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A deep-learning algorithm to classify skin  
lesions from mpox virus infection

Alexander H. Thieme    1,2,3,4 , Yuanning Zheng1,2, Gautam Machiraju    5, 
Chris Sadee    1,2, Mirja Mittermaier    4,6, Maximilian Gertler    7, Jorge L. Salinas8, 
Krithika Srinivasan8, Prashnna Gyawali1, Francisco Carrillo-Perez    1,2,9, 
Angelo Capodici    1,2,10, Maximilian Uhlig11, Daniel Habenicht    12, 
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Undetected infection and delayed isolation of infected individuals are key 
factors driving the monkeypox virus (now termed mpox virus or MPXV) 
outbreak. To enable earlier detection of MPXV infection, we developed an 
image-based deep convolutional neural network (named MPXV-CNN) for the 
identification of the characteristic skin lesions caused by MPXV. We assembled 
a dataset of 139,198 skin lesion images, split into training/validation and 
testing cohorts, comprising non-MPXV images (n = 138,522) from eight 
dermatological repositories and MPXV images (n = 676) from the scientific 
literature, news articles, social media and a prospective cohort of the Stanford 
University Medical Center (n = 63 images from 12 patients, all male). In the 
validation and testing cohorts, the sensitivity of the MPXV-CNN was 0.83 and 
0.91, the specificity was 0.965 and 0.898 and the area under the curve was 
0.967 and 0.966, respectively. In the prospective cohort, the sensitivity was 
0.89. The classification performance of the MPXV-CNN was robust across 
various skin tones and body regions. To facilitate the usage of the algorithm, 
we developed a web-based app by which the MPXV-CNN can be accessed 
for patient guidance. The capability of the MPXV-CNN for identifying MPXV 
lesions has the potential to aid in MPXV outbreak mitigation.

The monkeypox virus (now termed mpox virus or MPXV), a 
double-stranded DNA virus belonging to the Orthopoxvirus genus and 
causative agent of a zoonotic disease, has caused an ongoing outbreak 
with more than 28,700 confirmed cases in 93 countries as of 5 August 
2022. The World Health Organization (WHO) has declared this outbreak 
a Public Health Emergency of International Concern1. Animal-to-human 
transmission was generally assumed and confirmed in numerous recent 
MPXV outbreaks. Sustained human-to-human transmission was consid-
ered limited as infection chains in the human populations were short 
in endemic regions of Central and West Africa2. This outbreak showed 

for the first time sustained human-to-human community transmission 
in nonendemic countries3. Cases were reported primarily in men who 
have sex with men and in some cases in women and children4–9.

Modeling by the European Centre for Disease Prevention and 
Control identified undetected infections and delayed isolation as key 
parameters that drive MPXV outbreaks10. With WHO case definitions11, 
a significant proportion of infections remained undetected5 such as a 
person with a characteristic vesicular-pustular rash without a history of  
contact with a confirmed infection. Therefore, multiple authors  
have suggested a review and broadening of case definitions5,12.  
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Table 1 | Number of skin lesion images per category and per data source in the MPXV and non-MPXV datasets used for 
training and testing the MPXV-CNN

MPXV dataset Non-MPXV dataset

Category Publications  
(n = 75)

Encyclopedia  
(n = 4)

News  
articles  
(n = 13)

Social  
media  
(n = 1)

Prospective  
cohort

Total Danderm DermIS HDA Fitzpatrick 
17k

DermNet DermNet 
NZ

PAD- 
UFES-20

Esteva Total

All 380 42 25 202 63 712 3,437 6,589 2,662 16,577 19,289 14,018 2,298 121,170 186,040

Excluded 31 0 1 4 0 36 5 0 48 52 0 1,973 0 45,440 47,518

Included 349 42 24 198 63 676 3,432 6,589 2,614 16,525 19,289 12,045 2,298 75,730 138,522

Training 254 42 24 198 0 518 0 0 0 0 0 12,045 0 0 12,045

Testing 95 0 0 0 63 158 3,432 6,589 2,614 16,525 19,289 0 2,298 75,730 126,477

Age

Child  
(<18 years)

35 6 8 7 0 56 – 979 – – – a 39 – 1,018

Adult  
(≥18 years)

292 32 11 183 63 581 – 2,557 – – – a 2,259 – 4,816

Unknown 22 4 5 8 0 39 3,432 3,053 2,614 16,525 19,289 12,045 0 75,730 132,688

Sex

Male 277 22 12 184 63 558 – 2,593 – – – b 741 – 3,334

Female 19 2 1 4 0 26 – 2,520 – – – b 753 – 3,273

Unknown 53 18 11 10 0 92 3,432 1,476 2,614 16,525 19,289 12,045 804 75,730 131,915

Skin tone (Fitzpatrick type)

I 7 0 1 19 0 27 – – – 2,941 – – 153 – 3,094

II 87 16 6 72 26 207 – – – 4,796 – – 876 – 5,672

III 115 0 5 49 27 196 – – – 3,296 – – 392 – 3,688

IV 32 22 3 24 0 81 – – – 2,775 – – 62 – 2,837

V 30 0 0 27 10 67 – – – 1,527 – – 10 – 1,537

VI 78 4 9 7 0 98 – – – 628 – – 1 – 629

Unknown 0 0 0 0 0 0 3,432 6,589 2,614 562 19,289 12,045 804 75,730 121,065

Region of body

Head 55 11 1 56 2 125 – 1,443 – – – – – – 1,443

Neck 2 0 0 0 1 3 – 96 – – – – – – 96

Torso 50 12 3 16 8 89 – 705 – – – – – – 705

Upper 
extremity

62 9 5 59 26 161 – 916 – – – – – – 916

Lower 
extremity

33 1 2 12 12 60 – 813 – – – – – – 813

Anogenital 103 4 0 35 9 151 – 223 – – – – – – 223

Anal 16 0 0 12 0 28 – 5 – – – – – – 5

Perianal 10 0 0 1 3 14 – 18 – – – – – – 18

Genital 77 4 0 22 6 109 – 106 – – – – – – 106

Unknown 0 0 0 0 0 0 – 94 – – – – – – 94

Multiple 
body 
regions

27 1 9 11 4 52 – 110 – – – – – – 110

Unknown 
or zoomed 
in

17 4 4 9 1 35 3,432 2,283 2,614 16,525 19,289 12,045 2,298 75,730 134,216

Originc

Europe 110 0 0 65 0 175 c c c – – c – – –

Africa 70 0 5 1 0 76 – – – – – c – – –

Asia 6 0 3 1 0 10 – – – c – – – – –

South 
America

7 0 0 28 0 35 – – – c – – – – –

North 
America

41 0 6 92 63 202 – – – – – c – – –

Antarctica 0 0 0 0 0 0 – – – – – – – – –

Australia 3 0 0 0 0 3 – – – – – c – – –

Unknown 112 42 10 11 0 175 3,432 6,589 2,614 16,525 19,289 12,045 2,298 75,730 138,522
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Artificial intelligence (AI)-assisted case definitions have not been 
explored so far but could represent a solution.

