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SYMMETRY AND MONOTONICITY RESULTS FOR SOLUTIONS OF

VECTORIAL p-STOKES SYSTEMS

RAFAEL LÓPEZ-SORIANO, LUIGI MONTORO, BERARDINO SCIUNZI

ABSTRACT. In this paper we shall study qualitative properties of a p-Stokes type
system, namely

−∆pu = −div(|Du|p−2
Du) = f(x,u) in Ω,

where ∆p is the p-Laplacian vectorial operator. More precisely, under suitable as-
sumptions on the domain Ω and the function f , it is deduced that system solutions
are symmetric and monotone. Our main results are derived from a vectorial ver-
sion of the weak and strong comparison principles, which enable to proceed with
the moving-planes technique for systems. As far as we know, these are the first
qualitative kind results involving vectorial operators.

1. INTRODUCTION

Let Ω be a bounded smooth domain in R
n with n ≥ 2. Along this work, we shall

consider a vector field u : Ω → R
N , N ≥ 1, namely u = (u1, . . . , uN ), that is a

weak C1(Ω) solution to the p-Laplace system

(p-S)

{

−∆pu = f(x,u) in Ω

u = 0 on ∂Ω,

where the vectorial operator −∆pu is defined, for smooth functions, as

(1.1) −∆pu = −div(|Du|p−2Du)

with p > 1. The vectorial function f : Ω×R
N → R

N will fulfill a set of assumptions
(hp∗) described in Section 2.

Systems involving the p-Laplacian operator were firstly addressed by J.-L. Lions
in contributions from the sixties [11, 12]. They were introduced as a generaliza-
tion of the classical Navier-Stokes system. Actually, this kind of vectorial operators
arises in the study of non-Newtonian fluids.

In the spacial case N = n, if one replaces Du by Du in the operator (1.1), where

Du = Du+DTu,

then (p-S) models the stationary behavior of some fluids without kinematic pres-
sure. In that case, the symmetric p-Laplacian represents the stress tensor, u is the
velocity of the fluid and f is the external body force. We refer to the reader to the
monograph [4] for precise details, which includes a complete discussion of power-
law models. The evolutionary analogue problem has been analyzed in [3, 15, 16],
which studies the motion of the fluid. Let us emphasize that the shear thinning
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fluids are the best modeled by a constitutive law, which corresponds to a shear
exponent p ∈ (1, 2].

Another operator typically considered in literature is the so-called modified p-
Laplacian, namely div(|Du + µ|p−2Du) with µ > 0. In that case the operator is
neither degenerate nor singular. For that problem the existence of solutions and
high regularity results is quite known, see [1, 2, 6] for more details.

In this work, we will consider the operator (1.1) arising in the phenomenon de-
scribed above. We shall restrict ourselves to the case of positive solutions to (p-S),
namely u > 0 in Ω, meaning that uℓ > 0 in Ω for all ℓ = 1, . . . , N . In fact, as a
first step in our analysis, we derive a strong maximum principle for p-Stokes type
systems under quite general hypotheses on f . This result implies that each non-
negative solution is indeed strictly positive.

The regularity of solutions to p-Laplacian systems has been carried out in [13].

In particular, the authors prove that a solution of (p-S) is C1,α
loc (Ω) for every p > 1. In

[14], the authors obtain pointwise estimates in terms of Riesz and Wolff potentials,
which allows one to deduce sharp regularity results for solutions. We also refer the
reader to [17] for a survey on the regularity for the p-Laplacian and other general
operators. Second-order estimates are provided by Cianchi and Maz’ya in [5] for
the Dirichlet and Neumann boundary problems. In particular, they obtain that

|Du|p−2Du ∈ W 1,2
loc (Ω) under very general hypotheses on f and p. Such a natural

condition will be supposed in our main results.

The goal of this paper is to obtain some qualitative properties which allows us
to describe the solutions of the p-Stokes system. More precisely, we will prove
monotonicity and symmetry for (p-S) by assuming some conditions on Ω and f . In
order to do it, we will use the so-called moving-planes procedure, which, to our
knowledge, has not yet been applied to vectorial case.

Typically, the method relies on a combination of a weak and a strong comparison
principles. The scalar case, i.e. (p-S) with N = 1, has been extensively developed,
starting from the pioneer works [7, 8] for 1 < p < 2. Monotonicity and symmetry
results for problems involving the p-Laplacian operator were extended in [9], where
the versions of the weak and the strong comparison principles were generalized
taking into account the set of the critical points of the solution.

The global nature of the operator ∆pu presents a delicate issue in order to ap-
ply the method in a standard way. In fact, as far as we know, it was unknown
maximum principles for systems like (p-S), and therefore neither comparison prin-
ciples. In the case that the vectorial function f is strictly increasing with respect
to x, we are able to circumvent these difficulties and present a series of maximum
and comparison principles. This assumption on f enables to separate strictly sub
and supersolutions, see Theorem 2.5 for more information. We point out that the
approached followed in the work in the case that 1 < p ≤ 2.

The critical set Zu will play a crucial role to prove the underlying comparison
principles. More precisely, this set is formed by the points where the derivatives of
the solution u vanish, i.e.,

(1.2) Zu := {x ∈ Ω : Du = 0}.
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Along this work, we show that it is a zero-measure set and Ω \ Zu is connected, see
Propositions 3.2 and 3.3.

Now, we can state our main theorem:

Theorem 1.1. Let Ω be a bounded smooth domain of Rn, n ≥ 2, convex with respect to the
xn-direction and symmetric with respect to T0, where

(1.3) T0 = {x ∈ Ω : xn = 0}.

Let u be a C1(Ω) weak solution to (p-S) with 1 < p ≤ 2 such that

|Du|p−2Du ∈ W 1,2
loc (Ω),

f verifies (hp∗),

(1.4) f(x1, . . . , xn,u) < f(x1, . . . , yn,u) where xn < yn < 0,

and

(1.5) f(x1, . . . , xn−1,−xn,u) = f(x1, . . . , xn−1, xn,u).

Then u is symmetric with respect to T0 and non-decreasing with respect to the xn-direction
in Ω0 = {x ∈ Ω : xn < 0}. Moreover,

(1.6) ∂xnu ≥ 0 in Ω0.

Let us also analyze the particular case of a p-Stokes system considered in a pipe-
type domain P. We define a pipe-shaped domain as

P = (−1, 1) × P⊥,

where the section of the tube P⊥ is a subdomain of Rn−1. It will be also assumed
that P⊥ satisfies

(P∗)
(i) P⊥ is convex with respect to xn-direction;
(ii) P⊥ is symmetric with respect to the hyperplane T0, defined in (1.3).

