
1. Introduction
The evening of 11 December 2016, near 22:25 local time (21:25 UTC), a meteor event with absolute magnitude 
m = −17 was observed from most of Spain. The event was recorded by meteor observing stations operating at 
different astronomical observatories in southern Spain (Madiedo, 2017). According to reports in news and social 
media, the meteor event produced a bright, white light in the night sky for several seconds, and was widely heard 
and felt. Eyewitness accounts mention an audible boom, ground vibration or tremor, and windows rattling at 
several places in the province of Granada. Many people have mistaken these vibrations for a weak earthquake. 
The testimonies point to the arrival of pressure waves on the ground. Such sound and infrasound signals are orig-
inated by the interaction between the atmosphere and the meteoroid, and might be related to the shock wave from 
the meteoroid passage at hypersonic speed, or to an explosive fragmentation event induced by frictional heating 
of the meteoroid in the atmosphere (e.g., Ceplecha et al., 1998; Edwards et al., 2008; Le Pichon et al., 2010).

Atmospheric acoustic signals from meteor falls, sonic booms, atmospheric explosions and other sources of sound 
and infrasound are partially converted into seismic waves at the Earth's surface, and may be detected by seismom-
eters (e.g., Cates & Sturtevant, 2002; Edwards et al., 2007; Kanamori et al., 1991; Schneider et al., 2018; Walker 
et  al.,  2010). Given the prevalence of seismic instrumentation compared to infrasound sensors, seismograms 
often constitute the majority of available recordings for meteor events. Energetic events like the 2013 Chelya-
binsk meteor terminal explosion can be recorded at seismic stations out to several 1000s km distance (Antolik 
et  al.,  2014; Heimann et  al.,  2013). Taking into account the atmospheric layering, distant observations are 
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dominated by wave propagation through the high velocity acoustic channel in the upper stratosphere, with effec-
tive sound speed and ray paths being sensitive to the wind and temperature conditions (Cates & Sturtevant, 2002; 
Evers & Haak,  2007; Garcés et  al.,  1998; Hedlin et  al.,  2010; Le Pichon et  al.,  2010; Pierce,  2019; Virieux 
et al., 2004).

Within the troposphere, temperature and acoustic wave speed generally decrease with altitude, and atmospheric 
wavefields are refracted away from the Earth's surface. On the ground, direct acoustic arrivals from meteors can 
be observed only for relatively small distances, depending on atmospheric conditions and source height (Brown 
et al., 2003; McFadden et al., 2021). In consequence, meteor events that have been recorded in the near-field at 
several tens of local stations remain a rare exception (e.g., Arrowsmith et al., 2007; Ishihara et al., 2004). Here we 
report on the analysis of 44 detections at local seismic stations for the 2016, Granada meteor event. The record-
ings are used to distinguish between ballistic and explosive signals, locate the terminal explosion considering the 
actual atmospheric conditions, and compare the results to optical observations of the meteor entry. In addition, 
the density of the recording network will allow to recognize and evaluate the variability of the acoustic-seismic 
coupled wavefield over short distances.

2. Seismic Data of the 2016 Meteor Event
Following up the eyewitness reports of ground vibration, we examine regional seismograms for signs of airwave 
coupling to ground motion. We inspect waveforms from 68 seismic stations operated by the Instituto Andaluz 
de Geofísica (IAG) and Instituto Geográfico Nacional (IGN). This includes stations from the Spanish and Anda-
lusian broadband networks, additional short period sensors and accelerometers, as well as a temporary station 
deployment south of Granada (Figure 1). The temporary deployment consists of a dense, E-W trending transect 
of 30 seismic broadband stations. We find a conspicuous signal between 21:28 and 21:32 UTC. The signal shows 
frequency content above 1 Hz, varying waveform complexity among the stations, and is present in vertical as 
well as in horizontal component seismograms, often associated with a distinct polarization of particle motion 
(Figures S1 and S2 in Supporting Information S1). The signal has low apparent velocity compared to waves from 
earthquakes, traveling across the network at ∼0.4 km/s. Such velocities near the acoustic wave speed corroborate 
the origin from an atmospheric perturbance. The signal is clearly visible at 44 local stations altogether.

