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1. Introduction

A prime triplet is a sequence of three prime numbers (p1, p2, p3) such that p1 < p2 < p3 and p3 − p1 = 6. In particular, 
the sequences must be of the form (p, p +2, p +6) or (p, p +4, p +6). Since one of every three consecutive odd numbers is 
a multiple of three, and therefore not prime (except for three itself), we have that the prime triplets are the closest possible 
groupings of three prime numbers with the exceptions of (2, 3, 5) and (3, 5, 7).

Analogously, a prime quadruplet is a sequence (p1, p2, p3, p4), of four prime numbers, such that p1 < p2 < p3 < p4 and 
p4 − p1 = 8. In this case, the sequences must be of the form (p, p + 2, p + 6, p + 8) and are the closest possible groupings 
of four prime numbers with the exceptions of (2, 3, 5, 7) and (3, 5, 7, 11).

To formalize the concept of k-tuplet, let us follow [6]: if k is an integer greater than one, then s(k) is the smallest number 
for which there exists a set of k ordered integers Bk = {b1, . . . , bk} such that b1 = 0, bk = s(k), and {b1 mod q, . . . , bk mod
q} �= {0, 1, . . . , q − 1} (that is, {b1 mod q, . . . , bk mod q} is not a complete set of residues modulo q) for any prime number 
q. From here, a prime k-tuplet is a sequence of consecutive prime numbers, Pk = (p1, . . . , pk), such that pi − p1 = bi for all 
i ∈ {1, . . . , k} (observe that pk − p1 = s(k)). Thus, roughly speaking, a prime k-tuplet is a sequence of k consecutive prime 
numbers such that the difference between the first and the last (that is, s(k)) is as small as possible. Sometimes Bk is called 
an admissible set and Pk is named an admissible constellation (of consecutive prime numbers) (see [5]).

Let us observe that if we remove the condition on the function s(k), we will have other admissible constellations. For 
example, (p, p + 4) (cousin primes), (p, p + 6) (sexy prime pairs), (p, p + 6, p + 12) (sexy prime triplets), etcetera.

Let us also note that from the definition, it is easy to see that we can only obtain a finite number of sequences of k
consecutive prime numbers (p1, . . . , pk) such that pk − p1 < s(k). In contrast, the generalized Hardy-Littlewood conjecture 
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(see [8,9]) implies that, for every admissible set Bk , we can obtain infinitely many prime k-tuplets. In fact, all the current 
evidence confirm the conjecture for any admissible constellation (whether or not considering the condition on s(k)).

Let (a1, . . . , ae) be a sequence of positive integers such that gcd(a1, . . . , ae) = 1. Then a classical problem in additive 
number theory is the Frobenius problem: what is the greatest integer F(a1, . . . , ae) that is not an element of the set a1N +
. . . + aeN? Although there exists a solution for this problem when e = 2 (see [18]), it is well-known that it is not possible 
to find a polynomial formula in order to compute F(a1, . . . , ae) if e ≥ 3 (see [4]). Therefore, many efforts have been devoted 
to obtaining partial results or developing algorithms to get the answer to this question (see [13]).

Among others, the main objective of this work is to find the solution to the Frobenius problem for (prime) triplets 
(Section 3) and (prime) quadruplets (Section 4). We also comment on some results for k-tuplets with k ≥ 5 (Section 5). 
Moreover, from the computations, we conjecture that polynomials of degree two allow us to compute the Frobenius number 
of k-tuplets.

To achieve our purposes, we use the theory of numerical semigroups (closely related to the Frobenius problem) and, in 
particular, the Apéry set of a numerical semigroup (Section 2).

It is worth noting that the restriction on prime numbers is not essential to get the proposed results. In fact, in the 
statements on Apéry sets, Frobenius and pseudo-Frobenius numbers, and genus, we will consider k-tuples that only verify 
the condition of the admissible constellation; that is, if {p1, p2, . . . , pk} is a k-tuplet, then {p1 − p1, p2 − p1, . . . , pk − p1}
must be an admissible set.

2. Preliminaries (on numerical semigroups)

Let Z be the set of integers and N = {z ∈ Z | z ≥ 0}. A submonoid of (N, +) is a subset M of N that is closed under 
addition and contains the zero element. A numerical semigroup is a submonoid of (N, +) such that N \ S = {n ∈N | n /∈ S}
is finite.

