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Abstract
This paper presents a dual-channel speech enhance-

ment framework that effectively integrates deep neural net-
work (DNN) mask estimators. Our framework follows a
beamforming-plus-postfiltering approach intended for noise
reduction on dual-microphone smartphones. An extended
Kalman filter is used for the estimation of the relative acous-
tic channel between microphones, while the noise estimation
is performed using a speech presence probability estimator. We
propose the use of a DNN estimator to improve the prediction of
the speech presence probabilities without making any assump-
tion about the statistics of the signals. We evaluate and compare
different dual-channel features to improve the accuracy of this
estimator, including the power and phase difference between
the speech signals at the two microphones. The proposed in-
tegrated scheme is evaluated in different reverberant and noisy
environments when the smartphone is used in both close- and
far-talk positions. The experimental results show that our ap-
proach achieves significant improvements in terms of speech
quality, intelligibility, and distortion when compared to other
approaches based only on statistical signal processing.
Index Terms: Dual-microphone smartphone, beamforming,
extended Kalman filter, speech presence probability, deep neu-
ral network

1. Introduction
Speech-related services are ubiquitously available thanks to mo-
bile devices such as smartphones. These devices are frequently
used in reverberant and noisy environments, both in close-talk
(CT) conditions (i.e., the smartphone is placed at the ear of the
user) and far-talk (FT) conditions (i.e., the user holds the de-
vice at a distance from her/his face). This makes speech en-
hancement algorithms particularly necessary to improve speech
quality and intelligibility on these challenging scenarios.

Current smartphones often embed several microphones.
Particularly, a widely used layout consists of a primary micro-
phone at the bottom and a secondary one at the top or back of
the device. While beamforming techniques (i.e., spatial filter-
ing) [1] can be used in these devices, the reduced number of
microphones and their location limit the speech enhancement
performance [2]. In these circumstances, postfiltering tech-
niques can be incorporated to these devices [3, 4] to improve
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the noise reduction. Alternatively, other approaches employ
single-channel filters exploiting dual-channel information. For
example, the power level difference between channels was ex-
ploited in [5, 6] for noise estimation and reduction in CT con-
ditions. On the other hand, in [7, 8] the coherence properties
of the noise field were considered to estimate the noise statis-
tics, needed by a Wiener filter, in FT conditions. In addition to
speech enhancement, the dual-channel information has been ex-
ploited for other related speech processing tasks from a classical
signal processing perspective, as feature enhancement in auto-
matic speech recognition (ASR) systems [9, 10] and noise esti-
mation [11]. Finally, the use of deep neural networks (DNNs)
has also been explored on dual-microphone smartphones. For
example, in [12, 13] a DNN-based feature enhancement ap-
proach was investigated in the context of noise-robust ASR for
smartphones. On the other hand, in [14] we proposed a dual-
channel DNN-based speech enhancement algorithm based on
spectral mapping. Recently, this idea was evaluated in [15] for
spectral masking using phase-sensitive masks and dual-channel
features.

In previous works [16, 17, 18], we proposed a dual-channel
speech enhancement framework, intended for smartphones,
based on a beamforming-plus-postfiltering scheme. The main
contribution of our approach was the estimation of the acoustic
response between microphones using an extended Kalman filter
(eKF) framework, which allows us to track these acoustic chan-
nels in reverberant environments. Moreover, noise estimation
was performed using a speech presence probability (SPP)-based
approach to update the noise statistics when speech was ab-
sent. This SPP estimation was carried out using statistical spa-
tial models with a priori SPP information obtained from dual-
channel information. On the contrary, in this work we propose
the integration of DNN-based mask estimators [19, 20, 21, 22]
for this task. The DNN, which is fed with dual-channel fea-
tures based on power and phase differences, aims to improve
the accuracy of the prediction. Our proposal is then evaluated
on a dual-microphone smartphone under several noisy acoustic
environments in CT and FT conditions. The results show that
our approach achieves improvements in terms of speech quality,
intelligibility, and distortion in comparison with other state-of-
the-art approaches for dual-channel smartphones.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review our dual-channel eKF-based frame-
work for smartphones. Section 3 describes our DNN-based
mask estimator for SPP prediction and the dual-channel fea-
tures evaluated. Then, in Section 4, the experimental framework
and results are presented and analyzed. Finally, conclusions are
summarized in Section 5.
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Figure 1: Overview of the dual-channel speech enhancement
algorithm for dual-microphone smartphones.

