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Abstract

Group decision-making (GDM) mainly solves unstructured decision problems, involving subjective
participation of various experts. In general, when solving GDM problems, decision-makers (DMs)
eventually form a clear support or objection (i.e., consensus) via multiple rounds of negotiations
with consensus cost. However, factors affecting the consensus reaching process (CRP) normally
include the DMs’ preference structures, decision environment, the influence of particular decision
roles and etc., making the GDM full of uncertainty and unable to accurately predict the outcome in
advance. Thus, a moderator on behalf of the collective interest is often introduced to increase the
speed and efficiency of the GDM. Inspired by the minimum cost consensus (MCC) in the literature,
this thesis aims to construct a series of new consensus optimization models to address real-life GDM
problems from two perspectives of either minimizing the moderator’s total cost or maximizing the
individual DM’s total revenue. In building these new models, we also incorporate diverse behavioral
constraints, such as non-cooperation, trade-off of interest and equity or unbalanced adjustment
willing. Specifically, we conduct threefold discussions as follows:

(1) Introduce uncertainty theory into the optimal consensus modeling to address unreliable
results yielded when the reliability of decisions is determined only by experts due to the absence of
sufficient historical data. To do that, we use uncertainty distribution and belief degree as a whole to
fit individual preferences, and further discuss five scenarios of uncertain chance-constrained MCC
models (MCCMs) from the angles of the moderator, individual DMs and non-cooperators. Besides,
we provide consensus reaching conditions and the analytic formulae of the minimum total cost
through deductions. Finally, the new models are verified as an extension of the traditional crisp
number or interval preference-based MCCMs with the application of carbon quota negotiation.

(2) Extend uncertain MCCMs into the CRP framework by incorporating DM’s unbalanced wi-
lling of modifying preference and designing a feedback mechanism on both preferences and weights
due to democratic consensus. To do that, we build two new consensus optimization models based
on the uncertain distance measure: one is to obtain a MCC on account of asymmetric costs, ag-
gregation function and consensus measure; while the other provides a more flexible way to solve
GDM problems without presetting a consensus level threshold. Moreover, binary variables are used
to reduce the calculation complexity resulted from piecewise functions in the new multi-coefficient
goal programming models and the feasibility of the new proposal is verified by illustrative examples.

(3) Inspired by the maximum compensation consensus models transformed from the MCCMs,
we build several new consensus optimization models to obtain flexible (e.g., optimal or fair) car-
bon quota allocation schemes within a closed-loop trading system. To solve these new models, a
relaxation method based on the PSO algorithm is proposed. Moreover, since the inability to per-
form real-life GDM usually stems from conflicts of interest based on the DMs’ mutual competition,
we further suggest two strategies to address the unfairness. Numerical results show that sufficient
interactions among the DMs are of great significance in achieving fairness within a trading system.
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Chapter I

PhD dissertation

1 Introduction

Group decision-making (GDM) mainly solves unstructured decision problems, involving subjective
participation of various experts [ZKP19]. In the GDM, through communication and multiple rounds
of effective feedback/adjustment, decision-makers (DMs) eventually form a clear support or objec-
tion towards a certain issue, meaning that a relatively consistent opinion (also known as consensus)
is reached [ERDS07]. In fact, consensus is a prerequisite for the effective GDM and widely exists in
our daily lives, such as the online P2P lending [ZKP19] or trans-boundary water pollution control
[CZC+18]. Generally speaking, factors affecting the consensus reaching process (CRP) include the
DMs’ preference structures or psychological expectation, convergence rules, decision environment,
and leaders’ or non-cooperators’ influence. As [HVCKP14] concluded that consensus boils down
to cooperation, while the most GDM boils down to competition. Moreover, Urda and Loch [UL13]
pointed out that individual behaviors in the GDM are driven by both their own economically ra-
tional deliberation and decision biases and social preferences (e.g. status achievement, reciprocal
relations, or group identity). Thus, a moderator [GZF+15] on behalf of the collective interest that
has prominent skills in leadership and negotiation, is often introduced to persuade or tempt the
DMs to gradually adjust their opinions into consensus via different effective means (collectively
referred to as “consensus cost”), thereby increasing the speed and efficiency of the CRP.

The concept of the minimum cost consensus (MCC) was originally proposed by Ben-Arieh
and Easton [BAE07] for solving the single and multi-criteria GDM problems via linear-time algo-
rithms. Later, a quadratic cost function was adopted to discuss the influence of different factors
(e.g., cost, opinion elasticity, the number of adjusted experts) on the consensus [BAEE09]. Mean-
while, the optimization-based consensus models [DXLF10], recognized as the minimum adjustment
consensus models (MACMs), aim to maximize the retention of the DM’s original preference, rather
than pursuing a minimum resource consumption. Up to now, although abundant studies have been
conducted, most are based on traditional preference structures (e.g., crisp numbers, intervals or
linguistic information), neglecting the characteristics of stochastic distribution in the DM’s pref-
erence. In contrast, linear uncertainty distributions with belief degrees provide a feasible way to
better simulate the DM’s uncertainty and ambiguous behaviors in the actual GDM [GGHV+20].

In fact, even if there exists a moderator acting as a leader in the GDM, the DMs involved still
cannot account for all factors; besides, diversity widely exists in individuals’ research background,
knowledge reserve, and the amount of private information. In a nutshell, the GDM is full of
uncertainty, making it unable to accurately predict the outcome in advance. That is, the GDM
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2 Chapter I. PhD dissertation

essentially includes providing decision support for solving uncertainty. To date, theoretical methods
for dealing with uncertainty include probability theory, interval analysis, fuzzy sets, rough sets and
grey systems. However, obtaining a precise probability for a natural state in the real-life GDM
is not easy, especially when little information is available for evaluating probabilities (i.e., usable
information is insufficient), or when several information sources conflict with each other [AP14];
then, the reliability (or probability) that certain event will occur is primarily determined by experts.
To handle such dilemmas where the reliable prediction that one event would occur has to be
determined by individual subjectivity due to the inability to obtain its actual frequency, uncertainty
theory was proposed [Liu07, Liu10], which has been an important branch of mathematics and mainly
deals with human beings’ subjective reliability.

Apart from the above consensus modeling with a minimum cost/adjustment, this thesis
was also partially inspired by the construction of consensus models that aim to maximize the to-
tal revenue. By introducing linear primal-dual theory, various MCCMs with specific preference
structures were adopted as the primal models, and then their corresponding dual forms (i.e., the
optimization-based maximum compensation consensus models) along with their economic signifi-
cance were deeply explored in [GZF+15, GXZ+15] and [ZKP19]. Subsequently, on account of the
essential architecture of Stackelberg’s game, [ZDZP20] presented a bi-level optimization consensus
model that depicts the interaction between the DMs and the moderator, and divided the DM’s
total return into a modification component (also known as external compensation) provided by the
moderator for the DM’s initial preference adjustment and a recognition component based on the
similarity between the DM’s original opinion and the final consensus. Hence, to construct consensus
models from the perspective of maximizing the revenue is logical and reasonable.

Therefore, this thesis attempts to construct a series of consensus optimization models to
address some real-life GDM problems from the following two perspectives:

• From the perspective of minimizing the overall consensus cost: provided that the GDM
problems cannot be solved with those existing theories dealing with uncertainty due to the
inability to obtain its actual frequency, how to combine Liu’s uncertainty theory with the
traditional consensus GDM theory, and how to accordingly construct and interpret the new
consensus optimization models by incorporating different behavioral constraints? Meanwhile,
what’s the relationship between the novel MCCMs with those traditional ones?

• From the perspective of maximizing the individual compensation (revenue or return): given
that various practical negotiation problems (e.g., demolition or pollution control) that involve
no less than two decision roles, gain increasing attention in the field of the GDM, how to build
corresponding mathematical models by designing particular market trading mechanisms so
as to realize better resource reallocations? Furthermore, how to balance the overall benefits
and equity so as to provide managerial insights from a theoretical angle?

Concerning the second perspective, it is well known that the market is profit-oriented (i.e.,
simultaneously pursuing the maximization of revenue and the minimization of costs) and its op-
erating mechanism is mostly affected by pricing strategy, participants’ competition, supply and
demand, and etc. Therefore, in discussing the closed-loop trading mechanisms, the revenue maxi-
mization of either the whole group or a single DM is set as our objective function in this thesis with
related constraints such as supply and demand or prices. Undoubtedly, fairness concerns are also
critical for the GDM [DLL22], since participants are motivated by not only the final results, but
also the fairness they feel compared with others [Ada63]. Under a fixed total carbon quota, due
to the fact that a scientific resource allocation scheme directly involves the economic development
rights of different regions, it is bound to be an arduous task and worth investigating.
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Bearing all the above points in our mind, this thesis constructs a series of consensus optimiza-
tion models from the moderator’s perspective of minimizing the total cost or the DM’s perspective
of maximizing their revenues. Specifically, we conduct the following discussions:

(1) In the absence of sufficient historical data, reliability of decisions is mainly determined by
experts rather than some prior probability distributions, easily causing unreliable decision
results. Thus, we use belief degree and uncertainty distribution as a whole to fit individual
preferences, and we further discuss five scenarios of uncertain chance-constrained MCCMs
from multiple roles of the moderator, the individual DMs and the non-cooperators. Besides,
we provide the reaching conditions of the consensus and the analytic formulae of the minimum
total cost via theoretical derivations. Finally, we verify that the new consensus models are
essentially an extension of the traditional crisp number or interval preference-based MCCMs
through the application of carbon quota negotiation.

(2) Since the CRP can facilitate more effective consensus by considering human behaviors. We
extend the uncertain MCCMs proposed in the first item, but consider asymmetric costs into
the CRP framework, where the DM’s preference and weight are both adjusted according to
democratic consensus. Moreover, we build two novel consensus optimization models based on
the uncertain distance measure: one is to obtain a MCC by simultaneously considering asym-
metric costs, aggregation function and consensus measure; while the other provides a more
flexible way to address the GDM problems without pre-setting a specific consensus level (CL)
threshold. We further introduce binary variables to reduce the calculation complexity resulted
from piecewise functions in the new multi-coefficient goal programming models. Finally, we
reveal the feasibility and the superiority of the new methods via illustrative examples.

(3) Using optimization-based consensus modeling to design flexible carbon quota trading mech-
anisms is novelty, namely, we provide basic allocation schemes within a closed-loop trading
system by taking both revenue and fairness into account. We construct a series of consen-
sus optimization models from the perspective of maximizing the overall revenue, and obtain
the optimal/fair carbon quota allocation schemes that include detailed trading information
as transferred quantities, transaction prices and etc. Furthermore, we propose a relaxation
method based on the particle swarm optimization (PSO) algorithm to solve these new models.
The inability to conduct the real-life GDM usually stems from conflicts of interest based on
the DMs’ mutual competition, thus, we suggest two strategies to handle the resulting unfair-
ness within the trading system. Finally, the numerical results show that sufficient interactions
among the DMs are of great significance in achieving fairness within a trading system.

Overall, this PhD dissertation consists of two main parts: the former part elaborates the
targeted GDM problems that need to be solved and the main results acquired from the proposed
consensus optimization models. The latter part is a compilation of the main publications that are
associated with this thesis.

The rest is arranged as follows: Section 2 introduces some preliminaries that support the
subsequent analysis, including the traditional consensus optimization models, a general CRP frame-
work along with consensus measures, and uncertainty theory. Section 3 provides the basic assump-
tions and challenges that justify this thesis. Next, the main objectives are presented in Section 4
and the specific methodology used throughout this thesis are described in Section 5. Next, Section
6 elaborates the construction of various consensus optimization models. Additionally, Section 7
discusses the results acquired from this thesis. Finally, the concluding remarks of this thesis are
summarized in Section 8, while Section 9 outlines prospects for future research.
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Introducción

La toma de decisiones en grupo (GDM, por sus siglas en inglés) resuelve principalmente problemas
de decisión no estructurados, que implican la participación subjetiva de varios expertos [ZKP19]. En
GDM, a través del debate y de múltiples rondas de retroalimentación, los expertos o responsables de
la toma de decisiones (DM, por sus siglas en inglés) acaban formando una opinión clara de apoyo u
objeción hacia una determinada cuestión, la cual suele alcanzarse por acuerdo (consenso) [ERDS07].
De hecho, la toma de decisiones por consenso es un requisito previo para la eficacia de la GDM, y es
algo que sucede normalmente en nuestra vida cotidiana, como los préstamos P2P en ĺınea [ZKP19]
o el control transfronterizo de la contaminación del agua [CZC+18]. En términos generales, los
factores que afectan al proceso de consecución de consenso (CRP, por sus siglas en inglés) incluyen
las estructuras de preferencias o expectativas psicológicas de los DM, las reglas de convergencia,
el entorno de decisión y la influencia de los ĺıderes o de los no cooperadores. En [HVCKP14] se
concluyó que el consenso se reduce a la cooperación, mientras que la mayoŕıa de los GDM se reducen
a la competencia. Urda y Loch [UL13] señalaron que los comportamientos individuales en GDM
están impulsados tanto por sus propios sesgos de deliberación y decisión económicamente racionales
como por preferencias sociales (por ejemplo, logro de estatus, relaciones rećıprocas o identidad de
grupo). Aśı pues, a menudo se introduce un moderador [GZF+15] en nombre del interés colectivo
que posee destacadas aptitudes de liderazgo y negociación, para persuadir o tentar a los DM a que
ajusten continuamente sus opiniones hacia el consenso a través de diferentes medios (denominados
colectivamente “coste del consenso”), aumentando aśı la velocidad y la eficacia de la CRP.

El concepto de consenso de coste mı́nimo (MCC) fue propuesto originalmente por Ben-Arieh
y Easton [BAE07] para resolver problemas de GDM de uno o varios criterios mediante algoritmos
de tiempo lineal. Más tarde, se adoptó una función de coste cuadrático para discutir la influencia
de diferentes factores (por ejemplo, el coste, la elasticidad de la opinión, el número de expertos que
deben ajustar sus opiniones) en el consenso [BAEE09]. Al mismo tiempo, los modelos de consenso
basados en la optimización [DXLF10], reconocidos como los modelos de consenso de ajuste mı́nimo
(MACMs), tienen como objetivo maximizar la retención de la preferencia original del DM, en lugar
de perseguir un consumo mı́nimo de recursos. Hasta ahora, aunque se han realizado abundantes
estudios, la mayoŕıa se basan en estructuras de preferencia tradicionales (por ejemplo, números
exactos, intervalos o información linǵ’úıstica), descuidando las caracteŕısticas de la distribución
estocástica en la preferencia del DM. Por el contrario, las distribuciones lineales de incertidumbre
con grados de creencia proporcionan una forma factible de simular mejor la incertidumbre y los
comportamientos ambiguos de los DM en los problemas reales de GDM [GGHV+20].

Realmente, aunque exista un moderador que actúe como ĺıder en el GDM, los DM implicados
no pueden tener en cuenta todos los factores; además, existe una gran diversidad en la formación
investigadora de los individuos, sus conocimientos y la cantidad de información privada que poseen.
Por tanto, la GDM está llena de incertidumbre, lo que implica que se muy difćil o imposible predecir
con exactitud el resultado de antemano. En otras palabras, la GDM consiste esencialmente en
proporcionar apoyo a la toma de decisiones para solventar la incertidumbre. Hasta la fecha, los
métodos teóricos para tratar la incertidumbre incluyen la teoŕıa de la probabilidad, el análisis de
intervalos, los conjuntos difusos, los conjuntos aproximados y los sistemas grises. Sin embargo,
obtener una probabilidad precisa para un estado natural en GDM en la vida real no es fácil,
especialmente cuando se dispone de poca información para evaluar las probabilidades (es decir, la
información disponible es insuficiente), o cuando varias fuentes de información entran en conflicto
entre śı [AP14]; entonces, la fiabilidad (o probabilidad) de que ocurra cierto suceso la determinan
principalmente los expertos. Para hacer frente a estos dilemas, en los que la predicción fiable de
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que se producirá un suceso debe determinarse mediante la subjetividad individual debido a la
imposibilidad de obtener su frecuencia real, se propuso la teoŕıa de la incertidumbre [Liu07, Liu10],
que ha sido una importante rama de las matemáticas y se ocupa principalmente de la fiabilidad
subjetiva de los seres humanos.

Aparte de los anteriores modelos de consenso con un coste/ajuste mı́nimo, esta tesis tam-
bién se inspiró parcialmente en la construcción de modelos de consenso que pretenden maximizar
los ingresos totales. Mediante la introducción de la teoŕıa lineal primal-dual, se adoptaron varios
MCCM con estructuras de preferencias espećıficas como modelos primales y, a continuación, se
exploraron en profundidad sus formas duales correspondientes (es decir, los modelos de consen-
so de compensación máxima basados en la optimización) junto con su importancia económica en
[GZF+15, GXZ+15] y [ZKP19]. Posteriormente, teniendo en cuenta la arquitectura esencial del
juego de Stackelberg, [ZDZP20] presentó un modelo de consenso de optimización de dos niveles que
describe la interacción entre los DM y el moderador, y dividió el rendimiento total del DM en un
componente de modificación (también conocido como compensación externa) proporcionado por
el moderador para el ajuste de la preferencia inicial del DM y un componente de reconocimiento
basado en la similitud entre la opinión original del DM y el consenso final. Por lo tanto, construir
modelos de consenso desde la perspectiva de maximizar los ingresos es lógico y razonable.

De esta forma, esta tesis intenta construir una serie de modelos de optimización consensuados
para abordar algunos problemas reales de GDM desde las dos perspectivas siguientes:

• Desde la perspectiva de la minimización del coste global del consenso. Siempre que los pro-
blemas de GDM no puedan resolverse con las teoŕıas existentes que tratan la incertidumbre
debido a la incapacidad de obtener su frecuencia real, ¿cómo combinar la teoŕıa de la incerti-
dumbre de Liu con la teoŕıa tradicional de GDM por consenso? y ¿cómo construir e interpretar
en consecuencia los nuevos modelos de optimización por consenso incorporando diferentes res-
tricciones de comportamiento? Por otra parte, ¿cuál es la relación entre los nuevos MCCM
con los tradicionales?

