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1 | INTRODUCTION

In epidemiological studies, an important goal is to
analyse the causal relationship between an exposure
and an outcome. In general, epidemiological analysis
relies on observational data and may present bias
generated by confounding factors that are associated
with the outcome and the exposure and may distort the
real effect of the exposure (Herndn & Robins, 2020;
Imbens & Rubin, 2015; Pearl, 2010). According to the
availability of these variables, they are defined as
measured (VanderWeele, 2016) (i.e., all the confounders
are collected and measured) or unmeasured confounders
(Herndn & Robins, 2020; Imbens & Rubin, 2015;
Pearl, 2010). Several statistical methods have been
proposed according to the type of confounding variables:
for instance, causal mediation analysis (CMA) assumes
measured confounding, although Mendelian randomiza-
tion (MR) can deal with unmeasured confounding.
CMA is, in general, used to estimate the causal
effect of the exposure on the outcome considering the
effect of a third variable, called mediator, which occurs
in the pathway from the exposure to the outcome
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(Valeri & VanderWeele, 2013; VanderWeele, 2016;
Vanderweele & Vansteelandt, 2009) (Figure 1a). In
CMA there are three main estimates: (a) the direct
effect: effect of the exposure on the outcome indepen-
dent of the mediator; (b) the indirect effect: effect
of the exposure on the outcome that occurs through
the mediator; and (c) the total effect: effect of the
exposure on the outcome considering all previous
effects. These effects may be estimated by either the
product or the different methods proposed by Baron
and Kenny (BK) (De Stavola et al., 2015; Vanderweele
& Vansteelandt, 2009). However, to interpret these
estimates as causal, strong assumptions are requi-
red according to the confounding assumptions
(Vanderweele & Vansteelandt, 2009). When applying
CMA, all the confounding variables should be known
and measured. These assumptions are difficult to meet
(Carter et al., 2021) and may lead to biased and not
representative results.

MR analysis is extensively used in epidemiology to
analyse the effect of an exposure and an outcome (Burgess
et al., 2013; Coscia et al.,, 2022; Davies et al., 2018)
(Figure 1Db). This procedure applies either genetic variants
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FIGURE 1 Causal diagrams. (a) Causal mediation analysis (CMA) graph. (b) Mendelian randomization graph. (c) Mediation analysis
with instrumental variables (IVs) (MRinCMA as the specific case). Confounders are considered between E, M and Y, but not represented in
the directed acyclic graph (DAG). (d) Structural equation model (SEM), where directed arrows represent causal effect and bidirectional
arrows indicate a correlation between variables. Measurement variables are represented by squares and latent variables, that is, not observed
are represented by circles. Confounders are considered between E, M and Y, but not represented in the DAG.

85U8017 SUOWIWOD A0 B|edldde au Aq peusenob aJe sspoie YO ‘88N Jo SN 10} AReiq1T8ulUQ 481 UO (SUORIPUOD-PUe-SWLRIW0D A3 1M Afe.q Ul juo//Sdny) SUORIPUOD pue swie | 8 88s *[£20z/c0/2z] uo Arigi1auliuo A8 | epeuelo aa pepseAIuN Aq 6TSZZ 1deB/Z00T 0T/10p/w00 A8 |imAeIq Ul |UO//:SARY WOy papeojuMod ‘€ ‘€202 ‘Z.22860T



COSCIA ET AL.

