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Resumen

En este trabajo se usará el método computacional de PSO para aproxi-
mar los campos magneticos de diferentes dispositivos electrónicos. Se
indagará en el procedimiento de medida de campos magneticos den-
tro de una celda de bobinas mangeticas (MCF), y el trabajo previo a la
medida. Finalmente, se discutirán como de precisas son estas aproxi-
maciones y en que rango son válidas.

Abstract

In this thesis we will use the PSO computational method to approxi-
mate the magnetic field of different electronic elements from a satellite.
We will inquire in the procedure used for measuring magnetic fields
inside a Magnetic Coil Facility (MCF), and the work that has to be
done prior to the measurements. Finally, we will discuss how precise
this approximations are and where they are valid.
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5 1 INTRODUCTION

1 Introduction

Nowadays, many satellites in outer space come equipped to measure magnetic fields.
Since these devices create their own magnetic fields, they must be considered for a faith-
ful measure. As an inspiration for this thesis, we will consider Ulysses satellite, a joint
work between NASA and European Space Agency (ESA). This satellite objective was to
investigate the magnetic fields of the Sun. Among its findings we can find that the solar
winds weaken over time and that the Sun’s magnetic field reverses every 11 years. This
mission lasted 18 years and (almost) 9 months, four times longer than expected; and it
could not have been done without the proper previous work, which we intend to dive
into [1].

In this work, we aim to inquire about the research previously done by Yako Irusta
Salles [2], and previous to him Pedro Manuel Vizcaı́no Delgado [3]. Just like their works,
this thesis is meant to be a foundation for future works. This thesis will be highly
experimental, but not in the sense that we will be measuring the different of a satellite.
Instead we will set a solid basis in which future people can work in.

Most of the experimental work will be done in the laboratories of Grupo de Electrónica
Aeroespacial of Universidad de Granada, also known as GranaSAT. We will use fluxgate
magnetometers, which will allow us to measure fields of the orders of nT.

Firstly, we will use Maxwell’s equations to set our framework, which will be neces-
sary to understand the behaviour of multipolar approximations for the magnetic field.
Since dipolar approximations where already heavily discussed in Yako’s work [2], we
will mainly inquire in the quadrupolar approximations.

One of the main focus of our work will be to fully understand the measuring pro-
cess. We will tackle problems such as the calibration process for magnetometers or the
demagnetization of an electronic device.

To approximate the magnetic field of an electronic device we will use a Particle
Swarm Optimization method, also known as PSO. This is a heuristic algorithm that
will allow us to optimize a given function to approximate our object of study to a given
model. In particular, we will approximate to three different models: 1 dipole, 2 dipoles,
and 1 dipole and 1 quadrupole.

Finally, we will work with some data proportioned to us by ESA [4] to find the
importance of the demagnetization process and to see how our PSO programs work
with real data. We will discuss how good our approximations are and where they are
valid. We will also give some indications for future works of parts if this thesis that could
be expanded upon.

The reason most of the data we have worked with has been proportioned by ESA is
because most of the work done in this thesis is necessary to carry out this measurements,
therefore it is left for future works to inquire in this subject.

All of our work has been condensed not only in this thesis, but also in multiple
Python programs that can be found in GranaSAT’s GitHub repository [5], which overall
extension is 5657 lines of code, distributed in four different Jupyter notebooks [6].

Before moving on, in Fig. 1 we can see a Gantt diagram of how we have spent the
time given to carry out this thesis.
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Figure 1: Gantt diagram of the different activities carried out during this thesis.

2 Theoretical foundation

2.1 Fundamentals of electromagnetism

Since we will be working with electromagnetism extensively, it is important that we set
a good frame of work. This frame will be described by the famous Maxwell’s equations,
formulated in 1861 [7]; which are given below:

∇ · E =
ρ

ϵ0
(2.1)

∇ · B = 0 (2.2)

∇× E =
∂B
∂t

(2.3)

∇× B = µ0

(
J + ϵ0

∂B
∂t

)
, (2.4)

where E and B represent the electric and magnetic field, respectively; ϵ0 and µ0 the elec-
tric permittivity and magnetic permeability in vacuum, respectively; and J the density
current.
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Although Maxwell’s equations do describe our framework, they can be tricky to work
with. For our work, it will be useful to use the Biot-Savart law, which is given here below:

B(r) =
µ0

4π

∫
C

Idl × (r − r′)
|r − r′|3 , (2.5)

where C is the path along the direction of the current I, and ther and r′ are vectors which
represent the distance between the origin and where the field is being calculated and the
current element, respectively. A representative figure is shown below:

r

r′

r − r′

Figure 2: Representative figure of the vectors used in (2.5) .

Looking at Maxwell’s second equation (2.2) and remembering the following property
of divergence:

∇ · (∇× A) = 0 , (2.6)

we introduce the magnetic vector potential A:

B = ∇× A , (2.7)

which although it may seem tedious to work with, it will be of good use for multipolar
expansions, as we will see. Using equations (2.5) and (2.7), we get the expression for the
magnetic vector potential:

A =
µ0 I
4π

∮ dr′

|r − r′| . (2.8)

2.2 Dipole Approximation

In this section, we will focus on the calculations of the dipole expressions. We will skip
over many steps of the derivation of the expressions, since they can be found in Yako’s
work [2].

