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A B S T R A C T

Modern machine learning algorithms excel in a great variety of tasks, but at the same time, it is also known that
those complex models need to deal with uncertainty from different sources. Consequently, understanding if the
model is indeed making accurate predictions or simply guessing at random is not trivial, and measuring the
confidence bounds becomes very important. Bayesian machine learning seems to provide the solution, however,
many of the state-of-the-art Bayesian algorithms use rigid parametric representations of the uncertainty where
the learning process depends on the gradient of a predefined cost function. In this article, a new gradient-free
training algorithm based on Approximate Bayesian Computation by Subset Simulation is proposed, where the
likelihood function and the weights are defined by non-parametric formulations, resulting in a flexible and
fairer representation of the uncertainty. The experiments, specially the engineering case study on composite
materials subject to fatigue damage, show the ability of the proposed algorithm to consistently reach accurate
predictions while avoiding gradient related instabilities, and most importantly, it provides a realistic and
coherent quantification of the uncertainty represented by confidence bounds. All this may lead to a reduction of
safety factors in engineering problems, and in general, allows us to make well-informed decisions in situations
with a high degree of uncertainty and risk. A comparison with the state-of-the-art Bayesian Neural Networks
is also carried out.
. Introduction

Artificial Intelligence (AI) has experienced a fast pace development
uring the last decade and promises large benefits in many fields
f different nature. Particularly, Deep Neural Networks (DNN) have
evolutionized the world of machine learning, with more complex
odels that have made computer vision (Voulodimos et al., 2018) and

peech recognition (Arora and Singh, 2012) a reality, in some cases
ven reaching human accuracy (Sturman et al., 2020). In engineering,
ybrid models have dramatically improved wind speed forecasting (Al-
an et al., 2021) or digital currency forecasting (Altan et al., 2019).
s a result, we often encounter this technology in our daily life,

n the form of email classification (Awad and Elseuofi, 2011), fraud
revention (Sadgali et al., 2019) or border controls (Carlos-Roca et al.,
018), to name but a few examples. However, the predictions made by
hese models are subject to uncertainty which is critical in applications
here small variations might cause disproportionate consequences,

uch as in safety evaluation of power plants (Varshney and Alemzadeh,

∗ Corresponding author.
E-mail address: juanfdez@ugr.es (J. Fernández).

2017) or trajectory and safety assessment in civil aviation (Zhang and
Mahadevan, 2020). The motivation of this paper lies in the importance
of quantifying the degree of belief on the model predictions, which is of
great value for the subsequent decision-making process.

Delving into the rational quantification of the uncertainty, this can
be classified into two categories, epistemic and aleatory (Hüllermeier
and Waegeman, 2021). In machine learning, epistemic uncertainty
mainly refers to the lack of training data in some areas of the input
domain. In addition, modellers have to tackle the epistemic uncertainty
when choosing the optimum Artificial Neural Network (ANN) architec-
ture, which delivers the right balance between model complexity and
low generalization error (Beck, 2010). On the other hand, the aleatory
uncertainty refers to the randomness inherent in nature and implicit in
the data, such as noise in the measurements. While aleatory uncertainty
is mostly irreducible, epistemic related to lack of knowledge can be
mitigated in some ways, for instance gathering more data (Depeweg
ttps://doi.org/10.1016/j.engappai.2021.104511
eceived 2 June 2021; Received in revised form 28 September 2021; Accepted 12
vailable online 5 November 2021
952-1976/© 2021 The Author(s). Published by Elsevier Ltd. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
October 2021

s article under the CC BY-NC-ND license

https://doi.org/10.1016/j.engappai.2021.104511
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104511&domain=pdf
mailto:juanfdez@ugr.es
https://doi.org/10.1016/j.engappai.2021.104511
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Fernández, M. Chiachío, J. Chiachío et al. Engineering Applications of Artificial Intelligence 107 (2022) 104511

w
o
f
p
q

A
2
a
T
p
j
s
p
t
a
b
S
e
2
t
n
e

m
F
B
s
a
d
i
a
a
a
t
u

p
l
s
V
t
m
t
p

a

et al., 2018). In all cases, quantifying the total uncertainty in the
predictions provides valuable information (Ghahramani, 2015).

A branch of methods have appeared in the literature for quantifying
uncertainty in ANN. Among those, Bayesian Neural Networks (BNN)
are experiencing an increase in popularity within the machine learning
community. BNN emerged in the early 90s to robustly quantify un-
certainty in the neural network modelling using the Bayesian Inverse
Problem for updating the network parameters (Buntine and Weigend,
1991; MacKay, 1992; Neal, 1992, 1996; Lampinen and Vehtari, 2001).
The best known training methods used in BNNs are the Variational
Inference method (VI) (Graves, 2011; Hoffman et al., 2013; Wang et al.,
2020) (more specifically Bayes by Backprop (Blundell et al., 2015;
Jia et al., 2020)), Probabilistic Backpropagation (PBP) (Hernandez-
Lobato and Adams, 2015) and Hamiltonian Monte Carlo (HMC) (Benker
et al., 2020; Levy et al., 2018). Generally, these methods require the
evaluation of the gradient of a cost function using the back-propagation
algorithm (Rumelhart et al., 1986), which is prone to suffer from
drawbacks like exploding gradient (Pascanu et al., 2013) when large
derivatives propagate down the model, vanishing gradient (Pascanu
et al., 2013) if derivatives are small, or dying ReLU (Lu, 2020), all of

hich affect the learning process. It is also common among these meth-
ds the adoption of a particular probability model for the likelihood
unction and the posterior probability density function (PDF) of the
arameters, often assumed to be Gaussian, which leads to a constrained
uantification of the uncertainty.

This paper proposes a novel technique to train BNNs using the
pproximate Bayesian Computation (ABC) method (Marjoram et al.,
003; Del Moral et al., 2012) combined with Subset Simulation (SS) (Au
nd Beck, 2001), the so called ABC-SS method (Chiachio et al., 2014).
he proposed training approach, defined here as BNN by ABC-SS,
roduces samples of the model parameters which are accepted or re-
ected based on a performance metric. This process is repeated through
equential subsets until a predefined tolerance value is reached. The
osterior PDF of the parameters is finally obtained from the samples in
he last subset. The advantages of using BNN by ABC-SS as a training
lgorithm are twofold. First, it circumvents the parametric definition of
oth the likelihood function and the posterior PDF of weights and bias.
uch non-parametric formulation provides flexibility to the model and
nables a more realistic quantification of the uncertainty (Ghahramani,
015). Second, the gradient-free nature of the algorithm, which avoids
he known gradient-based issues mentioned above. Both benefits origi-
ate from the use of ABC, which is improved with SS for computation
fficiency (Prangle et al., 2018).