• Desde la perspectiva de la maximización de la compensación individual (ingreso o rendimien-
to). Dado que varios problemas prácticos de negociación (por ejemplo, la demolición o el
control de la contaminación) que implican no menos de dos funciones de decisión, atraen
cada vez más atención en el campo de la GDM, ¿cómo construir los modelos matemáticos
correspondientes mediante el diseño de mecanismos particulares de negociación de mercado
con el fin de realizar mejores reasignaciones de recursos? Por otra parte, ¿cómo equilibrar los
beneficios globales y la equidad para aportar ideas de gestión desde un ángulo teórico?

En cuanto a la segunda perspectiva, es bien sabido que el mercado está orientado a la
obtención de beneficios (es decir, persigue simultáneamente la maximización de los ingresos y la
minimización de los costes) y su mecanismo de funcionamiento se ve afectado principalmente por la
estrategia de precios, la competencia de los participantes, la oferta y la demanda, etc. Por lo tanto,
al analizar los mecanismos de negociación en bucle cerrado, la maximización de los ingresos de todo
el grupo o de un único gestor es nuestra función objetivo en esta tesis, con restricciones relacionadas
como la oferta y la demanda o los precios. Sin duda, las cuestiones de equidad también son cŕıticas
para el GDM [DLL22], ya que los participantes están motivados no solo por los resultados finales,
sino también por la equidad que sienten en comparación con los demás [Ada63]. En el marco de una
cuota total fija de carbono, debido al hecho de que un esquema cient́ıfico de asignación de recursos
implica directamente los derechos de desarrollo económico de las distintas regiones, está llamado a
ser una tarea ardua y digna de investigación.
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Teniendo en cuenta todos los puntos anteriores, esta tesis construye los modelos de opti-
mización de consenso desde la perspectiva del moderador de minimizar el coste total o desde la
perspectiva del DM de maximizar sus ingresos. Aśı, llevamos a cabo las siguientes discusiones:

(1) En ausencia de suficientes datos históricos, la fiabilidad de las decisiones viene determina-
da principalmente por los expertos y no por algunas distribuciones de probabilidad previas,
provocando fácilmente resultados de decisión poco fiables. Aśı pues, utilizamos el grado de
creencia y la distribución de incertidumbre como un todo para ajustar las preferencias indi-
viduales, y analizamos además cinco escenarios de MCCM inciertos y limitados por el azar
desde múltiples roles del moderador, los DMs y los no cooperantes. Además, proporcionamos
las condiciones para alcanzar el consenso y las fórmulas anaĺıticas del coste total mı́nimo
mediante una derivación teórica. Por último, verificamos que los nuevos modelos de consenso
son esencialmente una extensión de los MCCM tradicionales basados en números exactos o
en preferencias de intervalo mediante la aplicación de la negociación de cuotas de carbono.

(2) Dado que los CRP pueden facilitar un consenso más eficaz al tener en cuenta los compor-
tamientos humanos, ampliamos los MCCM inciertos propuestos en el primer punto, pero
consideramos los costes asimétricos en el marco de los CRP, donde la preferencia y el peso
del DM se ajustan de acuerdo con el consenso democrático. Además, construimos dos nuevos
modelos de optimización del consenso basados en la medida de distancia incierta: uno con-
siste en obtener un MCC considerando simultáneamente los costes asimétricos, la función de
agregación y la medida de consenso; mientras que el otro proporciona una forma más flexible
de abordar los problemas de GDM sin preestablecer un umbral de nivel de consenso (CL, por
sus siglas en inglés) espećıfico. Además, introducimos variables binarias 0-1 para reducir la
complejidad de cálculo derivada de las funciones a trozos en los nuevos modelos de progra-
mación de objetivos multieficientes. Por último, revelamos la viabilidad y la superioridad del
nuevo método mediante ejemplos ilustrativos.

(3) El uso de modelos óptimos consensuados para diseñar mecanismos flexibles de comercio de
cuotas de carbono es una novedad, en concreto, proporcionamos esquemas básicos de asigna-
ción dentro de un sistema de comercio de bucle cerrado teniendo en cuenta tanto los ingresos
como la equidad. Construimos una serie de modelos de optimización consensuados desde la
perspectiva de la maximización de los ingresos globales, y obtenemos esquemas de asigna-
ción de cuotas de carbono óptimos/justos que incluyen información comercial detallada como
cantidades transferidas, precios de transacción, etc. Además, proponemos un método de rela-
jación basado en el algoritmo de optimización de enjambre de part́ıculas para resolver estos
nuevos modelos. La imposibilidad de llevar a cabo GDM en la vida real suele deberse a con-
flictos de intereses basados en la competencia mutua de los DM, por lo que sugerimos dos
estrategias para gestionar la injusticia resultante dentro del sistema de comercio. Por último,
los resultados numéricos muestran que las interacciones suficientes entre los gestores son de
gran importancia para lograr la equidad en un sistema comercial.

En conjunto, esta tesis consta de dos partes principales: en la primera se exponen los pro-
blemas de GDM que deben resolverse y los principales resultados obtenidos a partir de los modelos
de optimización por consenso propuestos. La segunda parte es una recopilación de las principales
publicaciones asociados con esta tesis.

El resto de esta memoria se organiza como sigue: la Sección 2 introduce algunos preliminares
que apoyan el análisis posterior, incluyendo los modelos tradicionales de optimización del consenso,
un marco general de CRP junto con medidas de consenso, y la teoŕıa de la incertidumbre. La
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Sección 3 presenta los supuestos básicos y los retos que justifican esta tesis. A continuación, en
la Sección 4 se presentan los objetivos principales y en la Sección 5 se describe la metodoloǵıa
espećıfica utilizada a lo largo de esta tesis. A continuación, la Sección 6 desarrolla la construcción
de varios modelos de optimización de consenso. Además, en la Sección 7 se discuten los resultados
obtenidos en esta investigación. Por último, en la Sección 8 se resumen las conclusiones obtenidas,
mientras que en la Sección 9 se esbozan las perspectivas para futuras investigaciones.
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2 Preliminaries

Some relevant knowledge about the subsequent optimal modeling in this PhD dissertation are
given in this section. Specifically, Section 2.1 reviews different types of the traditional consensus
optimization models, Section 2.2 recalls widely-used methods to measure the consensus level, and a
general CRP framework proposed in [HVHC02], meanwhile, Section 2.3 introduces the uncertainty
theory, including its basic concepts and calculation principles.

2.1 Traditional consensus optimization models

Suppose m DMs participate in a GDM problem, and a finite set D = {d1, d2, · · · , dm} denotes all
individuals. Let oi ∈ R denote the i-th DM’s (i.e., di’s) original preference, ōi be di’s adjusted
preference, and oc be their reached consensus. In addition, ci ∈ R+ denotes the unit cost of
adjusting di’s preference closer to the consensus, while wi ∈ R+ reflects di’s importance degree
(i.e., weight) with wi ≥ 0 and

∑m
i=1wi = 1, i ∈M = {1, 2, · · · ,m}.

2.1.1 Traditional MCCMs or MACMs

The DMs are normally willing to change opinions after repetitive negotiation efforts, though it
escalates the costs of reaching a consensus. Adopting the p-norm distance measure (i.e., || ||p, p ≥ 1),
Ben-Arieh and Easton [BAE07] provided a linear-time algorithm to seek the optimal MCC oc∗ by
minimizing the weighted total cost fc(o

c) =
∑m

i=1wici||oc − oi||p. Later, they discussed such
scenarios with/without an ε-consensus (denoted as |oc− ōi| ≤ ε, ε > 0) [BAEE09]. For brevity, Ref.
[ZDXL11] develops an optimization model to represent their ideas.

min φ =
m∑
i=1

ci|ōi − oi|

s.t.

{
|oc − ōi| ≤ εi, i ∈M
oc ∈ R, ōi ∈ R

(I.1)

Solving the Model (I.1) yields the optimal consensus oc∗ and the DM’s optimal adjusted
preference ōi

∗. The first constraint denotes a tolerance behavior, and if εi = 0 (∀i ∈ M), a
hard consensus is achieved (i.e., ōi

∗ = oc∗), which is unrealistic and uneconomical for the most
GDM problems [HVCKP14]. However, as Cheng et al. [CYW+22] argued that these two kinds of
consensus measures correspond to different applicable scenarios, for instance, the hard consensus
type is suitable for merger negotiations between any two companies to obtain an outcome of either
a success (full consensus) or a failure (null consensus).

Meanwhile, Dong et al. [DXLF10] utilized the ordered weighted averaging (OWA) operator
and a deviation measure to handle the consensus problems under a 2-tuple fuzzy linguistic envi-
ronment, so as to preserve the DMs’ original preferences as much as possible. Similarly, their main
ideas can be mathematically described as follows.

min φ =
m∑
i=1

d(ōi, oi)

s.t.

{
d(oc, ōi) ≤ ε, i ∈M
oc = Fw(ō1, ō2, · · · , ōm)

(I.2)

where d(·) represents the rectilinear or Euclidean deviation measure, Fw denotes an aggregation
function, and the objective function is to minimize all DMs’ adjustments.
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Although the Model (I.1) and the Model (I.2) were proposed according to different consensus
mechanisms, Zhang et al. [ZDXL11] later verified that these two models could actually be merged
into the following unified form.

min φ =
m∑
i=1

ci ∗ d(ōi, oi)

s.t.

{
d(oc, ōi) ≤ ε, i ∈M
oc = Fw(ō1, ō2, · · · , ōm)

(I.3)

It turns out that once Fw takes the OWA operator as (1
2 · · · 0 · · · 1

2)T, the Model (I.3) reduces
to the Model (I.1); and if the unit costs of adjusting the DMs’ opinions satisfy ci = cj ,∀i, j ∈
M , then the Model (I.3) equals the Model (I.2). In fact, this section provides the most original
theoretical basis for the research conducted in this thesis.

2.1.2 Traditional maximum compensation consensus models

Explicitly, both the MCCMs and the MACMs aim to achieve a minimum cost/adjustment from
a holistic perspective. However, from any DM’s individual perspective, they are always econom-
ically rational by expecting a maximum compensation (or return, gain) due to their compromise
via adjusting their preferences. In this regard, Gong et al. [GZF+15, GXZ+15] and Zhang et al.
[ZKP19] explored the dual forms of different variants of Ben-Arieh and Easton’s original MCC prob-
lem [BAE07] based on the linear primal-dual programming theory, so as to acquire the maximum
compensation for all DMs. Particularly, a concise form of the maximum compensation consensus
models is provided by Zhang et al. [ZKP19], shown as the Model (I.4).

Max ψ =
m∑
i=1

yi ∗ ||oc − oi||p

s.t.

{ ∑m
i=1 yi = 0

|yi| ≤ wi, i ∈M
(I.4)

Solving the Model (I.4) yields the optimal consensus oc∗, and the optimal unit return y∗i
expected by di, and the maximum total returns by all DMs ψ∗, where wi is the weight assigned to
di and oi is his/her original preference. Clearly, an optimal consensus oc∗ can always be reached in
terms of the minimum cost (e.g., the Model (I.3)) or the maximum return (e.g., the Model (I.4)).
Moreover, taking game theory into account, Zhang et al. [ZDZP20] later specified the total returns
into a modification part due to a DM’s preference adjustment and a recognition part based on the
similarity between his/her initial preference and the final consensus. To be noted, the theoretical
modeling ideas of the third part in this thesis are inspired from this section, which indicates that
consensus negotiation problems can also be discussed from the perspective of revenue maximization.

2.1.3 Consensus models with asymmetric costs

Cheng et al. [CZC+18, CYW+22] explored the GDM problems with cost constraints based on the
DM’s different adjustment directions, further extending the Model (I.3). In specific, Fig. 1 depicts
their cost functions under a symmetric or asymmetric scenario by considering the DM’s tolerance
and limited compromise behaviors, where the horizontal axis is the DM’s original preference (i.e.,
oi), and the vertical axis represents a unit cost (i.e., ci).
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Figure 1: Cost functions with tolerance and compromise

For simplicity, only the asymmetric cost scenario is reported hereafter [CZC+18]. That is,
once taking the tolerance and the compromise limit into account, di’s optimal adjusted preference
is obtained as

ōi
∗ =





oc − ε−i , if oi ∈ [oc − θ−i , oc − ε−i )

oi, if oi ∈ [oc − ε−i , oc + ε+
i ]

oc + ε+
i , if oi ∈ (oc + ε+

i , o
c + θ+

i ]

(I.5)

The total cost of di to adjust his/her preference becomes

ci(oi) =





c+
i (oc − ε−i − oi), if oi ∈ [oc − θ−i , oc − ε−i )

0, if oi ∈ [oc − ε−i , oc + ε+
i ]

c−i (oi − oc − ε+
i ), if oi ∈ (oc + ε+

i , o
c + θ+

i ]

(I.6)

where c−i denotes di’s unit cost with a downward adjustment, and c+
i conversely indicates the unit

cost of an upward adjustment. In addition, εi measures di’s tolerance of the consensus, while θi
reflects di’s compromise limit.

To be more specific, Fig. 1(b) shows that once di’s original preference is located at [oc −
ε−i , o

c + ε+
i ], a tolerance behavior exists (also known as the soft consensus [HVCKP14]), namely,

any preference within this subinterval is acceptable, thereby requiring no adjustments nor yielding
any costs. Moreover, any preference located at [oc − θ−i , oc − ε−i ) or (oc + ε+

i , o
c + θ+

i ] corresponds
to a compromise limit behavior, inducing a total cost of c+

i (oc − ε−i − oi) or c−i (oi − oc − ε+
i ),

respectively. In fact, too many preference adjustments go against the DM’s willingness, and incur
unnecessary extra costs, thus, those original preferences smaller than oc− θ−i or larger than oc+ θ+

i

won’t be discussed, however, the DMs can refresh their preferences to rejoin the GDM process. In
this regard, the objective function of the Model (I.3) is revised into

min φ =
∑

i: oi∈[oc−θ−i ,oc−ε
−
i )

c+
i (oc − ε−i − oi) +

∑

i: oi∈(oc+ε+i ,o
c+θ+i ]

c−i (oi − oc − ε+
i ) (I.7)

2.2 A general CRP framework based on consensus measures

Methods to obtain the consensus level (CL) are reviewed in Section 2.2.1, while a general framework
of the consensus reaching process (CRP) is recalled in Section 2.2.2.
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2.2.1 Consensus measure

Consensus level (CL), the current level of unanimous within a group, is often calculated by distance
functions [dMCTHV18] and generally measured in two ways [LLRM20]:

• The distance between the DM’s preference and the consensus, shown as the Eq. (I.8).

CL(o1, . . . , om) = 1− f2(f1(d(oi, o
c))) ≥ β (I.8)

• The distance between two arbitrarily chosen individual preferences, shown as the Eq. (I.9).

CL(o1, . . . , om) = 1− g2(g1(d(oi, oj))) ≥ β, i 6= j (I.9)

where β is a preset CL threshold, d(·) represents the distance measure, f1 : R+ → R+, f2 : R+ →
[0, 1], g1 : R+ → R+, g2 : R+ → [0, 1] are mapping functions, and the remaining notation is defined
in Section 2.1.

Since the DM’s influence is directly reflected by the weight wi with wi ≥ 0 and
∑
wi = 1,

Ref. [LLRM20] incorporated individual weights into the calculation of the CL, that is,

CL(ō1, . . . , ōm) =

m∑

i=1

wi|ōi − oc| ≤ γ (I.10)

CL(ō1, . . . , ōm) =
m−1∑

i=1

m∑

j=i+1

wi + wj
m− 1

|ōi − ōj | ≤ γ (I.11)

where γ = 1 − β ∈ [0, 1]. In fact, both the Eq. (I.10) and the Eq. (I.11) emphasize the greater
contribution of the more important DM to the CL, but only the Eq. (I.10) is used in our research.

2.2.2 A general CRP framework

Several basic steps constitute a CRP framework for solving the consensus GDM problems, that
is, preference expression, preference aggregation, consensus measure, preference adjustment and
selection. In addition, Herrera-Viedma et al. [HVHC02] provided a general consensus framework,
shown as Fig. 2, to address the GDM problems with heterogeneous preference structures.

Figure 2: The general CRP framework in Ref. [HVHC02]
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Regarding all the above mentioned steps, feedback mechanisms can be initiated based on
diverse principles, such as the minimum deviation or cost [ZWD+21], the maximum number of
experts adjusted under a limited budget [BAEE09], the minimum number of the adjusted DMs
[ZDCY19] or some optimization-based rules [ZDZP20]. In our second topic, a CL threshold is used
to initiate the DMs’ preference modification process. Furthermore, it is worth noting that Section
2.1.3 and Section 2.2 both make a significant contribution to the second topic of this thesis.

2.3 Uncertainty theory

When no samples are available or only poor information obtained from historical data, the estimated
distribution function will deviate far from the actual frequency, causing the law of large numbers
invalid, and further obtaining some counterintuitive results. Thus, some domain experts are invited
to evaluate the belief degree that certain events will happen. Distinguished from probability theory
dealing with randomness of frequency, uncertainty theory was proposed to address the uncertainty
of belief degrees.