Let S be a numerical semigroup. Since N \ S is a finite set, we can define two invariants of S . Namely, the Frobenius 
number of S is the greatest integer that does not belong to S , denoted by F(S), and the genus of S is the cardinality of N \ S , 
denoted by g(S). Let us note that, in number theory, it is common to use the term Sylvester number instead of the term 
genus (see [10]).

If X is a non-empty subset of N , then we denote by 〈X〉 the submonoid of (N, +) generated by X , that is,

〈X〉 = {
λ1x1 + · · · + λnxn | n ∈ N \ {0}, x1, . . . , xn ∈ X, λ1, . . . , λn ∈ N

}
.

It is well-known (see Lemma 2.1 of [16]) that 〈X〉 is a numerical semigroup if and only if gcd(X) = 1.
If S is a numerical semigroup and S = 〈X〉, then we say that X is a system of generators of S . Moreover, if S �= 〈Y 〉 for 

any subset Y � X , then we say that X is a minimal system of generators of S . In Theorem 2.7 of [16], it is shown that each 
numerical semigroup admits a unique minimal system of generators and that such a system is finite. We denote by msg(S)

the minimal system of generators of S . The cardinality of msg(S), denoted by e(S), is the embedding dimension of S .
The (extended) Frobenius problem for a numerical semigroup S consists of finding formulas that allow us to compute 

F(S) and g(S) in terms of msg(S). As in the case of the Frobenius problem for sequences, such formulas are well-known 
for e(S) = 2, but it is not possible to find polynomial formulas when e(S) ≥ 3, except for particular families of numerical 
semigroups.

Now, let us define a useful tool to describe a numerical semigroup S . If n ∈ S \ {0}, then the Apéry set of n in S (named in 
honour of [1]) is Ap(S, n) = {s ∈ S | s − n /∈ S}.

The following result is Lemma 2.4 of [16].

Proposition 2.1. Let S be a numerical semigroup and n ∈ S \ {0}. Then the cardinality of Ap(S, n) is n. Moreover,

Ap(S,n) = {w(0) = 0, w(1), . . . , w(n − 1)},
where w(i) is the least element of S congruent with i modulo n.

The knowledge of Ap(S, n) allows us to solve the problem of membership of an integer to the numerical semigroup S . 
In fact, if x ∈ Z, then x ∈ S if and only if x ≥ w(x mod n). Moreover, we have the following result from [3] (first formula) 
and [17] (second one).

Proposition 2.2. Let S be a numerical semigroup and let n ∈ S \ {0}. Then

1. F(S) = max(Ap(S, n)) − n,
2. g(S) = 1

n (
∑

w∈Ap(S,n) w) − n−1
2 .

From this proposition, we have the solution to the Frobenius problem for S if we know an explicit description of Ap(S, n).
2
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Remark 2.3. In [10,11], the author uses Apéry sets to compute the Frobenius number and the Sylvester number (that is, the 
genus) of numerical semigroups generated by arithmetic progressions and by arithmetic progressions with initial gaps. In 
particular, our corresponding results in Corollary 3.13 can be deduced from [11] (see Remarks 3.16 and 3.17).

Remark 2.4. We can consider different generalizations of the Frobenius number. For example, from [12] (and other ref-
erences therein), it is possible to define the p-Frobenius number of a numerical semigroup S = 〈a1, a2, . . . , ae〉 as the 
greatest integer that can be represented at most p ways by a linear combination with non-negative integer coefficients 
of a1, a2, . . . , ae . Thus, the 0-Frobenius number is the classical Frobenius number. Since in [12] the author uses Apéry sets 
to obtain his results, a possible future work would be to compute the p-Frobenius number for k-tuplets.

Let S be a numerical semigroup. Following the notation introduced in [15], we say that an integer x is a pseudo-Frobenius 
number of S if x ∈Z \ S and x + s ∈ S for all s ∈ S \ {0}. We denote by PF(S) the set of all the pseudo-Frobenius numbers of 
S . The cardinality of PF(S) is a notable invariant of S (see [2]), the so-called type of S , denoted by t(S).

Let S be a numerical semigroup. We define over Z the following binary relation: a ≤S b if b − a ∈ S . As stated in [16], it 
is clear that ≤S is a non-strict partial order relation (that is, reflexive, transitive, and anti-symmetric).

The following result is Proposition 7 of [7] (see also Proposition 2.20 of [16]) and characterizes the pseudo-Frobenius 
numbers in terms of the maximal elements of Ap(S, n) with respect to the relation ≤S .

