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Abstract: In this paper, we introduce three classes of proximal contractions that are called the
proximally λ− ψ−dominated contractions, generalized η

γ
β−proximal contractions and Berinde-type

weak proximal contractions, and obtain common best proximity points for these proximal contractions
in the setting of F−metric spaces. Further, we obtain the best proximity point result for generalized
α− ϕ−proximal contractions in F−metric spaces. As an application, fixed point and coincidence
point results for these contractions are obtained. Some examples are provided to support the validity
of our main results. Moreover, we obtain a completeness characterization of the F−metric spaces via
best proximity points.
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1. Introduction and Preliminaries

In 1922, Banach [1] introduced his well-known contraction principle, which states
that any single-valued self-mapping T defined on a complete metric space satisfying the
contractivity condition admits a unique fixed point. Afterward, fixed point theory appeared
as a fundamental and broad subject in nonlinear analysis, which is still developing at a rapid
pace. It has useful applications in mathematics as well as various scientific disciplines, such
as physics, chemistry, computer science, and others. In fact, many practical and research
problems in science and engineering can be reduced to fixed point problems. As a result,
this theory has offered a remarkable scope of research. Most of the research on this theory
can be roughly divided into two directions: generalizing the contraction conditions, the
underlying metric spaces and extending the applications. We refer readers to [2–12] and
the references therein. Very recently, a new generalization of the notion of metric space,
called an F−metric space, was given in [6], for which the authors used a certain class of
auxiliary functions to establish the idea of such abstract spaces. It is obvious that any metric
space is an F−metric space, but the converse is not valid in general. A comparison of the
F−metric with the existing generalizations of metric in [6] illustrates that any s−relaxed
p−metric is an F−metric, but the converse is not true, which confirms that the class of
F−metric spaces is larger than the class of s−relaxed p−metric spaces. Moreover, some
examples in [6] also figured out that F−metric and b−metric are two distinct notions. For
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more details about other generalizations of metric, we refer readers to the book [13] written
by Kirk.

Metric fixed point theory gives sufficient conditions that ensure the existence of
solutions to the equation T(x) = x, where T is a self mapping defined on a metric space
(X, d). On the other hand, for a non-self mapping T : A → B, if T(A) ∩ A = ∅, the
mapping T has no fixed point. In this case, it is vital to find an element u0 from the domain
spaces whose distance from its image is a minimum. This type of problem is often stated as
follows: “Does there exist a point u0 in the metric space (X, d) such that d(u0, Tu0) = d(A, B),
where A, B are two nonempty subsets of X, T : A → B is a non-self mapping and d(A, B) =
inf{d(a, b), (a, b) ∈ A× B}.” Recall that the point u0 is called the best proximity point, which
was introduced by Basha and Veeramani [14]. By the definition of the best proximity point,
it is clear that every best proximity point is a fixed point of the mapping T when A∩ B 6= ∅.
This new setting is richer and more general than the metric fixed point theory. A noteworthy
best approximation theorem (see [15]) states that if A is a nonempty compact convex subset
of a Hausdorff locally convex topological vector space X and f : A → X is a continuous
single-valued function, then either f has a fixed point in A, or there exists an element x0 ∈ A
and a continuous semi-norm p on X such that 0 < p(x0 − f x0) = minx∈A p(x− f (x0)). In
best proximity point theory, many authors attempted to find minimum conditions on the
non-self mapping T to ensure the existence and uniqueness of the best proximity point. For
more details, we refer to [16–20] and the references therein.

The aim of this paper is to present some common best proximity point results in the
setting of F−metric spaces. Based on the notion of commuting mappings introduced by
Jungck [5], a common fixed point theorem, due to Das and Naik [4], is a special case of
our common best proximity point theorem for commuting self-mappings. In the following
discussion, the concepts of proximally λ−ψ−dominated contraction, η

γ
β−proximal contrac-

tion and Berinde-type weak proximal contraction are introduced. Further, some common
best proximity point results are proven, which generalize the main results of [21,22] in
the setting of F−metric spaces. Moreover, we will introduce the notion of generalized
α− ϕ−proximal contractions and prove the best proximity point result for such contrac-
tions. As an application, coincidence point and fixed point theorems corresponding to
the above proximal contractions are also presented. Some examples are also presented to
support our main results. Moreover, a completeness characterization of an F−metric space
will be studied in connection with the best proximity points.

Given two nonempty subsets, A and B, of a metric space (X,D), the following nota-
tions and notions will be used.

D(A, B) = inf{D(x, y) : x ∈ A, y ∈ B}.
A0 = {x ∈ A : D(x, y) = D(A, B), for some y ∈ B}.
B0 = {y ∈ B : D(x, y) = D(A, B), for some x ∈ A}.

If A ∩ B 6= ∅, then A0 and B0 are nonempty. Further, it is interesting to notice that A0
and B0 are included in the boundaries of A and B, respectively, provided that A and B are
closed subsets of a normed linear space such that d(A, B) > 0 (see [14]).

In 2018, the concept of F−metric space was presented by Jleli and Samet in [6] as a
generalization of the notion of metric space. More precisely, let F be the set of functions
f : (0,+∞)→ R satisfying the following conditions:

(F1) f is non-decreasing, i.e., 0 < s < t⇒ f (s) ≤ f (t).
(F2) For every sequence {tn} ⊂ (0,+∞), we have limn→+∞ tn = 0⇔ limn→+∞ f (tn) =

−∞.
Here are some examples of f belonging to F .
(i) f1(t) = − 1

t , t ∈ (0,+∞);
(ii) f2(t) = ln t, t ∈ (0,+∞);
(iii) f3(t) = −e

1
t , t ∈ (0,+∞).
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Using such functions, Jleli and Samet [6] generalized the concept of ordinary metric
space and introduced the notion of F−metric space as follows:

Definition 1 ([6]). Let X be a nonempty set, and D : X × X → [0,+∞) be a given mapping.
Assume that there exists ( f , α) ∈ F × [0,+∞) such that

(D1) (x, y) ∈ X× X, D(x, y) = 0⇔ x = y;
(D2) D(x, y) = D(y, x), ∀(x, y) ∈ X× X;
(D3) for every (x, y) ∈ X×X, N ∈ N with N ≥ 2 and (ui)

N
i=1 ⊂ X with (u1, uN) = (x, y),

we have

D(x, y) > 0⇒ f (D(x, y)) ≤ f

(
N−1

∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be an F−metric on X, and the pair (X,D) is said to be an F−metric space.

Example 1 ([6]). Let X = N and let D : X × X → [0,+∞) be a mapping defined for all
(x, y) ∈ X× X,

D(x, y) =

{
exp(|x− y|), if x 6= y
0, if x = y

.

For f (t) = −1
t , t > 0 and α = 1, D is an F− metric.

Definition 2 ([6]). Let (X,D) be an F−metric space. A subset O of X is said to be F−open if
for ∀x ∈ O, ∃r > 0 such that B(x, r) ⊂ O, where B(x, r) = {y ∈ X : D(x, y) < r}.