In the literature, ANN and ABC methods can be found in a combined
anner, like in Jiang et al. (2017), Radev et al. (2020), Blum and

rançois (2010), Blum et al. (2013) where ANNs, and more recently
NNs (Grazian and Fan, 2020), are used within ABC to select a suitable
ummary statistics to be applied in the distance function. ABC has
lso been implemented to obtain the uncertainty of the output in
eterministic ANN (Das et al., 2019), or as the optimization method
n inverse problems using a trained ANN as the forward model (List
nd Lewis, 2020). Other Bayesian methods have been used to infer
nd optimize the hyperparameters of a DNN and machine learning
lgorithms (Vong et al., 2006; Shin et al., 2020). Nevertheless, and to
he best knowledge of the authors, the ABC-SS method has not been
sed before as the training algorithm for a BNN.

The proposed method has been illustrated with two academic exam-
les and applied to an engineering case study about remaining useful
ife prediction of carbon fibre reinforced polymer (CFRP) laminates
ubject to fatigue damage. Also, a comparison on performance with
I (Bayes by Backprop), PBP and HMC is provided. The results of

he experiments have validated the main contribution of the proposed
ethod, namely the accurate and flexible quantification of the uncer-

ainty in the observed data, which adds valuable information to the
redictions made by the BNN.

The rest of this paper is organized as follows. Section 2 provides

theoretical background, from basic principles of ANN through BNN

2

Fig. 1. Generic example of a basic FNN.

to the ABC-SS method. Section 3 describes how ABC-SS is adapted to
train a BNN and presents two illustrative regression problems. A real
case study on remaining useful life prediction of carbon fibre reinforced
polymer (CFRP) laminates subject to fatigue cycles (with data taken
from the NASA Ames Prognostics Data Repository - CFRP Composites
Dataset (Saxena et al., 2008)) is provided in Section 4, including a
description of the experimental framework, the results and discussion
on the experiment, and a comparison with the state-of-the-art BNN. An
overall discussion on the methodology and the experiments is provided
in Section 5. And finally, the conclusions are given in Section 6.

2. Background

This section aims to provide the theoretical foundations of this
article. Beginning with a short introduction to ANN in Section 2.1, Sec-
tion 2.2 will dive into the principles and motivations of BNN, explaining
how the uncertainty is quantified by using the Bayes theorem. Finally,
the ABC-SS method along with its mechanisms to find the posterior
distribution of the parameters is described in Section 2.3.

2.1. Artificial neural networks

ANN have been an active line of research in the recent years,
however, their invention dates from 1943 and is attributed to War-
ren McCulloch, a Neurophysiologist, and Walter Pitts, a mathemati-
cian (Mcculloch and Pitts, 1943). The principles of ANNs are inspired
in the behaviour of biological neurons, although their architecture and
mechanisms to process information differ notably.

Many different types of ANN have been developed to specifically
solve a diverse set of tasks, such as regression, classification, visual
recognition or natural language processing. Feedforward Neural Net-
works (FNN) are considered the simplest type and the one many others
are built upon (Goodfellow et al., 2016). Feedforward models can be
understood as a function 𝑓 , defined by a set of parameters including
weights 𝑤 and bias 𝑏, which maps some input information 𝑥 ∈  ⊂ R𝑛

to a predicted output 𝑦̂ ∈ , where  ⊂ R𝑙 for a regression task, thus
𝑦̂ = 𝑓 (𝑥;𝑤, 𝑏). These models can comprise several layers, where each of
them executes a linear transformation of the input information using
the parameters 𝑤 and 𝑏, followed by a non-linear transformation using
an activation function. The number of layers indicates the depth of our
model. Fig. 1 shows a simple FNN, with one input layer, one hidden
layer and one output layer. The mapping from inputs to outputs for the
generic case in Fig. 1, also known as forward propagation, is formulated
as follows:

𝑦̂𝑘 = 𝑓 (𝑥;𝑤, 𝑏) = 𝑔(
𝑚
∑

𝑤(2)
𝑗𝑘 ℎ(

𝑛
∑

𝑤(1)
𝑖𝑗 𝑥𝑖 + 𝑏(1)𝑗 ) + 𝑏(2)𝑘 ) (1)
𝑗=1 𝑖=1
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where 𝑥𝑖 is the 𝑖th input unit; 𝑤(1)
𝑖𝑗 , 𝑤(2)

𝑗𝑘 , 𝑏(1)𝑗 and 𝑏(2)𝑘 represent the
weights and biases; 𝑦̂𝑘 is the 𝑘th output neuron; 𝐻𝑗 is the 𝑗th neuron
in the hidden layer; ℎ and 𝑔 are the activation functions in the hidden
and output layers respectively; 𝑛 is the number of input neurons; 𝑚 is
the number of neurons in the hidden layer; and 𝑠 the number of output
neurons.

The selection of the activation functions in the hidden units is an
active area of research, and it is difficult to know which one will
perform best, thus a trial and error process is often followed. Rectified
Linear Units (ReLU) have proved to work well in a wide variety of
models, while others such as Maxout Units (Goodfellow et al., 2013)
have the potential to reduce the number of parameters required. On
the contrary, the activation function in the output units is task-specific
and its choice is critical for a good performance of the FNN.

With regard to the output, a FNN model defines a probability
distribution 𝑝 (𝑦|𝑥;𝑤, 𝑏), where 𝑦 ∈  represents the observed outputs in
a training data set  = (𝑥, 𝑦) ∈ × , and in most cases, the principle of
maximum likelihood estimation is used to learn the parameters 𝑤 and
𝑏. This is equivalent to minimizing the negative log-likelihood, namely
the cost function 𝐶(𝑤, 𝑏) = − log 𝑝 (𝑦|𝑥). The performance of a FNN is
measured by such cost function, whose form depends on the output
units, and therefore, on the task. A regularization method is often used
to avoid overfitting and reduce the generalization error.

In many cases, the parameters of a FNN are learnt via a training
algorithm based on descending the cost function using the gradient,
such as stochastic gradient descent. Information from the cost function
flows backward, computing the gradient using the back-propagation
algorithm (Rumelhart et al., 1986).

2.2. Bayesian neural networks

From a frequentist point of view, the parameters 𝑤 and 𝑏 of an
ANN are assumed to be known deterministically with a single value
which we want to find. Given a training data set  = (𝑥, 𝑦), a learning
algorithm could be used, as specified in Section 2.1, to approximate
the optimal value of the parameters. However, there is an implicit
uncertainty about the value of those parameters that is not covered by
the frequentist approach.

If a Bayesian interpretation is followed, such uncertainty is con-
sidered and the objective is no longer to find the true value of the
parameters but instead, a distribution of plausible values of the pa-
rameters that are consistent with the training data set. Under this
perspective, neural network predictions are obtained with quantified
uncertainty, by considering the most plausible values of the parameters
rather than a single one. In this context, the parameters of a Bayesian
Neural Network (BNN) are inferred using a probability logic approach
based on the Bayes’ theorem (Bayes, 1763; Laplace, 1812; Jeffreys,
1961; Cox, 1946).

