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Abstract

Mechanotherapy is a groundbreaking approach to impact carcinogenesis. Cells sense and respond to mechanical stimuli, trans-
lating them into biochemical signals in a process known as mechanotransduction. The impact of stress on tumor growth has been 
studied in the last three decades, and many papers highlight the role of mechanics as a critical self-inducer of tumor fate at the in 
vitro and in vivo biological levels. Meanwhile, mathematical models attempt to determine laws to reproduce tumor dynamics.

This review discusses biological mechanotransduction mechanisms and mathematical-biomechanical models together. The aim 
is to provide a common framework for the different approaches that have emerged in the literature from the perspective of tumor 
avascularity and to provide insight into emerging mechanotherapies that have attracted interest in recent years.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Mechanotransduction in target therapy

The quest to unveil the molecular mechanisms by which mechanical forces modulate signal transduction and gene 
expression has been raised in the 21st century to understand the mechanisms of cellular responses to the physio-
logical environment [1–6]. Although a large part of the specific responses of the mechanism are being investigated, 
being currently a hot topic, and are inherent to each type of cell line, in this section, we try to elucidate the main 
premises that have regulated tumor stress state up to date, outlining an example of the leading hypotheses underlying 
mechanotherapy.
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Mechanotransduction begins with the transmission of forces to tissue or cellular elements and ends with the in-
tegrated response of the cell group [3,7]. The initial mechanical signal – mechanotransmission – occurs locally 
and is channeled to other mechanosensors along the linked cytoskeleton network extremely fast, on the order of 
hundreds of milliseconds [7,8]. If the forces are significant and are transmitted for a sufficiently long time, me-
chanical stimuli cause the deformation of cellular structures that expand and strengthen in response to tension [9]. 
The conformational changes are followed by the selective triggering of intracellular biochemical signaling events – 
mechanosensing– [10,11]. Then, the cytoskeletal components and those of the cell membrane are leading mechanisms 
for helping to transmit a complete set of chemical and physical signals that become a controlled mechanoresponse 
that regulates the prognostic of the cell [12,13].

The mechanoresponsive pathways integrate the cellular response to force over space and time. The mechanore-
sponse develops on slower time scales than other signals: transmission signaling pathways occur over minutes, and 
gene expression pathways can occur from hours to days [7,14]. The leading network of cellular mechanotransduc-
tion comprises mainly transmembrane receptor proteins and the cytoskeleton, as well as extracellular matrix (ECM) 
proteins [6,15]. Several hypotheses aim to explain outside-in mechanotransduction activation and how forces could 
enhance apoptosis, decrease proliferation, and prevent migration. Since numerous studies detail the extensive bio-
logical pathways of mechanotransduction1 [3,13,16,17], this work focuses only on the core components (Fig. 1) to 
subsequently understand and propose mathematical frameworks that attempt to model them. We intend to propose 
how mechanotransduction signaling pathways can be used as a targeted therapy.

• Transforming Growth Factor βββ
Transforming Growth Factor TGF-β is a family of cytokines that display a dual role in the tumor: at 
the early stages of the disease, acting as a tumor suppressor inhibiting cell cycle progression, and in ad-
vanced stages, promoting the Epithelial to Mesenchymal Transition (EMT), inducing the pro-tumorigenic re-
sponse [18–21]. The molecular events triggered by TGF-β drive the activation of canonical cascade signaling 
using SMADs [22], although non-canonical pathways, such as mitogen-activated protein kinase/extracellular 
signal-regulated (MAPK/ERK), have also been shown to influence tumor progression [23–25]. In later stages, 
tumor cells avoid the anti-tumorigenic properties of TGF-β through inactivation of TGF-β receptors, SMAD 
genes, or selective silencing of the properties of apoptotic TGF-β properties [24]. Furthermore, the feedback 
between ECM remodeling and the TGF-β signaling cascade [26] is critical in tumor control [27]. Experiments 
demonstrated that soft ECM and increased TGF-β induced apoptosis, while increasing stiffness resulted in EMT 
employing non-canonical signaling pathways [27–30]. Considering that in advanced disease, increasing the stiff-
ness of the microenvironment ECM promotes tumor invasion and metastasis through the EMT, it clearly states 
that it is crucial to be aware of the stage at which action is required to regulate TGF-β action.

• Integrin-focal adhesions
Integrins are transmembrane receptors that regulate mainly cell-ECM adhesion. Integrins are activated by re-
sponding to the forces exerted by fibronectin alignment and stiffness of the ECM [31]. Once the stimulus is 
transmitted, the talin and kindlin proteins connect the tail of the integrin to the actin fibers. Focal adhesion is 
complete with the binding of Focal Adhesion Kinase (FAK) [32,33]. This activation promotes the linkage of 
vinculin [34–36], which adheres to actin in the cytoskeleton. The regulators of the actin cytoskeleton act down-
stream of Rho GTPase, triggering the activation of cascade signaling pathways: RHO–associated protein kinase 
(RHO–ROCK) and phosphatinositide–3–kinase–protein kinase B (P1K3-AKT), which act as pro-oncogenes that 
induce lamellipodia protrusions, migration, motility, and decreased apoptosis [13,37–40]. Therefore, it is clear 
that blocking FAK overexpression and the P13K-AKT and RHO / ROCK pathways are therapeutic targets to 
investigate [41].

• Wnt- Frizzled
Wnt glycoprotein ligands adhere to Frizzled receptor proteins and trigger the modulation of the β-catenin protein 
and co-receptors [42] through the canonical pathway [43]. This activation involves its translocation to the nucleus, 
where cell growth, motility, and differentiation are regulated [42,44,45]. In addition, there are noncanonical path-
ways independent of β-catenin: One of the most relevant pathways in tumor development is Wnt-Ca2+ [43,46], 

1 Note that only outside-in and isolation mechanisms are considered here. We assume neither cell-cell interactions nor existing links, which 
frequently act as hubs for other signaling regulations.
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where binding of Wnt to receptors causes a temporary increase in Ca2+ concentration. In particular, it is re-
markable to point to the rise of cytoplasmatic Ca2+ through the Piezo1 ion channel as a promoter of Wnt and 
P13K-AKT vias [47–51]. Inactivation of Wnt reduces migration by down-regulating the expression of matrix 
metalloproteinase (MMP) [52–54] and reduces the expression of EMT [54–56]. Furthermore, Wnt inhibitory 
factors (WIF-1) have also been demonstrated to significantly reduce tumor growth [54,57,58]. Thus, it could be 
hypothesized that the mechanical stimulus could knock down the Wnt pathway, regulating tumorigenesis and cell 
invasion.