Deep convolutional neural networks (CNN) have shown promise in 
classifying skin lesions in dermatology13–20 with some authors reporting 
above expert-level accuracy14. In recent studies, the majority of MPXV 
infections (up to 95.2%) were associated with skin lesions4,5,21 which 
appear in different stages over the course of the disease. Informing 
individuals who are worried about having been infected with MPXV as 
to whether their skin lesions likely stems from an MPXV infection or not 
could accelerate appropriate care-seeking and improve the adoption of 
behaviors to reduce onward transmission. This could be accomplished 
through the integration of an image-based CNN into an app that allows 
users to analyze an image of their skin lesion.

The aim of this study was, therefore, to develop and evaluate 
the performance of a CNN for the detection of MPXV skin lesions 
(MPXV-CNN) in photographic images and to integrate the MPXV-CNN 
into an app. To identify biases and weaknesses, we evaluated the  
performance of the MPXV-CNN in multiple large image datasets for 
different skin tones20 and locations of the skin lesion. We also specifi-
cally evaluated the performance of the model in classifying MPXV skin 
lesions versus other acute skin diseases and differential diagnoses with 
skin lesions of similar appearance, including varicella, drug-induced  
allergies, impetigo, measles, molluscum contagiosum, orf, scabies 
and syphilis22.

Results
Sample characteristics
The image characteristics were summarized in Table 1. We constructed  
a new dataset of photographic images of skin diseases (n = 139,198) 
originating from multiple publicly available sources and institutional 
data as follows: 676 images of MPXV skin lesions (MPXV dataset) aggre-
gated from publications of the scientific literature, encyclopedia  
articles, news articles, social media and prospectively collected  
MPXV skin lesion images of patients of the Stanford University  
Medical Center (prospective cohort) and 138,522 images of non-MPXV 
skin lesions (non-MPXV dataset) from five public dermatological reposi-
tories (Danderm, DermIS, Hellenic Dermatological Atlas (HDA), Derm-
Net, DermNet NZ), two public datasets (PAD-UFES-20 (ref. 23), Fitzpatrick 
17k24) and one institutional dataset (Esteva13). Image screening and 
filtering were performed as described in Fig. 1 and Methods. The follow-
ing metadata was made available per image: diagnoses for Danderm,  
DermIS, HDA, DermNet, DermNet NZ, PAD-UFES-20, Fitzpatrick 17k, 
Esteva and the prospective cohort; skin tone for PAD-UFES-20, Fitzpat-
rick 17k and the prospective cohort; body region for DermIS and the 
prospective cohort; age group for DermIS, PAD-UFES-20 and the pro-
spective cohort; sex for DermIS, PAD-UFES-20 and the prospective 
cohort. We mapped diagnoses of all non-MPXV sources to a uniform 
taxonomy of 2,013 skin diagnoses previously developed at our insti-
tute13. Uniform diagnoses could be associated with 94.5% (130,852 of 

MPXV dataset Non-MPXV dataset

Category Publications  
(n = 75)

Encyclopedia  
(n = 4)

News  
articles  
(n = 13)

Social  
media  
(n = 1)

Prospective  
cohort

Total Danderm DermIS HDA Fitzpatrick 
17k

DermNet DermNet 
NZ

PAD- 
UFES-20

Esteva Total

Lesions (N)

N = 0 (rash) 5 0 0 4 0 9 – – – – – – – – –

N = 1 118 16 6 87 30 257 – – – – – – – – –

N = 2 38 10 2 42 20 112 – – – – – – – – –

N = 3 26 6 0 18 3 53 – – – – – – – – –

4 ≤ N ≤ 5 16 3 0 13 5 37 – – – – – – – – –

6 ≤ N ≤ 10 30 3 1 12 4 50 – – – – – – – – –

N > 10 116 4 15 21 1 157 – – – – – – – – –

Unknown 0 0 0 1 0 1 3,432 6,589 2,614 16,525 19,289 12,045 2,298 75,730 138,522

Duration of presence

<7 d 49 6 0 12 0 67 – – – – – – – – –

≥7 d 80 0 1 43 3 127 – – – – – – – – –

Unknown 220 36 23 143 60 482 3,432 6,589 2,614 16,525 19,289 12,045 2,298 75,730 138,522

Coalesced lesions

Yes 132 11 14 27 2 186 N/A N/A N/A N/A N/A N/A N/A N/A N/A

No 212 31 10 167 61 481 N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A 5 0 0 4 0 9 N/A N/A N/A N/A N/A N/A N/A N/A N/A

2022 MPXV outbreak associated

Yes 264 26 24 198 63 575 N/A N/A N/A N/A N/A N/A N/A N/A N/A

No 85 16 0 0 0 101 N/A N/A N/A N/A N/A N/A N/A N/A N/A

MPXV clade

Clade 1 38 0 0 0 0 38 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Clade 2 303 26 21 198 63 611 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Unknown 8 16 3 0 0 27 N/A N/A N/A N/A N/A N/A N/A N/A N/A

aNo classification per image available, but the database owners reported the following ratios: child 14% and adult 86%. bNo classification per image available, but the database owners reported 
the following ratios: 48% male and 52% female. cNo classification per image is available for non-MPXV repositories and datasets, however the origin of most images can be assigned to the 
following continents: Danderm—Europe, DermIS—Europe, HDA—Europe, Fitzpatrick 17k—South America and Asia, DermNet—unknown, DermNet NZ—Europe, Africa, North America, Australia, 
PAD—unknown. All, number of all available skin lesion images; excluded, number of excluded images; included, number of images included in this study; N/A, not applicable; training, number 
of images used for training the MPXV-CNN; testing, number of images used for testing the MPXV-CNN;–, not available.

Table 1 (continued) | Number of skin lesion images per category and per data source in the MPXV and non-MPXV datasets 
used for training and testing the MPXV-CNN
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138,522) of skin lesion images in the non-MPXV dataset. All evaluations 
on non-MPXV diagnoses were pooled analyses on the entire non-MPXV 
dataset. Frequency tables for uniform diagnoses in the training and 
testing non-MPXV datasets are collated in Supplementary Tables 1–11.

