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ABSTRACT The Radio Access Network (RAN) slice planning is a key phase within the RAN slice
management and orchestration process. Based on the performance requirements of requested RAN slices and
key performance indicators of the RAN and existing RAN slices, the RAN slice planning mainly consists of
deciding (a) the feasibility of deploying new RAN slices; (b) re-configuring the existing RAN accordingly;
and (c) the need to renegotiate the Service Level Agreements (SLAs) and/or expand the RAN (i.e., radio
resources, carriers, cells etc) if one or more RAN slices cannot be accommodated in a first attempt. Under
this context, we propose a framework for planning RAN slices which require their data sessions get a
Guaranteed Bit Rate (GBR) and the probability of blocking such sessions is below a threshold. To meet such
requirements, our framework plans the amount of prioritized radio resources for new and already deployed
RAN slices. We formulate the RAN slice planning as multiple ordinal potential games and demonstrate the
existence of a Nash Equilibrium solution which minimizes the average probability of blocking data sessions
for all the RAN slices. We perform detailed simulations to demonstrate the effectiveness of the proposed
solution in terms of performance, and renegotiation capability.

INDEX TERMS Blocking probability, game theory, GBR services, radio resource allocation, RAN slicing
planning.

I. INTRODUCTION
Radio Access Network (RAN) slicing is one of the key
technologies for 5th generation (5G) mobile networks [1].
It consists of providing logically separated RANs, denom-
inated RAN slices, each tailored to the requirements of a
specific communication service over a common infrastruc-
ture. The 3rd Generation Partnership Project (3GPP) has
identified four phases for the lifecycle management of a RAN
slice: preparation, commissioning, operation and decommis-
sioning [2]. In the preparation phase, the Mobile Network
Operator (MNO) performs: the design and capacity planning
of incoming RAN slices; the network environment prepa-
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ration; and the on-boarding and evaluation of RAN slice’s
constituents for testing purposes.

In this paper we focus on the RAN slice planning, which
is a procedure within the preparation phase [3]. This pro-
cedure takes as inputs (i) the performance requirements of
one or more requested RAN slices and (ii) statistics of
key performance indicators of the RAN and the already
activated RAN slices. Based on these inputs, the RAN
slice planning aims to decide in advance: (a) the fea-
sibility of deploying the requested RAN slices; (b) the
adequate parameter configuration of the RAN to accom-
modate their spatio-temporal traffic demands; and (c) the
need to renegotiate the Service Level Agreement (SLA)
and/or expand the RAN (i.e., radio resources, carriers, cells
etc) if the RAN slices cannot be accommodated in a first
attempt.
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In practice, two or more RAN slices may coexist in time.
In such case, the MNO could benefit from a joint planning
of these RAN slices (e.g., optimizing the resource utiliza-
tion). For this reason, since the MNO receives the RAN slice
requests in advance, we assume the RAN slice planning can
be executed in multiple time windows, and for each window,
it may processmore than one RAN slice request. The duration
of the time window mainly depends on how frequently the
MNO receives RAN slice requests, e.g., from several hours,
to several days, or even weeks.

Although the RAN slice planning is necessary for the
RAN slice management and orchestration, it has barely been
researched in the literature. There exist solutions which
address the cell planning [4], [5] and spectrum sharing strate-
gies [6], [7]. Specifically, they mainly focus on the deploy-
ment of the RAN infrastructure, in greenfield scenarios, con-
sidering RAN slicing. However, it differs from the RAN slice
planning, where the existing RAN infrastructure and RAN
slices impose constraints on planning the requested RAN
slices. Recently, the authors of [8] have proposed a solu-
tion to reserve infrastructure resources throughout different
planning windows to multiple network slices. Despite their
valuable contribution, they omit the radio channel model and
how it impacts the translation from the RAN slice require-
ments into the amount of radio resource which meet such
requirements.

Instead of RAN slice planning, most of the state-of-the-
art proposals focus on a slightly different procedure known
as admission control. In this problem, the MNO typically
processes one-by-one RAN slice requests for immediate
deployment. Then, for each request, the MNO verifies the
feasibility of deploying the corresponding RAN slice under
the current traffic conditions. If feasible, the RAN slice is
immediately deployed. Otherwise, the RAN slice is rejected
without considering any SLA renegotiation and/or expansion
of the RAN infrastructure to accommodate it.

Representative solutions for the admission control are [9],
[10], [11], [12], where the authors propose mechanisms to
allocate radio resources to the requested RAN slices. These
solutions mainly focus on the system dynamics (i.e., dynamic
admission and rejection of several RAN slices) throughout
the time, e.g., by analyzing the rate of rejected RAN slices,
resource utilization, etc. However, these solutions cannot
be applied for planning RAN slices because they do not
permit SLA renegotiation and/or network expansion. Addi-
tionally, although some solutions, e.g., [10], [12], consider
the MNO can simultaneously process more than one RAN
slice request, they are not valid for planning because they
omit how the channel effects impact the translation from
performance requirements into radio resources. Finally, some
of these solutions do not consider the expected data session
creation/release of each requested RAN slice.

In this paper, we propose a mathematical framework,
denominated RAN Slice Planner, to plan in advance
requested RAN slices over an existing RAN infrastructure.
We consider each individual RAN slice demands the follow-

ing requirements: (a) eachUser Equipment (UE) sessionmust
get the Guaranteed Bit Rate (GBR) specified in the SLA; and
(b) the probability of blocking a UE session must be below
a threshold. Based on such requirements, the RAN Slice
Planner decides the adequate parameter configuration of the
RAN. Particularly, our framework establishes the minimum
amount of prioritized radio resources1 which will meet such
requirements for the busy hour. Hereinafter, we refer to the
amount of prioritized radio resources per RAN slice in each
cell as radio resource quota. Under this context, the specific
contributions of this paper are:

• We provide a step-by-step description about (a) the
stages and the key aspects that the MNO must consider
to plan multiple RAN slices, and (b) the integration of
the RAN slice planning within the well-known 3GPP-
based RAN slicing management framework.

• We formulate the RAN slice planning problem as the
establishment of radio resource quotas while the aver-
age UE blocking probability for all the RAN slices is
minimized. It is a combinatorial and non-convex prob-
lem with at least NP-hard complexity. For this rea-
son, we adopt game theory to find a local optimum,
i.e., a Nash Equilibrium (NE) solution [13]. Specifi-
cally, we model our problem as multiple ordinal poten-
tial games and design novel strategies based on better
response dynamics to solve it.

• We illustrate the benefits of the RAN Slice Planner in
an scenario with resource scarcity. Particularly, we show
how our solution performs SLA renegotiation to accom-
modate all the requested RAN slices over an existing
RAN infrastructure.

The remainder of this paper is organized as follows. Sec-
tion II provides the related works. Section III sheds light on
the RAN slice planning under the 3GPP RAN slice man-
agement framework. Section IV describes the system model.
In Section V, we formulate our problem as multiple ordinal
potential games. Section VI describes the proposed strate-
gies for RAN slicing planning. Section VII evaluates the
performance and the renegotiation capability of our solution.
Finally, Section VIII summarizes the conclusions and pro-
vides some outlooks for future work.

II. RELATED WORKS
Most of the state-of-the-art proposals which study the feasi-
bility of deploying RAN slices focus on the admission control
problem. Examples can be found in [14], [9], [15], [10], [16],
[11], and [12]. In suchworks, the authors typically assume the
MNO receives requests for deploying RAN slices following a
Poisson distribution. They assume an exponential distribution
for the lifetime of each RAN slice. Furthermore, for each
individual RAN slice, they typically consider a fixed amount

1Prioritized radio resources are those which are guaranteed for a single
RAN slice (e.g., slice A), but they may be used by other RAN slices (e.g.,
slices B and C) if the corresponding RAN slice (i.e., slice A) do not need
them at any time.
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FIGURE 1. Description of the steps performed in the RAN slice planning. Note that the described inputs and outputs are adapted to RAN slices with GBR
requirements.

of UEs consuming GBR services. Based on these assump-
tions, the authors model the system by queueing theory-based
models and/or Markov chains. Then, they use these models to
analyze the performance of the admission control, i.e., rate of
rejected RAN slices, resource utilization, etc.