We shall distinguish between the boundaries of P as

∂P = P⊥
−1 ∪ P⊥

1 ∪ ∂wP,

where the start and end edges are P⊥
i = {i} × P⊥ with i = −1, 1 and the tube wall

is ∂wP = (−1, 1) × ∂P⊥, see Figure below. Next, let us present a second system
defined in a pipe domain with Dirichlet boundary condition on the tube walls

(p-S2)

{

−∆pu = f(x,u) in P

u = 0 on ∂wP.
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P⊥
−1 P⊥

1

T0

∂wP

x1

xn

Figure: P is a symmetric pipe-shaped domain with faces P⊥
i

The following result states that the monotonicity and symmetry for solutions of
(p-S2) are in fact inherited from its behavior on the faces P⊥

i .

Theorem 1.2. Let P be a bounded pipe-shaped domain of Rn, n ≥ 2 satisfying (P∗). Let

u be a C1(Ω) weak solution to (p-S2) with 1 < p ≤ 2 such that |Du|p−2Du ∈ W 1,2
loc (Ω),

f verifies (hp∗), (1.4) and (1.5). Suppose that

(1.7) ∂xnu ≥ 0 in P⊥
i ∩ P0 and u(i, x2, · · · , xn−1, xn) = u(i, x2, · · · , xn−1,−xn)

for i = −1, 1 and P0 = {x ∈ P : xn < 0}. Then u is symmetric with respect to T0 and
non-decreasing with respect to the xn-direction in P0. Moreover,

∂xnu ≥ 0 in P0.

The paper is organized as follows. In Section 2 we set the notation, prove some
preliminary results, including a Hopf’s type lemma and strong maximum princi-
ple, which allows us to derive the underlying weak and strong comparison princi-
ples. The proofs of our main theorems are completed in Section 3.

2. PRELIMINARIES

2.1. Notation. Generic fixed numerical constants will be denoted by C (with sub-
script in some case) and will be allowed to vary within a single line or formula.
Moreover f+ will stand for the positive a part of a function, i.e. f+ = max{f, 0}.
We also denote |A| the Lebesgue measure of the set A.
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We will use the bold style to stress the vectorial nature of different quantities.
For instance, a N -vectorial function w defined in Ω will be written as

w(x) =
(

w1(x), . . . , wN (x)
)

,

where wℓ is a scalar functions defined in Ω for ℓ = 1, . . . , N .

We say that a vector field u solves weakly (p-S) if and only if u ∈ W 1,p
0 (Ω) and

(2.1)

ˆ

Ω
|Du|p−2Du : Dϕ dx =

ˆ

Ω
f(x,u) ·ϕ dx, ∀ϕ ∈ W 1,p

0 (Ω).

Here

Du =







∇u1

...
∇uN






,

where

∇uℓ =

(

∂uℓ

∂x1
, . . . ,

∂uℓ

∂xn

)

for ℓ = 1, . . . , N,

and

|Du| =

√

√

√

√

N
∑

ℓ=1

n
∑

j=1

(

∂uℓ

∂xj

)2

.

Sometimes it will be convenient to use the notation uℓj =
∂uℓ

∂xj
.

We point out that along this paper the symbol : stands for the scalar product of
the matrices rows, namely

M : N =

q
∑

i=1

Mi · N i =

q
∑

i=1

r
∑

j=1

Mi
jN

i
j ,

where M,N are q × r real matrices, whereas · denotes the scalar product of two
real vectors. In the following we will denote the space of the q× r matrices as Rq×r

with q, r ∈ N. Observe that (2.1) can be rewritten as

N
∑

ℓ=1

ˆ

Ω
|Du|p−2∇uℓ · ∇ϕℓ dx =

N
∑

ℓ=1

ˆ

Ω
f ℓ(x,u)ϕℓ dx, ∀ϕ ∈ W 1,p

0 (Ω).

In order to deduce qualitative properties of the solutions to (p-S), we will exploit

comparison principles. In this sense, we say that two vector fields u,v ∈ C1(Ω)
satisfy weakly the inequality

(2.2) −∆pu− f(x,u) ≤ −∆pv − f(x,v) in Ω,

if and only if
ˆ

Ω
|Du|p−2Du : Dϕ dx−

ˆ

Ω
f(x,u)·ϕ dx ≤

ˆ

Ω
|Dv|p−2Dv : Dϕ dx−

ˆ

Ω
f(x,v)·ϕ dx,

for every ϕ ∈ W 1,p
0 (Ω) such that ϕ ≥ 0 a.e. in Ω.

During this work the following hypotheses on f will be assumed:
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(hp∗)
(i) f(x, ·) is a locally Lipschitz continuous vector field, uniformly with re-

spect to x, that is, each component ℓ ∈ {1, . . . , N}

f ℓ(x, t1, . . . , tN ) : Ω× R
N → R

is a Lipschitz function with respect variable to tj namely, for every Ω′ ⊆
Ω and for every M > 0, there is a positive constant Lℓ = Lℓ(M,Ω′) such
that for every x ∈ Ω′ and every tj , sj ∈ [0,M ] it holds:

|f ℓ(x, t1, . . . , tj , . . . , tN )− f ℓ(x, t1, . . . , sj , . . . , tN )| ≤ Lℓ|tj − sj|.

(ii) f is a positive vector field, namely

f ℓ(x, t1, . . . , tN ) > 0

for all x ∈ Ω and for every tj > 0.
(iii) f(x, ·) is not decreasing for a.e. x ∈ Ω. More precisely, if tj ≤ sj , then

f ℓ(x, t1, . . . , tj , . . . , tN ) ≤ f ℓ(x, t1, . . . , sj , . . . , tN ).

Now, let us state a useful inequality (see for example [7]). For given η, η′ ∈ R
q×r,

there exists a positive constant Cp = Cp(p) such that

(2.3) (|η|p−2η − |η′|p−2η′) : (η − η′) ≥ Cp(|η|+ |η′|)p−2|η − η′|2.

The proof follows directly by identifying the matrix space Rq×r with the vectorial
space R

qr.

2.2. Comparison principles. Before proving the comparison principles, let us start
by presenting the following version of Hopf’s type lemma.

Theorem 2.1 (Hopf’s Lemma). Assume that Ω is a domain in R
n. Let y ∈ ∂Ω and

u ∈ C1(Ω) ∩ C1(y) a non-negative weak solution to

(2.4) − div(|Du|p−2Du) + kuq = h(x,u) in Ω,

where uq =
(

(u1)q, · · · , (uN )q
)

, k ≥ 0, q ≥ p−1 and h : Ω×R
N → R

N with hℓ(x,u) ≥

0 in Ω × R
N for any ℓ ∈ {1, . . . , N}. Moreover, suppose that uℓ > 0 in Ω and that

uℓ(y) = 0. If Ω satisfies an interior sphere condition at y, then

(2.5) ∂νu
ℓ(y) < 0,

where ν is the outward normal vector at y.