• Hippo
The Hippo pathway is a highly conserved kinase pathway that regulates cell proliferation, size, migration, and 
angiogenesis [59–62]. Downstream regulation starts with the NF2 kinase protein and the serine / threonine pro-
tein kinases MST1 / 2 and the Large Tumor Suppressor (LATS1 / 2), which activate adapter proteins SAV1 
and MOB1 [61,63]. The Hippo pathway suppresses downstream transcriptional coactivators, the Yes-associated 
protein, and the transcription regulation protein 1 (YAP / TAZ) [64,65], phosphorylates and stores them in the cy-
toplasm, and inhibits their nuclear transcription [66–68]. The localization of YAP-TAZ in the nucleus is identified 
as an oncogene that promotes EMT, malignancy, and secondary tumors [60,61]. Nuclear activation of YAP-TAZ 
is also related to other vias (e.g., PI3K-AKT and Wnt) through high ECM stiffness, heterogeneous cell shape, 
loss of cell adhesions, and disturbed flow [66,69,70]. Therefore, blocking YAP-TAZ nuclear transcription and 
regulating the Hippo pathway is critical in mechanotherapy [63,71,72].

• Hedgehog-Gli (Hh-Gli)
Hedgehog proteins (in particular Sonic Hedgehog -SHh-) silence the Patched1 transmembrane protein (PTCH1), 
relieve Smoothened protein (SMO) and regulate the transcriptional activity of the glioma-associated oncogene 
(GLI) [73]. Hh-Gli pathway has been shown to be critical in tumorogenesis [73–76], affecting the stabilization 
and guidance of cytoneme [77], and downregulating EMT [78–80] in crosstalk with Wnt [81], TGF-β [82], and 
P13K-AKT [83,84]. Furthermore, the orientation and guidance mechanisms followed by the Hh-Gli pathway have 
recently been studied [85], as well as the role of the Hh co-receptor interference hedgehog (Ihog) in contributing 
to integrin-mediated focal adhesions [86]. Therefore, this Hh-Gli pathway, which is responsible for regulating cell 
growth and renewal when it is regulated and for tumor growth when it is deregulated, strongly correlates with the 
aforementioned biochemical and mechanical processes.

To conclude, we summarized and unified examples of biological pathways currently being studied to open a 
perspective that connects mechanotransduction mechanisms with mathematical models. The structure of the ECM 
emerges as a critical therapeutic driver, as the stiffness of the ECM is closely related to a poor prognosis of the disease 
in the proposed pathways. Therefore, mechanotherapy should focus on modifying the biochemical and biomechanical 
properties of the tumor microenvironment and balance pathways that prevent tumor progression.

In particular, this work deals with the stress states of the tumor and their implications on carcinogenesis (Section 2) 
to later explain how to include mechanics in multiscale biomathematical models in the third section. First, we establish 
the framework on which the growth models and the mechanical interactions are based, and second, review the models 
proposed in the literature in the last decades to point out those studies that consider mechanotransduction in growth. 
Finally, we refer to Section 4 to sketch the main ideas that have emerged to tackle the tumor microenvironment that 
produces controlled mechanotransduction.

2. Mechanical stresses on tumors

As discussed in the previous section, the fate of tumors is highly influenced by mechanics. In addition to well-
studied biochemical factors such as hypoxia and angiogenesis [87–92], mechanical forces play a critical role in tumor 
development. Tumors can be considered as a poroelastic medium composed of interstitial fluid and solid components 
(cells, extracellular matrix, filaments, nanotubules, and protrusions) that deform according to the stresses to which they 
are subjected, depending not only on the duration and direction of the forces, but also on the mechanical properties 
of the tumor and its environment [2,93,94]. The literature has used the term pressure in different contexts [95–99]. 
Some refer to internal tumor stresses that keep the homeostatic state of the tissue, to possible external stress applied 
to tumors, to the interstitial fluid pressure, to the mutual pressure exerted by two dynamic cell populations across their 
interface, and even to the fluxes of cells. Here, we refer to pressure as compression stress. We denote by stresses the 
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Fig. 1. Examples of the therapeutical targets to impact cancer cells via mechanotransduction. From left to right, the mechanisms proposed are H1) 
Inhibition of TGF-β in advanced stages of the disease, H2) Deregulation of Integrin-focal adhesions to prevent the activation of P13K-AKT and 
RHO-ROCK pathways and their associated malignancy behavior, H3) Knockdown of Wnt-Frizzled to hinder poor prognosis, H4) Keep Hippo-
pathway regulation to inhibit the YAP-TAZ nuclear localization and H5) Block overexpression of Hedgehog to prevent the inactivation of PTCH1 
or Ihog. Mechanotherapy should account for these or other target mechanisms to selective block tumor progressors and the pathways that upregulate 
cancer propagation. Complete proteomics analyses should test the therapeutic hypotheses in different tumor cells, stages, and stress states.

internal and external forces applied to different tumor surfaces, regardless of their solid or fluid nature. Finally, the 
flow of cells is called flux.

In this review, we consider the dependence of the total stress state of the tumor on solid stress and fluid stress 
(Fig. 2). Solid stress increases as a function of tumor volume gain and the internal interaction between cells, ECM, 
and cell components that cause elastic rearrangements. In particular, external forces also impact tumor behavior. 
Externally imposed static or dynamic compressive stresses on tumors cause proliferation inhibition and induce cell 
apoptosis. The first evidence of mechanical stress induction was confirmed in 1997 when Helmlinger et al. reported 
measurements of adenocarcinoma spheroids embedded in agarose gel matrices with different concentrations [100]. 
The results suggested that spheroid growth was completely inhibited at 1% gel concentration. However, [100] also 
demonstrated the reversible behavior of the inhibitory effect, which implies that cells remain in a quiescent state as 
long as stress does not cease. Further experiments carried out in successive years for different cancer cell lines sup-
ported the results of [100]. Roose et al. performed experiments for spheroids of the human melanoma cancer cell line 
(MU89) at concentrations of 0.5% and 1% of type VII agarose [95]; Cheng et al. embedded spheroids of metastatic 
murine breast carcinoma (EMT6) and non-metastatic murine mammary carcinoma (67NR) monolayer cells in agarose 
gel [101]; Montel et al. experimented with carcinoma cell spheroids (CT26) [102] and reference [103] used multi-
cellular spheroids of HT29, CT26 and BC52 cells. All analyses reached the same conclusion: the growth reduction 
was the result of compressive stress. To quantify the relationship between the concentration of the agarose gel (%
w/w of Dextran) and the pressure (Pascals) exerted by the gel, the studies of [102–104] adapted the empirical formula 
proposed by [105]. From stress quantification, it is inferred that the compression applied in the above experiments 
reached values between 5-10kPa, achieving at least a 50% reduction in proliferation compared to stress-free growth 
and a 30% increase in apoptotic cell activity.
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These findings reveal that not only the surrounding medium can exert pressure on the tumor but also that any 
external or internal stress could affect the tumor dynamics. In particular, it has been shown that if compression is 
exerted externally by a piston with adjustable weights, the direction of stresses affects the final shape of the tumor 
as proliferation is inhibited in areas of high pressure, resulting in different patterns [101]. Furthermore, monolayer 
peripheral cells can undergo a phenotypic transformation that causes cells to become leader cells and initiate collective 
migration [106], although other studies prove that compressive stresses through low ultrasound slow migration [107]. 
Another method of compressing tumors is to seed the spheroids in permeable microcapsules. In fact, [108] found that 
the difference in stiffness affects not only growth but also the thicknesses of the matrix.