We say that a subset C of X is F−closed if X\C is F−open. We denote by τF the family of
all F−open subsets of X.

Proposition 1 ([6]). Let (X,D) be an F−metric space. Then τF is a topology on X.

Proposition 2 ([6]). Let (X,D) be an F−metric space. Then for any nonempty subset A of X,
the following statements are equivalent:

(i) A is F−closed.
(ii) For any sequence {xn} ⊂ A, we have

lim
n→+∞

D(xn, x) = 0, x ∈ X ⇒ x ∈ A.

Definition 3 ([6]). Let (X,D) be an F−metric space and {xn} be a sequence in X. Then

(i) {xn} is F−convergent to x ∈ X, if {xn} is convergent to x with respect to the topology
τF , i.e., for every F−open subset Ox of X containing x, there exists some N ∈ N such that
xn ∈ Ox for ∀n ≥ N. In this case, we say that x is the limit of {xn}.

(ii) {xn} is F−Cauchy, if lim
n,m→+∞

D(xn, xm) = 0.

(iii) (X,D) is F−complete, if every F−Cauchy sequence in X is F−convergent to a certain
element in X.

Proposition 3 ([6]). Let (X,D) be anF−metric space and {xn} be a sequence in X. Then we have

(1) a sequence {xn} that is F−convergent to x⇒ lim
n→+∞

D(xn, x) = 0.

(2) the limit of an F−convergent sequence is unique, i.e., (x, y) ∈ X × X, lim
n→+∞

D(xn, x) =

lim
n→+∞

D(xn, y) = 0⇒ x = y.

(3) if a sequence is {xn} is F−convergent, then it is F−Cauchy.
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Definition 4 ([6]). Let X be a nonempty set and D : X × X → [0, ∞) be a given mapping
satisfying (D1) and (D2). Then the pair (X,D) is F−metric bounded with respect to ( f , α) ∈
F × [0,+∞) if there exists a metric d on X such that

(x, y) ∈ X× X,D(x, y) > 0⇒ f (d(x, y)) ≤ f (D(x, y)) ≤ f (d(x, y)) + α.

Definition 5 ([23]). Let α : X × X → R be a given function. We say that T : X → X is
α−admissible if

(x, y) ∈ X× X, α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

Based on the existing definitions introduced in normal metric spaces, we will introduce
the analogous definitions in the setting of an F−metric space as follows.

Definition 6 ([21]). Let A and B be two nonempty subsets of an F−metric space (X,D). A
mapping T : A→ B is said to be a proximal contraction if there exists a non-negative real number
λ < 1 such that

D(u1, Tx1) = D(A, B) = D(u2, Tx2)⇒ D(u1, u2) ≤ λD(x1, x2), ∀u1, u2, x1, x2 ∈ A.

Definition 7 ([21]). Let A and B be two nonempty subsets of an F−metric space (X,D). Two
mappings T, S : A→ B are said to proximally commute if the following holds true

D(u, Sx) = D(v, Tx) = D(A, B)⇒ Sv = Tu, ∀u, v, x ∈ A.

Definition 8 ([21]). Let A and B be two nonempty subsets of an F−metric space (X,D). A
mapping T : A → B is said to proximally dominate a mapping S : A → B if there exists a
non-negative real number ξ < 1 such that

D(u1, Sx1) = D(v1, Tx1) = D(A, B) = D(u2, Sx2) = D(v2, Tx2)

⇒ D(u1, u2) ≤ ξD(v1, v2), ∀u1, u2, x1, x2, v1, v2 ∈ A.

Definition 9 ([16]). Let (X,D) be an F−metric space and T : A→ B and α : A× A→ [0,+∞)
be two mappings. We say that T is α−proximal admissible if

α(x1, x2) ≥ 1,D(u1, Tx1) = D(A, B) = D(u2, Tx2)⇒ α(u1, u2) ≥ 1, ∀x1, x2, u1, u2 ∈ A.

Definition 10 ([14]). Let A and B be nonempty subsets of a metric space F−metric space (X,D)
and T : A→ B be a given mapping. A point x0 ∈ A is said to be the best proximity point of T if
d(x0, Tx0) = D(A, B).

Definition 11 ([24]). Let A and B be two nonempty subsets of an F−metric space (X,D). An
element x ∈ A is said to be a common best proximity point of the pair (T, S) if x satisfies

D(x, Sx) = D(x, Tx) = D(A, B),

where T, S : A→ B are two non-self mappings.

Definition 12 ([17]). Let A and B be two nonempty subsets of an F−metric space (X,D) with
A0 6= ∅. Then the pair (A, B) is said to satisfy the P−property⇔ for all x1, x2 ∈ A0, y1, y2 ∈ B0,

D(x1, y1) = D(A, B) = D(x2, y2)⇒ D(x1, x2) = D(y1, y2).
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Definition 13 ([18]). Let A and B be two nonempty subsets of an F−metric space (X,D) with
A0 6= ∅. Then the pair (A, B) is said to satisfy the weak P−property⇔ for all x1, x2 ∈ A0, y1, y2 ∈ B0,

D(x1, y1) = D(A, B) = D(x2, y2)⇒ D(x1, x2) ≤ D(y1, y2).

Here is an example to show that (A, B) satisfies the weak P−property but not the
P−property.

Example 2. Consider an F−metric space illustrated in Example 4 in [25] as follows.
Define g : R2 → [0,+∞) by

g(x, y) =

{
2|x| y = 0,
|x|+ |y| y 6= 0.

Let D((x1, y1), (x2, y2)) = g(x1 − x2, y1 − y2), where (x1, y1), (x2, y2) ∈ R2. Then, it can
be easily checked that (R2,D) is an F−metric space with f (t) = ln t ∈ F and α = ln 2.

Set A = {(0, 0)} and B = {(x, y) : y = 1− |x|}. Obviously, A0 = {(0, 0)}, B0 = {(x, y) :
y = 1− |x|, |x| ≤ 1} and D(A, B) = 1.

Furthermore,
D((0, 0), ( 1

2 , 1
2 )) = D((0, 0), (− 1

2 , 1
2 )) = 1, 0 = D((0, 0), (0, 0)) < D(( 1

2 , 1
2 ), (−

1
2 , 1

2 )) =
2.

We can conclude that (A, B) satisfies the weak P−property but not the P−property.

Definition 14 ([26]). Let (X,D) be an F−metric space and (A, B) be a pair of nonempty closed
subsets of X. An F−metric space (X,D) has the R−property with respect to the pair (A, B), that
is, if xn is a sequence in A such that α(xn, xn+1) ≥ 1 and limn→+∞ xn = x∗ ∈ A, then there
exists a subsequence {xnk} of {xn} such that α(xnk , x∗) ≥ 1 for all k ∈ N. If A = B = X, then
we say that (X,D) satisfies property (A).

2. Common Best Proximity Points for New Proximal Contractions

First, we introduce the following auxiliary functions [27] that will be used in the
main discussions.

