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Abstract

We present a new methodology to approximate a trapezoidal fuzzy numbers set by using smoothing radial basis functions 
(RBFs). The methodology uses different error and similarity indices to determine and compare the accuracy of the approximation 
of the given trapezoidal fuzzy data. For the proposed approximation method a fuzzy radial basis functions type are defined, called 
fuzzy smoothing radial basis functions under tension. The computation of one of these approximation functions from a given trape-
zoidal fuzzy data set is described and some convergence results are proved. Finally, some examples in two-dimensions are given 
to compare the behavior of the presented method by using the proposed error and similarity indices for different configurations of 
the fuzzy smoothing radial basis functions under tension.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

One of the most interesting and important problem in various scientific fields is approximation. In this paper, we 
present a new methodology to approximate a trapezoidal fuzzy numbers set by using smoothing radial basis functions 
(RBFs). The methodology uses different error and similarity indices to determine and compare the accuracy of 
the approximation of the given trapezoidal fuzzy data. For the proposed approximation method a fuzzy radial basis 
functions type are defined, called fuzzy smoothing radial basis functions under tension. The computation of one of 
these approximating functions from a given trapezoidal fuzzy data set is described and some convergence results 
are proved. Finally, some examples of two-dimensions are given to compare the behavior of the presented method 
by using the proposed error and similarity indices for different configurations of the fuzzy smoothing radial basis 
functions under tension.
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Multivariate interpolation of fuzzy data has been reviewed in several papers (see [3–6], [10–14], among others), 
and it is sufficient here to mention how it works. The scattered data approximation of fully fuzzy data by a quasi-
interpolation method is studied in [22] and some fuzzy Taylor approximation methods are introduced in [1]. In [24,25]
the authors define some new similarity indices to determine the accuracy of approximation of fuzzy data by fuzzy cubic 
spline functions.

In this paper we describe a novel approach based on (RBFs) for trapezoidal fuzzy data approximation of two 
variables. Radial basis functions constitute a widely used and researched tool for (nonlinear) function approximation 
(see [8], [7] and [19–21], for example), which is a central theme in pattern analysis and recognition [18]; see also 
[15] for a recent and comprehensive overview and further references. Often, the (RBF)-method is seen as a neural 
network [12].

The rest of this paper is organized as follows: In the next Section we present some preliminaries which are necessary 
for this study, the fuzzy numbers concept, particularly the trapezoidal fuzzy numbers and some similarity indices to 
compare the similarity between two trapezoidal fuzzy numbers. Section 3 presents a radial basis functional space 
where we construct the approximating function, concretely the called fuzzy radial basis functions under tension space. 
For this, we introduce both the smoothing radial basis function approximating a data set of R4 and the fuzzy radial 
basis function under tension approximating a trapezoidal fuzzy data set, we describe the computational method of 
these approximates, and we give some convergence results. The followed methodology is presented in Section 5. 
Several simulations for different parameter values are showed in Section 6. Finally, in Section 7 the conclusions are 
presented.

2. Preliminaries

This section aims to introduce both the notations and some of the preliminary results necessary for the development 
of the theories which are studied in the remainder.

2.1. Fuzzy numbers

Definition 1. A fuzzy number is a mapping u :R −→ [0, 1] with the following properties.

i) u is an upper semi-continuous function on R.
ii) u(x) = 0 outside some interval [a1, a4] ⊂ R.

iii) There exist real numbers a2 and a3 such that a1 ≤ a2 ≤ a3 ≤ a4 with
a) u(x) is a monotonic increasing function on [a1, a2],
b) u(x) is a monotonic decreasing function on [a3, a4],
c) u(x) = 1, for all x ∈ [a2, a3].

2.2. Trapezoidal fuzzy numbers

A popular type of fuzzy number is the set of trapezoidal fuzzy numbers, TFN, that can be defined as a =
(a1, a2, a3, a4), and their membership function is defined by

μ(a) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x − a1

a2 − a1
, a1 ≤ x ≤ a2,

1, a2 ≤ x ≤ a3,

a4 − x

a4 − a3
, a3 ≤ x ≤ a4,

0, otherwise.

