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A B S T R A C T   

Systemic lupus erythematosus and primary Sjogren’s syndrome are complex systemic autoimmune diseases that 
are often misdiagnosed. In this article, we demonstrate the potential of machine learning to perform differential 
diagnosis of these similar pathologies using gene expression and methylation data from 651 individuals. 
Furthermore, we analyzed the impact of the heterogeneity of these diseases on the performance of the predictive 
models, discovering that patients assigned to a specific molecular cluster are misclassified more often and affect 
to the overall performance of the predictive models. In addition, we found that the samples characterized by a 
high interferon activity are the ones predicted with more accuracy, followed by the samples with high inflam-
matory activity. Finally, we identified a group of biomarkers that improve the predictions compared to using the 
whole data and we validated them with external studies from other tissues and technological platforms.   

1. Introduction 

Systemic autoimmune diseases (SADs) are heterogeneous and com-
plex pathologies whose main hallmark is an immune response to self- 
antigens, causing tissue injury and failure in different organs. 
Although these diseases cause different symptoms, they share risk fac-
tors [1], clinical manifestations [2], and molecular alterations (e.g., 
gene expression alterations [3]). 

In order to establish a molecular classification of SADs patients, 
whole blood transcriptome and methylome data have been previously 
used from patients from seven SADs, including systemic lupus erythe-
matosus (SLE) and primary Sjogren’s syndrome (pSjS) [4]. In a previous 
work, we used these data to demonstrate the existence of four subgroups 
of SADs patients based on clustering analysis of molecular profiles [4]. 
The defined clusters were named ‘inflammatory’, ‘lymphoid’, ‘inter-
feron’ and ‘undefined’ and each one was characterized by different 
serological, cellular, genetic and clinical features. Overexpression and 

hypomethylation of genes and CpGs from neutrophil and 
monocyte-driven modules were characteristic of the inflammatory 
cluster. T and NK cell functions defined the lymphoid cluster, whereas 
interferon, viral, and dendritic cell functions defined the interferon 
cluster. The undefined cluster did not present distinct functional mod-
ules compared to healthy controls. B lymphocyte functions were seen in 
both the lymphoid and interferon clusters, and cell cycle and tran-
scriptional upregulation were connected to the interferon cluster. The 
undifferentiated patterns of the undefined cluster were explained by the 
low disease activity found in these samples, concluding that these pa-
tients have healthy-like molecular patterns. 

SLE is a complex disorder with an autoimmune background, a 
multifactorial etiology, impairment of several organic systems, a wide 
spectrum of clinical manifestations, variable prognosis, and an evolving 
clinical course marked by the occurrence of episodes of active disease 
and remission [5]. It is interesting to note that the prevalence of SLE is 
rising across the globe, with rates varying from 40 to >160 per 100,000 
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people [6]. On the other hand, pSjS is another autoimmune chronic 
inflammatory clinical condition that primarily affects the lacrimal and 
salivary glands and results in a decrease in the salivary and lacrimal 
flows and, as a result, to symptoms of dry mouth and dry eyes [7]. 

The heterogeneity of SADs patients makes diagnosis and treatment 
difficult. In this context, it is sometimes challenging to differentiate 
between pathologies with overlapping clinical features, like SLE and 
pSjS. Some symptoms shared by these two diseases are hemolytic ane-
mia, leukopenia, lymphopenia, thrombocytopenia, photosensitivity or 
fatigue, among others [8–12]. Nevertheless, both pathologies are char-
acterized by the upregulation of the interferon (IFN) signature [13,14], a 
set of genes regulated by the IFN cytokine. 

For these reasons, it is common for pSjS patients to be misdiagnosed, 
underdiagnosed, or diagnosed at late stages of the disease [15], even 
after 6–10 years from presenting the first symptoms [16]. Consequently, 
proper therapeutic strategies are delayed, contributing to evitable tissue 
damage. 