Despite their valuable contributions, the existing solu-
tions on admission control present some limitations
which prevent the MNO to use them as planning tools.
In [9], [15], [10], [16], [11], and [12], the proposed solutions
assume that unfeasible RAN slice requests are immedi-
ately rejected instead of executing SLA renegotiation and/or
network expansion procedures. Other works as [10], [16],
and [12] consider the admission control can simultaneously
process more than one RAN slice request in a planning win-
dow.However, these solutions consider a generic definition of
resource instead of radio resource. This means these solutions
do not consider how the channel effects impact the translation
from performance requirements into radio resource quotas.

The previous solutions check the feasibility of deploy-
ing RAN slices from an admission control viewpoint. From
a RAN slice planning perspective, the literature is scarce.
Works such as [17] and [18] address the network slice plan-
ning considering only the core network. Focusing on RAN,
there exists works such as [4]and [5] which address the cell
planning considering a multi-tenant environment, and others
as [6] and [7] which analyze spectrum sharing strategies for
different RAN slices. These solutions focus on the deploy-
ment of a new RAN infrastructure considering RAN slicing.
Instead of that, we consider an existing RAN infrastructure
with runningRAN slices and how it constrains the planning of
new RAN slices. In [8], the authors have proposed a solution
to reserve infrastructure resources throughout different plan-
ning windows. Specifically, it aims to minimize the cost of
reserving infrastructure resources from theMNOperspective.
Despite its value, this solution does not consider neither the
UE blocking probability as a RAN slice requirement nor the
dynamic creation/release of GBR sessions for a RAN slice.
Additionally, the authors of [8] focus on planning the Virtual
Network Functions (VNFs) and Service Function Chains
(SFCs) of the requested network slices instead of planning
their radio resources.

Focusing on GBR services, works such as [19] and [20]
provides novel solutions to allocate radio resources among
UEs served by different RAN slices, each with specific GBR
requirements. These proposals assume the UE data sessions
could consume more data rate than the GBR. This overuse
of the available radio resources may prevent more data ses-
sions of the same slice could be admitted. In our proposal,
we assume each UE just consumes the GBR defined in
the SLA. Some of these works have also evaluated the UE
blocking probability for each RAN slice. To that end, they
have modeled the UE session generation and release by a
Markov process. This means these solutions must assume an
exponential distribution for the UE session duration. In our
work, we go beyond by considering generic distributions for
the UE session duration.

Game theory has been widely used for modeling the radio
resource allocation in RAN slicing. In [21], the authors
use a weighted congestion game to perform user-cell asso-
ciation and distribute the available radio resources among
several tenants based on the level of their financial contri-
bution to the wireless network infrastructure. In [9], [22],
and [23], the same authors use Fisher market to model the
radio resource allocation for non-GBR and GBR RAN slices.
Unlike our proposal, their solutions do not guarantee the
UE blocking probability for each RAN slice in each cell
is below a certain upper bound. In [24], the authors use
matching theory to address the radio resource allocation in
RAN slicing. Despite its valuable contributions, this work
does not consider the impact of inter-cell interference levels
and the establishment of an upper bound for the UE blocking
probability.

Finally, there exist solutions based on potential games to
allocate radio resources. For instance, the authors of [25]
have proposed a mathematical framework based on potential
games to address the radio resource allocation problem in
several scenarios such as smart-grid networks, or networks
with relay nodes. In [26], the authors have formulated with
a potential game the co-channel interference coordination
problem in a heterogeneous network where device-to-device
users, macro cell users, and micro cell users coexist. Despite
their valuable contributions, these works do not consider
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RAN slicing, i.e., guaranteeing performance isolation among
different services.

III. PLANNING RAN SLICES WITH THE 3GPP RAN SLICE
MANAGEMENT FRAMEWORK
In this section, we first describe the steps the MNOmust per-
form during the RAN slice planning. Then, we elucidate the
procedures carried out by the 3GPP RAN slice management
framework —in the context of RAN slice planning — from
the communication service requests to the establishment of
the radio resource quotas.

A. STAGES IN THE RAN SLICE PLANNING
We assume the MNO considers periodical time windows
where new RAN slices may be deployed. For each time
window, the MNO executes in advance a planning procedure
which aims to accommodate the requested RAN slices along
with the existing ones in its infrastructure.

Considering a single time window, we illustrate a potential
realization of the planning procedure for multiple RAN slices
in Fig. 1. The MNO takes as inputs the performance require-
ments of all the RAN slices and the information about its
RAN infrastructure. In turn, the outputs are: (a) the amount of
RAN slices which can be accommodated; (b) if required, the
new infrastructure resources which would be deployed before
instantiating the requested RAN slices; and (c) the configura-
tion of the RAN infrastructure which includes, among other
things, the radio resource quotas.

To obtain these outputs, the MNO must translate the
performance requirements of each RAN slice into RAN
resources. To that end, the MNO needs first to estimate the
spatio-temporal traffic intensity experienced by each RAN
slice in the considered time window (step 1). With this
information, the MNO can determine the busy hour (step 2),
i.e., the time period when the RAN infrastructure suffers the
worst-case inter-cell interference.

Considering the busy hour, theMNO derives the amount of
radio resources required by each RAN slice in each cell (step
3). The MNO then checks if the performance requirements of
all the RAN slices are met with such allocation (step 4). If the
checking procedure fails, a network extension/renegotiation
phase starts (step 5a). In this phase, theMNO should consider
at least one of the following options: (a) adding more radio
resources to the RAN infrastructure; (b) renegotiating the
SLAs with one or more tenants; or (c) rejecting the least
attractive RAN slices based on a metric. This phase ends
when a successful checking procedure is reached, and both
the MNO and every tenant sign the SLAs (step 5b). As a
result, the MNO uses the radio resource allocation performed
in the checking procedure to determine the radio resource
quotas.

In this work, we focus on the steps 3-5 depicted in Fig. 1.
The estimation of the spatio-temporal traffic demands of each
RAN slice (step 1) and the busy hour for a planning window
(step 2) would deserve further investigation but is beyond the
scope of this work.

B. FROM SERVICE REQUESTS TO THE ESTABLISHMENT
OF THE RADIO RESOURCE QUOTAS
To compute the radio resource quotas for the requested RAN
slices and recompute them for the existing RAN slices, the
MNO must rely on the well-known RAN slicing framework
depicted in Fig. 2. The main entities and mechanisms of
this framework have already been standardized by leading
Standards Developing Organizations (SDOs) on RAN slicing
such as the 3GPP and the Global System for Mobile Commu-
nications Association (GSMA) [28], [29]. Furthermore, sev-
eral proposals from the literature such as [30], [31], [32], [1]
have provided novel contributions on RAN slice management
based on this framework. In this section, we shed light on how
the RAN slice planning must be integrated in this framework.

At the beginning of a planning period, the MNO must
process the deployment requests for one or more communica-
tions services. At this point, it is crucial for theMNO to define
a mechanism to (a) interpret the requirements from different
tenants, and (b) represent them in a common language. In this
regard, the GSMA has developed a universal network slice
blueprint that provides a point of convergence between the
MNO and the tenants on network slicing understanding. This
blueprint, known as Generic Network Slice Template (GST),
contains a set of attributes that can be used to characterize
the communication service to be accommodated by a network
slice [29], [33].

Focusing on Fig. 2, we assume the tenants have available
the GST’s attributes to set them in a customized way (step 1).
Alternatively, these attributes could be totally or partially set
by the MNO. In any case, when all the attributes are set (step
2), the requirements of a specific communication service
are gathered in the Network Slice Type (NEST). Different
NESTs allow describing different types of network slices,
which are registered and published in the MNO’s service
catalog.

Once the MNO has available the NESTs associated to the
requested communication services (step 3), the Product Order
Manager located in the Business Support System (BSS) has to
map the NEST attributes with the slicing information models
defined by the 3GPP. Specifically, the S/P-NEST attributes
are translated into the service profile (step 4) [27]. The service
profile is just an adaptation from the description language
used in the GST. In turn, the Network Slice Management
Function (NSMF) has to translate the attributes of the ser-
vice profile into the requirements supported in each network
segment. Focusing on the RAN, this procedure results in the
definition of the RAN slice profile (step 5). The informa-
tion gathered in the RAN slice profile will be used by the
RANNetwork Slice SubnetManagement Function (NSSMF)
to manage and orchestrate the RAN slices throughout their
lifetimes. Within this management entity, the proposed RAN
Slice Planner must execute all the procedures described in
Section III-A. To that end, the RAN Slice Planner needs
to take as input the parameters defined in the RAN slice
profile. Table 1 describes those parameters considered in
this work.
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FIGURE 2. Integration of the RAN Slice Planner within the 3GPP RAN slice management framework.