Let Ψ denote the family of all functions ψ : [0,+∞)→ [0,+∞), where

(1) ψ is increasing and continuous;
(2) t ≤ ψ(t) and ψ(0) = 0;
(3) ψ(x + y) ≤ ψ(x) + ψ(y), ∀x, y ∈ [0,+∞).

Let Υ denote the family of all functions ϕ : [0,+∞)→ [0,+∞), where

(1) ϕ is non-decreasing and continuous;
(2) ϕ(t) < t, ∀t > 0;
(3) ∑+∞

n=1 ϕn(t) < +∞, ∀t > 0.

Let Λ denote the family of all functions λ : [0,+∞)→ [0, 1), where

(1) λ is non-decreasing;
(2) λ(tn)→ 1⇒ tn → 0.

Next, we will introduce the notions of proximally λ − ψ−dominated contraction,
generalized η

γ
β−proximal contraction and Berinde-type weak proximal contraction in the

setting of an F−metric space as follows.
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Definition 15. Let A and B be two nonempty subsets of an F−metric space (X,D). The pair
(T, S) of non-self mappings T, S : A→ B is said to be a proximally λ− ψ−dominated contraction
if there exist λ ∈ Λ and ψ ∈ Ψ such that for all u1, u2, v1, v2, x1, x2 ∈ A

D(u1, Sx1) = D(v1, Tx1) = D(A, B) = D(u2, Sx2) = D(v2, Tx2)

⇒ ψ(D(u1, u2)) ≤ λ(D(v1, v2))ψ(D(v1, v2)).

Definition 16. Let A and B be two nonempty subsets of an F−metric space (X,D). The pair
(T, S) of non-self mappings T, S : A → B is said to be a generalized η

γ
β−proximal contraction if

there exist η ∈ (0, 1) and β, γ ∈ [0, 1) with η + β + γ < 1 such that for all x, y ∈ A

D(Tx, Ty) ≤ ηD(Sx, Sy) + βD(Sx, Tx) + γD(Sy, Ty).

Definition 17. Let A and B be two nonempty subsets of an F−metric space (X,D). The pair
(T, S) of non-self mappings T, S : A→ B is said to be Berinde-type weak proximal contraction, if
there exist ξ ∈ (0, 1) and L ≥ 0 such that for all u1, u2, v1, v2, x1, x2 ∈ A

D(u1, Sx1) = D(v1, Tx1) = D(A, B) = D(u2, Sx2) = D(v2, Tx2)⇒
D(u1, u2) ≤ ξ max{D(u1, v1),D(u1, u2)}+ L min{D(u2, Sx2)−D(A, B)D(u1, v1)}.

Definition 18. Let (X,D) be an F−metric space and (A, B) be a pair of nonempty subsets of X.
A mapping T : A→ B is said to be a generalized α− φ−proximal contraction if there exists φ ∈ Υ
such that for all x, y ∈ A

α(x, y)D(Tx, Ty) ≤ φ(D(x, y)),

where α : A× A→ [0, ∞) is a mapping.

Theorem 1. Let (A, B) be a pair of nonempty subsets of an F−complete metric space (X,D).
Assume that A0 is a nonempty and closed subset of X. Suppose that the pair (T, S) of non-self
mappings T, S : A→ B satisfies the following conditions:

(1) the pair (T, S) of non-self mappings is a proximally λ− ψ−dominated contraction;
(2) T and S proximally commute;
(3) T and S are continuous;
(4) S(A0) ⊆ B0 and S(A0) ⊆ T(A0).

Then the pair (T, S) admits a unique common best proximity point.

Proof. Let x0 be a fixed element in A0. Since S(A0) ⊆ T(A0), there exists an element
x1 ∈ A0 such that Sx0 = Tx1. Repeating this process, having chosen xn ∈ A0, we can find
an element xn+1 ∈ A0 satisfying

Sxn = Txn+1, ∀n ∈ N∪ {0}. (1)

Further, since S(A0) ⊆ B0, correspondingly, there exists an element un ∈ A0 such that

D(un, Sxn) = D(A, B), ∀n ∈ N∪ {0}. (2)

Further, it follows from the choice of xn and un and from (1) and (2) that for all n ∈ N,

D(un+1, Sxn+1) = D(un, Txn+1) = D(un−1, Txn) = D(A, B). (3)

Since the pair (T, S) is a proximally λ− ψ−dominated contraction, from (1) to (3),
we have

ψ(D(un, un+1)) ≤ λ(D(un−1, un))ψ(D(un−1, un)) < ψ(D(un−1, un)). (4)
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Since ψ is increasing, {D(un−1, un)} is non-increasing and bounded. Therefore,
lim

n→+∞
D(un−1, un) exists.

Let lim
n→+∞

D(un−1, un) = r ≥ 0. Assume that r > 0. Then from (4) we have

ψ(D(un, un+1))

ψ(D(un−1, un))
≤ λ(D(un−1, un)).

Since ψ is continuous, the above inequality yields

lim
n→+∞

λ(D(un−1, un)) = 1,

which implies that r = 0, that is,

lim
n→+∞

D(un−1, un) = 0.

Keeping in mind that {D(un−1, un)} is non-increasing and λ is a non-decreasing
function, we have

λ(D(u0, u1)) ≥ λ(D(u1, u2)) ≥ . . . ≥ λ(D(un−1, un)).

Further, from inequality (4), we have

ψ(D(un+1, un)) < ψ(D(un−1, un))

≤ λ(D(un−2, un−1))ψ(D(un−2, un−1))

≤ λ(D(un−2, un−1))λ(D(un−3, un−2))ψ(D(un−3, un−2))

≤ λ(D(un−2, un−1))λ(D(un−3, un−2)) · · · λ(D(u1, u2))λ(D(u0, u1))ψ(D(u0, u1))

≤ λ(D(u0, u1))λ(D(u0, u1)) · · · λ(D(u0, u1))λ(D(u0, u1))ψ(D(u0, u1))

≤ λn(D(u0, u1))ψ(D(u0, u1))

= µnψ(D(u0, u1)),

where µ = λ(D(u0, u1)) ∈ [0, 1). Therefore,

ψ(D(un, un+1)) < µnψ(D(u0, u1)),

which yields that
m−1

∑
i=n

ψ(D(ui, ui+1)) <
µn

1− µ
ψ(D(u0, u1)). (5)

Next, we will prove that {un} is an F−Cauchy sequence.
Without a loss in the generality, we may suppose that D(u0, u1) > 0. Otherwise, from

the construction of {un}, we can conclude that un = u0 for all n ∈ N and so {un} is an
F−Cauchy.

