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Abstract: In the consensus reaching process (CRP) permitting negotiation, the efficiency of negotia-
tion is affected by the order of negotiation with decision makers (DMs), the time, and the number of
moderators. In this paper, the sorted negotiation against DMs considering efficiency and time is initi-
ated into consensus decision making, which can improve the speed and effectiveness of consensus.
Based on the opinion dynamics (opinion evolution), uniform and normal distributions are used to
describe the uncertainty of DMs’ opinions and negotiation time, the opinion order efficiency and cost
coefficient are coined, and the cost-constrained optimal efficiency sorted negotiation model and the
optimal efficiency sorted negotiation model involving multiple moderators and time constraints are
respectively constructed. The optimal solution of the chance-constrained model is obtained in the con-
text of China’s urban demolition negotiation using an improved genetic algorithm, and an optimum
set of influential individuals based on opinion similarity is introduced so that assessment criteria for
validating the reasonableness of the sorting sequence are determined. Sorted consensus negotiation
combined with complex scenarios such as different representation formats of opinions, characteristics
of DMs, other solving algorithms, Bayesian dynamics, etc. can be included in future works.

Keywords: stochastic programming; genetic algorithm; group decisions and negotiations; sorted cost
consensus; opinion order efficiency

MSC: 90B10

1. Introduction

The consensus reaching process (CRP) is one of the cores issues in group decision mak-
ing (GDM) [1–3]. Communication and negotiation in CRP can effectively facilitate the flow
of information within decision makers (DMs), accelerate the evolution of DMs’ opinions,
and enhance the efficiency of consensus feedback adjustment. Therefore, mastering the
rule of opinion evolution contributes to grasping the consensus process. In opinion evolu-
tion, DMs adjust their opinions by taking other DMs’ opinions into account and update
their opinions following repeated interactions among DMs. The basic model of opinion
evolution was first proposed by French and John [4] in 1956. Since then, more opinion
evolution models with different evolutionary rules have emerged, such as the DeGroot
model [5,6], Friedkin and Johnsen model [7,8], bounded confidence (BC) model [9,10], and
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Sznajd model [11,12]. In complicated GDM environments, opinion interactivity and evolu-
tion patterns [13] among DMs have also been the focus of research on large-scale group
decision making (LSGDM) [14], social network group decision making (SNGDM) [15,16],
and dynamic group decision making [17].

GDM involved with opinion evolution or feedback adjustment is subject to factors
as follows:

• Preferences/opinions of DMs. In consensus decision making, DMs evaluate alterna-
tives in terms of a specific preference structure. Different DMs express their preferences
based on their knowledge background and habits regarding a range of issues in various
forms including preference orderings [18], utility function [19], preference relation [20],
etc. In addition to crisp preferences [21], preferences are expressed with incomplete
information when the DM cannot comprehend the decision topic [13]. Since DMs are
more likely to be in a state of hesitation and uncertainty when making judgments,
subjective preference forms including fuzzy preferences [22,23], natural linguistic
preferences [24] and so on have been widely studied. Confidence level/probability
and belief degree are separately used for opinions/preferences obeying random distri-
butions and uncertainty distributions [25] to present the credibility of DMs’ opinions,
which can more realistically fit the uncertain opinions of DMs. For example, Zhang
et al. [26] studied a minimum cost consensus model based on random opinions.

• Behaviors of DMs. Cooperative and noncooperative behaviors frequently exist in
GDM problems. Cooperative behavior manifests itself as DMs giving in or com-
promising to accept a collective solution, which is some kind of collaboration [27].
Noncooperative DMs behave as making independent decisions based on bounded
rationality [28,29], where DMs may express their opinions dishonestly or refuse to ad-
just their opinions [30]. Chao et al. [31] constructed a consensus model that can detect
and manage noncooperative behavior of DMs concerning heterogeneous preferences.
Dong et al. [32] also proposed a method based on self-management mechanism to
manage noncooperative behaviors. Apart from noncooperative behaviors, there is no
doubt that DMs also exhibit individual behaviors such as tolerance and compromise
limit in the CRP [33].

• Consensus costs. In the CRP, the moderator who plays the role of leader and negotia-
tor [34] influences DMs’ opinions and dominates the whole evolutionary process of
consensus reaching. Known as the cost consensus problem is where moderators to take
advantages of approaches like personal charisma and resource allocation to persuade
DMs to change their opinions gradually towards an optimal consensus opinion with
minimum cost consumption [35]. This problem has been a research hotspot in recent
years, and research findings have been obtained including: minimum adjustment
consensus models using position indexes [36], optimization consensus models under
aggregation operators [37], cost-constrainted[17] and asymmetric costs consensus
models, for instance, Wu et al. [38] modeled the minimum cost consensus problem
involving asymmetric unit costs; minimum cost and maximum return consensus
models [3,39], consensus models for heterogeneous preference [25,40], multiattribute
consensus models [41,42] and multistage optimized consensus models [43], where Wu
et al. [44] proposed a multistage optimized consensus model considering preference
relations and individual consistency.

There are still following pending issues about the opinion evolution or feedback
adjustment in studies of consensus.

• Evolution or feedback research on opinions of obeying specific random distributions
is relatively scarce. Confidence level/probability are used for opinions/preferences
obeying random distributions to present the credibility of DMs’ opinions.

• There is a lack of research on the external factors of GDM and on the impact of the
inner psychology (satisfaction) of DMs on CRP and costs of consensus.
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• There is no research on how to conduct consensus negotiations with a reasonable
sequence so as to improve the efficiency of CRP when taking into account preferences
of DMs and consensus costs.

Traditional GDM is done in a roundtable-like setting. The moderator convinces
individuals to adjust their opinions by different effective means (i.e., time, money, and other
cost consumption). Thus, GDM is essentially a negotiation issue. Regarding the studies
of consensus negotiation like water pollution management [45], urban demolition [46]
and task scheduling [47,48], it can significantly affect the speed and outcome of consensus
reaching that purposefully negotiating with which DMs (e.g., enterprises, focus groups,
and stakeholders) in a proper order. How to targetedly negotiate with individuals in a
rational order is a novel issue worthy of attention in GDM. Sorting/scheduling problems
in the fields of transportation scheduling and production management provide theory and
methodology that can be systematically drawn upon for the study of sorted consensus
decision making.

The Sznajd model based on opinion evolution [49] indicates that a DM is more likely to
be persuaded by two or more individuals who hold similar opinions between themselves.
In the sorted consensus process, DMs may adjust their opinions to be more similar due
to the influence of the opinions of individuals in front. The moderator plays a vital role
in the sorted consensus negotiation, not only in organizing the negotiation, but also in
acting as a bridge for information transfer between the DMs in front and the DMs in back.
Opinions of DMs in the front are conveyed to DMs in the back to cause an influence. When
taking the time consumption into consideration, it is feasible to achieve negotiation orderly
within given time constraints by introducing multi-moderators to dominate the negotiation
and assigning them the appropriate amount of DMs to negotiate. The sorted negotiation
strategy obtained by solving our models specifically includes (1) consensus negotiation by
moderators over a specific DMs sorting sequence, (2) consensus negotiation by moderators
in a specific order, and (3) consensus negotiation by moderators over a specific number
of DMs. The sorted consensus negotiation presented in this paper is an extension of cost
consensus and opinion evolution. The novelties included in our works are summarized
as follows:

• In this paper, the negotiation sorting issue against DMs is introduced into consensus
research, and opinion influence level and ranking satisfaction level are quantified to
measure the efficiency of opinion order.

• A cost coefficient based on sorted negotiation efficiency is proposed to explore the
impact of negotiation sequences on consensus costs against different DMs.

• Optimal efficiency sorted negotiation models with cost chance constraints are devel-
oped assuming that opinions of DMs obey specific random distributions and extended
to the case where multimoderators participation and time constraints are considered.

• The optimum set of influential individuals based on opinion similarity is determined, and
thus assessment criteria that can validate the reasonableness of sequence are produced.

The rest of the paper is organized as follows. In Section 2, we introduce related models
about minimum cost consensus. In Section 3, we present definitions of the sorted nego-
tiation. In Section 4, we construct the optimal efficiency sorted negotiation models. In
Section 5, we extend optimal efficiency sorted negotiation models to the context where
multimoderators participation and time constraints are involved and presents the corre-
sponding algorithm. In Section 6, we illustrate the proposed models applied to China’s
urban demolition negotiation. Section 7 concludes the whole paper and provides some
future work discussion.

2. Preliminaries
2.1. Minimum Cost Consensus Models

The basic assumption of the minimum cost consensus model by Ben-Arieh et al. [34] is
that there are deviations between opinions of DMs and the opinion of moderator in GDM,
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and the moderator is eager to persuade DMs to change their opinions toward an optimal
consensus opinion with minimum cost. Suppose that there exist m DMs participating in a
GDM. Let oi represent the opinion of DM di, i ∈ M = {1, 2, . . . , m}, o′ being the best group
consensus. In general, the consensus level in GDM is usually measured as the deviation
between opinions of DMs and group consensus [37]. Clearly, the smaller the deviation, the
higher the consensus level. The minimum cost consensus model proposed by Ben-Arieh
and Easton [34] in 2007 is as follows.

min
m

∑
i=1

ci|oi − oi
′| (1)

s.t.|o′ − oi
′| ≤ ε, i ∈ M

where ci is the unit cost of adjusting the opinion of DM di, oi
′ is the adjusted opinion of di,

and the optimal solution o′ is the group consensus opinion. In addition, Zhang et al. [37]
also generalized the minimum cost consensus model with aggregation operators.

Opinions of DMs to be studied in this paper are random parameters obeying specific
uniform distributions. On the basis of the above model, when oi ∼ U[oL

i , oU
i ] represents

the opinion which is a random parameter obeying a uniform distribution of DM di, i ∈ M,
Gong et al. [39] construct the following minimum cost consensus model.

min B =
m

∑
i=1

ci|o′ − oi| (2)

s.t.

{
oi ∼ U

[
oL

i , oU
i
]
, i ∈ M (2a)

o′ ∈ O (2b)

where B is the total cost of consensus reaching, ci is the unit cost of adjusting the opinion
of DM di, |o′ − oi| is the deviation of the consensus opinion o′ from the opinion oi of DM
di, O is the feasible set of consensus opinions o′, and this paper assumes that o′ is a crisp
number or obeys specific random distribution.

Chance constraint programming mainly copes with situations where the constraints
contain random variables. Assume that the budget of overall consensus negotiation is B
and the probability of reaching consensus within this budget is p, namely, the confidence
level 0 ≤ p ≤ 1. Based on the above, the minimum cost chance-constrained programming
model based on randomly distributed opinions is constructed [26]:

min B (3)

s.t.


Pr
{

m
∑

i=1
ci|o′ − oi| ≤ B

}
≥ p (3a)

oi ∼ U
[
oL

i , oU
i
]
, i ∈ M (3b)

o′ ∈ O (3c)

where constraint (3a) is an uncertain chance constraint regarding the consensus cost,
indicating probability that the cost of consensus negotiations does not exceed the budget B
is at least p (p ∈ [0, 1]). Constraints (3b) and (3c) are the same with constraints (2a) and (2b).

2.2. Opinion Dynamics Models

Opinion dynamics is a process of individual opinion evolution, in which the interactive
agents in the group constantly update their opinions based on the evolution rules, and the
opinions are stable at the final stage, forming a consensus, polarization, or fragmentation
opinion distribution [50]. The opinion dynamics are divided into two types: Continuous
and discrete opinion models. As the paper draws more on the idea of opinion dynamics
models than on specific paradigms, only two models that are closely related to the idea of
the sorted cost consensus proposed in this paper are presented here.

(1) Bounded confidence model
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The bounded confidence (BC) model is one of the continuous models in opinion
dynamics. BC means that two DMs will trust each other only if the difference of
opinions between them is lower than a given threshold [15]. Let ot

i ∈ [0, 1] be the
opinion of DM di, i ∈ M in the tth round. Let σ be the BC level. BC models include
two important models: the DW model [9,51] and the HK model [10]. The two models
are briefly described as follows.

(a) DW model

Any two DMs di, dj(i, j ∈ M) will determine whether to interact according to the BC.
If |ot

i − ot
j | > σ, the two DMs will think that opinions are too far apart to interact;

otherwise, the evolution rule will be:

ot+1
i = ot

i + µ(ot
j − ot

i ) (4)

ot+1
j = ot

j + µ(ot
i − ot

j)

where µ ∈ [0, 0.5] is the convergence parameter which is set arbitrarily and initially.
Depending on the parameters σ and µ, a consensus, polarization, or fragmentation
opinion distribution will be obtained in the DW model.

(b) HK model

Let wt
ij be the weight that DM di gives to dj at round t, which is described as:

wt
ij =

{
1/|At

i | dj ∈ At
i

0 dj /∈ At
i

(5)

where At
i = {dj||ot

i − ot
j | ≤ σ} is the confidence set of DM di, and |·| denotes the

number of elements for a finite set.
Then, the opinion evolution rule is as follows:

ot+1
i = ∑

dj∈At
i

wt
ijo

t
j (6)

If there exists an ordering oi1 ≤ oi2 ≤ . . . ≤ oim such that two adjacent opinions are
within the BC level σ, then the opinion profile O = o1, o2, . . . , om is called an σ−profile.
Hegselmann and Krause [10] argue that the opinion profile will be an σ−profile for all
times if a consensus is reached for an initial profile. Moreover, two DMs will remain
separated forever if they split at some time [50].

(2) Snajzd model
The Snajzd model is a discrete opinion dynamics model for the one-dimensional
case [50], which is based on the characteristic of “United we Stand, Divided we Fall”.
The opinion ot

i = 1 is a binary opinion of DM di at round t. Then, the opinions evolve
according to the following rules:

(a) In each round a pair of DMs di and di+1 is selected to influence their nearest
neighbors, i.e., the DMs di−1 and di+2.