From a mathematical point of view, a BNN provides a probabilistic
output 𝑦̂ based on the uncertainty about a set of model parameters
𝜃 = {𝑤, 𝑏} ∈ 𝛩 ⊆ R𝑑 given a model class . In this framework, the
model class  refers to the network architecture, namely, the number
of layers and neurons per layer; the activation functions in each of the
hidden and output layers; along with the prior information about the
model parameters 𝜃, referred to as 𝑝(𝜃|). Using Bayes’ theorem, this
prior information can be updated according to the training data set
(𝑥, 𝑦), as follows:

𝑝 (𝜃|,) =
𝑝 (|𝜃,) 𝑝 (𝜃|)

𝑝 (|)
(2)

where 𝑝 (𝜃|,) is the posterior PDF of the model parameters given
the data, and 𝑝 (|𝜃,) is known as the likelihood function. This
function measures how likely the model  specified by the parameters
𝜃 reproduces the observed data . As described above, the term 𝑝 (𝜃|)
is the prior PDF which quantifies our initial belief about the plausibility
of the values of parameters 𝜃 given a model class , and automatically
enforces a regularization effect thus preventing the over-fitting of the
 p

3

network model. Finally, the term 𝑝 (|) is known as the evidence and
epresents how likely the data  is reproduced if model class  is
dopted. The computation of the evidence comprises the evaluation of

a multidimensional integral which is analytically intractable in most
of the cases. However, stochastic simulation methods such as Markov
chain Monte Carlo (MCMC) (Neal, 1993; Gilks et al., 1996) can be used
to draw samples from the posterior while circumventing the evaluation
of the evidence.

Besides, in many cases the evaluation of the likelihood function
is computationally prohibitive or even analytically intractable. How-
ever, methods such as ABC may be used to approximate the posterior
distribution of the parameters.

2.3. Approximate Bayesian computation by subset simulation

ABC methods were born with the purpose of evaluating the posterior
distribution of the parameters in those cases where the likelihood
function is analytically intractable (Marin et al., 2012). Also known as
likelihood-free computation algorithms, ABC use a stochastic simulation
approach to avoid evaluating the likelihood function explicitly.

Let 𝑦̂ = 𝑓 (𝜃, 𝑥) ∈  ⊂ R𝑙 be the predicted outcome from 𝑝 (𝑦̂|𝜃,),
which is the forward model class  with parameters 𝜃 ∈ 𝛩, and (𝑥, 𝑦)
a data set where 𝑥 ∈  are the inputs and 𝑦 ∈  the observed outputs.
Then, Eq. (2) can be adapted when applied to the pair (𝜃, 𝑦̂) ∈ 𝛩 × ⊂
R𝑑+𝑙 as follows:

𝑝 (𝜃, 𝑦̂|) ∝ 𝑝 (|𝑦̂, 𝜃) 𝑝 (𝑦̂|𝜃) 𝑝(𝜃) (3)

where the conditioning to the model class  has been omitted for
clarity since the method is valid for any .

From the last equation, it is clear that when the likelihood function
𝑝 (|𝑦̂, 𝜃) is intractable or directly unknown, the posterior 𝑝 (𝜃, 𝑦̂|)
cannot be obtained. The ABC methods provide us with an efficient
alternative, bypassing the evaluation of the likelihood function using
an approximated simulation based approach (Santoso et al., 2011).
Indeed, through the use of a tolerance parameter 𝜖 and a user-defined
metric function 𝜌, the method selects as posterior samples the pairs
(𝜃, 𝑦̂) ∈  ⊆ 𝛩 ×  which satisfy that 𝑦̂ ∼ 𝑝 (𝑦̂|𝜃) lay within a specified
region around the data 𝑦 given by 𝜖(𝑦) = {𝑦̂ ∈  ∶ 𝜌(𝜂(𝑦̂), 𝜂(𝑦)) ⩽ 𝜖},
where the metric function 𝜌(⋅) evaluates the closeness between 𝑦̂ and
𝑦 using a vector of summary statistics 𝜂(⋅) (Fearnhead and Prangle,
2012) which, if required, allows the comparison between both vectors
in a weak manner. Thus, under the ABC perspective, Eq. (3) can be
rewritten as (Chiachio et al., 2014):

𝑝𝜖 (𝜃, 𝑦̂|) ∝ 𝑃
(

𝑦̂ ∈ 𝜖(𝑦)|𝜃
)

𝑝(𝑦̂|𝜃)𝑝(𝜃) (4)

where 𝑃
(

𝑦̂ ∈ 𝜖(𝑦)|𝜃
)

is the approximated likelihood function which
takes the unity when 𝜌(𝜂(𝑦̂), 𝜂(𝑦)) ⩽ 𝜖, and 0 otherwise. In the last
equation, 𝑃 (⋅) denotes probability and 𝑝(⋅) a PDF. By this means, the
ABC marginal posterior of the parameters can be straightforwardly
obtained as:

𝑝𝜖 (𝜃|) ∝ 𝑃
(

𝑦̂ ∈ 𝜖(𝑦)|𝜃
)

𝑝(𝜃) (5)

Observe that this basic form of the ABC method is conceived as
a rejection algorithm which generates (𝜃, 𝑦̂) ∼ 𝑝 (𝑦̂|𝜃) 𝑝(𝜃) and accepts
them conditional on 𝑦̂ being close to 𝑦 under a tolerance value 𝜖. It
hould be noted that 𝜖 is desired to be very small so predictions 𝑦̂ are
ccurate, but this is at the expense of highly inefficient computations.
lso, if 𝜖 → 0 then necessarily 𝜂(𝑦̂) ≃ 𝜂(𝑦), which is unlikely under a
robabilistic forward model 𝑝(𝑦̂|𝜃). On the contrary, choosing a high
alue for 𝜖 would make the approximate posterior 𝑝𝜖 (𝜃|) very similar
o the prior 𝑝(𝜃), given that the majority of samples drawn from the
rior would be accepted.

As can be seen, choosing the tolerance parameter 𝜖 entails a trade-
ff between accuracy of the posterior approximation and computa-
ional cost. In the literature, a branch techniques have been pro-
osed to address this trade-off by combining the ABC principles with
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sampling methods like Markov Chain Monte Carlo (Marjoram et al.,
2003), Parallel Tempering (Baragatti et al., 2013), or Population Monte
Carlo (Beaumont et al., 2009). While some of them have demonstrated
efficiency, using 𝜖 → 0 still translates into heavy computation. Thus,
other techniques that use a decreasing sequence of tolerance levels
𝜖 have emerged, which achieve improved computational performance
for low 𝜖 values (Del Moral et al., 2012). Among those, the so-called
Approximate Bayesian Computation by Subset Simulation algorithm,
namely ABC-SubSim (ABC-SS) algorithm (Chiachio et al., 2014), has
proved to be one of the most efficient ABC algorithms in the literature,
having been included in several well-known ABC user-platforms like
ABCpy (Dutta et al., 2017) and Pi4U (Hadjidoukas, 2021).