Proposition 2.5. Let S be a numerical semigroup and n ∈ S \ {0}. Then

PF(S) = {w − n | w ∈ Maximals≤S (Ap(S,n))}.
3. Triplets in the form of prime triplets

To have a well-posed Frobenius problem, we can consider six possibilities of triplets satisfying the condition of the 
admissible constellation (see [14]). However, since reasonings and calculations are similar, we will study in detail the two 
cases concerning prime triplets.

Let us recall that a prime triplet is of the form (p, p + 2, p + 6) or of the form (p, p + 4, p + 6). We improve this fact in 
the following proposition.

Proposition 3.1. We have that:

1. If (p, p + 2, p + 6) is a prime triplet, then p = 6k + 5, with k ∈N .
2. If (p, p + 4, p + 6) is a prime triplet, then p = 6k + 7, with k ∈N .

Proof. It is clear that if p ∈ N \ {1} is not divisible by two or three, then there exists k ∈ N such that p = 6k + 5 or 
p = 6k + 7.

1. If p = 6k + 7, then p + 2 = 6k + 9 is multiple of three and can not be a prime number. Consequently, if (p, p + 2, p + 6)

is a prime triplet, then p = 6k + 5.
2. The reasoning is similar to the above case. �

As a consequence of the previous proposition, a prime triplet is of one of the following two forms.

1. (6k + 5, 6k + 7, 6k + 11), with k ∈N .
2. (6k + 7, 6k + 11, 6k + 13), with k ∈N .

Since gcd(6k + 5,6k + 7,6k + 11) = gcd(6k + 7,6k + 11,6k + 13) = 1, we can define two families of numerical semi-
groups (T1 and T2).

• S ∈ T1 if S = 〈6k + 5, 6k + 7, 6k + 11〉, with k ∈N .
• S ∈ T2 if S = 〈6k + 7, 6k + 11, 6k + 13〉, with k ∈N .

It is easy to check that if S ∈ T1 ∪ T2, then e(S) = 3. Moreover, from [7], we deduce the following result.

Proposition 3.2. Let S be a numerical semigroup such that e(S) = 3. Then t(S) ∈ {1, 2}. In addition, if S = 〈n1, n2, n3〉, where 
n1, n2, n3 are pairwise relatively prime numbers, then t(S) = 2.

An immediate consequence of the above comments and results is the following proposition.

Proposition 3.3. If S ∈ T1 ∪ T2 , then e(S) = 3 and t(S) = 2.
3
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3.1. First case (family T1)

In this subsection, we are interested in studying the numerical semigroups of the form S = 〈6k + 5, 6k + 7, 6k + 11〉, 
where k ∈N .

Straightforward computations lead to the following result.

Lemma 3.4. If k ∈N , then we have the equalities

1. 3(6k + 7) = 2(6k + 5) + 1(6k + 11);
2. (2k + 2)(6k + 11) = (2k + 3)(6k + 5) + 1(6k + 7);
3. 2(6k + 7) + (2k + 1)(6k + 11) = (2k + 5)(6k + 5).

Let us now see the key to this subsection.

Theorem 3.5. If k ∈N and S = 〈6k + 5, 6k + 7, 6k + 11〉, then

Ap(S,6k + 5) = {a(6k + 7) + b(6k + 11) | (a,b) ∈ C} ,

where C = ({0, 1, 2} × {0, 1, . . . , 2k + 1}) \ {(2, 2k + 1)}.

Proof. From Lemma 3.4, we easily deduce that Ap(S, 6k + 5) is a subset of {a(6k + 7) + b(6k + 11) | (a,b) ∈ C}. Now then, 
since the cardinality of C is less than or equal to 3(2k + 2) − 1 = 6k + 5, and taking into consideration Proposition 2.1, we 
get that Ap(S, 6k + 5) = {a(6k + 7) + b(6k + 11) | (a,b) ∈ C}. �

Let us observe that we can rewrite several elements of Ap(S, 6k + 5) as follows.

• (6k + 7) + b(6k + 11) = (b + 1)(6k + 11) − 4, for all b ∈ {0, 1, . . . , 2k + 1}.
• 2(6k + 7) + b(6k + 11) = (b + 2)(6k + 11) − 8, for all b ∈ {0, 1, . . . , 2k}.

Thus, we can easily describe the Apéry set by arranging its elements in increasing order.

Corollary 3.6. If k ∈N and S = 〈6k + 5, 6k + 7, 6k + 11〉, then

Ap(S,6k + 5) = {0; (6k + 11) − 4,6k + 11;2(6k + 11) − 8,2(6k + 11) − 4,2(6k + 11); . . . ;
(2k + 1)(6k + 11) − 8, (2k + 1)(6k + 11) − 4, (2k + 1)(6k + 11); (2k + 2)(6k + 11) − 8, (2k + 2)(6k + 11) − 4}.