2.3.1 Uncertain variable and uncertainty distribution

Let Γ be a nonempty set (sometimes referred as the universal set), and a collection L consisting
of subsets of Γ is an algebra over Γ, if it meets the following three conditions: (a) Γ ∈ L; (b) if
Λ ∈ L, then ΛC ∈ L; and (c) if Λ1,Λ2, · · · ,Λn ∈ L, we have

⋃n
i=1 Λi ∈ L, where, if condition (c) is

replaced by closure under countable union, that is, if Λ1,Λ2, · · · ,Λn ∈ L, we obtain
⋃∞
i=1 Λi ∈ L,

then L is referred as a σ-algebra over Γ. Element Λ in L is called a measurable set, which also can
be interpreted as an event in uncertainty theory. M is defined as an uncertain measure over the
σ-algebra L. Without loss of generality, real number M{Λi} corresponds to event Λi one by one,
representing the belief degree with which we belief event Λi will occur. There exist no doubt that
such assignment is not arbitrary, and the uncertain measure M satisfies the following four axioms
[Liu07, Liu09].

Axiom 1. (Normality Axiom): M{Γ} = 1 holds for the universal set Γ.

Axiom 2. (Duality Axiom): M{Λ}+M{Λc} = 1 holds for any event Λ.

Axiom 3. (Subadditivity Axiom): For every countable sequence of event Λ1, Λ2, · · · , we have:

M

{ ∞⋃

i=1

Λi

}
≤
∞∑

i=1

M{Λi}

Axiom 4. (Product Axiom): Let (Γk,Lk,Mk) be uncertain space for k ∈ N+, then the product of
uncertain measure M is still an uncertain measure, and satisfies:

M

{ ∞∏

k=1

Λk

}
=

∞∧

k=1

M{Λk}

where Λk are events arbitrarily chosen from Lk, (k ∈ N+), respectively.

Definition 1. [Liu07] An uncertain variable ξ is a function from an uncertain space (Γ,L,M)
to the set of real numbers, and {ξ ∈ B} is an event for any Borel set B of real numbers. For
any real number x, the uncertainty distribution Φ of an uncertain variable ξ can be defined as:
Φ(x) = M{ξ ≤ x}.



2 Preliminaries 13

M{ξ ≤ x} is the belief degree for the event ξ ≤ x may occur, and it is denoted as α, where
0 ≤ α ≤ 1. In other words, we have Φ(x) = M{ξ ≤ x} = α. According to Axiom 2, we obtain
M{ξ > x} = 1− Φ(x) = 1− α.

Definition 2. [Liu10] An uncertainty distribution Φ(x) is regular if it is a continuous and strictly
increasing function with regard to x at which 0 < Φ(x) < 1, and satisfies

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1 (I.12)

An uncertainty distribution Φ is regular if and only if its inverse function Φ−1(α) exists and
is unique for each α ∈ (0, 1).

Example 1. An uncertain variable ξ is called linear if it has a linear uncertainty distribution Φ(x)
(see Fig. 3(a)), denoted by ξ ∼ L(a, b), where real numbers a and b satisfy a < b.

Φ(x) =





0, if x ≤ a
x− a
b− a , if a ≤ x ≤ b

1, if x ≥ b

(I.13)

And its inverse uncertainty distribution (see Fig. 3(b)) is

Φ−1(α) = (1− α)a+ αb (I.14)

0 a b
x

( )x

1

(a) The linear uncertainty distribution

0

a

b

1( )((((( )))))1(

1

(b) The inverse linear uncertainty distribution

Figure 3: Schematic diagram of a linear uncertain variable

2.3.2 Basic properties of uncertain variables

Theorem 1. [Liu10] Let ξ be an uncertain variable with an uncertainty distribution Φ, then for
any real number x (i.e., x ∈ R), we have

M{ξ ≤ x} = Φ(x), M{ξ > x} = 1− Φ(x) (I.15)

To be noted, when the uncertainty distribution Φ(x) is a continuous function, we have
M{ξ ≤ x} = M{ξ < x} = Φ(x), and M{ξ > x} = M{ξ ≥ x} = 1− Φ(x).
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Theorem 2. [Liu10] Let ξ1, ξ2 · · · ξn be independent uncertain variables with regular uncer-
tainty distributions Φ1,Φ2 · · ·Φn. If f(ξ1 · · · ξm, ξm+1 · · · ξn) strictly increases with ξ1 · · · ξm and
decreases with ξm+1 · · · ξn, then f(ξ1 · · · ξm, ξm+1 · · · ξn) has an inverse uncertainty distribution
f(Φ−1

1 (α) · · ·Φ−1
m (α),Φ−1

m+1(1− α) · · ·Φ−1
n (1− α)).

Example 2. Let ξ1 and ξ2 be independent uncertain variables with regular uncertainty distributions
Φ1 and Φ2, respectively. Then the inverse uncertainty distribution of ξ1 − ξ2 is

Ψ−1(α) = Φ−1
1 (α)− Φ−1

2 (1− α) (I.16)

Theorem 3. [Liu07] Let ξ be an uncertain variable with its inverse uncertainty distribution denoted
as Φ−1(α), if and only if Φ−1(α) ≤ c, then M{ξ ≤ c} ≥ α, where α, c are constants within [0, 1].

Theorem 4. [Liu15] Let ξ and ς be independent uncertain variables with regular uncertainty dis-
tributions Φ and Ψ, respectively. Then the distance between ξ and ς is

d(ξ, ς) =

∫ 1

0
|Φ−1(α)−Ψ−1(1− α)|dα. (I.17)

Example 3. Let ξ and ς be independent uncertain variables obeying linear uncertainty distributions
as ξ ∼ L(a, b) and ς ∼ L(c, d), where a ≤ b and c ≤ d. Based on Example 1, the distance between
ξ and ς becomes

d(ξ, ς) =

∫ 1

0
|(b+ d− a− c)α+ a− d|dα (I.18)

To date, the efficiencies and advantages of uncertainty theory in solving the GDM problems
have been elaborated in the literature [GGHV+20, GGXHV20] through a comparative analysis
with the existing well-known theories dealing with indeterminacy. In a nutshell, in addition to the
traditional consensus decision-making theory, Section 2.3 lays a solid theoretical foundation for the
optimal consensus modeling in the first two topics of this thesis.
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3 Justification

Since all the relevant theories regarding this thesis are reviewed in the previous section, we then
explain in detail the reasons and the basic assumptions to justify that the two aspects of the
research conducted in this thesis, including 1) the construction of the new MCCMs combined with
uncertainty theory; and 2) the explorations of theoretical innovations of the optimal consensus
modeling in designing new trading mechanisms, are of great significance to extend the existing
consensus decision-making theory. The justifications of each topic are described as follows.

3.1 The research on the MCCMs under linear uncertain-constrained scenarios

Upon conducting the state-of-art review of the relevant studies on the construction of the traditional
consensus models, we find out that:

• Participants’ preferences in the MCCMs/MACMs usually fit by crisp numbers instead of
being fit by random distributions, but it is difficult for individuals to provide exact values
as their preference, especially in the complex GDM contexts [WDC+18, PMH14, DDMH17].
Therefore, the DMs are more likely to present their decisions by intervals with upper and
lower bounds or various uncertainty distributions (e.g., linear uncertainty distribution).

• Previous studies focused on either the role combination of the moderator and the individual
DMs [ZKP19, CZC+18, BAE07, GXZ+15] or independent decision status as the moderator
[DDMH17], the individual DM [DXLF10] or the non-cooperators [PMH14]. In short, few
extant contributions have built the MCCMs by considering all three roles simultaneously.

Given the above research gaps, we utilize uncertainty distributions to denote participants’
decision preferences, and by discussing five scenarios from multiple decision-making roles (i.e.,
moderator, individual DMs and non-cooperators), we attempt to investigate a more general form
of the classic MCCMs proposed in Section 2.1. However, in order to proceed with the first topic in
this thesis, we give the following basic assumptions as the premise of this study:

(1) A moderator on behalf of the collective interest, who has skills in leadership and negotiation,
and can persuade or tempt the DMs to continually adjust their opinions towards consensus,
is introduced in the involved GDM problems;

(2) All the participants are independent of each other due to uncertainty theory, and since we
aim to derive the consensus reaching conditions through deduction, we propose a simplest
form of MCCMs by neglecting the process of preference aggregation;

(3) The consensus reached at the end of the GDM is a hard consensus, that is, all DMs’ optimal
adjusted preferences equal to the moderator’s final preference. In a mathematical sense, we
have ōi

∗ = oc∗ due to the symbols defined in Section 2;

(4) Once non-cooperators are considered, they have absolute power over the GDM problems.
Therefore, moderator’s budget is mainly used to persuade these non-cooperators for compro-
mising, corresponding to the decision rule of the minority being subordinate to the majority.

On account of all the above considerations, we later construct various uncertain MCCMs
with the help of uncertainty theory, and we then transform all the non-linear consensus models
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into the equivalent linear forms by introducing the linear uncertainty distributions along with
belief degrees. Afterwards, we propose detailed theorems in terms of both the consensus reaching
conditions and their specific analytic formulae under each scenario through theoretical derivations.
Finally, all these theoretical findings are verified by data analysis under a background of the carbon
quota negotiation that involves the government and four heavily polluting enterprises located in
the same administrative province.

3.2 The research on the CRP in the GDM with linear uncertain preferences
and asymmetric costs

Through a literature review, we acknowledge that existing studies greatly contributed to the devel-
opment of the GDM theory, but none has comprehensively explored the CRP framework combined
with uncertain MCCMs, asymmetric costs, aggregation function, consensus measure and feedback
mechanism. In other words, there still exist some research gaps that need to be investigated:

• Prior uncertain MCCMs do not consider asymmetric costs, nor the dynamic characteristic
of the GDM, such as our first topic or [GGX+21]. That is, they primarily focused on the
optimal consensus modeling while neglecting the DM’s unbalanced willingness to adjust.

• Extant MCCMs with asymmetric costs do not consider aggregation functions nor feedback
mechanisms [CZC+18, LJGQ21]. Namely, they don’t aggregate the DMs’ choices into a
collective wisdom [ZDXL11], thereby failing to portray social choices or individual values.

• Current studies on the CRPs do not take into account the DMs’ changeable influence during
neither the consensus measure nor the feedback mechanism [ZLGZ18, ZL21], making the
importance of different individuals unable to be fully demonstrated.

In this regard, our second topic attempts to integrate the dynamic features in the CRP (see
Section 2.2) into the established uncertain MCCMs. In a same vein, to help with the new proposal,
we first present several basic assumptions that listed as follows:

(1) The DMs’ preferences are independent, so the consensus can be derived using aggregation
functions, where the variables (e.g., preference and weight) are bounded within [0,1];

(2) The DMs are more sensitive to losses than gains (see prospect theory [KT13]), so let |c−i | >
|c+
i | reflect the DM’s adjusting willingness, namely, the changing trend of the downward-

adjusting subinterval is steeper than that of the upward one (see Fig. 1(b) in Section 2.1.3);

(3) The DM’s influence changes with the GDM procedure [LXGH22]: the DMs initially have
equal weights, but their influence later diversifies due to their own contributions to the CL;

(4) All DMs are committed to reaching a consensus by completely following the given suggestions.
In other words, the non-cooperative behavior [PMH14] is neglected.

Upon figuring out all the aforementioned gaps and assumptions, our second topic extends the
established uncertainty theory-based MCCMs into a general CRP framework. Specifically, we build
new optimization-based consensus models by simultaneously considering aggregation functions,
asymmetric costs and consensus measure. Then, we present a novel CRP framework by respecting
individual values with democratic consensus and simultaneously pursuing a minimum resource
consumption based on uncertain MCCMs. Meanwhile, we introduce binary variables to reduce the
computational complexity of piecewise functions in the new multi-coefficient programming models.
Finally, we also verify these new consensus models by numerical analyses.
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3.3 The research on the consensus modeling of a closed-loop trading mechanism
regarding revenue and fairness

Through a literature review regarding the optimal consensus modeling along with the extant con-
tributions on carbon issues, we realize that:

• Although many scholars have investigated the carbon issues, there has been few studies on
designing the carbon quota trading mechanisms.

• Previous studies mainly discussed the fairness of carbon quota allocations at the global level,
ignoring the interest-driven issues based on the individual or regional perspective.

• Consensus decision-making theory has not been adopted to deal with the design of carbon
trading mechanisms and their resulting unfairness issues.

Therefore, the analysis of carbon trading mechanisms through optimal consensus modeling
with all participators’ interests taken into account is of great significance. To be noted, our third
topic attempts to depict the most essential trading behaviors within a carbon quota market via the
consensus modeling. Meanwhile, to reduce the computational complexity of the subsequent models,
we simplify the problem to the greatest extent by clarifying the following basic assumptions:

(1) The carbon quota market discussed remains stable during a certain period, and the DMs can
freely participate in the trading system;

(2) The unit price variables (e.g., the unit selling/buying/transaction price) are static, indicating
that they do not fluctuate with time, supply and demand, and etc.

(3) Unit revenue of the individual DM’s carbon quota is a constant, which is only determined by
their own inherent characteristics rather than their initial holding quotas, meaning that the
standard law of diminishing return assumption is not considered;

(4) Factors of costs within the profit-oriented trading system are implicit in the DM’s initial unit
revenue, so we can conduct analysis from the single perspective of revenue maximization.

Explicitly, the third topic of this thesis utilizes the consensus optimization models to assist
the DMs in exchanging carbon quotas. In more detail, we present a benchmark consensus model
that aims to maximize the overall revenue to derive an optimal carbon quota allocation scheme.
Then, by building a two-stage programming model, new allocation schemes are acquired that focus
on different single DM’s revenue maximization, so as to gain detailed trading information. Next, on
the basis of the newly defined individual or group development index, we propose two strategies to
deal with the unfairness within the trading system. Finally, the feasibility of these new consensus
models is verified via the numerical analyses of a carbon trading problem involving five regions.
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4 Objectives

Since the overall objective of this thesis is to develop new consensus optimization models to solve
the real-life GDM problems, we base our research on the following two aspects: 1) constructing
new uncertain consensus models from the MCC perspective with the help of uncertainty theory;
and 2) obtaining new resource reallocation schemes from the maximum compensation perspective
with the help of the consensus decision-making theory. In specific, we attempt:

• To construct the uncertain MCCMs from multiple decision roles. Distinguished
from the traditional MCCMs, we adopt the linear uncertainty distribution along with belief
degree to represent the participant’s preference structures. Meanwhile, we divide all the
decision roles into the moderator, the individual DM and the non-cooperators. Then, we build
five uncertain MCCMs where the uncertain preferences are used in different combinations of
decision roles, so as to cater for a wide range of applications in real-life.

• To verify that the GDM combined with uncertainty theory becomes a more in-
clusive theory. The aim of introducing uncertainty theory into the traditional GDM theory,
is to deal with common dilemmas where the reliability of decisions is mainly determined by
experts rather than some prior probability distributions due to the insufficient historical data,
and to verify that the GDM combined with uncertainty theory becomes a more inclusive the-
ory by building a bridge between the deterministic and indeterministic GDM. Thus, detailed
proofs of both the relevant theorems derived from theoretical deductions and the data analysis
results corresponding to various decision scenarios are provided.

• To propose a general CRP framework based on uncertainty theory and behav-
ioral constraints. As an essential part of the GDM, the CRP can facilitate more effective
consensus by taking human behaviors into account. Thus, concerning the uncertain MCCMs
in this thesis, we then incorporate prospect theory to rationalize the setting of asymmetric
costs, adopt aggregation functions to portray social choice and individual values, and consider
the DM’s changeable influence in both the consensus measure and the feedback mechanism
with the concept of democratic consensus [LXGH22].

• To obtain flexible carbon quota trading mechanisms with the help of consensus
modeling. Since the final reallocation of resources within a close-loop trading system can
be regarded as a consensual state in the GDM, it is reasonable to design a market trading
mechanism using consensus models. Referring to the conventional market trading mechanism
(i.e., the assumption of economic rationality), we establish new consensus models from the
perspective of revenue maximization to derive the optimal carbon quota allocation scheme.

• To put forward practical strategies to deal with fairness concerns within trading
systems. The inability to perform the real-life GDM usually stems from conflicts of interest
due to mutual competition. Therefore, we define the individual or group development index,
and we then accordingly provide the identification and the adjustment rules, similar as the
CRP in the GDM, for the discordant DMs who display too much or too little revenue growth
based on the results obtained from the single DM’s revenue maximization models. In contrast,
we also build a consensus optimization model with the fairness constraint to directly achieve
an equilibrium state within the trading system.
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5 Methodology

This section describes the methodology used throughout this thesis. Bearing our main objectives
in mind, that is, to construct novel consensus optimization models with different individual behav-
ioral constraints and to adopt them to address some real-life GDM problems so as to verify their
effectiveness. A general procedure to conduct all the aforementioned studies is given as:

1. Hypotheses formulation. Hypotheses provide solid theoretical premises for the consensus
modeling in this thesis. Intuitively, the GDM problems are destined to be large-scale, full of
uncertainty and complexity with the rapid development of technology, thereby making the
formulation of reasonable hypotheses become a compulsory choice to explore some particular
GDM phenomena. Although we have elaborated the basic assumptions of each topic in Section
3, some general hypotheses deserve to be emphasized: 1) we only focus on the small-scale
GDM problems with their highly abstracted forms, due to the fact that we attempt to obtain
some interesting theorems through deductions; and 2) we haven’t explored the non-additive
consensus problems (i.e., we only adopt the prerequisite that the DMs are independent of
each other), where the DMs’ mutual interactions surely affect the final decisions.

2. Model construction. Originated from the concept of the MCC [BAE07], this thesis estab-
lishes a series of novel consensus optimization models by combining various considerations.
For example, we construct the uncertain static MCCMs based on multiple decision roles that
include the moderator, the individual DMs or the non-cooperators. Later, we further pro-
pose the uncertain MCCMs under the CRP framework by incorporating consensus measures,
asymmetric cost setting based on prospect theory, and aggregation functions. Lastly, distin-
guished from the modeling idea of the MCC, we also develop new models that aim to maximize
the DMs’ revenues or to address fairness concerns during the theoretical explorations in the
closed-loop trading systems, to acquire the optimal or fair resource allocation schemes.