Our detections include 29 out of 30 stations from the broadband transect, with the exception of one station 
affected by anthropogenic noise. The transect is characterized by dense station spacing of ∼3.5 km, and named 
the Tropical Profile (TP) as reference to the nearby Costa Tropical. All sites share uniform installation (sensor 
in vault on cemented base plate) and instrumentation (Nanometrics Trillium Compact 120 s three-component, 
broad-band sensors and 24 bit data logger Centaur 3, with sampling at 100 Hz). This allows for assessing the vari-
ability of acousto-seismic coupled waves over small distances, revealing significant differences between nearby 
stations in terms of signal duration, abruptness of the onset, or number and relative amplitude of prominent wave 
packages within the signal (Figures S1 and S2 in Supporting Information S1). A general characteristics of the 
recordings is the presence of pulses with displacement waveforms close to an inverted letter N, respectively a 
letter W in velocity waveforms (Figure 1). N-waves with compressive first motion are observed for meteor events, 
sonic booms, atmospheric explosions and thunder (e.g., Cates & Sturtevant, 2002; Kanamori et al., 1992; Lin & 
Langston, 2007). The abrupt shape of N-waves is inherited from the nearly instantaneous pressure change in the 
initial, nonlinear shock wave (Edwards et al., 2008; Pujol et al., 2005). We use velocity and displacement wave-
forms to assign arrival times at the onset of the principal wave package in the recordings.

The signal recorded across the local seismometer network could be related to one of the disintegration events 
visible on video recordings of the meteor fall, or to the ballistic shock wave from the entry in the atmosphere. 
A disintegration event acts essentially as an isotropic point source, radiating a wavefield with quasi-spherical 
geometry (Edwards & Hildebrand, 2004; Heimann et al., 2013). In this case, the arrival time isochrones on the 
ground are expected to show a circular pattern, although their symmetry can be distorted by the atmospheric 
conditions (D’Auria et al., 2006; McFadden et al., 2021). In turn, conical shock fronts produce hyperbolic or 
elliptical intersections with the ground, the latter being the common case for the hypersonic flight of meteoroids 
(velocities >10 km/s), with Mach angles smaller than the trajectory inclination (Edwards et al., 2008; Kanamori 
et al., 1991; Langston, 2004; Pujol et al., 2005; Tatum, 1999). The isochrones of wave arrivals for the 2016 meteor 
event are incomplete, reflecting a lack of local seismic stations to the northwest. Available isochrone sections 
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describe circular arcs (Figure 1), with no notable elongation, suggesting an origin from a disintegration event. We 
will check this assumption again later by comparing the seismic location to camera recordings of the meteor fall.

3. Location of the Principal Fragmentation Event
Locating a source of acoustic waves in the atmosphere has to deal with a medium in motion, that is subject to 
rapid and relevant variations of parameters. The location and time of the seismically recorded fragmentation 
event is estimated from the atmospheric ray-tracing and source search algorithms implemented in the program 
package BAM (Bolide Acoustic Modeling, Edwards & Hildebrand, 2004; McFadden et al., 2021). Ray-tracing 
takes into account the horizontal wind speed and direction to compute the effective speed of wave propagation 
(Garcés et al., 1998; Pierce, 2019; Virieux et al., 2004). BAM uses particle swarm optimization for guided search 
of the source location, an algorithm where a population of candidate solutions moves semi-randomly through the 
solution space (Bonyadi & Michalewicz, 2017). For each candidate location, the ray trajectories and travel times 
are computed for all stations, the mean origin time is calculated and the mean absolute residual between predicted 
and picked arrivals is evaluated.