ABC-SS exploits the ABC principles with the Subset Simulation
method (Au and Beck, 2001) which transforms a rare event simula-
tion problem into a sequence of simulations with larger probabilities,
resulting in a reduction of the computational cost (Ching et al., 2005;
Au et al., 2007). Indeed, in ABC-SS the region  containing the possible
solutions under a tolerance 𝜖 is defined as the intersection of a sequence
of nested regions 𝑗 , 𝑗 = 1,… ,𝓁 such that 1 ⊃ 2 … ⊃ 𝓁 = , where:

𝑗 = {(𝜃, 𝑦̂) ∶ 𝜌(𝜂(𝑦̂), 𝜂(𝑦)) ⩽ 𝜖𝑗}, and 𝜖𝑗+1 < 𝜖𝑗 ∀𝑗 = 1,… , 𝑗 (6)

Following this approach, the probability of a predicted outcome 𝑦̂
rom a Bayesian neural network to belong to a specified region , which
s referred to as 𝑃 ((𝜃, 𝑦̂) ∈ ) and denoted for simplicity as 𝑃 (), can
e defined as:

() = 𝑃 (1)
𝓁
∏

𝑗=2
𝑃
(

𝑗 |𝑗−1
)

(7)

here 𝑃 (1) can be efficiently obtained using the Monte Carlo method,
hilst the remaining factors 𝑃

(

𝑗 |𝑗−1
)

, 𝑗 ⩾ 2, can be estimated
hrough samples by satisfying that 𝑃

(

𝑗 |𝑗−1
)

= 𝑃0, where 𝑃0 is a
onditional probability acting as a hyper-parameter defined by the
odeller.

. Training Bayesian neural networks by ABC-SubSim

In this section the ABC-SS algorithm is adapted to train BNN, thus
he need for evaluating the gradient of the cost function is avoided. The
orward model class  in Section 2.3 now represents the architecture
f the BNN, and 𝜃 = {𝑤, 𝑏}. As specified in Section 1, gradient
valuation is a common task in most training algorithms of Bayesian
eural networks where the parameters 𝜃 are updated using the gradient
f the cost function ∇𝜃𝐶(𝜃). Instead, ABC-SS pursues obtaining the
osterior distribution function of the parameters 𝜃 through statistical
imulation, so that the most plausible values of 𝜃, which better explain
he observed data 𝑦, are obtained under a specified tolerance value
chosen by the user. The capabilities of this training algorithm are

llustrated in this section with two low complexity problems. These
xamples, with scaled architectures, allow us to graphically appreciate
he learning process and the mechanisms of BNN by ABC-SS to capture
oth the aleatory and epistemic uncertainty.

.1. Proposed methodology

The method starts by generating 𝑁 random samples of parameters
= {𝑤, 𝑏} from the prior PDF 𝑝(𝜃) defined by the user, which are

subsequently used to run a forward pass and obtain 𝑁 outputs 𝑦̂(𝜃).
he resulting 𝑁 simulated pairs {𝜃, 𝑦̂(𝜃)} form the preliminary subset
0 and they are distributed as 𝑝

(

(𝜃, 𝑦̂)0|0
)

. At this stage, the metric
(𝜂(𝑦̂), 𝜂(𝑦)) is evaluated for each sample {𝜃, 𝑦̂(𝜃)} ∈ 0 and an amount
f 𝑁𝑃0 of those with the lowest metric value 𝜌 are selected as seeds
f the next subset 1. These seeds are distributed as 𝑝

(

(𝜃, 𝑦̂)1|1
)

and
re used to: (1) automatically fix the tolerance value 𝜖1, as the highest
etric value 𝜌(⋅) among the seeds; (2) obtain (1∕𝑃0 − 1) new samples
rom each seed within the region 1, until the total population in 1

4

Fig. 2. Conceptual scheme of the main steps of the BNN by ABC-SS method. The steps
corresponding to the while-loop option are depicted using dashed-blue line.

reaches 𝑁 samples. The generation of samples is done by the Modified
Metropolis Algorithm (MMA) (Au and Beck, 2001; Zuev et al., 2012),
ensuring that the new samples generated from the seeds lie within 1,
which is done by verifying that 𝜌(⋅) ⩽ 𝜖1. The method is repeated until
the final subset , associated to the desired tolerance 𝜖, is achieved,
whereby the final approximate posterior 𝑝 ((𝜃, 𝑦̂)|) is defined. Note
that the final subset  constitute a set of 𝑁 parameter configurations
𝜃(1) , 𝜃(2) ,… , 𝜃(𝑛) ,… , 𝜃(𝑁)

 , whose predicted outputs 𝑦̂(𝜃(𝑛) ) lie within a
tolerance 𝜖, under the metric 𝜌(⋅), given the data . The distribution
of parameters in the final subset constitute the marginalized posterior
𝑝𝜖(𝜃|𝑦) whose information is used to produce robust predictions and
quantify their uncertainty. A conceptual scheme is provided in Fig. 2 to
help understanding the BNN by ABC-SS method. Besides, a pseudo-code
implementation of the BNN by ABC-SS method is provided in Algorithm
1.

Note that a slightly different version from the one provided in
Algorithm 1 can be obtained by changing the for loop (step 16) by
a while loop, so instead of specifying the number of simulations levels
to be carried out, the algorithm performs as many simulations levels as
needed to reach the desired tolerance value 𝜖, which should be specified
within the inputs to the algorithm. Also, to ease the reproducibility
of the pseudo-code, it should be noted that a matrix 𝑀 can be used

to store the 𝑁 sets of parameters and their corresponding metrics
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values 𝜌(⋅) for each 𝑗𝑡ℎ simulation level. This matrix is further updated
hroughout Algorithm 1 in steps 11–14, 22, 23, 32, 35 and 40. Thus,
uch matrix can be rearranged in ascending order of the metric 𝜌, step

17, and the seeds may be easily selected, step 22. Parameters 𝑤 and
are extracted from the matrix 𝑀 and appropriately rearranged to

undertake a forward pass, step 29.
Finally, the authors remark the care needed for the selection of the

algorithm hyper-parameters 𝑁 , 𝑃0 along with the standard deviation 𝜎𝑗
in the proposal PDF of the MMA at every region 𝑗 . Recommendations
for the selection of those values can be found in Chiachio et al. (2014),
while some advances in the scaling of the Subset Simulation algorithm
is covered in Zuev et al. (2012).