2. Dual-channel speech enhancement based
on an eKF-RTF framework

Let us consider the following multichannel observation model,
in the short-time Fourier transform (STFT) domain, for the
noisy speech signal acquired by a dual-microphone smartphone,

y(t, f) = h(t, f)X1(t, f) + n(t, f), (1)

where y(t, f) =
[
Y1(t, f) Y2(t, f)

]> and n(t, f) =[
N1(t, f) N2(t, f)

]> are the noisy speech and noise mul-
tichannel vectors (subscripts identify the primary and sec-
ondary microphones in the array), respectively, X1(t, f) is
the clean speech signal at the primary microphone, h(t, f) =[
1 H21(t, f)

]> is the relative transfer function (RTF) vector,
and t and f are the time frame and frequency indices, respec-
tively. From now on, when possible, we will omit indices t and
f for the sake of simplicity.

Our goal is to estimate the clean speech signal at the ref-
erence microphone, X1, from the noisy speech observations.
To do this, we apply our extended Kalman filter (eKF) dual-
channel framework [18]. A diagram of the algorithm pipeline is
depicted in Figure 1. The noisy speech signal is processed using
a beamforming algorithm for noise reduction, as in Z = dHy,
where {·}H stands for the Hermitian transpose operator. We use
the minimum-variance distortionless response (MVDR) beam-
former [1],

d =
Σ−1
N h

hHΣ−1
N h

, (2)

where ΣN = E
{
nnH

}
is the noise spatial covariance matrix

(SCM), with E {·} representing the expectation operator over a
random variable. At the beamformer output, signalZ represents
the clean speech signal X1 plus a residual noise with a power
spectral density (PSD) given by σ2

o =
(
hHΣ−1

N h
)−1

.
As can be seen, MVDR needs estimates for H21 and ΣN .

For RTF estimation, the already proposed eKF-RTF algorithm
is applied [16, 18]. We first define H21 and Y2 as vectors that
stack the real and imaginary components ofH21 and Y2, respec-
tively. Then, the RTF vector is estimated using the following
recursion,

Ĥ21(t) = Ĥ21(t− 1) + K(t) (Y2(t)− µY (t)) , (3)

where K is the Kalman gain matrix and µY = E {Y2} is the
expectation over the noisy speech at the secondary microphone.
A detailed derivation of these terms can be found in [18]. For
the noise statistics, we use a recursive estimator based on the
speech presence probability (SPP) [23],

Σ̂N (t) = α(t)Σ̂N (t− 1) + (1− α(t))y(t)yH(t), (4)

where α = α̃ + (1− α̃) px is an updating parameter that de-
pends on the a posteriori SPP px, which ranges from 0 to 1, and
α̃ = 0.9 is a constant factor. Thus, the noise SCM is updated
with the current noisy observation when speech is absent, while
the previous value is kept when speech is present.

The speech signal Z is further processed using a postfilter
which provides X̂1 = GZ, where G is a single-channel gain
function. In our proposal, we use the optimally-modified log
spectral amplitude (OMLSA) estimator [24], which is defined
as

G = (Gx)
px(Gn)

1−px , (5)

in which Gn is the speech absence gain, set to −25 dB, and

Gx =
ξ

1 + ξ
exp

(
1

2

∫ ∞
ξ

1+ξ
γ

e−u

u
du

)
(6)

is the speech presence gain, with γ = |Z|2 /σ2
o being the a

posteriori signal-to-noise ratio (SNR), ξ = σ2
x1/σ

2
o the a priori

SNR, and σ2
x1 the clean speech PSD at the primary microphone.

This last PSD can be obtained using a maximum-likelihood es-
timator at the beamformer output [25],

σ̂2
x1 = dH

(
Σ̂Y − Σ̂N

)
d, (7)

where

Σ̂Y (t) = α̃Σ̂Y (t− 1) + (1− α̃)y(t)yH(t) (8)

is a recursive estimator of the noisy speech SCM. Finally, the
gain function G is further processed by a musical noise reduc-
tion algorithm, as that described in [26], before applying it to
the beamformed speech signal Z.

3. DNN-based a posteriori SPP estimation
As can be observed, the a posteriori SPP px plays a crucial role
in our eKF-RTF framework. Not only that it controls the noise
SCM estimation, but also the postfiltering proper performance
depends on accurate SPP estimates. Besides, the RTF updating
in (3) is only performed when speech presence is detected [18].
In our previous work [18], the a posteriori SPP was obtained us-
ing statistical spatial models that combine the use of multivari-
ate Gaussian likelihoods (formulated for the noisy speech and
noise signals) with a dual-channel a priori SPP estimator. The
main drawback of this method lies on the assumptions made
about the statistics of the signals, which can be inappropriate in
realistic non-stationary environments.