Our starting point will be equation (2.8). We will Taylor expand the integrand as
follows:

1
|r − r′| =

1
r
+

r · r′

r3 +O(δ2) . (2.9)
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Plugging in the expression above in (2.8), we get the following:

A =
µ0 I
4π

(∮ dr′

r
+
∮ r · r′

r3 dr′ + ...
)

. (2.10)

We have to note that for this approximation to hold, we require that the distance of
measuring is larger than the region where the current flows.

We can see that the first integral from (2.10) vanishes, since the integral of a closed
path is always zero, therefore proving that magnetic monopoles do not exist. The second
integral leaves us with a magnetic potential like this:

A =
µ0 I

4πr3

∮ (
r · r′

)
dr′ . (2.11)

We define now the magnetic moment as follows:

m =
I
2

∫
r × r′ , (2.12)

which is a vector that, as shown is Yako’s work [2], can be plugged in (2.11), resulting in:

A =
µ0

4π

(m × r)
r3 . (2.13)

Using the definition of B given in (2.7), and (2.13), we end up with the following
expression for the magnetic field of a dipole:

B =
µ0

4π

(
3(m · r)r

r5 − m
r3

)
. (2.14)

A more general expression can be obtained if we treat r as the distance from the
magnetic dipole to the point we want to measure the magnetic field on:

r = (x − x0)x̂ + (y − y0)ŷ + (z − z0)ẑ , (2.15)

which, in combination with (2.14) gives us the expressions for the magnetic field of a
dipole centered in (x0, y0, z0):

Bx =
µ0

4π

(
3
(
mx(x − x0) + my(y − y0) + mz(z − z0)

)
(x − x0)

r5 − mx

r3

)

By =
µ0

4π

(
3
(
mx(x − x0) + my(y − y0) + mz(z − z0)

)
(y − y0)

r5 −
my

r3

)

Bz =
µ0

4π

(
3
(
mx(x − x0) + my(y − y0) + mz(z − z0)

)
(z − z0)

r5 − mz

r3

)
,

(2.16)

where mx, my and mz are the value of the magnetic moment in each direction.

2.3 Quadrupole Approximation

In this section we will discuss the quadrupole approximation. Our first instinct would
be to apply the same procedure we applied for the dipoles, by continuing the Taylor
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expansion from (2.9) and taking higher order terms. However it is not an easy task to
find a usable result using this procedure, and it is not well documented. Therefore, we
will use an equivalent method.

It is well known that a magnetic quadrupole field can be achieved using Helmholtz
Coils set in a particular configuration [8]. This configuration is such that the diameter
of the coils should be the same as the distance between them, and the current flows in
opposite directions in each coil. For simplicity reasons, we will consider that each coil is
made of only a single loop. The geometry of a current loop is shown here below:

z

y

x

a

I

φ′

θ

r

Figure 3: Geometry of a circular current loop.

The general expression for the magnetic vector potential for a closed current loop is
the following [9]:

Aφ(r, θ) =
µ0 Ia
4π

∫ 2π

0

cos φ′ dφ′√
a2 + r2 − 2ar sin θ cos φ′

, (2.17)

where a is the radius of the loop and I the intensity of the current flowing through it.
The magnetic field in spherical coordinates can then be calculated as follows:

Br =
1

r sin θ

∂

∂x
(
sin θAφ

)
(2.18)

Bθ = −1
r

∂

∂x
(
rAφ

)
(2.19)

Bφ = 0 . (2.20)

Now another problem arises, which is that the expressions for the magnetic field do
not have an analytical solution outside of the axis of the loop. The analytical expression
for the magnetic field on its axis is as follows [10]:

B =
µ0

4π

2πa2 I

(a2 + z2)3/2 . (2.21)
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To find the expressions for the magnetic field we will make use of the full elliptic
integrals of first and second kind, which are shown below, respectively:

K(m) =
∫ π

2

0

dθ√
1 − m sin θ

(2.22)

E(m) =
∫ π

2

0

√
1 − m sin θ dθ . (2.23)

The expression (2.17) can then be expressed as [11]:

Aφ(r, θ) =
µ0 Ia
4π

4Ia√
a2 + r2 + 2ar sin θ

[
(2 − k2)K(k2)− 2E(k2)

k2

]
, (2.24)

where the argument of the elliptic integrals k2 is defined as:

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
. (2.25)

The expressions for the magnetic field components in cartesian coordinates can now
be written as:

Bx =
Cxz

2α2βρ2

[
(a2 + r2)E(k2)− α2K(k2)

]
By =

Cyz
2α2βρ2

[
(a2 + r2)E(k2)− α2K(k2)

]
Bz =

C
2α2β

[
(a2 − r2)E(k2) + α2K(k2)

]
,

(2.26)

where, to simplify the expressions, we have used the following variables:

ρ2 ≡ x2 + y2 ; r2 ≡ x2 + y2 + z2 ; α2 ≡ a2 + r2 − 2aρ

β2 ≡ a2 + r2 + 2aρ ; k2 ≡ 1 − α2/β2 ; γ2 ≡ x2 − y2 ; C =
µ0 I
π

.
(2.27)

3 Theoretical Validation

Now that of theoretical framework is set, we will check if the approximations we have
presented coincide with measured values. The dipole approximation was discussed
in Yako’s work [2], and it was proven to be a good approximation for most electronic
devices, so we will focus on the quadrupole approximation.