Previous efforts have been made to distinguish SLE and pSjS patients 
from the clinical point of view [2,15], using methylation data [17], 
metabolomics data [18], or salivary protein biomarkers [19]. However, 
to the best of our knowledge, gene expression data has not been used to 
perform a differential diagnosis between SLE, pSjS and healthy controls. 
Given that measuring gene expression has become an affordable 
approach, we studied its potential as a diagnostic tool for these patients. 
Furthermore, although methylation data has been used previously to 
perform pairwise predictions (SLE vs. healthy, pSjS vs. healthy, and SLE 
vs. pSjS) [17], a multiclass classifier to distinguish the samples from 
these 3 groups simultaneously was not proposed. Nevertheless, we 
consider that a multiclass predictor may be helpful in the clinical 
context. Importantly, some specific dysregulation in these diseases may 
be observed at the gene expression and DNA methylation level, but not 
with other data types such as metabolomics. For instance, the IFN 
signature, which plays a crucial role in the development and progression 
of SLE and pSjS [13,14], may be directly assessed with gene expression 
data and indirectly with methylation data, since promoters of 
IFN-regulated genes (e.g., IFI44L) are differentially methylated [20]. 
Therefore, these are very valuable data modalities to study and predict 
the clinical diagnosis in this context. 

In this study, we applied machine learning (ML) methodologies to 
classify SLE and pSjS patients, as well as healthy controls. Operatively, 
we designed an analysis pipeline to train a eXtreme Gradient Boosting 
(XGBoost) multiclass predictor for each type of data. Given the hetero-
geneity of these diseases, we also studied whether the performance of 
the XGBoost models varies according to the molecular clusters previ-
ously defined for these patients [4]. Furthermore, we obtained subsets of 
genes and cytosine-phosphate-guanine (CpGs) that improve the perfor-
mance of the predictors and we characterized the molecular implica-
tions of these features into the studied diseases. In addition, we 
evaluated the predictivity of these features as biomarkers for the labels 
in independent datasets. Finally, we constructed specific models and 
feature selections for the group of patients with healthy-like molecular 
patterns. 

2. Methods 

2.1. Data 

The data used in this study was produced for a previous work [4], 
which generated multi-omics data from whole blood samples obtained 
from patients with seven different SADs and healthy controls. In detail, 
we used matched expression and methylation data from 213 SLE pa-
tients, 181 pSjS patients and 257 healthy controls. Table 1 shows the 
distribution of the SLE and pSjS samples according to their assigned 
molecular cluster. 

Illumina HiSeq2500 and Illumina Beadchip 450k technologies were 
used to measure the transcriptome and methylome, respectively, in each 

sample. For the transcriptome experiment, messenger ribonucleic acid 
(mRNA) was extracted and sequenced. These sequenced reads were 
aligned to the reference human genome and the number of reads aligned 
to each gene (raw counts) were extracted. These raw counts are a 
measure of genes expression since they are proportional to the amount 
of mRNA in the cells. For the methylome analysis, the intensity of the 
methylated and unmethylated probes in the Beadchip arrays was 
measured and, after appropriate data processing, M-values for each 
analyzed CpG was obtained. Further information about the cohorts, 
experimental procedures and data preprocessing is available from the 
previous article [4]. 

2.2. Data processing 

In order to discard uninformative features, we filtered out those 
genes with less than 5 counts in at least half of the samples of each 
group. Furthermore, we discarded those genes and CpG sites with a 
coefficient of variation lower than 0.4 and 0.1 respectively, retaining 
information for 8413 genes and 253,903 CpGs. We adjusted the 
expression and methylation data for the technical variables pool and 
sample plate, respectively, using the ComBat method [21] implemented 
in the sva R package. We normalized the adjusted expression values with 
the trimmed mean of M-values (TMM) normalization [22] implemented 
in the NOISeq R package [23]. We used the Uniform Manifold Approx-
imation and Projection (UMAP) method [24] for dimension reduction to 
explore the gene expression data. Finally, given the number of features, 
we performed differential expression and methylation analyses to 
reduce the computational costs of the ML models. For that aim, we used 
the limma package [25], to compare SLE vs. Healthy, pSjS vs. Healthy 
and SLE vs. pSjS groups. After ranking each feature by the obtained 
P-value, we selected the top 2000 genes and 3000 CpGs from each 
comparison, obtaining a final list of 3.681 genes and 7.596 CpGs after 
removing duplicated features. 