Some of these studies are reviewed in [109], where their findings are summarized according to the source of the 
stresses. The relevance of these findings lies in their potential to design new cancer therapies: How could we modify 
the tumor microenvironment and alter the fate of the tumor? The last section of this review proposes an answer to this 
question.

In addition to the external stresses, growth and reorganization, cell-cell and cell-ECM interactions, cause internal 
stresses within the tumor. The stresses generated during growth alter tumor patterning [101,110] as well as biochemical 
components and the delivery of drugs [111–114]. Compressive radial and circumferential stresses can be distinguished 
in the core of the tumor, while at the interface, stress is compressive in the radial and tensile in the circumferential 
direction [2,115,116]. The forces generated can be quantified by traction microscopy, micropillars, cantilevers, and 
other techniques such as laser ablation and force interference [99].

The interaction of cell components and their environment also causes different levels of stress within the tumor. 
The existing forces between cell bounds (cell-cell adhesion mediated by E-cadherin proteins) keep the tumor stable in 
a homeostatic state. Notwithstanding, if adjacent clusters of cells have significantly different mechanical parameters, 
E-cadherins could sense the stiffness of cells and activate pathways that regulate cell adhesion [97,117,118]. Thus, the 
stiffest cluster of cells will compress the softest, generating forces that may allow the progression of the pulled fronts 
and the displacement of the softest tissue [2,97,119]. Furthermore, a patch of cells with identical mechanical properties 
can mutate and grow faster or slower than its environment, i.e., not uniformly compared to the rest of the tissue [96,
98]. As cells adhere to each other, cell patches transmit and accumulate stresses in a feedback mechanism: non-
uniform growth generates pressure, which self-regulates growth [98,99]. The underlying biological theory of these 
local mechanical interactions is based on the cytonemes (filopodia-like structure) that mediate the mechanosensing of 
cellular communication among the closest cells [77,120].

Cell-cell adhesions and matrix-cell adhesions also sense changes in extracellular matrix properties through some of 
the membrane receptor proteins discussed in Section 1. In particular, the strength and contractility of adhesions regu-
late durotaxis [121,122], explaining why adhesion forces are considerably more robust in metastatic cells compared to 
non-metastatic cells [123,124]. In fact, the mechanical state of cells depends on the stiffness and the amount of stored 
elastic energy [125–128]. Reference [125] showed that cells exhibit a stiffer cytoskeleton on a stretched substrate than 
cells seeded on an unstretched gel and that cells elongate with substrate reciprocity [122]. Regarding the stress state 
of the primary tumor, cells rearrange and modify their microenvironment, generating internal forces that interact with 
external forces. These solid stresses that accumulate in the tumor during growth conform the residual stress, which 
has been computationally and experimentally quantified by the tumor excision and opening [111,115,129–132].

From the fluid perspective, the primary fluid stresses that affect tumor dynamics are the interstitial fluid pressure 
of the tumor (IFP or TIF) and the capillaries pressure (blood vessels and lymphatic system) [114], which interact with 
the extracellular medium by perfusion. These movements of perfusion and flow generate mainly fluid shear stresses 
(FSS) within the tumor and prevent fluid accumulation in interstitial spaces under normal conditions [2].

Fluid shear stress is an essential regulator of tumor cell adhesion and extravasation [133], affecting fluid mechan-
ics and metastatic potential, since tumor cells are primarily subjected to interstitial and blood shear stress during 
metastasis to target secondary organs [133,134]. Invading tumor cells can take advantage of interstitial flow to gen-
erate autologous chemokine gradients, guiding their migration toward draining lymphatic vessels. Simultaneously, 
cells in the microenvironment also respond to elevated interstitial flow caused by tumors, precipitating a cascade of 
changes in cell phenotype, secretion of pro-invasive cytokines, and matrix remodeling, all of which enhance tumor 
invasion [135]. However, there are other critical factors in extravasation and metastasis, such as the necessary coop-
eration of EMT cells that alter the surrounding matrix through MMP and non-EMT cells that establish colonies at 
secondary sites [136].
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Fig. 2. Stress in a poroelastic tumor. a) Total stress is the sum of solid and fluid stresses generated during growth. b) Solid stress accounts for growth 
and elastic stresses. In particular, b1) shows the tensional growth state, which decomposes in radial compression and tension in the rims, while 
b2) accounts for the elastic rearrangement produced during growth: compression, shear, and tension forces that maintain equilibrium. Note that 
homeostasis is maintained if the cell-cell and cell-ECM adhesion forces are equilibrated. Finally, c1) fluid stresses are mainly shear and account 
for FSS in the interstitial medium and the shear stress of blood and lymphatic vessels. IFP arises with growth compressing the vessels (see the 
cross-section of vessels in subfigure c2).

Hyperpermeability of blood vessels and loss of lymphatic drainage within the tumor [137] represent barriers to 
drug delivery and transport [128]. As a result of that high vascular permeability, interstitial shear stress can reach 
approximately 0.01 Pa [133,138]. Blood shear stress levels are higher than those produced by interstitial and lymph 
flow, with pressure values in veins, capillaries, and arteries of 0.1-0.4 Pa, 1-2 Pa, and 0.4-3 Pa, respectively [133,139]. 
The lymphatic system drains and allows the re-entry of body fluid into the circulatory system, reaching an average 
pressure of 0.1 Pa [133], lower than the other FSS. The interstitial fluid pressure is isotropic and elevated due to 
total tumor stress [115], and it increases due to hyperpermeability of the blood vessels described above. The IFP is 
heterogeneous within the tumor: it rises at the core and decreases at the borders [115,140], and it becomes a modulator 
of tumor proliferation, enhancing duplication if the IFP is elevated [141]. In fact, the drainage of the interstitial fluid 
in a tumor xenograft model reversibly decreases tumor cell proliferation by improving drug uptake, modifying tumor 
patterning, and increasing the relaxation of the cortex [142].