Algorithm performance in the training cohort
We used images of MPXV skin lesions (n = 518) and non-MPXV skin 
lesions (n = 12,045) for the training and validation of the MPXV-CNN 
(Methods: Data splitting). We performed stratified fivefold 
cross-validation, wherein in each fold, images from 80% of patients 
were used for training and 20% for validation. The cross-validation 
was repeated five times. In the validation dataset, the sensitivity was  
0.83 (s.d.: 0.01), specificity was 0.965 (s.d.: 0.002) and the area under 
curve (AUC) was 0.967 (s.d.: 0.003; Fig. 2a). Performance results for 
other architectures than ResNet34 can be found in Supplementary 
Table 12.

Algorithm performance in the testing cohort
After we evaluated the MPXV-CNN using cross-validation, we trained a 
final model on images (n = 12,563) from the entire training cohort. The 
final model was evaluated using images from an external testing cohort 
(Methods: Data splitting). The testing cohort contained 158 MPXV 
images and 126,477 non-MPXV images. Sensitivity was 0.91, specific-
ity 0.898 (Fig. 2b) and the AUC 0.966 (Fig. 2c). Specifically, sensitivity  
was 0.89 in MPXV skin lesion images prospectively collected from 
patients (n = 63 images from 12 patients, all male) of the Stanford 
University Medical Center and 0.92 in other MPXV skin lesion images 
(Extended Data Fig. 1). The false-positive rates (FPRs) in non-MPXV skin 
lesions of the seven dermatological repositories and databases varied 
between 3.4% and 22.0% (Extended Data Fig. 2).

Variation in algorithm performance by image characteristics
We evaluated the performance of the MPXV-CNN in regard to the  
following image characteristics: number of MPXV skin lesions,  
duration of the presence of the MPXV skin lesion(s) and coalescing of 
MPXV skin lesions.

We observed a high detection performance of MPXV lesions 
with a duration of the presence of less than 7 d (true-positive rate 
(TPR) = 95.7%; Extended Data Fig. 3) which demonstrates the early 
detection ability of the MPXV-CNN. Also, MPXV skin lesions with a dura-
tion of the presence of 7 d or more were detected reliably (TPR = 84.6%) 
illustrating the ability of the MPXV-CNN to recognize skin lesions in 
different disease stages. The observed median number of skin lesions 
in the testing cohort was two (interquartile range: (8)). We evaluated the 
performance in regard to the number of MPXV lesions visible in each 
skin lesion image. If at least one skin lesion was present, we observed 
a high detection performance with TPRs ranging from 81.8% (6–10 
lesions) to 100% (4–5 lesions; Extended Data Fig. 4). For images show-
ing an MPXV rash without a visible MPXV skin lesion, the detection 
rate was low (TPR = 33.3%) with a limited number of available images in 
this category (n = 3). The observed TPR was higher in images showing 
coalesced (95.5%) versus noncoalesced (91%) MPXV skin lesion images 
(Supplementary Fig. 1).

Variation in algorithm performance by skin disease
Because MPXV skin lesions present as acute skin disease, we assessed 
the performance in classifying MPXV skin lesions versus acute  
and chronic skin diseases. The testing cohort contained 38,875  
images for acute and 85,148 images for chronic skin diseases. For  
the classification of MPXV versus other acute skin diagnoses, the  
specificity was 0.886 (Extended Data Fig. 5) and AUC was 0.962 (Fig. 2c). 
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Clinical

Prospective 
cohort (n = 1)
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Fig. 1 | Flow diagram for the MPXV and non-MPXV image datasets. The flow 
diagram showed the identification and screening procedures of images to 
create the MPXV and non-MPXV datasets. MPXV images were collected from 

publications of the scientific literature, encyclopedia articles, new articles, social 
media and a prospective cohort of patients from the Stanford University Medical 
Center, while non-MPXV images originated from eight repositories and datasets.
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For the classification of MPXV versus chronic skin lesions, the specific-
ity was 0.900 (Extended Data Fig. 5) and AUC was 0.967 (Fig. 2c). We 
also evaluated the FPRs by the category of the non-MPXV skin disease 
and observed the highest FPRs for the category genodermatoses and 
supernumerary growths (15.7%; Supplementary Fig. 2).

The number of different skin diseases with at least one available 
image in the non-MPXV dataset, Esteva, DermNet, DermIS, DermNet 
NZ, HDA, Fitzpatrick 17k, Danderm, DermNet NZ and PAD-UFES was 
809, 792, 496, 458, 310, 297, 220, 178 and 6, respectively. When evalu-
ating the performance of the MPXV-CNN in individual skin diseases 
with at least 50 available images, the highest FPRs were observed for 
the following acute skin diseases: orf (42.9%), tinea ringworm groin 
(39.7%) and varicella (34.6%) (Extended Data Fig. 6). We also observed a 
comparatively high FPR of 26.9% in images with sunburn. We observed 
the highest FPRs in the following chronic skin diseases: Ehlers–Danlos 
syndrome (47.7%), lichen planus actinicus (34%) and prurigo nodularis 
(27%; Extended Data Fig. 7). We found a low number of images (n = 20) 
for the Ehlers–Danlos syndrome in the training database (Supplemen-
tary Table 7). The FPR for eight differential diagnoses of MPXV was 
highest with orf (42.9%), followed by varicella (34.6%) and molluscum 
contagiosum (27.3%) (Supplementary Fig. 3). FPRs for common skin 
diseases such as cherry angioma, skin tags, dermatofibroma, acne 
vulgaris, eczema, rosacea and allergic contact dermatitis were 26.7%, 
17.9%, 16.0%, 16.0%, 16.5%, 7.6% and 6.5%, respectively (Supplementary 
Table 2). Frequency tables and FPRs of all diagnoses in the non-MPXV 
dataset and per repository are available in Supplementary Tables 1–11.

Variation in algorithm performance by body region
The performance also varied by body region of the skin lesion, with the 
lowest TPR at the head (TPR = 78.9%) and a high detection performance 
for other body regions ranging from TPR = 80.5% (upper extremi-
ties) to TPR = 100% including the anogenital body region (Extended  
Data Fig. 8). For MPXV skin lesion images with an ‘unknown’ 
body region, meaning that these images were zoomed in without  
visible cues of the body region, a high classification performance 
(TPR = 100%) could be observed (Extended Data Fig. 8). The highest 
FPR in non-MPXV images was observed in images showing multiple 
body regions (19.1%). For other body parts, the FPRs were generally 
low ranging from 3.6% for the anogenital to 8.8% for the torso body 
region (Supplementary Fig. 4).