Algorithm 1 BNN by ABC-SS
1: Inputs:
2: FNN architecture and activation functions
3: 𝑃0 ∈ [0, 1]
4: 𝓁 {number of simulation levels}
5: 𝑁 {samples per simulation level}
6: 𝜌() {metric/cost function, such as MSE}
7: 𝜂() {summary statistic, such as median}
8: 𝜎0 ← (𝓁 + 1)0.1
9: Begin:

10: for 𝑛 ∶ 1, ..., 𝑁 do
11: Sample initial parameters 𝜃(𝑛)0 , where 𝜃0 includes all weights 𝑤

and bias 𝑏 of the BNN, from priors 𝑝(𝑤) and 𝑝(𝑏), such as  (0, 𝐼)

12: 𝑦̂(𝑛)0 ← Use Equation (1) to run a forward pass with parameters
𝜃(𝑛)0 and input 𝑥 from D

13: 𝜌(𝑛)0 ← 𝜌(𝜂(𝑦̂(𝑛)0 ), 𝜂(𝑦))
14: Set 𝑀 = {𝜃(𝑛)0 , 𝑦̂(𝑛)0 , 𝜌(𝑛)0 }𝑁𝑛=1
15: end for
16: for 𝑗 ∶ 1, ...,𝓁 do
17: Renumber [𝜃(𝑛)𝑗−1, 𝑛 ∶ 1,… , 𝑁] so that 𝜌(1)𝑗−1 ⩽ … ⩽ 𝜌(𝑛)𝑗−1 ⩽ … ⩽ 𝜌(𝑁)

𝑗−1

18: 𝜖𝑗 ← 𝜌𝑁𝑃0
𝑗−1

19: 𝜎𝑗 ← 𝜎0 − 0.1𝓁 {proposed standard deviation decreases in each
simulation level}

20: 𝐶 ← 1 {set counter to 1}
21: for 𝑖 ∶ 1,… , 𝑁𝑃0 do
22: 𝜃(𝑖)𝑗 ← 𝜃(𝑖)𝑗−1 {select seeds}
23: 𝜌(𝑖)𝑗 ← 𝜌(𝑖)𝑗−1
24: end for
25: for 𝑘 ∶ 1,… , 𝑁𝑃0 do
26: 𝜇 ← 𝜃(𝑘)𝑗
27: for 𝑖 ∶ 1,… , (1∕𝑃0 ) − 1 do
28: 𝜃∗ ∼  (𝜇, 𝜎𝑗 )
29: 𝑦̂∗ ← Use Equation (1) to run a forward pass with parameters

𝜃∗

30: 𝜌∗ ← 𝜌(𝜂(𝑦̂∗), 𝜂(𝑦))
31: if 𝜌∗ ⩽ 𝜖𝑗 then
32: 𝜃(𝑁𝑃0+𝐶)

𝑗 ← 𝜃∗, and 𝜌(𝑁𝑃0+𝐶)
𝑗 ← 𝜌∗

33: 𝜇 ← 𝜃∗

34: else
35: 𝜃(𝑁𝑃0+𝐶)

𝑗 ← 𝜃𝑘𝑗 , and 𝜌(𝑁𝑃0+𝐶)
𝑗 ← 𝜌𝑘𝑗

36: end if
37: 𝐶 ← 𝐶 + 1
38: end for
39: end for
40: Update 𝑀 as 𝑀 = {𝜃(𝑛)𝑗 , 𝑦̂(𝑛)𝑗 , 𝜌(𝑛)𝑗 }𝑁𝑛=1
41: end for
5

Fig. 3. BNN by ABC-SS (panel a) and Batch Gradient Descent (panel b), Illustrative
Problem 1. Black crosses are training samples, dark red lines are median predictions,
light red lines are intermediate levels median predictions, dark grey region is the
interquantile range (IQR) of predictions, and the light grey region is the range between
percentile 5 and 95 of predictions, also known as the uncertainty band.

3.2. Illustrative problem 1

Training data for the first illustrative problem is generated from the
cosenoidal function 𝑦 = cos(𝑥) + 𝜁 , where 𝜁 ∼  (0, 0.1) simulates some
noise in the observed data 𝑦. The domain of the training inputs 𝑥 is
niformly distributed over the interval [−3,3]. The training data set

comprises a single batch of 200 samples with no preprocessing. The
architecture of the BNN consists of one input layer with one neuron,
one hidden layer with two neurons and an output layer with one
neuron. The activation function used for both the hidden and output
layers is the hyperbolic tangent, as this function fits particularly well
the training data. The hyper-parameters chosen are: 𝑃0 = 0.2, 𝑁 =
000 and 𝓁 = 6. Mean Squared Error (MSE) has been used as the cost
unction, or metric 𝜌 in the ABC-SS language. The same training data
as been used to fit a conventional FNN with the same architecture,
nd trained with a batch gradient descent algorithm (learning rate (𝑙𝑟)
0.001 and 𝑒𝑝𝑜𝑐ℎ𝑠 = 10000), for reference purposes.
As can be seen in Fig. 3, both algorithms have obtained similar

redictions, however, BNN by ABC-SS consistently reached similar
utcomes while those from the FNN, trained with ordinary gradient
escent, experience more variability between different runs of the
lgorithm. This suggests that BBN by ABC-SS is robust regardless the
nitialization of the parameters. In addition, BNN by ABC-SS provides
n accurate quantification of the uncertainty in its predictions, repre-
enting the degree of belief in light of data. This output uncertainty is
btained by simulating the model considering the posterior distribution
f the weight parameters learnt by the BNN, as shown in Fig. 4. Of
pecial interest is Fig. 4(a), as it provides us with the posterior PDF of
arameter 𝑤(1)

1,1, without being constrained by any hypothesis about the
amily of functions it may belong to. Light red lines in Fig. 3(a) shows
he learning process throughout the intermediate simulation levels.
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Fig. 4. BNN by ABC-SS, illustration of the uncertainty about the trained parameters
panel a) and predictions (panel b), Illustrative Problem 1.

.3. Illustrative problem 2

A second illustrative example is provided to show a more complex
rchitecture, which is able to better capture the uncertainty in its
arameters and predictions. In this case, the training data  = (𝑥, 𝑦)

is generated from the sinusoidal function 𝑦 = 10 sin(2𝜋𝑥) + 𝜁 with
𝜁 ∼  (0, 0.1). The training data set comprises 100 samples with 𝑥 ∈
[−0.5, 0.5]. The proposed architecture consists of one input layer with
one neuron, two hidden layers with 15 neurons each, and one output
layer with one neuron, making a total of 286 parameters to be learned.
A ReLU activation function is assigned to the neurons of the hidden
layers, while a linear function, 𝑓 (𝑥) = 𝑥, is applied to the neuron in
the output layer. Similarly to the first illustrative problem, the hyper-
parameters chosen are: 𝑃0 = 0.1, 𝑁 = 20000 and 𝓁 = 8. Again, the MSE
function has been used as the cost function.