3. Model validation. The validation process usually involves case studies, numerical examples
or simulation experiments, to show the feasibility and the effectiveness of the new proposals.
For instance, we present a case study in our first contribution to demonstrate how these newly
proposed models work in practice. Specifically, a negotiation highly abstracted from the
real-life GDM problem is given, over the carbon emission quota reallocation that conducted
between the government and four local heavily polluting enterprises, to illustrate the validity
of the five uncertain chance-constrained MCCMs and their associated theorems. In addition,
the relationships between these uncertain MCCMs with the traditional ones are also deeply
investigated through data analyses.

4. Further discussion. This final process normally involves a comparative analysis with some
most related studies, or distinctive scenario analyses (e.g., parametric behavioral analysis or
sensitivity analysis), so as to demonstrate the superiority and the advantages of the new pro-
posals. For example, we present five cases in the carbon quota negotiation to discuss various
uncertain-constrained MCCMs in the first topic, thereby better reflecting the government’s
humanized management where uncertain indicators are set instead of some deterministic and
fixed ones, which could also be understood as the practical significance of the uncertain con-
straints in this thesis. Similarly, we also perform detailed comparative analyses of different
parameters in the new models and of the existing literature, thus further highlighting the
characteristics of the new methods.
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6 Summary

This section presents the summary of the proposals included in this thesis, where the main contents
along with the obtained results associated with the journal publications are provided. Note that,
all the research carried out in this thesis and the results acquired from each topic are collected into
the following published papers:

• Z.W. Gong, X.X. Xu, W.W. Guo, E. Herrera-Viedma, F.J. Cabrerizo. Minimum cost con-
sensus modelling under various linear uncertain-constrained scenarios, Information Fusion,
2021, 66: 1-17.

• X.X. Xu, Z.W. Gong, E. Herrera-Viedma, G. Kou, F.J. Cabrerizo. Consensus reaching in
group decision making with linear uncertain preferences and asymmetric costs, IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2022, doi: 10.1109/TSMC.2022.3220837.

• X.X. Xu, Z.W. Gong, W.W. Guo, Z.M. Wu, E. Herrera-Viedma, F.J. Cabrerizo. Optimization
consensus modeling of a closed-loop carbon quota trading mechanism regarding revenue and
fairness, Computers & Industrial Engineering, 2021, 161: 107611.

The remainder of this section is organized by the sequence of the above publication list. In
each subsection, by combining the objectives mentioned in Section 4, we provide the explanations
in detail with particular research contents, important indicators defined, main research steps along
with particular algorithms, in order to better understand each topic investigated in this thesis.

6.1 The research on the MCCMs under linear uncertain-constrained scenarios

To date, a large number of variants of the MCCMs or the MACMs mentioned in Section 2.1 have
been proposed in the literature to meet the needs of different decision environments or applications,
however, the first topic of this thesis is to achieve the goal of minimizing the total consensus
cost instead of keeping the original preference information as much as possible. Without loss of
generality, let ωi denote the cost of adjusting di’s original preference oi towards the consensus o′

one unit. If we normalize all these unit costs, they become the weighted arithmetic mean operators,
which can also be understood as each individual’s influence on the CRP [GXZ+15]. In reality, too
many uncertain factors need to be considered in the GDM, making the above parameters difficult
to quantify, hence, ωi is subjectively determined in the follow-up discussion.

Herein, to obtain a unified form of the traditional consensus models, we have the following
model abstracted from [BAE07] as

Min φ =
n∑
i=1

ωifi(o
′)

s.t.

{
fi(o

′) = |o′ − oi|
|o′ − oi| ≤ εi, i ∈ N

(I.19)

where φ represents the total consensus cost for the whole GDM, and εi is the upper bound of the
deviation (i.e., distance measure) between di’s opinion and the optimal collective opinion, implying
that we want to obtain an acceptable consensus.

Given that when no samples are available or only poor information obtained from historical
data, the estimated distribution function will deviate far from the actual frequency, causing the law
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of large numbers invalid, and further obtaining some counterintuitive results. Then, some domain
experts are invited to evaluate the belief degree that certain events will happen. Distinguished
from probability theory dealing with randomness of frequency, uncertainty theory was proposed
to address the uncertainty of belief degrees. To introduce uncertainty theory into the traditional
consensus models, we first present the Model (I.20) that further abstracted from the Model (I.19).

Min φ =
n∑
i=1

ωiεi

s.t. { |o′ − oi| ≤ εi, εi ≥ 0, i ∈ N
(I.20)

Note that decision variable in the Model (I.19) only includes o′, while εi is a pre-defined threshold
over the distance measure between o′ and oi, i ∈ N . In contrast, decision variables in the Model
(I.20) include both o′ and εi, where εi is bounded by the deterministic threshold given in the Model
(I.19) under the premise that these parameters are set as same in both models. Obviously, the
feasible domain of the solution set of the Model (I.20) is larger than that of the Model (I.19),
making the optimal value of the objective function in the Model (I.20) be no larger than that of
the Model (I.19). As a result, although the Model (I.20) is simpler in terms of form, its scope of
application is wider than that of the Model (I.19). Thus, the Model (I.20) becomes the basis of our
subsequent consensus models with uncertain variables.

That is, the new uncertain MCCMs are proposed based on the above Model (I.20), which
are specified into five scenarios: 1) moderator with uncertain preference; 2) non-cooperators con-
sidered and moderator with uncertain preference; 3) the DMs with uncertain preferences; 4) non-
cooperators considered and the DMs with uncertain preferences; and 5) the moderator and the
DMs with uncertain preferences. For clarity, a flowchart of the first topic is given as Fig. 4, and
the relationships between these five GDM scenarios are summarized in detail as follows.

Considering that the participants usually have disparate standpoints or interests when facing
the real-life GDM, so uncertain preferences will be accordingly expressed by different roles under
various decision contexts. Therefore, Scenario 1 and 2 assume that moderator’s opinion is fit by
uncertain preferences (denoted by linear uncertainty distribution along with belief degree) while
the DMs present crisp number-based preferences, and then preference structures of those two roles
are reversed in Scenario 3 and 4. Finally, in Scenario 5, all the participants involved present their
judgements by uncertain preferences. For more in line with the real-life GDM problems, we also
deeply explored the influence of non-cooperators on the uncertain MCCMs in Scenario 2 and 4,
simultaneously aiming to correlate with the previous MCCMs in [GXZ+15].

Regarding the construction of the consensus optimization models, we take Scenario 1 as an
example, where the moderator needs to consider many uncertain factors for the final convergent
opinion, we assume that the moderator’s opinion o′ obeys an uncertainty distribution. Based on
Liu’s uncertainty theory, if the deviation between the consensus o′ and the individual opinion oi
is no more than εi under the belief degree α, then it can be denoted as M{o′ − oi ≤ εi} ≥ α and
M{o′ − oi ≥ −εi} ≥ α, where M represents the uncertain measure in uncertainty theory, and the
variable α ∈ [0, 1] indicates the belief degree of holding the constraint |o′ − oi| ≤ εi, i ∈ N . As a
result, a relevant uncertain MCCM is constructed due to the above Model (I.20).

Under each GDM scenario, we subsequently obtain a non-linear goal programming model
based on Section 2.3, where the belief degree α can be discussed into two cases: α is a pre-determined
value or α is a parameter to be determined. As in the latter case, the variable α solved by the
new goal programming model will be an optimal belief degree in the discussed GDM. Moreover,
since the linear uncertainty distributions can be easily transformed and can reduce the complexity
of understanding and calculation, we replace the above uncertain constraints with corresponding
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linear type and finally derive relevant theorems about the analytic formulae of the optimal consensus
cost and the consensus reaching conditions from their corresponding equivalent linear models.

The journal article corresponding to this section is:

• Z.W. Gong, X.X. Xu, W.W. Guo, E. Herrera-Viedma, F.J. Cabrerizo. Minimum cost con-
sensus modelling under various linear uncertain-constrained scenarios, Information Fusion,
2021, 66: 1-17.

6.2 The research on the CRP in the GDM with linear uncertain preferences
and asymmetric costs

Clearly, some important characteristics in the classic MCCMs or MACMs are neglected in our first
topic, such as setting an aggregation function over the adjusted preferences to obtain a consensus
[DXLF10, ZDXL11], using the CL to measure the efficiency of the CRP [ZKP19], or considering
the asymmetric characteristic of unit costs [CZC+18]. Thus, to address those shortcomings, our
second topic aims to consider more behavioral constraints, and to extend the uncertain MCCMs
into a general CRP framework, so as to be more consistent with the real GDM situations.

To do that, we first transform the Eq. (I.7) into the following Eq. (I.21) based on Section
2.1.3 and Section 3.2. That is, the CL is bounded within [0, 1], meanwhile, the GDM discussed is
further simplified: boundary values of the DM’s preference in Fig. 1(b) are preset as oc − θ−i = 0
and oc + θ+

i = 1. In addition, di’s tolerance behavior is no longer distinguished as ε+
i or ε−i , that

is, only one parameter (i.e., εi) is used to denote di’s tolerance to the consensus oc.

min φ =
∑

oi∈[0,oc−εi)
c+
i (oc − εi − oi) +

∑

oi∈(oc+εi,1]

c−i (oi − oc − εi) (I.21)

To establish the new uncertain MCCMs with asymmetric cost, we first introduce the follow-
ing Theorem (5) proposed in [GGX+21] to clarify that the arithmetic mean aggregation (AMA)
operator still works in the new consensus models.

Theorem 5. Let oi,i∈M be an independent uncertain variable obeying a linear uncertainty dis-
tribution as oi ∼ L(ai, bi) with ai ≤ bi. Then

∑
wioi obeys a linear uncertainty distribution as∑

wioi ∼ L(
∑
wiai,

∑
wibi).

Hence, a new uncertain MCCM based on the linear uncertainty distributions is built by
comprehensively considering asymmetric costs, aggregation function and consensus measure.

min φ =
∑m

i=1{c+
i , c
−
i } ∗ d(ōi, oi)

s.t.





d(ōi, o
c) ≤ εi (I.22− 1)

oc =
∑m

i=1wiōi (I.22− 2)∑m
i=1wi ∗ d(ōi, o

c) ≤ γ (I.22− 3)
oi ∼ L(ai, bi), ōi ∼ L(āi, b̄i), o

c ∼ L(ac, bc) (I.22− 4)
0 ≤ āi ≤ b̄i ≤ 1, 0 ≤ ac ≤ bc ≤ 1, i ∈M (I.22− 5)

(I.22)

Solving the Model (I.22) yields the minimum cost φ∗, the optimal consensus oc∗, and di’s optimal
adjusted preference ōi

∗. Note that, d(ōi, oi) is the distance measure between di’s adjusted preference
ōi and original preference oi; the expression {c+

i , c
−
i } means only one coefficient is taken due to di’s

adjustment direction that corresponds the Eq. (I.21); (I.22-1) reflects di’s tolerance behavior; (I.22-
2) uses the AMA operator to fuse all adjusted preferences; (I.22-3) is the consensus measure, and
(I.22-4) indicates that the DM’s preference obeys a linear uncertainty distribution under (I.22-5).
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Here, referring to Theorem (4) introduced in Section 2.3.2, [GGX+21] derived the following
Theorem (6) to deal directly with the distance measure between any two uncertain variables.

Theorem 6. Distance between any two independent variables with linear uncertainty distributions,
denoted as ξ ∼ L(a, b) and ς ∼ L(c, d) with a ≤ b, c ≤ d, can be transformed into a piecewise
function as

d(ξ, ς) =





a+ b− c− d
2

, if a > d

c+ d− a− b
2

, if b < c

(d− a)2

b+ d− a− c+ ε
+
a+ b− c− d

2
, otherwise

(I.23)

where ε is the non-Archimedean infinitesimal. In the second topic of this thesis, we take ε = 10−6 to
ensure that a rare case of a = b and c = d still holds in the Eq. (I.23), and then the two uncertain
variables essentially degenerate to two real numbers.

Basically, piecewise functions seldom exist in the final models due to calculation complexity,
thus, we use the big M method to transform the Eq. (I.23) into a hybrid 0-1 programming model
(i.e., the Model (I.24)). Here, let U be a sufficiently large positive number and we take U = 106 in
the subsequent analysis.

d(ξ, ς) = z3 ∗ (d−a)2

b+d−a−c+ε + (0.5− z2) ∗ (a+ b− c− d)

s.t.





−U(1− z2)(1− z3) ≤ d− a < U(1− z1)
−U(1− z1)(1− z3) ≤ b− c < U(1− z2)

−U(1− z1) < a+b−c−d
2 < U(1− z2)

−U(1− z2) < c+d−a−b
2 < U(1− z1)

(d−a)2

b+d−a−c+ε + a+b−c−d
2 > −U ∗ z2

z1 + z2 + z3 = 1
z1, z2, z3 ∈ {0, 1}

(I.24)

where z1, z2, z3 are binary variables with one and only one value of 1. For example, if z1 = 1, then
z2 = 0, z3 = 0, we get the first case of a > b; and if z3 = 1, then z1 = 0, z2 = 0, we have d ≥ a
and b ≥ c, which corresponds to the third case. Detailed transformation from the Eq. (I.23) to
the Model (I.24), which focuses on the relative positions of the four parameters (i.e., a, b, c and
d), is omitted here to save space. In addition, another 0-1 variable xi is introduced to handle the
multi-coefficient problem [CCZ12] of the Model (I.22) (i.e., {c+

i , c
−
i }).

Through all these operations, we finally develop a new uncertain MCCM based on the
Model (I.22) by simultaneously considering asymmetric costs, aggregation operators and consensus
measures. However, inappropriate CL thresholds easily lead to the failure of reaching a consensus,
so some maximum CL models are built to aid the DM’s preference adjustment. That is, solving the
above new uncertain consensus model may not yield the MCC due to inappropriate CL thresholds.
Hence, building another consensus model that considers both the CL and the budget is of great
necessity, where the CL threshold no longer needs to be predetermined. In this regard, we build a
more flexible model to solve the GDM problems by introducing a trade-off coefficient λ (λ ∈ [0, 1]).

Meanwhile, we also present a feedback mechanism with the concept of democratic consensus
[LXGH22] based on the general CRP framework that recalled in Section 2.2.2, where the DMs
are first assigned with equal weights to protect the interest of minorities, then their influence is
updated with their own contribution to the CL (see Definition 3). To be noted that only one DM
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needs to be adjusted at each iteration due to the less modified DMs the better, thereby avoiding
unnecessary adjustments and preserving the DMs’ original preferences at most.

Definition 3. The DM dk’s contribution to the CL is measured by the deviation between the overall
CL and the CL reached by the remaining m− 1 DMs (i.e., CLk̄), thus,

CLk = CL− CLk̄, k ∈M (I.25)

Our new proposed CRP framework combines the idea of democratic consensus and the
optimization-based uncertain MCCM with the CL threshold being its constraint. Essentially, the
procedure, prior to performing the new uncertain consensus model with a CL determined by ini-
tial preference information, is an intra-group self-adjustment with only once, that fully respects
individual values by adjusting only one DM’s preference but updating all weights based on their
contributions to the CL. Meanwhile, if the required CL is still not reached after the model takes
effect, all the adjusted preferences optimized by the model will be directly used to start the next
iteration. Note that whenever any DM has some changes in either the preference or the weight,
a new CL is calculated, so as to minimize the resource consumption. Next, the identification rule
(IR) and the direction rule (DR) in the new CRP are defined as follows.

• IR: the DM with a minimum contribution to the CL is chosen as the one to be adjusted,
denoted as dk. If there exist more than two DMs with a same value, then dk is randomly
determined.

• DR: the adjustment of the dk’s preference and all DMs’ weight reallocation are considered in
the modification process.

– The DM dk’s updated preference is expressed as the Eq. (I.26), where δ ∈ [0, 1] is the
parameter reflecting dk’s self-confidence, and the larger δ, the less he/she is willing to
make revisions.

ōk = δ ∗ ok + (1− δ) ∗ oc (I.26)

– The weights are updated by the Eq. (I.27), where η is the variable that controls the
impact of di’s consensus contribution CLti on the weight wt+1

i . Next, all the new weights
are normalized by the Eq. (I.28).

wt+1
i = wti ∗ (1 + CLti)

η (I.27)

w̄i =
wt+1
i∑m

i=1w
t+1
i

(I.28)

Explicitly, the larger the parameter η, the stronger modification of the DM di [XZW15].
In summary, our new CRP is proposed by incorporating the new uncertain MCCMs with the
concept of democratic consensus, and is implemented as follows, where the ideal CL threshold is
predetermined as CL∗ = 0.85 with a maximum number of iterations of 5.

(1) Calculate an initial CL to determine whether there exists one DM (i.e., dk) to be adjusted.
If yes, go to Step 2; otherwise, terminate the CRP.

(2) Recalculate and check whether the new temporary consensus meets the threshold CL∗ by
adjusting dk’s preference and updating all DMs’ weights. If yes, terminate the CRP; otherwise,
move to Step 3.
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(3) Solve the new uncertain MCCM with the initial CL value obtained from Step 1 to produce
optimal solutions, then check if the obtained optimal CL meets CL∗. If yes, terminate the
CRP; otherwise, return to Step 1 with acquired adjusted preferences.

The journal article relevant to this section is:

• X.X. Xu, Z.W. Gong, E. Herrera-Viedma, G. Kou, F.J. Cabrerizo. Consensus reaching in
group decision making with linear uncertain preferences and asymmetric costs, IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems, 2022, doi: 10.1109/TSMC.2022.3220837.