In this way, we can identify a pattern. In fact, in the previous corollary, we have used “;” to separate suitable groups of 
numbers.

As mentioned in Section 2, knowledge of the Apéry set allows us to obtain information about the numerical semigroup. 
Thus, in the current case, we have the following result. (Let us observe that, from Corollary 3.7, we recover Proposition 3.3.)

Corollary 3.7. If k ∈N and S = 〈6k + 5, 6k + 7, 6k + 11〉, then

1. PF(S) = {12k2 + 28k + 9, 12k2 + 28k + 13};
2. F(S) = 12k2 + 28k + 13;
3. g(S) = 6k2 + 16k + 8.

Proof. 1. By Theorem 3.5, we have that Maximals≤S (Ap(S, 6k +5)) = {(6k +7) + (2k +1)(6k +11), 2(6k +7) +2k(6k +11)}. 
Thereby, from Proposition 2.5, we can assert that PF(S) = {(6k + 7) + (2k + 1)(6k + 11) − (6k + 5), 2(6k + 7) + 2k(6k +
11) − (6k + 5)} = {12k2 + 28k + 13, 12k2 + 28k + 9}.

2. It is clear that F(S) = max(PF(S)) and, therefore, F(S) = 12k2 + 28k + 13.
3. From Theorem 3.5, we have that

Ap(S,6k+5) = {0,6k+11, . . . , (1+2k)(6k+11),6k+7, (6k+7)+(6k+11), . . . , (6k+7)+(1+2k)(6k+11),

2(6k + 7),2(6k + 7) + (6k + 11), . . . ,2(6k + 7) + 2k(6k + 11)}.
Now, by Proposition 2.2, we get that

g(S) = 1
(

6k + 11 + · · · + (1 + 2k)(6k + 11) + 6k + 7 + (6k + 7) + (6k + 11)+

6k + 5

4
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· · · + (6k + 7) + (1 + 2k)(6k + 11) + 2(6k + 7) + 2(6k + 7) + (6k + 11)+
· · · + 2(6k + 7) + 2k(6k + 11)

)
− (6k + 5) − 1

2
= 6k2 + 16k + 8. �

Remark 3.8. From Corollary 3.7, we deduce that if p = 6k + 5 with k ∈N , then F(p, p + 2, p + 6) = p2+4p−6
3 .

We finish with an illustrative example.

Example 3.9. If k = 1, then S = 〈11, 13, 17〉, PF(S) = {49, 53}, F(S) = 53, and g(S) = 30 (by Corollary 3.7). Moreover, from 
Corollary 3.6, we know that Ap(S, 11) = {0, 13, 17, 26, 30, 34, 43, 47, 51, 60, 64}.

3.2. Second case (family T2)

Now we study numerical semigroups of the form S = 〈6k + 7, 6k + 11, 6k + 13〉, where k ∈N . The results are similar to 
those of Subsection 3.1. Therefore, we omit the proofs.

Lemma 3.10. If k ∈N , then we have the equalities

1. 3(6k + 11) = 1(6k + 7) + 2(6k + 13);
2. (2k + 3)(6k + 13) = (2k + 4)(6k + 7) + 1(6k + 11);
3. 2(6k + 11) + (2k + 1)(6k + 13) = (2k + 5)(6k + 7).

Theorem 3.11. If k ∈N and S = 〈6k + 7, 6k + 11, 6k + 13〉, then

Ap(S,6k + 7) = {a(6k + 11) + b(6k + 13) | (a,b) ∈ C} ,

where C = ({0, 1, 2} × {0, 1, . . . , 2k + 2}) \ {(2, 2k + 1), (2, 2k + 2)}.

Let us observe that

• (6k + 11) + b(6k + 13) = (b + 1)(6k + 13) − 2, for all b ∈ {0, 1, . . . , 2k + 2};
• 2(6k + 11) + b(6k + 13) = (b + 2)(6k + 11) − 4, for all b ∈ {0, 1, . . . , 2k}.

Thus, we describe the Apéry set by arranging its elements in increasing order.

Corollary 3.12. If k ∈N and S = 〈6k + 7, 6k + 11, 6k + 13〉, then

Ap(S,6k + 7) = {0; (6k + 13) − 2,6k + 13;2(6k + 13) − 4,2(6k + 13) − 2,2(6k + 13); . . . ;
(2k + 2)(6k + 13) − 4, (2k + 2)(6k + 13) − 2, (2k + 2)(6k + 13); (2k + 3)(6k + 13) − 2}.

