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ABSTRACT:

This work uses the computational Particle Swarm Optimization method (PSO) to optimize the
magnetic field created by a device, as well as determining the position and magnetic moment for
a dipole. In addition, it serves to simulate the magnetic field created by such device. The PSO
method is normally used for satellites which measure magnetic fields, so that the magnetic field
created by the devices included in the satellite can be determined and deducted. The magnetic
fields of the devices were measured in the Mobile Coil Facility (MCF), property of the European
Space Agency (ESA). We found the optimum values of position and magnetic moment for two
dipoles, recreating the magnetic field produced by the filter wheel within the MCF. We will prove
that the PSO method can be used to optimize magnetic fields and recreate them with dipoles.

PALABRAS CLAVE:

Optimización por Enjambre de Partículas (PSO), satélite Ulyses, Agencia Espacial Europea (ESA),
Centro Europeo de Investigación y Tecnología Espacial (ESTEC), Mobile Coil Facility (MCF),
rueda de filtro, dipolo magnético.

RESUMEN:

Este trabajo utiliza el método computacional Optimización por Enjambre de Partículas (PSO)
para optimizar un campo magnético creado por un dispositivo y encontrar la posición y momento
magnético para un dipolo. Además, sirve para simular el campo magnético creado por dicho
dispositivo. El método PSO se utiliza normalmente para satélites que miden campos magnéticos,
de forma que el campo magnético creado por los dispositivos que componen el satélite puede
ser determinado y substraído. Los campos magnéticos de los dispositivos fueron medidos en el
MCF, perteneciente a la Agencia Espacial Europea (ESA). Encontramos los valores óptimos para
la posición y momento magnético para dos dipolos, recreando el campo magnético producido
por una rueda de filtro medida en el MCF. Demostramos que el método PSO puede ser usado
para optimizar campos magnéticos y recreándolos con dipolos.
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Chapter 1

Introduction

In spacecraft engineering many satellites in outer space are employed to measure some
interaction with a magnetic field. Ulysses satellite was used to measure solar magnetic fields at
the Sun’s poles [18]. As this devices also creates its own magnetic field, it needs to be
considered. The main focus of this paper will be to study the behavior of the magnetic field
created by a filter wheel, for this, the MCF at European Space Research and Technology Centre
(ESTEC) is used to measure the device’s magnetic field [7]. With a computational method, such
as the PSO, the magnetic field can be recreated using only dipoles [7]. The advantage of this
method is that it allows us used to consider these dipoles as if they were on the satellite.

In this dissertation, chapter 2 introduces the fundamental framework to understand the
magnetic field created by a dipole. For this, Maxwell’s equations need to be used and also to
consider the multipole expansion. To validate the expressions obtained we will then compare
empiric values with theoretical ones. With the help of a simulator like Ansys Electronics, it is
possible to simulate experimental magnetic field of any device [5].

Once the magnetic field equations for a dipole have been validated, we proceed to optimize
the magnetic field measured at the MCF facility. Chapter 4 discusses how the MCF measures
the magnetic fields of equipment used for the Ulysses satellite. The device we will study in this
work is a filter wheel. To optimize the magnetic field of the filter wheel we will require the
PSO method, a computational method employed to calculate optimum values [4]. In this case,
the values needed are the position and the magnetic moment of a dipole. Finally, the results
obtained with the PSO method are discussed.

The aim of this work is to continue the research on magnetic dipoles made previously by
Pedro Manuel Vizcaíno Delgado [21]. For this purpose, we improve the implementation of the
PSO method by including experimental data of a filter wheel from the MCF facility. In that way,
we expect to find the optimum values of position and magnetic moment for a dipole.

Optimizer to obtain the magnetic equivalent of a small satellite 1



Chapter 2

Theorical elements

2.1 Fundamentals of magnetism

During our research with magnetic dipoles, we will encounter problems related to
electromagnetism. To start with we will review the fundamental electromagnetic laws and select
the expressions need to calculate the magnetic field of any device.

First of all, we will mention Maxwell’s equations, this equations are the bricks of
electromagnetic theory and therefore the base of this chapter. Maxwell’s equations [11],
formulated in 1861, consist of four differential equations:

∇E =
ρ

ε0
(2.1.1)

∇B = 0 (2.1.2)

∇× E =
∂B
∂t

(2.1.3)

∇× B = µ0

(
J + ε0

∂E
∂t

)
(2.1.4)

These equations define electromagnetism as we know it. E and B are the electric and magnetic
field respectively, while µ0 and ε0 are the permeability and permittivity constants in vacuum
respectively. Finally, J is the current density, i.e. the amount of charge per unit of time that
passes through an unit area.