3.1 Quadrupole approximation

We will start discussing the validity of the use of elliptic integrals for our calculations
for current loops following expression (2.16). For this we will compare the results with
the ones using Biot-Savart. (2.5). To make our graphs easier to interpret, we will work
on the XZ-plane and we will assume the Z-axis acts as the loop’s axis.
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The magnetic field created using both methods is shown below, where we have used
a current I = 1 A and a radius of a = 0.3 cm:

Figure 4: Magnetic field of a current loop on the XZ plane calculated using Biot-Savart
(2.5).

Figure 5: Magnetic field of a current loop on the XZ plane calculated using the expres-
sions (2.26).



3 THEORETICAL VALIDATION 12

As we can see the values for the magnetic field are indistinguishable. We can also
check the values for the relative errors:

Figure 6: Relative error between Fig. 4 and Fig. 5.

We also see that the difference between bot methods is negligible, therefore proving
that the use of elliptic functions is valid. The points in Fig. 6 with higher relative error
could be associated to computing error, and since we are working at very small orders
of magnitude, even the smaller errors count.

The fact that the results we get are practically identical is not surprising, since the
expressions (2.21) can be derived from (2.17) without doing any approximations. The
real importance comes from the difference between execution times of both methods,
which are shown below

Biot-Savart Elliptic Integrals

tex 23.6 s 1 ms

Table 1: Comparison between running times when calculating the magnetic field of a
dipole using Biot-Savart and elliptic integrals.

As we can see, the time difference is quite significant, so we can conclude that using
elliptic functions not only helps simplify things up, but also it also make our simulations
run faster.

Now that we have a simple way of calculating the magnetic field of a current loop,
we can create a quadrupole using two current loops separated by the same distance as
their diameter, and having their currents go in opposite directions [8].
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Figure 7: Geometric representation of a magnetic quadrupole created by two current
loops.

Figure 8: Magnetic field created by a magnetic quadrupole.
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The loops coloured in red and green in Fig. 7 represent the current loops with in-
tensity I and −I, respectively; and the blue dots represent the points where the field is
being measured. In Fig. 8 we can see the four magnetic poles, two North and two South
[12].

An arbitrary quadrupole would then be given by 7 components: the radius of the
current loops a, the currents I and −I flowing through them, the center point (x0, y0, z0)

and an unitary vector that can be expressed as using a polar angle θ (where θ = 0
corresponds with the Z axis) and an azimuthal angle φ:

d̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θẑ . (3.1)

Here below we can see and example of how an arbitrary quadrupole would look like:

Figure 9: Geometric representation of a magnetic quadrupole created by two current
loops which have been rotated and displaced from the origin.
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Figure 10: Magnetic field created by an a magnetic quadrupole which has been rotated
and displaced from the origin.

In particular, Fig. 9 and Fig. 10 are an example of a quadrupole centered in (0.2, 0.1, 0)
for a vector d̂ given by θ = 30◦ and φ = 30◦, with the same values of a and I used in
Fig. 8.

4 Methodology and analysis

4.1 Soft Iron Calibration

Before we do any measurements, it is important that our magnetometers are ready to
measure to avoid obtaining unfaithful results. In this section, we will describe the math
used for calibrating magnetometers, in a process known as soft iron calibration [13].

4.1.1 Magnetometer calibration

Firstly, we will assume that the magnetic field generated by the earth does not change
locally, which is reasonable. Ideally, if we were to rotate our magnetometer describing
the surface of a sphere, in the reference system of the magnetometer, the magnetic field
would also describe a sphere with radius that of the magnitude of Earth’s magnetic field.
Such process can be done using a structure that allows us to rotate our magnetometer
freely, like the one shown here:
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Figure 11: Structure used for calibrating the magnetometer.

The magnetometer is simply strapped into the middle plate, and then the structure is
manually spun. In particular the magnetometer used is a LSM9DS0 magnetometer [14],
together with and Arduino Pro Mini 328 3.3V/8MHz microcontroller [15].

The raw measures of the magnetic field we expect to get is shown here below:

Figure 12: Experimental measures of the magnetic field on each cartesian plane before
calibrating.

These experimental results As we can see that the experimental results don’t match
the ideal scenario, and the measured points appear to describe an ellipsoid instead of a
sphere. The main problems resulting to that are:

• The magnetic field is not centered around zero.

• The strength of the magnetic field is measured unevenly between different direc-
tions.

The nature of this problems could be of many kinds, like deterioration or internal
magnetic fields; but what is important is that it can be accounted for and fixed with the
proper software.
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4.1.2 Process of calibrating

As we said before, the magnetometer appears to describe an ellipsoid, therefore we aim
to reproduce the equation of an ellipsoid. In general, the equation of a conic is given by
the following expression [13]:

Ax2 + By2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Iz + J = 0 . (4.1)

Known the parameters, we can calculate the center of the ellipsoid P0 this way [13]:

Q =

A D E
D B F
E F C

 ; U =

G
H
I

 ; P0 = −Q−1 · U . (4.2)

The semi axis of the ellipsoid can then be calculated like [13]:

ri =

(
P0

T · Q · P0 − J
λi

)1/2

, (4.3)

where λi (with i = 1, 2, 3) are the eigenvalues of Q with normalized eigenvectors vi.

Start

Provide data

Adjust the data to an ellipsoid

Find the center and center the data

Find the principal axes
and rotate the ellipsoid

Scale the semi axes to match
Earth’s Magnetic Field

Rotate to the original position

Soft Iron Calibration Matrix and
translation vector

End

Figure 13: Flow chart of the soft
iron calibration process.