Definition 2. Let u = (u1, u2, u3, u4) ∈ TFN and 0 < α ≤ 1, then it is called α-cut of u the set

[u]α = {x ∈ R : u(x) ≥ α}.
It is defined the 0-cut of u as its support, i.e.,
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[u]0 =
⋃

0<α≤1

[u]α = [u1, u4]

An equivalent definition of a trapezoidal fuzzy number u = (u1, u2, u3, u4) is a function u : [0, 1] −→ I given by

u(α) = [u(α), ū(α)],
with

u(α) = u1 + (u2 − u1)α,

ū(α) = u4 + (u3 − u4)α,
(2.1)

where I is the set of all real closed intervals.

Definition 3. For any u, v ∈ TFN is defined the Hausdorff distance between u and v as the quantity

d(u, v) = sup
α∈[0,1]

max{|u(α) − v(α)|, |u(α) − v(α)|}.

From this definition we have that if u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4) then

d(u, v) = max
i=1,2,3,4

|ui − vi | (2.2)

Definition 4. A fuzzy function defined on � ⊂ R2 into the trapezoidal fuzzy number set TFN is an application f :
� → TFN such that f = (f1, f2, f3, f4) where fi is a real function defined on �, i = 1, 2, 3, 4, and f (x, y) ∈ TFN , 
for any (x, y) ∈ �.

2.3. Similarity indices

The concept of similarity or dissimilarity between two data sets is fundamental on almost every scientific field. 
The analysis of similarity or dissimilarity measures between fuzzy sets has gained importance due to the widespread 
of applications in diverse fields, including fuzzy risk analysis problem [23], decision making [13] and fuzzy function 
approximation [9]. Now, we introduce some existing similarity measures of fuzzy numbers.

If A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), then the degree of similarity S(A, B) between the trapezoidal fuzzy 
numbers A and B is defined

i) by Chen as follows:

SCHEN(A,B) = 1 −
∑4

i=1 | ai − bi |
4

∈ [0,1], (2.3)

where | a | is the absolute value of the real number a.
ii) Hsieh et al. proposed a similarity measure using the graded mean integration-representation distance where the 

degree of similarity S(A, B) between the fuzzy numbers A and B is calculated as follows:

SHSIEH (A,B) = 1

1 + d(A,B)
, (2.4)

where d(A, B) =| P(A) −P(B) |, and P(A), P(B) are the graded mean integration representations of A and B , 
respectively. If A and B are trapezoidal fuzzy numbers, with A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), then 
the graded mean integration of these fuzzy numbers is defined as:

P(A) = a1 + 2a2 + 2a3 + a4

6
,

P (B) = b1 + 2b2 + 2b3 + b4
.

6
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iii) Chen & Chen presented another similarity measure between generalized trapezoidal fuzzy numbers. They 
presented the (simple center of gravity method) denoted as SCGM to calculate the center of gravity points 
(x∗

A, y∗
A) and (x∗

B, y∗
B) of the generalized trapezoidal fuzzy number A and B respectively. A = (a1, a2, a3, a4), 

0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ 1, and B = (b1, b2, b3, b4), 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4 ≤ 1. Then the degree of similarity 
S(A, B) between the trapezoidal fuzzy numbers A and B, using the SCGM methodology, is calculated as follows:

SSCGM(A,B) = 1 −
∑4

i=1 | ai − bi |
4

×
(
1− | x∗

A − x∗
B |)B(SA,SB) × min(y∗

A,y∗
B)

max(y∗
A,y∗

B)
,

(2.5)

where S(A, B) ∈ [0, 1], and

x∗
A = y∗

A(a3 + a2) + (a4 + a1)(1 − y∗
A)

2
,

y∗
A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
, if a1 = a4,

1

6
(
a3 − a2

a4 − a1
+ 2), if a1 �= a4,

and

B(SA,SB) =
{

1, if SA + SB > 0,

0, if SA + SB = 0,

where SA and SB are the lengths of the bases of trapezoidal fuzzy numbers A and B , respectively, and are defined 
by:

SA = a4 − a1,

SB = b4 − b1.