Variation in algorithm performance by population
We evaluated the performance of the MPXV-CNN in regard to the  
following population characteristics: skin tone, age group and sex.

The TPRs varied by skin tones, with the lowest performance in 
Fitzpatrick type III (TPR = 85.7%) and ranging from TPR = 88.9% to 
TPR = 100% in other skin tones with very limited data for type 1 (n = 7) 
and type VI (n = 1; Extended Data Fig. 9). We observed low FPRs for 
type I to IV on the Fitzpatrick scale ranging from 7.4% for type I to 9.3% 
for type IV and higher FPRs for type V (12.1%) and 6 (13.9%; Extended 
Data Fig. 10). A higher FPR could be observed in children (6.8%) versus 
adults (4%; Supplementary Fig. 5) and male (9.7%) versus female (7.3%) 
individuals (Supplementary Fig. 6).

Explanation maps
SHapley Additive exPlanations (SHAP) were a method to explain the 
prediction of an instance by computing the contribution of each fea-
ture (for example, pixel) to the prediction25. The SHAP method com-
puted Shapley values from coalitional game theory. By calculating 
SHAP values, we were able to visualize which portions of an image the 
MPXV-CNN was focusing on to make a specific prediction. In the MPXV 
images correctly classified by MPXV-CNN, we found that the regions 
with high feature importance overlapped with the areas of MPXV skin 
lesions (Fig. 3). Correspondence between positive SHAP values and 
the location of the MPXV skin lesion(s) (Fig. 3a–g) and the perilesional 
inflammation could be observed (Fig. 3c–f).

Personalized recommendation system for patient guidance
We developed a prototype of a personalized recommendation system 
(PRS) for MPXV patient guidance implemented as a web-based app 
named ‘PoxApp’ which could be used on web-enabled devices such as 
smartphones (Figs. 4 and 5). PoxApp was released as open-source on 
Github26 and published online by Charité—Universitätsmedizin Berlin 
in June 2022 (ref. 27) and Stanford University in August 2022 (ref. 28). The 
PRS combined a survey (Fig. 4b,d,e) with picture-taking of a skin lesion 
(Fig. 4c). The survey consisted of seven items regarding symptoms, risk 
contacts, sexual behavior and location (Supplementary Figs. 7–14). The 
PRS estimated the risk of an MPXV infection using a mobile version 
of the MPXV-CNN (MobileNet V3) and a decision tree (Supplemen-
tary Fig. 15). Personalized recommendations provided information 
on MPXV testing, postexposure vaccination and quarantine (Fig. 4f). 
MPXV testing was recommended if the MPXV-CNN detected an MPXV 
skin lesion or criteria derived from WHO case definitions for suspected 
and probable MPXV cases were met. Postexposure vaccination was 
recommended if the user encountered a risk contact within the past 
21 d. Local healthcare offerings for MPXV testing and vaccination were 
shown based on the zip code provided by the user. We invited users to 
participate in a study to donate their data comprising survey answers 
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and skin lesion images. In July 2022, we announced PoxApp to a national 
mailing list addressed to infectious diseases specialists. Users could 
find PoxApp via popular search engines and links provided by a variety 
of institutes such as the German National Center for Disease Control, 
the Ministry of Foreign Affairs, Federal Center for Health Education 
and Local Departments of Health.

Discussion
We report the first proof-of-concept of an MPXV-CNN able to classify 
MPXV skin lesions using photographic images. The MPXV-CNN showed 
a high classification performance in the validation and testing datasets. 
We observed a sensitivity of 0.89 in prospectively collected MPXV 
images from patients of the Stanford University Medical Center and 
an overall sensitivity of 0.91 and specificity of 0.898 in the whole test-
ing dataset. The MPXV-CNN achieved a high detection performance in 
MPXV skin lesions that were present for less than 7 d demonstrating 
its early detection capabilities. Classification performance was robust 
across various skin tones and body regions, and in MPXV images with 
a varying number of lesions with and without coalescing. Explana-
tions of the model with SHAP demonstrated that MPXV-CNN identified  
the locations of MPXV skin lesions in images and their perilesional 
inflammation.

We performed detailed analyses and identified several parameters 
that impacted the performance, including the body region of the skin 
lesion, skin tones and non-MPXV diagnoses. The TPR for skin lesions 
at the head was lower compared to other body locations. This might 
be related to the complex facial anatomy and the presence of hair. 
MPXV-CNN’s best performance was achieved in the anogenital and 
lower extremities regions with TPR of 100% and 85.7% and FPRs of 3.6% 
and 3.8% which could be considered preferred locations for classifica-
tion if a patient has multiple lesions. When testing performance across 
different body regions, we observed the highest FPR for images show-
ing multiple body regions. It is, thus, preferable to avoid taking images 
at a distance. We generally observed high TPRs ranging from 85.7 to 
100% across all skin tones with the lowest values in skin tone Fitzpatrick 
type III and very limited data for type VI. In addition, we observed higher 
FPRs in skin tones with Fitzpatrick type V (12.1%) and 5 (13.9%), which 

may be due to the challenging detection of perilesional inflammation 
in the darker-pigmented skin tones. In addition, we evaluated the FPRs 
of diagnoses in non-MPXV skin lesions using a uniform taxonomy of 
2,031 skin diseases and a pooled analysis across the entire non-MPXV 
dataset. Because MPXV causes acute skin lesions, we specifically evalu-
ated the classification performance of the MPXV-CNN when compared 
to other acute skin diseases. We observed a high performance with a 
specificity of 0.886 and an AUC of 0.962. The classification perfor-
mance compared to chronic skin diseases was nearly identical with a 
specificity of 0.900 and an AUC of 0.967. While the FPRs were low in 
common diagnoses such as acne, eczema, rosacea and allergic contact 
dermatitis, we also identified common diagnoses with relatively high 
FPRs such as in cherry angioma which could substantially reduce the 
classification performance of the MPXV-CNN in elderly patients. Acute 
diseases with the highest FPRs were orf, tinea ringworm groin and 
varicella. Genetic skin disorders such as Ehlers–Danlos syndrome and 
neurofibromatosis yielded worse performance and could be defined 
as an exclusion criterion when the MPXV-CNN should not be used. Pre-
sumably, the performance could be improved by adding more images 
of these diagnoses to the training dataset. We conducted a preliminary 
analysis of known differential diagnoses and found the highest FPR in 
orf which is known to be hardly distinguishable from MPXV by human 
experts. For non-MPXV images in the testing cohort, we observed a 
higher FRP in male versus female individuals. For MPXV images in the 
testing cohort, sex-based analyses could not be performed due to the 
nonavailability of data for female patients. However, MPXV images 
without visible sexual anatomy such as zoomed-in images or images 
of the extremities had a high classification performance. Addition-
ally, SHAP explanations showed that the MPXV-CNN specifically used 
the region of the image that contained the skin lesion and there is no 
evidence that MPXV lesions have a difference in appearance between 
male and female patients.