2.3. Model fitting and evaluation 

In the first place, we used the Python library lazypredict to test the 
performance of 29 ML models on both the expression and the methyl-
ation data. XGBoost was the model with the highest Matthews Corre-
lation Coefficient (MCC) for both types of data (Supplementary Table 1) 
and was selected for further analyses. 

XGBoost is a ML algorithm that use gradient boosting and ensemble 
learning to combine multiple decision trees for classification and 
regression tasks [26]. This approach minimizes a loss function to add 
new trees to the model. XGBoost has become a broadly used ML method 
due to its good performance and scalability. 

For each data type, we split the data randomly into a training set and 
a test set following a 80/20 partition. We standardized the training sets 
with the StandardScaler function of the scikit-learn Python library [27], 
which calculates Z-scores subtracting the mean and dividing by the 
standard deviation. We used the parameters learnt from the training sets 
(means and standard deviations) to scale the test sets. We used the 
training set to optimize the hyperparameters for the XGBoost classifier 
through a 10-fold cross-validation (CV) approach. Specifically, we 
optimized the learning rate, maximum tree depth, gamma, alpha, 
lambda, minimum child weight, subsample ratio of the training instance 
and subsample ratio of columns hyperparameters. We used the softmax 

Table 1 
Distribution of the patients samples in the four molecular clusters.  

Cluster SLE samples pSjS samples Total 

Lymphoid 28 42 70 
Inflammatory 45 23 68 
Interferon 80 70 150 
Undefined 60 46 106  
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loss function for the multiclass classification task. Given the high num-
ber of possible combinations of hyperparameter values, we performed a 
grid search with 100 random combinations using scikit-learn’s Ran-
domizedSearchCV function and we selected the hyperparameter com-
binations with the best mean MCC on the internal validation sets. 

Once the best fitting hyperparameters were selected, we trained a 
XGBoost model with those hyperparameters and the training set. We 
used that model to predict the labels of the test set and we evaluated the 
performance for this prediction. This workflow is shown in Fig. 1. The 
whole process was repeated 10 times to avoid biases due to the training 
and test set splitting of the first step, following the FDA-SEQC guidelines 
for reproducibility. We used the Python library scikit-learn [27] to apply 
all the described ML methodologies. 

To evaluate the performance of the models, we calculated the ac-
curacy (defined as the fraction of correct predictions), the mean preci-
sion for the three classes (1) weighted by the number of samples of each 
class, and the weighted F1 score (2). 

Precision=
TP

TP + FP
(1) 

Being TP the number of true positives and FP the number of false 
positives. 

F1= 2 ×
Precision × Recall
Precision + Recall

(2)  

Where recall is calculated following (3). 

Recall=
TP

TP + TN
(3) 

Being TN the true negatives. 
We also calculated the MCC [28,29], which is a balanced measure of 

accuracy and precision that can be used to evaluate multiclass models. 
MCC maximum value is 1, which indicates a perfect prediction. The 
MCC for K classes is calculated following (4) [30]. 

MCC=

c × s −
∑K

k
pk × tk

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

s2 −
∑K

k
pk

2

)

×

(

s2 −
∑K

k
tk

2

)√ (4)  

Where tk is the amount of k labelled samples in the data; pk is the number 
of times that class k was predicted; c is the number of samples correctly 
predicted and s is the total number of samples. 

2.4. Variable selection and functional analysis 

For feature selection, we excluded the data from the patients 
belonging to the undefined cluster, which have a healthy-like molecular 
pattern. For each of the 10 rounds of the model fitting and evaluation 
(Fig. 1), we ranked the features of the model (i.e., genes and CpGs) based 
on their Gini importances [31] in the XGBoost models fitted with the 
training sets. Then, we obtained the mean position of each feature for 
the 10 folds and we sorted the features accordingly. We repeated the 
model fitting and evaluation with increasing subsets of top features 
(from 10 to 1000). We calculated the mean MCC for each subset along 
the 10 rounds and we selected the subset with the maximum mean MCC 
(i.e., the top 90 genes for expression and the top 900 CpGs for 
methylation). 