In all cases it is verified that S(A, B) tends to 1 as A tends to be equal B , and S(A, B) tends to 0 as the common 
support of A and B tends to ∅.

3. A radial basis functions space

Let 〈 · , · 〉k and 〈 · 〉k be the Euclidean inner product and norm in Rk, respectively.
Let � be an open bounded connected nonempty subset of R2.
Let m > 1 and k ≥ 1 be two positive integers and let Hm(�, Rk) (Hm(�) if k = 1) be the usual Sobolev space of 

order m equipped with the inner products

(u, v)� =
∑
|β|≤�

∫
�

〈Dβu(p),Dβv(p)〉kdp, ∀0 ≤ � ≤ m,

being |β| = β1 + β2, for any β = (β1, β2) ∈ N2. Let be the following semi-norms in Hm(�, Rk)

|u|� = (u,u)
1
2
� , ∀0 ≤ � ≤ m,

and the norm ‖u‖m =
(

m∑
�=0

|u|2�
) 1

2

.

Finally, let �m−1(R2) denote the space of polynomials on R2 of degree at most m −1 whose dimension is denoted 

d(m), where d(m) = m(m + 1)
and 

{
q1, · · · , qd(m)

}
be the standard basis of �m−1(R2).
2
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Let us give an arbitrary finite set B = {b1, · · · , bM} ⊂ R2 of M distinct approximation points, bi = (xi, yi) ∈ �, 
i = 1, . . . , M , and a set of fuzzy numbers U = {u1, · · · , uM} such as ui = (ui1, ui2, ui3, ui4) is a trapezoidal fuzzy 
number, with i = 1, · · · , M , i.e., U ⊂ TFN , where TFN is the set of the trapezoidal fuzzy numbers.

Suppose that

B contains a �m−1 − unisolvent subset. (3.1)

We denote

h = sup
p∈�

min
b∈B

〈p − b〉2.

We need a center points set A = {a1, · · · , aN } ⊂ R2 and for each i = 1, . . . , N , a radial function �(· − ai).
We denote

d = sup
p∈�

min
a∈A

〈p − a〉2.

The aim of this work is to approximate the data set {(b1, u1), · · · , (bM,uM)} ⊂ R2 ×TFN .
To conclude this section we define a radial basis functions space type.

For this, we consider the following primitive function [7]:

φε(t) = − 1

2ε3

(
e−ε

√
t + ε

√
t
)

, ε ∈R+, t ≥ 0 (3.2)

and the following radial function

�ε(x) = φε(< x >2
2) = − 1

2ε3

(
e−ε<x>2 + ε < x >2

)
, ε ∈R+, x ∈R2.

Consider m = 3 and let H be the real functional space generated by the restrictions on � of the functions

{q1, · · · , q6,�ε(· − a1), · · · ,�ε(· − aN)} .

In [7] the authors present an interpolation method of a real function f in H which has a unique solution called the 
interpolation radial basis function under tension of f associated with A and ε.

Proposition 1. Let � ⊂R2 be an open, bounded and connected set having the cone property and a Lipschitz continu-
ous boundary and f ∈ H 3(�). Let s ∈ H be the interpolation radial basis spline under tension of f associated with 
A and ε. There exist a constant d0 > 0 and a constant C > 0, independent of d , such that, for any d ≤ d0,

|f − s|� ≤ Cd3−�, ∀� = 0,1,2.

Proof. The result is obtained reasoning as [16, Theorem 4.7] for the partial derivatives of order less or equal 2, taking 
into account [17, Theorem 4.4]. �
4. Smoothing fuzzy radial basis functions under tension

4.1. Defining the problem

Let m = 3 and let U be a set of fuzzy numbers U = {ui : i = 1, · · · ,M} such that every ui = (ui,1, ui,2, ui,3, ui,4), 
i = 1, · · · , M , is a trapezoidal fuzzy number, i.e., U ⊂ TFN .