First, let ( f , α) ∈ F × [0, ∞) be such that (D3) is satisfied. For any given ε > 0, by
(F2), there exists δ > 0 such that

0 < t < δ⇒ f (t) < f (ε)− α. (6)

Since
lim

n→+∞

µn

1− µ
ψ(D(u0, u1)) = 0,

then for δ > 0, there exists some N ∈ N such that

0 <
µn

1− µ
ψ(D(u0, u1)) < δ, ∀n ≥ N. (7)
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In addition, since ψ satisfies that t ≤ ψ(t), we have

m−1

∑
i=n

D(ui, ui+1) ≤
m−1

∑
i=n

ψ(D(ui, ui+1)) <
µn

1− µ
ψ(D(u0, u1)). (8)

Hence, by (7)–(8) and (F1), we have

f

(
m−1

∑
i=n

D(ui, ui+1)

)
≤ f

(
µn

1− µ
ψ(D(u0, u1))

)
< f (ε)− α, ∀m > n ≥ N. (9)

By (D3) and inequality (9), we have

D(un, um) > 0, m > n > N ⇒ f (D(un, um)) ≤ f

(
m−1

∑
i=n

D(ui, ui+1)

)
+ α < f (ε),

which implies by (F1) that

D(un, um) < ε, ∀m > n ≥ N.

This proves that {un} is anF−Cauchy sequence. Since (X,D) is a completeF−metric
space and A0 is closed, there exists some u ∈ A0 such that limn→+∞ un = u. Because of
the fact that the mappings S and T proximally commute and from inequalities (2) and (3),
we have

Tun = Sun−1, ∀n ∈ N.

Therefore, the continuity of the mappings S and T ensures that

Tu = lim
n→+∞

Tun = lim
n→+∞

Sun−1 = Su.

Since S(A0) ⊆ B0, there exists an element x ∈ A0 ⊆ A such that

D(x, Su) = D(x, Tu) = D(A, B),

It follows from Definition 7 that Sx = Tx. Again, since S(A0) ⊆ B0, there exists z ∈ A
such that

D(z, Sx) = D(z, Tx) = D(A, B).

Since the pair of mappings (T, S) is λ− ψ−dominate proximally contractive, we have

ψ(D(x, z)) ≤ λ(D(x, z))ψ(D(x, z)),

which implies x = z. Thus, it follows that

D(x, Sx) = D(z, Sx) = D(A, B) = D(x, Tx) = D(z, Tx).

Therefore, x is a common best proximity point of the mappings S and T.
Suppose that y is another common best proximity point of the mappings S and T such

that x 6= y. We have

D(x, Sx) = D(A, B) = D(x, Tx). (10)

D(y, Sy) = D(A, B) = D(y, Ty).

By the definition of λ− ψ−dominate proximal contractivity and (10), we have

ψ(D(x, y)) ≤ λ(D(x, y))ψ(D(x, y)) < ψ(D(x, y),
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which implies that x = y. Hence, x is a unique common best proximity point that satisfies
D(x, Sx) = D(A, B) = D(x, Tx).

Example 3. Let X∗ = [0, 1] × [0, 1] be endowed with a metric D : [0, 1]2 × [0, 1]2 → [0, ∞)
defined by for all x = (x1, x2), y = (y1, y2) ∈ X∗

D(x, y) =

{
exp∑2

i=1|xi−yi |, if xi 6= yi,
0, if xi = yi.

It can be easily checked that D is an F−metric with f (t) = − 1
t ∈ F and α = 1.

Let A = {(0, x∗) : 0 ≤ x∗ ≤ 1} and B = {(1, y∗) : 0 ≤ y∗ ≤ 1}. Notice that we can
have that A0 = A, B0 = B and D(A, B) = e. Consider the mappings T, S : A → B defined by
S(0, x∗) = (1, ln(1 + x∗)), and T(0, x∗) = (1, x∗).

Now, we claim that the pair (T, S) is a λ − ψ−dominate proximal contraction. Consider
λ ∈ Λ and ψ ∈ Ψ defined by λ(t) = 1− ln2 t

2t , ∀t ∈ (0, ∞) and ψ(t) = t, ∀t ∈ [0, ∞). Choosing
u1 = (0, u), v1 = (0, v), w1 = (0, w), s1 = (0, s), x1 = (0, x), y1 = (0, y) in A satisfying

D(u1, Sx1) = D(v1, Sy1) = D(A, B) = D(w1, Tx1) = D(s1, Ty1) = e.

We have w = x, s = y and u = ln(1 + x), v = ln(1 + y).
Thus, we can write

ψ(D(u1, v1)) = e| ln(1+x)−ln(1+y)|

= e| ln(1+w)−ln(1+s)|

≤ eln(1+|w−s|)

< e|w−s| − 1
2
|w− s|2

= e|w−s|
(

1− ln2 e|w−s|

2e|w−s|

)
= λ(D(w1, s1))ψ(D(w1, s1)),

which shows that the pair (T, S) commutes proximally and is a λ− ψ−dominate proximal contrac-
tion. Therefore, all conditions of Theorem 1 are satisfied. From the conclusion of Theorem 1, (T, S)
has a unique common best proximity point, which is (0, 0) ∈ A.

Theorem 2. Suppose that (A, B) is a pair of nonempty subsets of a complete F−metric space
(X,D) that satisfies the P−property. Assume that A0 is a nonempty and closed subset of A. Further,
suppose that S, T : A→ B are continuous mappings, where T and S proximally commute. Further,
assume that the pair (T, S) is a generalized η

γ
β−proximal contraction satisfying S(A0) ⊆ T(A0)

and S(A0) ⊆ B0. Then the pair (T, S) admits a unique common best proximity point.

Proof. Let x0 be a fixed element in A0. Since S(A0) ⊆ T(A0), there exists an element
x1 ∈ A0 such that Sx0 = Tx1. Repeating this process, having chosen xn ∈ A0, we can find
an element xn+1 ∈ A0 satisfying

Txn = Sxn+1, ∀n ∈ N∪ {0}. (11)

Further, since S(A0) ⊆ B0, correspondingly, there exists an element un ∈ A0 such that

D(un, Txn) = D(A, B), ∀n ∈ N∪ {0}. (12)

Further, it follows from the choice of xn and un and from (11) and (12) that

D(un+1, Txn+1) = D(un, Sxn+1) = D(un−1, Sxn) = D(A, B), ∀n ∈ N. (13)
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Since the pair (A, B) satisfies the P−property, and it is a generalized η
γ
β−proximal

contraction, we have

D(un, un+1) = D(Txn, Txn+1)

≤ ηD(Sxn, Sxn+1) + βD(Sxn, Txn) + γD(Sxn+1, Txn+1)

= ηD(un−1, un) + βD(un−1, un) + γD(un, un+1).

After simplification, we have

D(un, un+1)− γD(un, un+1) ≤ ηD(un−1, un) + βD(un−1, un)

(1− γ)D(un, un+1) ≤ (η + β)D(un−1, un)

D(un, un+1) ≤
η + β

1− γ
D(un−1, un).

Further, it can be written as

D(un, un+1) ≤ ρD(un−1, un), ∀n ∈ N, (14)

where ρ = η+β
1−γ ∈ (0, 1), due to η + β + γ < 1.

Now, we will prove that {un} is an F−Cauchy sequence.
Reasoning as in the proof of Theorem 1, we can assume, without a loss in generality,

that D(u0, u1) > 0. From (14), we have

D(un, un+1) ≤ ρD(un−1, un)

≤ ρ2D(un−2, un−1)

...