The main limitation of our study is related to the current scar-
city of MPXV photographic images. Due to a lack of public datasets  
with MPXV images, we created a new dataset from publications of the 
scientific literature, encyclopedia articles, news articles, social media 
and a prospective cohort. This approach, however, is prone to biases. 
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Fig. 3 | SHAP analysis of the MPXV-CNN. Photographic images of MPXV skin 
lesions (top) are shown with the corresponding SHAP analysis (bottom) overlaid 
on the original image to highlight the discriminative image regions used for 
detection (a–g). The MPXV lesions shown represent different stages as follows: 
early-stage vesicle (a), small pustule (b), umbilicated pustule (c), papule with 
central necrosis (d), hand with one ulcerated skin lesion (e), pubic region with 
multiple ulcerated skin lesions (f) and late-stage crusted plaques (g). Positive 

SHAP values, shown in red, indicated areas of the image that contributed to the 
prediction of MPXV skin lesion, whereas negative SHAP values, shown in blue, 
indicated areas that detracted from the prediction. All MPXV lesions shown in 
a–g were part of the testing dataset and were classified correctly by the MPXV-
CNN. Photo credit (a–g): UK Health Security Agency, licensed under the Open 
Government License 3.0.
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a b c

d e f

Fig. 4 | Screenshots of PoxApp. a, Screenshots of the start screen are shown.  
b, Question regarding the presence of new lesions. c, Prompt for taking  
a photograph of the skin lesion. d, Question regarding further symptoms.  

e, Question regarding close contacts with infected individuals. f, A personalized 
recommendation computed from the information provided and the MPXV-CNN 
classification of the skin lesion image.
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Authors might report pictures not of typical, but of extraordinary 
cases, such as patients with a generalized exanthem or superinfected 
lesions. Additionally, because MPXV is endemic in Africa, a significant 
proportion of individuals in the MPXV dataset had darkly pigmented 
skin. We diversified our dataset by incorporating up-to-date publica-
tions on case reports and media articles related to the current MPXV 
outbreak, which provided images from regions where the virus was 
not previously endemic. For the same reason, we integrated photos 
of individuals reporting an MPXV infection and sharing their pictures 
on social media. To prove the performance of the MPXV-CNN, we used 
prospectively collected images of patients with a laboratory-confirmed 
MPXV infection as a testing cohort. To compensate for any biases 
that might be present in the MPXV-negative images, we performed 
our analyses on a high number of images from eight different image 
repositories and datasets.

As pointed out by the WHO, AI has great potential for neglected 
tropical infections such as MPXV, but ethical and privacy considera-
tions for AI tools have to be carefully taken into account, such as where 
user data are stored and data stewardship29. As with any infectious 
disease, and as is the case with MPXV, recognizing early symptoms 
to guide the patient toward a timely diagnosis is critical, potentially 
preventing severe disease, complications and secondary infections30. 
Therefore, the most benefit of an MPXV-CNN may be generated by 
integrating the algorithm into a mobile app usable by the public. This 
approach however raises concerns and comes with significant chal-
lenges. A mobile app, that takes a photo of a skin lesion as only input and 
returns a probability of a MPXV infection, is not sufficient in regard to 
the guidance for a user. Such a system could be dangerously mistaken 
as a substitute for a medical test such as a PCR test for MPXV or medical 
evaluation and treatment. Predictions of the MPXV-CNN need to be 
evaluated in context with a variety of factors influencing the pretest 

probability for an infection such as further symptoms reported by  
the users, close contact with infected individuals and the incidence 
of infectious cases at the location of the user, or factors that increase 
the probability for severe diseases such as pregnancy or immune com-
promise. A system was needed that combines the prediction of the 
MPXV-CNN with expert knowledge of healthcare professionals consid-
ering all the aforementioned factors to generate easy-to-understand 
recommendations for users.

Therefore, we proposed the combination of the MPXV-CNN with 
a PRS and developed a prototype that (1) asked survey questions to 
get a clinical picture of the user, (2) provided instructions to mitigate 
weaknesses of the MPXV-CNN such as taking a picture of the body 
regions with the highest predictive power and (3) gave easy to under-
stand personalized recommendation based on the estimated risk of 
infection. At the time of writing, the PRS was evaluated in a prospec-
tive trial. Additionally, by integrating the function of a voluntary data 
donation into such a system, a PRS could become a source of big data 
for skin lesion images reflecting closely the true distribution of the 
users’ age, sex, skin tone, ratio of MPXV and non-MPXV skin lesions and 
non-MPXV diagnoses. However, the MPXV infection status is unknown 
at the time the user uses the PRS. This limitation can be overcome with 
modern, semisupervised machine learning techniques that could use 
large amounts of skin lesion images with unknown infection status for 
pretraining and would require just a fraction of images with known 
infection status for learning31 which could be acquired by recalling the 
user or by a clinical trial.

Further investigations are needed to assess whether the high 
predictive power of MPXV-CNN obtained from our experiments can 
be translated into other settings such as an app used by the general 
public. The high classification performance observed in MPXV images 
collected from patients is promising. However, a prospective trial with 
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to web-based apps. b, The web-based app ‘PoxApp’ implemented the PRS for  
end users allowing them to answer surveys and take photos of their skin lesions 
and get personalized recommendations, such as MPXV testing or vaccination.  
c, Component for voluntary data donation with an API to collect, anonymize and 
store data in a central database. d, New evolving models with higher sensitivity 
and specificity could potentially be created based on new user data. API, 
application programming interface.
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patients under real-world conditions and larger datasets of MPXV skin 
lesion images will be required for this evaluation.