6.3 The research on the consensus modeling of a closed-loop trading mechanism
regarding revenue and fairness

Consensus modeling aims to obtain a collective agreement through the GDM, generally by building
mathematical models. This section describes the use of the optimal consensus modeling to explore
theoretical innovations regarding flexible carbon quota trading mechanisms, where basic allocation
schemes are provided within a closed-loop trading system by simultaneously taking revenue and
fairness into account. To do that, we develop a series of consensus optimization models from the
perspective of maximizing the corresponding revenue that originated from the ideas in Section 2.1.2,
and then obtain the optimal or fair carbon quota allocation schemes that include detailed trading
information. Moreover, we further propose a relaxation method based on the PSO algorithm to
solve the above models. Meanwhile, considering that the inability to conduct the real-life GDM
usually stems from conflicts of interest based on the DMs’ mutual competition, thus, we put forward
two practical strategies to deal with the resulting unfairness within the trading system.

Based on the assumptions given in Section 3.3, we further present the following two goals
that need to be met in discussing the closed-loop trading systems using the consensus GDM theory.

• Goal 1: each DM’s total revenue derived from the trading is no less than his initial fixed one;

• Goal 2: the sum of all DMs’ revenues acquired from the trading system should be maximized.

Goal 1 is set from the DM’s perspective, and aims to maximize each DM’s economic benefit.
All DMs are assumed to be rational (that is, once the carbon quota trading is conducted, they must
benefit themselves); otherwise, the transactions are invalid. This corresponds to real-life market
trading and can be understood as the effectiveness of the trading mechanisms. On the contrary,
Goal 2 is set from the collective angle. In general, the representative of the collective benefit is the
participant who determines the initial carbon quotas for all DMs, and also the one who plays the
role as a moderator in the GDM problems. Clearly, the primary goal of those representatives is to
maximize the overall revenue.

To realize Goal 1, we have the following constraints: (1) pi ≥ ri, (2) qi ≤ ri, where pi denotes
the unit selling price, qi represents the unit buying price, and ri is the original fixed revenue for
one unit of di’s carbon quota. In addition, let the quantity transferred from di to dj be Iij , and
their final unit transaction price be Tij . Then, the following statement holds: if pi ≤ qj , then the
one-way carbon quota transaction from di to dj can be realized. At this point, di can sell carbon
quotas to dj with Iij ≥ 0, and the unit transaction price Tij ∈ [pi, qj ], which indicates that there is
a negotiable space in the trading process between di and dj . Meanwhile, we derive Iji = 0, since
Iij ∗ Iji = 0 holds under the premise of one-way transactions.
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As [CS06] indicated that the purpose of designing a trading mechanism is to provide a
method for ensuring that the allocation decisions and pricing decisions in decision-making processes
result in the desired outcomes. They also stated that once the allocation principle is set in a truthful
mechanism, the prices are determined; similarly, once the pricing rule is determined, the allocation
is settled. As a result, we take the maximization of the overall revenue or a single DM’s revenue
as the objective function, and uses the optimal consensus modeling to determine the allocation
scheme (i.e., the determination of the DMs’ updated quotas with specific transferred quantities)
and the pricing scheme (i.e., the determination of variables pi, qi, Tij) in the trading system.

In these regards, we develop a benchmark carbon trading consensus model with overall
revenue maximization, where the objective function of maximizing the sum of all DMs’ revenues
within the system is subjected to a constraint set that includes the expression of each DM’s final
holding quotas based on their original ones and the trading behaviors with others, the constraint
of the DM’s unit price variables with their unit revenue that mentioned above, the achievable
conditions to conduct a carbon trading shown as the following Theorem 7, and a constraint that
the DMs’ final quotas should be located in their own expected intervals provided initially as [o−i , o

+
i ].

Most importantly, we prove that such consensus models always have optimal solutions with a unique
maximum value of the objective function by identifying one special DM who meets Theorem 8.

Theorem 7. The achievable constraints of the carbon quota trading mechanism are determined by
di’s unit selling price pi and dj’s unit buying price qj as:

{
Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N
Iij = 0, otherwise

which is equivalent to





Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise
(I.29)

where δ is a sufficiently small positive value approaching zero.

Theorem 7 states the achievable conditions of a closed-loop trading system under the basic
hypothesis that all DMs are arranged in order based on the relationships among their original fixed
unit revenues, that is, r1 ≤ r2 ≤ ... ≤ rn. In other words, the transferred quantity of the carbon
quota is not only affected by the DM’s location index, but also by the size of the DM’s fixed unit
revenue. In fact, carbon quota trading can only be achieved when the unit selling price of one DM
with a small location index is no greater than the unit buying price of another DM with a large
location index; otherwise, their carbon quota transaction fails.

Theorem 8. There must exist an m-th DM such that
m−1∑
i=1

o−i + ōm +
n∑

i=m+1
o+
i =

n∑
i=1

oi and o−m ≤

ōm ≤ o+
m. By then, the optimal value of the objective function in the consensus model that maximizes

the overall revenue is
m−1∑
i=1

rio
−
i + rmōm +

n∑
i=m+1

rio
+
i and the optimal solution is ōi = o−i (1 ≤ i ≤

m− 1), ōm =
n∑
i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1
o+
i , ōi = o+

i (m+ 1 ≤ i ≤ n).

As the competition mechanism refers to the struggle among market practitioners to max-
imize their own economic benefits, it focuses more on individual standpoints than the collective
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perspective. Hence, we accordingly change the above objective function into a new one of maxi-
mizing each DM’s revenue, which includes the revenue of holding the new carbon quotas and the
revenue of their trading behaviors by selling or buying quotas. Thus, a constraint of the unit
transaction price between di and dj denoted by Tij ∈ [pi, qj ] is added into the new model. However,
the individual revenue maximization model should be built based on the benchmark model, which
indicates that maximizing a single DM’s revenue is not unconstrained; instead, it should be carried
out within the context of maximizing the overall revenue for the whole group.

Once all DMs pursue the maximization of their own revenues, it inevitably results in unfair-
ness (e.g., the unbalanced growth of the DMs’ revenues). During the CRP, if the DMs’ improper
initial parameters can be modified as early as possible, systemic losses (e.g., cost, time) will be
significantly reduced [LDD+19]. Therefore, we examine the potential to achieve a relatively bal-
anced state within the closed-loop trading system by adjusting some DMs’ initial parameters. Once
fairness is achieved, the DMs with too much revenue growth or too little revenue growth should no
longer exist. In this regard, we accordingly give the definitions of the following two indices.

Definition 4. An individual development index is defined as a relative proportion of the DM’s
final revenue obtained through the carbon quota trading process with respect to their initial fixed
revenue, that is,

Hi =

riōi +
n∑

j=1,j 6=i
TijIij −

n∑
j=1,j 6=i

TjiIji

rioi
, i ∈ N

Definition 5. The group development index is defined as a relative proportion of the final total
revenue obtained through the carbon quota trading process with respect to the initial fixed total
revenue of the group, that is,

H̄ =

n∑
i=1

riōi

n∑
i=1

rioi

This thesis follows the idea of fair development of all DMs in the trading system. By default,
the difference between the individual development index Hi and the group development index H̄
should be within a certain range, otherwise the DMs will be identified as the discordant DMs
with too much or too little revenue growth. These two indices mainly depend on the DM’s final
carbon quota ōi, which further depends on the endpoints of the expected interval [o−i , o

+
i ] provided

by the DM di. Here, we choose interval values instead of crisp numbers to denote di’s expected
carbon quota quantity due to various uncertainties. By adjusting the expected carbon quota range
[o−i , o

+
i ] of the discordant DMs, an equilibrium state with a minimum loss can be achieved within

the trading system (see Fig. 5(c)). Let a discordant DM be dk, k ∈ {0, 1, · · · , n}, and his expected
final carbon quota be adjusted from [o−k , o

+
k ] to [o

′−
k , o

′+
k ] through the following adjustment rules.

• When Hk << H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and << denotes
far less than, dk is identified as a discordant DM with too little revenue growth. This DM is
located in the unbalanced state shown in Fig. 5(a), and his adjustment rules are:

– If k > m, then the amount purchased is too little, and so o+
k needs to be increased;

– If k < m, then the amount sold is too little, and so o−k needs to be further decreased;

– If k = m, then the current expected interval is improperly set, and we need to simulta-
neously reduce o−k and increase o+

k .
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• When Hk >> H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and >> means
far more than, dk is identified as a discordant DM with too much revenue growth. This DM
is located in the unbalanced state shown in Fig. 5(b), and his adjustment rules are:

– If k > m, then the quantity purchased is too great, and so o+
k needs to be decreased;

– If k < m, then the amount sold is too great, and so o−k should be increased;

– If k = m, then the current interval of the DM’s expected carbon quota is inappropriate,
and we need to increase o−k and decrease o+

k at the same time.
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Figure 5: Identification of non-equilibrium states in the closed-loop trading system

On account of the above adjustment rules, a set of the updated trading information regarding
all DMs can always be acquired. According to the definitions of the individual or group development
index, we obtain the values of all |Hi − H̄| based on the n carbon trading consensus models with
single DM’s revenue maximization, so as to determine the threshold of the variable γ, as well as the
difference value |Hi−Hj | between any two DMs. However, the identification parameter γ needs to
be manually set, and the specific adjustment ranges of the discordant DMs cannot be accurately
specified, that is, we cannot determine by how much each discordant DM needs to adjust the upper
and/or lower limits of their initial expected carbon quota intervals. To overcome these deficiencies,
we further introduce a fairness measure variable α expressed as |Hi−Hj | ≤ α(α ≥ 0, i < j, i, j ∈ N),
into the previous benchmark consensus trading model, so as to directly obtain the optimal carbon
quota allocation scheme due to the fairness consideration.

During the establishment of the new consensus trading models, we find out that our pro-
posed models that maximizes the individual DM’s revenue is essentially a non-convex optimization
problem with too many decision variables to be determined. After realizing that two kinds of de-
cision variables actually have no effect on the objective function, we first remove them and obtain
the corresponding relaxation models, which are still non-linear optimization models. As a result,
we present the following relaxation method based on the well-known PSO algorithm (see Algorithm
1) to solve those non-linear consensus optimization models.
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Algorithm 1 Relaxation method based on the PSO algorithm for solving the single DM’s revenue
maximization model.
Input: Number of the DMs, N ; di’s initial carbon quota, oi; di’s initial fixed unit revenue, ri; di’s expected

carbon quota interval, [o−i , o
+
i ]; the maximum overall revenue obtained from the benchmark consensus

model, Z1; the maximal number of iterations, limit; population size, M .
Output: di’s final carbon quota, ōi; di’s unit selling and buying prices, pi, qi; the transferred quantity, Iij ;

the unit transaction price, Tij ; the specific DM’s maximum total revenue, Z2.
Step 1: Remove decision variables pi, qi that irrelevant with the objective function to obtain a relaxation

optimization model;
Step 2: Use the PSO algorithm to solve the relaxed model;

1: Set current iteration as t = 0;
2: for each particle i do
3: Initialize velocity Vi and position Xi for particle i;
4: Evaluate particle i by the defined fitness function and set pBesti = Xi;
5: end for
6: gBest=min {pBesti};
7: while t < limit do
8: for i = 1 to M do
9: Update the velocity and position of particle i;

10: Evaluate particle i by the defined fitness function;
11: if fit(Xi) < fit(pBesti) then return pBesti=Xi;
12: end if
13: if fit(pBesti) < fit(gBest) then return gBest = pBesti;
14: end if
15: end for
16: end while
17: Z2= –fit(gBest);
18: return The optimal solution of ōi, Iij , Tij , Z2.

Step 3: Derive the optimal values of pi, qi based on the original relaxation constraints.

For clarity, we next present the following specific procedure to demonstrate the modeling
ideas proposed in the third topic of this thesis.

(1) Referring to Section 2.1.2, a carbon trading optimization model is built to achieve the overall
revenue maximization, i.e., to obtain the optimal carbon quota allocation scheme for different
regions from the collective perspective. Specifically, the carbon quota quantities transferred
among all DMs and the maximum value of the final total revenue of the system are acquired.

(2) Using the maximum overall revenue obtained in Step 1, and by adding the constraint of
the unit transaction price, a series of consensus optimization models are built based on the
benchmark model. Hence, a total of n allocation schemes are derived by maximizing each
DM’s own revenue, and detailed information such as di’s unit buying and selling prices,
transferred quantities, and unit transaction prices is obtained.

(3) Through a comparison of the individual/group development indices, it can be determined
whether all DMs have developed fairly or not. If not, some discordant DMs are identified
by the pre-defined threshold γ, then their initial parameters are adjusted accordingly. Next,
repeat Step 1 and 2 until the allocation scheme satisfies the fairness requirement.

(4) Introduce the fairness measure variable α to build a new consensus model based on the
initial benchmark one, so as to directly obtain fair allocation schemes for all the DMs with
a maximum overall revenue, quantities of carbon quota transferred, and the unit transaction
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prices. Additionally, a sensitivity analysis is applied to α to provide flexible suggestions for
the moderator involved in the trading system.

(5) Conduct a comparison and discussion based on the results obtained in each step.

The journal article associated with this section is:

• X.X. Xu, Z.W. Gong, W.W. Guo, Z.M. Wu, E. Herrera-Viedma, F.J. Cabrerizo. Optimization
consensus modeling of a closed-loop carbon quota trading mechanism regarding revenue and
fairness, Computers & Industrial Engineering, 2021, 161: 107611.
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7 Discussion of results

This section briefly discusses the results obtained in each topic of this PhD dissertation.

7.1 The research on the MCCMs under linear uncertain-constrained scenarios

Due to serious deterioration of the global environment, the reduction of carbon emission has become
a key measure to improve the ecological system, so we choose the application of the carbon quota
negotiation to verify the feasibility of the proposed models. Results show that the calculated
values correspond to the analytic formulae of the optimal solutions under each scenario, verifying
the correctness of the theorems obtained by theoretical deductions. Moreover, the results of the
application indicate that traditional crisp number- or interval preference-based MCCMs are some
special cases of the new uncertain MCCMs, suggesting that uncertainty theory can build a bridge
between the deterministic and indeterministic GDM. Finally, we find that once the belief degree, set
for the deviation of polluters’ and government’s quota indexes, is larger than the critical value of 0.5,
then the optimal carbon quota consensus will be crisp numbers instead of uncertainty distributions.
The above conclusion implies that only the belief degree is large enough, the GDM can achieve a
deterministic consensus and the carbon quota negotiation can then be effectively conducted.

To show the novelties of our research, we also conduct a comparative analysis with existing
studies: distinguished from previous research, we build the consensus models from three decision
roles, by introducing non-cooperators into traditional MCCMs. Meanwhile, we first introduce Liu’s
uncertainty theory into consensus modeling, by adopting belief degree and uncertainty distribution
as a whole to fit individual preferences, and find out the relations between the deterministic and
indeterministic GDM through theoretical deductions. Finally, we apply the proposed models into
the carbon emission quota allocation negotiation problem to verify their feasibility.

Inspired by the fact that flexible management has been a premiere goal pursued by the
Chinese government, in order to encourage high-quality development of enterprises, the negotiation
over the carbon emission quota allocation problem is chosen as our case background. In fact,
when setting carbon emission reduction quotas for different enterprises with similar scales, it can
better reflect the government’s humanized management by setting uncertain indicators rather than
some deterministic and fixed ones, which may also be understood as the practical significance of
the uncertain constraints in this thesis. Without doubt, our newly proposed uncertain MCCMs
can provide significant managerial implications for moderators to deal with those real-life GDM
problems with flexible requirements, such as targeted recommendation system purchasing based on
advertisers’ market share, and second-hand housing selection bargain from different agencies.

7.2 The research on the CRP in the GDM with linear uncertain preferences
and asymmetric costs

Herein, we utilize the trans-boundary water pollution negotiation of five cities located in the Yangtze
River Delta under the governance of the Ministry of Water Resources (MWR) of China as our case
background. Performing the CRP proposed in Section 6.2, results show that both the achieved
consensus and the DM’s optimal adjusted preferences degenerate to real numbers when the CRP is
terminated by meeting the preset CL threshold. In other words, given the constructed form of the
linear uncertainty distributions, all the final preferences have the same upper and lower bounds.
Such findings are consistent with our first topic and the extant study on the uncertain MCCMs
[GGX+21]. That is, once certain conditions are met (e.g., the belief degree is no less than 0.5), the



7 Discussion of results 33

original linear uncertainty distributions degenerate to crisp numbers.

Besides, we perform parametric behavior analysis of the trade-off coefficient λ between the
budget and the CL in the second new model (see Fig. (6)), and the controlling variable η of the
DM’s contribution to the CL on their weights using the first model (see Fig. (7)) proposed in
Section 6.2 (i.e., the new uncertain MCCM with a preset CL threshold).
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Fig. 6 shows that the final range of the CL is [0.9612, 0.9766] and the total cost is [3.0760,
3.1429] in light of λ. Once the two objectives (i.e., the total cost and the CL) are considered
separately, that is, if only the resource is required to be least consumed or the maximum CL
becomes the priority of the discussed GDM, the obtained results of these two extreme scenarios are
far away from the rest, so they are omitted in Fig. 6. Overall, there are sharp fluctuations when
λ ∈ [0.3, 0.7], thus CL is of great necessity for the GDM, where detailed reasons remain to be further
explored; although such fluctuations are negligible once taking the numerical scale into account.
Besides, the consistent volatility trends of the CL and the cost suggest that increasing budget helps
improve CL, but their conflict within [0.6, 0.7] might due to the complete transformation of linear
uncertainty distributions into crisp numbers with λ = 0.7 or factors ignored in this thesis.

Fig. 7 shows that once the controlling variable η of the DM’s CL contribution to their new
weight gets larger, the more obvious the differences in weight distribution. In other words, the
smaller the value of η, the more even of all DMs’ weights, and the less differences among individual
influence on the final decision. Based on the final numerical results, only minor changes exist in
the optimal values of the consensus cost and the CL, thus, the impact of η on the final results is
actually negligible here.