TABLE 1. RAN slice profile’s attributes considered as inputs for the proposed RAN Slice Planner.

Focusing on the computation of the radio resource quo-
tas, the RAN Slice Planner could consider different types
of quotas in function of the policies imposed by the MNO.
The 3GPP has standardized three policies denoted as Radio
Resource Management (RRM) Policy Ratios [27], [34]:

• RRM Policy Dedicated Ratio (optional policy): It
defines the dedicated radio resource quota for the associ-
ated RAN slice, i.e., its dedicated radio resources. These
radio resources cannot be shared even if the associated
RAN slice does not use them throughout its lifetime.
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• RRM Policy Minimum Ratio (mandatory policy):
It defines the minimum radio resource quota for
the associated RAN slice, including prioritized radio
resources and dedicated radio resources. Prioritized
radio resources are those which are preferentially used
by the associated RAN slice. When prioritized radio
resources are not used by the associated RAN slice
throughout its lifetime, other RAN slices could use them.

• RRM Policy Maximum Ratio (mandatory policy): It
defines the maximum radio resource quota for the asso-
ciated RAN slice, including shared radio resources, pri-
oritized radio resources and dedicated radio resources.
Shared radio resources are those which are shared
among all RAN slices. This means the shared radio
resources are not guaranteed for use by the associated
RAN slice throughout its lifetime.

In this work, we focus on the RRM Policy Minimum
Ratio. Specifically, the RANSlice Planner translates the RAN
slice profile’s attributes defined in Table 1 for each RAN
slice into the minimum radio resource quotas adopted in
each cell. Then, the MNO proceed with the SLA signing
(steps 6, 7). After that, the RAN NSSMF sends the computed
radio resource quotas (step 8) to the Network Function Man-
agement Function (NFMF). Finally, the NFMF enforces the
radio resource allocation performed in each cell during the
operation of each RAN slice meets the bounds imposed by
these quotas (step 9). This means each RAN slice will have
available at least the amount of radio resources defined by
these quotas if the traffic demand requires them.

In case the MNO cannot accommodate in a first attempt
the requested RAN slices (i.e., at least a negative check-
ing response is generated in Step 6), it may renegotiate the
SLA with the tenants which requested the new RAN slices.
In this scenario, the BSS Product Order Manager (a) must
communicate the corresponding tenants that the requested
requirements for their RAN slices cannot be satisfied and
(b) may suggest them which specific requirements could be
re-adjusted (e.g., a RAN slice with a lower maximum number
of UEs). If the tenants accept the proposed re-adjustment,
they need to re-set the corresponding GST’s attributes. This
means the steps 2-6 are repeated until all the RAN slices
are accommodated into the RAN. Note that in this iterative
procedure each tenant and/or theMNOmay consider the SLA
renegotiation is unfeasible for a specific RAN slice. In such
a case, the MNO discards this RAN slice from the planning
procedure.

IV. SYSTEM MODEL
In this work, we focus on the downlink operation of a 5G-
New Radio (NR) multi-cell environment with several RAN
slices. Each RAN slice provides a GBR service to their UEs,
which dynamically request and release data sessions. In this
scenario, the MNOmust ensure the average rate for each data
session must be above a specific value to provide the min-
imum quality of service that such RAN slice requires, e.g.,

an enhanced Mobile Broadband (eMBB) service providing
video streaming requires 5Mbps for full HD quality. For such
reason, we assume all the admitted data sessions for single
RAN slice have an average rate equal to the GBR specified by
the tenant in the NEST, i.e., the attribute downlink through-
put per UE described in Table 1. Furthermore, each cell
supports Link Adaptation (LA) to allocate radio resources
based on the channel quality, thus these cells consider the
channel quality perceived by each UE to allocate them radio
resources. Under this scenario, we first describe the network
model. Then, we present the model for the radio resources.
Next, we describe the channel model of a single cell. Finally,
we define the characteristics of the offered traffic.

A. NETWORK MODEL
We consider a MNO owns a RAN infrastructure consisting of
a set C of 5G NR cells. Before the MNO initiates a planning
period, we assume: (a) multiple tenants have requested in
advance one or more communication services; and (b) there
exist RAN slices which are currently running in the RAN
infrastructure. Defining M as the set of requested and acti-
vated RAN slices, the MNO will execute a RAN slice plan-
ning procedure with the aim of checking the feasibility of
accommodating these RAN slices, each with specific GBR
requirements over a certain subset Cm ⊆ C of cells.
The traffic demand of each RAN slice is non-uniformly

distributed over the considered RAN.Accordingly, the area of
each cell has a different size to absorb the aggregated traffic
demand from all the RAN slices with a maximum usage effi-
ciency. In this work, we consider the cell location has already
been established by the MNO. Specifically, we have adopted
the algorithm proposed in [4] to determine the location and
size of each cell. Under this scenario, a set U of UEs exist,
being (a) Um ⊆ U the subset of UEs served by the RAN slice
m; (b) Ui ⊆ U the subset of UEs served by the cell i ∈ C; and
c) Umi = Um ∩ Ui the intersection of both subsets.

B. RADIO RESOURCE MODEL
We assume Orthogonal Frequency-Division Multiple Access
(OFDMA) as accessing scheme. Focusing on a single cell
i ∈ C, it supports a total bandwidthWi. In turn, this bandwidth
is divided into Ni OFDM sub-carriers, which are grouped
in groups of NSC = 12 sub-carriers. Each group defines a
Resource Block (RB), which is the smallest unit of resources
that can be allocated to a UE. The number of available RBs
on average during a time slot is given by Eq. (1). Since a
5G NR cell supports scalable numerologies (µ = 0,1, . . . , 4),
the subcarrier spacing is computed as 1f = 2µ

· 15 KHz.
The parameterOH denotes the overhead factor due to control
plane data [35].

N slot
RB,i =

⌊
Wi

NSC1f
(1 − OH)

⌋
. (1)

In a single carrier, the number of RBs could range
from 11 to 273 units [36], [37]. This means N slot

RB,i could be
high if the cell i employs a small numerology and a large
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bandwidth. Then, from the perspective of radio resource allo-
cation in RAN slicing, it becomes advantageous to reduce the
management complexity by grouping the RBs into resource
chunks, which are allocated to the RAN slices as indivisible
units [7]. This can be done through the concepts of Bandwidth
Part (BWP) andResource BlockGroup (RBG) defined in [38]
and [39], respectively. A BWP is a continuous set of RBs for a
given numerology. A RBG is a collection of consecutive RBs
within a given BWP that can be allocated to a specific UE.
The size of the RBG, herein denoted as Rsize, can be used
for establishing the minimum allocation unit size. Increas-
ing Rsize may serve to reduce the signaling overhead at the
expense of a loss of flexibility, which could be critical when
the number of RAN slices to be planned is large. Under these
considerations, we denote (a) Ri as the set of RBGs in cell i,
(b)Rm

i ⊆ Ri as the subset of RBGs allocated to the slicem in
cell i; and (c)Ru

⊆ Rm
i as the subset of RBGs allocated to a

UE uwhich is served by the RAN slicem in the cell i. Finally,
we can compute the available RBGs on average during a time
slot in the cell i as Rsloti =

⌊
N slot
RB,i/Rsize

⌋
. Note that the sum

of RBGs allocated for each RAN slice, i.e., Rsloti.m , must be less
or equal than Rsloti .