289

WILEY

or a genetic score (Burgess & Thompson, 2013) as the
instrumental variable (IV), leading to unbiased estimates
of the causal effect, even when there is unmeasured
confounding bias (Burgess & Thompson, 2013; Burgess
et al., 2017, 2020; Coscia et al., 2022; Davies et al., 2018).
Three core MR assumptions are needed for the
estimation of the causal effect: (i) the IV is associated
with the exposure, (ii) the IV is associated with the
outcome only through the exposure and (iii) the
instrument is not associated with any confounder
(Burgess & Thompson, 2013; Coscia et al., 2022).
Assuming individual level data and one-sample MR
(Burgess et al., 2020), a common approach used in MR
is the two-stage least squares (2SLS). The 2SLS is a
regression-based method that uses the predicted values
of the exposure to estimate the causal effect on the
outcome (Burgess et al., 2017; Uddin et al., 2015).
There are some extensions of the 2SLS depending on the
type of the variables as the two-stage residual inclusion
(2SRI), which is a good alternative for noncontinuous
variables (Palmer et al., 2017; Terza et al., 2008).
Owing to the potential limitation of having an
unmeasured confounding bias in CMA, some authors
already suggested that using IVs in the CMA context
could be a practical alternative to relax the CMA
assumptions and to obtain unbiased results (Carter
et al, 2021). For instance, Burgess et al. (2015).
(Figure 1c) proposed an extension of the 2SLS
regression-based method adding a third stage (i.e.,
3SLS) when regressing continuous outcome variables,
and they compared the performance of this method to
structural equation models (SEM) (Figure 1d) when
analysing the causality between body mass index (BMI),
C-reactive protein and uric acid. Also, in the context of
continuous outcomes, Frolich and Huber (2017) applied
a four-stage regression-based extension (i.e., 4SLS and
4SRI) to analyse the effect of education and income on
the social functioning using school leaving and windfall
income as IVs. Although Burgess et al. (2015) considered
the exposure, mediator and outcome as continuous
variables, Frolich and Huber (2017) included the
exposure as binary, maintaining the mediator and
outcome as continuous. In the same context, North
et al. (2019) used the same causal diagram as Burgess
et al. (2015) to estimate the interaction terms between
the exposure and the mediator considering two different
instruments, one per each exposure and mediator.
Sanderson (2021) proposed an approach based on
multivariable MR to assess the directionality of the
exposure when there is another variable related to the
IV; Relton & Davey Smith (2012) considered a two-
sample MR in an epigenetic context. Finally, Carter
et al. (2021). made a comprehensive summary of the

current methods to use MR in mediation analysis
and they proposed an alternative combining both
approaches.

Up to now, only Carter et al. (2021). suggested a
methodological alternative for categorical outcomes,
pointing to the lack of development of methods when
modelling this type of variables, which are those
commonly used in epidemiological studies. For that
reason, in this paper, we proposed to extend Burgess
et al. (2015) and Frolich and Huber (2017) approaches,
offering a simple, valid and flexible methodology that
would consider not only continuous and normally
distributed variables but also categorical variables.

Therefore, the aim of this study was to propose four
extensions of the CMA, which we named “Mendelian
Randomization in Causal Mediation Analysis” (MRinC-
MA), by considering two genetic instruments, for
exposure and mediator each, to correct for potential
confounding bias in the mediation analysis framework.

In this paper, we first demonstrate the capacity of
MRinCMA to obtain unbiased direct, indirect
and total effects using simulation studies, and com-
pare their performances to SEM, as the reference
method. Then, we report the result of applying
MRIinCMA, to assess the causality between obesity,
type 2 diabetes mellitus (DM) and pancreatic cancer
(PC) in the context of the PanGenEU case-control
study (Molina-Montes et al., 2021).

2 | METHODS

This section is structured as follows: first, we presented
the new proposal statistical method and the approach
used as a reference; second, we described the simulation
process and the performance indicators considered to
assess the efficiency of the statistical methods; third, a
brief description of a real data set used in the empirical
example.

2.1 | MRinCMA approaches to estimate
direct, indirect, and total effects

We defined four MRinCMA approaches as extensions of
2SLS: 4SLS, 3SLS, 4SRI and 3SRI. The causal diagram is
presented in Figure 1c, where Y is the outcome; E, the
exposure; M, the mediator; IV;, the exposure-weighted
genetic score; IV5, the mediator-weighted genetic score;
and C, the vector of confounders.

Following the 2SLS procedure, the 4SLS approach
requires four regression models to estimate direct,
indirect and total effects
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E=8,+BIVi+ B,C + g, (D)
M= py + i E + IV + usC + &, (2)
Y=o+ aE + oM + a;C + g, (3)
M:y0+y1E+y2C+£4, 4)

where E and M are the predictor vectors obtained from
Equations (1) and (2), respectively.