First, we have to introduce the concept of magnetic force Fm which is the force produced by a
magnetic field. For a static point-charged particle it suffers a force Fe=qE. If the particle is moving,
it is effected by another force due to the fact that the particle has velocity. This phenomenon can
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be described by Lorentz’s law [11], which states that the magnetic force is proportional to the
charge and velocity of the particle. Equation 2.1.5 shows this force just described.

F = q (Ev× B) (2.1.5)

Therefore, a magnetic field can be produced by a moving charged particle. Given a current I,
which is the flux of charged particles, the total magnetic field will be the sum of each magnetic
field particle. Due to the difficulty of taking into account every particle of the current we suppose
the current as a distribution of moving particles. The expression for the magnetic field created
by a static current was formulated by Biot-Savart and it is known as the Biot-Savart law [19] seen
in equation 2.1.6.

B(r) =
µ0

4π

∫
C

Idl× r′

|r′|3 (2.1.6)

The integration of equation 2.1.6 is along the path C in the direction of the current, being I the
current and µ0 is the permeability constant in vacuum space. The magnetic field has SI units are
Tesla(T) and 1T=1N/A·m. Following the expression 2.1.6, we will employ Ampère’s Law [11],
which is used to calculate magnetic fields produced by a closed loop.

∇× B = µ0J (2.1.7)

∫
(∇× B) ds =

∮
Bdl = µ0

∫
Jds = µ0 I (2.1.8)

Notice that in equation 2.1.8 we have used Stoke’s theorem in the first integral [11]. The
current I is the current enclosed by the closed loop. Then, with the expression 2.1.8 we can

calculate the magnetic field produced by a wire, which will be B =
µ0 I
2πρ

where ρ is the distance

from the wire. The demonstration for the wire is the following:

∮
Bdl =

∮
Bρdφ = Bρ

∫ 2π

0
dφ = µ0 I ⇒ B =

µ0 I
2πρ

φ̂ (2.1.9)

Next, we introduce the concept of magnetic vector potential. From Maxwell’s equation 2.1.2
it is deduced that the magnetic field is a solenoidal vector field which can be written as the curl
of another vector field, called as magnetic vector potential, seen equation 2.1.10.

B = ∇×A (2.1.10)

A being the magnetic vector potential. We can consider Ampère’s Law in its differential form:

Optimizer to obtain the magnetic equivalent of a small satellite
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∇2A = −µ0J (2.1.11)

As working with A can be sometimes really tedious, we define the magnetic scalar potential
in equation 2.1.12.

B = −∇U (2.1.12)

Notice that equation 2.1.12 is similar to the electrostatic potential E = −∇V. The magnetic
vector potential can also be related with the electric field, this is known from Maxwell equation
2.1.4. This is for non-stationary cases, as we will not work in this type of cases, it is out of the
scope of this study.

2.2 Dipole expansion

In this section we will calculate the dipole expressions. If we have a static current in a small
region in space, and we try to calculate the magnetic field produced by the device we can use
the dipole approximation. For this approximation to work, it is necessary that the distance of
measuring is much larger than the region where the current flows.

Keep in mind that the dipole expansion is an approximation as we will see. We start by
writing the magnetic vector potential:

A =
µ0 I
4π

∮ dr′

|r− r′| (2.2.1)

If we use Taylor’s series for the term in the integral [8], we get:

1
|r− r′| =

1
r
+

r · r′
r3 +O(δ2)

As an alternative this expression can be deduced:

1
|r− r′| =

1√
(r− r′)(r− r′)

=
(
r2 − 2rr′ + r′2

)−1/2

=
1
r

(
1− 1

2

(
−2

r · r′
r2 +

r′2

r2

)
+O(δ2)

) (2.2.2)

So the magnetic vector potential with the Taylor’s expansion [8] can be written as:
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A =
µ0 I
4π

(∮ dr′

r
+
∮ r · r′

r3 dr′ + . . .
)
=

µ0 I
4π

(
1
r

∮
dr′ +

1
r3

∮
(r · r′)dr′ + . . .