≤ ρnD(u0, u1), ∀n ∈ N.

It follows that

m−1

∑
i=n

D(ui, ui+1) ≤
ρn

1− ρ
D(u0, u1), ∀m ≥ n. (15)

This further implies that

lim
n→+∞

ρn

1− ρ
D(u0, u1) = 0. (16)

Let ( f , α) ∈ F × [0, ∞) be such that (D3) is satisfied.
For any given ε > 0, by (F2), there exists δ > 0 such that

0 < t < δ⇒ f (t) < f (ε)− α. (17)

It follows from (F1) and (15)–(17) that there exists N ∈ N such that

f

(
m−1

∑
i=n

D(ui, ui+1)

)
≤ f

(
ρn

1− ρ
D(u0, u1)

)
< f (ε)− α, ∀m > n ≥ N.

This implies that

f

(
m−1

∑
i=n

D(ui, ui+1)

)
< f (ε)− α, ∀m > n ≥ N. (18)
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Using (D3) and (18), we obtain

D(un, um) > 0, m > n > N ⇒ f (D(un, um)) ≤ f

(
m−1

∑
i=n

D(ui, ui+1)

)
+ α < f (ε),

which implies by (F1) that D(un, um) ≤ ε, ∀m > n ≥ N.
Therefore, the sequence {un} is an F−Cauchy sequence. Since (X,D) is an

F−complete metric space and A0 is closed, there exists some u ∈ A0 such that
limn→+∞ un = u. Since the mappings S and T proximally commute from (11) and (12),
we have

Sun = Tun−1, ∀n ∈ N.

Since S and T are continuous mappings, therefore,

Su = lim
n→+∞

Sun = lim
n→+∞

Tun−1 = Tu.

Since T(A0) ⊆ B0, there exists an element x ∈ A such that

D(x, Tu) = D(A, B) = D(x, Su). (19)

It follows from Definition 7 that Sx = Tx. Again, since T(A0) ⊆ B0, there exists z ∈ A
such that

D(z, Tx) = D(A, B) = D(z, Sx). (20)

To prove that z = x, suppose that they are distinct.
Since the pair of subsets (A, B) satisfies the P−property and from Equations (19) and (20),

we have

D(x, z) = D(Tu, Tx)

≤ ηD(Su, Sx) + βD(Su, Tu) + γD(Sx, Tx)

= ηD(x, z) + βD(x, x) + γD(z, z)

= ηD(x, z)

< D(x, z),

which is a contradiction. It can be easily seen from (20) that

D(x, Tx) = D(A, B) = D(x, Sx). (21)

Then x is a common best proximity point of the mappings T and S.
Suppose y is another common best proximity point of the mappings T and S. We have

D(y, Ty) = D(A, B) = D(y, Sy). (22)

As the pair (A, B) satisfies the P−property, from (21) and (22), we have

D(x, y) = D(Tx, Ty)

≤ ηD(Sx, Sy) + βD(Sx, Tx) + γD(Sy, Ty)

≤ ηD(x, y) + βD(x, x) + γD(y, y)

≤ ηD(x, y)

< D(x, y),

which is a contradiction. Hence, x = y; that is, x is the unique common best proximity
point of the mappings S and T such that D(x, Tx) = D(A, B) = D(x, Sx).
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Example 4. Let X = R2 be endowed with an F−metric D : R2 × R2 → [0,+∞) defined
by D((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2| for all (x1, y1), (x2, y2) ∈ R2. Suppose that
A = {(1, x), x ∈ R} and B = {(0, x), x ∈ R}. For given A and B, we have A0 = A, B0 = B and
D(A, B) = 1. Obviously, A0 is closed and nonempty.

Define T, S : A→ B by S(1, x) = (0, x), T(1, x) = (0, 2x) for all x ∈ R. After a simple cal-
culation, we can see that T and S are continuous and S(A0) ⊆ T(A0) and S(A0) ⊆ B0. Choosing
any (1, a), (1, b), (1, c) ∈ A such that D((1, a), T(1, c)) = D((1, b), S(1, c)) = D(A, B) = 1, we
have a = 2c and c = b. Thus, we have T(1, a) = (0, a) = S(1, b) = (0, 2b), which demonstrates
that T, S proximally commute.

Moreover, for ∀(1, x), (1, y) ∈ A, there exist η = 1
2 ∈ (0, 1) and β = γ = 1

8 ∈ [0, 1) with
η + β + γ < 1 such that

|x− y| = D(T(1, x), T(1, y))

≤ 1
2
D(S(1, x), S(1, y)) + βD(S(1, x), T(1, x)) + γD(S(1, y), T(1, y))

= |x− y|+ 1
8
(|x|+ |y|),

which shows that (T, S) is a generalized η
γ
β−proximal contraction.

Hence, all the assumptions of Theorem 2 are satisfied. Therefore, T, S have a unique common
best proximity point, which is (1, 0).

Theorem 3. Let (A, B) be a pair of nonempty subsets of a complete F−metric space (X,D)
satisfying the P−property. Assume that A0 is a nonempty closed subset of A. Further, suppose
that S, T : A → B proximally commute, where T and S commute proximally. Further, assume
that the pair (T, S) is a Berinde-type weak proximal contraction verifying S(A0) ⊆ B0 and
S(A0) ⊆ T(A0). Then the pair (T, S) admits a unique common best proximity point.

Proof. Let x0 be a fixed element in A0. Following the process stated in the proof of Theorem 1,
we can find two sequences {xn}, {un} in A0 such that

Sxn = Txn+1, ∀n ∈ N (23)

and

D(un, Sxn) = D(un+1, Sxn+1) = D(un, Txn+1) = D(un−1, Txn) = D(A, B), ∀n ∈ N. (24)

Since the pair (T, S) is a Berinde-type weak proximal contraction, from Equation (24),
we have

D(un, un+1) ≤ λ∗max{D(un−1, un),D(un, un+1)}
+ L min{D(un+1, Sxn+1)−D(A, B),D(un−1, un)}

= λ∗max{D(un−1, un),D(un, un+1)},

which can be written as

D(un, un+1) ≤ λ∗max{D(un−1, un),D(un, un+1)}. (25)

If max{D(un−1, un),D(un, un+1)} = D(un, un+1) for some n ∈ N, then from (25),
we have

D(un, un+1) ≤ λ∗D(un, un+1) < D(un, un+1),

which is a contradiction. Therefore, we have

D(un, un+1) ≤ λ∗D(un−1, un), ∀n ∈ N. (26)
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Next, we will prove that {un} is an F−Cauchy sequence.
Reasoning as in the proof of Theorem 1, we can assume, without a loss in generality,

that D(u0, u1) > 0.
It follows from (26) that for all n ∈ N,

D(un, un+1) ≤ λ∗D(un−1, un)

≤ λ∗(λ∗D(un−2, un−1))

= λ∗2D(un−2, un−1)

...