For modeling of wave propagation in the atmosphere, sufficiently accurate information about the instantaneous 
temperature and wind conditions is required. Atmospheric parameters are adopted from the ERA5 TP model for 
11 December at 21:00 UTC, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF 
Re-Analysis 5th Generation) (Hersbach et al., 2018). ERA5 reanalysis is based on assimilation, combining model 
data with observations from across the world into a globally complete and consistent data set, benefiting the 
quality of the reanalysis product. ERA5 has a vertical resolution of 37 pressure levels from 1,000 hPa to 1 hPa, 
along a grid with horizontal spacing of 0.25°. The adiabatic acoustic wave speed is obtained from temperature, 
approximating the atmosphere as an ideal gas with heat capacity ratio of 1.4 (Garcés et al., 1998). For raytracing, 
the geopotential data are converted to height and the wind speed and temperature models between source and 
receiver are interpolated using cubic splines (McFadden et al., 2021). At the time of the meteor entry, wind speed 
barely exceeds 10 m/s for the troposphere and most of the stratosphere, with a predominant direction to the south 

Figure 1. (a) Map of detections and arrival times of the pressure wave. Blue and red colors represent advance and delay of the arrival compared to a reference time of 
21:30 UTC. Granada is located around stations CRT and TRAD. Arrival time isochrones (black) were interpolated from arrival picks using Delaunay Triangulation 
(Shewchuk, 1996). (b) Section of normalized, vertical component, velocity seismograms from the temporary station transect versus distance (horizontal distances to the 
calculated terminal burst location, see Section 3, seismograms are high-pass filtered at 1 Hz). The inlay shows an individual N-wave (displacement waveform, top) and 
W-wave (velocity waveform, bottom) arrival at station TP11.
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and to the east at some levels (Figure 2). Such calm weather conditions are a fortunate situation for modeling, 
since they increase the predictability of atmospheric ray paths.

To locate the source, we explore a source volume between 4.25°W and 3.50°W, 37.25°N and 37.75°N, and from 
20 to 50 km height, according to the pattern of travel time isochrones (Figure 1) and typical heights of meteor 
terminal explosions. Relative weights of 1.0 are assigned to permanent stations and weights of 0.2 to stations from 
the temporary transect, to prevent that the temporary deployment dominates the result. Inversion was performed 
for different populations of trial solutions in the particle swarm, and with fixed or free origin time. The particle 
swarm size was selected as 500 solutions, where convergence of the search appears robust for different random 
seeds. A fixed origin time at 21:25:47.3 UTC was tested, corresponding to the maximum luminosity recorded 
at meteor cameras (see below), but we found that treating the origin time as a free parameter gives equivalent 
results, and finally refrain from fixing the time. We admit in raytracing a significant vertical tolerance of 3 km, to 
cover diffracted arrivals (McFadden et al., 2021). Diffractions and creeping waves might reach the ground beyond 
the limit of the shadow zone predicted by geometrical ray theory (Pierce, 2019).

For this parameter settings, successful ray-tracing is possible to all 44 stations, yielding the source of the wavefield 
at 37.47°N, 3.92°W, altitude 38.4 km and origin time 21:25:47.2 UTC (Figure 3). The mean absolute travel time 
residual is 5.0 s, cumulating the uncertainties of atmospheric parameters, uncertainties in arrival times, diffrac-
tion effects, and mean absolute topography variations of ∼300 m among the stations. Residuals below 10 s are 
found for solutions within ∼5 km from the formally best solution (Figure 3). Ray paths become nearly horizontal 
at the eastern stations (GORA, EQES, EBER), indicating the proximity of the shadow zone. Locations further to 
the north, west and at lower altitude cannot reproduce detections at these stations, because rays are predicted to 
refract upward. The most distant detection corresponds to the stations of EBER, located in SE direction at hori-
zontal distance of about 110 km from the source. We examined seismic stations at smaller distances in northern 
direction (JAND, azimuth N357°E, distance 83 km) and western direction (ESTP, N256°E, 87 km), without 
detection of the meteor signal, suggesting that the limit of the shadow zone is shifted toward the southeast, follow-
ing the overall direction of the wind field. The inverted origin time compares favorably to the time of maximum 
luminosity, although the resolution of this parameter is low (±10 s, Figure 3).