Fluid forces can be measured by microfluidic traction force microscopy, confocal microscopy, and flow magnetic 
resonance imaging [133]. Furthermore, the classical Wick-in-needle (WN) and pressure catheter (PC) are the two 
most commonly used methods to measure fluid pressure directly [143], and magnetic resonance imaging (MRI) has 
been used to measure wall shear stress [144,145].

Thus, little changes at the microscale, like cell-cell and cell-ECM interactions, translate into changes at the 
macroscale through mechanotransduction pathways and vice-versa in dynamic reciprocity. In particular, solid stresses 
compress the vessels, causing a decrease in vascular perfusion [146], hindering homeostasis and the flow of nutrients 
to the solid tumor and increasing IFP while slowing lymphatic drainage. As a result, there may be a barrier to drug 
delivery, and tumor cells tend to increase the release of proangiogenic factors at the microscale, resulting in a highly 
impermeable drainage system that contributes to the malignant activity of the tumor cells [147].

To summarize, the tumor dynamic is involved in the accumulation of stress and the mechanical properties of the 
tumor and its environment, which in turn induces feedback into the biochemical pathways. Although the described 
solid and fluid effects are not mutually exclusive and a combined effect between stiffness and viscosity may coexist, 
in this review, we propose to classify tumor dynamics into two major groups according to the leading nature of their 
progression: solid and fluid behavior of tumors.

First, we distinguish the case in which the matrix, surrounding tissue, or external stresses hinder tumor growth or 
migration by exerting compressive stresses on tumor tissue (Fig. 3a). This case corresponds to the above experiments 
of agarose gels, where tumor development is slow if the tumor is embedded in a more rigid medium. In vivo, this fact 
is shown in prostate cancers, where benign prostatic hyperplasia exerts compressive stresses on the tumor and slows 
tumor progression [127,148,149].
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Fig. 3. Different patterns in tumor growth. The symbol E refers to the Young modulus, while η indicates viscosity. T and H subscripts refer to 
the tumor and healthy medium, respectively. a) and b) account for solid growth behavior, and c) and d) for fluid growth behavior. In particular, a) 
shows the inhibition of growth due to compressive solid stress, b) growth as solid mass effect, c) homogeneous tumor growth due to similar fluid 
properties, and d) the viscous fingering effect.

In the opposite case, it is the tumor – more rigid – that causes compressions in the environment, thus displacing 
the surrounding tissue in a process called the mass effect, in which it gains volume and grows (Fig. 3b). This phe-
nomenon could explain why stiffer tumors can progress over the surrounding tissue [150], creating joint forces that 
will depend on both tissues’ relative stiffness and accumulate throughout the growth process. Although tumor stiff-
ness is characteristic of each cell line, average tumor stiffnesses range from 0.5-3kPa for spheroids [151] to 10-60kPa 
for consolidated tumors [152–154]. A suitable explanation of the difference between spheroids and consolidated tu-
mors may rely on their function: cells and spheroids tend to be softer to adhere to each other, promoting motility, 
while consolidated tumors behave as a solid mass with strong links and fibers. To characterize the mechanical prop-
erties of tumors, some techniques such as static and dynamic nanoindentation, micropipette aspiration, and optical 
tweezers are used in vitro [151,155,156]. The last technology combines mechanical characterization of cells with in-
cubation and imaging to provide in vivo-like conditions (Pavone by © Optic11). At the macroscale level, elastography 
is used [150,157,158].

However, the hypothesis that the growing tumor displaces the surrounding tissue or vice versa is debatable when 
the stiffness of the medium and the tumor are similar. Why can the tumor then migrate and proliferate? The latest 
studies propose a possible explanation based on the fluid behavior of tumors. Specifically, they are based on viscosity 
differences between the medium and the tumor [159–161]. This event has been well studied in fluids, where a fluid 
with a lower viscosity is injected into a fluid with a higher viscosity. The experiment develops Saffman-Taylor insta-
bilities, commonly known as viscous fingering due to its pattern. In turn, instabilities do not occur if viscosities are 
reversed [159,162,163].

Finally, these processes show a new perspective on tumor dynamics: growth and migration may be caused by the 
viscosity difference rather than the difference in stiffness. Hence, the tumor grows homogeneously if the viscosity 
of the medium is higher than that of the tumor (Fig. 3c) in an analogous way to the case of the mass effect and 
heterogeneously if the tumor is less viscous than the medium, forming patterns characteristic of viscous fingering and 
more aggressive tumors (Fig. 3d).

Along these lines, recent reports show that glioblastoma (aggressive and metastatic tumor) is less viscous than 
healthy brain parenchyma [159,164], although in this case the fibrillar structure of the ECM (porosity, stiffness, etc. 
) as well as the protein distribution of the brain – which can act as attractor or repulser signals – have an additional 
influence on the directions of migration [85,165,166].

3. Biomechanical models of tumor growth

Mathematical biomechanical models emerged in the mid-1990s to consider the mechanisms of the microenviron-
ment and the stresses generated in tissue growth. Tissues can be modeled using continuum mechanics since they can 
be understood as homogenized multiphasic materials. In the framework of tumor mechanics, some authors propose 
modeling tumors as discrete elements, considering the microenvironment surrounding them. The most commonly used 
discrete models are based on whether cells are on a structured mesh (on-lattice models) or not (off-lattice models), 
which, according to [167] are not realistic to represent the cell motion nor to consider fixed cell geometries, respec-
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tively. For further reading, we recommend reference [168], which reviews some of these discrete models, including a 
list of open computational software to model them.

However, in this review, we describe the main approaches of the macroscale continuum from finite growth the-
ory and its simplification into infinitesimal growth theory, which neglects the discontinuities on microscopic levels 
considering the tumor microenvironment as continuously distributed in the entire space it occupies. The fundamental 
theory that underpins the growth of tissues from mechanics emerges from the works of [130,169,170] and the subse-
quent review of the literature by [171]. Since then, studies have focused mainly on the theory of soft tissue growth 
and remodeling [172,173], without specific application to tumor modeling. However, some authors have specialized 
in cancer, considering growth with solid and fluid phases [95,115,128,131,174]. More recently, [115,128] summa-
rized their comprehensive approach to tumor modeling from different angles: fluid and solid mechanical models, drug 
delivery, vascularization, and angiogenesis. The main equations of these models include multiphase systems, momen-
tum balance, constitutive behavior, mass balance that account for net proliferation and motility, and diffusive laws for 
biochemical components.