Finally, using the original data and directly setting the CL threshold with the final expected
value for the first new model, namely, feedback mechanisms are no longer considered, we find out
that the uncertain MCCM still works without feedback mechanisms involved. However, the cost
required to achieve the same CL is less with the CRP considered, implying that the feedback
mechanism can promote a higher cost-effective consensus.

7.3 The research on the consensus modeling of a closed-loop trading mechanism
regarding revenue and fairness

To verify the rationality and effectiveness of the proposed models in the third topic, we have
considered the example of carbon quota trading among five regions. The novel consensus models can
derive the optimal allocation scheme from the global perspective (i.e., the moderator’s perspective
in the GDM), and can also obtain allocation schemes from different DM’s perspectives, in which
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the maximization of each region’s revenue is the modeling goal. We derive the following findings
based on the obtained results as:

• Consensus modeling to maximize the overall revenue can obtain the optimal allocation scheme
for the whole group, but cannot identify specific pricing decisions. Moreover, the final carbon
quotas of different regions obtained from the models that maximize each region’s revenue are
the same as those obtained from the former modeling mechanism. That is, the optimal values
of the DM’s final holding quotas are fixed. However, detailed trading information (e.g., the
trading regions involved) change with the specific region being studied.

• The unit selling and buying prices of each region derived from the proposed consensus opti-
mization models do not change according to which region’s revenue is being maximized and
do not depend on the value of the fairness measure variable, implying indirectly that the
carbon quota trading mechanism discussed in this thesis is robust to some extent.

• For the two strategies proposed to solve the unfairness in the trading system, adjusting the
initial parameters of discordant regions is effective, but complicated in practice. In addition,
the parameter γ for identifying discordant regions, the adjustment range for each region,
and whether the final allocation scheme meets the GDM requirements are all subjective. In
contrast, the strategy of directly introducing the fairness measure variable α is convenient and
effective, and further sensitivity analysis enables feasible allocation schemes to be obtained.

• The introduction of the fairness measure variable increases the number of trading paths among
different regions, meaning that absolute fairness within the closed-loop system is realized only
when carbon quotas are fully traded among different regions. Thus, sufficient interactions
among participators are highly significant in achieving consensus or the pursuit of the DMs’
balanced development during a GDM process.
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8 Concluding remarks

In this section, we present the main conclusions obtained from each topic carried out in this PhD
dissertation. All our research follows a common goal of building new consensus optimization models
with various behavioral constraints to solve the GDM problems in real-life. More specifically,

The first subject is to adopt the linear uncertainty distribution to fit individual judgements,
and to propose a series of uncertain MCCMs. To do that, we build the optimization-based MCCMs
from multiple decision roles (i.e., the moderator, the individual DMs, and the non-cooperators).
Among which, belief degree and uncertainty distributions are used as a whole to simulate the DMs’
preference structure, making the new models more feasible than those traditional ones (i.e., crisp
number- or interval preference-based MCCMs), better avoiding the paradox in interval operations
(e.g. [1, 3] − [1, 3] = [−2, 2] 6= [0, 0]), and maintaining the integrity of decision information by
analyzing individual uncertain opinions as a whole instead of only endpoints being considered.
Meanwhile, based on the transformed equivalent linear programming models, the analytic formulae
of the optimal consensus and minimum total cost under each scenario are given via mathematical
deduction. It is verified that the uncertain preference-based MCCMs are more inclusive than those
traditional ones due to the basic conclusions of the crisp number- or interval preference-based
models are some special cases of the uncertain MCCMs under different belief degrees, meaning
that the MCCMs combined with uncertainty theory is more flexible in the actual GDM.

The second topic aims to extend the above uncertain MCCMs into a new CRP framework. In
specific, two new consensus models are built by considering asymmetric costs, aggregation function
and consensus measure, where the DM’s preference is fit by the linear uncertainty distribution and
the setting of asymmetric costs is further rationalized based on prospect theory. Moreover, a new
CRP is designed by respecting the DM’s values with democratic consensus and minimizing resources
with new uncertain MCCMs. To avoid the calculation complexity from piecewise functions in the
uncertain distance measure, binary variables are introduced to transform the multi-coefficient goal
programming models in view of the big M method. Furthermore, we find out that (1) the new
consensus models exclude moderator’s influence by setting the CL threshold with a benchmark
from initially provided information, or by providing a full relationship between the CL and the
cost via the second new model; (2) the CRP helps promote a higher cost-effective consensus; and
(3) once certain conditions are met, the DMs’ preferences fit by linear uncertainty distributions
degenerate into crisp numbers, which is consistent with previous findings. Note that in addition to
trans-boundary pollution management, our method is also feasible to handle other GDM problems
characterized by non-randomness and non-fuzziness, such as urban demolition negotiation, trust
evaluation in social networks or emergency management for natural disasters.

Our third contribution describes the use of the optimal consensus modeling theory to explore
theoretical innovations regarding flexible carbon trading mechanisms. Specifically, we investigate
essential carbon quota allocation schemes within a closed-loop trading system with the aim of en-
suring both revenue maximization and fairness. First, the optimal carbon quota allocation scheme
is derived by maximizing the overall revenue through a benchmark consensus model. Then, its
analytical formula and the achievable conditions for successful trading are provided through the-
oretical deduction. Next, simultaneously taking the group revenue maximization and the compe-
tition mechanism into account, we build the new models to obtain the optimal allocation schemes
by maximizing each individual’s revenue. Since conflicts of interest are the main reasons for the
failure of the GDM in the real world, we give the definitions of the individual or group development
index, and further present two strategies to solve the unfair problems, where the former is based
on calculating the difference between the development indices, with fairness achieved through the
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identification of the discordant DMs and the adjustment of their initial parameters; and the latter
introduces a fairness measure variable, allowing fair allocation schemes to be directly obtained.

Finally, it is worth clarifying that the validity and the feasibility of all the consensus op-
timization models, theorems and methods proposed in this thesis are demonstrated by numerical
examples and comparative analyses.
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Conclusiones

En esta sección, presentamos las principales conclusiones obtenidas de cada uno de los temas lle-
vados a cabo en esta tesis doctoral. Todas nuestras investigaciones persiguen el objetivo común
de construir nuevos modelos de optimización consensuada con diversas restricciones de comporta-
miento para resolver problemas de GDM en la vida real. Concretamente:

El primer tema es adoptar la distribución lineal de incertidumbre para ajustar los juicios
individuales, y proponer una serie de MCCM inciertos. Para ello, construimos los MCCM basados en
la optimización a partir de múltiples roles de decisión (es decir, el moderador, los DM individuales
y los no cooperadores). Entre ellos, el grado de creencia y las distribuciones de incertidumbre se
utilizan como un todo para simular la estructura de preferencias de los DM, haciendo que los
nuevos modelos sean más factibles que los tradicionales (es decir, los MCCM basados en números
exactos o en intervalos de preferencia), evitando mejor la paradoja en las operaciones de intervalo
(por ejemplo, [1, 3] − [1, 3] = [−2, 2] 6= [0, 0]), y manteniendo la integridad de la información
de la decisión mediante el análisis de las opiniones individuales inciertas como un todo en lugar
de considerar solo los puntos finales. Mientras tanto, a partir de los modelos de programación
lineal equivalentes transformados, se obtienen por deducción matemática las fórmulas anaĺıticas
del consenso óptimo y del coste total mı́nimo en cada escenario. Se verifica que los MCCM basados
en preferencias inciertas son más inclusivos que los tradicionales debido a que las conclusiones
básicas de los modelos basados en números exactos o en intervalos de preferencias son algunos
casos especiales de los MCCM inciertos bajo diferentes grados de creencia, lo que significa que los
MCCM combinados con la teoŕıa de la incertidumbre son más flexibles en el GDM real.

El segundo tema pretende ampliar los MCCM inciertos anteriores a un nuevo marco de
CRP. En concreto, se construyen dos nuevos modelos de consenso teniendo en cuenta los costes
asimétricos, la función de agregación y la medida de consenso, donde la preferencia de la DM
se ajusta a la distribución lineal de incertidumbre y el establecimiento de costes asimétricos se
racionaliza aún más sobre la base de la teoŕıa de la prospectiva. Además, se diseña un nuevo CRP
respetando los valores del DM con un consenso democrático y minimizando los recursos con nuevos
MCCM inciertos. Para evitar la complejidad de cálculo de las funciones a trozos en la medida de
distancia incierta, se introducen variables binarias para transformar los modelos de programación
por objetivos multicoeficientes teniendo en cuenta el método de la gran M. Además, descubrimos
que (1) los nuevos modelos de consenso excluyen la influencia del moderador estableciendo el
umbral de CL con un punto de referencia a partir de la información proporcionada inicialmente, o
proporcionando una relación completa entre la CL y el coste a través del segundo modelo nuevo;
(2) la CRP ayuda a promover un consenso más rentable; y (3) una vez que se cumplen ciertas
condiciones, las preferencias de los DMs ajustadas por distribuciones lineales de incertidumbre
degeneran en números exactos, lo que concuerda con hallazgos anteriores. Cabe señalar que, además
de la gestión de la contaminación transfronteriza, nuestro método también permite abordar otros
problemas de GDM caracterizados por la ausencia de aleatoriedad y de incertidumbre, como la
negociación de la demolición urbana, la evaluación de la confianza en las redes sociales o la gestión
de emergencias en caso de catástrofes naturales.

Nuestra tercera contribución en esta tesis describe el uso de la teoŕıa de modelos de consenso
de optimización para explorar innovaciones teóricas relativas a mecanismos flexibles de comercio de
carbono. En concreto, investigamos esquemas esenciales de asignación de cuotas de carbono dentro
de un sistema de comercio de ciclo cerrado con el objetivo de garantizar tanto la maximización
de los ingresos como la equidad. En primer lugar, se deriva el esquema óptimo de asignación
de cuotas de carbono maximizando los ingresos globales a través de un modelo de consenso de
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referencia. A continuación, se deducen teóricamente su fórmula anaĺıtica y las condiciones necesarias
para el éxito del comercio. Posteriormente, teniendo en cuenta simultáneamente la maximización
de los ingresos del grupo y el mecanismo de competencia, construimos los nuevos modelos para
obtener los esquemas óptimos de asignación maximizando los ingresos de un individuo. Dado que
los conflictos de intereses son las principales razones del fracaso de la GDM en el mundo real, damos
las definiciones del ı́ndice de desarrollo individual o de grupo, y además presentamos dos estrategias
para resolver los problemas injustos, donde la primera se basa en el cálculo de la diferencia entre
los ı́ndices de desarrollo, lográndose la equidad mediante la identificación de DM discordantes y el
ajuste de sus parámetros iniciales; y la segunda introduce una variable de medida de la equidad,
permitiendo obtener directamente esquemas de asignación justos.

Por último, conviene aclarar que la validez y la viabilidad de todos los modelos, teoremas
y métodos de optimización del consenso propuestos en esta tesis se demuestran mediante ejemplos
numéricos y análisis comparativos.
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9 Future works

After presenting the main contributions of this PhD dissertation, several new topics to further
extend our research come out. In what follows, several interesting research directions are suggested
as follows, which are worth exploring in the near future.

9.1 Parameters rationalization in the consensus optimization models

This thesis explores some real-life GDM problems via the consensus optimization models originated
from the MCC concept in [BAE07], such as the carbon quota allocation between the government
and the heavily polluting enterprises, the trans-boundary water pollution negotiation, or the close-
loop carbon emission rights reallocation trading. It is undeniable that, we focus only on the essential
mechanisms during all the optimal modeling, that is, we construct those optimization models with
some highly abstracted forms to reduce the complexity of modeling and computation. For example,
the unit costs or the unit prices attached to each DM are set as constants, even in our second topic to
consider the characteristics of asymmetry due to the DM’s preference adjustment directions, which
are slightly contrary to the reality. Thus, in the future, we may adopt some robust methods, such
as game theory [ZDZP20] or stochastic programming theory [LJGQ21], to assure those parameters
to be more reasonable. For example, we could set the variable unit costs with time constraints
for the DMs to deal with the phenomena under which tiered pricing is set for heavily polluting
enterprises after overrun, so as to be more in line with practical situations.

9.2 Optimization modeling under the complex GDM environments

In this thesis, the consensus reaching conditions are only explored under the homogenous GDM
background, for example, the DMs express their preferences with only linear uncertainty distribu-
tions with belief degrees in our first two topics or crisp numbers in the last topic, however, real-life
decision is rather complex and changeable, making it highly possible for involved participants to
simultaneously present completely different preference structures. Thus, in the future, we need to
deal with the heterogeneous GDM problems [HVHC02, CHVP13] by taking other common regular
uncertainty distributions (e.g., zigzag uncertainty distribution or normal uncertainty distribution)
or traditional preference structures (e.g., intervals, utility values, linguistic preferences) into ac-
count, although it brings about another topic that we should explore the axiomatic approach of
the conversion between the uncertain and traditional preference structures, thereby further extend-
ing our research in this thesis. Meanwhile, due to the rapid development of technology, decision
problems tend to be more and more complex, thus, combining our existing research to address the
large-scale GDM problems that featured by social interactions or opinion dynamics [DPW+20], will
also be an important direction of our subsequent research.

9.3 Practical application of the consensus optimization models

So far, we have conducted all our studies under some particular case background to facilitate the
understanding of those proposed consensus optimization models, thus, how to integrate well-known
decision technology (e.g., survey, data mining) or empirical approaches to practically interpret our
findings with some real datasets is worth investigating. In addition, the optimal consensus mod-
eling or the trading mechanisms should focus on more behavioral constraints, such as the partici-
pant’s risk attitudes or utility expectations [HCK15], rather than only considering the reallocation
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schemes or the pricing decisions from the MCC perspective or the revenue maximization perspec-
tive. Clearly, our newly proposed uncertain MCCMs can provide significant managerial implications
for moderators to deal with the real-life GDM problems with flexible requirements, such as targeted
recommendation system purchasing based on advertisers’ market share, and second-hand housing
selection bargain from different agencies. Thus, to better show the flexibility and feasibility of our
new proposals, except carbon quota negotiation or the trans-boundary water pollution negotiation
mentioned in this thesis, the application of our consensus optimization models in more real GDM
problems needs to be studied and discussed in the future.
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Abstract

Group decision-making combined with uncertainty theory is verified as a more conclusive theory, by

building a bridge between deterministic and indeterministic group decision-making in this paper. Due

to the absence of sufficient historical data, reliability of decisions are mainly determined by experts

rather than some prior probability distributions, easily leading to the problem of subjectivity. Thus,

belief degree and uncertainty distribution are used in this paper to fit individual preferences, and five

scenarios of uncertain chance-constrained minimum cost consensus models are further discussed from

the perspectives of the moderator, individual decision-makers and non-cooperators. Through deduction,

reaching conditions for consensus and analytic formulas of the minimum total cost are both theoretically

given. Finally, with the application in carbon quota negotiation, the proposed models are demonstrated

as a further extension of the crisp number or interval preference-based minimum cost consensus models.

In other words, the basic conclusions of the traditional models are some special cases of the uncertain

minimum cost consensus models under different belief degrees.

Keywords: Group decision-making; Minimum cost consensus model (MCCM); Uncertainty theory;

Linear uncertainty distribution; Belief degree

1. Introduction

Group decision-making (GDM) mainly solves unstructured decision-making problems, involving

subjective participation of various experts [1, 2]. In GDM, through communication and multiple

rounds of effective feedback/adjustment, decision-makers (DMs) eventually form a clear support or

objection towards a certain issue. Then, a relatively consistent consensus is reached [3]. Consensus
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decision-making is a prerequisite for effective GDM and widely exists in our daily lives, such as online

P2P lending [2], emergency decision support [4], and trans-boundary water pollution control [5, 6]. In

general, factors affecting the consensus reaching process (CRP) include DMs’ preference structures or

psychological expectation [6, 7, 8, 9], convergence rules [10, 11], decision environment

[12, 13, 14, 15, 16, 17], and leaders’ [2, 18, 19, 20] or non-cooperators’ influence [1, 21, 22, 23, 24]. Urda

and Loch [25] indicated that individual behaviours in GDM are driven by both their own economically

rational deliberation and decision biases and social preferences (e.g. status achievement, reciprocal

relations, or group identity). Thus, a moderator [2, 19, 20], on behalf of collective interest, is often

introduced to improve the speed and efficiency of CRP. He/she possesses prominent skills in leadership

and negotiation, and can persuade/tempt DMs to continually adjust their opinions into consensus

through different effective means (collectively referred to as “consensus cost”).

The concept of minimum cost consensus model (MCCM) was first proposed by Ben-Arieh and

Easton [20], to explore a single and a multi-criteria decision consensus problem with a linear cost using

linear-time algorithms. Afterward, they built models based on quadratic cost functions by taking

account of consensus cost, opinion elasticity and the maximum number of experts [26]. Meanwhile,

Dong et al. [10] investigated the internal relations of several OWA-based linguistic operators based on

position indexes, and originally presented the optimisation-based minimum adjustment consensus

models (MACMs). Subsequently, Zhang et al. [27] proposed a new framework for consensus models

under aggregation operators, and illustrated that a link existed between MCCMs and MACMs. To

further explore the original MCCMs, Gong et al. [19, 28] and Zhang et al. [2] adopted the linear

prime-dual theory and presented the economic interpretations of their new consensus models. Wu et al.

[29] discussed the scheme recommendation and users’ trust measure using the feedback mechanism in

MCCMs with social network analysis. Meanwhile, considering that the cost coefficients are asymmetric

due to the adjustment direction of DMs’ opinions, Cheng et al. [5] analysed the impact of individual

limited compromises and tolerance behaviours on MCCMs. Research paradigms about the

MCCMs/MACMs with feedback mechanism during the last decade were concluded by Zhang et al.