Let HT the set of fuzzy functions s : � → TFN such that

s(x) =
N+6∑
l=1

αlwl(x), x ∈ �,

where α1, · · · , αN+6 ∈TFN and
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wl =
{

�ε(· − al), l = 1, · · · ,N

ql−N, l = N + 1, · · · ,N + 6,

}
.

The fuzzy function set HT is called the set of the fuzzy radial basis functions under tension defined on �.
Consider the following problem: Given the approximation data set

{(bi, ui) : i = 0, · · · ,M} ∈R2 ×TFN,

we want to obtain a fuzzy function sh ∈ HT such that

sh(bi) ≈ ui, i = 1, · · · ,M.

4.2. Smoothing radial function under tension

Consider the following minimization problem: Given τ ∈ (0, ∞), find σh ∈ H 4 such that:

J (σh) ≤ J (υ), ∀υ ∈ H 4, (4.1)

where

J (v) =
M∑
i=1

< ui − υ(bi) >2
4 +τ |υ|22,

considering ui = (ui,1, . . . , ui,4) ∈ R4, for any i = 1, . . . , M , i.e. U ⊂ R4.

Theorem 1. The minimization problem (4.1) has a unique solution that is the unique solution of the following varia-
tional problem: Find σh ∈ H 4 such that for all υ ∈ H 4:

M∑
i=1

< σh(bi), υ(bi) >4 +τ(σh,υ)2 =
M∑
i=1

< υ(bi), ui >4 (4.2)

Proof. Consider the application a : H 4 × H 4 →R, given by

a(u, v) =
M∑
i=1

〈u(bi), v(bi)〉4 + τ(u, v)2.

Obviously, the form a(·, ·) is bilinear, symmetric and continuous on H 4.
Moreover, from (3.1), a(u, u) defines on H 4 a norm equivalent to the usual Sobolev norm ‖ · ‖2. Thus we have that 

a is H 4-coercive.

Let ϕ : H 4 →R defined on H 4 by ϕ(v) =
M∑
i=1

〈v(bi), ui〉4, which clearly is a linear and continuous application.

So, by applying Lax-Milgramm Lemma there exists a unique σh ∈ H 4 such that a(σh, v) = ϕ(v), for any v ∈ H 4, 
and (4.2) holds.

Furthermore, σh is the minimum in H 4 of the functional ψ(v) = 1
2a(v, v) − ϕ(v), which is the minimum of J

since

J (v) = 2ψ(v) +
M∑
i=1

< ui >2
4 .

Hence we conclude the result. �
Definition 5. Given the center points set A = {a1, . . . , aN } ⊂ R2, the approximation data set B × U = {(bi, ui), i =
1, . . .M} ⊂ R2 × R4 and τ > 0, the unique solution of problem (4.2), σh ∈ H 4, is called the smoothing radial basis 
function under tension associated with A, B , U , τ and ε.
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4.3. Computing the solution

Let σh ∈ H 4 be the solution of Problem (4.1), then σh =
N+6∑

1

αiwi , where α1, . . . , αN+6 ∈ R4 are the unknowns of 

the problem.
By linearity, applying Theorem 1, we can reduce this problem to the following linear system:(

AAT + τR
)

α = AT U, (4.3)

where

A = (
wi(bj )

)
i=1,...,N+6,
j=1,...,M

,

R = (
(wi,wj )2

)
i,j=1,...,N+6 ,

α = (α1, . . . , αN+6)
T ,

U = (ui)i=1,...,M .

Let be σh(x) =
N+6∑
i=1

αiωi(x), for any x ∈ �, the unique solution of (4.2), where α = (α1, . . . , αN+6)
T is the unique 

solution of the linear system (4.3).
For all i = 1, . . . , N + 6, let αi ∈ R4 be such that its components are the same as those of αi ordered from lowest 

to highest, i.e., if αi = (αi1, αi2, αi3, αi4) and αi = (αi1, αi2, αi3, αi4) then αij = αiγ (j), j = 1, 2, 3, 4, being γ :
{1, 2, 3, 4} → {1, 2, 3, 4} the permutation such that

αi1 ≤ αi2 ≤ αi3 ≤ αi4.