(b) If ot
i = ot

i+1, then ot+1
i−1 = ot+1

i+2 .
(c) If ot

i = −ot
i+1, then ot+1

i−1 = ot
i+1 and ot+1

i+2 = ot
i , or ot+1

i−1 , ot+1
i+2 = −1 or +1 at random.

Two types of stable states are always reached in this model: complete consensus or
stalemate.

3. Definitions of the Sorted Negotiation

With regard to sorted negotiation with moderators participating and leading, it means
that after collecting the initial independent opinion of each DM, and on the premise of
certain negotiation cost, moderators take full account of the effect of similar opinions among
individuals and negotiate orderly with DMs to achieve optimal opinion order efficiency
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and obtain the optimal sequence of all DMs. The framework of sorted cost consensus
negotiation proposed in this paper is shown in Figure 1.
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Figure 1. A framework of sorted cost consensus negotiation.

Decision Variable

Let x = (x1, x2, . . . , xm) be a permutation of M = {1, 2, . . . , m}, representing the
sorting sequence of m DMs, i.e.,

(1) For any i ∈ M, 1 ≤ xi ≤ m.
(2) For any i 6= j, i, j ∈ M, xi 6= xj.

Definition 1. Opinion influence level.

The Snajzd model suggests that groups with similar opinions influence the opinion
followers around the DMs in these groups to make the same choices as they do [11,12].
When opinions are represented as continuous like interval type, it is impossible to strictly
distinguish identical or different opinions and so the level of similarity between opinions
can be measured by the opinion similarity.

The BC model reflects the fact that in a social network, when a certain similarity is
met between two individuals’ opinions, they are more willing to interact with each other,
resulting in the mutual influence and evolution of opinions.

There have been many studies on opinion similarity measures [52], mainly including
fuzzy similarity and interval similarity etc. In this paper, the main reference for the
similarity measure of interval-type opinions is the Jaccard similarity coefficient [53].

J(A, B) =
|A ∩ B|
|A ∪ B| (7)
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where J(A, B) denotes the Jaccard similarity coefficient of any two sets A and B. The larger
the value of J(A, B), the more similar the sets A and B are.

In the sorted negotiation sequence proposed in this paper, the opinion influence
between DMs is unidirectional, as the DM in front influences the DM in back. Therefore,
unlike the definition of Jaccard similarity coefficient which is relative to both sets A and B,
we aim to measure the opinion influence level of the DM in front relative to the DM in back.
Based on this, opinion influence level is used to measure the extent to which opinions of m
DMs are affected in the sorting sequence. The formula for the opinion influence level of the
individual dxi in ith (i ∈ M, i 6= 1) position of the sequence is as below:

αxi =
Lxi

∆xi

(8)

where αxi denotes the opinion influence level of individual dxi from individual dxi−1 , Lxi is
overlap length of interval opinions between adjacent individuals dxi−1 and dxi measuring
the similarity of opinions between two individuals, ∆xi is length of the opinion interval of
dxi , ∆xi = oU

xi
− oL

xi
, where oU

xi
, oL

xi
are the upper and lower bounds of interval respectively.

It is clear that αxi ∈ [0, 1].
The extent to which DMs opinions are influenced is related to the overlap length of

interval opinions between two adjacent individuals, namely, the higher the relative opinion
similarity of two neighboring individuals, the greater the extent to which the opinion of
the DM in front influences the DM in back.

The formation of promotive social relationships is primarily determined by opinion
similarity [54]; and a basic premise in negotiation research is that individuals sharing
similar opinions will improve negotiation processes and outcomes [55–57]. Based on these
two experimental findings, it can be shown that the higher the overall opinion influence
level in the sorted negotiation proposed in our paper, the more it can improve negotiation
outcomes and contribute to the sorted consensus negotiations.

Definition 2. Ranking satisfaction level.

In service industries, waiting due to queuing is a ubiquitous phenomenon, and the
ability to manage the queuing and waiting processes scientifically directly determines
whether the service recipients are satisfied, while customer satisfaction with the service
directly determines whether the enterprise can succeed or fail in its operation. Existing
studies show that improving competitiveness in terms of service quality is a key objective
for many enterprises [58–60]. In this paper, we proposed the sorted consensus negotiation,
which is essentially a queuing/scheduling problem, where the DMs are equivalent to the
machine parts or the the customers in the queue, and different positions in the negotiation
sequence imply different waiting times for DMs. The larger value of i, i.e., the further the
position of individual dxi away from the fronter in the sorted negotiation sequence, the
longer the negotiation waiting time, and the lower the subjective psychological satisfaction
of DM, the more likely the DM will be uncooperative in adjusting to consensus.

The DMs at position i has a negative correlation with his or her subjective psychological
satisfaction, namely, the satisfaction level of dxi in negotiation process decreases as his/her
position goes back in the sequence; at the same time, we set the ranking satisfaction level
of a DM in the interval [0, 1]. Based on the above two points, the formula for ranking
satisfaction level is defined as follows:

βi = 1− i− 1
m− 1

(9)

where βi is satisfaction level of ith (i ∈ M) position and i is the position in which the
individual dxi is located. Clearly, βi ∈ [0, 1].
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The ranking satisfaction level estimates the impact of different positions on the sorted
negotiation process. In line with Equation (9), it is conspicuous that the smaller value of i,
i.e., closer of the position of individual dxi to the fronter implies higher ranking satisfaction
level for him. When the satisfaction levels of DMs are higher, their willingness to cooperate
with the moderator in adjusting their opinions is stronger, which in turn contributes to
consensus negotiations.

Definition 3. Opinion order efficiency.

Opinion order efficiency is used to comprehensively measure the effect of opinion
influence in different sorting sequences of negotiation, as a function of both opinion
influence level and ranking satisfaction level. The formula for opinion order efficiency of
dxi is described as follows:

exi = αxi × βi (10)

where exi represents the opinion order efficiency of DM dxi , αxi is opinion influence level
of dxi , and βi is ranking satisfaction level in ith (i ∈ M) position of dxi . Since αxi , βi ∈ [0, 1],
exi ∈ [0, 1].

The overall opinion order efficiency is shown as:

e =
m

∑
i=1

αxi × βi (11)

where e is the overall opinion order efficiency, namely the sum of opinion order efficiencies
of all individuals dxi (i ∈ M).

Opinion order efficiency incorporates the effect of opinion influence between similar
individuals in the sorted negotiation process and the impact of different positions on the
negotiation, merging multiple factors to provide exhaustive measurement toward the
sorted negotiation. Equation (10) shows that higher opinion influence level of dxi from the
DM in front dxi−1 means higher his opinion order efficiency exi , and closer to the fronter
position implies higher ranking satisfaction level and higher opinion order efficiency exi .

Definition 4. Negotiation cost and cost coefficient.

Cost should be taken into account when moderators negotiate with each individual in
turn using the sorted negotiation. In GDM, the moderator has to pay a certain amount as
compensation to DMs by asking DMs to adjust their opinions, and the compensation is in
proportion to the opinion deviation for which the adjustment is made.

Let o′ denote the consensus opinion, oxi represent the opinion of individual dxi , where
oxi ∼ U[oL

xi
, oU

xi
] (i ∈ M), is a uniformly distributed random variable. cxi is the unit cost of

opinion adjustment towards dxi , and the total cost Cxi of opinion adjustments regarding
individual dxi is as below:

Cxi = cxi |o
′ − oxi | (12)

The total cost of CRP C is the sum of cost of all individuals on opinion adjustments:

C =
m

∑
i=1

cxi |o
′ − oxi | (13)

In the sorted negotiation, the effect of opinion influence among DMs and ranking in
the sorting process are also considered to indirectly affect the unit cost of DM dxi (i ∈ M).
Specifically, if the higher the opinion order efficiency of a DM, the less difficult it is for
the moderator to convince the DM to adjust his or her opinion (the stronger the DM’s
willingness to cooperate with the moderator in adjusting his or her opinion), and thus the
smaller the unit cost of adjusting the DM’s opinion. In order to abstractly quantify the
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impact of a DM dxi participating in the sorted negotiation on his or her unit cost Cxi , a cost
coefficient cexi

based on sorted negotiation efficiency is introduced here:

cexi
= 1− exi + ε (14)

where cexi
denotes the cost coefficient of dxi based on opinion order efficiency, exi is the

opinion order efficiency of dxi and the value of ε is extremely small (e.g., ε = 0.01). Here, ε
is introduced to avoid the cost coefficient cexi

= 0. Since exi ∈ [0, 1], cexi
∈ [ε, 1 + ε].

With the introduction of a cost coefficient, and assuming for the simplicity of the
subsequent calculation process that there is a basic linear relationship between the unit cost
of a DM dxi after being affected by the sorted negotiation and his or her original unit cost,
the total cost of individual dxi on opinion adjustment Cxi becomes C

′
xi

, where

C
′
xi
= (1− exi + ε)cxi |o′ − oxi | (15)

The total cost of CRP C becomes C
′
, where

C
′
=

m

∑
i=1

(1− exi + ε)cxi |o′ − oxi | (16)

After introducing the cost coefficient, it can be seen that the higher opinion order
efficiency of dxi , the smaller cost coefficient, indicating that the cost of individual dxi with
high opinion order efficiency is cut down, and vice versa. When exi = 1, the cost coefficient
cexi
≈ 0, which means that unit cost is immensely reduced for the current sorting sequence.

Definition 5. The optimum set of influential individuals and position assessment criteria.

In order to validate the reasonableness of the sorting sequence, i.e., to verify that
the DM’s opinion may be influenced by the DM in front, the optimum set of influential
individuals is proposed and position assessment criteria are produced. In this paper, we
assume that the influence degree of a DM in front on the opinion of a DM in back is
related to the similarity of their opinions, namely, the higher opinion similarity between
individuals, the higher influence degree. The opinion similarity between DMs is described
as follows:

sij =
Lij

∆i
(17)

where sij(i, j ∈ M) represents the opinion similarity of individual dj relative to di, Lij
denotes overlap length of interval opinions between di and dj, ∆i is length of the opinion
interval of di, and obviously, sij ∈ [0, 1], sii = 1.

Furthermore, the opinion similarity matrix S = (sij)m×m of all individuals can be obtained:

S = (sij)m×m =


1 s12 · · · s1m

s21 1 · · · s2m
...

...
. . .

...
sm1 sm2 · · · 1

 (18)

Concerning the individual di(i ∈ M), the set consisting of the top t(t ≈ m
3 ) among

m − 1 individuals with the greatest opinion similarities (nonzero) with di is defined as
the optimum set of influential individuals Pi. If only the first individual with the greatest
opinion similarity (nonzero) is taken into the set, when an individual is mighty impactive,
he/she may be the only person in more than one individual’s sets at the same time. In the
sorting sequence, however, it is impossible that an individual is in the position adjacent
to more than two individuals simultaneously. It is in reason to take the top t individuals
with the greatest opinion similarities (non-zero) with di to meet actual situations of sorting
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problems. The basis for setting t ≈ m
3 is the three levels of general evaluation, namely, good,

medium, and poor. Thus the total is divided equally into three. It can be adapted to the
needs of different real-life negotiation problems by choosing more detailed and complex
classification rules.

On the basis of above, the position assessment criteria is described as follows: In
a sorting sequence, an individual dxi satisfies at least one of the four conditions i.e., (1)
dxi−1 ∈ Pxi ; (2) dxi+1 ∈ Pxi ; (3) dxi ∈ Pxi−1 ; (4) dxi ∈ Pxi+1 .

Then, we can conclude that the position of dxi met with the position assessment criteria
is considered reasonable and valid, which means that the DM’s position is in front of or
behind the positions of DMs with similar opinions to the DM. A sorting sequence is sorted
with reason if and only if positions of more than a majority (e.g., 80%) of individuals in
the sequence are met with the assessment criteria. For instance, if a sorting sequence is
shown in Figure 2, and it is known that P1 = {d2, d4}, P2 = {d1, d3}, P3 = {d1, d4}, and
P4 = {d1, d2}, then the sequence is considered reasonable in the light of above assessment
criteria (Figure 2).
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Figure 2. An example of sequence assessment.

4. The Sorted Negotiation Model Based on Optimal Efficiency
4.1. Basic Assumptions about the Sorting Principles of Group Negotiation

In the sorting sequence of group negotiation, the basic assumptions of sorted negotia-
tion presented in this section are as follows.

Assumption 1. The influence degree of a DM in front on the opinion of a DM in back is related
to the similarity of their opinions, namely, the higher opinion similarity between individuals, the
higher influence degree.

Assumption 2. Compared with the individuals in further positions to the fronter, the individuals
in closer positions to the fronter of the sequence are more likely to change their initial opinions, and
there is less difficulty in negotiating with them, therefore their opinion order efficiency is relatively
high. The opinion order efficiency of the top individual is 1 by default.

4.2. Construction of the Optimal Efficiency Sorted Negotiation Models

The primary intent of this section is to obtain the optimal sorting sequence in which
the negotiation is carried out with the highest overall opinion order efficiency, subject to
negotiation cost constraints. In the circumstances where the probabilities of the negotiation
cost constraints holding are determined, the sorted negotiation Model (19) based on optimal
efficiency with chance-constrained programming is developed as follows:
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max e =
m

∑
i=1

exi (19)

s.t.