)
(2.2.3)

Looking at the term of the integral, the first integral
∮

dr′ = 0 because the integral of a closed
path is zero. This result indicates that there are no magnetic monopoles. The second integral is
non-trivial, we have to use Stoke’s theorem [8] to solve it:

∮
φdr′ =

∫
ds×∇φ (2.2.4)

So we get: ∮
dr′
(
r · r′

)
=
∫

dS×∇(r · r′) = S× r (2.2.5)

where S is the vector area, S =
1
2
∫

r × dr′. Then, the expression of the magnetic vector
potential for the dipole expansion is:

A =
µ0 I
4π

1
r3

∮
(r · r′)dr′ =

µ0 I
4π

1
r3 (S× r) (2.2.6)

Being the magnetic moment defined as:

m =
1
2

∫
r× dr′ = SI (2.2.7)

For expression 2.2.6 the final result is:

A =
µ0

4π

(m× r)
r3 (2.2.8)

We can easily calculate the dipole approximation for the magnetic field applying Maxwell’s
equation:

B = ∇×A = ∇×
(

µ0

4π

(m× r)
r3

)
(2.2.9)

With the use of vector operators and identities the result of the curl is as shown:

∇×
(
(m× r)

r3

)
= ∇× (m× r)

1
r3 +∇

(
1
r3

)
× (m× r)) =

r2m− 3(m · r)r
r5

The the magnetic field produced by a dipole [8] is the following:
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B =
µ0

4π

(
3 (m · r) r

r5 − m
r3

)
(2.2.10)

Equation 2.2.10 we can be written for cartesian coordinates. Declaring the position vector as
r = (x − x0)x̂ + (y− y0)ŷ + (z− z0)ẑ and the magnetic moment m = mx x̂ + myŷ + mz ẑ both in
cartesian coordinates, the result for the magnetic field in cartesian coordinates [21] is shown in
equation 2.2.11, 2.2.12 and 2.2.13.

Bx =
µ0

4π

(
3
(
mx(x− x0) + my(y− y0) + mz(z− z0)

)
(x− x0)

r5 − mx

r3

)
(2.2.11)

By =
µ0

4π

(
3
(
mx(x− x0) + my(y− y0) + mz(z− z0)

)
(y− y0)

r5 −
my

r3

)
(2.2.12)

Bz =
µ0

4π

(
3
(
mx(x− x0) + my(y− y0) + mz(z− z0)

)
(z− z0)

r5 − mz

r3

)
(2.2.13)

Where r =
√
(x− x0)2 + (y− y0)2 + (z− z0)2 is the modulus of the vector position. Equations

2.2.11, 2.2.12 and 2.2.13 will be extremely useful later on for the calculation of the magnetic field
in our simulation.

B
(
x0, y0, z0, mx, my, mz

)
(2.2.14)
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Chapter 3

Theoretical Validation

In this chapter our main focus will be to check if the dipole approximation presented in
Chapter 2 coincide with measured values. Our procedure will be to simulate the equations for
the dipole approximation and compare our values with experimental ones.

3.1 Simulation of a magnetic field

3.1.1 Description of our device

We will use a simulator to obtain the empiric values to be compared with our simulation. In
this case we will use Ansys Electronics 2021 simulator, this program can mimic magnetic fields
produced by many different objects. This program has many utilities such as simulation of
circuits, thermal and electro-mechanical among others. It is used worldwide, for example, in
product development [5]. This simulator works with different types of materials and also it
allows to create the device’s geometry. In this case we just want to validate our theoretical
expressions with real ones. We choose to simulate a bookend shaped coil, seen in figure 3.2.

A bookend shaped coil consists in a coil with to faces, one in the plane XY and the other in
the plane XZ [11]. We make a current flow through the coil in anti-clockwise direction. Using
the right-hand rule we can guess the direction of the magnetic field produced, we can see a
simplification of this rule can be observed figure 3.1.

We will compare the values simulated with our program, and discuss the values that we have
obtained during the simulation with the program Ansys Electronics [21].

Optimizer to obtain the magnetic equivalent of a small satellite 7
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I

B 

Figure 3.1 – Visualization of the right hand rule

The first step is to calculate the magnetic field using the dipole approximation derived from
equations 2.2.11, 2.2.12 and 2.2.13.

2
0

0
.0

 m
m

200.0 mm

20
0.

0 
m

m
Z

X

Y  

Figure 3.2 – Structure for the square bookend shaped coils with L = 200 mm

If we take into account the superposition principle, it results easy to see that the coil in figure
3.3 can be separated into two coils perpendicular to each other. In this way the problem simplifies

Optimizer to obtain the magnetic equivalent of a small satellite



9

3

and we can calculate the magnetic field separately, and then sum both results to obtain the global
magnetic field produced by the two coils. The magnetic moment, as defined in equation 2.2.7,
can be written as the sum of each coil separately shown in equation 3.1.1.