Proof. Using the interior sphere condition there exists an open ball Br := Br(x0) ⊂
Ω with y ∈ ∂Ω ∩ ∂Br. As customary in the case of a single equation, also in the
nonlinear vectorial case, we must define a suitable comparison function v. Let us
define the vector v : Ω ⊂ R

n → R
N

v = (0, . . . , vℓ, . . . , 0),

where vℓ = vℓ(r), r = |x − x0| is the radial solution given in [18][Lemma 4.2.3]. In
particular, in our context vℓ is a solution to

{

− div(|∇vℓ|p−2∇vℓ) + kℓ(v
ℓ)q = 0, in Ar := Br \Br/2

vℓ = 0 on ∂Br vℓ = mℓ on ∂B r
2

,
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where kℓ,mℓ are positive constants and q ≥ p − 1. Moreover by [18][Lemma 4.2.3]
we have deduce that |∇vℓ| > 0 in Ar and in particular

∂νv
ℓ < 0 on ∂Br,

where ν is the exterior unit normal to Br. By hypothesis we know that uℓ > 0 in
Ar ⊂ Ω. Let mℓ := inf{uℓ(x) : x ∈ B r

2

} and kℓ ≥ k. Using (2.4) we infer that

(2.6) − div(|Dv|p−2Dv) + kℓv
q ≤ −div(|Du|p−2Du) + kuq,

in Ar, with vq = (0, · · · , (vℓ)q, · · · , 0) and

(2.7) vℓ = 0 on ∂Br vℓ = mℓ on ∂B r
2

.

Next, define the vectorial function

(v − u)+ =
(

0, . . . , (vℓ − uℓ)+, . . . , 0
)

.

Using (2.7) we have that ϕ := χAr(v − u)+ ∈ W 1,p
0 (Ar,R

N ) is a suitable test
function for (2.6). Integrating the previous expression, we obtain the inequality
ˆ

Ar

|Dv|p−2Dv : Dϕdx+kℓ

ˆ

Ar

vq ·ϕ dx ≤

ˆ

Ar

|Du|p−2Du : Dϕ dx+k

ˆ

Ar

uq ·ϕ dx

and then
ˆ

Ar

(|Dv|p−2Dv − |Du|p−2Du : D(v − u)+) dx ≤ k

ˆ

Ar

(uq − vq)(v − u)+ dx ≤ 0.

Using (2.3) we deduce that
ˆ

Ar

(|Dv|+ |Du|)p−2|D(v − u)+|2 dx ≤ 0.

Then v ≤ u in Ar . In particular, uℓ ≥ vℓ in Ar and uℓ(y) − vℓ(y) = 0. Hence
∂ν(u

ℓ − vℓ)(y) ≤ 0, namely

∂νu
ℓ(y) ≤ ∂νv

ℓ(y) < 0.

�

Let us point out that previous lemma applies on each component regardless of
the rest, according to the boundary conditions. Obviously, in case of the problem
(p-S), all the components have a boundary condition prescribed, so the result ap-
plies for u. As an immediate consequence of the Hopf’s lemma, one can deduce a
strong maximum principle.

Theorem 2.2 (Strong maximum principle). Suppose that Ω is a connected domain in
R
n. Let u be a C1(Ω) non-negative weak solution to (2.4). Then for all ℓ ∈ {1, . . . , N}

either uℓ ≡ 0 in Ω or uℓ > 0 in Ω.

Proof. Consider the set Oℓ = {x ∈ Ω : uℓ(x) = 0}. Since uℓ is continuous, Oℓ is a
closed set. Suppose that uℓ 6≡ 0 and Oℓ 6= ∅. Let p ∈ Ω \ Oℓ such that dist(p,Oℓ) <
dist(p, ∂Ω). Define the largest ball Br(p) contained in Oℓ. Therefore there exists a
point q ∈ ∂Br(p) ∩ Oℓ. Therefore, since uℓ(q) = 0, we are in position to apply the
Theorem 2.1, in order to obtain that ∂νu

ℓ(q) < 0. This is a contradiction with the
fact that q is a minimum of uℓ and u is continuously differentiable at y. �
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We are in position now to state the comparison principle, which are the basis
of the proof of the main theorems. However, let us first introduce some notation.
Denote a generic point x ∈ R

n as x = (x′, xn) with x′ = (x1, . . . , xn−1). Moreover,
let us define the following sets

Ix′ :=
{

Ω ∩ {(x′, s), s ∈ R}
}

and
Ω′ :=

{

x′ ∈ R
n−1 : Ix′ 6= ∅

}

.

Exploiting the fundamental theorem of calculus on the variable xn, we prove
a weak comparison principle for solutions of (p-S) in small neighborhoods of the
xn-foliations of the domain in case that p ≤ 2.

Theorem 2.3 (Weak Comparison Principle). Let u,v ∈ C1(Ω) be weak sub-supersolutions
to

(2.8) −∆pu ≤ f(x,u) and −∆pv ≥ f(x,v) in Ω̃,

where Ω̃ ⊆ Ω, f satisfies (hp∗) and 1 < p ≤ 2. Assume that u ≤ v on ∂Ω̃ and for x′ ∈ Ω′

and for all ℓ = 1, . . . , N

supp(uℓ − vℓ)+ ∩ Ix′ ⊆ Zε
x′ ∪ Lθ

x′ ,

where Zε
x′ , Lθ

x′ are subsets of Ix′ such that Zε
x′ ∩ Lθ

x′ = ∅,
⋃

x′∈Ω′

Zε
x′ ∪ Lθ

x′ ⊆ Ω̃

and verifying

(i) |Du|+ |Dv| ≤ ε in Zε
x′ ;

(ii) the R-Lebesgue measure |Lθ
x′ | ≤ θ.

Then there exist positive constants

ε̄ = ε̄(p,N,Cf ,Ω, ‖Du‖L∞(Ω), ‖Dv‖L∞(Ω))

and
θ̄ = θ̄(p,N,Cf ,Ω, ‖Du‖L∞(Ω), ‖Dv‖L∞(Ω)),

such that for 0 < ε ≤ ε̄ and 0 < θ ≤ θ̄ it follows that

u ≤ v in Ω̃.

Proof. First, let us introduce the vectorial function

(2.9) (u − v)+ :=
(

(u1 − v1)+, . . . , (uℓ − vℓ)+, . . . , (uN − vN )
)

.