[30], and they further pointed out new directions for the future research. So far, most extant

MCCMs/MACMs assume DMs’ preferences denoted by crisp numbers or intervals, making the

stochastic distribution for DMs’ opinions seldom considered. Thus, uncertainty distributions are used

to fit DM’s preferences in this paper.

Actually, even if there exists a moderator acting as a leader in GDM, the DMs involved still cannot

account for all factors; besides, diversity widely exists in individuals’ research background, knowledge

reserve, and the amount of private information. Thus, GDM is full of uncertainty, making it unable

to accurately predict the outcome in advance. GDM essentially includes providing decision support

for solving uncertainty. Without loss of generality, theoretical methods for dealing with uncertainty

include probability theory, interval analysis, fuzzy sets, rough sets and grey systems. However, it is often

difficult to obtain a precise probability for a natural state in real-life GDM, especially when there is

little information available for evaluating probabilities, usable information is insufficient, or when several
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information sources conflict with each other [31]; then, the reliability (or probability) that certain event

will occur is primarily determined by experts. To handle situations where the reliable prediction that one

event would occur has to be determined by individual subjectivity due to the inability to obtain its actual

frequency [32], uncertainty theory was proposed by Liu [33], which gradually extended into a systematic

subject, from a theoretical perspective [34, 35, 36, 37, 38] and an application perspective [39, 40]. As

an important branch of mathematics [41], uncertainty theory is mainly used to deal with human beings’

subjective reliability and has been successfully applied into trust measure in social networks [42]. To the

best of the authors’ knowledge, compared with multiple prominent theories dealing with indeterminacy,

efficiencies and advantages of uncertainty theory in GDM are concluded in [43, 44].

Due to the uncertainty in DMs’ opinions, traditional probability and statistics methods are no

longer suitable for the preference analysis of individual behaviours involved in GDM, because frequency

distribution, probability distribution, and density function for individual opinions are difficult to

obtain. However, we can always grasp a certain degree of certainty, such as 95% confidence/belief, to

achieve consensus, and when the consensus is reached with a certain degree of belief, CRP is more

consistent with actual GDM situations. Therefore, this paper introduces the belief degree and

uncertain variables to simulate DMs’ judgement behaviours, and by combining the MCCMs and

uncertainty theory, this paper extends traditional MCCMs into five scenarios from diverse roles as

moderator, individual DMs, and non-cooperators. In GDM, decisions are always made before the

realisation of individual preferences (i.e., random variables), so we suppose that the belief degree of the

constraints satisfied is no less than a specified value. Such problems can be solved by chance-

constrained goal programming [45]. As a stochastic programming method, chance-constrained problems

can always be transformed into an equivalent deterministic mathematical model, making it convenient

to obtain Pareto optimal solutions toward the original problems. In short, our main contributions are:

• Uncertain MCCMs are discussed from the perspectives of multiple roles, such as the moderator,

individual DMs and non-cooperators;

• Since interval preference-based MCCMs take only endpoints into account, belief degree and

uncertainty distribution are introduced as a whole to fit individual judgements, making the

proposed models more feasible;

• Analytic formulas for both the optimal consensus and the total cost (i.e., the optimal solutions)

under each scenario are presented, through linear transformation of the uncertain MCCMs.

• Feasibility of the new uncertain MCCMs is verified by the carbon emission quota negotiation

conducted between the heavily polluting enterprises and the local government.

The rest of the paper is organised as follows. Section 2 recalls preliminaries on traditional consensus

models (i.e., MCCMs or MACMs) and uncertainty theory. Inspired by the consensus modeling in [10, 19,

28], Section 3 adopts belief degree and uncertain variables to characterise DMs’ preferences. In addition,

by discussing five GDM scenarios, a series of optimisation-based consensus models are developed. General
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reaching conditions for the consensus under each scenario are also provided in this section through

theoretical deduction. Subsequently, Section 4 verifies the feasibility of the proposed models through

the optimal carbon quota allocation negotiation between heavily polluting enterprises and the local

government. Finally, concluding remarks and future research directions are presented in Section 5.

2. Preliminaries

2.1. Consensus models with a minimum cost or adjustment

Suppose there exist n DMs participating in GDM, oi ∈ R is the original opinion of DM di,

i ∈ N = {1, 2, · · · , n} and o′ is the collective opinion reached by the whole group (i.e., consensus). Let

fi(o
′) = |o′ − oi| be the rectilinear distance measure between di’s original opinion and the consensus

[20]. Generally, reaching a consensus depends largely on behaviours of DMs [46], meanwhile

high-impact moderators [2] or opinion leaders [18] can effectively promote the speed and efficiency of

CRP. Particularly, by exercising significant leadership skills or scheduling limited resources (e.g.,

human, material, or financial resources), moderators are capable of guiding or coordinating with DMs

to change individual inconsistent opinions towards a relatively consistent group opinion. Based on the

above distance measure, Ben-Arieh and Easton [20] first put forward the concept of the minimum cost

consensus, aiming at minimizing resources consumption during decision-making process; meanwhile,

Dong et al. [10] initially proposed consensus models with minimum preference adjustment (i.e.,

MACMs) by introducing aggregation operators, aiming to preserve DMs’ original preference

information as much as possible. Subsequently, the two aforementioned modeling ideas become an

important foundation of most extant consensus works (e.g., [2, 5, 6, 23, 27, 29, 30, 46]).

This paper mainly pursue the goal of minimizing the total consensus cost instead of keeping the

original preference information as much as possible. Without loss of generality, let ωi denote the cost for

moving di’s original opinion oi towards the consensus o′ one unit. In fact, the main difference between

MCCMs and MACMs lies in whether considering the unit cost or not. Mathematically, if we normalize

these unit costs, then they become the weighted arithmetic mean operators, which can also be understood

as each individual’s influence on CPR [28]. In reality, too many uncertain factors need to be considered

in GDM, making the above parameters difficult to quantify, hence, ωi is subjectively determined in the

follow-up discussion of this paper. Zhang et al. [46] presented a bi-level optimization model to describe

the interaction behaviors within CRP based on Stackelberg game, and further provided an optimal unit

cost from a pre-defined reasonable range rather than assuming ωi as a known parameter. Anyway,

ωifi(o
′) and

n∑
i=1

ωifi(o
′) indicate the costs paid by the moderator for persuading individual di and all

DMs to change their inconsistent opinions during GDM, respectively.

Min φ =
n∑
i=1

ωifi(o
′)

s.t.

{
fi(o

′) = |o′ − oi|
|o′ − oi| ≤ εi, i ∈ N

(1)
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Since the less the total cost the better, a MCCM based on the above principles is built as Model (1)

[19, 20, 27], where φ represents the total consensus cost for the whole GDM, and εi is the upper bound of

the deviation (i.e., distance measure) between di’s opinion and the optimal collective opinion, implying

that we want to obtain an acceptable consensus (i.e., soft consensus [27, 47]).

2.2. Uncertainty theory

Uncertainty widely exists in real-life GDM, for instance, when faced with emergency, human beings

usually cannot determine the occurrence frequency of certain events due to the absence of historic data,

making it difficult to accurately estimate the probability distribution of such events. Aiming at the above

limitations in classical probability theory, uncertainty theory proposed by Liu [33, 48] is an important

and useful mathematical instrument to handle uncertain phenomenon with non-randomness and non-

fuzziness. Next, some basic concepts in uncertainty theory are introduced.

Let Γ be a nonempty set (sometimes referred as universal set), and a collection L consisting of

subsets of Γ is an algebra over Γ, if it meets the following three conditions: (a) Γ ∈ L; (b) if Λ ∈ L,

then ΛC ∈ L; and (c) if Λ1,Λ2, · · · ,Λn ∈ L, we have
⋃n
i=1 Λi ∈ L, where, if condition (c) is replaced by

closure under countable union, that is, if Λ1,Λ2, · · · ,Λn ∈ L, we obtain
⋃∞
i=1 Λi ∈ L, then L is referred

as a σ-algebra over Γ. Element Λ in L is called a measurable set, which also can be interpreted as an

event in uncertainty theory. M is defined as an uncertain measure over the σ-algebra L. Without loss of

generality, real number M{Λi} corresponds to event Λi one by one, representing the belief degree with

which we belief event Λi will occur. There exist no doubt that such assignment is not arbitrary, and the

uncertain measure M satisfies the following four axioms [33, 48].

Axiom 1. (Normality Axiom): M{Γ} = 1 holds for the universal set Γ.

Axiom 2. (Duality Axiom): M{Λ}+M{Λc} = 1 holds for any event Λ.

Axiom 3. (Subadditivity Axiom): For every countable sequence of event Λ1, Λ2, · · · , we have:

M

{ ∞⋃

i=1

Λi

}
≤
∞∑

i=1

M{Λi}

Axiom 4. (Product Axiom): Let (Γk,Lk,Mk) be uncertain space for k ∈ N+, then the product of

uncertain measure M is still an uncertain measure, and satisfies:

M

{ ∞∏

k=1

Λk

}
=
∞∧

k=1

M{Λk}

where Λk are events arbitrarily chosen from Lk, (k ∈ N+), respectively.

Definition 1. [33] An uncertain variable ξ is a function from an uncertain space (Γ,L,M) to the set

of real numbers, and {ξ ∈ B} is an event for any Borel set B of real numbers. For any real number x,

the uncertainty distribution Φ of an uncertain variable ξ can be defined as: Φ(x) = M{ξ ≤ x}.
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M{ξ ≤ x} is the belief degree for the event ξ ≤ x may occur, and it is denoted as α, where

0 ≤ α ≤ 1. In other words, we have Φ(x) = M{ξ ≤ x} = α. According to Axiom 2, we obtain

M{ξ > x} = 1− Φ(x) = 1− α.

Definition 2. [41] An uncertainty distribution Φ(x) is said to be regular if it is a continuous and

strictly increasing function with respect to x at which 0 < Φ(x) < 1, and satisfies lim
x→−∞

Φ(x) = 0 and

lim
x→+∞

Φ(x) = 1.

Note that, linear uncertainty distribution, zigzag uncertainty distribution, normal uncertainty

distribution and lognormal uncertainty distribution are all common regular uncertainty distributions.

Theorem 1. [41] Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty

distribution Φ1,Φ2, · · · ,Φn, respectively. If f(ξ1, · · · , ξn) is strictly increasing with respect to

ξ1, · · · , ξm, and strictly decreasing with respect to ξm+1, · · · , ξn, then f(ξ1, · · · , ξn) has an inverse

uncertainty distribution of Ψ−1(α) = f(Φ−11 (α), · · · ,Φ−1m (α),Φ−1m+1(1− α), · · · ,Φ−1n (1− α)).

Theorem 2. [33] Let ξ be an uncertain variable with its inverse uncertainty distribution denoted as

Φ−1(α), if and only if Φ−1(α) ≤ c, then M{ξ ≤ c} ≥ α, where α, c are constants within [0, 1].

Theorem 3. Let uncertain variables ξ1 and ξ2 be independent with inverse uncertainty distribution

Φ1 and Φ2, respectively, then the inverse uncertainty distribution for the difference between these two

variables (denoted by ξ1 − ξ2) can be defined as: Ψ−1(α) = Φ−11 (α)− Φ−12 (1− α).

Actually, uncertain measure can be understood as DMs’ personal belief degree (not frequency) of an

event may occur, so the real meanings of belief degree and uncertain measure appear to be the same.

Generally, regular uncertainty distributions include linear uncertainty distribution, normal uncertainty

distribution and so on. Hereafter, we only discuss the linear type since it can be easily transformed when

the analytic formulas of the proposed models are to be obtained.

Definition 3. [33] Uncertain variable ξ satisfies a linear uncertainty distribution (see Fig. 1), denoted

as ξ ∼ L(a, b), where a, b are both real numbers and a < b, then linear uncertainty distribution function

is presented as:

Φ(x) =





0, if x ≤ a
x− a
b− a , if a ≤ x ≤ b

1, if x ≥ b

Definition 4. [33] An uncertain variable ξ satisfies ξ ∼ L(a, b), then its inverse uncertainty distribution

function (see Fig. 2) is expressed as:

Φ−1(α) = (1− α)a+ αb
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Fig. 2 Inverse linear uncertainty distribution

3. MCCMs with uncertain preferences

Participants’ preferences in original MCCMs or MACMs are usually denoted by crisp numbers,

without taking into account that their opinions fit by random distributions. In fact, it is often difficult

for individuals to provide exact values as their preference, especially in some complex GDM contexts

(e.g. social network GDM [6, 22, 29], large-scale GDM [1, 12, 14, 24] or GDM with dynamic opinions

[18, 49]). Thus, DMs are more likely to present their decisions by intervals with upper and lower

bounds or various uncertainty distributions (e.g. uniform uncertainty distribution or normal uncertainty

distribution). Previous research focus on either role combination with moderator and individual DMs

[2, 5, 20, 28] or independent decision-making status as moderator [18, 50], individual DM [10] or non-

cooperators [1, 22, 23, 24]. Few extant works have build MCCMs by simultaneously taking account on

three roles altogether. Given the above points, we utilise uncertainty distributions to denote participants’

decision preferences, and by discussing five scenarios from multiple decision-making roles (i.e., moderator,

individual DMs and non-cooperators), we aim to investigate a more general form of Model (1).

Min φ =
n∑
i=1

ωiεi

s.t. { |o′ − oi| ≤ εi, εi ≥ 0, i ∈ N
(2)

To introduce uncertainty theory into soft consensus decision-making, we obtain a further abstracted

form from Model (1), which is denoted as Model (2). In specific, decision variable in Model (1) only

includes o′, while εi is a pre-defined threshold set over the distance measure between o′ and oi, i ∈ N .

Meanwhile, decision variables in Model (2) include both o′ and εi, and εi is bound by the deterministic

threshold given in Model (1) under the premise that these parameters are set as same in both models.

Obviously, the feasible domain of the solution set of Model (2) is larger than that of Model (1), making

the optimal value of the objective function in Model (2) be no larger than that in Model (1). As a result,

although the form of Model (2) is simpler, its scope of application is wider than Model (1). Furthermore,

Model (2) becomes the basis of the following consensus models with uncertain variables.
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3.1. Moderator with uncertain preference

Assume the original opinion oi is a known crisp number presented by individual di and ωi is a pre-

defined unit cost paid by the moderator for di’s change amount towards consensus o′, i ∈ N . Since the

moderator needs to consider many uncertain factors for the final convergent opinion, we assume that

the moderator’s opinion o′ obeys uncertainty distribution. Based on Liu’s uncertainty theory, if the

deviation between the consensus o′ and the individual opinion oi is no more than εi under the belief

degree α, then it can be denoted as M{o′− oi ≤ εi} ≥ α and M{o′− oi ≥ −εi} ≥ α, where M represents

the uncertain measure in uncertainty theory, and the variable α ∈ [0, 1] indicates the belief degree of the

constraint of |o′ − oi| ≤ εi holding, i ∈ N . Accordingly, an MCCM with uncertain chance constraints

can be constructed as follows:

Min φ =
n∑
i=1

ωiεi

s.t.





M{o′ ≤ oi + εi} ≥ α
M{o′ ≥ oi − εi} ≥ α
εi ≥ 0, i ∈ N

(3)

Theorem 4. Model (3) is equal to the non-linear goal programming Model (4).

Min φ =
n∑
i=1

ωiεi

s.t.





εi ≥ Φ−1(α)− oi (4− 1)

εi ≥ −Φ−1(1− α) + oi (4− 2)

0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (4− 3)

(4)

where φ is the total budget for the consensus reached; ωi is the unit-persuading cost paid by the moderator

to DM di; the consensus o′ obeys a linear uncertainty distribution as o′ ∼ L(a, b), where a and b are

decision variables obeying an uncertainty distribution; and constraints (4-1) and (4-2) mean that the

deviation between individual original opinion oi and consensus o′ is no more than εi under the premise

of no less than an uncertain belief degree α. Clearly, the belief variable α (α ∈ [0, 1]) can be a pre-

determined fixed value or a decision variable to be solved.

Thus, if we reconsider the uncertain belief degree α, Model (3) or Model (4) essentially includes two

issues: α is a pre-determined value or α is a parameter to be determined. As for the latter situation,

the variable α solved by Model (3) or Model (4) will be an optimal belief degree in GDM. Besides, when

o′ ∼ L(a, b), Model (4) can be further transformed into a linear programming model as in Corollary 1.

Corollary 1. Assuming that the consensus opinion obeys a linear uncertainty distribution as o′ ∼
L(a, b), Model (4) is equivalent to the following optimisation model:

Min φ =
n∑
i=1

ωiεi

s.t.





εi ≥ (1− α)a+ αb− oi
εi ≥ −αa− (1− α)b+ oi

a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(5)
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Corollary 2. If and only if α = 1 and o′ is a crisp number (i.e. a = b), Model (5) degenerates into

Model (2), and under this situation, the two models have identical values of the optimal consensus and

minimum consensus cost.

With the constraint of o′ ∼ L(a, b), we are to discuss when the total budget and consensus opinion are

exactly the same as that solved by Model (2), and to gain the threshold of the belief degree α once the

consensus is reached. In fact, by conducting sensitivity analysis on variable α, we obtain the analytical

formulas of the optimal solutions for Model (5), namely, we aim to explore the conditions under which

Model (5) and Model (2) have identical optimal consensus and total budget.