Due to the significant increase in models developed within the last decade, in this section, we propose to unify and 
classify the biomechanical models of growth known to date. Although previous researchers have accounted for the 
solid and fluid phases of the tumor, as described in Section 2, there are still no models described, to our knowledge, 
that include viscosity differences - beyond mass and solid stress differences - able to predict fluid tumor propagation 
phenomena (i.e. viscous fingering).

3.1. Fundamentals of mechanics

To explain the growth of tumors from mechanics, we first introduce the basic concepts of Finite Strain theory [175]
based on the Classical Continuum Mechanics (CCM). Let P be a point in the undeformed body B at the initial time 
t=0, and in the undeformed configuration ko, which deforms to the point p in the deformed body b at time t in the 
current configuration kt (Fig. 4). The point P is located at the material, or Lagrangian coordinates XXX, and p is located 
at the spatial, or Eulerian coordinates xxx. Thus, the initial position is represented by XXX while xxx denotes the position 
after a time t when the body is deformed. Particle displacement, referred to as a function of material coordinates, is 
expressed by Equation (1).

uuu(XXX, t) = xxx(XXX, t) − XXX. (1)

The material deformation at a material point is given by the gradient tensor F, which relates the reference and 
current configuration by Equation (2).

FFF = ∂xxx

∂XXX
. (2)

Consider dV the volume occupied by a particle and ρo(XXX) the density at the initial undeformed configuration 
ko(B). Thus, the mass of the particle is given by dMo = ρodV . After a time interval, dv and ρ are the volume and 
density at the current deformed configuration kt(b). The change in volume or density due to deformation is described 
by the determinant of the deformation gradient as J=|FFF| or in terms of volume or density variation between the current 

and initial configuration J = dv

dV
= ρo

ρ
. Then, the conservation of mass for a single constituent in Lagrangian and 

Eulerian coordinates is:

ρo(XXX) = J(XXX, t)ρ(XXX, t),

∂ρ

∂t
+ ∇ · (ρvvv) = 0,

(3)

where the velocity of the particle is given by vvv = ∂xxx

∂t
. The finite deformation of the Green-Lagrange symmetric tensor

E is defined to account for the strains.

E = 1 ·
(

FTF − I
)

, (4)

2
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Fig. 4. Fundamentals of mechanics: Configurations, Displacements, and Deformations.

where I is the second-order identity tensor. Furthermore, the Green-Lagrange symmetric tensor E can be expressed in 
terms of displacements u, as:

E = 1

2

(
∇u + ∇uT + ∇uT · ∇u

)
. (5)

The strain energy density is the energy stored in the tissue during stretching, and the use of different strain energy 
functions W depends on the behavior of the tumor. Stresses are obtained by deriving the strain energy density with 
respect to E or strain deformation invariants, obtaining different constitutive equations. The invariants are tensors 
that satisfy the principle of material frame indifference and do not change with the Eulerian or material framework 
rotations. The invariants used in this review are mainly used in nonlinear elasticity, see equation (6). They are applied 
to a generic tensor A.

IA = tr(A),

IIA = 1

2

(
(tr(AAA))2 − tr(AAA2)

)
,

IIIA = |A|,
(6)

Regarding stresses, it is common to use the second Piola-Kirchoff pseudo-stress tensor S:

S = ∂W

∂E
= ∂W

∂IE

∂IE

∂E
+ ∂W

∂IIE

∂IIE

∂E
+ ∂W

∂IIIE

∂IIIE

∂E
, (7)

where the invariants refer here to the finite Green-Lagrange deformation tensor. However, other stresses are commonly 
used for convenience of configuration. In the Lagrangian approach, the first Piola-Kirchoff stress tensor P, which 
associates the undeformed body to the stresses at the current configuration. In the Eulerian formulation, the Cauchy 
stress tensor –real stress– σ is referred to as the deformed body b in the current configuration. The relation between 
pseudo-stresses and the Cauchy stress tensor is given by Equation (8).

P = JσF−T,

S = JF−1σF−T.
(8)

Another widely used notation is that described by the Cauchy-Green deformation tensors: the right Cauchy-Green 
deformation tensor C = FTF, and the left Cauchy-Green deformation tensor B = FFT. Considering the deformation 
tensor and the relation among pseudo-stresses, other formulas that can be found in the literature are:

P = FS = ∂W

∂F
= F

∂W

∂E
= 2F

∂W

∂C
,

S = F−1P = F−1 ∂W = ∂W = 2
∂W

.

(9)
∂F ∂E ∂C
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Fig. 5. Fundamentals of growth theory. a) Finite growth theory. b) Infinitesimal growth theory.

Last, the equilibrium of the system is achieved if the balance momentum is guaranteed:

∇ · P + b = ρo
∂2uuu

∂t2
, (10)

where P depends on the constitutive material behavior of each tissue, ρo is the material density, b are the body forces, 
and the term on the right accounts for the inertia terms. Note that the characteristic velocities in biological tissues and 
growth are small, so inertia terms are usually neglected.

3.2. Tumor growth from mechanics

Once the mechanical basics are set, tumor growth is included in the mechanics’ framework similar to the thermoe-
lastic problem [175,176]. Then, the expansion or resorption of the tumor causes deformation, and there is a subsequent 
elastic rearrangement to ensure the equilibrium of the medium. According to that, the deformation gradient tensor de-
composes multiplicatively into the growth tensor Fg and the elastic tensor Fe (Fig. 5a), although a third component 
could also be included to account for residual stresses accumulated in tumors [104,115,130,177].

F = FeFg, (11)

where F is the total deformation gradients, Fe is the elastic rearrangement produced after tumor dynamics and Fg
considers the gain or resorption of tumor mass described by the stretch rate g, Fg = gλg, with λg the anisotropy tensor 
that distributes growth in different directions through different weights. If the growth tensor is taken as isotropic, then 
λg = I.