Pr{(1− exi + ε)cxi |o′ − oxi | ≤ Bxi} ≥ p (19a)

Pr{
m
∑

i=1
[(1− exi + ε)cxi |o′ − oxi |] ≤ B0} ≥ p (19b)

oxi ∼ U[oL
xi

, oU
xi
] (19c)

exi = αxi × βi (19d)

αxi =
Lxi
∆xi

(19e)

βi = 1− i−1
m−1 (19f)

o′, cxi ≥ 0 (19g)

In Model (19), the objective function is the overall opinion order efficiency expected
to be maximized of GDM, which is the sum of opinion order efficiency of all individuals
dxi (i ∈ M). Constraints (19a) and (19b) denote uncertain chance constraints regarding the
negotiation cost, indicating probability that negotiation cost does not exceed the budget
Bxi or B0 is at least p. Constraint (19c) means opinions of DMs oxi ∼ U[oL

xi
, oU

xi
] obeying

uniform distributions. Equation (19d) represents the opinion order efficiency. Equation
(19e) and (19f) represent opinion influence level and ranking satisfaction level, respectively.
Equationn (19g) describes non-negative constraints on o′, cxi . The known parameters of
Model (19) include: cxi , Bxi , B, p, o′, and the parameter o′ is calculated in two cases (as all
subsequent models): as a crisp number and as obeying a certain distribution, where the
parameters of the distribution are also known.

For the constraints (19a)–(19f) in Model (19), we distinguish two sets of constraints:

• Uncertain chance constraints regarding the negotiation costs,

(EC)



Pr{(1− exi + ε)cxi |o′ − oxi | ≤ Bxi} ≥ p,

Pr{
m
∑

i=1
[(1− exi + ε)cxi |o′ − oxi |] ≤ B0} ≥ p,

oxi ∼ U[oL
xi

, oU
xi
].

o′, cxi ≥ 0

• Constraints related to the opinion order efficiency,

(ENE)


exi = αxi × βi,

αxi =
Lxi
∆xi

,

βi = 1− i−1
m−1 .

In the above model, if the probabilities of carrying out negotiation within cost con-
straints are unknown; then, we expect that the optimal sequence with high opinion order
efficiency and negotiation cost constraints satisfied, and the probabilities of accomplishing
these goals can be obtained at the same time. In this case, the sorted negotiation Model
(20) based on optimal efficiency with chance-constrained programming is constructed
as follows:
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max
m

∑
i=1

exi + a
m

∑
i=0

pi (20)

s.t.



Pr{(1− exi + ε)cxi |o′ − oxi | ≤ Bxi} ≥ pi (20a)

Pr{
m
∑

i=1
[(1− exi + ε)cxi |o′ − oxi |] ≤ B0} ≥ p0 (20b)

oxi ∼ U[oL
xi

, oU
xi
] (20c)

ENE

o′, cxi ≥ 0 (20d)

In Model (20), the objective function expected to be maximized is the overall opinion
order efficiency of GDM and the sum of confidence levels related to costs, where a is
the equilibrium coefficient, depending on the number of decision individuals and overall
efficiency regarding the specific problem. Constraints (20a) and (20b) show uncertain
chance constraints regarding the negotiation cost, indicating probability that negotiation
cost does not exceed the budget Bxi or B0 is at least pi or p0. Constraint (20c), (20d) has the
same meaning as constraint (19c), (19g), respectively. The known parameters of Model (20)
include: cxi , Bxi , B0, a.

For the two models above, we assume that the total negotiation cost is deterministic.
It is expected not only that the optimal sequence of negotiation is obtained but also that
the negotiation cost is as low as possible. The sorted negotiation Model (21) based on
optimal efficiency and minimum cost with chance-constrained programming is constructed
as follows:

max
m

∑
i=1

exi −
B
Q

(21)

s.t.

{
EC

ENE

In Model (21), the objective function is the overall opinion order efficiency expected to
be maximized of GDM and the total negotiation cost supposed to be minimized, where
Q is the equilibrium coefficient, the value of which depends on the specific problem. The
known parameters of Model (21) include: cxi , Bxi , p, Q.

5. The Optimal Efficiency Sorted Negotiation Model Considering Multi-Moderators
Participation and Negotiation Time Constraints

The sorted consensus negotiation is more complex than traditional consensus negotia-
tion, and most notably, it can take more time. Hence, in order to measure the time spent on
the sorted negotiation or to cater for time-bound consensus negotiation, we consider the
time cost of the sorted negotiation consumption, and the participation of multimoderators
can help speed up the process of group negotiation. The optimal efficiency sorted negotia-
tion models are developed that take multimoderators participation and time constraints
into account in this paper.

As for a sorted negotiation problem with multimoderators, different moderators
take unequal time to negotiate with different individuals, and it is expected that the
optimal opinion order efficiency, the optimal sequence of all DMs, the optimal sequence of
moderators negotiating and the appropriate amount of DMs assigned to each moderator
are obtained with negotiation cost constraints and time constraints satisfying.

5.1. Basic Assumptions

Concerning the group negotiation with multimoderators participation and negotiation
time constraints, the basic assumptions about the sorting principles are as follows.

Assumptions 1–2: The same as Assumptions 1–2 in Section 4.1.
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Assumption 3. Each DM is negotiated only once by one moderator, and each moderator can only
negotiate with one DM at a time.

5.2. Decision Variable

The supplements to decision variables based on the modeling in Section 3 are as below.
x = (x1, x2, . . . , xm) is used to denote the sorting sequence of m decision individuals,

where xi(xi ∈ M) is a positive integer and is a rearrangement (permutation) of the sequence
{1, 2, . . . , m}.

y = (y1, y2, . . . , yn) is used to denote the sorting sequence of n(n < m) moderators,
where yk(yk ∈ N) is a positive integer and is a rearrangement (permutation) of the sequence
{1, 2, . . . , n} satisfying:

(1) For any k ∈ N, 1 ≤ yk ≤ n.
(2) For any k 6= s, k, s ∈ N, yk 6= ys.

z = (z1, z2, . . . , zn−1) is used to denote the sorted negotiation progress of each modera-
tor corresponding to y = (y1, y2, . . . , yn−1), which is an integer decision variable satisfying
0 ≡ z0 ≤ z1 ≤ z2 ≤ . . . ≤ zn−1 ≤ zn ≡ m, and where zk ∈ [0, M] are positive integers
indicating the amount of individuals who have completed negotiations as of the moderator
Nyk (yk ∈ N).

For any k, 1 ≤ k ≤ n, if zk = zk−1, the moderator Nyk is not selected for the negotiation.
For any k, 1 ≤ k ≤ n, if zk > zk−1, select the moderator Nyk for negotiating with

xzk−1+1, xzk−1+2, . . . , xzk in order.
If x, y, z are given, the corresponding sorting sequence is as shown in Table 1.

Table 1. The relationship of sorting sequence about moderators and DMs.

Moderators The Sequence of DMs

Ny1 dxz0+1 → dxz0+2 → . . .→ dxz1

Ny2 dxz1+1 → dxz1+2 → . . .→ dxz2

. . . . . .
Nyn dxzn−1+1 → dxzn−1+2 → . . .→ dxzn

Integral sorting sequence: dxz0+1 → dxz0+2 → . . .→ dxz1
→ dxz1+1 → dxz1+2 → . . .→ dxz2

→
. . .→ dxzn−1+1 → dxzn−1+2 → . . .→ dxzn

For example, when m = 8, n = 3, meaning that there are 8 DMs and 3 moderators
involved in a sorted consensus negotiation. If it is known that x = (2, 6, 1, 5, 4, 8, 3, 7, ), y =
(3, 1, 2), z = (3, 5, 8), then this sorted negotiation is shown in Figure 3.
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Figure 3. An example of sorted negotiation.

The sorted negotiation proposed in this manuscript are for all the DMs assigned to
different moderator groups and involves negotiating between the moderators and the
DMs with no direct negotiation or communication among the DMs. Although the DMs
parties belong to different groups of moderators, the negotiation process is a sorted and
continuous process within the groups, in which all relevant information for GDM is also
fully communicated.
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5.3. Description of Negotiation Time

Let Txi (x, y, z, ξ) represent the time regarding the individual dxi (i ∈ M) to complete
the negotiation, and by induction, it follows that:

Tx1(x, y, z, ξ) = ξx1yk , k ∈ N (22)

Txi (x, y, z, ξ) = Txi−1(x, y, z, ξ) + ξxiyk , i ∈ M, k ∈ N (23)

where Txi−1(x, y, z, ξ) denotes the time regarding the individual dxi−1 to complete the nego-
tiation. ξxiyk represents the time for the moderator Nyk negotiating with the individual dxi ,
and ξxiyk ∼ N(µxiyk , σxiyk ). Txm(x, y, z, ξ) stands for the time taken for the mth (the last) in-
dividual dxm to complete the negotiation, namely, the time taken for the overall negotiation.

5.4. Construction of the Optimal Efficiency Sorted Negotiation Models Considering
Multimoderators Participation and Negotiation Time Constraints

The main intent of this section is to obtain the optimal sorting sequence in which
the negotiation is carried out with the highest overall efficiency as well as negotiation
cost and time constraints satisfying. The optimal efficiency sorted negotiation Model (24)
considering multimoderators participation and negotiation time constraints with chance-
constrained programming is developed as below, where the probabilities of the negotiation
cost and time constraints holding are determined:

max e =
m

∑
i=1

exi (24)

s.t.



EC

Pr{Txi (x, y, z, ξ) ≤ Ti} ≥ q (24a)

Pr{Txm (x, y, z, ξ) ≤ T} ≥ q (24b)

Txi = Txi−1 + ξxiyk (24c)

ξxiyk ∼ N(µxiyk , σxiyk ) (24d)

ENE

In Model (24), the objective function is the overall opinion order efficiency expected
to be maximized, which is the sum of the opinion order efficiency of all individuals
dxi (i ∈ M). Constraints (24a) and (24b) represent uncertain chance constraints with regard
to the negotiation completion time, implying probability that negotiation completion time
does not exceed the time upper limit Ti or T is at least q. Constraint (24c) describes the
inductive relation respecting the negotiation completion time for individual dxi . Constraint
(24d) means the negotiation time ξxiyk ∼ N(µxiyk , σxiyk ) obeying normal distributions. The
known parameters of Model (24) include: cxi , Bxi , B0, T, p, q.

For the constraints (24a)–(24d) in Model (24), the set of constraints related to the
negotiation completion time is summarized:

(ET)


Pr{Txi (x, y, z, ξ) ≤ Ti} ≥ q,

Pr{Txm (x, y, z, ξ) ≤ T} ≥ q,

Txi = Txi−1 + ξxiyk ,

ξxiyk ∼ N(µxiyk , σxiyk ).

Similar to Model (20), an optimal efficiency sorted negotiation Model (25) considering
multimoderators participation and negotiation time constraints with chance-constrainted
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programming is constructed as below, where the probabilities of the negotiation cost
constraints holding are unknown:

max e =
m

∑
i=1

exi + a
m

∑
i=0

pi (25)

s.t.



Pr{(1− exi + ε)cxi |o′ − oxi | ≤ Bxi} ≥ pi (25a)

Pr{
m
∑

i=1
[(1− exi + ε)cxi |o′ − oxi |] ≤ B0} ≥ p0 (25b)

oxi ∼ U[oL
xi

, oU
xi
] (25c)

ET

ENE

o′, cxi ≥ 0 (25d)

In Model (25), the objective function expected to be maximized is overall opinion
order efficiency of GDM and the sum of confidence levels related to costs, where a is
the equilibrium coefficient, depending on the amount of decision individuals and overall
efficiency regarding the specific problem. Constraints (25a)–(25c) are identical to constraints
(20a) and (20c). Equation (25d) describes non-negative constraints on o′, cxi . The known
parameters of Model (25) include: cxi , Bxi , B0, T, a, q.

Similar to Model (21), an optimal efficiency sorted negotiation Model (26) considering
multi-moderators participation and negotiation time constraints with chance-constrainted
programming is developed as below under the premise that the negotiation budget limit is
unknown and desired to be as lower as possible:

max
m

∑
i=1

exi −
B
Q

(26)

s.t.


EC

ET

ENE

In Model (26), the objective function is the overall opinion order efficiency expected to
be maximized of GDM and the total negotiation cost supposed to be minimized, where
Q is the equilibrium coefficient, the value of which depends on the specific problem. The
known parameters of Model (26) include: cxi , Bxi , T, Q, p, q.

In Models (24)–(26), we assume that the upper limit of negotiation time is deterministic.
However, in sorted negotiation with multimoderators participation, it is desired that not
only the optimal sequence of negotiation is obtained but also the total negotiation time is as
less as possible. To this end, an optimal efficiency sorted negotiation Model (27) considering
multimoderators participation and time constraints with chance-constrained programming
is constructed as follows:

max
m

∑
i=1

exi −
T
Q

(27)

s.t.


EC

ET

ENE

In Model (27), the objective function is the overall opinion order efficiency expected
to be maximized of GDM and the total negotiation time desired to be minimized, where
Q is the equilibrium coefficient, the value of which depends on the specific problem. The
known parameters of Model (27) include: cxi , Bxi , B0, Q, p, q.
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5.5. Improved Genetic Algorithm to Solve Models

A genetic algorithm is a modern optimization algorithm that searches for the optimal
solution by simulating the Darwinian biological evolution process. The solution sets of
problems to be solved are treated as initial populations, each of which is composed of
several individuals considered to be chromosomes. The genetic algorithm means the
iteration process where the optimal solution is picked through selection, crossover, and
mutation on chromosomes. About the negotiation strategy problem in this paper, decision
variables x = (x1, x2, . . . , xm) in the feasible set are counted as chromosomes, where xi(i ∈
M) are genes that make up the chromosomes. A number of chromosomes are generated
randomly during initialization, where integer pop_size is used to represent the amount of
chromosomes in the population. Improved approaches of the subsequent crossover and
mutation on chromosomes are also used to compute the sorted negotiation strategy.