Definition 6. The function

sh(x) =
N+6∑
i=1

αiωi(x), x ∈ �,

verifies that sh ∈ HTFN and it is called the smoothing fuzzy radial basis function under tension associated with A, 
B , U , τ and ε.

4.4. Convergence results

Theorem 2. Let f ∈ H 3(�, R4) and let σh ∈ H 4 be the smoothing radial basis function under tension associated 
with A, B , f (B), τ and ε. Suppose that (3.1) and the hypothesis

τ = o(1), h → 0, (4.4)

and

Md2

τ
= o(1), h → 0 (4.5)

hold. Then

lim
h→0

‖f − σh‖2 = 0. (4.6)

Proof. Let f = (f1, f2, f3, f4), with fi ∈ H 3(�), for i = 1, . . . , 4. Let si be the interpolation radial basis spline under 
tension associated with A and ε. Then, from Proposition 1 there exist some constants di > 0 and Ci > 0 such that

‖fi − si‖2 ≤ Cid, ∀d ≤ di .
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Hence there exist some constants C > 0 and d0 > 0 such that

‖f − s‖2 ≤ Cd, ∀d ≤ d0, (4.7)

being s = (s1, s2, s2, s4) ∈ H 4.
On the other hand, from (4.4) and (4.5), it is also verified that

d = o(1), h → 0.

Thus, from (4.7) one has

|s|2 = |f |2 + o(1), h → 0. (4.8)

Let σh ∈ H 4 be the unique solution of Problem (4.1), then J (σh) ≤ J (s) and thus

M∑
i=1

〈σh(bi) − f (bi)〉2
4 + τ |σh|22 ≤

M∑
i=1

〈s(bi) − f (bi)〉2
4 + τ |s|22,

which implies that

M∑
i=1

〈σh(bi) − f (bi)〉2
4 ≤

M∑
i=1

〈s(bi) − f (bi)〉2
4 + τ |s|22 (4.9)

and

|σh|2 ≤ 1

τ

M∑
i=1

〈s(bi) − f (bi)〉2
4 + |s|22. (4.10)

From (4.7) it follows that there exist some constants C > 0 and d0 > 0 such that

M∑
i=1

〈s(bi) − f (bi)〉2
4 ≤ MCd2, d ≤ d0

and, from Proposition 1,

|s|22 ≤ Cd2 + |f |22, d ≤ d0.

Consequently, from (4.10)

|σh|22 ≤ C
Md2

τ
+ Cd2 + |f |22, d ≤ d0

and thus, from (4.9),

M∑
i=1

〈σh(bi) − f (bi)〉2
4 ≤ CMd2 + Cτd2 + τ |f |22, d ≤ d0.

Hence

M∑
i=1

〈σh(bi) − f (bi)〉2
4 = o(1), h → 0

and

|σh − f |22 = O(1), h → 0.

Taking into account (3.1) we have that

��v�� =
(

M∑
〈v(bi)〉2

4 + |v|22
)2
i=1
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is a norm in H 2(�, R4) equivalent to the usual norm ‖v‖2.
And we obtain that

‖σh − f ‖2 = O(1), h → 0.

Thus there exists h1 > 0 such that the family (σh)h≤h1 is bounded in H 2(�, R4) and hence there exists a subsequence 
(σh�

)�∈N and a element f ∗ ∈ H 2(�, R4) such that

(σh�
)�∈N converges weakly to f ∗ in H 2(�,R4).

From here, by reasoning as in the points 3), 4) and 5) of the proof of [2, VI-Theorem 3.2] we conclude the 
result. �
Theorem 3. Consider a fuzzy function f : � → TFN , f = (f1, f2, f3, f4), with fi ∈ H 3(�), i = 1, . . . , 4, and let 
sh = (sh,1, sh,2, sh,3, sh,4) ∈ HT the smoothing fuzzy radial basis function under tension associated with A, B , f (B), 
τ and ε. Suppose the hypotheses (3.1) and (4.4) hold. Then, one has

lim
h→0

S(f (p), sh(p)) = 1, ∀p ∈ �, (4.11)

where S is the Chen index (SCHEN ), the Hsieh index (SHSIEH ) or the Chen and Chen index (SSCGM ) defined in 
Subsection 2.3.