We annotated the genes and CpGs with biomaRt [32,33] and Illu-
minaHumanMethylation450kanno.ilmn12.hg19 R packages respec-
tively. We used the GeneCodis tool [34,35] to perform the functional 
analysis of the selected features, using as input the ENSEMBL and CpG 
probe identifiers and selecting Reactome as annotation. We considered 
as significant those pathways with a False Discovery Rate (FDR) < 0.05. 

2.5. External data processing and analysis 

With the aim of testing the selected biomarkers utility for the 

Fig. 1. Data analysis workflow. The initial data was split into training and test sets. Training sets were used to tune the XGBoost model with 100 rounds of 10-fold 
CV. A XGBoost model with these optimized hyperparameters was trained with the training set. This model was used to predict the labels of the test set and to evaluate 
the performance with the results of the prediction. This outer data splitting was repeated 10 times. 
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classification of healthy and diseased samples, we used public gene 
expression and DNA methylation datasets available in the Gene 
Expression Omnibus (GEO) [36]. For the gene expression dataset (GEO 
ID: GSE108497), we downloaded the processed data from the ADEx 
database [37]. Data for 62 of the 90 genes were available for this dataset. 
For the DNA methylation dataset (GEO ID: GSE166373), we used the 
GEOquery R package [38] to download the raw idat files. We processed 
these raw data with the minfi package [39] applying the 
normal-exponential out-of-band (Noob) normalization [40]. Data for the 
900 selected CpGs were available for this dataset. 

We followed the same analytical pipeline described previously, with 
the exception that we did not perform a batch effect correction for these 
data. We assessed the performance of the models with the accuracy and 
MCC metrics. Being this a binary classification, the MCC formula (4) 
reduces to the simpler form (5): 

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (5) 

The code to process and analyze the validation data is available at 
https://github.com/GENyO-BioInformatics/SLE_pSjS_classifier. 

3. Results and discussion 

3.1. Diagnosis capacity depends on the patients’ molecular profile 

In the first place, we represented the UMAP plots to explore how 
samples are grouped according to their gene expression profiles (Fig. 2). 
As can be observed, SLE and pSjS samples overlap completely, and 
samples from both diseases overlap partially with the healthy controls 
(Fig. 1A). These results illustrate the challenge of classifying these 

diseases. On the other hand, if samples are colored by their molecular 
cluster assigned in our previous work [4], it can be observed that the 
inflammatory and interferon clusters are almost perfectly separated 
from the healthy samples, while the lymphoid and, especially, the un-
defined clusters overlap with the healthy samples (Fig. 2B). 

Next, we used lazypredict library to calculate the mean MCCs ob-
tained by different ML models after 10 rounds of training/test splitting 
(Supplementary Table 1). The model with the highest mean MCC in 
expression and methylation data was XGBoost, which was selected to 
perform the classifications. 

We trained and evaluated XGBoost models to classify the three 

Fig. 2. UMAP plots of the gene expression data with samples colored by their clinical diagnosis (A) and by their previously assigned molecular cluster (B).  

Table 2 
Accuracy, precision, F1 and MCC scores for the test sets of each group of samples.  

Group Accuracy Precision F1 MCC 

Mean SD Mean SD Mean SD Mean SD 

Expression 
Overall 0.7221 0.0284 0.7162 0.0313 0.7077 0.0237 0.5791 0.0409 
Lymphoid 0.8515 0.0433 0.5674 0.1668 0.5010 0.0887 0.4705 0.1466 
Inflammatory 0.9077 0.0370 0.6680 0.1622 0.6272 0.1025 0.6802 0.0900 
Interferon 0.8805 0.0262 0.8014 0.0646 0.7877 0.0598 0.7717 0.0523 
Undefined 0.7630 0.0323 0.5990 0.1353 0.5243 0.0857 0.3840 0.1075 
Pathological 0.7780 0.0398 0.7525 0.0399 0.7351 0.0364 0.6538 0.0551 
Methylation 
Overall 0.7053 0.0330 0.6952 0.0346 0.6865 0.0342 0.5546 0.0484 
Lymphoid 0.8667 0.0473 0.6540 0.1588 0.5858 0.1047 0.5709 0.1135 
Inflammatory 0.8815 0.0441 0.6502 0.1961 0.5760 0.1289 0.5855 0.1668 
Interferon 0.8780 0.0359 0.8045 0.0390 0.7801 0.0538 0.7692 0.0622 
Undefined 0.7644 0.0308 0.6168 0.1558 0.4971 0.0754 0.3767 0.0985 
Pathological 0.7780 0.0296 0.7566 0.0310 0.7395 0.0303 0.6522 0.0401  

