Óptica y Optometría: curso 1⁰-A,

Asignatura: Matemáticas I

Fecha: 29 de septiembre de 2021

Actualización: 29/09/2021, hora: 16:46:11

Ejercicio resuelto 1. Hallar los intervalos de monotonía y extremos relativos de $f(x) = e^x(\cos x + \sin x)$.

Solución. Hallamos la primera derivada e igualamos a cero.

$$f'(x) = e^x(\cos x + \sin x) + e^x(-\sin x + \cos x) = 2e^x\cos x.$$

Si $2e^x \cos x = 0$, y como $e^x > 0$, tenemos $\cos x = 0$. De aquí $x = \pi/2$ y $x = 3\pi/2$, y múltiplos enteros de 2π . Los intervalos de monotonía serán $(0, \pi/2)$, $(\pi(2, 3\pi/2)$ y $(3\pi/2, 2\pi)$, porque luego son todos múltiplos enteros de 2π . Damos ahora valores intermedios: Por tanto $x = \pi/2$ es un máximo

	$(0,\frac{\pi}{2})$	$(\frac{\pi}{2},\frac{3\pi}{2})$	$(\frac{3\pi}{2}, 2\pi)$
signo f'	+	-	+
función	creciente	decreciente	creciente

relativo y $x = 3\pi/2$ es un mínimos relativo.

Ejercicio resuelto 2. Hallar los intervalos de monotonía y las asíntotas de $f(x) = x^2 e^{-x^2}$.

Solución. 1. Hallamos la primera derivada:

$$f'(x) = \frac{2x \cdot e^{x^2} - 2x \cdot e^{x^2} x^2}{(e^{x^2})^2} = \frac{2x - x^3}{e^{x^2}}.$$

Igualando a cero, $2x - x^3 = 0$, luego $2x(1 - x^2) = 0$, así x = 0, x = -1 y x = 1. En particular,

	$(-\infty, -1)$	(-1,0)	(0,1)	(1,∞)
signo f'	+	-	+	-
función	creciente	decreciente	creciente	decreciente

x = -1 y x = 1 son máximos relativos y x = 0, un mínimo relativo.

2. a) Asíntotas horizontales: usando la regla de L'Hôpital,

$$\lim_{x \to \pm \infty} \frac{x^2}{e^{x^2}} = \lim_{x \to \pm \infty} \frac{2x}{2xe^{x^2}} \lim_{x \to \pm \infty} \frac{1}{e^{x^2}} = 0.$$

Por tanto, la asíntota horizontal es y = 0.

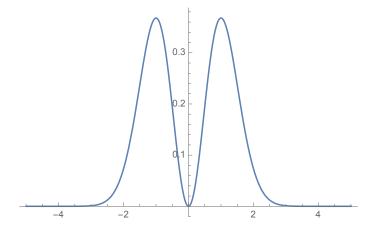


Figura 1: La función $f(x) = x^2 e^{-x^2}$.

- b) No tiene asíntotas verticales porque el dominio de la función es todo \mathbb{R} .
- c) No tiene asíntotas oblicuas, porque tiene horizontales.

Ejercicio resuelto 3. Se quiere fabricar una caja abierta de chapa con base cuadrada y con 32 litros de capacidad. Halla las dimensiones de la caja que precisa la menor cantidad de chapa.

Solución. La superficie de la caja, que es abierta, es la suma de la superficie de la base, por la de los lados. La de la base es cuadrada, luego es x^2 , si x es un lado de la base. La de los lados es xy, donde y es la altura. Como hay cuatro lados, el área es 4xy. Por tanto, la superficie de chapa es $x^2 + 4xy$. Ésta es la función a la que hay buscar un mínimo relativo (y no vale x = 0 o y = 0). Por otro lado, el volumen está dado, que es 32. El volumen de la caja es área de la base por altura, es decir,

$$32 = x^2 y.$$

Esto nos da una relación entre x e y, a saber, $y = 32/x^2$, luego la superficie de chapa es

$$f(x) = x^2 + 4x \frac{32}{x^2} = x^2 + \frac{128}{x}.$$

Hallamos la primera derivada,

$$f'(x) = 2x - \frac{128}{x^2},$$

e igualamos a cero: $2x^3 - 128 = 0$, obteniendo $x = \sqrt[3]{128/2} = \sqrt[3]{64} = 4$.

Ahora, la derivada segunta,

$$f''(x) = 2 + \frac{256}{x^2}.$$

Y

$$f''(4) = 2 + \frac{256}{16} > 0,$$

luego es un mínimo relativo. Por tanto, las medidas de la caja son: longitud de la base, x = 4, y altura, $y = 32/x^2 = 2$.