Since for all ℓ ∈ {1, . . . , N} we have that uℓ ≤ vℓ on ∂Ω′, it turns out that (2.9) is
a good test function for equations (2.8). If we subtract them, using (2.3), we obtain

Cp

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx

≤

ˆ

Ω̃
(|Du|p−2Du− |Dv|p−2Dv : D(u − v)+) dx

≤

ˆ

Ω̃
(f(x,u)− f(x,v)) · (u − v)+ dx.(2.10)
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The right hand side term of (2.10) can be arranged as follows

ˆ

Ω̃
(f(x,u)− f(x,v)) · (u − v)+ dx =

ˆ

Ω̃

N
∑

ℓ=1

[

f ℓ(x, u1, . . . , uN )− f ℓ(x, v1, . . . , vN )
]

(uℓ − vℓ)+ dx

=

ˆ

Ω̃

N
∑

ℓ=1

[

f ℓ(x, u1, u2, . . . , uN )− f ℓ(x, v1, u2 . . . , uN ) + f ℓ(x, v1, u2 . . . , uN )

−f ℓ(x, v1, . . . , vN )
]

(uℓ − vℓ)+ dx(2.11)

=

ˆ

Ω̃

N
∑

ℓ=1

[

f ℓ(x, u1, u2, . . . , uN )− f ℓ(x, v1, u2 . . . , uN ) + f ℓ(x, v1, u2, . . . , uN )

−f ℓ(x, v1, v2, . . . , uN ) + · · ·+ f ℓ(x, v1, v2, . . . , uℓ, . . . , uN )

−f ℓ(x, v1, v2, . . . , vℓ, . . . , uN )

...

+ . . . + f ℓ(x, v1, v2, . . . , uN )− f ℓ(x, v1, v2, . . . , vN )
]

(uℓ − vℓ)+ dx.

Now, using the fact that f is a Lipschitz function with respect to the variable tj , see
(i) of (hp∗), by (2.11) we have that

ˆ

Ω̃
(f(x,u)− f(x,v)) · (u − v)+ dx

≤

ˆ

Ω̃

N
∑

ℓ=1

[

f ℓ(x, u1, u2, . . . , uN )− f ℓ(x, v1, u2 . . . , uN )

(u1 − v1)+
(u1 − v1)+(uℓ − vℓ)+

+
f ℓ(x, v1, u2, . . . , uN )− f ℓ(x, v1, v2, . . . , uN )

(u2 − v2)+
(u2 − v2)+(uℓ − vℓ)+

...(2.12)

+
f ℓ(x, v1, v2, . . . , uℓ, . . . , uN )− f ℓ(x, v1, v2, . . . , vℓ, . . . , uN )

(uℓ − vℓ)+
[(uℓ − vℓ)+]2

...

+
f ℓ(x, v1, v2, . . . , uN )− f ℓ(x, v1, v2, . . . , vN )

(uN − vN )+
(uN − vN )+(uℓ − vℓ)+

]

dx

≤ Cf

ˆ

Ω̃

N
∑

ℓ=1

N
∑

j=1

(uj − vj)+(uℓ − vℓ)+ dx ≤ NCf

ˆ

Ω̃

N
∑

ℓ=1

[(uℓ − vℓ)+]2dx,
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where in the last inequality we exploit Young’s inequality and whereCf = max
ℓ

{Lℓ},

see (hp∗), denotes the Lipschitz constant. So, by (2.10) and (2.12) we get that

Cp

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx ≤ NCf

ˆ

Ω̃

N
∑

ℓ=1

[(uℓ − vℓ)+]2dx

= NCf

ˆ

Ω′

dx′
ˆ

Ix′

N
∑

ℓ=1

[(uℓ − vℓ)+]2dxn,(2.13)

by Fubini’s theorem. Moreover, since for all x′ ∈ Ω′ and for all ℓ, the function
(uℓ − vℓ)+ = 0 on ∂Ix′ , there exists a ∈ R such that

∣

∣

∣(uℓ − vℓ)+(x′, t)
∣

∣

∣ ≤

ˆ t

a
|∂s(u

ℓ − vℓ)+|(x′, s)ds(2.14)

≤

ˆ

Ix′

|∂s(u
ℓ − vℓ)+|(x′, s)ds.

Introducing (2.14) in (2.13), we get

(2.15)

Cp

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx

≤ NCf

ˆ

Ω′

dx′
ˆ

Ix′

N
∑

ℓ=1

|(uℓ − vℓ)+|2dxn

≤ NCf

ˆ

Ω′

dx′
ˆ

Ix′

N
∑

ℓ=1

(

ˆ

Ix′

|∂xn(u
ℓ − vℓ)+|dxn

)2

dxn

≤ NCf

ˆ

Ω′

dx′
ˆ

Ix′

N
∑

ℓ=1

(

ˆ

Zε
x′
∪Lθ

x′

|∇(uℓ − vℓ)+|dxn

)2

dxn

≤ C

ˆ

Ω′

dx′
N
∑

ℓ=1

(

|Zε
x′ |

ˆ

Zε
x′

|∇(uℓ − vℓ)+|2dxn + |Lθ
x′ |

ˆ

Lθ
x′

|∇(uℓ − vℓ)+|2dxn

)

,

with C = C(N,Cf ,Ω) a positive constant. In the last inequality we used that fact
that for all a, b ≥ 0 it follows (a + b)2 ≤ 2(a2 + b2) and Hölder inequality. By
Fubini’s theorem, from (2.15) we finally deduce (recall that by hypothesis |Lθ

x′ | ≤ θ,
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for x′ ∈ Ω′)

Cp

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx

≤ C

N
∑

ℓ=1

ˆ

Ω′×Zε
x′

|∇(uℓ − vℓ)+|2dx

+C|Lθ
x′|

N
∑

ℓ=1

ˆ

Ω′×Lθ
x′

|∇(uℓ − vℓ)+|2dx

≤ C sup
Ω′×Zε

x′

(|Du|+ |Dv|)2−p

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx

+C|Lθ
x′| sup

Ω
(|Du|+ |Dv|)2−p

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx

≤ C(ε2−p + θ)

ˆ

Ω̃
(|Du|+ |Dv|)p−2|D(u − v)+|2dx,

since p ≤ 2 and therefore
(2.16)
ˆ

Ω̃
(|Du|+|Dv|)p−2|D(u − v)+|2dx ≤ C(ε2−p+θ)

ˆ

Ω̃
(|Du|+|Dv|)p−2|D(u − v)+|2dx,

where C = C(p,N,Cf ,Ω, ‖Du‖L∞(Ω), ‖Dv‖L∞(Ω)) is a positive constant. Then

there exist ε̄, θ̄ depending on p,N,Cf ,Ω, ‖Du‖L∞(Ω), ‖Dv‖L∞(Ω), such that for all

0 ≤ ε ≤ ε̄ and 0 ≤ θ ≤ θ̄ it is satisfied

C(ε2−p + θ) <
1

2
.