Based on BK methodology (De Stavola et al., 2015;
Vanderweele & Vansteelandt, 2009), the direct effect is the
estimated effect of E over Y, &, derived from Equation (3);
the indirect effect is the product (3, X &), where 7, is the
estimated effect of E over M, obtained from Equation (4);
and &, is the estimated effect of M over Y, derived from
Equation (3). The total effect is the sum of both effects,
& + (7, X &) for continuous outcomes and the product
& X (, X &) for binary outcomes (Vanderweele &
Vansteelandt, 2010). The 3SLS approach is similar to 4SLS,
but only needs three regression models, Equations (1)—(3).
The direct effect is &, as for 4SLS, although the indirect
effect is (4; X &), and the total effect is the sum, or the
product when appropriate, of both effects. The 4SRI
approach is similar to the 4SLS, but now instead of using
the fitted values of E and M, (E, M), the regression models
included the observed values (E, M) and the residuals (&, &)
obtained in the previous steps. The models are as follows:

E=1t+glVi+%C + g, (5)

M=, +mE + 08+ 01V +1,C+ &, (6)
Y=v+nE+ni+vsM+usi+vC+sa  (7)
M =9+ LE + L& + 13C + &4, (8

where ¢ and & are the residual vectors obtained from
Equations (5) and (6), respectively.

The direct effect is now 7;, the indirect effect is
(A4 x 73) and the total effect is the sum, 9; + (4; X 93), or
the product, v; X (A4 X 73), of both continuous and
categorical outcomes, respectively.

Analogously to 3SLS, the 3SRI method only requires
models Equations (5)-(7). The direct effect is 7, the
indirect effect is (#; X 73) and the total effect is the sum,
or the product, as appropriate, of both effects.

2.2 | SEM as a reference method

We also estimated the three effects using the SEM as
was previously done by Burgess et al. (2015) to compare
our results. It is a multivariate technique widely used in

sociological and econometrical fields (Belope, 2020;
Pearl, 2012), which specifies measurement errors of
the variables and permits to incorporate both observed
and unobserved variables (Muthén, 1984, 2011; Pearl,
2010, 2012).

We defined the equations as shown in Figure 1d.
Coefficient estimates of E and M in SEM represented
direct and indirect effects, and the total effect is the sum
of both assuming no interaction. The maximum
likelihood approximation is used for continuous and
normally distributed variables, although the weighted
least squares (WLS) was considered for categorical
variables (Li, 2016; Muthén, 1984; Muthén &
Asparouhov, 2015; Olsson et al., 2000).

2.3 | Simulation study design

Simulation studies are a common tool for assessing
the performance of statistical methods (Morris
et al.,, 2019). For that reason, we evaluated the
efficiency of the five abovementioned methods (i.e.,
4SLS, 3SLS, 4SRI, 3SRI and SEM) in estimating the
parameters of interest: direct, indirect and total
effects, under different scenarios. The summary and
workflow are shown in Figure 2.

An observational study with an outcome Y, an
exposure E and a mediator M was simulated, under
different settings, 2000 times.

Each simulated data set was generated based on
the PanGenEU study data frequency, a European
case—control study including 2500 PC patients and
1500 controls (Lépez de Maturana et al., 2021;
Molina-Montes et al., 2021) (Supporting Information:
Appendix A).

2.3.1 | Independent variables and outcomes
of interest

The outcomes, exposures and mediators have been
defined as either continuous or binary variables. We
considered two outcomes, a binary trait reflecting
PC status and a continuous one corresponding to the
PC risk score. BMI (continuous) and obesity (catego-
rized as 1 if BMI > 30 and 0 otherwise; Kent et al., 2017;
Molina-Montes et al., 2021) were the exposures (E).
Long-standing DM (LSDM) (i.e., diabetes diagnosed >2
years before the study recruitment [Molina-Montes
et al.,, 2021] and categorized as yes/no) and glycated
haemoglobin (continuous) were considered as media-
tors (M). We included two continuous genetic scores
(Ivy and 1V,) weighting by the effect of each genetic
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FIGURE 2 Simulations steps and workflow: S1: Y, E and M continuous; S2: Y binary and E and M continuous; S3: Y continuous and E
and M binary; S4: Y, E and M binary. EmpSE, empirical standard error; IV, instrumental variable; LSDM, long-standing diabetes mellitus;
MSE, mean-squared error; PC, pancreatic cancer; 3SLS, three-stage least squares; 4SLS, four-stage least squares; 4SRI, four-stage residual

inclusion; 3SRI, three-stage residual inclusion; SEM, structural equation models.

variant on the exposure and the mediator, respectively.
We incorporated sex (categorical: man/woman),
age (continuous) and smoking status (categorical:
nonsmoker/occasional/former/current smoker) as con-
founding variables (C).