The source location confirms the lack of azimuthal coverage and we cannot verify if isochrone fragments 
(Figure 1) correspond to spherical or conical wavefield geometry (Pujol et al., 2005; Tatum, 1999). Furthermore, 
the lack of short-distance observations (only two recordings at less than 40 km horizontal distance) prevents us 
from detecting an increase in apparent velocity underneath the source, as predicted for a spherical wavefield 
(D’Auria et al., 2006; McFadden et al., 2021). To corroborate the point source model, we check the consistency 

Figure 2. Atmospheric conditions according to the ERA5 model by the European Centre for Medium-Range Weather Forecasts (ECMWF). (a) Vertical profiles of 
adiabatic sound speed (calculated from ERA5 temperatures), wind speed and wind direction for coordinates 37.5°N, 4.0°W. (b) Modeled wind speed and direction for 
the lower troposphere (850 hPa) and mid stratosphere (10 hPa) from 36.5°N to 39.0°N and 5.5°W to 2.5°W.
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between the estimated time, height and coordinates to the meteor trajectory inferred from camera recordings. 
Especially source height allows a meaningful comparison, since traveltime isochrones align with the disinte-
gration event for a spherical wavefield, but would align with the intersection of the meteor trail with the Earth's 
surface (height zero) for a conical wavefield.

The luminous phase of the 2016 event was recorded by five meteor cameras operating in the framework of the 
SMART project from the astronomical observatories of La Hita (Toledo), Sevilla, Calar Alto (Almería), Sierra 
Nevada and La Sagra (Granada) (Madiedo, 2017). On camera recordings we can observe the full meteor trajec-
tory, including 13 distinct events of suddenly increasing brightness between 21:25:45.1 and 21:25:47.6 UTC. 
They suggest the presence of multiple fragmentation events, each producing a sudden increase in the meteoroid 
surface area that suffers ablation (Edwards et al., 2008; Heimann et al., 2013). As mentioned previously, the 
maximum luminosity corresponds to an event at 21:25:47.3 UTC, after which the brightness of the meteor signif-
icantly decreases for the last part of the luminous trail. Triangulation of the meteor trajectory places the start of 
the luminous phase at 37.290°N, 3.617°W and altitude 98.7 km, and its extinction at 37.585°N, 4.074°W, and 
altitude 18.5 km. This was calculated by employing the AMALTHEA software (Madiedo, 2014), which follows 
the planes intersection method to determine meteor atmospheric paths for events simultaneously recorded from, 
at least, two different locations (Ceplecha, 1987). Approximating the meteor as a straight line, this corresponds 
to bearing of N309°E, incidence angle of 57° from the horizontal, and total length of the luminous trajectory of 
96 km. Accordingly, the seismically estimated source height of 38.4 km corresponds to a position of 37.519°N 
and 3.960°W along the trajectory, comparing favorably with the seismic location (Figure 3).

Figure 3. (a) Atmospheric ray paths between the terminal burst location and selected stations (for better visibility of the individual paths, only every fifth station of the 
broadband transect is shown). (b) Alternative solutions within the atmospheric volume explored by the search algorithm, color-coded according to the mean absolute 
traveltime error. The trajectory (black line) and terminal burst location (star) from optical observations (linear approximation) are plotted for comparison.
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4. Source, Path and Site Effects
So far, the analysis could clarify the origin of the incoming acoustic signal from an explosive fragmentation event 
at 38 km height, that transfers meteoroid kinetic energy to a quasi-spherical shock wave (Edwards et al., 2008). 
Direct coupled waves are generated by local loading on the surface, preserving the original N-shape of pressure 
variations of the acoustic arrivals (Figure 1). To identify the source signal, we turn our attention to the least 
complex records available (e.g., TP04, TP11, TP27, Figure S1 in Supporting Information S1), which are domi-
nated by one single N-wave. This implies that only one of the optically recorded fragmentation events was signif-
icantly involved in acoustic wave generation, presumably the most luminous event at 21:25:47.3 UTC, which also 
agrees with the inverted origin time. It also implies that more complex waveforms and multiple N-wave arrivals 
at other stations cannot be attributed to the source, but must represent propagation effects. The registration of the 
Granada meteor event at stations with only ∼3.5 km spacing along the Tropical Profile offers an unique oppor-
tunity to evaluate the variability of the recordings over short distances, and to discover the contribution of local 
propagation and coupling effects to the acousto-seismic wavefield at the Earth's surface.