The calibration process will then be done in 5 steps
[13]:

1. Adjust the experimental measures to an ellip-
soid, following equation (4.1).

2. Find the center of the ellipsoid using equations
(4.2) and move all experimental measures so the
center is at (0,0,0).

3. Align the semi axes with the axes of the refer-
ence frame given by vi. This is done by rotating
using the matrix V−1, where V is the 3 × 3 ma-
trix which has vi as its columns.

4. Scale the semi axes so they have the same length,
which would be the magnitude of Earth’s mag-
netic field. This process would be achieved using
the following matrix

R = BEarth


1

λ1
0 0

0 1
λ2

0
0 0 1

λ3

 . (4.4)

5. Rotate back the sphere to the original orientation
using V.

The results of the calibration are a translation vec-
tor given by P0 and a matrix which rotates, scales and
rotates back (in that order), given by V · R · V−1. Once
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the calibration is complete, this will allow us transform the data given by our magne-
tometer to an actual measure of the magnetic field.

In the case of Fig. 12, the final result after applying the soft iron calibration process
is:

Figure 14: Experimental measures of the magnetic field on each cartesian plane after
applying the soft iron calibration process.

Where we have used a value of 43600 ± 160 nT, the value of Earth’s magnetic field at
Granada, Spain (37◦ 10’ 13” N, 3◦ 36’ 18” W) on June tenth, two thousand twenty-two
[16].

4.2 The Magnetic Coil Facility

In this section we will discuss the process of measuring using the Magnetic Coil Facility
(MCF). This facility is a set of Helmholtz coils which aim to cancel Earth’s magnetic field
inside the facility. The facility is also able to demagnetise an object in a process known
as deperming [17]. Here below we can see some pictures of the MCF in the ESA facility:

Figure 15: Pictures of the MCF at the ESA Facility [17].

We can also observe the following figure with a 3D model of the MCF, to get a better
understanding of the disposition of the coils:
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Figure 16: 3D model of the MCF made using Sketchup [2].

The green and grey coils in Fig. 16 are used for canceling Earth’s magnetic field,
while the red coil is used in the process of deperming.

4.2.1 Canceling Earth’s magnetic field

In any reference frame, Earth’s magnetic field is given by three components. At first
glance we could think that three different coils would be needed, but this is not the
case since we could consider that the magnetic field has a vertical and an horizontal
component, and align our two coils is such a way that their axes coincide with each
component. One could also think that only one coil is needed and, while this is certainly
true, it is easier to build a structure with one horizontal and one vertical coil which can
be orientated, rather than a single coil that can be freely orientated.

We want to orientate the MCF in such a way that the vertical coils create a field that is
opposite to the horizontal one created by Earth. To align the MCF, we will first measure
the magnetic field in the reference frame X′, Y′ and Z′ shown in the figure below:
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x′

y′

z′

x

y
z

B⃗hor B⃗x′

B⃗y′

B⃗z′

α

N

S

EW

Figure 17: Coordinate system used to align the MCF.

In Fig. 17 N , S , E and W represent the four cardinal points. To align the coils with
the horizontal component, the MCF should be rotated an angle α, which represents the
horizontal orientation with respect to the north and it can be calculated in the following
way:

α = arctan
By′
Bx′

. (4.5)

Once the MCF is aligned, our reference frame will be given by X, Y and Z from
Fig. 17.

4.2.2 Deperming process

The deperming process is a procedure where the magnetic field from an object is erased.
The process is done by applying a certain magnetic field varying with time, like the one
shown here below [18].
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Figure 18: Magnetic field using for deperming.

On Fig. 18, we can see that the magnetic field is described by two slopes modulated
by a sinusoidal function, one increasing and one decreasing. The magnetic field is being
calculated using the code shown below:

1 import numpy as np

2 import math

3

4 #################

5 #DEPERM FUNCTION#

6 #################

7

8 def Deperm(f,Bmax ,t1 ,t2 ,ts ,Scale):

9 #We define the total time the deperm is going to be active

10 tt=t1+t2

11

12 #We define the amount of steps it will take for the magnetic field to

fully increase of decrease

13 pasos1=math.floor(t1//ts)

14 pasos2=math.floor(t2//ts)

15

16 #We define the total amount of steps

17 pasos=pasos1+pasos2

18

19 #We define t like:

20 t=np.zeros(pasos)

21 for i in range(0,pasos):

22 t[i]=i*ts

23

24 #We define the slope of the hull (envolvente), in absolute value:

25 m1=Bmax/t1
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26 m2=Bmax/t2

27

28 #We find Bdeperm

29 Bdeperm=np.zeros(pasos)

30 for i in range(0,pasos1):

31 Bdeperm[i]=m1*t[i]*math.sin (2* math.pi*f*t[i])

32 #################

33 #This is a completly optinal process so that the slope doesn’t suddenly

change signs in the instant just after t1

34 #This process only adds a global ’-’ to every Bdeperm after t1 if

needed.