Putting the last inequality in (2.16), we obtain the thesis. �

Next, we deal with a first version of the strong comparison principle, under the
assumption that compared functions are strictly separated on the boundary of the
domain.

Theorem 2.4 (Strong Comparison Principle 1). Let u, v ∈ C1(Ω) satisfying (2.2) and
let us assume that either u or v is a weak solution to the problem (p-S). Suppose that f
satisfies (hp∗) and that

(2.17) u ≤ v in Ω,

namely uℓ ≤ vℓ in Ω for ℓ = 1, . . . , N .
Then, if u < v on ∂Ω, it holds that

u < v in Ω.

Proof. Without loss of generality, suppose that u solves (p-S). Now, consider the set
where uℓ and vℓ may coincide, namely

Cℓ
u,v = {x ∈ Ω |uℓ(x) = vℓ(x)}.

We want to prove that Cℓ
u,v = ∅ for any ℓ = 1, . . . , N . Assume by contradiction

that there exists some ℓ ∈ {1, . . . , N} such that Cℓ
u,v 6= ∅. In particular, take L the

set of indexes such that Cℓ
u,v 6= ∅. By our assumptions Cℓ

u,v is a closed set and it
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lies far away from the boundary ∂Ω where u < v. This implies, in particular, that
∂Cℓ

u,v 6= ∅.
Let ε > 0 small enough and define the set

(Cℓ
u,v)

ε = {x ∈ Ω | dist(x, Cℓ
u,v) < ε}.

Since ∂(Cℓ
u,v)

ε is a compact set, then there exists τ > 0 such that uℓ + τ < vℓ

on ∂(Cℓ
u,v)

ε. Next, define the function wτ : Ω → [0,∞)N such that

wℓ
τ =

{

(uℓ − vℓ + τ)+ in (Cℓ
u,v)

ε

0 in Ω \ (Cℓ
u,v)

ε.

Observe that uℓ+τ ≥ vℓ in (Cℓ
u,v)

ε and indeed that uℓ+τ > vℓ in Cℓ
u,v = ∅. Moreover

we set wℓ
τ = 0 in Ω for ℓ /∈ L. Since uℓ + τ < vℓ on ∂(Cℓ

u,v)
ε, then we infer that

wτ ∈ W 1,p
0 (Ω). Moreover,

∇wℓ
τ =

{

∇uℓ −∇vℓ where wτ > 0

0 otherwise.

Introducing wτ as a test function in (2.1), we obtain that
(2.18)̂

Ω
|Du|p−2Du : Dwτ dx =

ˆ

Ω
f(x,u) ·wτ dx =

ˆ

⋃
ℓ∈L

(Cℓ
u,v)

ε

f(x,u) ·wτ dx.

Since f fulfills (hp∗) (in particular (iii) of (hp∗)), using the assumption (2.17) (i.e.
u ≤ v in Ω), (2.2) and that u is solution of (p-S) (namely the inequality f(x,v) ≤
−∆pv holds in Ω), we obtain
(2.19)
ˆ

⋃
ℓ∈L

(Cℓ
u,v)

ε

f(x,u) ·wτ dx ≤

ˆ

⋃
ℓ∈L

(Cℓ
u,v)

ε

f(x,v) ·wτ dx ≤

ˆ

Ω
|Dv|p−2Dv : Dwτ dx.

We point out that, to get the first inequality in (2.19) we follow the computations
in (2.11).

By (2.18) and (2.19), one has
ˆ

Ω

(

|Du|p−2Du− |Du|p−2Dv
)

: Dwτ dx(2.20)

=

ˆ

wτ>0

(

|Du|p−2Du− |Du|p−2Dv
)

: (Du−Dv) dx ≤ 0.

Applying in (2.20) the inequality (2.3), we obtain that
ˆ

wτ>0
(|Du|+ |Dv|)p−2|Du−Dv|2 dx ≤ 0.

Immediately, we have that u − v is a constant where wτ > 0. By continuity of
wτ , wℓ

τ must vanish on ∂(Cℓ
u,v)

ε for ℓ ∈ L. Then wℓ
τ = 0 in (Cℓ

u,v)
ε, namely uℓ < vℓ

in (Cℓ
u,v)

ε. This is a contradiction with the fact that (Cℓ
u,v)

ε ⊃ Cℓ
u,v 6= ∅ for ℓ ∈ L.

Therefore we get the thesis. �

Finally, we present a second version of the strong comparison principle. Instead
of a separation from the boundary, we will assume that inequality (2.2) is satisfied
strictly. This will allow us to derive a strict relation between u, v. Notice that this
condition will be provided in the main theorems by the strict monotonicity of f . In
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order to work with sufficiently regular functions, we will consider far away from
the critical value set Zu.

Theorem 2.5. (Strong Comparison Principle 2) Let C ⋐ Ω \Zu be a connected set, where
Zu is defined in (1.2). Let us suppose that u is a C1(Ω) weak solution to (p-S) and v ∈
C2(C) such that u ≤ v in C and

(2.21) −∆pu− f(x,u) < −∆pv − f(x,v) in C,

where f verifies (hp∗).
Then

u < v in C.

Proof. Let us fix x0 ∈ C and let us choose R > 0 small enough such that B4R =
B4R(x0) ⊂ C . Moreover we also have Du(x) 6= 0 in B4R.

Obviously, by the assumptions, u ≤ v on ∂B3R. For ε > 0 let us define ϕε ∈
C∞(B3R) given by

(2.22) ϕε :=

{

1 in BR

1− ε in B3R \B2R,

such that |∇ϕε|, |∆ϕε| ≤ Cε.
By standard regularity, u ∈ C2(B4R), since Du(x) 6= 0. Hence let uε := uϕε ∈

C2(B3R,R
N ). Therefore

−∆puε = − div(|D(uϕε)|
p−2D(uϕε))(2.23)

= −|Duε|
p−2∆uε − (p− 2)|Duε|

p−4



















∑N
m=1

∑n
ℓ,j=1 ∂xℓ

u1ε∂xj
umε ∂2

xixj
umε

...
∑N

m=1

∑n
ℓ,j=1 ∂xℓ

ulε∂xj
umε ∂2

xixj
umε

...
∑N

m=1

∑n
ℓ,j=1 ∂xℓ

uNε ∂xj
umε ∂2

xixj
umε



















:= P1 + P2,

with ℓ = 1, . . . , N. We have that

(2.24) ∇uℓε = ∇uℓϕε + uℓ∇ϕε.