Moreover

lim
h→0

d(f (p), sh(p)) = 0, ∀p ∈ �. (4.12)

Proof. Let σh = (σh,1, σh,2, σh,3, σh,4) the smoothing radial basis function under tension associated with A, B , f (B), 
τ and ε, considering f (bi) as an element of R4, for i = 1, . . . , M .

From Theorem 2 we can deduce that, for all i = 1, 2, 3, 4 and all p ∈ �, we obtain

|fi(p) − σh,i(p)| = o(1), h → 0.

Thus, for i = 1, 2, 3 and for any p ∈ � we have

σh,i+1(p) − σh,i(p) = σh,i+1(p) − fi+1(p) + fi+1(p) − fi(p) + fi(p) − σh,i(p)

and thus

σh,i+1(p) − σh,i(p) ≥ o(1) h → 0.

Then,

σh,1(p) ≤ σh,2(p) ≤ σh,3(p) ≤ σh,4(p), h → 0

and thus σh(p) ∈ TFN , as h → 0 for any p ∈ �.
Hence sh = σh as h → 0.
Consequently, from Theorem 2, we have

lim
h→0

|fi(p) − sh,i(p)| = 0, ∀p ∈ �, i = 1,2,3,4,

and we can confirm that (4.11) and (4.12) hold. �
5. Methodology

In order to verify the ability of approximation of the smoothing fuzzy radial basis function under tension, we will 
illustrate the different phases carried out for a given trapezoidal fuzzy data set. The steps to be undertaken in the 
simulation process are as follows.
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i) Let TDS be a test data set BT est = {xT
1 , ..., xT

ntest } ∈ � to verify the ability of the presented fuzzy approxi-
mation method and its corresponding output fuzzy numbers, UTest = {f (xT

i ) | i = 1, . . . , ntest}, i.e., T DS =
{XT est ; UT est }.

ii) With the data of T DS, it is possible to obtain the output fuzzy data approximation using the presented smoothing 
fuzzy radial basis function under tension sh. This output set is termed as ÛT est = {sh(xT

i ) | i = 1, . . . , ntest}.
iii) Measure the error and similarity between the trapezoidal fuzzy numbers f (xT

i ) and sh(x
T
i ), for any i =

1, ..., ntest (the error measure is defined as d(f (xT
i ), sh(x

T
i )) and the similarity measure is defined as 

S(f (xT
i ), sh(xT

i )), where S is the Chen index (SCHEN ), the Hsieh index (SHSIEH ) or the Chen & Chen index 
(SSCGM )).

iv) In order to analyze the fuzzy data approximation using smoothing fuzzy radial basis functions under tension we 
consider the following error and similarity average indices:

d = 1

ntest

ntest∑
i=0

d(f (xT
i ), sh(x

T
i )),

S = 1

ntest

ntest∑
i=0

S(f (xT
i ), sh(x

T
i )),

(5.1)

6. Numerical examples

6.1. Parameters of the problem

To analyze the behavior of the approximation of fuzzy numbers, performed by smoothing fuzzy radial basis func-
tions under tension, various simulations have been carried out, in which five important factors can be modified:

1) The number of center points to build the radial basis functions, that will be denoted as nctrs.
2) The number of approximation points used, denoted by np.
3) The parameter ε of the definition of the basis functions. This variable ε is called the shape parameter.
4) The parameter τ , that reflects the relative importance which we give to the two conflicting objectives: accuracy 

in approximation (remaining close to the data), and obtaining a smooth fuzzy function s. It is a tradeoff between 
precision and smoothness.

5) The number of random test points for measure the similarity average index, denoted by ntest

6.2. Original fuzzy function

We consider the fuzzy function f : [0, 1] × [0, 1] −→ TFN , given by

f (x, y) = (a1(x, y), a2(x, y), a3(x, y), a4(x, y)) =
(−0.8 + 0.75e−((5x−2)2+(5y−2)2),0.75e−((5x−1)2+(5y−1)2),

0.75 + 0.5e−((6x−2)2+(6y−3)2),1.5 + 0.9e−((6x−4)2+(5y−2)2)).