35 #Variables:

36 #d1 : Proportional value of the first derivative of B for t<t1 in the

limit t->t1

37 #d2 : Proportional value of the first derivative of B for t>t1 in the

limit t->t1

38 #dd1 : Proportional value of the second derivative of B for t<t1 in the

limit t->t1

39 #dd2 : Proportional value of the second derivative of B for t>t1 in the

limit t->t1

40

41 d1=math.sin (2* math.pi*f*t[pasos1 ])+2* math.pi*f*t[pasos1 ]*math.cos (2*

math.pi*f*t[pasos1 ])

42 d2=math.sin (2* math.pi*f*(t[i]))+2* math.pi*f*(t[i]-tt)*math.cos (2* math.

pi*f*(t[i]))

43 dd1=2* math.pi*t[i]*math.sin (2* math.pi*f*t[i]) -2*math.cos (2* math.pi*f*t[

pasos1 ])

44 dd2=2* math.cos (2* math.pi*f*(t[i])) -2*math.pi*f*(t[i]-tt)*math.sin (2*

math.pi*f*(t[i]))

45 if d1 <0:

46 if d2 <0:

47 sgn=1

48 elif d2 >0:

49 sgn=-1

50 elif dd1 <0:

51 sgn=1

52 else:

53 sng=-1

54

55 elif d1 >0:

56 if d2 <0:

57 sgn=-1

58 elif d2 >0:

59 sgn=1

60 elif dd2 <0:

61 sgn=-1

62 else:

63 sng=1

64 elif dd1 <0:

65 if d2 <0:

66 sgn=1

67 elif d2 >0:

68 sgn=-1

69 elif dd2 <0:

70 sgn=1

71 else:

72 sng=-1

73 else:
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74 if d2 <0:

75 sgn=-1

76 elif d2 >0:

77 sgn=1

78 elif dd2 <0:

79 sgn=-1

80 else:

81 sng=1

82 #################

83 for i in range(pasos1 ,pasos):

84 Bdeperm[i]=sgn*m2*(t[i]-tt)*math.sin (2* math.pi*f*(t[i]))

85

86 #We find Vdeperm:

87 Vdeperm=Scale*Bdeperm

88 return t,Bdeperm ,Vdeperm

Figure 19: Python code used for the deperm.

This code can be used to create any deperm function we desire, given the following
inputs:

• f : Frequency of the oscilation (in Hz).

• Bmax: Maximum magnetic field applied (in µT).

• t1: time it takes for the magnetic field increases from 0 to Bmax (in s).

• t2: time it takes for the magnetic field decreases from Bmax to 0 (in s).

• ts: time our power generator holds each signal (in s).

• Scale: Relation between the magnetic field created an the power our current gener-
ator receives (in V/µT).

The code will then give us the following outputs:

• t : all moments of time where the current generator receives a signal (in s).

• Bdeperm: magnetic field for every moment of time (in µT).

• Vdeperm: voltage applied to the power generator for every moment of time (in
V/µT).

In particular, Fig. 18 takes the inputs shown below:

f [Hz] Bmax [µT] t1 [s] t2 [s] ts [s] Scale [V/µT]

1/32 5000 200 400 1 1/500

Table 2: Inputs used for Fig. 18 using the code given in Fig. 19.
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4.2.3 Measuring in the MCF

For measuring, multiple magnetometers are placed inside the MCF. The magnetometers
are placed in different locations, so that the measures of the magnetic field we get are as
representative as possible. Each magnetometer will then measure the magnetic field an
each direction.

One important thing to note is that most magnetometers have each direction sensors
positioned in different places inside the magnetometer. In Yako’s work [2] this wasn’t
consider, therefore leading in inaccurate results. The magnetometers we have used are
Mag03-MS1000, and here below we can see an image of one [19]:

Figure 20: Image of the Mag03-MS1000 magnetometer used.

In Fig. 20 the X, Y and Z labels give an intuitive position of where the sensors for each
directions are, but since we need to be as precise as possible we will use the positions
given in the outline drawings [20] for a Mag03-MS:

Figure 21: Position of each sensor in a Mag03-MS magnetometer (distances given in
mm).

Since this is a recurring problem for our measurements and it must be taken into a
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count, we must find a way to store this information efficiently. From Fig. 20 and Fig. 21
we can see that this offsets only appear in the Z axis of the magnetometer a efficient way
of displaying this information will be as follows:

OFFSET Mag. [cm]

Sensor X -1.5ẑ
Sensor Y 1.5ẑ
Sensor Z 0

Table 3: Offset for a the magnetometer seen in Fig. 20 and Fig. 21.

Note that we have added a ẑ to express that this offset is on the Z axis. This won’t
always be the case since, as we will see late, the magnetometers axis from Fig. 20 do not
always coincide with the X, Y and Z axis we have set for out reference frame.

Before we move on we also have to mention that there is a small discrepancy between
the distances found in Fig. 21 and the ones we were given by ESA. In Fig. 21 the distance
between the Y and Z sensors is 15 ± 2 mm, meanwhile the distance we were given is
16 ± 1 mm. This may be due to using the documentation for a Mag03-MS magnetome-
ter instead of a Mag03-MS1000, but since no outline drawings nor documentation for
Mag03-MS1000 could be found, this is the best way to illustrate where the sensors are
located; even is the distances are not completely on point.

It is important to note that the direction of the axes X, Y and Z does not coincides
with those of Fig. 17, since the magnetometer can take different orientations depending
of how it is placed inside the MCF. Here below we can see images of how three different
magnetometers are placed inside the MCF:

Figure 22: Position of each magnetometers 2, 3 and 4.