The decision variables are made up of x, y, z after the introduction of multimoderators
and negotiation time, and the algorithm to solve models in Section 4, which is a simplifica-
tion of the following, is not listed here. The detailed procedures of the improved algorithm
are detailed as follows:

(i) The initial x is generated randomly. First, define xi = i, i ∈ M, and (x1, x2, . . . , xm) =
(1, 2, . . . , m). Then repeat the following steps from j = 1, 2, . . . , m.
(a) Generate a random integer n∗ between j and m.
(b) Swap xj with xn∗ .
Up to now, a rearrangement sequence of (1, 2, . . . , m), namely an initial chromosome,
is generated randomly. The decision variable y = (y1, y2, . . . , yn) is initialized on the
same principle as x = (x1, x2, . . . , xm). For the decision variable z = (z1, z2, . . . , zn−1),
repeat the following steps from k = 1, 2, . . . , n− 1.
Generate an integer between 0 and m randomly that is assigned to zk. Then, the
initialized z = (z1, z2, . . . , zn−1) sorted by ascending is generated randomly.
The x, y, z generated randomly are integrated as (x, (y, z)), namely, the initial chromo-
somes are produced. Pop_size chromosomes V1, V2, . . . , Vl , . . . , Vpop_size, as the initial
population, are generated randomly through repeating the above steps, where Vl =

(x(l), (y(l), z(l))) = ((x(l)1 , x(l)2 , . . . , x(l)m ), ((y(l)1 , y(l)2 , . . . , y(l)n ), (z(l)1 , z(l)2 , . . . , z(l)n−1))).
(ii) Suppose Vl(l = 1, 2, . . . , pop_size) corresponds to an objective function value E(l), l =

1, 2, . . . , pop_size, and compute E(l) according to the objective function formula in
models. Define the evaluation function as Eval(Vl) =

E(l)

pop_size
∑

l=1
E(l)

.

(iii) Carry out the following selection steps.
(a) The elite chromosome is retained according to the objective function value E(l).
(b) For each Vl , calculate the cumulative probability ql .

q0 = 0, ql =
l

∑
j=1

Eval(Vj), l = 1, 2, . . . , pop_size.

(c) Generate a random number r from the interval (0, qpop_size].
(d) If the condition ql−1 < r ≤ ql is satisfied, select chromosomes Vl .
(e) Repeat Steps (c) and (d) until pop_size replicated chromosomes are obtained.

(iv) Operate crossover on chromosomes V1, V2, . . . , Vl , . . . , Vpop_size. Define Pc as the cross-
over probability. First retain the elite chromosome, then repeat the following steps
from l = 1, 2, . . . , pop_size.
(a) Generate a random number r in the interval [0, 1].
(b) If r < Pc, select chromosome Vl as a crossover parent.
The selected chromosomes are paired in sequence, and the following crossover opera-
tions are performed on each pair of chromosomes.
The paired chromosomes are in the order (V

′
1, V

′
2), (V

′
3, V

′
4), . . .. For instance, a pair

of chromosomes to be crossed is (V
′
1, V

′
2) = ((x(1)

′
, (y(1′), z(1)

′
)), (x(2)

′
, (y(2)′ , z(2)

′
))),

where let (x(1)
′
, x(2)

′
) be ((2, 1, 4, 6, 3, 5), (6, 4, 2, 1, 5, 3)) and operate crossover on the
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first half genes of x in a reference chromosome selected randomly. If the chromo-
some V

′
1 is chosen as the reference chromosome, traverse externally the first half

genes (2, 1, 4) of x(1)
′

and traverse internally all the genes of x(2)
′
, before recording

the positions of the first half genes of x(1)
′

in each x separately and then moving
the corresponding genes to their corresponding positions in line with the recorded
positions of the other. The pair becomes (x(1)

′′
, x(2)

′′
) = ((6, 4, 2, 1, 3, 5), (2, 1, 4, 6, 5, 3)).

Perform global crossover operations on (y, z) and the final child chromosomes after
the crossover operations are V

′′
1 = (x(1)

′′
, (y(2)′ , z(2)

′
)), V

′′
2 = (x(2)

′′
, (y(1′), z(1)

′
)), . . ..

Finally, all parent chromosomes are replaced in order with child chromosomes.
(v) Operate mutation on chromosomes V1, V2, . . . , Vl , . . . , Vpop_size. Define Pm as the mu-

tation probability. First, retain the elite chromosome, then repeat the following steps
from l = 1, 2, . . . , pop_size.
(a) Generate a random number r in the interval [0, 1].
(b) If r < Pm, select chromosome Vl as a mutation parent.
The selected parent chromosomes to mutate are noted as V∗1 = (x(1)∗, (y(1)∗, z(1)∗)),

V∗2 = (x(2)∗, (y(2)∗, z(2)∗)), . . .. For the chromosome V∗1 , suppose x(1)∗ = (x(1)∗1 , x(1)∗2 ,

. . . , x(1)∗m ) and perform the following mutation operations on x(1)∗.
(a) Generate two random integers m1, m2 ∈ M.

(b) Let the mutated x(1)∗
′
= (x(1)∗1 , . . . , x(1)∗m1−1, x(1)∗

′

m1 . . . , x(1)∗
′

m2 , x(1)∗m2+1, . . . , x(1)∗m ), where

the new subsequence defined as {x(1)∗
′

m1 . . . , x(1)∗
′

m2 } is a rearrangement sequence of the

original sequence {x(1)∗m1 . . . , x(1)∗m2 }.
Here, no mutation is performed on y. For z(1)∗, operate the following steps of mutation.
(a) Generate two random integers n1, n2 ∈ {1, 2, . . . , n− 1}.

(b) Let the mutated z(1)∗
′

be (z(1)∗1 , . . . , z(1)∗n1−1, z(1)∗
′

n1 . . . , z(1)∗
′

n2 , z(1)∗n2+1, . . . , z(1)∗n−1), where

the new subsequence defined as {z(1)∗
′

n1 . . . , z(1)∗
′

n2 } satisfies by z(1)∗n1−1 ≤ z(1)∗
′

n1 ≤ . . . ≤

z(1)∗
′

n2 ≤ z(1)∗n2+1.

The mutated child chromosomes are noted as V∗
′

1 = (x(1)∗
′
, (y(1)∗, z(1)∗

′
)). Perform

the same mutation operations on the other parent chromosomes V∗2 , V∗3 , . . . and the
parent chromosomes V∗1 , V∗2 , V∗3 , . . . are replaced with mutated child chromosomes

V∗
′

1 , V∗
′

2 , V∗
′

3 , . . ..
(vi) Iterate It times for Steps (ii) to (v) (e.g., It = 500).
(vii) Return the optimal chromosome representing the optimal decision variable V∗ =

(x∗, (y∗, z∗)) with the optimal objective function value E∗max.

Algorithm 1 sets out the procedures for solving Model (24).
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Algorithm 1 Algorithm to solve sorted negotiation model.

Input: o
′
, cxi , Bxi , B0, T, p, q, It

Output: Sorting sequence x∗ and y∗, the negotiation progress of each moderator z∗, total
opinion order efficiency e, opinion order efficiency of each individual exi

1: pop = initialize(pop_size)
2: for i = 1 : It do
3: while True do
4: if check(pop) == 1 then . Screening feasible solutions according to constraints
5: Compute V = V1, V2, . . . , Vl , . . . , Vpop_size
6: retain V .best
7: pop = select(pop)
8: pop = crossover(pop)
9: pop = mutate(pop)

10: break
11: else
12: pop = crossover(pop)
13: pop = mutate(pop)
14: end if
15: end while
16: end for
17: return (V .best).best

6. Numerical Example

In order to expound and verify the realistic feasibility of the optimal efficiency sorted
negotiation models proposed in Sections 4 and 5, an numerical example is presented in
the context of China’s urban demolition negotiation. House demolition is one of the sig-
nificant issues about the reform and development of China’s urbanization, which mainly
involves negotiations regarding compensation between the Government and relocated
residents. The example of China’s urban housing demolition in this paper leans more
toward the simplified assumption where external business estate estimates would not
significantly differ among the groups of owners, as such housing demolition negotiations
in the same area are common in China and valuations of these houses are usually close. In
the negotiation process, the Government as the moderator adopts compensation measures
to encourage and persuade residents as DMs to move with the ultimate aim of negoti-
ating where the satisfactory amount of compensation for the residents is obtained, and
the demolition plan of the Government is completed. In circumstances where multiple
government departments are assigned to negotiate with residents on demolition, there are
differences in the negotiation completion time among different government departments
for different residents, which is owing to differences in skills of leadership, communication
among departments. The following issues are addressed in this paper with regard to urban
demolition negotiations.

• On the premise of the Government’s budget constraints and negotiation time con-
straints satisfying, how to complete sorted demolition negotiation with optimal opin-
ion order efficiency.

• On the premise of the Government’s budget constraints and negotiation time con-
straints satisfying, how to complete sorted demolition negotiation with confidence
level and opinion order efficiency as higher as possible.

• On the premise of negotiation time constraints satisfying, how to complete sorted
demolition negotiation with lower costs and higher opinion order efficiency.

• On the premise of the Government’s budget constraints satisfying, how to complete
sorted demolition negotiation with less time and higher opinion order efficiency.

Suppose that 15 groups of decision residents d1, d2, . . . , d15 (i.e., M = {1, 2, . . . , 15})
are involved in a sorted negotiation process of urban demolition. The initial parameters
regarding all resident groups are shown in Table 2, where the opinion interval for each
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group of decision residents di(i ∈ M) is the more universal one of all data randomly
generated from the interval [10, 210]. oi, ci, Bi (i ∈ M) are, in order, expected compensation
amount, unit communication cost, and the Government communication budget of residents
di(i ∈ M).

The parameters of the genetic algorithm are set as pop_size = 100, crossover prob-
ability Pc = 0.55, mutation probability Pm = 0.45, and iteration number It = 500. The
equilibrium coefficients of models are set to Q = 1000, a = 0.5, ε = 0.01. The process of
setting the values of a and Q is as follows: taking Model (20) as an example, we first assign

an arbitrary value to a, and then the values of
m
∑

i=1
exi and

m
∑

i=0
pi are all printed out during

the solving process. Finally, we observe that the value of
m
∑

i=1
exi is roughly in the interval

[4, 7] and the value of
m
∑

i=0
pi is roughly in the interval [13, 15]. So we set a = 0.5, namely

reducing
m
∑

i=0
pi in the objective, so that the two items

m
∑

i=1
exi and a

m
∑

i=0
pi are basically at the

same level of magnitude. Similarly, in Model (21), for example, we can roughly determine
that the value of B is roughly in the interval [2000, 5000]. The idea of this approach is similar
to converting a multi-objective programming problem into a single-objective program-
ming problem [61], where each objective is normalized due to the different magnitudes of
multiple objectives.

The analysis in this section mainly focuses on the Model (24). The validity of the
model is verified in more detail by obtaining the optimal solution through the proposed
algorithm and performing sensitivity analysis. All models developed in this paper are
based on both cases where the group consensus opinion o′ is known (o′ is a crisp number)
and unknown (o′ obeys a random distribution), and solutions of models are also presented
with two cases in the numerical example that follows. Solutions of the other models in this
paper (i.e., Models (19)–(21), Models (25)–(27).) are detailed in Appendix A Tables A3–A9.

Table 2. Data of 15 decision resident groups in urban demolition negotiation.

di(i ∈ M) Opinions Unit Cost ci
Individual Budget Bi

o′ Known o′ Unknown

d1 o1 ∼ U[26.47, 77.72] 6.5 514 936
d2 o2 ∼ U[15.09, 35.27] 9.0 828 1296
d3 o3 ∼ U[41.35, 79.86] 5.5 356 792
d4 o4 ∼ U[118.25, 190.30] 5.5 444 792
d5 o5 ∼ U[77.43, 137.91] 1.0 29.1 144
d6 o6 ∼ U[50.07, 167.49] 1.0 56 144
d7 o7 ∼ U[48.93, 181.69] 1.5 102 216
d8 o8 ∼ U[99.43, 196.23] 5.0 428 720
d9 o9 ∼ U[148.02, 199.41] 7.5 683 1080
d10 o10 ∼ U[128.92, 156.50] 4.5 220 648
d11 o11 ∼ U[29.73, 79.33] 6.0 456 864
d12 o12 ∼ U[77.69, 172.39] 2.5 154 360
d13 o13 ∼ U[78.01, 209.32] 4.5 438 648
d14 o14 ∼ U[10.44, 111.84] 5.5 510 792
d15 o15 ∼ U[77.44, 198.13] 4.0 345 576

6.1. Analysis of the Optimal Efficiency Sorted Negotiation Models Considering Multimoderators
Participation and Negotiation Time

Based on Models (19)–(21), negotiation time ξik of the government department (mod-
erator) Nk to the resident group (DM) di (ξik ∼ N(µik, σik), i = 1, 2, . . . , 15, k = 1, 2, 3.) is
introduced into the optimal efficiency sorted negotiation models considering multimodera-
tors participation and negotiation time constraints, which is shown in Table 3.

Case 1: When the group consensus opinion o′ is known (o′ = 107), say the planned
compensation of the Government is known to be 1.07 million, a model based on Model (24)
is developed in view of the data of resident groups (DMs) in Tables 2 and 3 as presented in
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Appendix A.2, where uncertain chance constraints on negotiation costs (Equations (24a)
and (24b)) are computed using stochastic simulations, and uncertain chance constraints
on negotiation time (Equations (24c) and (24d)) are calculated by its explicit equivalent
constraints to which the cumulative distribution functions of negotiation time (ξxiyk ∼
N(µxiyk , σxiyk )) are converted.

Case 2: When the group consensus opinion o′ is unknown (o′ ∼ U(10, 210)), according
to the data in Tables 3 and 4, the constructed model based on Model (24) is not listed here,
where there is no differences from the model in Case 1 of this section except constraints of
o′ (o′ ∼ U(10, 210)) and parameters Bi.