Fig. 3. MCC scores for each molecular cluster with XGBoost models based on 
expression and methylation data. For each cluster and data type there are 10 
MCCs corresponding to the 10 rounds of training-test splitting. 
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classes of our cohort (SLE, pSjS and healthy) considering all the samples 
(‘overall’ group). Accuracy, weighted precision and weighted F1 scores 
for our predictors are reported in Table 2. However, it has been reported 
that these metrics may be inflated [41]. For that reason, we also 
calculated the MCCs and we interpreted the results based on these 
scores. 

Our first multiclass predictor model, which used the complete 
datasets, achieved a test set MCC of 0.5791 ± 0.0409 and 0.5546 ±
0.0484 for expression and methylation data, respectively (Table 2). 

In previous work, we demonstrated that SADs patients may be 
classified in four molecular clusters with different characteristics [4]. 
For this reason, we wondered whether the performance of our models 
varies between the different groups of samples. To answer this question, 
we repeated the analyses for each individual cluster of samples (i.e., 
lymphoid, inflammatory, interferon and undefined clusters). 

Using the expression data, these models showed a differential per-
formance among clusters (Table 2, Fig. 3), with remarkable low per-
formance for the undefined cluster (MCC = 0.3840 ± 0.1075). This 
cluster of patients was previously associated with low disease activity 
and showed a healthy-like molecular pattern [4], so they were expected 
to be poorly predicted. At the other extreme, the interferon cluster 
showed the best prediction results (MCC = 0.7717 ± 0.0523), followed 
by the inflammatory cluster results were close (MCC = 0.6802 ±
0.0900). These results are also in accordance with the characterization 
of these two molecular clusters, since they were associated with the most 
extreme manifestations (e.g., nephritis and thrombosis for the interferon 
cluster, and fibrosis complications for the inflammatory cluster) [4]. On 
the other hand, the moderate performance for the lymphoid cluster 
(MCC = 0.4705 ± 0.1466) is also coherent with the mild symptoms 
associated with this cluster (e.g., gastrointestinal manifestations) [4]. 

We followed the same methodology to construct predictor models 
based on methylation data, observing the same trend regarding the 
differential prediction capacity in the different molecular clusters 
(Table 2, Fig. 3). Furthermore, we decided to repeat the overall analysis 
excluding the samples belonging to the undefined cluster, given that 
they represent healthy-like molecular profiles and they were probably 
affecting the overall model accuracy. We defined this new group of 
samples as the ‘pathological’ group, which includes the samples from 
the inflammatory, lymphoid and interferon clusters. The pathological 
group comprises the molecular heterogeneity found for active SLE and 
pSjS patients and our predictor showed a middle performance between 
the individual pathological clusters (MCC = 0.6538 ± 0.0551 and 
0.6522 ± 0.0401 for expression and methylation data respectively). 

3.2. Variable selection improves the predictors performance 

Following a feature selection strategy (see Methods) we identified 
the most informative subsets of genes and CpGs, which could be used as 
biomarkers to differentiate SLE, pSjS and healthy controls. In this way, 
we proposed a set of 90 genes for gene expression (Supplementary 
Table 2) and 900 CpGs for DNA methylation (Supplementary Table 3) 
that may be used to distinguish SLE and pSjS, both from healthy controls 
and between them. For gene expression, the mean MCC for the patho-
logical cluster increased from 0.6538 to 0.7310 ± 0.0312 using the 
subset of 90 genes. For DNA methylation, the MCC increased from 
0.6522 to 0.6717 ± 0.0572. 

We performed an enrichment analysis to get insight into the bio-
logical pathways in which the selected biomarkers are involved. We 
discovered that the most enriched pathways are related to relevant 
processes in SADs, such as interferon signaling and interleukins 
signaling (Supplementary Table 4). We obtained similar results with the 
selected CpGs methylation sites (Supplementary Table 5, Fig. 4). 