As shown in Figs. 5(a) and 6(b), the quantified uncertainty within
the input domain of the training data is relatively small and propor-
tional to the noise introduced by 𝜁 , which can be classified as aleatory.
However, as we exit the domain of the training data the epistemic
uncertainty comes into play and grows as we move further away from
the training data. This can be interpreted as a mechanism to express its
lack of confidence when making predictions about regions of data it has
not seen before. In contrast, a conventional neural network, Fig. 5(b),
is equally confident both inside and outside the domain of the training
data.

Regarding the posterior PDF of the parameters, Fig. 6(a) shows a
more complex function, which varies between different runs of the BNN
by ABC-SS algorithm. This confirms that, given a tolerance value 𝜖,
the number and diversity of valid sets of parameters 𝜃 = {𝑤, 𝑏} ∈
𝛩 ⊆ R𝑑 , under tolerance 𝜖, increases with the dimension 𝑑 of the
parameter space. Fig. 6(a) also shows a statistical correlation in the
weights which is taken into account by the proposed algorithm when
making predictions.

4. Engineering case study - fatigue damage in composite materials

The proposed BNN by ABC-SS has been applied to a real case study
using experimental damage data from composite materials fracture
experiments. The complex nature of this problem and the uncertainty
about the potential damage modes constitute a significant challenge for
physics-only based models, but at the same time create opportunities
for data-driven models to demonstrate they can be a real alternative.
The experimental framework is presented in this section, including a
description of the composite materials case study in Section 4.1, the
baseline algorithms used for comparison purposes in Section 4.2 and
the metrics chosen to evaluate the performance of the algorithms in
6

Fig. 5. BNNs by ABC-SS (panel a) and Batch Gradient Descent (panel b), Illustrative
Problem 2. Black crosses are training samples, dark red lines are median predictions,
dark grey region is the interquantile range (IQR) of predictions, and light grey region
is the range between percentile 5 and 95 of predictions, also known as the uncertainty
band.

Section 4.3. The application of BNN by ABC-SS to the case study along
with a discussion on the results and the potential implications to the
engineering field and structural health monitoring systems is given
in Section 4.4. The same data has been used to train another three
BNN, namely Variational Inference (VI) or more specifically Bayes by
Backprop (BBP), Probabilistic Backpropagation (PBP) and Hamiltonian
Monte Carlo (HMC), and a comparison with BNN by ABC-SS has been
carried in Section 4.5.

4.1. Description of the engineering case study - fatigue damage in composite
materials

The performance of the BNN by ABC-SS is investigated using ex-
perimental data about fatigue damage in carbon fibre composite ma-
terials. These are high performance heterogeneous materials with very
high strength-to-weight ratios extensively used in the aerospace and
wind energy industries, among others. Damage in composites typically
comprises several families of internal fractures (both intralaminar and
interlaminar cracks (Talreja, 2008)) which result in changes in the
macro-scale mechanical properties of the material. The temporal evolu-
tion and propagation of these damage modes is a complex and partially
unknown process subject to much uncertainty (Chiachío et al., 2015).
In this particular case study, the data consist of sequences of both in-
tralaminar micro-cracks density and stiffness reduction measurements
for three different laminates with the same cross-ply (

[

02∕904
]

𝑠) layup.
The data used are taken from the NASA Ames Prognostics Data Repos-
itory (CFRP Composites Dataset) (Saxena et al., 2008) and correspond
to the laminates TD19, TD21 and TD22. This monitoring data were
collected from a network of 12 piezoelectric (PZT) sensors using Lamb
wave signals and three triaxial strain-gages (Larrosa Wilson and Chang,
2012). For this study the dataset is designated as (𝑥, 𝑦1, 𝑦2), which
comprises loading cycles as inputs 𝑥 and micro-cracks density and
stiffness reduction as observed outputs 𝑦1 and 𝑦2, respectively. Thus,
the BNN by ABC-SS method is used to predict two different outputs 𝑦
1
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Fig. 6. Illustration of the uncertainty about the trained parameters (panel a), and
predictions made by the BNN trained with ABC-SS (panel b) both within and outside
the domain of the training data set, Illustrative Problem 2. Figure (b) clearly shows
greater uncertainty in those predictions made outside the domain of the training data.

and 𝑦2 from one single input 𝑥. It should be noted that some stiffness
easurements are missing for the last loading cycles of the test so

hey have been synthetically generated to complete the data. Also, the
raining data set has been normalized to take values in the range [0, 1].
or the comparison exercise, the different BNN are asked to predict the
icro-crack density (𝑦1) given the loading cycles 𝑥 as inputs.

.2. Baseline algorithms

The baseline architecture used in the comparison exercise by the dif-
erent algorithms comprises one input layer with one neuron (loading
ycles), two hidden layers with 5 neurons each, and one output layer
ith one neuron (micro-cracks density). The activation functions are
eLU for the hidden layers and linear for the output layer. The rest of

he hyperparameters have been chosen individually for each algorithm
s follows:

• BNN by ABC-SS: A BNN trained with Algorithm 1, adapted with a
while loop and 𝜎𝑗 = 𝜎0𝑝 as per Section 3. Two different archi-
tectures are used, the baseline architecture for the comparison
in Section 4.5, and a modified version with two output neurons
to test the performance of BNN by ABC-SS when providing het-
erogeneous outputs, micro-cracks density and stiffness reduction,
in Section 4.4. The hyper-parameters chosen are 𝑃0 = 0.1, 𝑁 =
100,000, 𝜎0 = 0.75, 𝑝 = 0.58 and tolerance value 𝜖 = 0.012 (𝜖 =
0.007 is used in the comparison exercise).

• Variational Inference, Bayes by Backprop (BBP) (Blundell et al.,
2015): A BNN with the baseline architecture, trained with an open
7

source algorithm1 implemented in Keras (Chollet et al., 2015).
The hyperparameters have been chosen based on those found in
the original code and slightly adjusted to suit the training data,
including a scale mixture prior 𝑃 (𝜃) of two Gaussian densities
with 𝜎1 = 1.5, 𝜎2 = 0.1, 𝜋 = 0.5, Adam optimizer (Kingma and Ba,
2015), 𝑙𝑟 = 0.001 and 𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 000. The same BNN has also
been trained with LeakyReLU (Maas et al., 2013) as the activation
function in the hidden layers.

• Probabilistic Backpropagation (PBP)
(Hernandez-Lobato and Adams, 2015): A BNN with the baseline
architecture, trained with the open source algorithm2 provided in
Hernandez-Lobato and Adams (2015). The only hyperparameter
to be adjusted is the number of epochs, which has been chosen
based on the regression task found in the original code, 𝑒𝑝𝑜𝑐ℎ𝑠 =
30.