2.3.2 Data-generating mechanisms
According to the definition of the variables Y, E and M,
the following four scenarios were studied:

S1: Y, E and M as continuous.

S2: Y as binary and both E and M as continuous.
S3: Y as continuous and both E and M as binary.
S4: Y, E and M as binary.

Variables Y, E and M were simulated as continuous in
all cases by using their probit or logit transformation (Y*, E*
and M¥), when appropriate; therefore, linear regression
models were assumed regardless of the character of these
variables. The original Y, E and M were recovered
subsequently by inverting this transformation. Note that Y
equalled Y*, E equalled E* and M* equalled M when they
were continuous (Supporting Information: Appendix B).

We simulated Y*, E* and M* using a multivariate
normal model, assuming random errors with vectors of
means p = (0,0,0) and variance-covariance matrix:

2
O  P9EOM POEOY
2
POEOM Oy POMOY |-

2
POEOy pPOMOYy Oy

> =
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Standard deviations (og, oy, oy) Were considered,
based on PanGenEU results. Correlation, p, was moved
from weak (0.2), and moderate (0.5) to strong (0.8).

We considered different simulation settings according
to: (i) the nature of the variables (S1-S4), (ii) the
correlation between variables p = (0.2, 0.5, 0.8), (iii) the
effect sizes (based on PanGenEU estimates, half and
double of PanGenEU estimates) and (iv) the study
sample size (1000, 2500 and 10,000). Additional details
about the simulation procedure are available in Support-
ing Information: Appendix B and values of the prefixed
coefficients considered are shown in Supporting Infor-
mation: Appendix D, Table ST1. When dealing with
categorical variables, the probit transformation was
always considered for SEM, while for MRinCMA, we
considered the probit transformation for scenario S3
(continuous outcome) and the logit transformation in
other cases, as better performance results were observed.

2.4 | Applied example: Effect of LSDM
and BMI on PC

We applied the MRinCMA approaches and SEM to
investigate the effect of LSDM on PC considering the
mediation effect of BMI, and the effect of BMI on PC
with LSDM as a mediator. To this goal, we used the
resources of the PanGenEU study, a European multi-
centre hospital-based case-control study designed to
assess environmental and genetic factors associated
with PC risk (Lopez de Maturana et al., 2021; Molina-
Montes et al., 2021). PC is the seventh most common
death by cancer worldwide, and LSDM and obesity are
the two main complex risk factors due to the
coexistence of both. For that reason, it is important
to assess the causal effect of obesity and the mediation
role of LSDM to better understand their role in PC risk.
We included those participants with available genetic
information, (1040 cases and 738 controls). More
details are provided in Supporting Information:
Appendix A and in Molina-Montes et al. (2021) and
Lopez de Maturana et al. (2021).

2.5 | Performance indicators

We evaluated the five approaches using the following
metrics: bias, mean-squared error (MSE), empirical
standard error (EmpSE) 95% confidence interval cover-
age rate (CI-C) and bias-eliminated coverage rate (BE-C).
A detailed definition of these performance measures is
presented in Supporting Information: Appendix C and in
Morris et al. (2019).

All analyses were performed using R software version
4.0.1. SEMs were fitted using package lavaan (Rosseel,
2012), which implements WLS for categorical data fitting
a probit regression model.

3 | RESULTS

3.1 | Results from the simulation study
A summary of the performance of the five methods, also
described in Figure 1, is as follows:

S1: Y, E and M as continuous: All methods yielded a
null or negligible bias in the estimation of the three effects,
Table 1. In Table 2 and in Supporting Information:
Appendix D, Table ST2, we presented the estimated 95%
CI-C and BE-C. For the direct effect, SEM outperformed the
MRinCMA methods with results around the nominal 95%
CI cut-off point. On the other hand, for the indirect and
total effects, we noted that CI-C and BE-C were reasonably
close to the cut-off point for the five methods.