In addition, we constructed an integrated model concatenating the 
selected genes and CpGs in a new dataset containing gene expression 
and DNA methylation data. Using these data, we obtained a mean MCC 
of 0.7159 ± 0.0387, what is lower than using only the gene expression, 

but higher than using only the DNA methylation. 
Furthermore, we tested the utility of selecting these features for 

predictive tasks on external public datasets available in GEO [27]. For 
gene expression, we used a dataset with 325 SLE patients and 187 
healthy controls (GEO ID: GSE108497), which used the Illumina 
HumanHT-12 V4.0 expression beadchip technology to measure gene 
expression in whole blood samples. Following the same workflow that 
we used to prepare diagnostic models for our data, we obtained pre-
dictive models with a mean accuracy of 0.8496 ± 0.0365 and a mean 
MCC of 0.6712 ± 0.0836. For DNA methylation, we used a dataset with 
64 pSjS patients and 67 healthy controls (GEO ID: GSE166373), which 
used the Illumina HumanMethylation450 BeadChip and the Illumina 
Infinium MethylationEPIC platforms to measure the DNA methylation 
levels in labial salivary gland samples. For this dataset, the predictive 
models achieved a mean accuracy of 0.7926 ± 0.0894 and a mean MCC 
of 0.5958 ± 0.1764. These results suggest that the selected biomarkers 
may be useful for the diagnosis of SLE and pSjS patients, even for data 
from different technologies and tissues than the ones used in our cohort. 

3.3. The undefined cluster has a specific gene expression signature 

As previously commented, the undefined cluster contains a group of 
patients with molecular patterns very similar to healthy controls. For 
that reason, it is very challenging to classify these samples with 
expression and methylation data. Nevertheless, we tried to improve the 
results with specific models and feature selection for this subset of 
samples. For that aim, we performed the feature selection process 
described in Section 3.2 for this group, selecting 50 genes for gene 
expression (Supplementary Table 6) and 640 CpGs for DNA methylation 
(Supplementary Table 7). The mean MCCs were 0.5746 ± 0.0811 and 
0.4914 ± 0.1079 for expression and methylation data respectively. 
Although the performance without feature selection was similar for 
expression and methylation (Table 2, Fig. 3), the results are better with 
expression after feature selection. Interestingly, only 14 of the 50 genes 
(28%) overlap with the 90 selected genes for the pathological group, 
while the majority of CpGs (624 of 640, 97.5%) overlap with the 
selected CpGs for the pathological group. These results may indicate that 
the undefined cluster has specific gene expression alterations that may 
help to diagnose these difficult samples, while the alterations at DNA 
methylation level are similar to the other groups and are not as useful to 
perform this classification. 

Fig. 4. Network with the top 10 most significant pathways for the enrichment 
analysis of the methylation biomarkers. Reactome pathways (blue circles) are 
connected to the corresponding genes (orange circles). The circles size is pro-
portional to the statistical significance and the color intensity to the number 
of biomarkers. 
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4. Conclusions 

SLE and pSjS are two SADs with some overlapping symptoms. High 
throughput technologies such as RNA-Seq and microarrays may be 
valuable tools for the differential diagnosis of these pathologies. In this 
work, we demonstrated that ML methodologies can predict the disease 
status of each patient from expression and methylation data, although 
the prediction capacity depends on the molecular background of the 
patients. Furthermore, we selected subsets of features that improve the 
predictions and have important roles in the pathological mechanisms of 
SADs. We validated these features with external datasets, demonstrating 
their capability to diagnose each disease from both expression and 
methylation data. Finally, we obtained specific sets of biomarkers that 
may be useful to classify the samples from the undefined cluster, which 
have a healthy-like molecular pattern. Although some previous works 
used different types of data to perform differential diagnosis of SLE and 
pSjS, as far as we know the present study appears to be the first work 
describing multiclass classifiers to perform this task from expression and 
methylation data. In our opinion, the results of this work demonstrate 
the potential use of transcriptome and methylome data to perform dif-
ferential diagnoses of SADs using ML approaches. 
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