 +m2

m1

Figure 3.3 – Structure for the square bookend shaped coils seen as individual coils

m = m1 + m2 = (I1 · S1)k̂ + (I2 · S2) ĵ = (I1 · L2
1)k̂ + (I2 · L2

2) ĵ (3.1.1)

I1, I2 are the current of each coil and S1, S2 are the surfaces. For each coil its initial position
(x0, y0, z0) is different, so for the square coils we write the initial position as seen in table 3.1.
Changing the initial position of the coils will affect the results obtained, therefore the definition
of the initial positions is crucial to run the program.

Coil x0 [mm ] y0 [mm ] [mm ]
Coil 1 0.0 0.0 0.0
Coil 2 0.0 0.0 100.0

Table 3.1 – Initial position components for square coils in figure 3.3.

The current that flow through both coils is I = 100A and the area of the coils is
S = L2 =(0.2)2mm2= 0.04mm2, now we have every constant necessary to calculate the magnetic

Optimizer to obtain the magnetic equivalent of a small satellite



10

3

field using the dipole approximation. For the calculations we will use a programming language
called Python, because of its general-purpose and easyness to learn. We implement the
expressions 2.2.11, 2.2.12 and 2.2.13 in the program to calculate the magnetic field.

3.1.2 Implementation in a Python program

To write the program, first libraries such as numpy, math and matplotib have to be
implemented. Numpy is a Python library useful to work with arrays, math is a basic Python
library for general math constants and operators, and finally matplotlib is a library for creating
figures and graphs in Python [1]. In figure 3.4 we show the libraries used in our program.

Figure 3.4 – Libraries imported into the program

Once the libraries have been defined, we proceed to define the set of position vectors. Because
of the geometry of the magnetic field produced, we define the region using spherical polar
coordinates to simplify calculations. For R constant, we measure at a distance R = 1500 mm
from the origin, creating a sphere of measurements with constant radius R. These points defined
in figure make a sphere with constant radius.

Figure 3.5 – Definition of cartesian coordinates from spherical coordinates

Then we define the magnetic moment and initial positions for each coil. The magnetic moment
as defined in equation 2.2.7 takes into account the current flown through the coils. The initial
position vector tells where are the coils situated in the region of space.

Optimizer to obtain the magnetic equivalent of a small satellite
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Figure 3.6 – Definition of the magnetic moment for each coil

Figure 3.7 – Definition of the initial positions for each coil

Now equations 2.2.11, 2.2.12 and 2.2.13 can be computed, obtaining the magnetic field Bx, By

and Bz, and then plot the modulus |B| in comparison with the simulated magnetic field. In figure
3.8 we show equations 2.2.11, 2.2.12 and 2.2.13 implemented in the program.

Figure 3.8 – Definition of equations 2.2.11, 2.2.12 and 2.2.13 implemented in the program

Optimizer to obtain the magnetic equivalent of a small satellite
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3.1.3 Results and discussion

The program proposed allows us to simulate the theoretical magnetic field and compare it
with the simulation in the Ansys Electronics program. In figure 3.9 we show the magnetic field
obtained in the simulator and in figure 3.10 we show the magnetic field calculated with equations
2.2.11, 2.2.12 and 2.2.13.

Figure 3.9 – Magnetic field in microteslas [µ T ] obtained with the simulator Ansys Electronics for a radius R=
1500mm.

Figure 3.10 – Magnetic field in microteslas [µ T ] obtained with equations 2.2.11, 2.2.12 and 2.2.13 in our program.

Optimizer to obtain the magnetic equivalent of a small satellite
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Now, we can compare now the two results by plotting the relative error. First, in figures 3.11a,
3.11b and 3.11c we plot the magnetic field for a constant θ = 20◦. Then from figures 3.12a, 3.12b
and 3.12c we can see that the error between the two simulations.

(a) Bx (b) By (c) Bz

Figure 3.11 – Calculations of the magnetic field for each component Bx (a), By (b) and Bz (b) for θ = 20◦, comparing
simulated and approximated magnetic field

To calculate the error between simulated values and those using the dipole approximation,
we make use of the relative error. Expression 3.1.2 indicates the relative error between simulated
and theoretical values.