In the case of Fig. 22 the numbers 2, 3 and 4 each represent a magnetometer. Mag-
netometers 2 and 3 have the same orientation but magnetometer 4 is set horizontally. In
neither of these magnetometer the axes from Fig. 20 coincide with those of Fig. 17. In
this particular case, the readings from the magnetometers Bi Mag should be interpreted
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as follows:

Mag. 2 Mag. 3 Mag. 4

Bx By Mag By Mag −Bz Mag

By Bx Mag Bx Mag Bx Mag

Bz −Bz Mag −Bz Mag −By Mag

Table 4: Example of interpretations of the readings given by the magnetic field.

Now that everything is set, we are ready to measure. The object we want to study
is placed in the middle plate, which can be seen on the pictures from Fig. 15 and the
Fig. 16. This circular plate is set on the middle of the facility and allows the object to
be spun. This spinning movement allows us to measure the magnetic field all around
the object, without having to move our magnetometers. Using the magnetometers from
Fig. 22, the points where the magnetic field will be measured is shown in the figures
below:

Figure 23: Position of Magnetometer 2 from Fig. 22 during the measurement process.
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Figure 24: Position of Magnetometer 3 from Fig. 22 during the measurement process.

Figure 25: Position of Magnetometer 4 from Fig. 22 during the measurement process.

In figures above the blue, red and green points represent the positions where the Bx,
By and Bz components of the magnetic field are being measured, respectively; and the
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purple dot found in all of the plots represents the origin.

4.3 Optimization algorithm

Start

Provide optimizing function

Create swarm

Evaluate Fitness Function
in actual position

Move particles

Stop
parameter

met?

Optimal position found

End

No

Yes

Figure 26: Flow chart of the PSO
algorithm.

This section is dedicated to explain the intricacies
of the optimization algorithm used. In our case,
this algorithm will be a Particle Swarm Optimization
method or PSO. The PSO algorithm is an heuristic al-
gorithm. The name of this algorithm comes from its
inspiration from bird, where each individual moves
not only based on its position, but also on the position
of the rest of the individuals that form the swarm. The
swarm then, tries to find a position where a desired
function is better optimized [21].

4.3.1 PSO Algorithm

The foundation of this algorithm is based on four steps
[21]:

1. Create an initial swarm, with a set number of
particles, at a random starting point inside of
the given limits. Each particles possess four el-
ements: its position, the value of the optimizing
function, a register of the best position so far and
its current velocity.

2. Evaluating each particle with the optimizing
function F.

3. Updating the position and velocity of each par-
ticle. This is what gives the algorithm the opti-
mization property.

4. If the stop parameters are not met, return to step
2.

The velocity and position of the particles is updated via the following expressions
[21]:

vi(t + 1) = wvi(t) + c1r1[Xi(t)− xi(t)] + c2r2[g(t)− xi(t)] (4.6)

xi(t + 1) = xi(t) + vi(t + 1) , (4.7)

where we identify the following variables:

• vi(t): velocity of the particle i in the instant t.

• w: inertia coefficient.
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• c1: cognitive coefficient.

• c2: social coefficient.

• Xi(t): best position the particle i has been so far.

• xi(t): current position of the particle i.

• g(t): best position found by the swarm globally.

• r1 and r2: random numbers between 0 and 1.

In particular, for our calculations we have used the following parameters:

w c1 c2

1 1.5 1.5

Table 5: Parameters used in our PSO programs.

Since this is an iterative process we also have to define stop parameters. In our case,
this parameters consist of a maximum of 700 iterations and a stop tolerance of 10 · 10−7,
which refers to the minimal value the fitness function F has to vary between iterations
for the optimization to continue.

4.3.2 Fitness function

Now that we have defined our algorithm, we have to define a fitness function F. This sec-
tion will follow the work of Elisa Carrubba, Axel Junge, Filippo Marliani, and Agostino
Monorchio. Particle swarm optimization to solve multiple dipole modelling problems in space
applications [22].

First, we will start by using the least square function F1, defined as follows:

S =

(360

∑
i=0

[(
B(meas)

x [i]− B(PSO)
x [i]

)2
+
(

B(meas)
y [i]− B(PSO)

y [i]
)2

+

(
B(meas)

z [i]− B(PSO)
z [i]

)2
])1/2

(4.8)

F1 =
S√

∑360
i=0

[(
B(meas)

x [i]
)2

+
(

B(meas)
y [i]

)2
+
(

B(meas)
z [i]

)2
] , (4.9)

where i refers to the angle in degrees. Notice that, in case we would want to take F1

as our fitness function, S would do the work just fine, since the denominator of F1 is a
constant. This denominator is necessary for F1 to be included in F. Also note that, since
F1 represents the mean square function, it will also be a good indicator of the goodness
of our fit.

We also define the least mean function F2:
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F2 =
∑360
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(
B(meas)

x [i]− B(PSO)
x [i]

)2
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(
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)2 +

∑360
i=0

(
B(meas)
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(
B(meas)

y [i]
)2 +

+
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(
B(meas)
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(4.10)

Finally, we define the fitness function F as a combination of (4.9) and (4.10) [22]:

F(n) = F(n)
2

(
F(n−1)

2

F(n−1)
1

)
+ F(n)

1

(
F(n−1)

1

F(n−1)
2

)
, (4.11)

where n refers to the current iteration and n − 1 to the previous one. For iteration
n = 0 the values of F(n−1)

1 and F(n−1)
2 are set randomly.