C. CHANNEL MODEL
To measure the channel quality within each cell, we consider
the average Signal-to-Interference-plus-Noise Ratio (SINR).
Specifically, we define in Eq. (2) the average SINR γu,r
measured by the UE u ∈ U in the RBG r ∈ Rm

i . The
parameterPRXi denotes the received power. This power results
from the transmitted power minus the attenuation suffered by
the shadow fading and the path loss. The fast fading is not
modeled since the average SINR ismeasured over a large time
scale. Note that we assume the same transmitted power for
all the RBGs. The parameter 0(u) is a function that returns
the cell i ∈ Cm which the UE u served by the RAN slice
m is attached to. This cell is the one from which this UE
receives the strongest average SINR. Finally, the parameter
Iu,r,i denotes the interference suffered by the UE u in the RBG
r , and PN is the noise power measured in one RBG.

γu,r =
PRXi

Iu,r,i+PN
| i = 0(u). (2)

The interference Iu,r,i is provided in Eq. (3). This parameter
is split into two summations, each gathering the intra-slice
and inter-slice interference terms, respectively. An interfer-
ence term j is intra-slice when the RBG r from neighbor cell
j is allocated to the same RAN slicemwhich serves the user u
in the cell i. An interference term j is inter-slice when the RBG
r from neighbor cell j is allocated to a RAN slice n different
from the slice m. To identify these terms, we use the binary
variable δu,r,j. It takes the value 1 when the interference term
is intra-slice and the value 0 otherwise.

Iu,r,i =

∑
j∈C\{i}

Lj,rαj,rPRXj δu,r,j

+

∑
j∈C\{i}

Lj,rαj,rPRXj (1 − δu,r,j). (3)

The parameter αj,r is also a binary variable that takes the
value 1 when the RBG r is allocated to the neighbor cell j
and the value 0 otherwise. The value for αj,r will depend on
the radio resource allocation performed by the RAN Slice
Planner in each neighbor cell. Finally, Lj,r denotes the cell
load factor, which is given by Eq. (4). In this equation, β(j, r)
is a function that indicates the RAN slice m for which the
RBG r from cell j has been allocated. The parameter thm
denotes the average data rate consumed by a UE data session
belonging to the RAN slice m. In this work, we assume all
the data sessions for a RAN slice require an average data rate
equal to the GBR specified in the SLA. Note that the number
of UEs served by the RAN slice m in cell j is given by |Umj |.
The parameter SEu,r is the average data rate per bandwidth
unit (i.e., spectral efficiency) for the UE u in the RBG r .
Unlike our previous work [7], we consider that only the RBGs
allocated to a specific RAN slice can be scheduled to the UEs
attached to this RAN slice. This means each RAN slice m
produces a different load in a specific cell in function of its
GBR requirements and the number of allocated RBGs.

L̂j,r =
|Umj |thm

NSC1f
∑

u∈Umj
∑

r∈Ru SEu,r
|m = β(j, r). (4a)

Lj,r = min
(
L̂j,r , 1

)
. (4b)

The average spectral efficiency SEu,r is recursively derived
from γu,r as Eq. (5) shows. The parameter SEmax denotes
the maximum achievable spectral efficiency with LA, γmin
and γmax the minimum and maximum average SINR values,
respectively. Finally, σ is an attenuation factor due to imple-
mentation losses [40].

SEu,r =


0, γu,r < γmin;

σ · log2
(
1 + γu,r

)
, γmin ≤ γu,r < γmax;

SEmax , γu,r > γmax;

(5)

D. TRAFFIC MODEL
To model the traffic demands of each individual RAN slice,
we consider the statistical distributions and the average values
for the arrival rate of UE sessions and the session duration.
These average values correspond to the ones which could be
measured during the busy hour. We assume the MNO has
previously estimated them (see steps 1-2 in Fig. 1).

Regarding the arrival rate of UE sessions for RAN slice m,
we assume an average of λm requests per unit time following
a Poisson distribution. It is well known that in many cases,
the sum of a large number of independent stationary renewal
processes (i.e., in our scenario, each individual UE generating
data sessions), each with an arbitrary distribution of renewal
time, will tend to a Poisson process [41]. Since a Poisson
process can be split into independent processes [42], we can
also express the average arrival rate for each cell as λi,m =
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ωi,mλm. The variable ωi,m denotes the probability a UE u ∈

Um is served by the cell i. This probability will depend on:
(a)
1) The UE density distribution (see Table 1) for the RAN

slice m in the entire RAN, i.e., the probability an
arbitrary UE served by this RAN slice is located in
a specific position in the geographical area covered
by the RAN. We assume each RAN slice presents a
specific UE spatial distribution.

2) The average SINR perceived by each UE from each
cell. Specifically, we consider each UE is served by the
cell from which it perceives the strongest SINR.

With respect to the session duration tsesu,m for each UE u
served by the RAN slice m, we assume a random variable
extracted from an arbitrary distribution. This means we could
consider a different distribution for each RAN slice. Addi-
tionally, we define µm = 1/E

[
tsesu,m

]
as the average rate for

releasing UE sessions per unit time of the RAN slice m.
Defined λi,m and µm, we compute the average offered

traffic intensity for the RAN slice m in each cell i as ρi,m =

λi,m/µm. Furthermore, the total average offered traffic inten-
sity for this RAN slice is also computed as ρm =

∑|Cm|

i′=1 ρi′,m.
Finally, to model the probability of blocking the data ses-

sion of a UE u ∈ Umi served by the RAN slice m in cell i, i.e.,
Bi,m, we use the analytical model which we proposed in [43].
In this model, we consider a multi-dimensional Erlang-B
system where each dimension represents a specific range of
values for the average SINR which a UE could perceive in
the cell. To compute the UE blocking probability, this model
considers as inputs: (a)
1) A discrete set of values for γu,r , each one associated to

a dimension of themulti-dimensional Erlang-B system.
Specifically, each value is the average within the range
of values for the average SINR defined in the corre-
sponding dimension.

2) The probability that a UE session perceives an aver-
age SINR within the range of values defined for each
dimension.

3) The amount of radio resources Rm
i which are guaran-

teed for the RAN slice in the cell, i.e., the radio resource
quota.

For more detailed information about the model for the UE
blocking probability, we recommend the reader to see [43].

V. RADIO RESOURCE PLANNING BASED ON ORDINAL
POTENTIAL GAMES
A. PROBLEM FORMULATION
In this work we analyze the radio resource planning for
RAN slices providing GBR services. Specifically, we for-
mulate the planning process as Eq. (6a) shows. The goal
of our RAN slice planning is to minimize the average UE
blocking probability Bm′ of the RAN slice m′ which has
the highest value for this parameter. For each RAN slice
m, the average UE blocking probability can be computed as
Bm =

∑
i∈Cm ωi,mBi,m. Note that the UE blocking probability

Bmi for the RAN slice m in cell i depends on (a) the radio
resource allocation for this RAN slice in this cell, i.e.,Rm

i and
(b) the radio resource allocation for all the RAN slices in the
neighbor cells. The constraints given in Eq. (6b) enforce the
UE blocking probability Bi,m for each RAN slice m in each
cell i is below the upper bound Bth. We assume this bound
on the UE blocking probability is established by the MNO
before receiving any RAN slice request and it is the same for
all the RAN slices.

min
Rm
i

max
(
B1,B2, . . . ,Bm, . . . ,BM

)
∀i ∈ C; ∀m ∈ M.

(6a)

s.t. Bi,m ≤ Bth. (6b)

The objective function defined in Eq. (6a) is a non-convex
function and thus with at least NP-hard complexity. This fact
is mainly due to the inter-cell interference. For instance, the
higher the number of RBs are allocated for the RAN slicem in
the cell i, the lower the UE blocking is. However, the inter-cell
interference increases in each neighbor cell j ∈ C \ {i},
meaning the UE blocking probabilities Bj,m for all the RAN
slices in the neighbor cells increase, and thus the objective
function may also increase. This involves the existence of
multiple local minima in the considered search space. Solv-
ing the formulated problem can be seen as a combinatorial
optimization, i.e., searching the best combination of allocated
radio resources |Rm

i | for each RAN slice m ∈ M in each
cell i ∈ C which minimizes the cost function. Performing
an exhaustive search to find the optimal solution is not com-
putationally tractable, especially when the number of cells
|C|, RBs per cell |Ri| and RAN slices |M| are considerably
high. As an alternative, searching a local optimum is a bet-
ter option. By using game theory to model the formulated
problem, we can find a local optimum by determining a NE
solution. In this work, we model our problem as multiple
ordinal potential games and demonstrate the existence of a
NE solution.
On the one hand, since the neighbor cells may cause inter-

ference on a given cell, the MNO must consider each cell as
a selfish entity which tries to meet the performance require-
ments of the RAN slices that it serves. In our proposal we
consider multiple potential games where the selfish entities
are the cells instead of the tuple defined by one cell and one
RAN slice. Considering a higher number of players (e.g.,
a player per cell and per RAN slice) would involve higher
complexity. For such a reason, our approach simplifies the
game because less players are considered.