In this work, we explore the use of DNN-based mask esti-
mators [19] to directly compute the a posteriori SPP. In particu-
lar, we consider a convolutional recurrent network (CRN) [15]
for the estimation of px. A diagram of the applied CRN archi-
tecture is depicted in Figure 2. As can be observed, the model
comprises an encoder with five convolutional layers, a decoder
with five deconvolutional layers, and an intermediate long short-
term memory (LSTM) network. We use exponential linear units
(ELUs) as non-linear functions in all the convolutional and de-
convolutional layers except for the output layer, which uses the
sigmoid function. A dropout layer is placed before the input to
the LSTM layer to help prevent overfitting. The convolutional
and deconvolutional layers operate along the frequency dimen-
sion only, while the LSTM layer exploits the temporal dimen-
sion. Furthermore, we use skip connections that concatenate
the output of each encoder layer to the input of each decoder
layer. The CRN is trained using ideal binary masks from the
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Figure 2: Diagram of the CRN architecture used for the estima-
tion of speech presence probability masks.

reference channel as target features, using binary cross-entropy
as loss function.

As network input features Y(t, f), a set of different
features exploiting spectral or spatial properties was con-
sidered in this paper. The main features of this set are
the log-magnitude spectrum (LMS) of the primary channel,
YLMS(t, f) = log |Y1(t, f)|. An online normalization is ap-
plied to them using a time-recursive mean computation and sub-
traction at each frequency bin [27]. We also include additional
features that make use of the inter-channel properties of the sig-
nals. In particular, we consider the spectral relation between the
channels by using instantaneous power level difference (PLD)
features, which are defined as

YPLD(t, f) =
|Y1(t, f)|2 − |Y2(t, f)|2

|Y1(t, f)|2 + |Y2(t, f)|2
. (9)

In addition, spatial properties of the signals are exploited by
using inter-channel phase difference (IPD) features [28],

Y IPD(t, f) =

[
cos (θy1(t, f)− θy2(t, f))
sin (θy1(t, f)− θy2(t, f))

]
, (10)

where θy1 and θy2 are the phases of the noisy speech signals at
the reference and secondary microphones, respectively.

4. Experimental results
The TIMIT-2C-CT/FT database [18] was used to evaluate the
proposed dual-channel algorithm. This database includes simu-
lated dual-channel noisy speech recordings at 16 kHz acquired
with a dual-microphone smartphone in both CT and FT con-
ditions. Each condition (CT or FT) comprises three sets, i.e.,
training, validation, and test, with a total of 4800, 1200, and
2400 noisy speech samples, respectively. To simulate the noisy
samples, clean speech signals from the TIMIT database [29, 30]
are convolved with dual-channel acoustic responses obtained
from a smartphone at different reverberant scenarios [16]. Then,
the reverberated speech signals are mixed with noises at six
SNRs from -5 dB to 20 dB (5 dB steps). For the training and val-
idation sets, four reverberant and noisy environments are con-
sidered: car, bus, babble, and mall. For the test set, apart from
the previous noise types, four additional environments are also
evaluated: street, pedestrian street, bus station, and cafe. In ad-
dition, the reverberation level of the acoustic responses depends
on the noisy environment.

For STFT computation, a 512-point DFT was applied us-
ing a 32 ms square-root Hann window with 50% overlap. The
eKF-RTF framework implemented is the same as in [18]. The
CRN network architecture used in our experiments is concisely

Table 1: Architecture of the CRN mask estimator. The feature
size is indicated in the form feature maps× frames× frequency
channels, beingNin the number of input features. Hyperparam-
eters refer to kernel size, stride and output channels. For the
LSTM layer, the number of hidden units is indicated.

Layer name Input size Hyperparameters Output size
conv 1 Nin × T × 257 1 × 3, (1, 2), 8 8 × T × 128
conv 2 8 × T × 128 1 × 3, (1, 2), 8 8 × T × 64
conv 3 8 × T × 64 1 × 3, (1, 2), 16 16 × T × 32
conv 4 16 × T × 32 1 × 3, (1, 2), 32 32 × T × 16
conv 5 32 × T × 16 1 × 3, (1, 2), 64 64 × T × 8

reshape 1 64 × T × 8 - T × 512
lstm T × 512 512 T × 512

reshape 2 T × 512 - 64 × T × 8
deconv 5 128 × T × 8 1 × 3, (1, 2), 32 32 × T × 16
deconv 4 64 × T × 16 1 × 3, (1, 2), 16 16 × T × 32
deconv 3 32 × T × 32 1 × 3, (1, 2), 8 8 × T × 64
deconv 2 16 × T × 64 1 × 3, (1, 2), 8 8 × T × 128
deconv 1 16 × T × 128 1 × 3, (1, 2), 1 1 × T × 257

Table 2: Objective metric results for the noisy speech signals of
the test set in the TIMIT-2C-CT/FT database, broken down by
SNR and device use mode (CT or FT).