S2:Y as binary and both E and M as continuous: The
results obtained for MRinCMA methods were similar to
those from SI, with good performance results overall,
Tables 2 and 3 and Supporting Information: Appendix D,
Table ST2. On the contrary, SEM showed higher bias and
presented poor results with CI-C deteriorated to a clearly
unacceptable coverage for indirect and total effects when
the sample size increased, Table 2 and Supporting
Information: Appendix D, Table ST2.

S3:'Y as continuous, and E and M as binary: Biased
estimates and high MSE values were obtained in both
MRinCMA and SEM (Table 4). SEM showed poorer
coverage rates than MRinCMA (Table 2). 4SLS was the
best alternative with a large sample size (Supporting
Information: Appendix D, Tables ST2 and ST3).

S4:Y, E and M as binary: Similar conclusions as those
obtained in scenario S3 could be derived here, 4SLS
was, in general, the best option (Tables 2 and 4). Its
performance improved as sample size increased (Support-
ing Information: Appendix D, Tables ST2 and ST3).
A sensitivity analysis has been done considering higher
and lower effect sizes and stronger or weaker correlations
between Y, E and M, and we obtained similar perform-
ance results (data not shown).

3.2 | Application to real data: The
PanGenEU case-control study

Considering the performance of the five approaches, we
applied the appropriate methodology to the PanGenEU
study, to investigate the effect of LSDM and BMI on PC risk.
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TABLE 2 95% Confidence interval coverage rate and bias-eliminated coverage for the direct, indirect and total effect estimation in

scenarios S1-S4 and according to different sample sizes, based on PanGenEU coefficients shown in Supporting Information: Appendix D,

Table ST1.
n=1000 n=2500
Direct Indirect Total Direct Indirect Total
CI-C BE-C CI-C BE-C CI-C BE-C CI-C BE-C CI-C BE-C CI-C BE-C
S1
4SLS 99.40% 99.40%  93.70%  93.80% 92.00% 92.10% 99.60%  99.60%  93.80%  93.00% 91.90% 92.55%
3SLS 99.40%  99.40%  92.20%  93.60%  91.50% 91.75% 99.60%  99.60%  92.70%  93.25%  92.90%  92.70%
4SRI 88.30% 88.65%  93.30%  92.70% 92.60% 92.30% 88.30% 87.95%  93.00%  93.20% 91.90% 92.40%
3SRI 88.30% 88.65%  91.40%  92.65% 92.50% 92.50% 88.30% 87.95%  92.60%  92.85% 92.50% 92.45%
SEM 94.70% 94.78%  91.40%  92.00% 92.10% 91.95% 94.70%  94.40%  93.10%  93.45% 93.10% 93.10%
S2
4SLS* 99.00% 99.00%  93.00%  93.00%  92.00% 92.00% 99.00%  99.00%  94.00%  93.00% 91.00%  92.00%
3SLS* 99.00%  99.00%  92.00%  93.00%  92.00% 92.00% 99.00%  99.00%  94.00%  93.00%  93.00%  93.00%
4SRI* 88.00% 89.00%  94.00%  94.00%  92.00% 92.00% 88.00% 88.00%  93.00%  93.00%  93.00%  92.00%
3SRI* 88.00% 89.00%  92.00%  93.00%  92.00% 92.00% 88.00% 88.00%  93.00%  93.00% 93.00%  92.00%
SEMP 96.00% 97.00% 78.00%  94.00%  96.00% 99.00% 94.00%  95.00%  67.00%  92.00%  78.00%  97.00%
S3
4SLS® 97.20% 96.90%  99.50%  99.50% 98.70% 98.30% 97.10%  96.20%  98.80%  98.80% 95.90% 96.30%
3SLS® 97.20%  96.90%  99.50%  99.50%  98.10% 98.00% 97.10%  96.20%  98.80%  98.70%  95.90%  95.60%
4SRI® 94.40% 94.10%  99.60%  99.60% 98.80% 98.70% 93.10%  94.00%  99.40%  99.50% 94.80% 96.60%
3SRI® 94.40% 94.10%  99.70%  99.80% 98.40% 99.00% 93.10%  94.00%  99.60%  99.60% 95.00% 96.60%
SEMP 91.90% 91.60% 73.70%  98.60% 93.60% 95.20% 93.60%  94.40% 39.30%  96.00% 81.80% 93.40%
S4
4SLS* 95.00% 95.00%  99.00%  99.00%  98.00% 97.00% 95.00%  95.00%  99.00%  99.00% 95.00%  96.00%
3SLS* 95.00% 95.00%  99.00%  99.00%  98.00% 98.00% 95.00%  95.00%  99.00%  99.00%  97.00% 97.00%
4SRI* 95.00% 95.00%  99.00%  99.00% 99.00% 99.00% 96.00%  96.00%  99.00%  99.00% 97.00%  98.00%
3SRI* 95.00% 95.00%  99.00%  99.00%  99.00% 99.00% 96.00% 96.00%  99.00%  99.00% 97.00%  98.00%
SEMP 99.00% 99.00% 89.00%  99.00%  97.00% 100.00% 96.00%  98.00% 57.00%  99.00% 75.00%  99.00%