6.3. Numerical results

Fig. 1 shows the original fuzzy function and its approximation for nctrs = 81, np = 100, τ = 1e − 9 and ε = 1, 
from left to right.

Tables 1, 2 and 3 illustrate the performance of the approximation error and similarity average indices, when ana-
lyzing some different values of nctrs, np and τ , for ntest = 5000 and ε = 0.1, ε = 1 and ε = 10, respectively.

7. Conclusions

1) In this work a new approximation method of 3D trapezoidal fuzzy data by smoothing fuzzy radial basis functions 
under tension has been studied.
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Fig. 1. From left to right, the original fuzzy function and its approximation for nctrs = 81, np = 100, τ = 1e − 9 and ε = 1.

Table 1
Function f (x, y). Similarity average indices estimates for different values of the approximation method parameters.

ε nctrs np τ SCHEN SHSIEH SSCGM d

0.1 25 50 1e-5 0.988907 0.993159 0.989209 2.2823e-2
1e-7 0.997818 0.998400 0.997858 4.6650e-3
1e-9 0.997747 0.998642 0.997779 4.7419e-3

100 1e-5 0.998483 0.999056 0.998499 3.3843e-3
1e-7 0.998290 0.999139 0.998312 3.6414e-3
1e-9 0.998503 0.999133 0.998516 3.3634e-3

500 1e-5 0.996072 0.997154 0.996112 9.1060e-3
1e-7 0.992329 0.994216 0.992428 1.9417e-2
1e-9 0.997381 0.998794 0.997397 6.0180e-3

81 50 1e-7 0.983675 0.996465 0.993789 1.0590e-2
1e-9 0.997996 0.999392 0.998018 4.6631e-3
1e-11 0.997968 0.998882 0.997991 4.4555e-3

100 1e-7 0.971020 0.987234 0.974210 5.2693e-2
1e-9 0.990503 0.999151 0.991206 1.9918e-2
1e-11 0.998514 0.999201 0.998523 3.2482e-3

500 1e-7 0.995777 0.996849 0.995845 8.4172e-3
1e-9 0.999045 0.999730 0.999049 2.3118e-3
1e-11 0.998777 0.999752 0.998786 2.7374e-3

225 50 1e-7 0.994403 0.999105 0.994493 1.2200e-2
1e-9 0.996426 0.998983 0.996587 7.8953e-3
1e-11 0.995828 0.997608 0.995902 9.5876e-3

100 1e-7 0.998293 0.999216 0.998304 3.7257e-3
1e-9 0.995974 0.998551 0.996155 1.2654e-2
1e-11 0.996415 0.99862 0.996544 6.7600e-3

500 1e-7 0.996818 0.997337 0.996857 7.2918e-3
1e-9 0.998274 0.999098 0.998289 2.9491e-3
1e-11 0.995912 0.99831 0.996352 9.3615e-3

2) For this we have presented the definition, computation and some convergence results of the smoothing fuzzy 
radial basis function under tension from the input 3D trapezoidal fuzzy data set.

3) According to the presented tables, for fixed values of the remainder of the parameters, we can conjecture the 
existence of an optimal value of parameter τ , which can be approximated by the cross validation method.

4) Also, according to the presented tables, for fixed values of the remainder of the parameters, we can conjecture the 
existence of an optimal value of parameter ε.

4) Finally we can observe that the error average index d tends to 0 and the similarity average indices S tend to the 
unity (for the different similarity measures used SCHEN, SHSIEH and SSCGM ) under adequate hypotheses for 
the problem parameters, as nctrs and np tend to +∞, as h → 0, which confirms the given convergence results.
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Table 2
Function f (x, y). Similarity average indices estimates for different values of the approximation method parameters.