Corollary 3.13. If k ∈N and S = 〈6k + 7, 6k + 11, 6k + 13〉, then

1. PF(S) = {12k2 + 32k + 15, 12k2 + 38k + 30};
2. F(S) = 12k2 + 38k + 30;
3. g(S) = 6k2 + 20k + 16.

Remark 3.14. From Corollary 3.13, we have that if p = 6k + 7 with k ∈N , then F(p, p + 4, p + 6) = p2+5p+6
3 .

Let us see an example.

Example 3.15. If k = 0, then S = 〈7, 11, 13〉, PF(S) = {15, 30}, F(S) = 30, and g(S) = 16 (by Corollary 3.13). Moreover, from 
Corollary 3.12, we get that Ap(S, 7) = {0, 11, 13, 22, 24, 26, 37}.

Remark 3.16. The values of F(p, p + 4, p + 6) and g(p, p + 4, p + 6), for p = 6k + 7 with k ∈ N , can be obtained from 
Theorems 2 and 3 of [11], respectively. Indeed, it is enough to consider a = p, K = 1, k = 3, d = 2, and r = 2 in those 
theorems.
5
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Remark 3.17. Let us recall that the Sylvester sum of a numerical semigroup S = 〈a1, a2, . . . , ae〉 is the value

s(S) =
∑

x∈N\S

x.

In [11], the author computes the Sylvester sum of numerical semigroups generated by arithmetic progressions with initial 
gaps. To get the result, he again uses the Apéry set Ap(A, a1) = {w0 = 0, w1, . . . , wa1−1} by the formula

s(a1,a2, . . . ,ae) = s(S) = 1

2a1

a1−1∑
i=1

w2
i − 1

2

a1−1∑
i=1

wi + a2
1 − 1

12
. (1)

As a consequence, by Theorem 1 of [11], we have that if p = 6k + 7 with k ∈N , then s(p, p + 4, p + 6) = 1
108 (2p4 + 24p3 +

93p2 + 202p + 435). Of course, we could directly apply (1) to the Apéry sets of the family T2 and obtain the same result. 
Even more, we could consider (1) for all the families we analyze in this work, but we prefer to leave it to the reader as a 
computation exercise.

4. Quadruplets in the form of prime quadruplets

As for triplets, there are several cases of quadruplets fulfilling the condition of the admissible constellation. Since the 
reasonings and computations are similar on all of them (see [14]), we will only study those directly associated with prime 
quadruplets, not forgetting that the results are, in fact, valid for any quadruplets satisfying the corresponding admissible 
constellation condition.

It is well-known that a prime quadruplet is of the form (p, p + 2, p + 6, p + 8). In the following result, we improve this 
expression.

Proposition 4.1. We have that if (p, p + 2, p + 6, p + 8) is a prime quadruplet, then either p = 4k + 5 or p = 4k + 7 for some k ∈N .

Proof. It is clear that if p ∈N \ {1}, then there exists k ∈N such that p = 4k + i, with i ∈ {0, 1, 2, 3}. But, since p, p + 2, p +
6, p + 8 are prime numbers, then i �= 0 and i �= 2. In addition, let us note that (1, 3, 7, 9) and (3, 5, 9, 11) are not prime 
quadruplets. �

In contrast to the case of triplets, a unique form defines the prime quadruplets. However, we need two different expres-
sions to solve the Frobenius problem.

• (4k + 5, 4k + 7, 4k + 11, 4k + 13), with k ∈N .
• (4k + 7, 4k + 9, 4k + 13, 4k + 15), with k ∈N .

Thus, since gcd(4k + 5, 4k + 7) = gcd(4k + 7, 4k + 9) = 1 for all k ∈ N , we have two families of numerical semigroups (Q1
and Q2).

• S ∈Q1 if S = 〈4k + 5, 4k + 7, 4k + 11, 4k + 13〉, with k ∈N .
• S ∈Q2 if S = 〈4k + 7, 4k + 9, 4k + 13, 4k + 15〉, with k ∈N .

Let us observe that 〈5, 7, 11, 13〉 and 〈7, 9, 13, 15〉 are numerical semigroups with embedding dimension equal to four. 
Moreover, since 4k + 13 < 2(4k + 5) and 4k + 15 < 2(4k + 7) for all k ≥ 1, we can assert that e(S) = 4 for every S ∈Q1 ∪Q2.