On the other hand, the RAN slice planning must be exe-
cuted in the RAN NSSMF,2 which is a logically centralized
entity as Fig. 2 describes. For this reason, we consider the

2Note that once the RAN slice planning procedure ends and the requested
RAN slices are activated, the RAN NSSMF enforces the computed 3GPP
policy ratios to each RAN slice in each cell by means of the NFMF (see step
8 in Fig. 2).
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proposed multiple potential games are executed in a central-
ized way by the RAN NSSMF. To that end, all the players
must have the same utility function, i.e., in game theory, it is a
mathematical function which each player aims to unilaterally
optimize. Although the common approach in game theory is
to execute a game in a distributed way, i.e., by considering
each player has a specific utility function, there exist games
in the literature where all the players share a common utility
function. These games are known as identical-interest games
and perfect coordination games [44]. Our proposed potential
games are equivalent to them.

B. PROPOSED POTENTIAL GAMES
In game theory, a game is defined asG = [C, {Si}i∈C, {8i}i∈C, ]
where C is the set of players participating in the game, Si
is the strategy selected by player i, and 8i : S → R is
the utility function of that player, with S the strategy profile
of the game (i.e., the set of strategies selected by all the
players). If we refer to a single player, i.e., the ith player, then
S can be rewritten as S = (Si, S−i), where S−i denotes the
joint strategy adopted by player i’s opponents. In a game G,
each player will choose selfishly a new strategy Ti in its turn
with the aim of improving its utility function considering the
current strategies of the other players. A game is an ordinal
potential game if and only if a potential function F(S) exists
such that Eq. (7) is met, where sgn[·] denotes the signum
function [45].

sgn [8i (Ti, S−i) − 8i (Si, S−i)]

= sgn [F (Ti, S−i) − F (Si, S−i)] ∀i ∈ C. (7)

In our game, the set of players C are the cells where the
requested RAN slices will be deployed and the existing RAN
slices are running. For every ith cell, a strategy Si consists of a
specific RBG allocation for all the RAN slices which require
the coverage of this cell. In turn, the utility function for each
ith cell 8i is given by Eq. (8). As previously stated, the
utility function is the same for all the players, our game could
be seen as identical-interest game or perfect coordination
game [44].

8i =
(
max

(
B1,B2, . . . ,Bm, . . . ,BM

))−1
∀m ∈ M. (8)

The potential function F(S) is defined by Eq. (9). Since the
utility function of each cell i is equal to the potential function,
i.e., 8i (Si, S−i) = F (Si, S−i) ∀i ∈ C, it is straightforward
that Eq. (7) is always met. Thus, an unconstrained game
including the potential function F(S) and utility functions
8i ∀i ∈ C is an ordinal potential game. Consequently, the
proposed game always reaches a NE solution. Note that game
theory states that if a game is a potential game, it always has
a NE solution [45].

F(S) =
(
max

(
B1,B2, . . . ,Bm, . . . ,BM

))−1
∀m ∈ M.

(9)

Defined the utility functions and the potential function,
we formulate our constrained game G as Eq. (10) shows. The

goal of this game is to determine the set of strategies S, i.e.,
the RBG allocation for each RAN slice in each cell, which
maximize the potential function.

(G) : ∀i ∈ C max
Si∈S i

8i (Si, S−i) .s.t.gi,m (Si, S−i) ≤ 0. (10)

We also assume there are |C| · |M| inequalities constrains
in the form of gi,m(S) ≤ 0. Specifically, these constrains
are expressed by Eq. (11). In [45], the authors proof that
a constrained game is an ordinal potential game only if the
equivalent game without constraints is also an ordinal poten-
tial game. This means that the proposed constrained game G
is an ordinal potential game.

gi,m(S) = Bi,m − Bthm ∀m ∈ M, ∀i ∈ C. (11)

To perform the radio resource planning, the proposed RAN
Slice Planner could follow two approaches: one-game-all,
and consecutive games.

In the one-game-all approach, the RAN Slice Planner exe-
cutes the game G with M ′

= |M| RAN slices. In this game,
the starting point is the allocation of one RBG for each RAN
slice in the cells where they require coverage.

In the consecutive games approach, the RAN Slice Planner
executes |M| consecutive games as the one formulated in Eq.
(10). In eachmth game, onlyM ′

= m RAN slices participate.
Focusing on the first game, i.e., M ′

= 1, the RAN Slice
Planner performs the RBG allocation for one RAN slice.
In this game, the starting point is the allocation of one RBG
in each cell where this RAN slice requires coverage. When
the RAN Slice Planner executes the first game, it considers
the derived RBG allocation as the starting point of the next
game, whereM ′

= 2 RAN slices participate. The RAN Slice
Planner repeats this procedure until it executes the |M|th
game.

As we demonstrate in Section VII-D, the proposed game
tends to equal the average UE blocking probabilities of all
the RAN slices. This means that selecting a starting point
of the game where the average UE blocking probabilities
of all the RAN slices are closer could involve reaching a
NE solution where all the average UE blocking probabilities
are equaled and minimized, but the constraints given by Eq.
(11) are not met. This scenario is frequent when the RAN
Slice Planner follows the one-game-all approach. To avoid
this issue, we consider the RAN Slice Planner follows the
consecutive game approach.

VI. PLANNING METHOD BASED ON BETTER RESPONSE
DYNAMICS
In Fig. 3, we illustrate a block diagramwhich summarizes the
behavior of the proposed RAN Slice Planner. In a planning
period, this mathematical framework executes |M| consec-
utive ordinal potential games. Focusing on a specific game
G with M ′

≤ |M| RAN slices,3 the RAN Slice Planner
selects the next cell player i and determines the strategy Ti

3The order in which the RAN slices enter into a game is out of the scope.
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FIGURE 3. High-level view of the methods implemented by the RAN Slice
Planner to perform the planning of |M| RAN slices.

which provides the better RBG allocation for each RAN slice
in such cell. The method to determine such allocation is
based on better response dynamics, i.e., the players proceed
toward a NE solution via a local search method. Then, if the
utility function 8i of this cell improves with respect to the
previous strategy Si, i.e., 8i(Ti, S−i) > 8i(Si, S−i), the RAN
Slice Planner considers Ti as the new strategy Si in this cell
and computes the next cell player. If the utility function
8i does not improve with respect to the previous strategy
Si, it remains as the better strategy for this cell. In such
case, the RAN Slice Planner also increases by one a counter
twp that records the cell players which cannot improve their
utility functions. The game G will end when none of the cell
players can improve its utility function, i.e., twp = |C|. If this
happens, the RAN Slice Planner will execute more games
until the number of executed games is |M|. At this point,
the RAN Slice Planner will have determined the minimum
radio resource quotas for each RAN slice in each cell by
considering the strategies Si ∀i ∈ C derived in the |M|th
game.

If the computed radio resource quotas satisfy the perfor-
mance requirements of all the RAN slices (see Eq. 6b), the
RAN slice planning in this planning windowwill have ended.
Otherwise, a renegotiation (and/or network extension) phase

Algorithm 1 Computing the Next Cell Player i′

1 Inputs: Bm, Bi,m, and ωi,m ∀m ∈ M ∀i ∈ C;
2 Determine m′

= arg max
[(
B1, . . . , B|M|

)]
;

3 Compute i′ = arg
max

[(
ω1,m′B1,m′ , . . . , ω|C|,m′B|C|,m′

)]

starts. At this point, the MNO and the corresponding tenants
renegotiate the SLA by e.g., reducing the required GBR
(and/or extending the network by e.g., adding new carriers
in each cell). After that, the procedure illustrated in Fig. 3 is
re-executed until either all the requested RAN slices can be
accommodated in the RAN or, conversely, some of them are
discarded by the MNO (e.g. considering economic aspects).