εi (%) =
Bexp,i − Btheo,i

Bexp,i
· 100 (3.1.2)

As we can see from figures 3.11a, 3.11b and 3.11c the magnetic field calculated with the
dipole approximation well matches the simulated values. The error calculated using expression
3.1.2 and represented in figures 3.12a, 3.12b and 3.12c ranges from 0.1% to 4%.
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(a) Error Bx (b) Error By (c) Error Bz

Figure 3.12 – Calculations of the error for each component Bx (a), By (b) and Bz (b) for θ = 20◦

Based on the results, we can suggest that equations 2.2.11, 2.2.12 and 2.2.13 can be used to
calculate the magnetic field produced by any device. The maximum error obtained was 4%,
which can be accepted taking into account the approximations made. For the rest of this paper
we will use equations 2.2.11, 2.2.12 and 2.2.13 to calculate the magnetic field for each component.
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Chapter 4

Methodology and analysis

In this chapter we will discuss the methods used to implement the equations to calculate the
magnetic moment and position for a unknown device. If we measure a magnetic field that a
device produces it is possible to such magnetic field using only dipoles. This will be employed
for later to take into account the magnetic field when the device is mounted in a satellite in
outer space. To measure the magnetic field of a device, the Magnetic Coil Facility (MCF) is used,
which is a set of coils and magnetometers that the European Space Agency (ESA) has in order to
measure magnetic fields. The next section shows how the MCF works. We will show the Particle
Swarm Optimization method, also referred as PSO.

4.1 Magnetic Coil Facility and Ulysses satellite

The MCF is a set of Helmholtz coils which cancels Earth’s magnetic field inside the MCF.
The Helmholtz coils form a cube in such a way that two coils are parallel to the ground, and
perpendicular to this coils and to the ground two other coils are placed [2]. This disposition is
such that inside the MCF the magnetic field is null. In figure 4.1 we can see the MCF and the
disposition of the coils.

The way the MCF works is the following, each pair of coils vertical and horizontal cancel the
magnetic field in its direction [2]. The later one cancels the vertical component of the magnetic
field. The vertical, perpendicular to the ground, cancels the horizontal component. The other
vertical set of coils are called deperm coil, and they serve to demagnetize the device once Earth’s
magnetic field has been cancelled [2].
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(a) (b)
Figure 4.1 – Pictures of the MCF in the ESA facility. On the left (a) picture of the MCF at ESTEC [3] and on the
right (b) picture from the project.

To cancel the magnetic field, we make a current flow through the coils in the opposite
direction that want to cancel out, working similar to Helmholtz coils. First the horizontal
magnetic component is cancelled and then the vertical component. Once the magnetic field is
null inside the cube, we proceed to demagnetize the device with the deperm coils. In figure 4.2
we can appreciate the disposition of the coils of the MCF.

Figure 4.2 – 3D model of the MCF made using Sketchup
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4.1.1 MCF orientation

We can discuss that in the MCF lacks one set of coils. As we know, Earth’s magnetic field has
three components BN , BW and BV , so for each pair of coils one magnetic component is cancelled.
We can ignore this discussion if we orientate the MCF in such a way that the North and East
magnetic fields are cancelled at the same time. To do this we have to know the location of the
MCF as Earth’s magnetic field depends on the location. Considering that if the experiment was
carried out in the GranaSAT’s laboratories, Granada (37◦7′58.8′′N, 3◦38′9.6′′W) with altitude of
700m we have to orientate φ = 1.39◦ to the East with respect to the North. To calculate the
orientation of the MCF in Granada we have used the following data [12] seen in table 4.1.

Magnetic field component Magnetic field value [nT ]
Bx 19893.84
By −483.16
Bz 24268.77

Table 4.1 – Magnetic field values for GranSAT’s laboratories (37◦7′58.8′′N, 3◦38′9.6′′W) and 700m above sea level.
This calculation has been made for the year 2021 [12].

Where in table 4.1 Bx is positive when facing North and negative facing South, for the same
reason By is positive for East and negative for West and Bz positive pointing downwards and
negative upwards. To calculate the horizontal component we simply find the tangent between
North component and East component. So the angle of orientation is the one shown in equation
4.1.1. In figure 4.3 a drawing of how the MCF should be oriented is presented.