Remark 4.2. We have S = 〈1, 3, 7, 9〉 = 〈1〉 and S = 〈3, 5, 9, 11〉 = 〈3, 5, 11〉. Thus, e(S) < 4 in both cases. This is another 
reason for eliminating (1, 3, 7, 9) and (3, 5, 9, 11) as possibilities in Proposition 4.1.

Remark 4.3. It is possible to improve Proposition 4.1 a little more. Thus, if we assume that the elements on the quadruplet 
are not divisible by two or three, then we have that either p = 12k + 5 or p = 12k + 11 for some k ∈ N . Even more, if we 
consider that the elements are not divisible by two, three or five, then all prime quadruplets (except (5, 7, 11, 13)) are of 
the form p = 30k + 11 for some k ∈N . In any case, we obtain essentially the same conclusions for the families Q1 and Q2
associated with p = 12k + 5 and p = 12k + 11.

4.1. First expression (family Q1)

Let S be a numerical semigroup of the form S = 〈4k +5, 4k +7, 4k +11, 4k +13〉, where k ∈ N . Again we omit the proofs 
of the results because they are similar to those of Subsection 3.1.
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Remark 4.4. The numerical semigroup S = 〈5, 7, 11, 13〉 behaves somewhat differently from the rest of the cases. In fact, 
Ap(S, 5) = {0, 7, 11, 13, 14} and

1. PF(S) = {6, 8, 9};
2. F(S) = 9;
3. g(S) = 7;
4. t(S) = 3.

It is clear that except the value of g(S), Corollary 4.8 does not give these results.

Lemma 4.5. If k ∈N \ {0}, then we have the equalities

1. 3(4k + 7) = 2(4k + 5) + 1(4k + 11);
2. 3(4k + 11) = 1(4k + 7) + 2(4k + 13);
3. (k + 2)(4k + 13) = (k + 3)(4k + 5) + 1(4k + 11);
4. 1(4k + 7) + 1(4k + 11) = 1(4k + 5) + 1(4k + 13);
5. 1(4k + 7) + (k + 1)(4k + 13) = (k + 4)(4k + 5);
6. 2(4k + 7) + 1(4k + 13) = 1(4k + 5) + 2(4k + 11);
7. 1(4k + 11) + (k + 1)(4k + 13) = (k + 2)(4k + 5) + 2(4k + 7);
8. 2(4k + 11) + k(4k + 13) = (k + 3)(4k + 5) + 1(4k + 7).

Theorem 4.6. If k ∈N \ {0} and S = 〈4k + 5, 4k + 7, 4k + 11, 4k + 13〉, then

Ap(S,4k + 5) = {a(4k + 7) + b(4k + 11) + c(4k + 13) | (a,b, c) ∈ C} ,

where C = Ca ∪ Cb ∪ Cc , with Ca = ({1} × {0} × {0, 1, . . . , k}) ∪ {(2, 0, 0)}, Cb = ({0} × {1, 2} × {0, 1, . . . , k}) \ {(0, 2, k)}, and 
Cc = {0} × {0} × {0, 1, . . . , k + 1}.

Let us observe that

• (4k + 7) + c(4k + 13) = (c + 1)(4k + 13) − 6, for all c ∈ {0, 1, . . . , k};
• (4k + 11) + c(4k + 13) = (c + 1)(4k + 13) − 2, for all c ∈ {0, 1, . . . , k};
• 2(4k + 11) + c(4k + 13) = (c + 2)(4k + 15) − 4, for all c ∈ {0, 1, . . . , k − 1}.

Therefore, we can give the Apéry set by arranging its elements in increasing order.

Corollary 4.7. If k ∈N \ {0} and S = 〈4k + 5, 4k + 7, 4k + 11, 4k + 13〉, then

Ap(S,4k + 5) = {0; (4k + 13) − 6, (4k + 13) − 2,4k + 13;2(4k + 7);
2(4k + 13) − 6,2(4k + 13) − 4,2(4k + 13) − 2,2(4k + 13); . . . ;
(k + 1)(4k + 13) − 6, (k + 1)(4k + 13) − 4, (k + 1)(4k + 13) − 2, (k + 1)(4k + 13)}.

Corollary 4.8. If k ∈N \ {0} and S = 〈4k + 5, 4k + 7, 4k + 11, 4k + 13〉, then

1. PF(S) = {4k + 9, 4k2 + 13k + 2, 4k2 + 13k + 4, 4k2 + 13k + 6, 4k2 + 13k + 8};
2. F(S) = 4k2 + 13k + 8;
3. g(S) = 2k2 + 8k + 7;
4. t(S) = 5.