In this first version of the MPXV-CNN, predictions will also be 
made if the image has a low quality such as in low-light conditions or 
with significant blurriness. New methods like uncertainty quantifica-
tions of CNNs could help detect cases where the prediction of the 
MPXV-CNN should not be used32. Additional evaluations such as the 
analysis of the MPXV-CNN of multiple images from different body loca-
tions of the same patient could help to improve the performance of the 
MPXV-CNN. Lastly, the ResNet34 architecture researched in this study 
was not optimized for mobile devices due to its model complexity and 
the high number of parameters (21.5 million). Additional evaluations 
will be necessary to compare the performance with mobile-optimized 
architectures such as EfficientNet33.

We propose the following next steps. First, skin lesion images 
from patients who suspect they are infected with MPXV should be 
acquired as part of a prospective, multicentered trial. The MPXV and 
non-MPXV skin lesion images could be used as a testing dataset for 
next-generation MPXV-CNNs. Second, a prospective, clinical trial on 
the PRS should be conducted to assess the real-world performance 
of the MPXV-CNN, risks of misclassifications, compliance of patients 
to PRS recommendations and cost impact on the healthcare system. 
Third, efforts for a successful deployment should be made by target-
ing populations with a high prevalence of MPXV and endemic areas in 
low-income countries. Fourth, the proposed PRS could be integrated 
into local early warning systems at a national level that processes addi-
tional orthogonal information that enhances the PRS and increases its 
merit. From a scientific perspective, the combination of imagery data, 
disease information, demographic data and governmental policies 
creates a unique multimodal dataset.

This first MPXV-CNN could classify photos of skin lesions as  
being from an MPXV infection or not with a comparatively high degree 
of discrimination in a testing cohort that included prospectively col-
lected MPXV images of patients. Technologies like the MPXV-CNN can 
lead the way to AI-assisted case definitions of MPXV and other infec-
tious diseases. We developed an app-based PRS with the integration 
of a mobile version of the MPXV-CNN that allowed users to upload a 
photo of their skin lesion and get personalized recommendations. In 
such a setting, the MPXV-CNN has the potential to accelerate appropri-
ate care-seeking and increase the adoption of behaviors that reduce 
onward transmission. The images sourced with a PRS could become 
a rich source of data for the further development and improvement 
of AI-assisted approaches to address the current and future MPXV 
outbreaks.
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Methods
Ethical oversight was provided by the Stanford institutional review 
board (Protocol: 36050, 67068 and 66980). In this study, we evaluated 
publicly available images and clinical images acquired prospectively 
from patients with a laboratory-confirmed MPXV infection at the  
Stanford University Medical Center. Informed consent was obtained 
from patients for clinical images, but not for images sourced from 
publicly available datasets and repositories as it was not required 
after having received permission to use the images from the  
database manager(s). We followed the MINimum Information for  
Medical AI Reporting34 recommendations for reporting (1) data source, 
(2) detailed information on model architecture and development 
and (3) approaches to optimize, evaluate and validate the model 
performance.

Data sources
To train and test the MPXV-CNN, we constructed a new dataset of 
photographic images of skin diseases (n = 139,198) originating from 
multiple publicly available sources, an institutional cohort (Esteva 
Dataset)13 and patients (Fig. 1): 676 images of MPXV skin lesions were 
aggregated from publications of the scientific literature, encyclope-
dia articles, news articles, social media (Twitter) and the prospective 
cohort (MPXV dataset) and 138,522 images of non-MPXV skin lesions 
(non-MPXV dataset) from five dermatological repositories and three 
datasets (Table 1). Patients of the prospective cohort were recruited 
from the Stanford University Medical Center between July and August 
2022. We included all patients with a laboratory-confirmed MPXV 
infection and visible skin lesions. We excluded patients who received 
any prior treatment due to their MPXV infection. Skin lesion images 
were taken from all affected body regions with a smartphone camera 
by a healthcare professional. The original Esteva dataset has been 
improved since its initial release and received several rounds of data 
cleansing. We identified duplicate images in the MPXV and non-MPXV 
datasets by comparing the visual contents of the images using a con-
servative cutoff value of 80% for similarity. We provided instructions 
for obtaining publicly available MPXV and non-MPXV images in Data 
Availability. A bibliography of sources with MPXV images and a list of 
URLs to non-MPXV images of Danderm, DermIS and HDA were provided 
as Supplementary Notes 1 and 2.

Image selection and annotation
We observed a higher number of duplicate images in the Esteva data-
set and the other non-MPXV datasets of this study (n = 45,440). We 
excluded images (total n = 47,518) from the MPXV dataset (n = 36) 
and non-MPXV dataset (n = 47,554) if the following criteria were met: 
absence of a skin lesion or rash, containing more than one photographic 
image, showing surgical or other medical interventions, nonphoto-
graphic images such as histopathology slides or radiology imaging, 
duplicate image or inaccessibility. We performed a reverse image 
search for all MPXV skin lesion images sourced from social media and 
excluded images that had been published previously in another con-
text. We manually labeled the MPXV dataset for the age group (child: 
< 18 years, adult: ≥ 18 years, unknown), sex (male, female, unknown), 
skin tone (type I–VI, Fitzpatrick scale35), continent where the image was 
taken (Europe, Africa, Asia, South America, North America, Antarctica, 
Australia, unknown), number of skin lesions (n up to 50, more than 50 
lesions were labeled as 50, and highly coalesced lesions as unknown), 
body region of the skin lesion(s) (head, neck, torso, upper extremity, 
lower extremity, anogenital, multiple locations, zoomed in/unknown), 
duration of skin lesion presence (less than 7 d, 7 d or more, unknown) 
and association with the 2022 MPXV outbreak (yes/no), defined as the 
publication of the image after May 1, 2022. For the prospective cohort, 
sex was defined as sex at birth self-reported by the patient. For other 
sources, sex was defined as reported in the textual information of 
the source. If no information on sex was reported, sex was assigned 

following evaluation of the image if sexual anatomy was visible. If the 
age information was not available, we labeled the age group of the 
individual from the image using a panel and labeled the age group as 
unknown if no consensus could be reached. We labeled MPXV images 
as coalesced if at least two MPXV lesions had grown together (yes/no 
or not applicable for MPXV rash). We evaluated the diagnoses found in 
the metadata of the Fitzpatrick 17k, PAD-UFES-20, DermNet and Esteva 
datasets and scraped metadata from websites of Danderm, DermIS, 
HDA, DermNet NZ repositories. To enable evaluations of non-MPXV 
diagnoses of all repositories and datasets, we mapped all diagnoses to 
a taxonomy of 2,032 individual skin diseases and classified them into 
nine main categories (benign dermal tumors, cysts, sinuses; cutaneous 
lymphoma and lymphoid infiltrates; epidermal tumors, hamartomas 
and milia; epidermal premalignant and malignant tumors; genoder-
matoses and supernumerary growths; inflammatory; malignant der-
mal tumor; pigmented benign lesions; pigmented malignant lesions) 
previously developed at our institute13. All diagnoses were classified 
as acute or chronic (defined as a persistent, progressive or recurring 
disease). Diagnoses with the possibility of acute and chronic courses 
were classified as acute. We specifically analyzed differential diagnoses 
with a similar appearance: varicella, drug-induced allergies, impetigo, 
measles, orf, molluscum contagiosum, scabies and syphilis. Where 
available, we evaluated information in the non-MPXV datasets and 
repositories in regard to the age group, sex, skin tone and location of 
the skin lesion(s) using identical definitions as for MPXV lesions.