To summarize the waveform characteristics along the transect, we measure signal strength, duration and spectral 
characteristics on vertical component waveforms, and instantaneous signal polarization from three-component 
velocity records (Figure 4). Polarization analysis confirms that principal arrivals are usually associated with a 
distinct particle motion (Figure S2 in Supporting Information  S1). However, we observe large discrepancies 
between the geometric station azimuth and the horizontal signal polarization, corresponding to a mean absolute 
residual of 43°, close to the expected value for a uniform distribution of angles. Unlike some previous meteor 
examples (Langston, 2004; Pujol et al., 2005; D’Auria et al., 2006), the acousto-seismic polarizations of the 2016 
Granada meteor do not reproduce an outward propagating pressure front. An instructive example for complexity 
is the recording TP22, characterized by two bundles of N-waves (Figure S2 in Supporting Information S1). The 
first bundle shows polarization of N170°E, close to the station azimuth of N175°E. The second bundle shows a 
clearly different, NE-SW polarization (N51°E) and can be attributed to an echo, possibly reflected from topogra-
phy SW of the station. The contribution of echoes to signal complexity may be significant along the entire Trop-
ical Profile due to the rugged topography of the South-Central Betics. The inclination of particle motion is also 
highly variable between stations, but shows a tendency toward more vertical motion for larger distances (Figure 
S3 in Supporting Information S1). This may point to the appearance of diffracted waves, with more vertical inci-
dence, at the edge of the shadow zone.

Figure 4. Station map of the Tropical Profile (TP) and characteristics of the recordings versus station number. The measured horizontal polarization and incidence of 
the signals (Flinn, 1965, Figure S2 in Supporting Information S1) is compared to the station azimuth and distance from the inverted location of the disintegration event. 
Signal duration, coda duration and precursor duration have been measured on envelope waveforms (Figure S1 in Supporting Information S1). We show frequencies of 
the spectral peak from velocity and displacement waveforms, as well as the signal energy from integration of squared velocity waveforms, the peak velocity amplitude, 
and the peak displacement amplitude. Dotted lines connect the observables pointwise, and solid lines in the same color show a moving average over five data points.

TP01
TP30 TP25

TP20 TP15
TP10 TP05

 19448007, 2022, 24, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
099999 by U

niversidad D
e G

ranada, W
iley O

nline L
ibrary on [01/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

STICH ET AL.

10.1029/2022GL099999

7 of 9

Large variability of more than one order of magnitude is observed in the measurements of peak displacement, 
peak frequency and amplitude of velocity waveforms, and signal duration, of which only the signal duration 
shows a long wavelength component to the variations (Figure 4). Longer durations are found at the western 
stations (Figure S3 in Supporting Information S1). The gradual variation points to a path effect, where atmos-
pheric heterogeneity in temperature and wind speed is responsible for scattering and delay of the wavefield. 
Multipathing through the atmospheric fine-scale structure, producing a bundle of nearby ray with similar travel 
times, has been previously proposed as the dominant mechanism to explain signal complexity and durations 
longer than the individual N-pulses (Green et al., 2011; Hedlin & Walker, 2013). Different stations present energy 
at different frequencies, corroborating the site dependence of the frequency characteristics of the acoustic-seismic 
coupling (Edwards et al., 2009). Site effects on seismoacoustic coupling may also be influenced by man-made 
structures (Kanamori et al., 1991), which is apparently observed at station TP07, where a standing acoustic wave 
between buildings can be the origin of a harmonic signal with frequency of ∼13 Hz (Figure S1 in Supporting 
Information S1). At many stations, the seismic signals include significant energy in the audible range (Figure 4), 
consistent with eyewitness (or earwitness) reports of audible sound.