Just as it happened with the Jacobians of deformation, the changes in volume or density produced by growth 
are described by the determinant of the deformation gradient Jg =|Fg|. Then, if Jg > 1 growth takes place while if 
Jg < 1, resorption occurs. The mass conservation that now accounts for mass gain or resorption can be expressed in a 
Lagrangian or Eulerian frame reference:

d(ρJ )

dt
= Jρ�,

∂ρ

∂t
+ ∇ · (ρvvv) = ρ�,

(12)

where the source term � accounts for the gain or loss of tumor mass. Some describe growth as an increase in the 
mass of already existing particles (cells) in the body [172,178] while others account for the increase in the particles 
– proliferation or duplication of cells – and its motion – motility or migration–. Thus, � is usually expressed as a 
net proliferation and has been formulated by some phenomenological laws such as exponential, Gompertzian, logistic 
and even stochastic equations to account for the large variability of the experiments [119,179]. Furthermore, growth 
dynamics can also be a function of the availability and concentration of nutrients [95,131,172], the generation or 
degradation of some cellular components [177,180,181], proteins [127,165], drugs [131,182] and stress [183] as it is 
288



B. Blanco, H. Gomez, J. Melchor et al. Physics of Life Reviews 44 (2023) 279–301
pointed out in the next section. The relationship between the term of the isotropic growth strain and the proliferation 
rate is given by [172]:

dg

dt
= 1

3
g�. (13)

Furthermore, volumetric fractions are used to model the multiphase tumor system. Considering that the cell density 

of each phase is ρi = ∂mi

∂v
, the volumetric fraction occupied by a phase can be represented by φi = ∂vi

∂v
. The classical 

theory of the growth of mixtures implies that the mass densities of each phase can change, but only in such a way that 
the mass is conserved [172,184], which means that there can be a mass exchange, but not real mass production [185,
186]. This overcomes the limitation of the theory of growth, in which there is a violation of the Continuum principle 
by creating new points [176]. The existence of different phases can be expressed as:

φF +
n∑

i=1

φi = 1, (14)

where the subindex F refers to the interstitial fluid and the subindex i denotes the constituents of the solid tumor. 
However, some authors support the creation of mass during tumor growth, so the previous equation is no longer 
satisfied, and the sum of the constituents would exceed the unit [187,188]. Finally, it is usual to find mass continuity 
in volumetric fractions. Specifically, the mass conservation of the fluid and solid phases is a function of time and 
space:

∂φF

∂t
+ ∇ · (φF vvvF ) = φF �F ;

∂φi

∂t
+ ∇ · (φivvvi ) = φi�i.

(15)

In addition to cell proliferation �i , multiphase systems can involve feedback and interactions between different 
solid phases. This phenomenon is known in modeling as predator-prey dynamics or Volterra–Lokta equations [187,
189]. Lastly, the motility of the various solid phases includes the use of a flux term JJJ i :

∂φi

∂t
+ ∇ · (φivvvi ) = ∇ ·

(
υJJJ i

)
+ φi�i, (16)

where υ is the diffusion-type coefficient. Flux JJJ i is usually defined as linear and isotropic, even though its linear-
ity hinders the regulation of the propagation front, which is inherent to each cell species [190]. To overcome this 
drawback, some studies suggest adding a relaxation term that limits the infinite propagation speed characteristic of 
linear diffusion using relaxation terms [191]. Others define a finite-speed tumor propagation front through the porous 
medium equation (PME): JJJ i = φi∇ji , with ji = φm

i and m ≥ 1 [192], and its limitation through second-order terms 
by Brinkman’s law [193,194]. References [96,165,195–199] use a flux-saturated PME with measurable propagation 
speed ci , defining the flux of cells as:

JJJ i =

⎛
⎜⎜⎝ φi√

φ2
i +

(υi

ci

)2|∇φi |2
∇φm

i

⎞
⎟⎟⎠ . (17)

Regarding the different phases that make up the continuum, equation (11) should be described for each phase as 
Fi = FeiFgi

.

3.2.1. Simplification into infinitesimal growth theory
The continuum can be modeled by considering infinitesimal theory, assuming that the displacements and rotations 

of the tumor are small enough compared to the initial size of the tumor. Notwithstanding, the selection of the strain 
theory is thus dependent on the purpose of the study. To move from the multiplicative decomposition of large strains 
to the additive decomposition of small strains (Fig. 5b), we define the polar decomposition of the gradient tensor FFF:

FFF = RRRUUU, (18)
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with UUU the right stretch tensor and RRR the rotation tensor. In particular, the stretch tensor is defined by:

UUU =
√

FTFTFTFFF ≈ III + εεε + h.o.t., (19)

where the small strain tensor is defined by εεε = 1

2

(
∇uuu + ∇uTuTuT

)
and h.o.t . refers to high-order terms.

The rotation tensor is:

RRR = exp(


) ≈ III + eee


 + h.o.t., (20)

with eee is the Levi-Civita tensor and 


 the rotation tensor. Combining equations (18), (19) and (20), and assuming 



 � 1, then:

FFF = (III + εεε)(III) = (III + εεε) + h.o.t. (21)

Notice that the spatial derivative of displacements in equation (1) can be described as:

∂uuu

∂XXX
= ∂xxx

∂XXX
− III = FFF − III −→ εεε ≈ ∂uuu

∂XXX
= FFF − III. (22)

Using (21), assuming small strains and rotations, the multiplicative decomposition of (11) reads:

FFF = FeFeFeFgFgFg = (III + εeεeεe)(III + εgεgεg) = III + εgεgεg + εeεeεe. (23)

Finally, the infinitesimal growth theory is based on:

εeεeεe + εgεgεg + III = εεε + III = FFF. (24)

Then, Equation (11) simplifies into the additive equation (25):

εεε = εeεeεe + εgεgεg, (25)

where εeεeεe = 1

2
(∇u + ∇uT) is the elastic small deformation that guarantees mechanical equilibrium and the volumetric 

growth deformation is εgεgεg = gλgλgλg. Considering small strains, the elastic Cauchy stress tensor may be expressed as:

σeσeσe = σσσ −σgσgσg, (26)

where σσσ is the total tensional state obtained from equation (7) and σgσgσg is the induced growth stress. Assume volumetric 
growth of the tumor, σgσgσg = κεgεgεg, with κ the bulk modulus. Finally, note that the advective term of the mass continuity 
equation (16) would be negligible under the assumption of small displacements.