Data splitting
After image filtering, there were 676 images for MPXV lesions and 
138,522 images for non-MPXV lesions. We split these images into train-
ing and testing cohorts. The training cohort was used for training, 
hyperparameter tuning and internal validation, while the testing cohort 
was used as a hold-out dataset for external validation. For the MPXV 
lesions, we used 63 skin lesion images from the Stanford University 
Medical Center, 87 images from a recent publication with the largest 
MPXV case series to date from 16 countries4 and 8 images from a pub-
lication showing MPXV skin lesions in different stages36 as the MPXV 
testing cohort (total n = 158). The remaining MPXV images (n = 518) 
were used as the training cohort. While the training cohort contained 
skin lesion images of the 2022 MPXV outbreak and before, the test-
ing cohort only contained images of the 2022 MPXV outbreak. In the 
training cohort, we used MPXV images sourced from publications of 
the scientific literature, news articles and social media. In the testing 
cohort, we exclusively used MPXV images with a laboratory-confirmed 
MPXV infection originating from publications and patients from our 
own institute. For the non-MPXV lesions, we used images (n = 12,045) 
from the DermNet NZ repository in the training cohort, due to the high 
number of available pictures, known ratios of sex and age groups and a 
high variety of diagnoses, races and origins. The remaining non-MPXV 
images (n = 126,477) were used in the testing cohort. For internal vali-
dation, we split the training cohort into 80% for training and 20% for 
validation.

Image processing and training algorithm
We treated the problem as a binary image classification task for which 
the model aimed to predict whether a provided photographic image 
was an MPXV or non-MPXV skin lesion. Several challenges were encoun-
tered while developing a robust classification model. First, because the 
images were collected from different sources such as publications of 
the scientific literature, encyclopedias, news articles and social media, 
there was high variability in image features, such as resolution, lighting, 
angle, zoom, color profiles and filters. Second, despite our best efforts, 
the number of images collected for the MPXV cases was much smaller 
compared to the non-MPXV cases. Therefore, the class distribution 
was highly imbalanced, which caused bias in the predictions toward 
the majority class (that is, non-MPXV).
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To overcome these issues, we incorporated several strategies 
into image processing, model selection and training algorithms. First, 
we made use of data augmentation. All images were first resized to 
448 × 448 pixels in size, and we then performed random cropping and 
resizing (224 × 224 pixels), random horizontal flip, random rotation 
(max degree = 360°), random zoom (max scale = 1.1), perspective warp-
ing (max value = 0.2), random brightness and contrast, random affine 
transformations and random reflections. This data augmentation was 
performed on both MPXV and non-MPXV images in the training cohort 
to account for the aforementioned high image variation. Secondly, we 
pursued a Transfer Learning strategy using a pretrained model, which 
was later fine-tuned on our domain-specific data. We experimented with 
a variety of different CNN architectures implementing Transfer Learn-
ing, including ResNet18 (ref. 37), ResNet34 (ref. 37), ResNet50 (ref. 37),  
Resnet152 (ref. 37), DenseNet169 (ref. 38) and VGG19_bn39. We adopted 
the ResNet34 (ref. 37) CNN architecture, where the weights of the model 
were initialized using the weights of a model pretrained on ImageNet40 
(approximately 14 million images), and we fine-tuned the model using 
our images of skin lesions. Third, we implemented a weighted cat-
egorical cross-entropy loss to account for class imbalance. Because the 
number of images for MPXV skin lesions was lower than the number of 
non-MPXV skin lesions, we assigned a higher class weight to MPXV skin 
lesions in the cost function of the training algorithm so that it could 
provide a higher penalty to the misclassification of the minority class. 
To find the optimal pair of class weight for the MPXV and non-MPXV skin 
lesions, we tested different weight pairs W, where W ∈ {(1.0, 0.005), (1.0, 
0.01), (1.0, 0.05), (1.0, 0.1), (1.0, 0.5), (1.0, 1.0)}. Using each different W, 
we fine-tuned the model for one epoch on the last layer and 20 epochs 
on all layers. The minibatch size was set to 64 and the base learning rate 
lr was set to 0.002. We computed the cross-entropy loss, sensitivity, 
specificity and AUC for the validation set. The optimal performance 
was achieved with a class weight W of (1.0, 0.01). Finally, to qualitatively 
verify that the MPXV-CNN learned to detect MPXV lesions, we generated 
explanation maps on a subset of images in the testing cohort using 
SHAP25. This method quantitatively annotated which image area(s) are 
critical for the final decision made from the MPXV-CNN.

Algorithm evaluation
Cross-validation. We carried out stratified fivefold cross-validation, 
where images from the training cohort were split into 80% for training 
and 20% for validation. Because images from the same source may 
originate from the same patient and share similar image features, we 
grouped images by the source such that MPXV images coming from the 
same patient were not split between the training and validation sets. 
Running the cross-validation for only a single time may result in a noisy 
estimate of model performance because different splits of the data may 
result in different results. Therefore, we repeated the cross-validation 
five times. In each repeat, we shuffled the order of images so that we 
could implement a different split of the dataset into the k(5)-folds.

Evaluation metrics. To evaluate our model performance, we used 
three metrics: sensitivity, specificity and AUC score. For each repeat 
of the fivefold cross-validation, we averaged the scores evaluated from 
each fold, and we reported the mean and standard deviation of scores 
obtained from the five repeats.

Explainability. SHAP25 uses game theoretic approaches to calculate 
the importance of a feature when the model makes a specific predic-
tion. A higher SHAP value indicates higher importance of the feature. 
To approximate SHAP values, we used the Gradient Explainer, which 
explains a model using expected gradients (an extension of integrated 
gradients41). We applied the explainer to the final model trained on 
the entire training cohort and used it to generate the SHAP values of 
the MPXV images from the testing cohort. The SHAP values were then 
overlaid on the gray-scaled images for visualization.