α = atan
(

By

Bx

)
(4.1.1)

 S

EW

N

Bx

By

Bh
N

E

S

W

Figure 4.3 – Representation of the orientation of the MCF if the measurements were made in Granada (left) and the
horizontal magnetic field component (right).
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4.1.2 Measuring with the MCF

This section is dedicate to show how the MCF measures the magnetic field. To measure the
magnetic field we use magnetometers which are devices responsive to magnetic fields. In this
case Bartington Fluxgate Magnetometer Mag-13MS60 is used. With this magnetometers we can
measure magnetic field in the three axes. The magnetometers are place inside the MCF, and
on a circular tray we put the device to measure its magnetic field [2]. The magnetometers can
measure in three axes but only at a local point, so to measure a circumference of points around
the device we have to spin the tray. Spinning the tray once gives all the points of a circumference
with constant radius. In figure 4.4a we can see a picture taken when the device was measured
in the facility. In figure 4.4b we have made a 3D model of the tray and magnetometers, for the
magnetometers we have used a pre-made model [6].

+Y

-X

-Y

+X

+Z

3

2

4

(a) (b)
Figure 4.4 – Position of the magnetometers in the MCF. On the left (a) a picture taken in the facility when
the measurement was made. On the right (b) a 3D model made with Sketchup representig the filter wheel and
magnetometers.

For this project, we have the measurements of a device, called filter wheel, which was used in
the MCF. The aim is to optimize the magnetic field of this particular device to find the dipoles
which create the same magnetic field.

For every magnetometer, we get a circumference of points with constant radius. This
measurements will later be used to make the optimization and find the dipoles to simulate such
magnetic field. Figure 4.5 shows the position of the magnetometers used in the MCF.
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Figure 4.5 – Position of the magnetometers used to measure the magnetic field of the filter wheel in the MCF

The magnetometers seen in figure 4.5 and 4.5 can also be moved to measure the magnetic
field at different points.

4.2 Particle Swarm Optimization

This section is dedicated to explain the details of the Particle Swarm Optimization method or
PSO. This optimization method is inspired by the movement of birds [4]. Many nature’s species
behave as a swarm like birds, fishes and bees to name but a few. Each individual behaves based
on its location and the location of the others forming the swarm, keeping memory of the best
location individually and socially. The swarm explores finding its best location depending on
its objective. PSO uses this method to find the best values using a swarm of particle and each
individual particle.

4.2.1 Velocity and position definition

We create a swarm on N particles, with initial random position and velocity. The position
indicates its location in space at a time t, and the velocity indicates how fast the particle moves
to the next location [4]. Once the initial swarm is created we evaluate each individual particle.
Then we move each particle using equation 4.2.1.

vn (t + 1) = wvn (t) + c1r1

[
xbest

n (t)− xn (t)
]
+ c2r2

[
sbest (t)− xn (t)

]
(4.2.1)

Where vn (t + 1) is the new velocity given to the particle n and vn (t) is the current velocity.
w is the inertia coefficient which varies the velocity of the particle making it to slow down or to
accelerate. r1 and r2 are two random variables between 0 and 1. We also have c1 and c2 which
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are the cognitive and social coefficients respectively. Finally, xn (t) is the actual position of the
particle, xbest

n (t) is the best location found individually by particle i and sbest is the best location
found globally by the swarm. Once we have calculated the velocity of the particle we can move
it to the next position xi (t + 1) with equation 4.2.2.

xn (t + 1) = xn (t) + vn (t + 1) (4.2.2)

Every time we evaluate the swarm it can happen that the velocity of a particle increases too
much difficulting the convergence of the optimization [4]. To change this we make the inertia
coefficient decrease linearly with each iteration. Thus the inertia coefficient depending on the
iteration is the following:

wn = (wmax − wmin)
nmax − n

nmax
+ wmin (4.2.3)

We also define a maximum value for the velocity in equation 4.2.4 to stop it from reaching
high values [4].

vmax = k
xmax − xmin

2
; k ∈ [0.1, 1] (4.2.4)

4.2.2 Fitness function definition

Now that we now how to move the particles it si possible to describe the fitness function.
This function is the one that we will use to describe what we want to optimize. Depending on
the problem the fitness function can be different. For our specific problem the optimization of a
dipole we will use the fitness functions shown in equation 4.2.5, 4.2.6 and 4.2.7. For F1 we look
for the optimum values between measured and computed field [7]. This works with values with
the same or similar order of magnitude.