ε nctrs np τ SCHEN SHSIEH SSCGM d

1 25 50 1e-5 0.998817 0.999453 0.998841 2.8786e-3
1e-7 0.999039 0.999468 0.999054 2.0472e-3
1e-9 0.999027 0.999483 0.999042 2.0280e-3

100 1e-5 0.999526 0.999725 0.999530 1.0622e-3
1e-7 0.999547 0.999737 0.999550 9.7867e-4
1e-9 0.999546 0.999737 0.999549 9.7863e-4

500 1e-5 0.999639 0.999809 0.999640 8.0633e-4
1e-7 0.999644 0.999809 0.999645 7.8797e-4
1e-9 0.999645 0.999809 0.999646 7.8238e-4

81 50 1e-7 0.998238 0.999630 0.998311 4.3516e-3
1e-9 0.988555 0.998336 0.995505 2.1941e-2
1e-11 0.988555 0.998336 0.995505 2.1941e-2

100 1e-7 0.999789 0.999910 0.999790 4.9729e-4
1e-9 0.998793 0.999686 0.998797 3.1962e-3
1e-11 0.999780 0.999900 0.999781 5.7181e-4

500 1e-7 0.999902 0.999956 0.999902 2.4780e-4
1e-9 0.999898 0.999953 0.999898 2.5945e-4
1e-11 0.999778 0.999867 0.999778 6.0303e-4

225 50 1e-7 0.995997 0.998450 0.996096 7.5452e-3
1e-9 0.932759 0.972674 0.94248 4.1420e-2
1e-11 0.998909 0.999484 0.998914 2.3016e-3

100 1e-7 0.999733 0.999484 0.999737 6.4181e-4
1e-9 0.99959 0.9998 0.999597 1.3297e-3
1e-11 0.99954 0.999845 0.999543 1.3506e-3

500 1e-7 0.999925 0.999959 0.999925 1.9554e-4
1e-9 0.999954 0.999977 0.999954 1.2862e-4
1e-11 0.999965 0.999986 0.999965 9.0140e-5

Table 3
Function f (x, y). Similarity average indices estimates for different values of the approximation method parameters.

ε nctrs np τ SCHEN SHSIEH SSCGM d

10 25 50 1e-5 0.998425 0.999407 0.998459 3.4761e-3
1e-7 0.996894 0.998415 0.997103 7.0671e-3
1e-9 0.996481 0.998126 0.997779 7.9208e-3

100 1e-5 0.998594 0.999487 0.998630 3.1538e-3
1e-7 0.998260 0.999805 0.998349 3.6527e-3
1e-9 0.998251 0.999402 0.998342 3.6672e-3

500 1e-5 0.998883 0.999578 0.998894 2.4538e-3
1e-7 0.998885 0.999581 0.998893 2.4527e-3
1e-9 0.998886 0.999582 0.998895 2.4526e-3

81 100 1e-5 0.999520 0.999824 0.999527 1.1695e-3
1e-7 0.999900 0.999823 0.999467 1.4075e-3
1e-9 0.999241 0.999755 0.999258 1.5961e-3

500 1e-5 0.999478 0.999861 0.999480 1.1190e-3
1e-7 0.999829 0.999912 0.999829 3.9295e-4
1e-9 0.999638 0.999797 0.999638 8.2272e-4

1500 1e-5 0.999677 0.999779 0.999678 7.1248e-4
1e-7 0.999672 0.999842 0.999673 7.1546e-4
1e-9 0.999602 0.999870 0.999602 9.3121e-4

225 100 1e-5 0.999364 0.999758 0.999376 1.5926e-3
1e-7 0.999685 0.999848 0.999690 8.2711e-4
1e-9 0.991246 0.999271 0.994475 2.6304e-3

500 1e-5 0.999936 0.999969 0.999937 1.7874e-4
1e-7 0.999945 0.999978 0.999946 1.4029e-4
1e-9 0.999953 0.999979 0.999955 1.2489e-4

1500 1e-9 0.999932 0.999957 0.999952 1.4492e-4
1e-11 0.999959 0.999988 0.999960 9.6331e-5
1e-13 0.999971 0.999989 0.999973 7.6271e-5
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