Remark 4.9. By Corollary 4.8, if p = 4k + 5 for some k ∈N \ {0}, then F(p, p + 2, p + 6, p + 8) = p2+3p−8
4 .

We finish with an illustrative example.

Example 4.10. For k = 24 we have S = 〈101, 103, 107, 109〉 and, by Corollary 4.8, PF(S) = {105, 2618, 2620, 2622, 2624}, 
F(S) = 2624, and g(S) = 1351. Moreover, by Corollary 4.7, Ap(S, 11) = {0, 103, 107, 109, 206, 212, 214, 216, 218, . . . ,2719,

2721,2723, 2725}.
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4.2. Second expression (family Q2)

Let S be a numerical semigroup of the form S = 〈4k + 7, 4k + 9, 4k + 13, 4k + 15〉, where k ∈N .

Lemma 4.11. If k ∈N , then we have the equalities

1. 3(4k + 9) = 2(4k + 7) + 1(4k + 13);
2. 3(4k + 13) = 1(4k + 9) + 2(4k + 15);
3. (k + 2)(4k + 15) = (k + 3)(4k + 7) + 1(4k + 9);
4. 1(4k + 9) + 1(4k + 13) = 1(4k + 7) + 1(4k + 15);
5. 2(4k + 9) + 1(4k + 15) = 1(4k + 7) + 2(40k + 13);
6. 1(4k + 13) + (k + 1)(4k + 15) = (k + 4)(4k + 7).

Theorem 4.12. If k ∈N and S = 〈4k + 7, 4k + 9, 4k + 13, 4k + 15〉, then

Ap(S,4k + 7) = {a(4k + 9) + b(4k + 13) + c(4k + 15) | (a,b, c) ∈ C} ,

where C = Ca ∪ Cb ∪ Cc , with Ca = ({1} × {0} × {0, 1, . . . , k + 1}) ∪ {(2, 0, 0)}, Cb = {0} × {1, 2} × {0, 1, . . . , k}, and Cc = {0} ×
{0} × {0, 1, . . . , k + 1}.

Let us observe that

• (4k + 9) + c(4k + 15) = (c + 1)(4k + 15) − 6, for all c ∈ {0, 1, . . . , k + 1};
• (4k + 13) + c(4k + 15) = (c + 1)(4k + 15) − 2, for all c ∈ {0, 1, . . . , k};
• 2(4k + 13) + c(4k + 15) = (c + 2)(4k + 15) − 4, for all c ∈ {0, 1, . . . , k}.

Consequently, we can arrange the elements of the Apéry set in increasing order.

Corollary 4.13. If k ∈N and S = 〈4k + 7, 4k + 9, 4k + 13, 4k + 15〉, then

Ap(S,4k + 7) = {0; (4k + 15) − 6, (4k + 15) − 2,4k + 15;2(4k + 9);
2(4k + 15) − 6,2(4k + 15) − 4,2(4k + 15) − 2,2(4k + 15); . . . ;
(k + 1)(4k + 15) − 6, (k + 1)(4k + 15) − 4, (k + 1)(4k + 15) − 2, (k + 1)(4k + 15);
(k + 2)(4k + 15) − 6, (k + 2)(4k + 15) − 4}.

Remark 4.14. If S = 〈7, 9, 13, 15〉, then Ap(S, 7) = {0, 9, 13, 15, 18, 24, 26}. Therefore, we can apply Corollary 4.13 if we only 
consider the five first values and the two last.

Corollary 4.15. If k ∈N and S = 〈4k + 7, 4k + 9, 4k + 13, 4k + 15〉, then

1. PF(S) = {4k + 11, 4k2 + 19k + 17, 4k2 + 19k + 19};
2. F(S) = 4k2 + 19k + 19;
3. g(S) = 2k2 + 10k + 12;
4. t(S) = 3.

Remark 4.16. By Corollary 4.15, if p = 4k + 7 for some k ∈N , then F(p, p + 2, p + 6, p + 8) = p2+5p−8
4 .

We finish with an illustrative example.

Example 4.17. For k = 1 we have S = 〈11, 13, 17, 19〉, PF(S) = {15, 40, 42}, F(S) = 42, and g(S) = 24 (by Corollary 4.15). 
Moreover, from Corollary 4.13, we know that Ap(S, 11) = {0, 13, 17, 19, 26, 32, 34, 36, 38, 51, 53}.