Using Taylor formula, for ℓ = 1, . . . , N , we infer that

|∇uℓε|
2 = ϕ2

ε|∇uℓ|2 + 2ϕεu
ℓ∇uℓ · ∇ϕε +O(uℓ|∇ϕε|)(2.25)

= ϕ2
ε|∇uℓ|2 +O(ε2),

since definition (2.22). Therefore, since Du(x) 6= 0 in B4R, by (2.25) we deduce

|Duε|
p−2 =

(

N
∑

ℓ=1

|∇uℓε|
2

)

p−2

2

(2.26)

= ϕp−2
ε |Du|p−2 +

p− 2

2
ϕp−4
ε

(

N
∑

ℓ=1

|∇uℓ|2

)

p−4

2

O(ε2) +O(ε4)

= ϕp−2
ε |Du|p−2 +O(ε2).



14 RAFAEL LÓPEZ-SORIANO, LUIGI MONTORO, BERARDINO SCIUNZI

We estimate now the two terms of (2.23):

P1 := −|Duε|
p−2

∆uε = −|Duε|
p−2

















2∇u1∇ϕε +∆u1ϕε + u1∆ϕε
...

2∇uℓ∇ϕε +∆uℓϕε + uℓ∆ϕε
...

2∇uN∇ϕε +∆uNϕε + uN∆ϕε

















= −|Duε|
p−2ϕε∆u+

















O(ε)
...

O(ε)
...

O(ε)

















= −|Du|p−2ϕp−1
ε ∆u+

















O(ε)
...

O(ε)
...

O(ε)

















,

where in the last inequality we used (2.26). Using definition (2.22), we also have

∂xi
umε = ∂xi

umϕε +O(ε)

∂2
xixj

umε = ∂2
xixj

umϕε +O(ε).

Then we deduce that

(2.27)

P2 := −(p− 2)|Duε|
p−4



















∑N
m=1

∑n
i,j=1 ∂xi

u1ε∂xj
umε ∂2

xixj
umε

...
∑N

m=1

∑n
i,j=1 ∂xi

ulε∂xj
umε ∂2

xixj
umε

...
∑N

m=1

∑n
i,j=1 ∂xi

uNε ∂xj
umε ∂2

xixj
umε



















= −(p− 2)|Duε|
p−4



















∑N
m=1

∑n
i,j=1ϕ

3
ε∂xi

u1∂xj
um∂2

xixj
um +O(ε)

...
∑N

m=1

∑n
i,j=1ϕ

3
ε∂xi

ul∂xj
um∂2

xixj
um +O(ε)

...
∑N

m=1

∑n
i,j=1 ϕ

3
ε∂xi

uN∂xj
um∂2

xixj
um +O(ε)



















= −(p− 2)ϕp−4
ε |Du|p−4



















∑N
m=1

∑n
i,j=1ϕ

3
ε∂xi

u1∂xj
um∂2

xixj
um +O(ε)

...
∑N

m=1

∑n
i,j=1 ϕ

3
ε∂xi

ul∂xj
um∂2

xixj
um +O(ε)

...
∑N

m=1

∑n
i,j=1ϕ

3
ε∂xi

uN∂xj
um∂2

xixj
um +O(ε)



















.

Hence, we can conclude that

−∆puε = P1 + P2 = ϕp−1
ε (−∆pu) +O(ε).
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Then for suitable small ε

−∆puε − f(x,uε) = ϕp−1
ε f(x,u)− f(x,uε) +O(ε)(2.28)

= f(x,u)(ϕp−1
ε − 1) + f(x,u)− f(x,uε) + (−∆pu− f(x,u)) +O(ε)

< −∆pv − f(x,v) in B3R,

where the last inequality follows since (2.21) is in force and because u, v ∈ C2(B4R)
and f is a continuous vectorial function. By (2.28) and taking into account that
uε < v in ∂B3R, then we can apply Theorem 2.4 to state that uε < v in B3R. Since
uε ≡ u in BR, the conclusion follows by the arbitrarily of x0. �

Remark 2.6. In the previous result we have assumed that v ∈ C2(C). This condition is
automatically satisfied if the C is far away from the critical set Zv. As a consequence, the
conclusion is true if one considers C ⋐ Ω \ (Zu ∪ Zv). Actually, Theorem 2.5 will be used
to prove Theorems 1.1,1.2 verifying these circumstances.

3. MAIN RESULTS

This section is devoted to prove Theorems 1.1 and Theorem 1.2 by using of the
moving-planes technique, once weak and strong comparison principles have been
deduced in the previous section.

In order to do it, we will introduce some notations and assumptions that we are
going to use in the following. For a real number λ, let

(3.1) Ωλ = Ω ∩ {xn ≤ λ},

xλ = Rλ(x) := (x1, . . . , 2λ− xn),

which is the point reflected through the hyperplane

Tλ = {x ∈ R
n : xn = λ}.

Also set

(3.2) a = inf
x∈Ω

{xn},

and
uλ = u(xλ) = u(x1, . . . , xn−1, 2λ− xn).

In the following results, we shall deduce some properties concerning the critical
set Zu defined as (1.2).

First of all, we point out that by standard elliptic regularity arguments, a C1(Ω)
solution u of (p-S) with f satisfying (hp∗) is indeed smooth in Ω \Zu, see [10]. Con-
sequently, the distributional derivatives of |Du|p−2uℓj coincide with the classical
ones.

By using the Stampacchia’s Theorem, (see for instance [10, Lemma 7.7], [19, The-
orem 1.56]), indeed the generalized derivatives of |Du|p−2uℓij are zero almost every-

where in
{

uℓj = 0
}

. Moreover, in the following we shall use the following notion

of distributional derivative

uℓij =

{

uℓij in Ω \ Zu

0 in Zu.

In addition, we will adopt this convention for the gradients Duℓi .
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Next, we shall stress some properties concerning |Du|p−2D2u and |Du|p−1 un-

der the assumption |Du|p−2Du ∈ W 1,2
loc (Ω). Recall that this condition is deduced

in [5] under some general hypotheses on f and p. Although, these results appear
implicitly in the aforementioned reference, let us deduce them to apply in the rest
of the section.

Lemma 3.1. Let u ∈ C1(Ω) such that |Du|p−2Du ∈ W 1,2
loc (Ω). Then

(i) |Du|p−2D2u ∈ L2
loc(Ω) for 1 < p < 3,

(ii) |Du|p−1 ∈ W 1,2
loc (Ω).

Proof. Let us differentiate |Du|p−2uℓj with respect to xi with i, j ∈ {1, . . . , n} and

ℓ ∈ {1, . . . , N}, namely

(3.3)
∂

∂xi

(

|Du|p−2uℓj

)

= |Du|p−2uℓij + (p− 2)|Du|p−4(Du : Dui)u
ℓ
j := h(x).