≤ λ∗nD(u0, u1).

It follows that

m−1

∑
i=n

D(ui, ui+1) ≤
λ∗n

1− λ∗
D(u0, u1), ∀m ≥ n. (27)

This further implies that

lim
n→+∞

λ∗n

1− λ∗
D(u0, u1) = 0. (28)

Given ( f , α) ∈ F × [0,+∞) such that (D3) holds. For any given ε > 0, by (F2), there
exists δ > 0 such that

0 < t < δ⇒ f (t) < f (ε)− α. (29)

It follows from (F1) and (27)–(29) that there exists N ∈ N such that

f

(
m−1

∑
i=n

D(ui, ui+1)

)
≤ f

(
λ∗n

1− λ∗
D(u0, u1)

)
< f (ε)− α, ∀m > n ≥ N.

This implies

f

(
m−1

∑
i=n

D(ui, ui+1)

)
≤ f (ε)− α, ∀m > n ≥ n0. (30)

Using (D3) and (30), we obtain

D(un, um) > 0, m > n > N ⇒ f (D(un, um)) ≤ f

(
m−1

∑
i=n

D(ui, ui+1)

)
+ α ≤ f (ε),

which implies by (F1)
D(un, um) < ε, ∀m > n ≥ N.

Therefore, sequence {un} is an F−Cauchy sequence.
Since (X,D) is a complete F−metric space and A0 is closed, there exists u ∈ A0 such

that lim
n→+∞

un = u. Because of the fact that the mappings T and S proximally commute and

from (23) and (24), we have
Sun−1 = Tun, ∀n ∈ N.

Therefore, the continuity of the mappings T and S ensures that

Tu = lim
n→+∞

Tun = lim
n→+∞

Sun−1 = Su.
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Since S(A0) ⊆ B0, there exists an x ∈ A such that

D(x, Su) = D(A, B) = D(x, Tu). (31)

As T and S proximally commute, Tx = Sx. Further, S(A0) ⊆ B0, there exists z ∈ A
such that

D(z, Sx) = D(A, B) = D(z, Tx). (32)

If we suppose that x is distinct from z, it follows from (31), (32) and the P−property that

D(x, z) ≤ λ∗max{D(x, x),D(x, z)}+ L min{D(z, Sx)−D(A, B),D(x, x)}
≤ λ∗D(x, z)

< D(x, z),

which is a contradiction; hence x = z. It follows from (32) that

D(x, Sx) = D(A, B) = D(x, Tx). (33)

Therefore, x is a common best proximity point of the pair (T, S).
Suppose y ∈ X is a distinct common best proximity point of the mappings T and S.

We have
D(y, Sy) = D(A, B) = D(y, Ty). (34)

Since the pair (T, S) is a Berinde-type weak proximal contraction, from (33) and (34),
we have

D(x, y) ≤ λ∗max{D(x, x),D(x, y)}+ L min{D(y, Sy)−D(A, B),D(x, x)}.

Therefore, we deduce that

D(x, y) ≤ λ∗D(x, y) < D(x, y),

which is a contradiction. Therefore, x is the unique common best proximity point of the
pair of mappings (T, S).

Example 5. Let X = R be endowed with metric D : R × R → [0,+∞) defined as
D(x, y) = |x− y|, for all x, y ∈ X. We can see that (X,D) is an F−metric space with
f (t) = ln t ∈ F and α = 0. Suppose that A = [−2, 0] and B = [1,+∞). We have that
A0 = {0}, B0 = {1} and D(A, B) = 1. Obviously, A0 is closed and nonempty, and A, B satisfy
the P−property.

Define T, S : A → B by T(x) = x2 + 1, S(x) = −2x + 1. After a simple computation, we
can see that T, S are continuous and S(A0) ⊆ T(A0) and S(A0) ⊆ B0. Choosing any x, y, z ∈ A
such that D(x, Tz) = D(y, Sz) = D(A, B) = 1, we have x = z = y = 0. Thus, we have
Ty = Sx, which verifies that T, S commute proximally.

Moreover, let ξ ∈ (0, 1) and L ≥ 0, and assume that for some u1, u2, v1, v2, x1, x2 ∈ A the
following equations hold

D(u1, Sx1) = D(v1, Tx1) = D(u2, Sx2) = D(v2, Tx2) = D(A, B) = 1.

Then we have x1 = x2 = u1 = u2 = v1 = v2 = 0. Thus, (T, S) is a Berinde-type weak
proximal contraction. Hence, all the conditions of Theorem 3 are satisfied. Therefore, (T, S) has a
unique common best proximity point, which is 0.

In our next result, we proved the existence and uniqueness of the best proximity point
for a modified Berinde-type weak proximal contractive mapping T in a complete F−metric
space (X,D).
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Corollary 1. Let (A, B) be a pair of nonempty subsets of a complete F−metric space (X,D) that
satisfy the P−property. Assume that A0 is a nonempty and closed subset of A, and T : A→ B is a
continuous mapping with T(A0) ⊆ B0 as well as satisfies that there exist λ∗ ∈ (0, 1) and L ≥ 0
such that for all v1, v2, x1, x2 ∈ A,

D(v1, Tx1) = D(A, B) = D(v2, Tx2) (35)

⇒ D(v1, v2) ≤ λ∗max{D(v1, x1),D(v2, x2)}
+ L min{D(v1, x1),D(v1, x2),D(v2, x1),D(v1, x2)}.

Then mapping T has a unique best proximity point.

Proof. Let x0 be a fixed element in A0. Following the process stated in the proof of
Theorem 1, we can find a sequence {xn} in A0 such that

D(xn+1, Txn) = D(A, B) = D(xn, Txn−1), ∀n ∈ N. (36)

Further, it follows from inequality (36) that

D(xn, xn+1) ≤ λ∗max{D(xn, xn−1),D(xn+1, xn)}
+ L min{D(xn, xn−1),D(xn, xn),D(xn+1, xn−1),D(xn, xn)}
≤ λ∗max{D(xn, xn−1),D(xn+1, xn)}.

If D(xn+1, xn) > D(xn, xn−1), then the above inequality can be written as

D(xn, xn+1) ≤ λ∗D(xn+1, xn) < D(xn+1, xn),

which is a contradiction. Therefore, we have D(xn+1, xn) < D(xn, xn−1).
In addition, we also have

D(xn, xn+1) ≤ λ∗D(xn−1, xn)

≤ λ∗2D(xn−2, xn−1)

...

≤ λ∗nD(x0, x1),

which further implies that limn→∞ D(xn, xn+1) = 0. The rest of the proof runs as the one in
Theorem 3.

Next, we present the best proximity result for a generalized α− ϕ−proximal contrac-
tion in an F−complete metric space (X,D).