When p = 0.95, q = 0.95, T = 85, solutions of the sorted negotiation model with con-
straints of both time and cost based on Case 1 (B0 = 2500), Case 2 (B0 = 4100) are shown in
Table 4. Taking the solution of Case 1 as an example, the solution shows that the optimal
total opinion order efficiency is 6.443 and the total negotiation time spent is 70.665 with
the budget B = 2500 and the upper limit of overall decision negotiation time T = 85. The
moderators are required to negotiate with each DM in the sorting sequence d14− d1− d11−
d3− d6− d7− d13− d8− d4− d9− d15− d12− d10− d5− d2. The moderator N1 is responsible
for negotiating with the first 10 DMs in the sequence, the moderator N3 is responsible for ne-
gotiating with the next 5 DMs in the sequence, and the moderator N2 is not involved in this
negotiation. The opinion order efficiency of this sorted negotiation achieved for each DM
in the sequence is in order: 1.0, 0.929, 0.829, 0.775, 0.181, 0.569, 0.451, 0.5, 0.429, 0.294, 0.119,
0.214, 0.143, 0.011, 0.0. The abscissa of the graph denotes the optimal sorting sequence, the
ordinate represents DMs’ opinions, and the shaded areas indirectly represent the direction
and opinions influence degree among individuals.

Table 3. ξik ∼ N(µik, σik), i = 1, 2, . . . , 15, k = 1, 2, 3.

N1 N2 N3

d1 ξ11 ∼ N(1, 0.4) ξ12 ∼ N(2, 0.5) ξ13 ∼ N(3, 0.6)
d2 ξ21 ∼ N(4, 0.2) ξ22 ∼ N(5, 0.5) ξ23 ∼ N(6, 0.6)
d3 ξ31 ∼ N(6, 0.6) ξ32 ∼ N(4, 0.5) ξ33 ∼ N(5, 0.4)
d4 ξ41 ∼ N(1, 0.4) ξ42 ∼ N(3, 0.5) ξ43 ∼ N(5, 0.8)
d5 ξ51 ∼ N(2, 0.4) ξ52 ∼ N(4, 0.45) ξ53 ∼ N(6, 0.8)
d6 ξ61 ∼ N(3, 0.4) ξ62 ∼ N(5, 0.5) ξ63 ∼ N(7, 0.9)
d7 ξ71 ∼ N(4, 0.4) ξ72 ∼ N(6, 0.6) ξ73 ∼ N(5, 0.5)
d8 ξ81 ∼ N(2, 0.2) ξ82 ∼ N(3, 0.5) ξ83 ∼ N(4, 0.6)
d9 ξ91 ∼ N(3, 0.3) ξ92 ∼ N(4, 0.7) ξ93 ∼ N(5, 0.6)
d10 ξ10,1 ∼ N(5, 0.23) ξ10,2 ∼ N(7, 0.45) ξ10,3 ∼ N(6, 0.77)
d11 ξ11,1 ∼ N(5, 0.45) ξ11,2 ∼ N(6, 0.66) ξ11,3 ∼ N(7, 0.88)
d12 ξ12,1 ∼ N(6, 0.42) ξ12,2 ∼ N(7, 0.56) ξ12,3 ∼ N(5, 0.76)
d13 ξ13,1 ∼ N(3, 0.66) ξ13,2 ∼ N(2, 0.52) ξ13,3 ∼ N(1, 0.41)
d14 ξ14,1 ∼ N(6, 0.71) ξ14,2 ∼ N(5, 0.61) ξ14,3 ∼ N(4, 0.41)
d15 ξ15,1 ∼ N(5, 0.61) ξ15,2 ∼ N(3, 0.58) ξ15,3 ∼ N(1, 0.45)

In line with Equations (17) and (18) and the initial data of resident groups in Table 2,
the opinion similarity matrix S = (sij)15×15 among resident groups is obtained:

S15×15 =



1 0.172 0.710 0 0.006 0.540 0.562 0 0 0 0.936 0.001 0 1 0.005
0.436 1 0 0 0 0 0 0 0 0 0.275 0 0 1 0
0.944 0 1 0 0.063 0.774 0.803 0 0 0 0.986 0.056 0.048 1 0.063

0 0 0 1 0.273 0.683 0.880 1 0.587 0.383 0 0.751 1 0 1
0.005 0 0.040 0.325 1 1 1 0.636 0 0.149 0.031 0.996 0.990 0.569 1
0.235 0 0.254 0.419 0.515 1 1 0.580 0.166 0.235 0.422 0.765 0.762 0.526 1
0.217 0 0.234 0.478 0.456 0.884 1 0.620 0.254 0.208 0.229 0.713 0.781 0.474 0.785

0 0 0 0.744 0.398 0.703 0.850 1 0.498 0.285 0 0.754 1 0.128 1
0 0 0 0.823 0 0.379 0.655 0.938 1 0.165 0 0.474 1 0 0.975
0 0 0 1 0.326 1 1 1 0.307 1 0 1 1 0 1

0.968 0.112 0.766 0 0.038 1 0.613 0 0 0 1 0.033 0.027 1 0.038
0 0 0.023 0.572 0.636 0.94 1 0.770 0.257 0.291 0.017 1 0.997 0.361 1
0 0 0.014 0.549 0.456 0.681 0.790 0.737 0.391 0.210 0.010 0.719 1 0.258 0.915

0.505 0.199 0.380 0 0.339 0.609 0.620 0.122 0 0 0.489 0.337 0.334 1 0.339
0.002 0 0.020 0.597 0.501 0.973 0.864 0.802 0.415 0.229 0.936 0.016 0.785 0.995 1



The optimum sets of influential individuals towards 15 resident groups are obtained
according to the top five (t = 5, sij 6= 0) with the greatest opinion similarities for each
group and shown in Table 5.
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Taking the optimal sorting sequence of Case 1 in Table 4 as an example, it is known
according to the position assessment criteria in Definition 5 that 93.34% of resident groups
are in proper positions, which implies that the result of the whole sorting is also efficacious.
In the sequence, the residents group in an unreasonable position is d2, which can be ana-
lyzed: Reasons are their last position and extreme opinion. Therefore, in actual negotiation,
if the residents cannot be persuaded to adjust their opinions through sorted negotiation
even if they are in the last position, management approaches of noncooperative behaviors
such as persuading non-cooperative DMs to adjust their opinions and giving them money
or other compensation can be adopted. Similarly, the optimal sorting sequence of Case 2 in
Table 4 is assessed as reasonable for all resident groups.

When B0 = 2400/4100, T = 85, solutions of the sorted negotiation model with different
confidence levels p, q are shown in Appendix Tables A1 and A2. The results of the sensitivity
test for Tables A1 and A2 are shown in Figure 4.

0.65 0.75 0.85 0.95

Confidence Level (p or q)

5

6

7

e

Case1 q=0.95
Case1 p=0.95
Case2 q=0.95
Case2 p=0.95

Figure 4. Sensitivity test on Model (24).

The results of the sensitivity test (Figure 4) reveal that when the budget B0 and the
time upper limit T of demolition negotiation given and q unchanged, the lower confidence
level p becomes, the higher opinion order efficiency e, which is the broadened restrictions
on the cost that make the overall opinion order efficiency increase. If p remains unchanged,
as the confidence level q becomes lower, the constraints of negotiation time are broadened
and this leads to the negotiation completion time tending to increase. Since confidence
level q restricts the negotiation time, it mainly affects the sorting sequence of government
departments negotiating and the number of individuals assigned to departments. Still, it
does not directly affect the cost and efficiency of sorted negotiation.

In the realistic negotiation of urban demolition and resettlement, the optimal se-
quencing strategy with optimum opinion order efficiency can be obtained through sorted
negotiation models proposed in this paper, where the budget and negotiation completion
deadline are learned from the Government. Furthermore, negotiation expenditure of the
Government is decreased dramatically, and anticipated outcomes of demolition negotiation
are achieved rapidly by means of adopting the reasonable sequencing strategy.
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Table 4. Solutions of sorted negotiation model with constraints of both time and cost (p = 0.95, q =

0.95).

B0 T e Total
Time Sorting Sequences and Individual Efficiency

2500 85 6.443 70.665

d14 d1 d11 d3 d6 d7 d13 d8 d4 d9 d15 d12 d10 d5 d2
0

25

50

75

100

125

150

175

200

225
lower
upper

d14 − d1 − d11 − d3 − d6 − d7 − d13 − d8 − d4 − d9︸ ︷︷ ︸
N1

− d15 − d12 − d10 − d5 − d2︸ ︷︷ ︸
N3

[1.0, 0.929, 0.829, 0.775, 0.181, 0.569, 0.451, 0.5, 0.429, 0.294, 0.119, 0.214, 0.143, 0.011, 0.0]

4100 85 6.131 74.188

d13 d8 d4 d9 d15 d7 d6 d12 d1 d11 d3 d14 d2 d5 d10
0

25

50

75

100

125

150

175

200

225
lower
upper

d13 − d8 − d4 − d9 − d15 − d7︸ ︷︷ ︸
N3

− d6 − d12︸ ︷︷ ︸
N2

− d1 − d11 − d3 − d14 − d2 − d5 − d10︸ ︷︷ ︸
N1

[1.0, 0.929, 0.857, 0.646, 0.297, 0.505, 0.571, 0.474, 0.0, 0.346, 0.282, 0.081, 0.143, 0.0, 0.0]

Table 5. The optimum sets of Influential Individuals for 15 Resident Groups.

di(i ∈ M) Optimum Sets of Influential Individuals Pi(i ∈ M)

d1 P1 = {d14, d11, d3, d7, d6}
d2 P2 = {d14, d1, d11}
d3 P3 = {d14, d11, d1, d7, d6}
d4 P4 = {d8, d13, d15, d7, d12, d6, d9}
d5 P5 = {d6, d7, d15, d12, d13, d8}
d6 P6 = {d7, d15, d12, d13, d8, d14}
d7 P7 = {d6, d15, d13, d12, d8}
d8 P8 = {d13, d15, d7, d12, d4, d6}
d9 P9 = {d13, d15, d8, d4, d7}
d10 P10 = {d4, d6, d7, d8, d12, d13, d15, d5, d9}
d11 P11 = {d6, d14, d1, d3, d7, d2}
d12 P12 = {d7, d15, d13, d6, d8, d5}
d13 P13 = {d15, d7, d8, d12, d6}
d14 P14 = {d7, d6, d1, d11, d3}
d15 P15 = {d13, d6, d7, d8, d12}

6.2. Analysis of the Algorithm Effectiveness

In order to verify the effectiveness of the genetic algorithm (GA) designed in this
paper for solving sorted cost consensus negotiation models, the GA is compared with two
algorithms, the artificial bee colony algorithm (ABC) and the simulated annealing algorithm
(SAA). ABC is an optimization algorithm proposed to imitate the behaviour of bees, which
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performs both global and local optimal solution searching during each iteration. However,
GA has better global searching capability than ABC since GA includes crossover and
mutation operations. SAA derived from the solid annealing principle is a probability-based
algorithm that obtains the optimal solution asymptotically by decreasing the temperature.
SAA uses single-individual evolution and GA uses population evolution making the
algorithm parallel. Since no research has been conducted on the problem of sorted cost
consensus negotiation, the above two algorithms are suitably modified to make them
applicable to sorted negotiation models when conducting the comparison experiments.
To ensure the fairness in experiments, the relevant parameters of the algorithms in the
comparison experiments are set as follows: the population size pop_size = 100 in GA
and ABC, the length of Markov chain len_Markov = 100 in SAA, the maximum number
of iterations maxIt = 1000. The experiments were conducted against a model (Case 1:
B0 = 2500, T = 85, p = q = 0.95) based on Model (24). The comparison results are shown
in Table 6 and Figure 5, where Best, Mean, Std, and Percent represent the optimum, mean,
standard deviation, and proportion of feasible solutions obtained by the algorithm in the
process of searching for the optimum, respectively.

It is known from Table 6 that the best and mean by GA on efficiency searching for
the sorted cost consensus negotiation model are larger than those of ABC and SAA, and
the standard deviations obtained are smaller than those of the other two algorithms. GA
generates the highest proportion of feasible solutions in the searching process, which proves
that GA has higher searching capability and convergence accuracy, and is also more robust.
Figure 5 shows a comparison of the convergence curves of GA, ABC and SAA, from which
it is obvious that GA can find the better individual faster and converge with higher accuracy
compared to ABC and SAA. The above analysis results show that the GA designed in this
paper can effectively solve the sorted cost consensus negotiation models.

Table 6. Comparative results of GA, ABC and SAA.

Algorithm Best Mean Std Percent

GA 6.443 6.299 0.239 1
ABC 6.380 6.141 0.473 0.867
SAA 6.134 5.454 0.534 0.900
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Figure 5. Convergence curves of GA, ABC and SAA.

7. Conclusions

The theory of opinion dynamics suggests that the opinions of DMs influence each
other and further evolve and that the opinions of DMs are more likely to be affected by
the opinions of individuals who hold similar ones to their own [49]. In sorted consensus
negotiation, the opinion influence of the DM in front on the DM in back in a sequence
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motivates DMs to adjust their opinions in the direction of similar opinions to those DMs in
front. In view of this observation, opinion influence level and ranking satisfaction level are
proposed and used to measure the efficiency of opinion order, the cost coefficient is defined
to reflect the impact of negotiation sorting on consensus costs, and then optimal efficiency
sorted negotiation models are constructed, where the genetic algorithm is adopted to
obtain the optimal sorting sequence of DMs. In more intricate GDM, it is also instrumental
in upgrading the efficiency of consensus decision making that participation of multiple
moderators and restrictions on negotiation time. In the end, the rationality of solutions
is confirmed in accordance with defined position assessment criteria in the application
example of China’s urban demolition negotiation. The works in this paper are summarized
as follows:

• Opinion order efficiency is defined with opinion influence level as well as ranking
satisfaction level; furthermore, the optimal efficiency of sorted consensus negotiation
is studied for the first time, and the rationality of sorting sequences of optimal effi-
ciency sorted negotiation models is verified by way of introducing an optimum set of
influential individuals and position assessment criteria.