Metric Mode SNR (dB) Avg.-5 0 5 10 15 20

PESQ CT 1.09 1.11 1.23 1.45 1.81 2.27 1.49
FT 1.07 1.11 1.25 1.50 1.88 2.38 1.53

STOI CT 0.51 0.63 0.74 0.84 0.91 0.95 0.76
FT 0.50 0.61 0.73 0.83 0.90 0.95 0.75

SDR CT -5.80 -0.81 4.19 9.15 14.02 18.70 6.58
FT -5.79 -0.80 4.19 9.15 14.03 18.70 6.58

described in Table 1. The ADAM optimizer [31] was used to
train the DNN model. We used a batch size of 10 utterances,
which were zero-padded to have the same number of frames.
The dropout rate was set to 0.5 deactivation probability. Be-
sides, the early-stopping procedure [32] was applied with a pa-
tience of 20 epochs.

The enhanced signal provided by our proposal is evaluated
in terms of the following objective quality metrics: percep-
tual evaluation of the speech quality (PESQ) [33], short-time
objective intelligibility (STOI) [34] and scale-invariant signal-
to-distortion ratio (SDR) [35]. As a reference, Table 2 shows
the results obtained in terms of these metrics when evaluat-
ing the noisy speech signals from the test set without any en-
hancement algorithm. For the CRN-based mask estimator, dif-
ferent combinations of input features were tested: using only
LMS features (CRN), jointly integrating either PLD features
(PLD) or IPD features (IPD), and fully integrating all the fea-
tures (PLD+IPD). For comparison purposes, we also evaluated
our framework with SPP estimation based on statistical models
(eKF-SM) [18], and two single-channel Wiener filters relying
on dual-channel information: the PLD-based filter (PLD-WF)
[5] for the CT condition, and the SPP- and coherence-based fil-
ter (SPPC-WF) [7] for the FT condition. The results achieved
by the tested methods (improvements obtained over the noisy
speech results) are shown in Figure 3.

In CT conditions, and according to Figure 3a, the CRN ap-
proach outperforms PLD-WF and eKF-SM, especially in terms
of PESQ. Moreover, the CRN estimator benefits from the use
of dual-channel features. PLD+IPD obtains the best results
in terms of all the considered metrics. Between the dual-
channel features considered, the CRN estimator mainly bene-
fits from the PLD features, achieving similar results to those
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Figure 3: PESQ, STOI and SDR differential results from the evaluation of the CRN-based SPP mask estimator with the different input
features. The OMLSA postfilter with MVDR-based PSD estimation, and state-of-the art single-channel filters for smartphones, are also
shown for comparison purposes. The plots show the increments obtained on the metrics with respect to noisy speech (see Table 2).

from PLD+IPD. This shows that the power difference between
microphones can be a good indicator of speech presence in CT
conditions. Although the CRN with IPD features improves with
respect to the CRN approach, PLD+IPD slightly improves the
variant including PLD features in STOI and SDR. Therefore,
PLD features poses a good trade-off between performance and
network complexity in CT conditions.

In FT conditions (Figure 3b), the CRN approach also
achieves better results than the other evaluated methods. In
this case, the variant including IPD features stands as the best
choice, especially in terms of STOI and SDR. On the other
hand, the utilization of PLD features slightly improves the CRN
approach. Unlike in the CT scenario, PLD features seem not to
provide enough information in FT conditions, as they tend to
zero. Then, the phase difference is the main information source
that allows to distinguish between speech and noise compo-
nents. Finally, the combination of both types of dual-channel
features does not yield improvements in comparison with using
standalone features, either PLD or IPD ones. This can be ex-
plained by our CRN estimator not being able to deal with mul-
tiple input features in this challenging scenario. In particular,
the use of additional PLD features may mislead the network, as
they do not provide accurate information in this case. Thus, the
IPD features stand as the best alternative.

5. Conclusions
In this paper, we have proposed a DNN-based SPP estimator
that is integrated into our dual-channel eKF-RTF framework for

speech enhancement on smartphones. Our approach allows for
a more accurate prediction of the SPP probability thanks to the
modeling capabilities of the DNN models and the use of dual-
channel information. We use a convolutional recurrent neural
network to exploit the spectral, spatial, and temporal properties
of the speech signal. Two different dual-channel features were
considered and tested: the instantaneous power level difference
and the phase difference between channels. The proposed in-
tegrated scheme was compared with the same framework but
using statistical spatial models for SPP prediction, as well as
with other dual-channel speech enhancement algorithms from
the state-of-the-art. The results show that the DNN-based mask
estimator outperforms the rest of the evaluated approaches in
terms of objective quality and intelligibility metrics. Among
the considered spatial features, the PLD features show better
performance in CT conditions, while the IPD features are more
useful in FT conditions.
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