Theorem 4. Assume that (X,D) is an F−metric space and (A, B) be a pair of nonempty closed
subsets of X. Suppose that the following conditions are satisfied:

(1) (X,D) is F−complete;
(2) A0 and B0 are nonempty subsets of A and B satisfying the P−property;
(3) a non-self mapping T : A → B is α−proximal admissible and also is a generalized α −

ϕ−proximal contraction satisfying T(A0) ⊆ B0;
(4) there exist elements x0, x1 ∈ A0 such that D(x1, Tx0) = D(A, B) and α(x0, x1) ≥ 1;
(5) (X,D) has the R−property with respect to the pair (A, B).

Then T has the best proximity point x∗ ∈ A0 such that D(x∗, Tx∗) = D(A, B).

Proof. Let x0, x1 ∈ A0 such that D(x1, Tx0) = D(A, B) and α(x0, x1) ≥ 1. As
Tx0 ∈ T(A0) ⊆ B0, there exists x2 ∈ A0 such that D(x2, Tx1) = D(A, B) and α(x1, x2) ≥ 1.
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Inductively, we can construct a sequence {xn} ⊂ A0 such that

D(xn+1, Txn) = D(A, B), α(xn, xn+1) ≥ 1, ∀n ∈ N∪ {0}. (37)

We claim that {xn} is an F−Cauchy sequence. Using the P−property, we deduce
from (37) that

D(xn, Txn−1) = D(A, B)
D(xn+1, Txn) = D(A, B)

}
⇒ D(xn, xn+1) = D(Txn−1, Txn), ∀n ∈ N. (38)

Since T is generalized α− ϕ−proximally contractive, there exists a function ϕ ∈ Λ
such that

D(Txn−1, Txn) ≤ α(xn−1, xn)D(Txn−1, Txn) ≤ ϕ(D(xn−1, xn)),

which implies

D(xn, xn+1) = D(Txn−1, Txn) ≤ ϕ(D(xn−1, xn)), ∀n ∈ N. (39)

Since the mapping ϕ is increasing, inequality (39) becomes

D(xn, xn+1)) ≤ ϕ2(D(xn−2, xn−1))

≤ ϕ3(D(xn−3, xn−2))

...

≤ ϕn(D(x0, x1)), ∀n ∈ N∪ {0}.

The second property of ϕ yields that

m−1

∑
i=n

D(ui, ui+1)

= D(xn, xn+1) +D(xn+1, xn+2) +D(xn+2, xn+3) + · · ·+D(xm−1, xm)

≤ ϕn(D(x0, x1)) + ϕn+1(D(x0, x1)) + ϕn+2(D(x0, x1)) + · · ·+ ϕm−1(D(x0, x1))

= ϕn(D(x0, x1))(1 + ϕ(D(x0, x1)) + ϕ2(D(x0, x1)) + · · ·+ ϕm−n−1(D(x0, x1))

< ϕn(D(x0, x1))

(
1 +

1
1− ϕ(D(x0, x1))

)
.

We conclude from taking the limit as n→ +∞ in the above inequality that

lim
n→+∞

ϕn(D(x0, x1))(1 +
1

1− ϕ(D(x0, x1))
) = 0. (40)

Let ( f , α) ∈ F × [0,+∞) satisfy (D3) and ε > 0 be fixed. By (F2), there exists δ > 0
such that

0 < t < δ⇒ f (t) < f (ε)− α. (41)

For the δ > 0 in (41), by (40), there exists N ∈ N such that

0 < ϕn(D(x0, x1))(1 +
1

1− ϕ(D(x0, x1))
) < δ, ∀m > n ≥ N.
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Hence, by (41) and (F2), we have

f

(
m−1

∑
i=n

D(xi, xi+1)

)
≤ f

(
ϕn(D(x0, x1))(1 +

1
1− ϕ(D(x0, x1))

)
(42)

< f (ε)− α, ∀m > n ≥ N.

Using (D3) and (42), we have

D(xn, xm) > 0⇒ f (D(xn, xm)) ≤ f

(
m−1

∑
i=n

D(ui, ui+1)

)
+ α < f (ε), m > n ≥ N.

This implies by (F1) that

D(xn, xm) < ε, m > n ≥ N.

Hence, the sequence {xn} is an F−Cauchy sequence. Since (X,D) is a complete
F−metric space and A0 is a closed subset of (X,D), there exists x∗ ∈ A0 such that xn
converges to x∗.

By R−Property, there exists a subsequence {xnk} of {xn} such that α(xnk , x∗) ≥ 1 for
all k ∈ N. Since T is a generalized α− ϕ−proximal contraction, we have

D(Txnk , Tx∗) ≤ α(xnk , x∗)D(Txnk , Tx∗) (43)

≤ ϕ(D(xnk , x∗)), ∀k ∈ N.

We will prove that x∗ is the best proximity point of T. Suppose that
D(x∗, Tx∗) > D(A, B). By (D3), we have

f (D(x∗, Tx∗)−D(A, B)) ≤ f (D(x∗, Txnk ) +D(Txnk , Tx∗)−D(A, B)) + α, ∀k ∈ N.

Together with (43) and (F1), we have

f (D(x∗, Tx∗)) ≤ f (D(x∗, Txnk ) + ϕ(D(xnk , x∗))) + α.

Taking the limit as k→ +∞ in the above inequality, it follows from (F2) that

f (D(x∗, Tx∗)−D(A, B)) ≤ lim
k→+∞

f (D(x∗, Txnk ) + ϕ(D(xnk , x∗))) + α

= −∞,

which implies that D(x∗, Tx∗)−D(A, B) = 0. Hence x∗ is the best proximity point of T.

Remark 1. The conclusions of Theorems 2, 3, and 4 and Corollary 1 still hold if we replace the
P−property assumption imposed on (A, B) by the weak P−property.

3. Coincidence Point Results in F−Metric Spaces

In this section, we will discuss some coincidence point results for proximal contractions
endowed with an F−metric.

From Theorems 1–3, we can obtain the following coincidence/fixed point results by
using our previous proximal contraction results.

Theorem 5. Let (X,D) be a completeF−metric space. Suppose that T, S : X → X are continuous
and commuting; also the pair (T, S) is a λ− ψ−dominated contraction. Then (T, S) has a unique
coincidence point.
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Proof. If we take A = B = X in Theorem 1, then D(A, B) = 0. In addition to this,
every proximally λ− ψ−dominated contraction becomes a λ− ψ−dominated contraction.
Analysis similar to that in the proof of Theorem 1 shows that there exists x ∈ X such that

D(x, Sx) = D(x, Tx) = D(A, B) = 0,

which implies that Sx = Tx. Hence, x is a coincidence point of the pair (T, S). Moreover,
the uniqueness of the coincidence point can be deduced from the same arguments presented
in the proof of Theorem 1.

Theorem 6. Let (X,D) be a completeF−metric space. Suppose that T, S : X → X are continuous
and commuting; also the pair (T, S) is a generalized η

γ
β−contraction. Then (T, S) has a unique

coincidence point.

Proof. The conclusion can be drawn by applying the same argument in the proof of
Theorem 5 by replacing the λ− ψ−dominate proximal contraction with the generalized
η

γ
β−contraction.