Abbreviations: BE-C, bias-eliminated coverage; CI-C, 95% confidence interval coverage rate; S1, Y, E and M continuous; S2, Y binary and E and M continuous;
S3, Y continuous and E and M binary; S4, Y, E and M binary; SEM, structural equation models; 3SLS, three-stage least squares; 4SLS, four-stage least squares;

3SRI, three-stage residual inclusion; 4SRI, four-stage residual inclusion.
“Logit model was used.

°Probit model was used, when appropriate.

We defined Biological Model A to study the causal
effect of obesity (binary) on PC (binary, case/control) risk
considering LSDM (binary) as a mediator, and Biological
Model B to analyse the causality of LSDM on PC
considering obesity as a mediator, both corresponding
to scenario S4.

The estimates and 95% CI for each effect were
obtained based on the results shown in Tables 2 and 4,
and the 4SLS approach is applied for both Biological
Models A and B. Based on the results shown in Table 5,

it can be concluded that there was no direct effect of
LSDM and obesity on PC and that no factor mediated the
relationship of the other.

4 | DISCUSSION

In this work, we proposed an extension of CMA and MR
approaches (i.e., MRinCMA) to solve the potential
confounding bias present in CMA when confounders
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g are not measured by incorporating two IVs, which can
a T % deal with both continuous and categorical variables.
~ (=) on
) c S| Despite that the 4SLS, 4SRI and 3SLS approaches were
% g é g E already developed for continuous and normally distrib-
ﬁﬁq E P ) uted variables, here we assessed their performance also
g for noncontinuous variables. Moreover, we proposed the
8 ~ ~ % 3SRI approach using three stages considering both
< gf § g observed and residual values rather than the predicted
‘3 S e g values. In summary, we showed that MRinCMA
o = - . . . .
= E ® 3 & provided unbiased estimates of the direct, indirect and
=d < ° ;f) total effects regardless the type of variables considered.
= More specific, in scenario S1, where E, M and Y
@ g g é were defined as continuous variables, we concluded
2 s s o that MRinCMA worked properly, obtaining unbiased
=1 E § a % results equivalent or better than SEM, in all simulation
E -3 g °| CI’ = settings. Our results, in terms of bias, were similar as
E those obtained by Burgess et al. (2015) when they
= :j considered 3SLS and SEM. Frolich et al. (2017) also
Nz = (g, confirmed that 4SLS worked properly in several
& 4 3 ;, ki simulation conditions.
o .
g‘ E E § s For the rest of scenarios, where we had at least one
B < ° | E categorical variable, as it was already described by
- f Burgess (2013) and by Carter et al. (2021), these
@ 3 g i approaches can lead to less precise estimations due to
g ; ;, B2 the noncollapsibility of the odds ratio, ending in higher
mEBE 3 5 E é bias. Even so, in these cases, MRinCMA always
= RS . .
ﬁ g S © E g outperformed SEM, where biased estimates and therefore
§ 8 worst coverage rates were obtained. Up to now, only
m g . :
s = EE Carter et al. (2021). and our proposal provided unbiased
% 5 8 ¢= estimates with noncontinuous variables, although our
- S S 38 3 . . .
3 § 5 é’ 2 5 approaches incorporate the residual values instead of
'E 28 Z Z % =) predicted values, which have been described to be more
o W
Sl@a T T N 8 adequate for categorical variables (Burgess et al., 2015;
— g § Palmer et al., 2017). Despite the good performance
@ s a & é measures obtained overall for all MRinCMA approaches,
g3 8 33 some issues regarding the estimation of the SEs should
He 2 2 ©= . . .
2E » o 5737 be mentioned. As it was already described (Palmer
8 0 A )
HEJ E S Z 5 2 et al., 2011, 2017; Terza et al., 2008), approaches that
g 2 involve several stages tend to underestimate the SE
= g
= w3 and consequently this effect would impact on the
a o T performance of the MRinCMA. However, to avoid this
Q O (=} & . .
] S S £ @ ) limitation, the SE and the 95% CI showed in this work
mE = = 25 4 . ine b .
£©2 8 3 T ¢ were derived using bootstrapping.
2H s S g ) This work represented an exhaustive analysis
= .
~ =3 where different MRinCMA approaches were tested in
S @, § § Zi é é: several settings. MRinCMA approach is an extension of
5 2 s 8 £ the CMA method, and in this manuscript, we showed
S = s - 5 2273
2 8|, E g 2 4% 873 that unbiased direct, indirect, and total effects can be
- - . g o9 o . .
@ a ;%’ 299 g é § g estimated when considering two IVs. We proved that
<« z E" o} e MRinCMA can also ?be used when the variables 9f
g QE = g0 £ 2 interest are noncontinuous, as commonly used in
2 2 @ ;;’ g fg ) epidemiological studies. Considering the wide simula-
H < 5‘: [ @5 tion frameworks raised, we also believe that this
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TABLE 5 Direct, indirect and total effects and 95% CI from the PanGenEU case—control study.