Since |Du|p−2Du ∈ W 1,2
loc , then h ∈ L2

loc(Ω). By Young’s inequality, one has

|Du|2(p−2)(uℓij)
2

= h2 + (2− p)2|Du|2(p−4)(Du : Dui)
2(uℓj)

2 + 2h(2− p)|Du|p−4(Du : Dui)u
ℓ
j

≤ Cεh
2 + (1 + ε2)(2 − p)2|Du|2(p−4)(Du : Dui)

2(uℓj)
2

≤ Cεh
2 + (1 + ε2)(2 − p)2|Du|2(p−3)|Dui|

2(uℓj)
2.

(3.4)

Adding the previous expressions with respect to i = 1, . . . , n, we obtain

|Du|2(p−2)|∇uℓj |
2 =

n
∑

i=1

|Du|2(p−2)(uℓij)
2

≤ nCεh
2 + (1 + ε2)(2− p)2|Du|2(p−3)(uℓj)

2
n
∑

i=1

|Dui|
2(3.5)

≤ nCεh
2 + (1 + ε2)(2− p)2|Du|2(p−3)(uℓj)

2|D2u|2.

Now, we add (3.5) with respect to j = 1, . . . , n,

|Du|2(p−2)|D2uℓ|2 =
n
∑

j=1

|Du|2(p−2)|∇uℓj |
2

≤ n2Cεh
2 + (1 + ε2)(2− p)2|Du|2(p−3)|D2u|2|∇uℓ|2.

Putting together all the components, we arrived at

|Du|2(p−2)|D2u|2 =
N
∑

ℓ=1

|Du|2(p−2)|D2uℓ|2

≤ Nn2Cεh
2 + (1 + ε2)(2 − p)2|Du|2(p−3)|D2u|2|Du|2,

equivalent to

(1− (1 + ε2)(2− p)2)|Du|2(p−2)|D2u|2 ≤ Cεh
2,

which completes the proof of (i).
By differentiating |Du|p−1 with respect to xi, one gets
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∂

∂xi

(

|Du|p−1
)

= (p− 1)|Du|p−3(Du : Dui) ≤ (p − 1)|Du|p−2||D2u|,

which gives us to (ii) by taking into account (i). �

Due to the positivity of f , it is proved that Zu is a zero measure set and Ω \ Zu is
connected.

Proposition 3.2. Let u ∈ C1(Ω) be a weak solution to (p-S) such that |Du|p−2Du ∈

W 1,2
loc (Ω). If f is a positive function in Ω, then the critical set Zu has zero Lebesgue measure.

Proof. Consider ϕ ∈ C∞
c (Ω), then for ε > 0, then

ϕ
|Du|p−1

ε+ |Du|p−1
∈ W 1,p

0 (Ω).

Therefore, we can introduce it as a function test in (2.1) to obtain that
ˆ

Ω

|Du|p−1

ε+ |Du|p−1
ϕ · f dx =

ˆ

Ω
|Du|p−2Du : D

(

ϕ
|Du|p−1

ε+ |Du|p−1

)

dx

=

ˆ

Ω
|Du|p−2Du : Dϕ

|Du|p−1

ε+ |Du|p−1
dx(3.6)

+

ˆ

Ω
|Du|p−2εϕ

Du : D(|Du|p−1)

(ε+ |Du|p−1)2
dx.

Observe now that,
ˆ

Ω
|Du|p−2εϕ

Du : D(|Du|p−1)

(ε+ |Du|p−1)2
dx ≤

ˆ

Ω
|ϕD(|Du|p−1)| dx < C,

due to |Du|p−1 ∈ W 1,2
loc (Ω). Moreover, for ε → 0, by using the Lebesgue’s Domi-

nated Convergence Theorem in (3.6), we get
ˆ

Ω\{Du=0}
ϕ · f dx =

ˆ

Ω
|Du|p−2Du : Dϕ dx =

ˆ

Ω
ϕ · f dx.

This implies that f(x) = 0 a.e. where Du(x) = 0. Since f is a positive function in
Ω, we arrived at the desired conclusion. �

In the following result, we are able to show that Ω \ Zu is connected.

Proposition 3.3. Let u ∈ C1(Ω) be a weak solution to the system (p-S). Assume that

|Du|p−2Du ∈ W 1,2
loc (Ω) and that f is a positive function in Ω. Then the set Ω \ Zu

does not contain any connected component C such that C ⊂ Ω. Moreover if Ω is a smooth
bounded domain with connected boundary, it follows that Ω \ Zu is connected.

Proof. By contradiction, let us assume that a such component C exists, that is let C
such that

C ⊂ Ω with ∂C ⊂ Zu.

For all ε > 0, let us define Jε : R
+ ∪ {0} → R by setting

(3.7) Jε(t) =











t if t ≥ 2ε

2t− 2ε if ε ≤ t ≤ 2ε

0 if 0 ≤ t ≤ ε.
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We shall use

ϕ = (0, . . . ,Ψℓ, 0, . . . , 0)

as a test function in (p-S), with ℓ ∈ {1, . . . , N}, where

(3.8) Ψℓ =
Jε(|∇uℓ|)

|∇uℓ|
χC .

Moreover, since suppΨℓ ⊂ C we have that ϕ ∈ W 1,p
0 (C,RN ). Integrating by parts

we get
ˆ

C
|Du|p−2∇uℓ · ∇Ψℓdx =

ˆ

C
f ℓ(x, u)Ψℓdx

namely

(3.9)

ˆ

C
|Du|p−2∇uℓ · ∇

(

Jε(|∇uℓ|)

|∇uℓ|

)

dx =

ˆ

C
f ℓ(x, u)Ψℓdx

Remarkably, using the test function Ψℓ defined in (3.8), we are able to integrate
on the boundary ∂C which could be not regular. We estimate the first term on the
left-hand side of (3.9). Denoting hε(t) = Jε(t)/t, we have

∣

∣

∣

∣

ˆ

C
|Du|p−2∇uℓ · ∇

(

Jε(|∇uℓ|)

|∇uℓ|

)

dx

∣

∣

∣

∣

(3.10)

≤ C

ˆ

C
|Du|p−2

(

|∇uℓ|h′ε(|∇uℓ|)
)

||D2uℓ||dx.

We claim

(i) |Du|p−2||D2u|| ∈ L1(C);

(ii) |∇uℓ|h′ε(|∇uℓ|) → 0 a.e. in C as ε → 0 and |∇uℓ|h′ε(|∇uℓ|) ≤ C with C not
depending on ε.