3.2.2. Constitutive behavior of tumors
Tumors are mostly considered hyperelastic and anisotropic materials, spatially and temporally heterogeneous, and 

their dynamic is strongly related to their mechanical properties. Due to the heterogeneous nature of the tumor, it is 
important to model the tumor’s fluid component and the different elastic structures. For this purpose, the mixture 
theory is used [184,185]. We denote by We the strain energy density of the solid skeleton and by Wp the contribution 
of saturated pores to the strain energy density. The total contribution reads W = We + Wp. Most of the constitutive 
relations of solid elastic used in the literature are the Blatz-Ko, Neo-Hookean, Exponential, and Ciarlet equations, 
as shown in Table 1. Although viscosity is a fundamental parameter in reorganization at small scales, viscosity is 
no longer relevant over long times – intrinsic to growth. Therefore, the equations of tumor behavior do not include 
the solid viscosity of the cells that could be described by the Kelvin-Voigt, Maxwell, or Burgers models. However, 
viscosity can be a crucial parameter in fluid behavior, as outlined in Section 2. Despite the different constitutive rela-
tions proposed, [177] concluded that the exponential law fits best the breast and colon adenocarcinoma experiments. 
However, the evolution of stress appeared to be independent of the chosen constitutive relation [177].

Considering the Biot theory of a porous material [205], the fluid strain energy can be modeled by a quadratic po-

tential Wp = −α

2
(p − po)

2. The variation of fluid content ζ assuming constant density is related to elastic volumetric 

strain, which depends on growth εv , and pore pressure p:
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Table 1
Essential strain energy functions used in tumor growth modeling. λ, and μ are the first Lamé parameter, and the shear modulus, respectively. The 
invariants described above are related to the right Cauchy tensor (C) and the left Cauchy tensor (B). Je is the elastic determinant and f, z, A1, A2
and C are constants.

Behavioral elastic relation Main equation Source

Comp. Neo-Hookean We = 0.5μ(IC − 3 + 2lnJe) + 0.5λ(Je − 1)2 [177,181]

Comp. Blatz-Ko
We = μf

2

[
(IC − 3) − 2

z
(IIIC

z/2 − 1)
]

+μ(1 − f )

2

[ IIC

IIIC
− 3 − 2

z
(IIIC

−z/2 − 1)
] [172,177,200]

Comp. Ciarlet We = λ

4
· (IIIB − ln IIIB − 1) + μ

2
· (IB − ln IIIB − 3) [116,201,202]

Exponential We = A1

(
exp(C1(−3 + ICJ−2/3

e )) − 1
)

+ A2 (−1 + Je)
2 [177]

Comp. Linear We = 0.5λ(IE)2 + μI2
E [96,127,203,204]

ζ = φF − φF0 = 1

M
(p − p0) + αεv, (27)

where φF is the current fluid phase, φF0 is the initial fluid content, α is the Biot coefficient, which represents the 
volume of fluid gained or lost when the pore pressure returns to its initial state [206], and M is the Biot modulus, which 
considers the increase in fluid amount as a result of a unit increase in the pore pressure, under constant volumetric 
strain [206,207]. Then, the fluid mass conservation can be rewritten as the well-known storage equation:

∂ζ

∂t
= ∇ · qqq + �F −→ 1

M

∂p

∂t
+ α

∂εv

∂t
= ∇ · qqq + �F , (28)

where the flux is represented by qqq, and Darcy’s law usually defines it, qqq = k∇p, with k denoting the conductivity, 
which is a function of the dynamic fluid viscosity, the porosity, and permeability of the medium [205,206]. The term 
�F considers fluid exchange between the lymphatic and vessel systems and interstitial fluid described in Section 2. 
Starling’s theory can describe the flow rate:

�F = kv

[
(pv − p) − ω(πv − πl)

]
− kl(p − pl), (29)

where pv is the pressure of the blood vessel, ω is the reflection coefficient that weights the interstitial osmotic pressure 
(πv −πl), and pl is the drainage of lymphatic pressure that works in the opposite direction of the blood vessel system. 
The parameters kv and kl are the conductivity coefficients of the vessel and lymphatic system, which consider the 
velocity of fluid transfer through the capillary surfaces [137,208,209]. Interestingly, some authors proposed to model 
the conductivity of the lymphatic system as a linear function of the density of tumor cells, since tumor growth has 
been shown to increase IFP, decreasing lymphatic vessel drainage [189,210].

In addition to the intrinsic mechanics of growth, it is crucial to account for the multiscale dimension of the problem. 
Thus, some authors have also considered the microscale of biochemical interactions using reaction or reaction-
diffusion equations, as described in (16). From these equations, they establish the dependence of growth on local 
oxygen [95,182,211], nutrients [200,212], proteins [127,165,213] and even the effect of therapy such as drug deliv-
ery [131,182]. In particular, slight variations of these substances prolonged in time can produce the same effect as 
a large instantaneous fluctuation. For instance, reference [77] shows that hypoxia processes and small (apparently 
negligible) Hh flow over time significantly influence growth or migration.

3.3. Modeling mechanotransduction in tumor growth

Tumor growth directly affects the stress state of the tissue. However, as demonstrated experimentally (see Sec-
tion 2), stress is an important regulator of mechanotransduction directly involved in proliferation and migration. 
Hence, the growth laws must also account for the dependence of cellular and tissue stress on continuous feedback.

The first biomechanical models that involve mechanotransduction were proposed in [95], which formulated and 
validated a linear poroelastic model that accounts for the inhibition of proliferation of the melanoma tumor spheroid 
line (MU89) embedded in agarose gel matrices. Since then, mechanotransduction M has been modeled as a phe-
nomenological function that affects migration and proliferation rates by stress.
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Table 2
Mechanotransduction laws used in recent years. The parameters βi , q , and χσ are related to the fitting of cell size and proliferation to relieve stress. 
The hydrostatic stress that accounts for volumetric changes is σh = 1/3 tr(σσσ), � refers to the adhesion forces of the cells, and the Von Mises stress, 

which is a measure of the distortion energy, is defined by σvm =
√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
, where σi refers to main stresses. The 

stress threshold that cells sense is defined by σL , and it is characteristic of each cell line. The choice of what type of stress is considered depends 
on the purpose of the study, so other proposals such as Tresca stress could be included if the main source of mechanotransduction is shear stress.

Affected term Mechanotransduction law Source

Growth M = 1 − βσh [95,137,177,180,182,187]
Growth M = (1 − (β1σh/β2 + σh)) [211]

Growth M =
[
q + (1−q)exp(χσ (σh−σL))

1+exp(χσ (σh−σL)

]
[187,188]

Growth M = 1 − β1
�

� + β2
[104]

Migration M = exp(−βσvm) [190,214,215]
Migration and Growth M = exp(−β1 (σvm + β2 |σh|)) [127]

The key idea is that the forces present in the tumor are pressure-like and directly proportional to tumor cells through 
a function that describes the dependence of growth on solid stress. Taking into account the previous Eulerian equation 
of mass continuity described in (16), mechanotransduction is usually included in mass continuity as follows:

∂φi

∂t
+ ∇ · (φivi) = ∇ · (MυJJJ i ) +Mφi�i, (30)

being M the mechanotransduction function that can affect migration (first term on the right) and proliferation (second 
term on the right). Table 2 shows the main mechanotransduction functions used in the literature to date.

