0.2343 0.5444 0.5989 ± 0.3047 0.864 ± 0.003 0.8687
175 0.8061 0.884 ± 0.0067 0.7688 ± 0.0499 0.8253 0.5804 ± 0.2535 0.5162 0.6698 ± 0.3345 0.8634 ± 0.0046 0.8758
200 0.8061 0.8847 ± 0.0068 0.761 ± 0.0567 0.8253 0.4025 ± 0.2824 0.5081 0.3889 ± 0.3007 0.8627 ± 0.0031 0.8657
250 0.8061 0.8847 ± 0.0066 0.7307 ± 0.0867 0.8263 0.5436 ± 0.4353 0.499 0.6146 ± 0.3653 0.86 ± 0.0032 0.8737
in its early development, with crucial facilities still being built and
machine learning approaches in the beginning stages of research. A
valuable addition would be to examine the behavior of proposals like
the one presented here in more datasets of similar characteristics as
they become available.

Finally, interpretability is a major concern in the current landscape
of machine learning. Many state-of-the-art techniques resemble black
boxes in that we cannot understand the rationale behind their choices;
neural networks are a prominent example. In order to extract valuable
insight about the application, explainable AI might be a path worth the
effort.
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Appendix. Classification metrics for different hit caps

See Tables A.10–A.13.
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