5. k-tuplets in the form of prime k-tuplets

From the contents of Sections 3 and 4, it looks like the problem becomes more and more longueur as soon as we 
consider larger and larger k-tuplets. In any case, it is not difficult to see what happens when k ∈ {5, 6, 7, 8} and, in this 
way, to propose a conjecture (see [14]). Once again, there are several possibilities of k-tuplets satisfying the admissible 
constellation condition; moreover, for each k, the results are similar. Thus, we will only see those directly related to prime 
k-tuplets.
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Quintuplets. There exist two families of quintuplets that include prime quintuplets. Namely, (p, p + 2, p + 6, p + 8, p + 12)

and (p, p + 4, p + 6, p + 10, p + 12). Now, if k ∈ N , these families are associated with the values 6k + 5 and 6k + 7, 
respectively. In addition, the Frobenius number is equal to

• p2+7p−12
6 for (p, p + 2, p + 6, p + 8, p + 12) with p = 6k + 5 ≥ 11,

• p2+11p+12
6 for (p, p + 4, p + 6, p + 10, p + 12) with p = 6k + 7 ≥ 7.

Furthermore, if we consider numerical semigroups generated by the above quintuplets, then the type is given by

• t(S) = 6 for S = 〈p, p + 2, p + 6, p + 8, p + 12〉 with p = 6k + 11 ≥ 11,
• t(S) = 4 for S = 〈p, p + 4, p + 6, p + 10, p + 12〉 with p = 6k + 7 ≥ 13.

Sextuplets. Although the expression (p, p + 4, p + 6, p + 10, p + 12, p + 16) is the unique possibility for the sextuplets, 
which include prime sextuplets, we have to consider four different families to study the Frobenius problem. Such families 
correspond to the values p = 8k + r with k ∈N and r ∈ {7, 9, 11, 13}. In this case, the Frobenius number is equal to

• p2+9p+16
8 for p = 8k + 7,

• p2+15p+16
8 for p = 8k + 9,

• p2+13p+16
8 for p = 8k + 11,

• p2+11p+16
8 for p = 8k + 13.

Moreover, for these families of numerical semigroups, the type is equal to 9 (of course, for p = 8k + 7 when k ≥ 1), 5, 5, and 
7, respectively. It is interesting to observe that, although the value of the type is the same in the second and third cases, 
the structures of their sets of pseudo-Frobenius numbers are essentially different (see [14]).

Septuplets. For septuplets, which are associated with prime septuplets, we have two families: (p, p + 2, p + 6, p + 8, p +
12, p + 18, p + 20) and (p, p + 2, p + 8, p + 12, p + 14, p + 18, p + 20). Now, if k ∈N , then p = 10k + 11 for the first case 
and p = 10k + 19 for the second one. Thus, the pair (Frobenius number, type) is equal to ( p2+9p−20

10 , 13) (if p ≥ 31) and 
(

p2+11p−20
10 , 11) (if p ≥ 19), respectively ([14]).

Octuplets. Finally, there are three families of octuplets associated with prime octuplets: (p, p + 2, p + 6, p + 12, p + 14, p +
20, p + 24, p + 26), (p, p + 2, p + 6, p + 8, p + 12, p + 18, p + 20, p + 26), and (p, p + 6, p + 8, p + 14, p + 18, p + 20, p +
24, p + 26). As discussed in [14], we have to study 39 cases (13 for each family) to obtain formulas for the Frobenius 
number. We refer the reader interested in such results to [14].

A conjecture and future works. Based on all the above comments, we propose the following conjecture.

Conjecture 5.1. Let us consider a k-tuplet satisfying the condition of the admissible constellation and suppose that p and p + q are its 
first and last elements, respectively. Then we claim that:

1. The Frobenius number is given by a quadratic polynomial a2 p2 + a1 p + a0 .
2. The leading coefficient is a2 = 2

q .
3. The constant term a0 is an integer.

Let us observe that we have got a0 = ±2 when 1 ≤ k ≤ 7. However, the values a0 = −4, a0 = −6, and a0 = 10 appear in 
octuplets (see [14]). Thus, without going into further details, we have preferred to state that a0 is an integer.

Remark 5.2. As we have commented several times above, not all the members of the k-tuples need to be prime numbers 
to get the given results here. Thus, new problems arise. For example, it would be interesting to know how the Frobenius 
numbers are given for other types of tuplets and whether there is any regularity among them. Among others, these will be 
the aims of future work.
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