F1 =

√
∑M−1

i=0

[(
B(meas)

x [i]− B(PSO)
x [i]

)2
+
(

B(meas)
y [i]− B(PSO)

y [i]
)2

+
(

B(meas)
z [i]− B(PSO)

z [i]
)2
]

√
∑M−1

i=0

[(
B(meas)

x [i]
)2

+
(

B(meas)
y [i]

)2
+
(

B(meas)
z [i]

)2
]

(4.2.5)

For F2 we define the least mean square for each component [7]. Finally we define F as the
combination of the two fitness function [7]. This definition of the fitness function is used in the
PSO method to specify the the program what optimum values we want to find.
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F2 =
∑M−1

i=0

(
B(meas)

x [i]− B(PSO)
x [i]

)2

∑M−1
i=0

(
B(meas)

x [i]
)2 +

∑M−1
i=0

(
B(meas)

y [i]− B(PSO)
y [i]

)2

∑M−1
i=0

(
B(meas)

y [i]
)2 +

+
∑M−1

i=0

(
B(meas)

z [i]− B(PSO)
z [i]

)2

∑M−1
i=0

(
B(meas)

z [i]
)2

(4.2.6)

F(n) = F(n)
2

(
F(n−1)

2

F(n−1)
1

)
+ F(n)

1

(
F(n−1)

1

F(n−1)
2

)
(4.2.7)

With each iteration we evaluate the fitness function for each particle. When we find an
optimum value, we store it as the best value found for the particle xbest

n (t). In the same way,
when we find the best value for the swarm, we keep it as sbest. After a number of N iterations
the program will reveal the optimum value found.

For our case, we have to find six values, three for position (x, y, z) and three for the magnetic
moment

(
mx, my, mz

)
. The number of particle used in our program will be 32 particles and our

objective will be to find the minimum [7]. To define the velocity of the particle we define the
following values:

• Number of iteration N: 700

• Maximum inertia coefficient: 1

• Minimum inertia coefficient: 0.6

• Cognitive coefficient: 1.5

• Social coefficient: 1.5

It is important to mention that the PSO code used to optimize is made by Joaquín Amat
Rodrigo which his code can be found on Github [4]. We have used his Python code to implement
the classes into our program and make the optimization with the PSO method.
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PSO results and discussions

We will discuss the results obtained during our work. Knowing how the MCF works and how
it measures magnetic fields, we can implement the PSO method to find the optimum values for
the dipole position and magnetic moment. Such dipoles imitate the magnetic field created by the
device measured in the MCF.

5.1 Test results

To confirm that the PSO method works we can make a simple test as shown in [7]. For this,
we will create a magnetic field using Ansys Electronics 2021 simulator. This magnetic field is
created by three coils acting as perfect dipoles as discussed in chapter 3. We will now describe
the characteristic of this coils in table 5.1.

Coil Radius[cm] Magnetic Moment
[
mAm2] Position(x0, y0 z0) [cm] / Plane

Coil 1 2.7 150 (0, 0, 0) / YZ
Coil 2 3.1 −200 (0, 0, 0) / XZ
Coil 3 3.0 180 (0, 0, 0) / XY

Table 5.1 – Characteristics of three coils used to test the PSO method [7].

Once the magnetic field has been simulated, we can implement the magnetic field
measurements into the PSO program. For this case, limits for position and magnetic moment
are set. For the position vectors the limits defined are (x, y, z) ∈ [−15, 15]cm. In the same way,
for the magnetic moment we define the limits as

(
mx, my, mz

)
∈ [−800, 800]mAm2.

If we run the PSO program with the characteristics shown in chapter 4, we get that the
optimum values for position and magnetic moment are

(
0.08, 2.4 · 10−5, 0.47

)
cm and

(158.4,−211.2, 166.4)mAm2, which are the same values obtained in [7].
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5.2 Optimization for a filter wheel

With the measurements of a filter wheel obtained experimentally in the MCF we will find
the optimum values. As seen in figure 4.5 we have three magnetometers measuring Bx, By and
Bz field. We define as we did before the limits of exploration of our program as (x, y, z) ∈
[−25, 25]cm and

(
mx, my, mz

)
∈ [−20, 20]mAm2.

When we run the program for a first time we get the optimum values for a single dipole
(−0.27, 2.20, 4.33)cm and (5.64,−5.22.2,−8.52)mAm2. The values obtained are represented in
figures 5.1a, 5.1b and 5.1ccomparing the PSO-computed values and the experimental ones.

(a) Bx (b) By (c) Bz

Figure 5.1 – Representation of the PSO-computed values and experimental for a filter wheel measuring with
Magnetometer 2 for a dipole.