• Hamiltonian Monte Carlo (HMC) (Betancourt, 2017): A BNN with
the baseline architecture, trained with hamiltorch.3 The hyperpa-
rameters have been chosen based on those found in the regression
task of the original code and Benker et al. (2020) as follows;
step size 𝜀 = 0.001, leapfrog steps 𝐿 = 10, prior 𝑝(𝜃) a Gaussian
with prior precision for the parameters 𝜏 = 1, likelihood output
precision 𝜏𝑜𝑢𝑡 = 100 and 500 samples where 250 are burned
(not included during inference or to evaluate the metric). The
same BNN has also been trained with LeakyReLU as the activation
function in the hidden layers.

4.3. Performance metric

The performance of BNN by ABC-SS is evaluated using the full load-
ing cycle from the first sensor in TD19 as test data, and in two different
ways. First, by its ability to simultaneously predict two heterogeneous
output values (micro-crack density and stiffness reduction) from one
single input (loading cycles), while quantifying the uncertainty in the
predictions for each of the outputs individually. The mean squared
error (MSE) is used as the metric, and the capacity to quantify the
uncertainty is graphically assessed by its Inter Quantile Range (IQR).
Second, a comparison with BBP, PBP and HMC is undertaken by run-
ning the different algorithms 50 times independently and calculating
their MSE in each of the runs. The performance of the algorithms
throughout the 50 runs, shown in Fig. 9, Fig. 10, Fig. 7(a) and Table 1,
is expressed in the following terms: precision, measured by the median
and the maximum and minimum MSE; variability, measured by the
quartiles (Q1 and Q3), IQR and the lower/upper whiskers; stability,
measured by the number of outliers; computation time (Intel® Core™
i7-10510U CPU @ 1.80 GHz (8 Threads) ∼2.3 GHz, 8 GB RAM); and the
capacity of the algorithms to quantify the uncertainty, evaluated graph-
ically by the ability of the uncertainty band to capture the variability
observed in the data.

4.4. Application of BNN by ABC-SS to fatigue in composite materials

As shown in Fig. 7, the proposed BNN methodology has shown
accuracy and efficiency in simultaneously representing the evolution
of different damage features of CFRP composites while accounting
for the uncertainty associated to the different outputs, namely micro-
cracks density and stiffness reduction. This is a relevant practical result
given the complexity to accurately reproduce the damage evolution
in composites using physics-based models (Talreja, 2008). The pre-
sented modelling exercise is based on experimental damage data taken
under laboratory-controlled conditions yet showing high variability.
This translates into high modelling uncertainty that will significantly

1 https://github.com/krasserm/bayesian-machine-learning - Variational In-
erence in Bayesian Neural Networks.

2 https://github.com/HIPS/Probabilistic-Backpropagation.
3 https://github.com/AdamCobb/hamiltorch

https://github.com/krasserm/bayesian-machine-learning
https://github.com/HIPS/Probabilistic-Backpropagation
https://github.com/AdamCobb/hamiltorch
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Table 1
Comparison between BNN by ABC-SS, Variational Inference (VI) with Bayes by Backprop, Hamiltonian Monte Carlo (HMC) and Probabilistic Backpropagation (PBP). Each of the
lgorithms have been run 50 times independently and the results, expressed in terms of MSE, are summarized in this table.
Statistics of MSE obtained in 50 independent runs of the training algorithm

Q1 (𝑃25) Median (𝑃50) Q3 (𝑃75) IQR (Q3-Q1) Lower Whisker Upper Whisker Absolute Min-Max Outliers Comput. Time

BNN by ABC-SS 0.0057 0.0060 0.0062 0.0005 0.0052 0.0068 0.0052-0.0068 0 144s
VI ReLU 0.0307 0.0317 0.0394 0.0087 0.0302 0.0449 0.0114–0.1159 21 315s
VI LeakyReLU 0.0089 0.0162 0.0168 0.0079 0.0081 0.0179 0.0081–0.0309 2 324s
HMC ReLU 0.0054 0.0069 0.0158 0.0104 0.0046 0.0291 0.0046–0.1148 6 48s
HMC LeakyReLU 0.0052 0.0060 0.0076 0.0024 0.0048 0.0087 0.0048–0.0564 4 52s
PBP 0.0049 0.0052 0.0055 0.0006 0.0041 0.0064 0.0041-0.0187 3 44s
increase under real-life conditions, making the adoption of determinis-
tic physics-based models unfeasible (Sriramula and Chryssanthopoulos,
2009). Failing to account this uncertainty results in high safety fac-
tors, which undermines the high utilization potential of composites in
material-extensive industries such as civil engineering, among others.
In fact, a BNN model such as the proposed here can be useful for
on-board structural health monitoring systems where damage data
is collected in a sequential manner and predictions with quantified
uncertainty can be made during operation using incomplete data. If
a large enough amount of data has been collected up to a particular
time then predictions consistent with the future damage evolution can
be made, as shown in Fig. 8. It should be noted that this predictive
capability will entirely depend on whether the BNN has learnt enough
from the collected data, which in turn will depend on whether or not
the damage process has reached an almost stationary stage (as shown
in the experimental dataset during the last 70% of the process).

As a remark, nowadays physics-based models have proved efficiency
and predictability only in low-scale structures and highly controlled
environments. Furthermore, they are deterministic and do not consider
the uncertainty inherent in fatigue damage of composite materials,
even in laboratory conditions. The proposed data-driven method allows
for the scalability to complex structures and environments, while the
uncertainty in the observed data is quantified. Therefore, BNN by ABC-
SS has the potential to create new opportunities for the application of
prognosis and health management systems to real life scenarios.

4.5. Comparison with the state-of-the-art BNN

To further explore the potential and limitations of the proposed
method for BNN inference, a comparative assessment is carried out here
using the composites dataset presented in Section 4.1. In particular,
the results were compared with those obtained using the Variational
Inference (VI) method, more specifically Bayes by Backprop (BBP)
with Keras (Chollet et al., 2015), Hamiltonian Monte carlo (HMC) and
Probabilistic Backpropagation (PBP). The architecture selected for the
chosen BNN has been presented in Section 4.2. Fig. 9 provides a box
plot of the MSE obtained after training each BNN 50 times indepen-
dently, and the numerical values are shown in Table 1. In terms of
precision, PBP provides the most accurate predictions although closely
followed by the proposed BNN by ABC-SS and HMC. However, BNN
by ABC-SS has achieved the lowest IQR value, which translates into
reliability thanks to the low variability of its predictions in different
independent runs of the algorithm. BNN by ABC-SS has demonstrated
high stability, which is measured by the number of outliers. It is
presumed that such outliers, present in the other BNN, may be caused
by the saturation of some neurons, meaning that their gradient falls to
0, or the so called Dying ReLU effect (Lu, 2020). When this phenomenon
happens and the training algorithm is based on backpropagation, as is
the case with VI(BBP), HMC and PBP, the learning process is affected
and the weights stop updating. This may be overcome using different
activation functions such as Leaky-ReLU, which, as observed in Fig. 9
and Table 1, outperforms ReLU in terms of MSE and the number of
outliers. The capability of the different BNN to quantify the uncertainty,
or the degree of belief on the predictions, is graphically assessed and
8