In the following subsections, we provide details about the
method used by the RAN Slice Planner to define the order in
which each cell selects its better RBG allocation as well as
the method to determine such allocation.

A. METHOD TO DECIDE THE NEXT CELL PLAYER
In our game, we aim to maximize the potential function
F(S) using the minimum number of iterations, where each
iteration corresponds to the set of actions taken by a cell
player to determine its better RBG allocation. When better
response dynamics is used for computing the NE solution, the
computational time to reach this solution strongly depends on
the order in which players are chosen to perform their actions.
Better response dynamics leaves unspecified the rules to
define this order [46].

To minimize the required number of iterations for reaching
the NE solution, the RAN Slice Planner executes Algorithm
1, which decides the next cell player. First, this algorithm
determines the RAN slice m′ which provides the maxi-
mum average UE blocking probability. Then, considering
the weighted UE blocking probability for the selected RAN
slice m′ in each cell (i.e., ωi,m′Bi,m′ ), the algorithm selects as
the next player i′ the cell where the weighted UE blocking
probability is maximum. Using the proposed algorithm, the
RAN Slice Planner selects the cell where the RAN slice
which provides the value for the potential function, see Eq.
(9), has the worst weighted UE blocking probability. In this
way, the RAN Slice Planner can reallocate RBGs in such
cell with the goal of maximizing the potential function much
faster.

B. BETTER RBG ALLOCATION IN THE CELL PLAYER
Algorithm 2 provides the steps performed by the RAN Slice
Planner to select the better RBG allocation (i.e., strategy Ti)
in the cell player i. These steps are also depicted in Fig. 3.
First, the RAN Slice Planner checks if there are free RBGs
in the cell i, i.e., those RBGs which have not been allocated
for any RAN slice. If so, one free RBG will be allocated to
RAN slice m′ (i.e., the RAN slice derived by Algorithm 1).
Algorithm 3 details how the RAN Slice Planner selects this
RBG (see Section VI-C). If there are not free RBGs, the only
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Algorithm 2 Computing the Better RBG Allocation,
i.e., Strategy Ti, for Cell Player i

1 Initialization: RBG allocation for each RAN slice in
cell i, i.e., Si;

2 found_better_strategy = false;
3 while found_better_strategy == false do
4 if free_RBGs == true then
5 Allocate one RBG to RAN slice m′ (see

Algorithm 3) → New strategy S ′
i ;

6 else
7 Compute m′′

= arg min
(
ωi,mBi,m

)
∀m ∈ M \ {m′

};
8 Donate one RBG from RAN slice m′′ to RAN

slice m′ (see Algorithm 4)→ New strategy
S ′
i ;

9 end
10 From S =

(
S ′
i , S−i

)
, derive fPDF

(
γ u

)
for each

pair of RAN slice an cell. ωi,m is also derived
∀i ∈ C and ∀m ∈ M;

11 Compute Bi,m ∀i ∈ C, ∀m ∈ M;
12 Compute Bm ∀m ∈ M;
13 Compute 8i

(
S ′
i , S−i

)
;

14 if 8i
(
S ′
i , S−i

)
> 8i (Si, S−i) then

15 Si = S ′
i ;

16 else
17 Ti = Si;
18 found_better_strategy = true;
19 end
20 end
21 return: Ti

way to reduce the average UE blocking probability for RAN
slice m′ is to allocate it one RBG from another RAN slice.
To than end, the RANSlice Planner determines the RAN slice
m′′ which has the lowest weighted UE blocking probability
in cell i. Then, one RBG is donated from RAN slice m′′ to
RAN slicem′. Algorithm 4 details how theRANSlice Planner
determines the donated RBG (see Section VI-D).

After the RAN Slice Planner uses Algorithm 3 or Algo-
rithm 4, it derives a new strategy S ′

i resulted from the RBG
reallocation in cell i. Based on that, the RAN Slice Planner
computes |C| · |M| Probability Density Functions (PDFs)
of the average SINR experienced by an arbitrary UE, i.e.,
fPDF

(
γ u

)
, one per each pair of RAN slice and cell. During

this procedure, the probability that an arbitrary UE is attached
to a specific cell ωi,m is also recomputed. The proposed
algorithm uses the strongest SINR as the criteria to attach
each UE to a specific cell.

After deriving these PDFs, the RAN Slice Planner com-
putes the UE blocking probability for each RAN slice in every
cell, i.e., Bi,m by using the model we proposed in [43]. Then,
the RANSlice Planner computes themeanUE blocking prob-
ability for each RAN slice, and thus it derives the new value
for the utility function8i

(
S ′
i , S−i

)
of the cell i. Next, the RAN

Algorithm 3 Allocation of One RBG r ′ to the RAN
Slice m′

1 Initialization: distcells(i′) = ∞ ∀i′ ∈ C \ {i};
2 for r ∈ Rfree

i do
3 for i′ ∈ C \ {i} do
4 if r /∈ Rfree

i′ then
5 Compute distcells(i′) = ED

(
i, i′

)
;

6 end
7 end
8 Compute distRBG(r) = min

(
distcells(i′)

)
;

9 end
10 Compute r ′

= arg max(distRBG(r));
11 return: r ′

Slice Planner compares the new value of the utility function
with respect to the previous one, calculated from the old
RBG allocation Si. If the utility function improves, then the
new RBG allocation is considered as the valid strategy (i.e.,
Si = S ′

i ). In this case, steps from 4 to 19 are repeated until the
RAN Slice Planner cannot improve the utility function.When
this happens, the RAN Slice Planner ends the execution of
Algorithm 2 and the better RBG allocation is the one derived
in the previous iteration, i.e., Ti.

In the following subsections, we provide details about the
steps performed byAlgorithms 3 and 4 to reallocate the RBGs
to a cell player.

C. RBG ALLOCATION
To allocate one RBG r ′ to the RAN slice m′, the RAN Slice
Planner executes the steps described in Algorithm 3. First, the
RAN Slice Planner initializes to infinity the vector distcells.
For each available RBG in the cell, i.e., r ∈ Rfree

i , the RAN
Slice Planner checks if this RBG has been allocated in the
neighbor cells. If so, distcells stores the euclidean distance,
given by the function ED (·), between the cell i and the neigh-
bor cell i′. When this task is performed for all the neighbor
cells, the RAN Slice Planner selects the minimum distance
gathered in distcells. The goal is to determine the closest
neighbor cell which interferes RBG r more strongly. Consid-
ering these interference levels and repeating this procedure
for all the free RBGs, the RAN Slice Planner determines the
RBG r ′ which suffers less interference.

D. RBG DONATION
To donate one RBG r ′ from the RAN slicem′′ tom′, the RAN
Slice Planner executes the steps described in Algorithm 4.
First the RAN Slice Planner initializes to infinity the vector
distcells. For each available RBG, the RAN Slice Planner
checks if this RBG has been allocated in the neighbor cells.
At this point, the behavior of the proposed algorithm is equal
to Algorithm 3. The reason is this algorithm aims to donate
the RBG r ′ which interfere less with the neighbors of the cell
i. In this way, if the RAN slice m′ would induce a higher cell
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FIGURE 4. Probability Mass Function (PMF) of the UE location for each RAN slice.

Algorithm 4 Donation of One RBG r ′ From RAN
Slice m′′ to RAN Slice m′

1 Initialization: distcells(i′) = ∞ ∀i′ ∈ C \ {i};
2 for r ∈ Rm′′

i do
3 for i′ ∈ C \ {i} do
4 if r /∈ Rfree

i′ then
5 Compute distcells(i′) = ED

(
i, i′

)
;

6 end
7 end
8 Compute distRBG(r) = min

(
distcells(i′)

)
;

9 end
10 Compute r ′

= arg max(distRBG(r));
11 return: r ′

load in the RBG r ′ in comparison with the current cell load
induced by the RAN slice m′′, see Eq. (4), the interference
term induced in RBG r ′ would be minimum.