• The cost coefficient based on opinion order efficiency is defined, which makes the
improvement to cost constraints of sorted negotiation.

• Stochastic distributions (e.g., uniform distributions) are used to fit the uncertainty of
DMs’ opinions, and then chance constraints of sorted consensus negotiation costs are
developed.

• The uncertainty of negotiation time is described in terms of the time obeying nor-
mal distributions for moderator negotiating with individuals, and further optimal
efficiency sorted negotiation models considering multi-moderators participation and
negotiation time constraints are extended.

Some work can be done in the future:

• The problem of sorted negotiation strategy where opinions of DMs are random vari-
ables obeying uniform distributions is investigated in this study. One may conduct a
research on sorted negotiation regarding different representation formats of opinions.

• In addition to opinion order efficiency, time, cost of CRP, more factors from multiple
aspects may be combined with sorted consensus negotiation, such as characteristics
of DMs, social and trust networks in decision groups, multiattributes consensus and
clustering for large-scale groups.

• More efficient solving algorithms concerning more complicated sorted negotiation
models may be designed.

• Bayesian dynamics can be combined with sorted consensus negotiation.
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Appendix A

Appendix A.1. Solutions of Models

Table A1. Solutions of sorted negotiation model with different p, q (o′ = 107, B0 = 2400, T = 85).

p q e Total
Time Sorting Sequences and Individual Efficiency

0.65 0.95 6.248 76.310
d14 − d1 − d11 − d3 − d7 − d6 − d15 − d4 − d8 − d9 − d13︸ ︷︷ ︸

N2

− d12 − d2 − d10︸ ︷︷ ︸
N3

− d5︸︷︷︸
N1

[1.0, 0.929, 0.829, 0.775, 0.166, 0.643, 0.426, 0.5, 0.319, 0.335, 0.112, 0.214, 0.0, 0.0, 0.0]

0.75 0.95 6.116 68.576
d11 − d1 − d3 − d7 − d12 − d15 − d13 − d8 − d4 − d10 − d14 − d2 − d9 − d6︸ ︷︷ ︸

N1

− d5︸︷︷︸
N2

[1.0, 0.87, 0.81, 0.183, 0.714, 0.504, 0.523, 0.5, 0.429, 0.357, 0.0, 0.214, 0.0, 0.012, 0.0]

0.85 0.95 6.083 71.448
d14︸︷︷︸
N2

− d1 − d11 − d3 − d6 − d13︸ ︷︷ ︸
N3

− d12 − d10 − d7 − d8 − d5 − d15 − d9 − d4 − d2︸ ︷︷ ︸
N1

[1.0, 0.929, 0.829, 0.775, 0.181, 0.438, 0.569, 0.5, 0.089, 0.303, 0.182, 0.107, 0.139, 0.042, 0.0]

0.95 0.95 6.012 72.695
d1 − d11 − d3 − d7 − d4 − d9 − d13 − d15 − d12 − d5 − d6︸ ︷︷ ︸

N2

− d14︸︷︷︸
N3

− d2 − d10 − d8︸ ︷︷ ︸
N1

[1.0, 0.898, 0.845, 0.183, 0.629, 0.529, 0.224, 0.498, 0.429, 0.356, 0.147, 0.131, 0.143, 0.0, 0.0]

0.95 0.85 5.983 68.774
d15︸︷︷︸
N2

− d5︸︷︷︸
N3

− d6 − d7 − d12 − d10 − d4 − d13 − d8 − d14 − d3 − d1 − d11 − d2 − d9︸ ︷︷ ︸
N1

[1.0, 0.928, 0.441, 0.695, 0.714, 0.643, 0.219, 0.274, 0.429, 0.044, 0.286, 0.152, 0.138, 0.02, 0.0]

0.95 0.75 5.976 77.488
d14 − d1 − d3 − d11 − d7 − d4 − d10 − d8 − d13 − d6 − d5︸ ︷︷ ︸

N2

− d12 − d15 − d9 − d2︸ ︷︷ ︸
N3

[1.0, 0.929, 0.81, 0.602, 0.164, 0.566, 0.571, 0.142, 0.316, 0.272, 0.286, 0.136, 0.112, 0.07, 0.0]

0.95 0.65 5.952 84.692
d14︸︷︷︸
N1

− d11 − d1 − d3 − d8 − d4 − d7 − d12 − d10 − d6 − d15︸ ︷︷ ︸
N3

− d9 − d13 − d5 − d2︸ ︷︷ ︸
N2

[1.0, 0.929, 0.803, 0.742, 0.0, 0.643, 0.273, 0.5, 0.429, 0.084, 0.213, 0.209, 0.056, 0.071, 0.0]

Table A2. Solutions of sorted negotiation model with different p, q (o′ ∼ U(10, 210), B0 = 4100, T = 85).

p q e Total
Time Sorting Sequences and Individual Efficiency

0.65 0.95 6.376 79.685
d15 − d13 − d12 − d8 − d4︸ ︷︷ ︸

N2

− d10 − d7 − d6 − d14 − d1 − d11 − d3 − d9︸ ︷︷ ︸
N3

− d5 − d2︸ ︷︷ ︸
N1

[1.0, 0.849, 0.854, 0.592, 0.714, 0.643, 0.119, 0.5, 0.261, 0.357, 0.276, 0.211, 0.0, 0.0, 0.0]

0.75 0.95 6.232 83.685
d7 − d6 − d5 − d12 − d15 − d13 − d9 − d8 − d4 − d10︸ ︷︷ ︸

N2

− d1 − d2︸ ︷︷ ︸
N3

− d14 − d3 − d11︸ ︷︷ ︸
N1

[1.0, 0.929, 0.857, 0.5, 0.56, 0.588, 0.571, 0.249, 0.429, 0.357, 0.0, 0.093, 0.028, 0.071, 0.0]

0.85 0.95 6.176 69.711
d7 − d6 − d5 − d13 − d12 − d15 − d8 − d9 − d14 − d1 − d11 − d4︸ ︷︷ ︸

N1

− d10 − d2 − d3︸ ︷︷ ︸
N3

[1.0, 0.929, 0.857, 0.358, 0.712, 0.504, 0.571, 0.469, 0.0, 0.357, 0.276, 0.0, 0.143, 0.0, 0.0]

0.95 0.95 6.131 74.188
d13 − d8 − d4 − d9 − d15 − d7︸ ︷︷ ︸

N3

− d6 − d12︸ ︷︷ ︸
N2

− d1 − d11 − d3 − d14 − d2 − d5 − d10︸ ︷︷ ︸
N1

[1.0, 0.929, 0.857, 0.646, 0.297, 0.505, 0.571, 0.474, 0.0, 0.346, 0.282, 0.081, 0.143, 0.0, 0.0]

0.95 0.85 5.932 71.349
d13 − d12 − d5 − d15 − d4︸ ︷︷ ︸

N2

− d10 − d7 − d3 − d1 − d11 − d6 − d9 − d8 − d14︸ ︷︷ ︸
N1

− d2︸︷︷︸
N3

[1.0, 0.925, 0.853, 0.394, 0.714, 0.643, 0.119, 0.402, 0.304, 0.346, 0.071, 0.081, 0.071, 0.009, 0.0]

0.95 0.75 5.848 77.586
d12 − d5︸ ︷︷ ︸

N3

− d13 − d8 − d4 − d9 − d15 − d6 − d14 − d2 − d1 − d7 − d3 − d11︸ ︷︷ ︸
N2

− d10︸︷︷︸
N1

[1.0, 0.925, 0.391, 0.786, 0.714, 0.529, 0.237, 0.383, 0.261, 0.357, 0.049, 0.046, 0.115, 0.055, 0.0]

0.95 0.65 5.797 78.277
d1 − d11 − d3 − d15 − d13 − d12 − d10 − d7 − d5︸ ︷︷ ︸

N3

− d6 − d14 − d2 − d8 − d9 − d4︸ ︷︷ ︸
N2

[1.0, 0.898, 0.845, 0.016, 0.653, 0.641, 0.571, 0.104, 0.429, 0.184, 0.174, 0.214, 0.0, 0.067, 0.0]
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Table A3. Solutions of sorted negotiation Model (19) for different p (o′ = 107, B0 = 2300).

p e Sorting Sequences and Individual Efficiency

0.95 6.120

d1 d11 d3 d14 d2 d7 d6 d12 d13 d15 d8 d4 d10 d9 d5
0

25

50

75

100

125

150

175

200

225
lower
upper

d1 − d11 − d3 − d14 − d2 − d7 − d6 − d12 − d13 − d15 − d8 − d4 − d10 − d9 − d5
[1.0, 0.898, 0.845, 0.298, 0.714, 0.0, 0.571, 0.474, 0.308, 0.355, 0.286, 0.214, 0.143, 0.012, 0.0]

0.85 6.272

d1 d11 d3 d6 d12 d13 d15 d8 d4 d10 d7 d14 d2 d9 d5
0

25

50

75

100

125

150

175

200

225
lower
upper

d1 − d11 − d3 − d6 − d12 − d13 − d15 − d8 − d4 − d10 − d7 − d14 − d2 − d9 − d5
[1.0, 0.898, 0.845, 0.199, 0.677, 0.462, 0.569, 0.5, 0.429, 0.357, 0.059, 0.133, 0.143, 0.0, 0.0]

0.75 6.368

d13 d15 d8 d4 d9 d7 d6 d3 d11 d1 d14 d2 d12 d5 d10
0

25

50

75

100

125

150

175

200

225
lower
upper

d13 − d15 − d8 − d4 − d9 − d7 − d6 − d3 − d11 − d1 − d14 − d2 − d12 − d5 − d10
[1.0, 0.924, 0.857, 0.786, 0.588, 0.163, 0.571, 0.387, 0.328, 0.334, 0.144, 0.214, 0.0, 0.071, 0.0]

0.65 6.564

d14 d1 d11 d3 d7 d6 d12 d13 d15 d8 d9 d4 d10 d2 d5
0

25

50

75

100

125

150

175

200

225
lower
upper

d14 − d1 − d11 − d3 − d7 − d6 − d12 − d13 − d15 − d8 − d9 − d4 − d10 − d2 − d5
[1.0, 0.929, 0.829, 0.775, 0.166, 0.643, 0.542, 0.359, 0.427, 0.357, 0.268, 0.126, 0.143, 0.0, 0.0]

Table A4. Solutions of sorted negotiation Model (19) for different p (o′ ∼ U(10, 210), B0 = 4000).

p e Sorting Sequences and Individual Efficiency

0.95 5.978

d1 d11 d14 d2 d7 d6 d12 d13 d15 d8 d9 d4 d10 d5 d3
0

25

50

75

100

125

150

175

200

225
lower
upper

d1 − d11 − d14 − d2 − d7 − d6 − d12 − d13 − d15 − d8 − d9 − d4 − d10 − d5 − d3
[1.0, 0.898, 0.419, 0.786, 0.0, 0.643, 0.542, 0.359, 0.427, 0.357, 0.268, 0.126, 0.143, 0.011, 0.0]
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Table A4. Cont.

p e Sorting Sequences and Individual Efficiency

0.85 6.054

d14 d2 d1 d11 d3 d7 d6 d12 d13 d15 d8 d4 d10 d9 d5
0

25

50

75

100

125

150

175

200

225
lower
upper

d14 − d2 − d1 − d11 − d3 − d7 − d6 − d12 − d13 − d15 − d8 − d4 − d10 − d9 − d5
[1.0, 0.929, 0.147, 0.76, 0.704, 0.15, 0.571, 0.474, 0.308, 0.355, 0.286, 0.214, 0.143, 0.012, 0.0]

0.75 6.402

d13 d8 d15 d12 d7 d6 d3 d11 d1 d14 d2 d9 d4 d10 d5
0

25

50

75

100

125

150

175

200

225
lower
upper

d13 − d8 − d15 − d12 − d7 − d6 − d3 − d11 − d1 − d14 − d2 − d9 − d4 − d10 − d5
[1.0, 0.929, 0.687, 0.786, 0.51, 0.643, 0.442, 0.383, 0.401, 0.181, 0.286, 0.0, 0.084, 0.071, 0.0]

0.65 6.464

d7 d6 d12 d15 d8 d4 d10 d14 d11 d1 d3 d5 d13 d9 d2
0

25

50

75

100

125

150

175

200

225
lower
upper

d7 − d6 − d12 − d15 − d8 − d4 − d10 − d14 − d11 − d1 − d3 − d5 − d13 − d9 − d2
[1.0, 0.929, 0.813, 0.617, 0.714, 0.643, 0.571, 0.0, 0.429, 0.334, 0.27, 0.009, 0.065, 0.071, 0.0]

Table A5. Solutions of sorted negotiation Model (19) (p = 0.95).

B0 e Sorting Sequences and Individual Efficiency

Case 1 2400 6.574

d14 d1 d11 d3 d7 d6 d12 d13 d15 d8 d9 d4 d10 d5 d2
0

25

50

75

100

125

150

175

200

225
lower
upper

d14 − d1 − d11 − d3 − d7 − d6 − d12 − d13 − d15 − d8 − d9 − d4 − d10 − d5 − d2
[1.0, 0.929, 0.829, 0.775, 0.166, 0.643, 0.542, 0.359, 0.427, 0.357, 0.268, 0.126, 0.143, 0.011, 0.0]

Case 2 4000 5.978

d1 d11 d14 d2 d7 d6 d12 d13 d15 d8 d9 d4 d10 d5 d3
0

25

50

75

100

125

150

175

200

225
lower
upper

d1 − d11 − d14 − d2 − d7 − d6 − d12 − d13 − d15 − d8 − d9 − d4 − d10 − d5 − d3
[1.0, 0.898, 0.419, 0.786, 0.0, 0.643, 0.542, 0.359, 0.427, 0.357, 0.268, 0.126, 0.143, 0.011, 0.0]
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Table A6. Solutions of sorted negotiation Model (20).