Fig. 7. Real Case Study, BNN by ABC-SS trained with data set from NASA. Black
crosses are training samples, dark red lines are median predictions, dark grey region is
the interquantile range (IQR) of predictions, and light grey region is the range between
percentile 5 and 95 of predictions, also known as the uncertainty band.

illustrated in Figs. 10 and 7(a). There is a significant number of micro-
crack density measurements (black crosses) with high variability for
each loading cycle, which translates in high uncertainty in the training
data. As it can be seen, most of the those training points fall within the
uncertainty band of BNN by ABC-SS, resulting in a more flexible and
realistic representation of the actual uncertainty inherent in the data.
In terms of computation time, PBP and HMC have proved to be the
fastest algorithms, in line with Hernandez-Lobato and Adams (2015).
While BNN by ABC-SS seems to demand a longer computation time,
it also needs to be noted that the proposed algorithm has been im-
plemented in Python (Van Rossum and Drake Jr., 1995) without using
optimized libraries, unlike HMC and PBP which are implemented in
Pytorch (Paszke et al., 2019) and Theano (Theano Development Team,
2007) respectively. It is presumed that the computation time of BNN
by ABC-SS may be improved by using libraries based on graphs like
Tensorflow (Abadi et al., 2015), and possibly with parallel computation,
remaining both options as a potential continuation of this research.

By looking at the results obtained, it could be concluded that
BNN by ABC-SS provides accurate predictions, comparable to those
from PBP and HMC, along with low variability and high stability in

different runs of the algorithm, presumably due to its gradient-free
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Fig. 8. Real Case Study with data set from NASA. BNN by ABC-SS. Black crosses are
training samples, dark green crosses represent unseen data, dark red lines are median
predictions, dark grey region is the interquantile range (IQR) of predictions, and light
grey region is the range between percentile 5 and 95 of predictions, also known as the
uncertainty band. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 9. Analysis of the MSE achieved in 50 independent simulations of BNN by ABC-SS
(ReLU) and Variational Inference with Bayes by Backprop (ReLU and LeakyReLU). The
MSE achieved with each neural network throughout the 50 simulations is represented
by their minimum, first quartile, median, third quartile, maximum and outliers.

nature, which denotes reliability. And more importantly, BNN by ABC-
SS complements its predictions with a fairer representation of the
uncertainty, which provides valuable information for the subsequent
decision making process. It is therefore this robustness and capability
to accurately quantify the uncertainty that could make the proposed
algorithm more suitable for the task in hand than other state-of-the-art
BNN, given the high variability and uncertainty inherent in fatigue data
from composite materials.

5. Discussion

One of the key challenges of machine learning algorithms is to
make predictions about unobserved data, based on a model learnt from
a set of limited training data. This learning process has an inherent
uncertainty, which needs to be quantified in order to evaluate the
9

Fig. 10. Illustrative comparison between different BNN on uncertainty quantification.
Black crosses are training samples, dark red lines are median predictions, dark grey
region is the interquantile range (IQR) of predictions, and light grey region is the range
between percentile 5 and 95 of predictions, also known as the uncertainty band. For
Probabilistic Backpropagation the uncertainty is expressed as ±3 standard deviations
from the mean, as per the original paper (Hernandez-Lobato and Adams, 2015). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

degree of belief on the model predictions. The proposed BNN by ABC-
SS has demonstrated efficiency and flexibility in extracting uncertain
(plausible) knowledge from data by inferring non-parametric posterior
PDFs of the parameters 𝑝 (𝜃|) and likelihood function 𝑃

(

𝑦̂ ∈ 𝜖(𝑦)|𝜃
)

.
This uncertainty quantified by the proposed algorithm, can be inter-
preted as aleatory when it comes from within the domain of the training
data, and originates in the variability of the observed data. Outside that
domain, the uncertainty is regarded as epistemic, given that in machine
learning lack of data translates into lack of knowledge.

As opposed to other learning methods for BNN, these non-
parametric posterior PDFs enable a much richer and flexible uncer-
tainty quantification and therefore a better idealization of the reality
given by the data, as shown in Figs. 7 and 10. BNN by ABC-SS
allows data to ‘‘speak for themselves’’ with no restrictions, which
translates into such increased flexibility without making the model
more complex (Ghahramani, 2015). In view of Fig. 6(a), the adoption of
a predefined probability model for the weights and bias (i.e. a Gaussian
model) could well be defined as a rigid uncertainty quantification,
leading to a constrained representation of the reality. Moreover, BNN
by ABC-SS has consistently reached a similar outcome in each run
of the algorithm regardless of the initialization of the parameters,
which suggests robustness. It is presumed that such robustness is
also due to the gradient-free nature of the algorithm, as explained in
Section 4.5. The scalability analysis of BNN by ABC-SS to deal with
high-dimensional parameters, in the order of thousands or millions, is
out of the scope of this work, and constitutes the natural continuation
of the present research.

6. Conclusions

Modern ANN provide us with very accurate predictions, however,
when these are used in a decision-making context, the quantification
of the prediction uncertainty gains importance. It forms the basis to
define the degree of belief on those predictions and helps us to decide
how we make use of them. Many state-of-the-art Bayesian training
algorithms use rigid parametric PDFs for the likelihood function and/or
the weights and bias, such as a Gaussian PDF defined by their mean

and standard deviation, which limits their capacity to represent the
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uncertainty in the observed data. Moreover, they are often subject to
the drawbacks of gradient descent and backpropagation.

A novel training method for Bayesian Neural Networks has been
developed in this paper using the Approximate Bayesian Computation
combined with Subset Simulation as inference engine. The resulting
methodology, named here as BNN by ABC-SS, has been illustrated using
two academic examples and applied to an engineering case study based
on damage data in composite structures. The results have revealed that
the non-parametric formulation of the likelihood function and the PDF
of the weights provides a realistic uncertainty quantification according
to the training data. Besides, through comparison with the VI method,
HMC and PBP, BNN by ABC-SS showed more stability when making
redictions, presumably due to absence of gradient. Particularly for
he composite fatigue damage case study, the proposed data-driven
ethodology can be seen as an alternative to purely physics-based
odels which fail at quantifying the real amount of uncertainty of this
rocess.

This new training algorithm could become specially useful when
pplied to problems where a decision is significantly dependent on
he amount of uncertainty (Ghahramani, 2015). The scalability of the
roposed method to train deep neural networks, with high-dimensional
arameter spaces and large training data sets, could further extend the
ange of potential applications of this methodology, and establishes a
atural continuation to this line of research.
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