VII. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of the pro-
posed RAN Slice Planner. Specifically, since there are not
solutions in the literature which address the planning of
RAN slices with requirements on both the GBR and the
UE blocking probability, we compare our proposal with two
reference solutions. The reference solution 1 computes the
minimum radio resource quota for a RAN slice m in a
cell i as Rsloti,m = N slot

RB,i/|M|, i.e., the radio resources are
equally distributed between the RAN slices. The reference
solution 2 computes the minimum radio resource quota as
Rsloti,m =

⌊(
ρi,m/

∑
m′∈M ρi,m

)
N slot
RB,i

⌋
, i.e., the radio resources

are distributed in proportion to the average offered traffic
intensity of each RAN slice in such cell. For both reference
solutions, we assume the specificRBGs that provide the given
quotas are randomly allocated. In addition to the performance
analysis, we also evaluate the renegotiation capability of the
proposed solution.

A. EXPERIMENTAL SETUP
We consider a RAN infrastructure which comprises a set of
|C| = 20 cells deployed over an urban area of 1.5 Km x

1.5 Km. We also assume the traffic demand for each RAN
slice is non-uniformly distributed over the considered area.
In Fig. 4, we show the traffic demand distribution of some
of the considered RAN slices. The triangles represent the
location of the deployed access nodes and the colored sur-
face indicates the Probability Mass Function (PMF) for the
location where a specific RAN slice may serve a UE. To char-
acterize the channel conditions of a UE served by a specific
RAN slice, we use a snapshot-basedmodel [7]. Each snapshot
represents a random realization of the demand distribution
for a RAN slice, i.e. varying the positions of the served
UEs according to the PMFs shown in Fig. 4. The different
realizations of the same traffic probability distribution ensure
reliable statistical significance analysis. Specifically, these
realizations allow us to estimate the spatial distribution of the
average SINR and thus, compute the probability ωi,m that an
arbitrary UE belonging to the RAN slicem ∈ M is served by
the cell i ∈ C. With respect to the data sessions, we consider
all the UEs of all the RAN slices will generate sessions
following a Poisson distribution. Concerning the UE session
duration, we consider each RAN slice will present one of the
following distributions: exponential, uniform, or a constant
duration. Finally, Table 2 summarizes the parameters used
for the simulations.

All the experiments have been carried out on a com-
puter with 16 GB RAM and an Intel core i7-4790 CPU @
3.60 GHz.

B. CONVERGENCE ANALYSIS
The first experiment provides the computational complexity
analysis of the proposed RAN Slice Planner. In this exper-
iment, we assume the RAN Slice Planner must plan the
deployment of three requested RAN slices with specific aver-
age offered traffic intensities, i.e., ρm. Specifically, we con-
sider ρ1 = ρ3 = ρ0, whereas ρ2 could take different values
from 0.25ρ0 to 4ρ0. To ease the comprehensibility of the
proposed algorithms, we assume in this experiment there are
not running RAN slices in the considered RAN.
In Fig. 5, we depict the evolution of the average UE block-

ing probability Bm for each RAN slice when the RAN Slice
Planner executes the multiple ordinal potential games. In this
specific realization, we assume ρ2 = 2ρ0. When the game
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TABLE 2. Simulation parameters.

M ′
= 1 starts, only the RAN slice m = 1 participates. In this

game, the RAN Slice Planner iteratively adds radio resources
in each cell for this RAN slice until a NE solution is reached.
In the game M ′

= 2, the RAN Slice Planner first adds the
remaining free RBGs (if available after finishing the previous
game) and then it donates RBGs from the RAN slicem = 1 to
the RAN slice m = 2. The aim of these procedures is to
minimize the average UE blocking probability of the RAN
slice which presents the highest value for this parameter.
We observe how the average UE blocking probabilities of
these RAN slices tend to be equal in the first iterations of
this game (i.e., iteration 850 approx.). Then, the RAN Slice
Planner slightly reduces these average UE blocking probabil-
ities until reaching the NE solution (i.e., iteration 950 aprox.).
Finally, the periodical peaks in the last iterations correspond
to the situation where the cells cannot improve their utility
functions. In the last game, i.e., M ′

= 3, the RAN Slice
Planner acts in the same way as the previous game with the
difference that RAN slices m = 1 and m = 2 donates radio
resources to the new RAN slice.
With respect to the number of iterations performed by the

proposed RAN Slice Planner, it is conditioned to the number
of considered cells and RBGs per cell as the Algorithms 3 and
4 show. Additionally, the number of games executed by the
RAN Slice Planner is equal to the number of RAN slices, thus
a greater number of RAN slices may increase the number of
iterations. In Table 3 we show the number of iterations per-
formed by the RAN Slice Planner when a different number of
cells, RBGs and RAN slices are considered. We observe the

FIGURE 5. Evolution of the average UE blocking probabilities when the
RAN Slice Planner executes the multiple ordinal potential games for
M = 3 RAN slices.

TABLE 3. Number of iterations performed by the RAN Slice Planner.

number of iterations grows exponentially when the number
of RAN slices and RBGs (i.e., the cell bandwidth) increases.
We also notice the number of iterations slightly increases
when the number of cells increases.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
We have also analyzed the execution time for a single itera-
tion. This time mainly depends on the computation of (a) the
PDFs of the average SINR, i.e., fPDF

(
γ u

)
; and (b) the UE

blocking probability Bi,m. Both are calculated for each pair of
RAN slice and cell (see lines 10-11 in Algorithm 2). Regard-
ing the time to compute the PDFs, it increases exponentially
when the number of considered cells and RBGs available
per cell increase. With respect to the time to compute the
UE blocking probability, it increases exponentially when the
amount of RBGs allocated for a RAN slice in a single cell
increases (see [43, Section V.B]).

In this work, we have empirically estimated the statisti-
cal distribution of the execution time for a single iteration
according to the number of cells, RAN slices and RBGs.
Specifically, we have used box-and-whisker plots as Fig. 6
shows. For each plot, the bottom and the top of each box
represent the first and third quartiles for the measured times,
respectively, while the red line represents the 50th percentile.
Focusing on the whiskers, the lowest and the highest lines
represent the minimum and maximum measured times.
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FIGURE 6. Statistical distribution of the execution time per iteration of
the multiple ordinal potential games for different scenarios.

Focusing on Fig. 6(a), the execution time of an iteration
slightly decreases when the number of cell decreases. In such
a case, the RAN Slice Planner evaluates |M| PDFs and |M|

UE blocking probabilities less per cell. The reduction of
execution time is diminished by an increase of the required
time to compute UE blocking probabilities. This is because
the RAN Slice Planner tries to allocate more RBs to each
RAN slice to meet its requirements. A similar behavior is
observed in 6(b), where the increment of RAN slices involves
computing more instances for the UE blocking probabil-
ity. Specifically |C| instances for a new RAN slice. Finally,
Fig. 6(c) shows how the time spent in an iteration increases
when the available bandwidth increases in each cell. This is
because a higher number of RBGs can be allocated for each
RAN slice in each cell, taking more time to compute each UE
blocking probability.

FIGURE 7. Minimum radio resource quotas computed in the cell i = 18
∈ C (see Fig.4). Note that ρ1 = ρ3 = ρ0.

D. PERFORMANCE ANALYSIS
In this section, the performance of the RAN Slice Planner
is compared with the reference solutions 1 and 2. In Fig. 7,
we show the minimum radio resource quota computed for
each RAN slice in a specific cell when the average offered
traffic intensity of the RAN slice m = 2 differs from the
remaining RAN slices, i.e., ρ2 ̸= ρ1 and ρ2 ̸= ρ3. Further-
more, Fig. 8 depicts the average UE blocking probability for
the three RAN slices.
Focusing on the reference solution 1, the MNO

under(over)-provisions radio resources for the three RAN
slices because it always allocates them the same amount of
radio resources regardless their traffic demands as Fig. 7(a)
shows. If we observe Fig. 8, we notice RAN slice m =

2 has a significantly lower average UE blocking probability
than the remaining RAN slices when ρ2/ρ0 is low. The
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FIGURE 8. Evaluation of the average UE blocking probability Bm per RAN
slice when ρ1 = ρ3 = ρ0 and ρ2 takes different values.

opposite happens for higher values of ρ2/ρ0. This involves
that (a) RAN slices m = 1 and m = 3 have higher values for
the average UE blocking probability; and (b) the RAN slice
m = 2 has not enough radio resources to achieve an average
UE blocking probability below the imposed upper bound.