Biological Model A Direct effect Indirect effect Total effect

Exposure Mediator Method OR 95% CI (OR) OR 95% CI (OR) OR 95% CI (OR)
Obesity LSDM 4SLS 0.97 [0.62;1.53] 1.13 [0.89;1.88] 1.12 [0.72;1.65]
Biological Model B Direct effect Indirect effect Total effect

Exposure Mediator Method OR

LSDM Obesity 4SLS 1.20

95% CI (OR) OR
[0.87;1.64] 1.00

95% CI(OR) OR
[0.87; 1.12] 1.19

95% CI (OR)
[0.83;1.73]

Note: CI was calculated using bootstrap, considering 2.5% and 97.5% percentiles. Logit models were considered.

Abbreviations: CI, confidence interval; LSDM, long-standing diabetes mellitus; OR, odds ratio; 4SLS, four-stage least squares; 3SRI, three-stage residual

inclusion.

project could be considered as a guideline for
investigators that are interested in applying CMA,
whereas the confounding assumptions needed cannot
be held. The advantage of incorporating two IVs would
allow researchers to easily run mediation analysis
while obtaining unbiased estimates. Further studies
are needed to assess how MRinCMA performs with
weak instrument bias, or potential horizontal pleiot-
ropy (Bowden et al., 2015; Burgess & Thompson, 2017;
Carter et al., 2021; Rees et al., 2017; Sanderson, 2021).
Moreover, some possible extensions of these methods
could be explored in further studies because the
interactions between E and M were not considered
(Burgess et al., 2015; North et al., 2019) and potential
differences in the estimation of the indirect effect can
be observed using MRinCMA.

In this work we also proposed an empirical example
to study the direct and indirect effect of LSDM and
obesity, respectively, on PC risk. The results were similar
from those obtained in previous studies (Molina-Montes
et al., 2021). The nonsignificance levels are plausible, due
to the limited sample size used, in contrast what both MR
and MRinCMA analyses require. As observed in the
simulation studies, a large sample size is needed to
obtain unbiased estimates. However, these results also
showed the complex relationship between LSDM, obe-
sity and PC, and further studies are required to proper
identify the causes and effects of these risk factors on
PC risk.

In conclusion, this study proposes and supports the
use of a new approach to address CMA interrogations by
incorporating two genetic instruments related to expo-
sure and mediator that may correct potential confound-
ing bias. MRinCMA can be easily applied in a wide range
of epidemiological and clinical scenarios, regardless the
nature of the variables and it could be considered as a
solution in those studies where the main objective is to
apply CMA, where the confounding assumptions needed
cannot be guaranteed.
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