Let us prove (i). Combining Hölder’s inequality and Lemma 3.1, it follows

(3.11)

ˆ

C
|Du|p−2||D2uℓ|| dx ≤ C(C)

(
ˆ

C
|Du|2(p−2)||D2uℓ||2

) 1

2

dx ≤ C

Let us prove (ii). Exploiting the definition (3.7), by straightforward calculation
we obtain

h′ε(t) =











0 if t > 2ε
2ε
t2 if ε < t < 2ε

0 if 0 ≤ t < ε,

and then we have |∇uℓ|h′ε(|∇uℓ|) → 0 a.e. for ε → 0 in C and |∇uℓ|h′ε(|∇uℓ|) ≤ 2.

Then, using dominated convergence and equation (3.10) we have
ˆ

C
|Du|p−2∇uℓ · ∇

(

Jε(|∇uℓ|)

|∇uℓ|

)

dx → 0,

as ε → 0 and therefore from (3.9) we get a contradiction since for ε → 0 we have
that

ˆ

C
f ℓ(x, u) dx > 0.
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If Ω is smooth, we can apply Theorem 2.1 to state that a neighborhood of the
boundary belongs to a component C of Ω\Zu. By what we have proved previously,

there not exist a second component C̃. Therefore, Ω \ Zu is connected as desired.
�

Finally, we have collected all the tools to apply the moving-planes technique and
complete the proof of both main theorems.

Proof of Theorem 1.1. Since u > 0 in Ω and u = 0 on ∂Ω, then u ≤ uλ on ∂Ωλ for
λ ∈ (a, 0), where Ωλ is defined in (3.1). We also have that uλ satisfies the equation

−∆puλ = f(xλ,uλ) in Ωλ.

Using Hopf’s Lemma, see Theorem 2.1 we have that uℓ, for all ℓ = 1, . . . , N , are
strictly increasing in the xn-direction, near the boundary ∂Ω. Namely, there exists
some ε > 0 such that for a < λ < a+ ε, it holds

u ≤ uλ in Ωλ,

where we have defined a in (3.2).
As a result, the set

Λ :=
{

λ ∈ R : u ≤ ut in Ωλ : a < t ≤ λ
}

is not empty. Let us now set

λ̄ = supΛ.

Next, we shall prove the following

CLAIM: λ̄ = 0. Assume the contrary, namely let us suppose that λ̄ < 0. By continu-
ity we have that

u ≤ uλ̄ in Ωλ̄.

By using (1.4), we have that in the weak sense

−∆puλ̄ = f(xλ̄,uλ̄) > f(x,uλ̄) in Ωλ̄.

Consequently, since

−∆pu− f(x,u) < −∆puλ̄ − f(x,uλ̄) in Ωλ̄.

by strong comparison principle, see Theorem 2.5, we deduce

u < uλ̄ in Ωλ̄ \ (Zu ∪ Zuλ̄
).

Next, fix a compact set K so large such that

u < uλ̄+ε in K ⋐
(

Ωλ̄ \ (Zu ∪ Zuλ̄
)
)

.

If the Lebeasgue measure |K| is sufficiently big and ε small we infer that

Ωλ̄+ε \K := Ω̃,

is such that Ω̃ ⊆ Ω,
⋃

x′∈Ω′

Zε
x′ ∪ Lθ

x′ ⊆ Ω̃
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where, eventually taking K bigger and ε smaller, the sets Zx′ , Lx′ satisfy assump-
tions (i) and (ii) of the weak comparison principle, Theorem 2.3. Moreover, let us

observe that u ≤ uλ̄+ε in ∂Ω̃. Then, by Theorem 2.3, we deduce that

u ≤ uλ̄+ε in Ωλ̄+ε \K

and hence u ≤ uλ̄+ε in Ωλ̄+ε, for all 0 < ε ≤ ε̄, with ε̄ ∈ R small. This fact

contradicts the assumption λ̄ = supΛ. Thus

λ̄ = 0.

Repeating the proof in the opposite direction, we obtain that

u ≡ u0,

namely we get the symmetry of solutions, with respect to the hyperplane T0, in
the xn-direction. Now, let us prove that the solution is monotone increasing with
respect to the xn-direction in Ω0 = {x ∈ Ω : xn < 0}. Let (x′, s1), (x

′, s2) ∈ Ω0.
Then for λ = (s1 + s2)/2 it holds u ≤ uλ in Ωλ, so

u(x′, s1) ≤ u(x′, s2).

�

Proof of Theorem 1.2. The proof follows straightforward from the given in the previ-
ous Theorem. It suffices to stress that by (1.7), one obtains that u ≤ uλ on ∂Pλ for
λ ∈ (a, 0), including the faces P⊥

i for i = −1, 1. This allows us to apply the Hopf’s
Lemma, weak comparison principle given in Theorem 2.3 and Theorem 2.5, jointly
to (1.7), in the corresponding steps. �

One can obtain the same conclusion of Theorem 1.2 introducing an integral con-
dition on the edges instead of the monotonicity of the solution on P⊥

i . Actually,
this condition allows us to obtain a weak comparison principle and, then, start the
moving-planes procedure.

Theorem 3.4. Let P be a bounded pipe type domain of Rn, n ≥ 2, satisfying (P∗). Let u
be a C1(Ω) weak solution to (p-S2) with 1 < p ≤ 2 such that |Du|p−2Du ∈ W 1,2(Ω), f
verifies (hp∗), (1.4) and (1.5). Suppose that for every λ ∈ (a, 0]

(3.12)

ˆ

P⊥
−1

∪P⊥
1

|Du|p−2∂u

∂n̂
: (u− uλ)

+dσ = 0,

where n̂ denotes the outer unit vector to the subset P⊥
i with i = −1, 1.

Proof. First, let us prove that (u− uλ)
+ is a suitable test function for (p-S2). Due to

the fact that |Du|p−2Du ∈ W 1,2(Ω), we have that −∆pu = f(x,u) a. e. in P. Then,
by using the divergence theorem, we have that

ˆ

P
|Du|p−2Du : D(u− uλ)

+dx−

ˆ

∂P
|Du|p−2∂u

∂n̂
: (u− uλ)

+dσ =

−

ˆ

P
div(|Du|p−2Du) · (u− uλ)

+dx =

ˆ

P
f(x,u) · (u− uλ)

+ dx.(3.13)

Since uλ > 0 in P and u = 0 on ∂wP, then (u− uλ)
+ ≡ 0 on ∂wP. This fact, with

(3.12) gives that the second term in the left hand side of (3.13) vanishes. Then we
obtain

ˆ

P
|Du|p−2Du : D(u− uλ)

+dx =

ˆ

P
f(x,u) · (u− uλ)

+dx.
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Therefore, (u − uλ)
+ is a proper test function for (p-S2). Following the proof of

weak comparison principle, Theorem 2.1, we are in position to establish the same
thesis. Moreover, the proof follows the one of Theorem 1.2. �
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