As Fig. 7(b) shows, the reference solution 2 determines
the amount of radio resources allocated for the RAN slices
in proportion to their average offered traffic intensities. This
approach does not guarantee the average UE blocking proba-
bilities are below the upper bound. This is mainly because
the inter-cell interference levels are not considered neither
to compute the radio resource quotas nor to translate these
quotas into specific RBGs. We notice in Fig. 8 how the
average UE blocking probability for RAN slice m = 2 is
above the imposed upper bound for lower values of ρ2/ρ0.
We also observe a similar behavior for RAN slicem = 1 and
m = 3 when ρ2/ρ0 is higher. This is because the reference
solution 2 under-provisions radio resources for RAN slice
m = 2 when ρ2/ρ0 is low, and over-provisions them for
higher values of ρ2/ρ0.
In the case of using the proposed RAN Slice Planner,

we observe in Fig. 8 that our solution outperforms the ref-
erence solutions 1 and 2. Specifically, we notice the average
UE blocking probabilities of all the RAN slices are practically
the same and are always below the upper bound. The reason is
our solution does not only consider the traffic demand and the
average UE blocking probability for these RAN slices in each
cell to allocate them radio resources, but also the inter-cell
interference conditions in the RAN infrastructure. Thismeans
the RAN Slice Planner allocates more radio resources in a
specific cell for those RAN slices i) which present a higher
traffic demand and ii) whose UEs perceive a stronger inter-
ference from neighbor cells. An example of this situation is
depicted in Fig. 7(c) for the RAN slicem = 2. This RAN slice
receivesmore radio resources because it has the highest traffic
demand in cell i = 18 and receives a stronger interference
from RAN slice m = 3 in cells i = 14 and i = 2 (see Fig. 4).

FIGURE 9. RAN slice planning: (i) Before renegotiating the SLA, (ii)
Renegotiation 1 (20% UE reduction); and (iii) Renegotiation 2 (40% UE
reduction).

E. ANALYSIS OF THE RENEGOTIATION CAPABILITY
In this section, we have evaluated the renegotiation capability
provided by the proposed RAN Slice Planner. To that end,
we assume a scenario where (a) three RAN slices are cur-
rently running in the RAN and (b) the MNO receives the
deployment requests of three new RAN slices. For simplic-
ity, we consider all the RAN slices offer the same average
traffic intensity and it is equal to the reference average traffic
intensity ρm = ρ0.
Under this scenario, the proposed RAN Slice Planner exe-

cutes a planning procedure to determine if all the RAN slices
can be accommodated into the RAN. This procedure results
in the blue bars depicted in Fig.9(a). We notice the average
UE blocking probability for all the RAN slices are above the
imposed upper bound, thus the MNO cannot accommodate
the six RAN slices. To solve that, the MNO should (a) rene-
gotiate the SLA with the tenants which request the new RAN
slices or (b) add more resources in the RAN infrastructure.
In this experiment, we consider the MNO renegotiates the
SLA with the tenants. Specifically, we assume the MNO
negotiates a reduction in the number of subscribers for each
RAN slice. This means the average offered traffic intensity
for each new RAN slice is reduced. In the first renegotiation,
the MNO reduces the available subscribers by a 20 %. This
means ρ4 = ρ5 = ρ6 = 0.8ρ0. After the RAN Slice
Planner re-executes the planning procedure, the average UE
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blocking probability for each RAN slice (i.e., orange bars)
is still above the upper bound despite the effective aver-
age throughput for the requested RAN slices is reduced as
Fig. 9(b) shows. If this happens, the MNO tries to reduce
more the amount of subscribers for the requested RAN slices.
In the case of reducing the number of subscribers by a 40 %
(i.e., ρ4 = ρ5 = ρ6 = 0.6ρ0) in these RAN slices,
we observe (i.e., yellow bars) how the average UE blocking
probability of each RAN slice is below the imposed upper
bound.

F. COMPARISON BETWEEN THE PROPOSED SOLUTION
AND THE OPTIMAL SOLUTION
In the last experiment, we have compared how close is the
solution obtained by the proposed RAN Slice Planer from the
optimal solution. To that end, we have performed four tests,
computing in each one (a) the sub-optimal solution obtained
from our game-theoretic-based approach and (b) the values
of the optimization function for the entire solution space by
brute-force search. Due to the huge solution space in this
problem, we have considered a small scenario to perform
this experiment. Specifically, we have considered that 2 RAN
slices must be deployed in 3 cells with 5 RBGs each one.
Considering theMNOmust allocate at least one RBG per cell
and RAN slice, the number of possible solutions is around
6 millions. Based on this scenario, we have considered for
each test that the RAN slices have different performance
requirements in terms of GBR and UE density. Specifically:
(test 1) RAN slice 1: th1 = 800 Kbps and ρ1 = 0.6, RAN
slice 2: th1 = 600 Kbps and ρ1 = 0.9; (test 2) RAN slice 1:
th1 = 450 Kbps and ρ1 = 0.9, RAN slice 2: th1 = 600 Kbps
and ρ1 = 0.6; (test 3) RAN slice 1: th1 = 700 Kbps and
ρ1 = 0.9, RAN slice 2: th1 = 500 Kbps and ρ1 = 0.9; and
(test 4) RAN slice 1: th1 = 550 Kbps and ρ1 = 0.9, RAN
slice 2: th1 = 650 Kbps and ρ1 = 0.3.
The results are depicted in Fig. 10. We show in Fig. 10(a)

the Cumulative Distribution Function (CDF) for the values
of the optimization function, considering the entire solution
space by brute-force search, and for the four performed tests.
We have also marked with a circle in each CDF the solution
obtained by the proposed RAN slice Planner. We observe the
worst case is presented in test 1, where the sub-optimal solu-
tion obtained by our game-theoretic-based approach is within
the 2.5 % of best solutions. Despite the sub-optimal solution
is not close enough to the optimum one (see Fig. 10(b)),
we want to remark our approach got the sub-optimal solution
in few seconds whereas the time spent to compute the optimal
solution by brute-force search was approximately four days
(unfeasible technique for large-scale problems). For the other
tests, we obtained sub-optimal solutions closer to the opti-
mum one. Specifically, in the test 4 we obtained a sub-optimal
solution within the 0.006 % of best solutions. This means
our approach can obtain solutions very close to the optimum
one for some scenarios in a considerably reduced time if we
compare the execution time of our approach with respect to
the brute-force search.

FIGURE 10. Performance comparison between our game-theoretic-based
solution and the optimal solution.

VIII. CONCLUSION AND FUTURE WORK
The RAN slice planning is a procedure to decide the feasi-
bility of deploying new RAN slices over an existing RAN
infrastructure and the configuration of such infrastructure
accordingly. Despite its key importance, this procedure has
barely explored in the literature. Instead, most of the existing
solutions focus on a different procedure known as admission
control. Despite their usefulness, they present some aspects
which do not permit the MNO to use them as planning
tools, e.g., one-by-one request processing, rejecting unfeasi-
ble requests instead of renegotiating the service level agree-
ment, etc.

To address this knowledge gap, we propose a mathematical
framework to compute the radio resource quotas which will
guarantee the UE blocking probability for each RAN slice
with GBR requirements is below an upper bound. We model
the RAN slice planning using game theory. Specifically,
we use multiple ordinal potential games and demonstrate the
existence of a NE solution. To solve these games, we design
novel strategies based on better response dynamics with the
goal of minimizing the average UE blocking probability for
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all the RAN slices. The simulation results demonstrate our
solution allows the MNO to plan RAN slices in a scenario
with resource scarcity whereas the reference solutions do not
under the same conditions.

An interesting direction for future work extensions is the
combination of GBR RAN slices with RAN slices with strin-
gent requirements in terms of latency. For the latter, the goal
of the RAN Slice Planner would be the derivation of the
radio resource quotas which guarantee that a given percentile
(e.g., 95%) of the traffic demands would present a latency
below a certain upper bound. Additionally, we will work in
the improvement of the RAN Slice Planner implementation.
Specifically, we will optimize the algorithm implementa-
tions, reducing the computational complexity of the proposed
RAN Slice Planner.
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