The PSO code that will be used for our tests can be found in GranaSAT’s github
repository [5] under the name PSO VICTOR. This code allows us to select three different
modeling methods, along with their approximated running time, if the magnetic field is
measured by 3 magnetometers:

Method 1 Dipole 2 Dipoles 1 Dipole and 1 Quadrupole

tex [s] 130 140 240

Table 6: Running times of the PSO algorithm for each method.

The magnetic field for the dipoles will be given by expressions (2.16), meanwhile
for the quadrupole we will use expressions (2.26) to find the magnetic field of 2 current
loops separated by the same distance as their diameter with currents flowing in opposite
directions.

This program can also be set to compare the three methods if desired, and adding
more magnetometers adds ≈ 30 s to each running time. It must be noted that this run-
ning times have been done in a 11th Gen Intel(R) Core(TM) i7-11800H 2.30GHz processor
and 16.GB of RAM [23].

5 Results and discussion

5.1 The importance of deperming

First we will check the importance of the deperming process. For that, we will compare
the magnetic field of a filter wheel before and after deperming. For this process, our
magnetometers are set in the positions given in Tab. 7 along with the offsets Tab. 8.
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Position Mag. 2 Mag. 3 Mag. 4

x [±1 cm] 36.7 36.7 32.4
y [±1 cm] -5.4 0.0 -5.4
z [±1 cm] 13.5 3.5 -9.7

Table 7: Position of the magnetometers for checking the importance of the deperming
process (FAR Config.).

OFFSET Mag. 2 [cm] Mag. 3 [cm] Mag. 4 [cm]

Sensor X -1.6ẑ -1.6ẑ 0
Sensor Y 1.5ẑ 1.5ẑ 1.5x̂
Sensor Z 0 0 -1.6x̂

Table 8: Offsets for the magnetometers from Tab. 7.

Now we will compare the X component on the magnetic field for the three magne-
tometers, before and after the deperming process:

Figure 27: X component on the magnetic field for a filter wheel before and after de-
perming for Magnetometer 2, whose position can be found in Tab. 7.
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Figure 28: X component on the magnetic field for a filter wheel before and after de-
perming for Magnetometer 3, whose position can be found in Tab. 7.

Figure 29: X component on the magnetic field for a filter wheel before and after de-
perming for Magnetometer 2, whose position can be found in Tab. 7.

As we can see, the magnetic fields are completely different, so if we want to get
a faithful measure for the magnetic field of an electronic component we must apply a
deperming process first. However, the rest of the data we were given by ESA has not
been depermed before, for what we can assume are simplicity reasons, since this process
can take a moderate amount of time to perform.
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5.2 Comparing Our PSO Data with ESA’s

In this section we will study the magnetic field created my a motor. For this measures,
four magnetometers have been placed inside the MCF, in the following positions:

Position Mag. 1 Mag. 2 Mag. 3 Mag. 4

x [±1 cm] 22.4 26.7 26.7 22.4
y [±1 cm] 0.0 -5.4 0.0 -5.4
z [±1 cm] 32.3 13.5 3.5 -9.7

Table 9: Position of the magnetometers for measuring the magnetic field of a motor.

OFFSET Mag. 1 [±2 cm] Mag. 2 [±2 cm] Mag. 3 [±2 cm] Mag. 4 [±2 cm]

Sensor X 0 -1.6ẑ -1.6ẑ 0
Sensor Y 1.5x̂ 1.5ẑ 1.5ẑ 1.5x̂
Sensor Z -1.6x̂ 0 0 -1.6x̂

Table 10: Offsets for the magnetometers from Tab. 9.

For this algorithm, the PSO given by ESA is given by just 1 dipole, so that is what we
will try to replicate with our PSO algorithm. Here below lies a comparison between the
results given by both optimization algorithms:

Coordinates [cm] Magnetic moment [mAm2]
x0 y0 z0 mx my mz F1

ESA -0.2 0.4 1.7 1.123 -65.17 -0.288 2.9%
GranaSAT -0.2 0.31 1.8 0.608 -65.73 0.599 3.4%

Table 11: Comparison of the PSO results for a 1 dipole model for a motor.

As we can see in Tab. 11, the approximation given by ESA is better than the one
we get. This could be remedied by running the PSO program multiple times until we
find a better result. Here below we can see how both approximations hold against the
measured data:
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Figure 30: X component on the magnetic field for a motor for Magnetometer 2, whose
position can be found in Tab. 9.

Figure 31: Y component on the magnetic field for a motor for Magnetometer 2, whose
position can be found in Tab. 9.
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Figure 32: Z component on the magnetic field for a motor for Magnetometer 2, whose
position can be found in Tab. 9.

We have decided to only show the graphs for magnetometer 2 to avoid redundancy,
since the results we get for the rest of magnetometers are very similar. As we can see,
both approximations hold pretty well against the measured data. We can also check for
the relative errors:

Figure 33: Relative error of the X component on the magnetic field for a motor for
Magnetometer 2 from Fig. 30.
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Figure 34: Relative error of the Y component on the magnetic field for a motor for
Magnetometer 2 from Fig. 31.

Figure 35: Relative error of the Z component on the magnetic field for a motor for
Magnetometer 2 from Fig. 32.

In Fig. 33, 34 and 35 we can see that the errors skyrocket for the values where the
magnetic field measured is 0, but stays below 5% for the most part otherwise.