B0

m
∑

i=1
exi + a

m
∑

i=0
pi e ∑ pi Sorting Sequences and Individual Efficiency

Case 1 2200 13.586 6.431 14.31 d14 − d1 − d11 − d3 − d7 − d15 − d13 − d8 − d9 − d4 − d10 − d6 − d12 − d5 − d2
[1.0, 0.929, 0.829, 0.775, 0.166, 0.555, 0.523, 0.5, 0.402, 0.21, 0.286, 0.05, 0.135, 0.071, 0.0]

Case 2 2800 13.407 6.512 13.79 d13 − d15 − d8 − d4 − d12 − d5 − d14 − d1 − d11 − d3 − d7 − d6 − d10 − d9 − d2
[1.0, 0.924, 0.857, 0.786, 0.408, 0.64, 0.194, 0.5, 0.415, 0.352, 0.067, 0.214, 0.143, 0.012, 0.0]

Table A7. Solutions of sorted negotiation Model (21).

p
m
∑

i=1
exi − B

Q e B Sorting Sequences and Individual Efficiency

Case 1 0.95 4.058 6.353 2297.47 d1 − d11 − d3 − d6 − d7 − d15 − d13 − d8 − d4 − d10 − d12 − d5 − d14 − d2 − d9
[1.0, 0.898, 0.845, 0.199, 0.632, 0.555, 0.523, 0.5, 0.429, 0.357, 0.083, 0.213, 0.048, 0.071, 0.0]

Case 2 0.95 1.942 6.401 4460.01 d13 − d15 − d12 − d7 − d6 − d3 − d11 − d1 − d14 − d2 − d8 − d4 − d10 − d9 − d5
[1.0, 0.924, 0.857, 0.56, 0.714, 0.497, 0.438, 0.468, 0.217, 0.357, 0.0, 0.214, 0.143, 0.012, 0.0]

Table A8. Solutions of sorted negotiation Model (24) (q = 0.95, T = 85).

B0

m
∑

i=1
exi +

a
m
∑

i=0
pi

e ∑ pi Time Sorting Sequences and Individual Efficiency

Case 1 2200 13.47 6.020 14.90 83.948
d13 − d8 − d9 − d4 − d15 − d6︸ ︷︷ ︸

N3

− d3 − d11︸ ︷︷ ︸
N1

− d1 − d14 − d2 − d7 − d12 − d10 − d5︸ ︷︷ ︸
N2

[1.0, 0.929, 0.804, 0.461, 0.426, 0.493, 0.442, 0.383, 0.401, 0.181, 0.286, 0.0, 0.143, 0.071, 0.0]

Case 2 3500 13.484 6.534 13.9 77.244
d14 − d1 − d11 − d3︸ ︷︷ ︸

N2

− d7 − d6︸ ︷︷ ︸
N1

− d12 − d15 − d8 − d4 − d10 − d13 − d5 − d9 − d2︸ ︷︷ ︸
N3

[1.0, 0.929, 0.829, 0.775, 0.166, 0.643, 0.542, 0.392, 0.429, 0.357, 0.286, 0.045, 0.141, 0.0, 0.0]

Table A9. Solutions of sorted negotiation Model (25) (q = 0.95, T = 85).

p
m
∑

i=1
exi − B

Q e B Time Sorting Sequences and Individual Efficiency

Case 1 0.95 3.815 5.669 1854.26 84.063
d11 − d1︸ ︷︷ ︸

N3

− d3︸︷︷︸
N1

− d14 − d2 − d7 − d13 − d9 − d15 − d4 − d10 − d6 − d8 − d12 − d5︸ ︷︷ ︸
N2

[1.0, 0.87, 0.81, 0.298, 0.714, 0.0, 0.451, 0.5, 0.178, 0.357, 0.286, 0.05, 0.1, 0.055, 0.0]

Case 2 0.95 1.984 6.000 4016.18 73.649
d7 − d12 − d6︸ ︷︷ ︸

N1

− d1 − d11 − d3 − d14 − d2 − d13 − d8 − d4 − d9 − d15 − d10 − d5︸ ︷︷ ︸
N2

[1.0, 0.929, 0.656, 0.424, 0.691, 0.634, 0.217, 0.5, 0.0, 0.357, 0.286, 0.176, 0.059, 0.071, 0.0]

Table A10. Solutions of sorted negotiation Model (26) (p = 0.95, q = 0.95, Q = 100).

B0

m
∑

i=1
exi − T

Q e T Sorting Sequences and Individual Efficiency

Case 1 2500 5.320 6.015 69.695
d8 − d4 − d9 − d15 − d13 − d7 − d6 − d14 − d3︸ ︷︷ ︸

N2

− d1 − d11 − d10 − d5 − d12 − d2︸ ︷︷ ︸
N1

[1.0, 0.929, 0.705, 0.326, 0.653, 0.502, 0.571, 0.305, 0.429, 0.253, 0.276, 0.0, 0.021, 0.045, 0.0]

Case 2 4100 5.261 5.940 67.988
d1 − d11 − d3 − d14 − d2 − d7 − d6 − d8 − d4︸ ︷︷ ︸

N1

− d9 − d13 − d15︸ ︷︷ ︸
N3

− d12 − d10 − d5︸ ︷︷ ︸
N2

[1.0, 0.898, 0.845, 0.298, 0.714, 0.0, 0.571, 0.352, 0.429, 0.294, 0.112, 0.213, 0.143, 0.071, 0.0]
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Appendix A.2. The Specific Model in Numerical Example

max e =
15

∑
i=1

exi =
15

∑
i=1

αxi × βi

s.t. Pr{(1− e1 + 0.01)× 6.5|o′ − o1| ≤ 514} ≥ p

Pr{(1− e2 + 0.01)× 9.0|o′ − o2| ≤ 828} ≥ p

Pr{(1− e3 + 0.01)× 5.5|o′ − o3| ≤ 356} ≥ p

Pr{(1− e4 + 0.01)× 5.5|o′ − o4| ≤ 444} ≥ p

Pr{(1− e5 + 0.01)× 1.0|o′ − o5| ≤ 29.1} ≥ p

Pr{(1− e6 + 0.01)× 1.0|o′ − o6| ≤ 56} ≥ p

Pr{(1− e7 + 0.01)× 1.5|o′ − o7| ≤ 102} ≥ p

Pr{(1− e8 + 0.01)× 5.0|o′ − o8| ≤ 428} ≥ p

Pr{(1− e9 + 0.01)× 7.5|o′ − o9| ≤ 683} ≥ p

Pr{(1− e10 + 0.01)× 4.5|o′ − o10| ≤ 220} ≥ p

Pr{(1− e11 + 0.01)× 6.0|o′ − o11| ≤ 456} ≥ p

Pr{(1− e12 + 0.01)× 2.5|o′ − o12| ≤ 154} ≥ p

Pr{(1− e13 + 0.01)× 4.5|o′ − o13| ≤ 438} ≥ p

Pr{(1− e14 + 0.01)× 5.5|o′ − o14| ≤ 510} ≥ p

Pr{(1− e15 + 0.01)× 4.0|o′ − o15| ≤ 345} ≥ p

Pr{(1− e1 + 0.01)× 6.5|o′ − o1|+ (1− e2 + 0.01)× 9.0|o′ − o2|+ (1− e3 + 0.01)× 5.5|o′ − o3|+
(1− e4 + 0.01)× 5.5|o′ − o4|+ (1− e5 + 0.01)× 1.0|o′ − o5|+ (1− e6 + 0.01)× 1.0|o′ − o6|+
(1− e7 + 0.01)× 1.5|o′ − o7|+ (1− e8 + 0.01)× 5.0|o′ − o8|+ (1− e9 + 0.01)× 7.5|o′ − o9|+
(1− e10 + 0.01)× 4.5|o′ − o10|+ (1− e11 + 0.01)× 6.0|o′ − o11|+ (1− e12 + 0.01)× 2.5|o′ − o12|+
(1− e13 + 0.01)× 4.5|o′ − o13|+ (1− e14 + 0.01)× 5.5|o′ − o14|+ (1− e15 + 0.01)× 4.0|o′ − o15| ≤ B0} ≥ p

Pr{Txi (x, y, z, ξ) ≤ Ti} ≥ q, i = 1, 2, . . . , 15

Pr{Tx15 (x, y, z, ξ) ≤ T} ≥ q

Txi = Txi−1 + ξxiyk , i = 1, 2, . . . , 15, k = 1, 2, 3

αxi =
Lxi

∆xi

β1 = 1− 1− 1
15− 1

= 1; β2 = 1− 2− 1
15− 1

= 0.929; β3 = 0.857; β4 = 0.786; β5 = 0.714; β6 = 0.643; β7 = 0.571;

β8 = 0.5; β9 = 0.429; β10 = 0.357; β11 = 0.286; β12 = 0.214; β13 = 0.143; β14 = 0.071; β15 = 0.

oxi ∼ U[oL
xi

, oU
xi
], i = 1, 2, . . . , 15

ξxiyk ∼ N(µxiyk , σxiyk ), i = 1, 2, . . . , 15

1 ≤ xi ≤ 15, 1 ≤ yk ≤ 3, i = 1, 2, . . . , 15, k = 1, 2, 3

xi 6= xj, when i 6= j, i, j = 1, 2, . . . , 15

yk 6= ys, when k 6= s, k, s = 1, 2, 3

0 ≡ z0 ≤ z1 ≤ z2 ≤ z3 ≡ 15

xi , yk , zk are integers, i = 1, 2, . . . , 15, k = 1, 2, 3

o′ = 107
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Appendix A.3. Symbol Description

See Table A11:

Table A11. Symbol description.

Symbol Description Type

di The symbol of DM i, i ∈ M = {1, 2, . . . , m}. Symbol
Nk The symbol of moderator k, k ∈ N = {1, 2, . . . , n}(n < m). Symbol
dxi The DM in ith position, i ∈ M, where {x1, x2, . . . , xm} is a

rearrangement (permutation) of {1, 2, . . . , m}.
Symbol

αxi The opinion influence level of dxi−1 on dxi , i ∈ M, i ≥ 2. Variable
βi The ranking satisfaction level of dxi , i ∈ M. Variable
Lxi Overlap length of interval opinions between two adjacent

individuals dxi−1 and dxi .
Variable

Lij Overlap length of interval opinions between di and dj(i, j ∈ M). Parameter
[oL

xi
, oU

xi
] Opinion interval of dxi , where oU

xi
, oL

xi
are the upper and lower

bounds of interval respectively.
Parameter

∆xi Length of the opinion interval of dxi , ∆xi = oU
xi
− oL

xi
. Parameter

sij Opinion similarity of individual dj with respect to di(i, j ∈ M). Parameter
S Opinion similarity matrix of all DMs. Parameter
Pi The optimum set of influential individuals towards individual di. Symbol
oxi The opinion of dxi , oxi ∼ U[oL

xi
, oU

xi
]. Variable

e Overall opinion order efficiency. Variable
exi Opinion order efficiency of the dxi , 0 ≤ exi ≤ 1. Variable
cxi Unit cost of opinion adjustment towards dxi . Variable
cexi

The cost coefficient of dxi based on opinion order efficiency. Variable
o′ Group consensus opinion. Parameter
oi
′ The adjusted opinion of di. Parameter

ot
i The opinion of DM di, i ∈ M in the tth round. Symbol

wij The weight that DM di gives to dj at round t. Parameter
At

i The confidence set of DM di. Symbol
B Total cost of consensus reaching. Variable
B0 Total budget of consensus reaching. Parameter
Bxi Negotiation cost upper limit of dxi . Variable
p Probability/confidence level, 0 ≤ p ≤ 1. Parameter

ξik Negotiation time of the moderator Nk towards the individual di,
ξik ∼ N(µik, σik), i ∈ M, k ∈ N.