Theorem 7. Let (X,D) be a completeF−metric space. Suppose that T, S : X → X are continuous
and commuting; also the pair (T, S) is a Berinde-type weak contraction. Then (T, S) has a unique
coincidence point.

Proof. The conclusion can be drawn by applying the same argument in the proof of
Theorem 5 by replacing the λ− ψ−dominate proximal contraction with the Berinde-type
weak contraction.

Definition 19. A mapping T : X → X is said to be a generalized α− ϕ−contraction, if

α(x, y)D(Tx, Ty) ≤ ϕ(D(x, y)), ∀x, y ∈ A,

where α : A× A→ [0,+∞), ϕ ∈ Υ.

Taking A = B = X in Theorem 4, we get the following fixed point result.

Corollary 2. Let A be a nonempty F−closed subset of a complete F -metric space (X,D). Suppose
that an α−admissible mapping T : X → X is a generalized α− ϕ−contraction and there exist
elements x0, x1 ∈ X such that α(x0, x1) ≥ 1. Further, (X,D) satisfies property (A). Then T has a
unique fixed point x∗ ∈ A.

4. Completeness of F−Metric Spaces via the Best Proximity Points

In Mathematics, the “Completeness Problem ”is an essential issue that concerns when
a space is complete. In such a case, a Cauchy sequence converges. The famous Banach
Contraction Principle holds in complete metric spaces, but completeness is not a neces-
sary condition; that is, there are incomplete metric spaces on which every contraction has
a fixed point (see [28]). The Banach contraction principle does not characterize metric
completeness. As every metric is F−metric, the Banach contraction principle does not
characterize the completeness of F−metric spaces. The study of the characterization of the
completeness of a metric space can be traced to Subrahmanyam [29] in 1975, who proved
that Kannan’s contraction characterizes the metric completeness; that is, a metric space
(X, d) is complete if and only if every Kannan’s contraction on X has a fixed point. For
more on the Completeness Problem in various contexts, we refer the readers to [30,31] and
the references therein. The “Completeness Problem” is equivalent to another problem in Be-
havioral Sciences known as the “End Problem” (see [32]). Completeness characterizations
have further been studied in connection with best proximity points [33,34].
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In this section, we obtain a completeness characterization of an F−metric space via
the best proximity points.

Definition 20. Let (X,D) be an F−metric space and (A, B) be a pair of nonempty closed subsets
of X. A generalized α − ϕ−proximal contraction T : A → B is an α − ϕ − SVV proximal
contraction if

(1) A0 is nonempty;
(2) A and B satisfy the P−property;
(3) T(A0) ⊆ B0;
(4) there exist elements x0, x1 ∈ A0 such that D(x1, Tx0) = D(A, B) and α(x0, x1) ≥ 1.
(5) T is α−proximal admissible;
(6) (X,D) satisfies the R−property with respect to the pair (A, B).

If, in the above definition, we set A = B = X, then we obtain the following.

Definition 21 ([26]). Let (X,D) be an F−metric space. A generalized α − ϕ−contraction
T : X → X is an α− ϕ− SVV contraction if

(1) there exist elements x0 ∈ X such that α(x0, Tx0) ≥ 1;
(2) T is α−admissible;
(3) (X,D) satisfies property (A).

Romaguera and Tirado [26] obtained the following characterization of completeness
of metric spaces via α− ϕ−contractions T : X → X as follows.

Theorem 8 ([26]). A metric space is complete if and only if every α− ϕ− SVV contraction has a
fixed point.

Now we get the following characterization of F−completeness of an F−metric space
(X,D).

Theorem 9. Let (X,D) be an F−metric space and (A, B) a pair of nonempty closed subsets of X.
Then the following statements are equivalent:

(i) (X,D) is F−complete.
(ii) Every α− ϕ− SVV proximal contraction T : A→ B has the best proximity point in (X,D).
(iii) Every α− ϕ− SVV contraction T : X → X has a fixed point in (X,D).

Proof. (i) =⇒ (ii): It follows directly from Theorem 4.
(ii) =⇒ (iii): This follows by setting A = B = X in (ii).
(iii) =⇒ (i): Suppose, on the contrary, that (X,D) is not F -complete, that is, there is an
F−Cauchy sequence {wn} (of distinct points) in (X,D) that does not converge.

Set B = {wn : n ∈ N}. As D(w1, B \ {w1}) > 0, there exists h1 ∈ N with h1 > 1
such that

D
(
wj, wk

)
<

1
2
D(w1, B \ {w1})

for all k ≥ j ≥ h1. Similarly, there exists h2 ∈ N with h2 > max{2, h1} such that

D
(
wj, wk

)
<

1
2
D(w2, B \ {w2})

for all k ≥ j ≥ h2. Repeating this argument, we get a subsequence {hn} of N such that
hn > max{n, hn−1} and

D
(
wj, wk

)
<

1
2
D(wn, B \ {wn})
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for all k ≥ j ≥ hn. Define the mappings T : X → X and α : X× X → [0, ∞) as

Tw =

{
whn , if w = wn for n ∈ N
w1, if w ∈ X \ B

and

α(w, z) =
{

1, if w = wn and z = wm for m, n ∈ N with n < m,
0, otherwise.

Note that α(w1, Tw1) = 1 as h1 > 1. If α(w, z) ≥ 1 for w = wn, and z = wm, then
α(Tw, Tz) = α(whn , whm) = 1, as hm > hn. Hence T is α−admissible. Further, (X,D)
satisfies property (A) because any F−convergent sequence {zn} satisfying α(zn, zn+1) ≥ 1

is a constant sequence. Now for ϕ(t) =
t
2

and from the construction of α, it is sufficient to
check the α− ϕ− contraction condition for w = wn and z = wm with n < m. Thus

α(w, z)D(Tw, Tz) = α(wn, wm)D(whn , whm)

<
1
2
D(wn, B \ {wn})

<
1
2
D(wn, wm) =

1
2
D(w, z).

Hence T is an α− ϕ− SVV contraction, which does not have a fixed point. This is a
contradiction. Hence (X,D) is F−complete. This completes the proof.

5. Conclusions and Future Work

This article proves the existence of common best proximity points for proximally
λ− ψ−dominated contractions, generalized η

γ
β−contractions and Berinde-type weak con-

tractions in the setting of F−complete metric spaces. As an application, fixed point and
coincidence point results for such generalized proximal contraction are obtained. Moreover,
a completeness characterization of F−metric spaces is obtained via the existence of the
best proximity points of a certain proximal contraction. One can consider the results in
this paper for further study in the setup of more general spaces such as metric-like spaces,
quasi-metric spaces, fuzzy metric spaces and so on. Besides this, one can strive to obtain
weaker conditions to ensure the existence of the best proximity points for some generalized
proximal contractions in several classical metric spaces; for instance, the existence of a
proximity point without P−property in a fuzzy metric space would be worth investigating.
Moreover, Ghasab et al. [35] introduced F−quasi-metric spaces, which is viewed as a gen-
eralization of F−metric spaces. One could extend our main results to the F−quasi-metric
spaces for furnishing the best proximity theory.
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