5.3 Validity of approximations

Now we will compare how the distance we measure can affect the results we get in
our optimization problem. We will consider two different scenarios for the filter wheel
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magnetic field. The first one is given by Tab. 7 and Tab. 8 and the second one given by
the following:

Position Mag. 2 Mag. 3 Mag. 4

x [±1 cm] 26.7 26.7 22.4
y [±1 cm] -5.4 0.0 -5.4
z [±1 cm] 13.5 3.5 -9.7

Table 12: Position of the magnetometers for measuring the magnetic field of a filter wheel
(NEAR Config.).

The second scenario has the same offsets given by Tab. 8. We also can see that the
differences between Tab. 7 and Tab. 12 lies solely in that the magnetometers have been
brought 10 cm closer in the X axis. Because to this, we will name the first configuration
FAR and the second NEAR.

For each scenario 10 simulations have been run for each model, leading to a total of
60 simulations. The best approximations for each can be found below:

Coordinates [cm] Magnetic moment [mAm2]
x0 y0 z0 mx my mz

Dipole -4.7 -0.5 2.9 2.43 9.11 -9.78

Coordinates [cm] Orientation [◦] Current Loop [◦]
x0 y0 z0 θ φ a [cm] I [A] F1

Quadrupole 2.00 -1.39 0.39 90 291 9.6 -1.39 6.1%

Table 13: Best approximation for the magnetic field of a filter wheel for the FAR scenario.

Coordinates [cm] Magnetic moment [mAm2]
Dipole x0 y0 z0 mx my mz F1

1 -3.0 -0.6 7.7 4.70 1.32 -6.09
10.7%

2 2.3 2.8 1.4 0.66 -6.25 -3.17

Table 14: Best approximation for the magnetic field of a filter wheel for the NEAR sce-
nario.

In the case of NEAR, the best approximation is given by the 2 dipole model, mean-
while for FAR the best model is 1 dipole and 1 quadrupole. This is surprising, since in
theory the quadrupole approximation becomes worse at further distances, yet in our case
it is better to use 1 dipole and 1 quadrupole for the scenario where the magnetometers
are further away. The only reason we can give for this is that, at the end of the day, these
are just approximations of a magnetic field that has an intricate shape, and specially
since the distance between the distance of both scenarios is not that big, our intuition
may be misleading.

One thing that may be interesting to test is how well does the FAR approximation
hold in the the positions where the scenario NEAR is measured, and vice versa. Here
below we can see this comparison:
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Figure 36: Comparison between the X component of the magnetic field created by a filter
wheel using the approximations FAR and NEAR, in the positions points where FAR is
measured.

Figure 37: Comparison between the X component of the magnetic field created by a filter
wheel using the approximations FAR and NEAR, in the positions points where NEAR is
measured.

As we can see, the approximations do not hold outside of the positions they have
been calculated. We can conclude that, if we wish to approximate any electronic product
using dipoles and quadrupoles, not only does the device have to be depermed before;
but in general the approximation will only hold in the points the magnetic field was
measured to do such approximation, or close to them.
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6 Conclusions

To conclude, we will summarize the different activities accomplished during this thesis:

• First, we expanded previous works by adding the quadrupole approximation to our
algorithms. Not only that, but we also found an alternative way to treat magnetic
quadrupole by the use of current loops described by elliptic integrals, which has
proven to be a very efficient way of computing magnetic quadrupoles, as seen in
Tab. 1.

• We have created a program for soft iron calibration, this is, the calibration of the
magnetometer. We have also created a program for the demagnetization process of
an object, also known as deperm.

• We also improved Yako’s work [2], by considering that each sensor in a magne-
tometer is in a different position as the datasheets from these products suggest
[20].

• Finally, we have used some experimental data provided by ESA of different elec-
tronic components and studied them. We concluded that the deperm process is
very important if we desire to get a good measure of the magnetic field of an elec-
tronic device, as seen on Fig. 27, Fig. 28 and Fig. 29. We also compared our PSO
program with those of ESA, leading to similar results; and concluded that dipole
and quadrupole approximations in general only hold in the points where the mag-
netic field is measured to do such approximations or in their vicinity, as we can see
on figures Fig. 36 and Fig. 37.

• The most remarkable part of our work is that most of the things we have accom-
plished come in terms of Python code, which expands to a total of 5657 lines of
code, which can be accessed by anyone at GranaSAT’s GitHub repository [5].

Now, as a final note, we will discuss what parts of our work could be improved:

• In Fig. 19, the function takes the input Vdeperm, yet we have not made use of this.
It is left to future works to make use of this to apply a deperm process in our own
MCF.

• The code is one of the main component of this thesis and, since I had not worked
with Python before, I am sure it could be optimised to run faster. Not only that, but
it could also be made ’prettier’ by adding an actual interface to the programs. The
PSO program could also be improved by allowing it to work with as many dipoles
and quadrupoles as desired. It could also be made so multiple optimizations can
be run on multiple cores of the CPU at the same time, but that is outside of the
scope of this thesis.

• Since our objects of study are electronic devices, the magnetic field should be mea-
sured having our object in ON and OFF states. For simplicity all the measurement
have been done in an OFF state, but it is possible that the magnetic field varies if
set to ON.
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Figura 1. Sistema de medida del momento magnético. Configuración con dos magnetómetros 3D. 
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