As we can see from figures 5.1a, 5.1b and 5.1c the magnetic field created by the computed
dipole approximates to the experimental magnetic field. But the error is considerable due to
the fact that we are simulating just one dipole. Sometimes only one dipole is not enough a
complex magnetic field such as the one created by the filter wheel. To solve this problem we
compute another dipole to make the correction needed. In this way we run the program for
another dipole considering the magnetic field the experimental one minus the PSO-computed
one. Using the same characteristic we get the following results, for position (3.81, 2.70, 2.03)cm
and (1.73,−4.74,−2.43)mAm2 for magnetic moment. In figures 5.2a, 5.2b and 5.2c we represent
the values obtained for adding a second dipole.
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(a) Bx (b) By (c) Bz

Figure 5.2 – Representation of the PSO-computed values and experimental for a filter wheel measuring with
Magnetometer 2 for both dipoles

Clearly figures 5.2a, 5.2b and 5.2c show that the results coincide with the experimental ones.
The error obtained is less than 4%, which is acceptable, and we can validate the PSO method for
the simulations of a magnetic field produced by a filter wheel with two dipoles. Results for both
dipoles are shown in table 5.2.

Dipole Position
(
x0, y0, z0

)
cm Magnetic Moment

(
mx, my, mz

)
mAm2

Dipole 1 (−0.27, 2.20, 4.33) (5.64,−5.22.2,−8.52)
Dipole 2 (3.81, 2.70, 2.03) (1.73,−4.74,−2.43)

Table 5.2 – Results obtained for position and magnetic moment for both dipoles simulated.

These results form table 5.2 serve the purpose so that it can be possible to create the same
magnetic field only using dipoles. It is important to consider the magnetic field created by the
device when it is place in Ulysses satellite. In most cases devices sensitive to magnetic fields are
used to measure magnetic fields [7], so the magnetic contributions created by the device in the
satellite have to be taken into account when measuring solar magnetic fields [18].
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(a) Bx (b) By (c) Bz

Figure 5.3 – Representation of the magnetic field error of the PSO-comuted values for two dipoles.

To check the code for the two programs made for this paper one can visit them in Github.
The code for the program made to test the PSO is shown in [14]. For the main program which
optimizes the filter’s wheel magnetic field see [13].
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Chapter 6

Conclusions

To conclude this paper, we can state the following:

• The dipole approximation can be used to simulate a magnetic field produced by dipoles,
because the error obtained when comparing empirical data with the approximation model
is less than ε = 4%.

• When working with magnetic fields, it is important to consider the facility location, as the
measurements can be affected by the orientation of the MCF.

• The PSO method has been proven to work correctly for the calculation of the position and
magnetic moment of a dipole. As the values obtained are similar as those determined in
previous works. However, as the PSO method is stochastic, sometimes the program has to
be run more than once to get reliable results.

• The optimization made for one dipole is insufficient to recreate accurately the magnetic
field produced by the filter wheel. Therefore, two dipoles have to be employed to make
corrections of the magnetic field.

• The optimization for a filter wheel using the PSO method retrieves an error smaller than
4%. Thus the method can be considered adequate for the optimization of magnetic fields.

Finally, to improve our program and thus the results obtained, we suggest some
improvements. First, for this dissertation we have used the dipole approximation, an
improvement for this would be to consider also the quadrupole approximation to obtain better
results. Secondly, to optimize the running time of the program we recommend to use a python
module called multithreading, which allows to run different simulations of the PSO code at the
same time. This can be done by using multiple cores of the CPU. For example, we could
optimize the magnetic field measured by magnetometers 2, 3 and 4 at the same time. Finally,
using a larger amount of particles could be helpful for the exploration of better results.
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• Se implementará el método de optimización de momentos magnéticos del artículo. 
• Se realizarán simulaciones magnéticas para comprobar que la implementación funciona. 

 
Es estudiante se integrará en el equipo del Grupo de Electrónica Aeroespacial de la UGR. 
Se busca estudiante interesado en aplicaciones experimentales con vocación de trabajo en equipo. 
 
 
Metodología: 
 
 
El alumno comenzará el trabajo leyendo la documentación que el tutor tiene preparada donde se describen las 
técnicas de modelado, simulación y medida. Para el análisis vectorial [2] previo se usarán los notebook de 
Jupyter-Lab en Python. 
 
Se recomienda contactar con el tutor (amroldan@ugr.es) al recibir la confirmación de asignación del TFG. 
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Pinchar aquí para ver otros TFG anteriores realizados por alumnos del Grado en Física bajo mi tutoría. 
 

 
A rellenar sólo en el caso que el alumno sea quien realice la propuesta de TFG 
Alumno/a propuesto/a:  
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