Specifically, the contribution of modeling mechanotransduction translates into different approaches which fit ex-
perimental data described in Section 2. Some computational studies found that growth-induced stress promotes higher 
levels of solid stress in the tumor interior and lower in the periphery [137]. Furthermore, high compressive solid stress 
can collapse blood vessels in the tumor interior [137], negatively affecting drug delivery [180]. However, a highly 
vascularized region on the periphery of the tumor is associated with better oxygenation and positive drug delivery, 
such as chemotherapy [182] and nanomedicine [180].

Furthermore, [211] proved that stiffer cells propagate through softer tissue and [177] quantified 1.5 the number of 
times the tumor must be more rigid than its surrounding to displace it. [177] also suggests that solid stress involves 
tumor inhibition independently of the constitutive equation chosen, although it strongly depends on mechanical in-
teractions with the surrounding host tissue. References [187,188] showed the interspecific competition of species 
that defines the Volterra-Lotka equations that describe the growth of tumor and healthy cells. Indeed tumor cells are 
inhibited if stress exceeds a critical threshold value.

Some studies also propose a pseudopotential stress law based on cell interaction’s repulsive and attractive forces. 
In particular, [184] developed a switch function in which mechanotransduction occurs if there is compression on the 
membrane of proliferative cells. The works of [216,217] change the law for a monotonic mollifier of the step function, 
and more recently [104] propose four mechanotransduction functions (linear, exponential, inversely proportional, and 
Michaelis-Menten-like equation – shown in Table 2) fitting experiments.

Considering also the effect of mechanotransduction on migration, [214] reconstructed the coupling parameter β
from Magnetic Resonance Imaging (MRI). This could be one of the critical points in personalized mechanotransduc-
tion models, including chemotherapy effects. More recently, the intra-tumoral heterogeneity of gliomas [190] and the 
impact of drug delivery in breast tumors were also included in the mechanically coupled equations [215]. Lastly, [127]
proposed a personalized prostate cancer model in which not only stress-driven growth, but also the mechanics pro-
duced by benign hyperplasia slow tumor growth. This is the only function of mechanotransduction known, as far as 
we are aware, that accounts for migration and proliferation terms and for both Hydrostatic and Von-Misses stress.

These studies open a pioneering approach to cancer prognosis, where the potential of personalized treatments at 
different scales is based on critical biochemical-mechanical interactions.
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4. Conclusions and perspectives

The importance of translating mechanotransduction into therapy is becoming increasingly clear. Hence, the fol-
lowing steps should focus on identifying mechanisms that alter and normalize the tumor microenvironment and 
mathematical models that allow modulation of these mechanisms and their mechanoresponses.

With that in mind, recent research has focused on selectively killing cancer cells through mechanotherapy. The use 
of low-intensity ultrasound (LIUS) and low-intensity pulsed ultrasound (LIPUS) has been shown to decrease cancer 
cell proliferation in at least 30-50% while healthy cells remained unaltered [50,218–225]. Moreover, some studies 
notice ultrasound inhibition of the collective spread of cancer cells in processes induced by wound healing [107,221].

Since cells are highly susceptible to shear stress, shear waves (SW) also emerge as a promising target therapy [226–
228]. SW operate at lower frequencies than ultrasound, allowing mechanotransduction while minimizing the possible 
cytodisruption and cell resonance caused by ultrasound at high frequencies [229,230]. Furthermore, SW intensities 
would avoid indiscriminate ablation of cells produced by high-intensity focus ultrasound (HIFU). Regarding another 
oscillatory shear stress, the use of shear stress through pulses of perfused interstitial fluid can be observed [231].

Then, using mechanical waves (pressure or shear waves) is a promising technique that opens a line in therapy, 
since they can be remotely focused and have no collateral effects. Notwithstanding, further studies are necessary to 
determine the optimum use of frequency, amplitude, and duty cycles.

Other perspectives propose using drugs to modify the elasticity of the tumor microenvironment. The study con-
ducted by [232] shows the effectiveness of a drug-loaded hydrogel matrix, which selectively captures and destroys 
cancer cells, attracting them to an optimized ECM stiffened at 20 KPa. Thus, the ECM acts as a stiffness filter, differ-
entiating the tumor and healthy cells independently of the drug load applied [232]. More microenvironment alterations 
normalize the tumor matrix by degrading its collagen with bacterial collagenase treatment [233], or modifying the tu-
mor microenvironment with pirfenidone [234], with the objective of alleviating solid stress and reducing IFP. The 
result is an improved vascular system (relief of compressions in the vascular networks), which facilitates the supply 
of other drugs to the tumor. Furthermore, the use of these drugs can be remotely regulated by magnetic nanoparticles 
(MNP) [235,236] and mechanical waves [237–239].

These findings evidence the potential effects of mechanotherapy that can be combined with other existing treat-
ments to enhance their benefits. Furthermore, mechanotherapy also applies to other pathologies such as bone [240,241]
and Parkinson’s disease [242]. Then future research lines should focus on the mechanics that induce cellular 
mechanosponse.

Along with these new empirical advances, it is also essential to develop multiscale mathematical models that 
incorporate the effect of mechanotherapies such as LIUS. In addition to the critical threshold stress and the fitting 
parameters described in Table 2 and generally referred to here as σσσL and q , the mechanotransduction laws should 
now consider perceived stress as both static growth-induced stress σsσsσs – generated on the time macroscale, t – and 
dynamic ultrasound-induced stress σuσuσu – developed on the microsecond-second time scale, tu –. Finally, as reported 
in Section 1, mechanotherapy is strongly dependent on protein pathways A and structure of the ECM, S. Then the 
mechanotransduction caused by LIUS should be modeled as follows:

M = f (σσσL,q,σσσ s,σσσu,A,S). (31)

To conclude, the preceding in this review highlights the potential and importance of mechanotherapy for tack-
ling cancer at the experimental and computational levels, which requires joint modeling and medical engineering. 
In this context, mechanotherapy can improve cancer treatment, opening a pioneering and non-invasive way to treat 
tumor cells and an innovative and powerful approach that could help with the prognosis and design of personalized 
treatments. Thus, the new challenges of the coming years will provide answers to the still open questions: What con-
figuration of mechanical parameters is necessary to inhibit tumorigenesis? What is the right combination of treatments 
for each patient? How can we anticipate disease progression and predict the possible effects of therapies?
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