The most stable waveform parameter is the peak frequency of displacement waveforms, showing values close 
to 2 Hz for most recordings (Figure 4). This finding reflects that displacement waveforms are constructed from 
individual N-wave arrivals with signal duration close to 0.5  s (Figure  1). Waveform complexity is produced 
principally through the repetitions of N-waves from multipathing of the acoustic wave. The variability among 
waveforms from the broadband transect indicates strong site effects to acousto-seismic coupling, affecting the 
amplitude and frequency characteristics of direct coupling and the efficiency of precursor generation, as well 
as site effects to multipathing. The broadband transect is located within the Alpujarride complex of the Betic 
mountain range, mainly composed of schists, phyllites and Mesozoic carbonate rocks (Martínez-Martínez & 
Azañón, 2002), with P-wave speed above 4 km/s at shallow depths (Chourak et al., 2005). All stations avoid 
unconsolidated sediments, yet near-surface wave speed may vary between stations, the detailed investigation 
of which is beyond the scope of this letter. Also topography may be effective to intensify the acousto-seismic 
coupling (Kanamori et al., 1992). Given the absence of other obstacles at many sites, topography is also the most 
plausible origin of local multipathing, augmenting the acousto-seismic waveforms with acoustic echoes.

5. Conclusions
The seismic signals recorded in southern Spain shortly after the 2016 meteor event show slow (∼0.4  km/s) 
apparent velocity across the network and the presence of N-shaped displacement pulses, indicating an origin 
from an atmospheric shock wave. We report 44 near-field detections, showing arrival times consistent with a 
point source at 38 km height, according to acoustic raytracing based on the ERA5 atmospheric reanalysis. The 
interaction between the 2016 Granada meteoroid and the atmosphere was also observed as a luminous trail start-
ing at 98.7 km height. We can associate the origin time of the wavefield with the moment of maximum meteor 
luminosity, and confirm the seismic location of the principal fragmentation event by triangulation from regional 
meteor cameras with reasonable agreement. The remaining discrepancy could be introduced by uncertainties in 
the atmospheric model, or the effects of diffractions that propagate into the geometrical shadow zone. No seismic 
coupling has been found for the ballistic shock wave from the meteoroid passage.

The relatively large number of near-field records has been obtained due to the temporary operation of a seismic 
broadband transect within the detection zone. Waveforms along the dense transect illustrate the heterogeneity 
of the acousto-seismic wavefield, providing support for previous studies that emphasize the complexity of wave 
propagation and coupling (e.g., Arrowsmith et al., 2007; Edwards et al., 2009; Hedlin & Walker, 2013; Kanamori 
et al., 1991, 1992). In particular, amplitudes and horizontal signal polarizations show large variability among 
stations and seem to be dominated by site effects. These findings highlight the complexity involved in restor-
ing the original pressure amplitudes from acousto-seismic data, a lesson that likely applies not only to meteor 
observations but also to other infrasound wavefields. The coda duration and incidence angles show more gradual 
changes along the transect, pointing to an influence of path effects. A persistent characteristic of the signals is the 
succession of multiple N-waves, suggesting that acoustic multipathing produces the complicate waveforms. We 
attribute this characteristic to local topographic scattering at the receiver site as well as to multipathing through 
the small-scale structure of the atmosphere along the path.
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Data Availability Statement
ERA5 data that support the findings of this study are publicly available from cds.climate.copernicus.eu with 
the identifier https://doi.org/10.24381/cds.adbb2d47. The seismic record section is available with the identifier 
https://doi.org/10.7910/DVN/WQQZ9A.
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