Development of the PRS
We developed a web-based app named ‘PoxApp’ that implemented 
a PRS for MPXV patient guidance. The source code was derived from 
an open-source PRS that we previously created for the SARS-CoV-2 
pandemic42. Because the original PRS was purely survey-based, exten-
sive development was necessary to integrate a mobile version of the 
MPXV-CNN. Survey questions and logical expression were derived 
from WHO case definitions for suspected and probable MPXV cases,11 
and we added an AI-assisted case definition based on the MPXV-CNN 
classification. Because many MPXV patients developed lesions in the 
anogenital region, privacy concerns might be a major issue for users 
when uploading images to the PRS. To increase user acceptance, we, 
therefore, made design decisions that allowed anonymous usage of 
the PRS. The PRS had the following components (Fig. 5).

Integrated development environment. We developed a web-based 
integrated development environment (IDE) to create and update 
PoxApp’s survey, the MPXV-CNN and logical expressions for MPXV 
infection risk estimation and personalized recommendations (Fig. 5a). 
We developed a module for picture-taking that could be integrated into 
the survey. Using the IDE’s script language, we translated clinical expert 
knowledge to logical expressions to estimate the risk of an MPXV infec-
tion from survey answers and the MPXV-CNN classification. We created 
personalized recommendations according to the estimated risk of 
infection. Using an application programming interface, the survey, 
MPXV-CNN, logical expressions and personalized recommendations 
were sent to web-based apps.

Web-based app. We developed a web-based app named PoxApp for end 
users to answer survey questions, take photos of their skin lesion(s) and 
get personalized recommendations (Fig. 5b). PoxApp could be used from 
web-enabled devices such as smartphones, tablets or personal computers. 
A built-in engine used the computing power of the user device to execute 
logical expression and the MPXV-CNN. This resulted in two key advantages 
as follows: (1) because the user data was analyzed locally on the user device, 
there was no need to send survey answers and images to external servers  
resulting in maximum data privacy; and (2) the system was scalable  
to a high number of users at a relatively low cost because no expensive  
servers with high computational power were necessary. We aimed to 
release PoxApp in the United States and Germany. For this reason, we 
translated PoxApp’s user interface to English and German and adapted 
the Terms of Use and Privacy Policies to the US and European jurisdictions.

Data donation service. We developed a data donation service, so users 
of PoxApp could volunteer to donate their answers and skin lesion 
images (Fig. 5c). The data donation service removed personal identifi-
ers such as an IP address and forwarded the anonymized information to 
a database server. The donated data could potentially be used to gene-
rate next-generation MPXV-CNNs with higher performance (Fig. 5d).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
This study used publicly available data from publications of the scientific 
literature, dermatological repositories, news articles and social media.
A bibliography of sources with MPXV skin lesion images was provided 
as Supplementary Note 1.
Dermatological repositories with non-MPXV images can be accessed 
using the following addresses:
Danderm: danderm-pdv.is.kkh.dk; DermIS: dermis.net; HDA: hellenic-
dermatlas.com; DermNet: dermnet.com/ DermNet NZ: dermnetnz.org
A list of URLs to cleaned non-MPXV skin disease images of Danderm, 
DermIS, HDA, was provided as Supplementary Note 2.
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The images and metadata of datasets can be obtained from the  
following addresses:
DermNet: https://www.kaggle.com/datasets/shubhamgoel27/dermnet
PAD-UFES-20: data.mendeley.com/datasets/zr7vgbcyr2/1
Fitzpatrick 17k: github.com/mattgroh/fitzpatrick17k
Social media references are available upon request.
MPXV images of the prospective cohort from the Stanford University 
Medical Center and the Esteva dataset are nonpublic and cannot be 
shared.

Code availability
The deep-learning framework (FastAI v2) used in this study is available 
at https://www.fast.ai/. The pretrained ResNet34 architecture used 
for the MPXV-CNN in this work is publicly available within the FastAI 
framework. The SHAP library used for explainability in this study is 
available at https://github.com/slundberg/shap. The code of PoxApp is 
available at https://github.com/PoxApp/PoxApp. The code for training 
the MPXV-CNN is available at https://github.com/PoxApp/Model. The 
following packages were used which can be installed with the python 
package installer (pip): pytorch 1.12.0, fastai 2.7.7,scikit-image 0.19.3, 
python 3.7.13, torchvision 0.13.0, cudatoolkit 11.6.0, matplotlib 3.5.2. 
We used dupeGuru 4.31 to identify duplicate images which is available 
at https://dupeguru.voltaicideas.net/.
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Extended Data Fig. 1 | Subgroup analysis of the sensitivity in the testing cohort. The observed sensitivity was high in the prospective cohort (0.89) with patients 
from the Stanford University Medical Center and in other MPXV images (0.92). MPXV, mpox virus; n, Number of available images per testing cohort.
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Extended Data Fig. 2 | False Positive Rates in 7 non-MPXV image repositories and datasets of the testing cohort. n, Number of available images per image 
repository.
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Extended Data Fig. 3 | True Positive Rates by duration of presence of the MPXV skin lesion in the testing cohort. n, Number of available images per group.
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Extended Data Fig. 4 | True Positive Rates by number of visible MPXV skin lesions N in the testing cohort. n, Number of available images per group; N, Number of 
visible MPXV skin lesions in the image.
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Extended Data Fig. 5 | Specificity for classifying MPXV skin lesions versus acute and chronic non-MPXV skin diseases. n, Number of available images per group.
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Extended Data Fig. 6 | Top 30 False Positive Rates of acute diagnoses in the testing cohort with at least 50 available images. The full list of diagnoses and False 
Positive Rates can be found in Supplementary Tables 1–11. n, Number of available images per diagnosis.
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Extended Data Fig. 7 | Top 30 False Positive Rates of chronic diagnoses in the testing cohort with at least 50 available images. The full list of diagnoses and False 
Positive Rates can be found in Supplementary Tables 1–11. n, Number of available images per diagnosis.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02225-7

Extended Data Fig. 8 | True Positive Rates by body region in the testing cohort. n, Number of available images per body region.
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Extended Data Fig. 9 | True Positive Rates by skin tone (Fitzpatrick Type) in the testing cohort. n, Number of available images per group.
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Extended Data Fig. 10 | False Positive Rates by skin tone (Fitzpatrick Type) of non-MPXV images of the Fitzpatrick 17k dataset. The highest False Positive Rates 
could be observed in skin tone Fitzpatrick Types V and VI. n, Number of available images per group.
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