Parameter

Txi Actual time to accomplish negotiation for dxi . Variable
Ti Upper limit of negotiation time for dxi . Parameter
T Upper limit of overall decision negotiation time. Parameter
q Probability/confidence level, 0 ≤ q ≤ 1. Parameter
Q Larger equilibrium coefficient. Parameter

a, ε Smaller equilibrium coefficients. Parameter
σ The bounded confidence level. Parameter
It Maximum number of iterations. Parameter
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Appendix A.4. Algorithm Execute Script

import matplotlib.pyplot as plt
import random
import numpy as np
from scipy.stats import norm
from copy import deepcopy

def init(size):
pop_ = []
dmlst_ = dmlst.copy()
ylst_ = ylst.copy()
for i in range(size) :

xy = []
y_ = []

for j in range(M) :
dmlst_ = dmlst_.copy()
rn_ = random.randint(j, M-1)
dmlst_[j], dmlst_[rn_] = dmlst_[rn_], dmlst_[j]

xy.append(dmlst_)
for k in range(n) :

ylst_ = ylst_.copy()
ry = random.randint(k,n-1)
ylst_[k], ylst_[ry] = ylst_[ry], ylst_[k]

for s in range(n-1) :
rs = random.randint(0,M)
y_.append(rs)

y_.append(M)
y_dict = dict(zip(ylst_, y_))
yy = sorted(y_dict.items(),key=lambda x:x[1],reverse=False)
xy.append(yy)
pop_.append(xy)

return(pop_)
def evaluate(ppop):

pre_evals = []
pre_alpha = []
for i in range(pop_size) :

olst = []
for j in range(M) :

olst.append(dm_dict[ppop[i][0][j]])
esum_ = 1.0

alpha = []
alpha.append( 1.0 )
for k in range(1,M) :

if olst[k-1][1] <= olst[k][0] or olst[k][1] <= olst[k-1][0]:
overl = 0.0001

if olst[k-1][0] < olst[k][0] and olst[k][1] < olst[k-1][1] :
overl = olst[k][1] - olst[k][0]

if olst[k][0] < olst[k-1][0] and olst[k-1][1] < olst[k][1] :
overl = olst[k-1][1] - olst[k-1][0]

if olst[k-1][0] <= olst[k][0] and olst[k][0] < olst[k-1][1] and olst[k-1][1] <=
olst[k][1] :
overl = olst[k-1][1] - olst[k][0]
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if olst[k][0] <= olst[k-1][0] and olst[k-1][0] < olst[k][1] and olst[k][1] <= olst[k-
1][1] :
overl = olst[k][1] - olst[k-1][0]

alpha_i = overl / (olst[k][1] - olst[k][0])
alpha.append(alpha_i)
ek = alpha_i * beta[k]
esum_ += ek

pre_evals.append(esum_)
pre_alpha.append(alpha)
return pre_evals, pre_alpha
def check(pevals, palpha, ppop):

pre_evals = []
pre_alpha = []
pre_pop = []
pre_T = []
while True:

N = 50
for i in range(pop_size):

olst = []
cxi_lst = []
bi_lst = []
for j in range(M) :

olst.append(dm_dict[ppop[i][0][j]])
cxi_lst.append(cxi_dict[ppop[i][0][j]])
bi_lst.append(Bi_dict[ppop[i][0][j]])

fitm = 0
fitn = 0
c1 = []
o_xi = []
for j in range(M) :

c1.append(1 - ( palpha[i][j] * beta[j] ) + epsilon)
o_xi.append(np.random.uniform(olst[j][0], olst[j][1], N))

for j in range(M) :
Pm = 0
for k in range(0,N) :

Bm = ( c1[j] * cxi_lst[j] * abs(o_ - o_xi[j][k]) )
if Bm - bi_lst[j] <= 0 :
Pm += 1

if float(Pm/N) >= p :
fitm += 1

o_i = []
for j in range(0,N) :

_oxi =[]
for k in range(M) :
_oxi.append(o_xi[k][j])
o_i.append(_oxi)

for j in range(N) :
B_sum = 0
for k in range(M) :
B_ = ( c1[k] * cxi_lst[k] * abs(o_ - o_i[j][k]) )
B_sum += B_
if B_sum - B <= 0 :
fitn += 1
if float(fitn/N) >= p and fitm == M :
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Xi_ilst = []
for j in range(M) :
no_ = ppop[i][0][j] - 1
if j+1 > 0 and j+1 <= ppop[i][1][0][1] :
ma_no = ppop[i][1][0][0] - 1
Xi_ilst.append( [Xi_mu[no_][ma_no], Xi_sig[no_][ma_no]] )
if j+1 > ppop[i][1][0][1] and j+1 <= ppop[i][1][1][1] :
ma_no = ppop[i][1][1][0] - 1
Xi_ilst.append( [Xi_mu[no_][ma_no], Xi_sig[no_][ma_no]] )
if j+1 > ppop[i][1][1][1] and j+1 <= ppop[i][1][2][1] :
ma_no = ppop[i][1][2][0] - 1
Xi_ilst.append( [Xi_mu[no_][ma_no], Xi_sig[no_][ma_no]] )

T_xia = 0
T_xib = 0
for j in range(M) :
T_xia += Xi_ilst[j][0]
T_xib += Xi_ilst[j][1]
norm_xi = norm(T_xia, T_xib)
fai_ = norm_xi.ppf(alpa)
if j == M-1 :
TT = fai_

if TT <= T_sum :
pre_T.append(TT)
pre_evals.append(deepcopy( pevals[i] ) )
pre_alpha.append(deepcopy( palpha[i][:]) )
pre_pop.append( deepcopy( ppop[i][:][:]) )

if len(pre_pop) < pop_size :
ppop = crossover(ppop[:][:])
ppop = mutate(ppop[:][:])
pevals, palpha = evaluate(ppop)
else :
pre_evals = pre_evals[:pop_size]
pre_alpha = pre_alpha[:pop_size]
pre_pop = pre_pop[:pop_size][:]
break
return pre_evals, pre_alpha, pre_T, pre_pop
def copy(ppop, pevals):
pre_pop = []
pre_pop.append(ppop[pevals.index(max(pevals))])
p = []
p_accumulate = []
for i in range(pop_size):
p.append(1.0 * pevals[i] / sum(pevals))
for i in range(1, pop_size + 1):
p_accumulate.append(sum(p[:i]))
for i in range(pop_size - 1):
r_num = random.random()
for j in range(pop_size - 1):
if r_num < p_accumulate[0]:
pre_pop.append(ppop[0][:])
break
if p_accumulate[j] <= r_num < p_accumulate[j + 1]:
pre_pop.append(ppop[j + 1][:])
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break
return pre_pop
def crossover(ppop):
best = ppop[0][:][:]
ppop = ppop[1:][:]
cros_freq = 0
while True:
cros_index = []
for i in range(pop_size - 1):
rand_num = random.random()
if rand_num < cp:
cros_index.append(i)
if len(cros_index) % 2 == 0 and cros_index != []:
break
point_num = int(len(cros_index) / 2)
for i in range(point_num) :
ppop[cros_index[i * 2]][1][:], ppop[cros_index[i * 2 + 1]][1][:] = ppop[cros_index[i * 2 +
1]][1][:], ppop[cros_index[i * 2]][1][:]
for j in range(M) :
for k in range(M) :
if ppop[cros_index[i * 2]][0][j] == ppop[cros_index[i * 2 + 1]][0][k] :
ppop[cros_index[i * 2]][0][j], ppop[cros_index[i * 2]][0][k] = ppop[cros_index[i * 2]][0][k],
ppop[cros_index[i * 2]][0][j]
ppop[cros_index[i * 2 + 1]][0][j], ppop[cros_index[i * 2 + 1]][0][k] = ppop[cros_index[i * 2 +
1]][0][k], ppop[cros_index[i * 2 + 1]][0][j]
break
cros_freq += 1
if cros_freq == int(0.5*M) :
break
else :
continue
ppop.insert(0, best)
return ppop
def mutate(ppop):
best = ppop[0][:][:]
ppop = ppop[1:][:]
while True:
mut_index = []
for i in range(pop_size - 1):
r_num = random.random()
if r_num < mp:
mut_index.append(i)
if mut_index != []:
break
for i in range(len(mut_index)):
n1 = random.randint(0, M-1)
n2 = random.randint(0, M-1)
n1, n2 = min(n1, n2), max(n1, n2)
del_num = n2 - n1 + 1
del_freq = 0
newlst = ppop[mut_index[i]][0][n1:n2 + 1]
while del_freq < del_num :
del ppop[mut_index[i]][0][n1]
del_freq += 1
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random.shuffle(newlst)
for j in range(len(newlst)) :
ppop[mut_index[i]][0].insert(n1 + j, newlst[j])
if len(ppop[mut_index[i]][0]) == M :
break
for i in range(len(mut_index)):
yyy = []
n5 = random.randint(1, n-2)
n6 = random.randint(1, n-2)
n5, n6 = min(n5, n6), max(n5, n6)
for j in range(n5, n6+1) :
n3 = random.randint(ppop[mut_index[i]][1][n5-1][1], ppop[mut_index[i]][1][n6+1][1])
yyy.append(n3)
yyy.sort()
for j in range(n5, n6+1) :
s = 0
pint = list(ppop[mut_index[i]][1][n5])
pint[1] = yyy[s]
ppop[mut_index[i]][1][n5] = tuple(pint)
s += 1
ppop.insert(0, best)
return ppop
if __name__ == ’__main__’:

References
1. Cook, W.D.; Kress, M. Ordinal ranking with intensity of preference. Manag. Sci. 1985, 31, 26–32. [CrossRef]
2. Hochbaum, D.S.; Levin, A. Methodologies and algorithms for group-rankings decision. Manag. Sci. 2006, 52, 1394–1408.

[CrossRef]
3. Zhang, B.W.; Dong, Y.C.; Zhang, H.J.; Pedrycz, W. Consensus mechanism with maximum-return modifications and minimum-cost

feedback: A perspective of game theory. Eur. J. Oper. Res. 2020, 287, 546–559. [CrossRef]
4. French, J.R.P.J. A formal theory of social power. Psychol. Rev. 1956, 63, 181–194. [CrossRef] [PubMed]
5. Berger, R.L. A necessary and sufficient condition for reaching a consensus using DeGroot’s method. J. Am. Stat. Assoc. 1981, 76,

415–418. [CrossRef]
6. Degroot, M.H. Reaching a Consensus. J. Am. Stat. Assoc. 1974, 69, 118–121. [CrossRef]
7. Friedkin, N.E.; Johnsen, E.C. Social influence and opinions. J. Math. Sociol. 1990, 15, 193–206. [CrossRef]
8. Pérez, L.; Mata, F.; Chiclana, F.; Kou, G.; Herrera-Viedma, E. Modelling influence in group decision making. Soft Comput.-A Fusion

Found. Methodol. Appl. 2016, 20, 1653–1665. [CrossRef]
9. Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G. Mixing beliefs among interacting agents. Adv. Complex Syst. 2000, 3, 87–98.

[CrossRef]
10. Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence: Models, analysis and simulation. J. Artif. Soc. Soc. Simul.

2002, 5.
11. Rodrigues, F.A.; Da FCosta, L. Surviving opinions in sznajd models on complex networks. Int. J. Mod. Phys. C Comput. Phys. Phys.

Comput. 2015, 16, 1785–1792.
12. Stauffer, D. Sociophysics: The Sznajd model and its applications. Comput. Phys. Commun. 2002, 146, 93–98. [CrossRef]
13. Capuano, N.; Chiclana, F.; Fujita, H.; Herrera-Viedma, E.; Loia, V. Fuzzy Group Decision Making With Incomplete Information

Guided by Social Influence. IEEE Trans. Fuzzy Syst. 2018, 26, 1704–1718. [CrossRef]
14. Liu, B.S.; Zhou, Q.; Ding, R.X.; Palomares, I.; Herrera, F. Large-scale group decision making model based on social network

analysis: Trust relationship-based conflict detection and elimination. Eur. J. Oper. Res. 2019, 275, 737–754. [CrossRef]
15. Li, Y.H.; Kou, G.; Li, G.X.; Peng, Y. Consensus reaching process in large-scale group decision making based on bounded confidence

and social network. Eur. J. Oper. Res. 2022, 199, 509–516. [CrossRef]
16. Xu, Y.X.; Gong, Z.W.; Wei, G.; Guo, W.W.; Herrera-Viedma, E. Information consistent degree-based clustering method for large-

scale group decision-making with linear uncertainty distributions information. INternational J. Intell. Syst. 2022, 37, 3394–3439.
[CrossRef]

17. Gong, Z.W.; Xu, X.X.; Li, L.S.; Xu, C. Consensus modeling with nonlinear utility and cost constraints: A case study. Knowl.-Based
Syst. 2015, 88, 210–222. [CrossRef]

18. Altuzarra, A.; Moreno-Jiménez, J.M.; Salvador, M. Consensus Building in AHP-Group Decision Making: A Bayesian Approach.
Oper. Res. 2010, 58, 1755–1773. [CrossRef]

http://doi.org/10.1287/mnsc.31.1.26
http://dx.doi.org/10.1287/mnsc.1060.0540
http://dx.doi.org/10.1016/j.ejor.2020.04.014
http://dx.doi.org/10.1037/h0046123
http://www.ncbi.nlm.nih.gov/pubmed/13323174
http://dx.doi.org/10.1080/01621459.1981.10477662
http://dx.doi.org/10.1080/01621459.1974.10480137
http://dx.doi.org/10.1080/0022250X.1990.9990069
http://dx.doi.org/10.1007/s00500-015-2002-0
http://dx.doi.org/10.1142/S0219525900000078
http://dx.doi.org/10.1016/S0010-4655(02)00439-3
http://dx.doi.org/10.1109/TFUZZ.2017.2744605
http://dx.doi.org/10.1016/j.ejor.2018.11.075
http://dx.doi.org/10.1016/j.ejor.2022.03.040
http://dx.doi.org/10.1002/int.22695
http://dx.doi.org/10.1016/j.knosys.2015.07.031
http://dx.doi.org/10.1287/opre.1100.0856


Mathematics 2023, 11, 445 36 of 37

19. Gong, Z.W.; Zhang, N.; Chiclana, F. The optimization ordering model for intuitionistic fuzzy preference relations with utility
functions. Knowl.-Based Syst. 2018, 162, 174–184. [CrossRef]

20. Mayag, B.; Bouyssou, D. Necessary and possible interaction between criteria in a 2-additive Choquet integral model. Eur. J. Oper.
Res. 2020, 283, 308–320. [CrossRef]

21. Fishburn, P.C.; Kress, M. Utility Theory for Decision Making; Robert E. Krieger Publishing Company: Malabar, FL, USA, 1979.
22. Yazidi, A.; Ivanovska, M.; Zennaro, F.M.; Lind, P.G.; Viedma, E.H. A new decision making model based on Rank Centrality for

GDM with fuzzy preference relations. Eur. J. Oper. Res. 2022, 297, 1030–1041. [CrossRef]
23. Marimuthu, D.; Meidute-Kavaliauskiene, I.; Mahapatra, G.S.; Činčikaitė, R.; Roy, P.; Vasiliauskas, A.V. Sustainable Urban
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