Theorem 5. Assume DM’s original opinions in Model (5) are arranged in order (i.e. o1 ≤ o2 ≤ · · · ≤
on), weights attached to each DM (i.e. ωi, i∈N ) are different, and moderator’s opinion obeys a linear

uncertainty distribution as o′ ∼ L(a, b), where a and b are decision variables (see Section 2.2). Once the

belief degree satisfies α ≥ 0.5, the optimal objective value and consensus reached conditions for Model

(5) are:

φ∗ = min
n∑

i=1

ωiεi =





n∑
i=m+1

ωioi −
m∑
i=1

ωioi, a = b ∈ [om, om+1]

iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

n∑
i=m+1

ωi(oi − om) +
m∑
i=1

ωi(om − oi), a = b = om

iff
m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Proof. See Appendix A. �
Remark 1. Theorem 5 shows that once α ≥ 0.5, the optimal consensus and total cost will be

constants and irrelevant with the belief degree any more. By then, Model (5) with linear uncertain

preferences is equivalent to Model (2) with preferences denoted by crisp numbers. That is, the two

models have identical minimum budget and optimal collective opinions. Above findings verify that the

uncertain MCCMs proposed do have practical meanings.

3.2. Non-cooperators considered and moderator with uncertain preference

So far, non-cooperators’ impact on MCCMs has gradually become an intriguing topic [23], particularly

under some complex GDM contexts [1, 21, 22, 24], and most of those research are analysed by theoretical

modeling and simulation experiments. Thus, without loss of generality, suppose multiple individuals

have similar preferences or interest in GDM, while some non-cooperators insist on their own opinions

for certain reasons, who may have authority power within industries or districts, making the moderator

unable to ignore their demands. Under this scenario, moderator’s budget is mainly used to persuade these

non-cooperators for compromising. MCCMs discussed here correspond to the decision rule of minority

being subordinate to majority. For example, a certain district is stepping into the final stage of China’s

urban demolition process, a large amount of local citizens have agreed to move while few nail-house

holders insist to stay put, probably for more compensation from the government or for some stuff hard

to let go. Then, the government has to schedule some extra budget to pursue better development for
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the whole district. Such phenomenon can be modeled as:

Min Z =
t∑
i=1

ωkεk

s.t.





fk(o′) ≤ εk, k ∈ {1, 2, . . . , t} (6− 1)

fi(o
′) ≤ εi, i ∈ N\k (6− 2)

εi ≥ 0, i ∈ N (6− 3)

(6)

Model (6) assumes there exist a total of t non-cooperators (denoted as dk). Once a consensus is

reached, the change amount of dk’s opinion is fk(o
′) = |o′ − ok| and his/ her unit cost paid by the

moderator is ωk, then the total consensus cost for this GDM scenario is Z. Note, i ∈ N\k means that

excluding those non-cooperators, individuals belong to a small alliance where they may have similar

interest or have already reached a temporary consensus. Model (6) is a general form of GDM with non-

cooperators, however, situations with only one non-cooperator is discussed hereafter (i.e., Model (7)),

for simplicity and for easy to obtain the analytic formulas of the uncertain MCCMs. In fact, when there

exist no less than two non-cooperators, the modeling mechanism is similar and the optimal solutions can

be easy to get by using softwares such as MATLAB.

Min Z = ωkεk

s.t.





fk(o′) ≤ εk (7− 1)

fi(o
′) ≤ εi, i ∈ N, i 6= k (7− 2)

εi ≥ 0, i ∈ N (7− 3)

(7)

By introducing uncertain chance constraints based on the removal of the absolute value symbols,

(7-1) can be transformed as M{o′ − ok ≤ εk} ≥ β and M{o′ − ok ≥ −εk} ≥ β, and (7-2) becomes the

uncertain constraints as M{o′ − oi ≤ εi} ≥ α and M{o′ − oi ≥ −εi} ≥ α, where β and α are the belief

degrees imposed on dk’s and other DMs’ opinion deviations with the consensus, respectively. Obviously,

constraints (7-1) and (7-2) simultaneously define the threshold of the variable o′. Next, we obtain an

equivalent non-linear consensus model.

Min Z = ωkεk

s.t.





Φ−1(β) ≤ εk + ok

Φ−1(1− β) ≥ −εk + ok

Φ−1(α) ≤ εi + oi, i ∈ N, i 6= k

Φ−1(1− α) ≥ −εi + oi, i ∈ N, i 6= k

0 ≤ α, β ≤ 1, εi ≥ 0, i ∈ N

(8)

If the consensus obeys a linear uncertainty distribution with unknown parameters of a and b, namely

o′ ∼ L(a, b), then Model (8) can be further extended as Model (9). For the convenience of comparative

analysis with [19], this paper sets Model (9) as an MCCM with a soft-consensus constraint. That is,

except for the non-cooperator, all other threshold constraints εi,i∈N,i6=k imposed on DMs’ opinions and

the final consensus are pre-determined. To make up for the deficiency of hard consensus [51], soft

consensus, which allows for a certain range between individual opinions and the collective opinion, is

proposed [2, 47, 20]. Generally, soft consensus can be measured by consensus level [22, 51]. Therefore,
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Z, a, b and εk are all decision variables in Model (9).

Min Z = ωkεk

s.t.





(1− β)a+ βb− ok ≤ εk (9− 1)

−βa+ (β − 1)b+ ok ≤ εk (9− 2)

(1− α)a+ αb− oi ≤ εi, i ∈ N, i 6= k (9− 3)

−αa+ (α− 1)b+ oi ≤ εi, i ∈ N, i 6= k (9− 4)

a ≤ b, 0 ≤ α, β ≤ 1, εi ≥ 0, i ∈ N (9− 5)

(9)

Constraints (9-1)-(9-4) create bounds on the parameters of a and b, which may lead to an empty

solution space, that is, a feasible solution maybe no longer exist in Model (9). However, this situation

makes sense in real-life GDM. For example, if a non-cooperator is no longer rational enough, then the

urban demolition negotiation may bring to an end. Furthermore, we should note that once no feasible

solution exists, then the roles of different DMs will change. Specifically, DMs other than dk now have

a veto power, and in fact are then more powerful than dk, which may result in a new iteration for

reaching a consensus. Currently, such scenarios haven’t been analysed in this paper, but it will be an

interesting topic in our future research. However, using conclusions in Theorem 6, we can always set

certain pre-defined parameters in Model (9) to guarantee that a feasible solution exist.

Theorem 6. When belief degrees α and β in Model (9) satisfy the constraint (10). Then, if and only if

1
2 ≤ β ≤ 1





0 ≤ α ≤ 1
2





ok > min (oi + εi)





ε∗k = min{(β − 1
2 )(b− a), ok −min(oi + εi)}

if ε∗k = (β − 1
2 )(b− a) :

a = min(oi+εi)−2αok
1−2α , b = (2−2α)ok−min(oi+εi)

1−2α
if ε∗k = ok −min(oi + εi) :

a = b = min(oi + εi)

max (oi − εi) ≤ ok ≤ min (oi + εi)

{
a = b = ok

ε∗k = 0

ok < max (oi − εi)





ε∗k = min{(β − 1
2 )(b− a),max(oi − εi)− ok}

if ε∗k = (β − 1
2 )(b− a) :

a = max(oi−εi)+(2−2α)ok
1−2α , b = max(oi−εi)−2αok

1−2α
if ε∗k = max(oi − εi)− ok :

a = b = max(oi − εi)

1
2 ≤ α ≤ 1





ok > min (oi + εi)

{
a = b = min (oi + εi)

ε∗k = ok −min (oi + εi)

max (oi − εi) ≤ ok ≤ min (oi + εi)

{
a = b = ok

ε∗k = 0

ok < max (oi − εi)
{

a = b = max (oi − εi)
ε∗k = max (oi − εi)− ok

(10)

a = b, Model (9) degenerates into the Pk(ε) problem in [19] (i.e. Model (11)), meaning that Model (9)
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and Model (11) have identical optimal solutions, then the final collective opinion (i.e. the consensus) for

Model (9) is also obtained.

Pk(ε) : Min Z = ωk|o′ − ok|

s.t.

{
|o′ − oi| ≤ εi, i ∈ N, i 6= k

o′ ≥ 0

(11)

Proof. See Appendix B. �
Remark 2. Theorem 6 provides consensus reaching conditions for MCCMs in light of the non-

cooperator dk and the consensus o′ obeying a linear uncertainty distribution. And when α = β = 1,

Model (9) is equivalent to Model (7).

3.3. DMs with uncertain preferences

Suppose individual opinion oi = [ai, bi] obeys an uncertainty distribution, while the random

distribution characteristics of the consensus is not considered (i.e., o′ denoted as a crisp number).

Similar to the aforementioned research idea, deviation between oi and o′ can be expressed using

uncertain measure based on the removal of the absolute value symbols as M{o′ − oi ≤ εi} ≥ α and

M{o′ − oi ≥ −εi} ≥ α, (i ∈ N). Therefore, an optimisation-based MCCM with uncertain preferences is

built as follows.

Min φ =
n∑
i=1

ωiεi

s.t.





Φ−1i (α) ≤ o′ + εi, i ∈ N
Φ−1i (1− α) ≥ o′ − εi, i ∈ N
o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(12)

If an individual opinion specifically obeys a linear uncertainty distribution, denoted as oi ∼ L(ai, bi),

where ai and bi are predetermined parameters of di’s original uncertain preference, exhibiting certain

extent of indetermination, i ∈ N . Other variables are similarly defined as in Section 3.1. Model (12)

then equals to Model (13).

Min φ =
n∑
i=1

ωiεi

s.t.





(1− α)ai + αbi − o′ ≤ εi, i ∈ N (13− 1)

o′ − αai − (1− α)bi ≤ εi, i ∈ N (13− 2)

o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (13− 3)

(13)

Theorem 7. Suppose original individual opinions in GDM satisfy linear uncertainty distributions as

oi ∼ L(ai, bi), i ∈ N . If and only if 1
2 ≤ α ≤ 1 and all opinions are organised in order as a1+b1

2 ≤
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a2+b2
2 ≤ · · · ≤ an+bn

2 , analytic formulas of the objective function and the consensus are obtained as:

φ∗ =





n∑
i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi], where o
′ ∈ [am+bm

2 , am+1+bm+1

2 ],

iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

(
m∑
i=1

ωi −
n∑

i=m+1

ωi)
am+bm

2 +
n∑

i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi], where o
′ = am+bm

2 ,

iff
m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Theorem 7 can be verified by a similar mechanism as for Theorem 5, thereby its relevant proof is

omitted here due to space limitation. Note that when 0 ≤ α ≤ 1
2 , there is no general conclusion for

Model (13). In addition, from practical perspective, if the belief degree belongs to the threshold of [0, 12 ],

the CRP discussed makes no sense.

Remark 3. Theorem 7 indicates that once the value of the belief degree α is large enough, the

consensus in Section 3.3 is only related to the mean values of individual opinions expressed by linear

uncertainty distributions. Essentially, Theorem 7 and Theorem 5 are equivalent in forms.

3.4. Non-cooperators considered and DMs with uncertain preferences

Assume there exist a total of t non-cooperators in GDM process (referred to as dk), and all the

individual opinions oi, i∈N obey uncertainty distributions while the consensus is presented as a crisp

number. Since DMs other than dk, k ∈ {1, 2, . . . , t} are like-minded and form a small alliance, then the

whole group will mostly emphasize on dk’s interest, thus, an optimisation-based uncertain MCCM is

constructed as

Min Z =
t∑
i=1

ωkεk

s.t.





M{o′ − ok ≤ εk} ≥ β,M{o′ − ok ≥ −εk} ≥ β, k ∈ {1, 2, . . . , t} (14− 1)

M{o′ − oi ≤ εi} ≥ α,M{o′ − oi ≥ −εi} ≥ α, i ∈ N\k (14− 2)

o′ ∈ O, o′ ≥ o, εk ≥ 0, k ∈ {1, 2, . . . , t} (14− 3)

(14)

In Model (14), dk, (k ∈ {1, 2, . . . , t}) is non-cooperated with the small alliance in GDM. That is, other

(n− t) DMs have basically reached a temporary consensus, or the (n− t) DMs may have similar interest

or like-minded, so this scenario aims to minimise the total consensus cost (i.e. Z) on dk for adjusting

their opinions. Constraint (14-1) denotes the uncertain measure for those non-cooperators with belief

degree β, while constraint (14-2) represents other individual opinions obeying an uncertainty distribution

under the belief degree of α. Consensus o′ belongs to the feasible set of O, and all opinions are greater

than zero by default. For the logical consistency of this paper and easy to obtain the analytic formulas

of the uncertain MCCMs, hereafter, we still discuss the GDM scenario with only one non-cooperator

considered, then, the above uncertain MCCM is further transformed as Model (15).

Namely, if individual opinions satisfy linear uncertainty distributions as oi ∼ L(ai, bi), then Model

(14) with only one non-cooperator considered is equivalent to Model (15), where ∀i ∈ N , ai and bi are
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pre-determined. Similar in Section 3.2, εi, i 6=k are some known soft-consensus thresholds, α, β are belief

degrees for different DMs, and o′, εk are decision variables. Similarly, when GDM situation involves more

than two non-cooperators, corresponding optimization models with linear uncertain preferences can be

easily solved by software as MATLAB, however, the analytic formulas of their optimal solutions will be

difficult to obtain then, thus, this paper mainly focuses on the simplest GDM context.

Min Z = ωkεk

s.t.





(1− β)ak + βbk − o′ ≤ εk (15− 1)

o′ − [βak + (1− β)bk] ≤ εk (15− 2)

(1− α)ai + αbi − o′ ≤ εi, i ∈ N, i 6= k (15− 3)

o′ − [αai + (1− α)bi] ≤ εi, i ∈ N, i 6= k (15− 4)

o′ ∈ O, o′ ≥ o, εk ≥ 0 (15− 5)

(15)

Theorem 8. If di’s opinion (i ∈ N) obeys a linear uncertainty distribution as oi ∼ L(ai, bi), the analytic

formulas of the objective function and the consensus in Model (15) satisfy constraint (16).





0 ≤ β ≤ 1
2





βak + (1− β)bk] < G : ε∗k = o′ − βak − (1− β)bk, o
′ = G

(1− β)ak + βbk > H : ε∗k = (1− β)ak + βbk − o′, o′ = H

Otherwise : ε∗k = 0, o′ ∈ [(1− β)ak + βbk, βak + (1− β)bk]
⋂

[G,H]

1
2 ≤ β ≤ 1





ak+bk
2 < G : ε∗k = o′ − βak − (1− β)bk, o

′ = G
ak+bk

2 ∈ [G,H] : ε∗k = (β − 1
2 )(bk − ak), o′ = ak+bk

2
ak+bk

2 > H : ε∗k = (1− β)ak + βbk − o′, o′ = H

(16)

where G = max{(1− α)ai + αbi − εi} and H = min{αai + (1− α)bi + εi}, i ∈ N, i 6= k.

Proof. See Appendix C. �

3.5. Moderator and DMs with uncertain preferences

Suppose all participants’ opinions (including moderator and individual DMs) obey uncertainty

distributions. Once individuals in the group obey diverse uncertainty distributions, the MCCM

constructed aims to solve heterogeneous GDM problems [13, 14]. However, this is not the focus we

intend to explore, in other words, this paper assumes that all participants obey the same type of

uncertainty distribution. Therefore, a corresponding CRP can be mathematically constructed as:

Min φ =
n∑
i=1

ωiεi

s.t.





M{o′ − oi ≤ εi} ≥ α
M{o′ − oi ≥ −εi} ≥ α
0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(17)
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As both individual opinion oi and consensus o′ obey uncertainty distributions, then based on Theorem

3, Model (17) can be further extended as

Min φ =
n∑
i=1

ωiεi

s.t.





Φ−1o′ (α)− Φ−1oi (1− α) ≤ εi (18− 1)

Φ−1oi (α)− Φ−1o′ (1− α) ≤ εi (18− 2)

0 ≤ α ≤ 1, εi ≥ 0, i ∈ N (18− 3)

(18)

Specifically, suppose DM’s opinion oi = [ai, bi] obeys a linear uncertainty distribution (denoted as

oi ∼ L(ai, bi)), and moderator’s opinion, on behalf of the interest of the whole group, also obeys a

linear uncertainty distribution by default as o′ ∼ L(a, b). Where ai and bi are known parameters of di’s

uncertain preference, while a and b are unknowns to be solved. Model (18) is equivalent to

Min φ =
n∑
i=1

ωiεi

s.t.





a+ (b− a)α+ (bi − ai)α− bi ≤ εi
(bi − ai)α+ (b− a)α− b+ ai ≤ εi
a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i ∈ N

(19)

Theorem 9. Assume all individual DMs’ opinions satisfy oi ∼ L(ai, bi) and moderator’s opinion satisfies

o′ ∼ L(a, b), and adjust individual original opinions in sequence as a1+b1
2 ≤ a2+b2

2 ≤ · · · ≤ an+bn
2 , then if

and only if 1
2 ≤ α ≤ 1, the optimal solution for Model (19) exists, which satisfies the following conditions:

φ∗ =





n∑
i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi],

where a = b ∈ [am+bm
2 , am+1+bm+1

2 ], iff
m∑
i=1

ωi =
n∑

i=m+1

ωi

(
m∑
i=1

ωi −
n∑

i=m+1

ωi)
am+bm

2 +
n∑

i=m+1

ωi[(1− α)ai + αbi]−
m∑
i=1

ωi[αai + (1− α)bi],

where a = b = am+bm
2 , iff

m−1∑
i=1

ωi <
n∑

i=m

ωi,
m∑
i=1

ωi >
n∑

i=m+1

ωi

Theorem 9 can be proved by a same mechanism as for Theorem 5, therefore, its relevant proof is

omitted.

Remark 4. Theorem 9 verifies that once the participants’ opinions obey linear uncertainty

distributions in GDM, the final consensus is only related to the weight allocation and the mean values

of initial opinions for all DMs. Besides, Theorem 9, Theorem 7 and Theorem 5 are formally equivalent.

3.6. Flowchart of MCCMs with uncertain preferences

For clarity, a flowchart of this paper is given as Fig. 3, and the relations between the aforementioned

five GDM scenarios are also summarized in detail.

In specific, we differentiate all the GDM participants into three roles as moderator, individual DMs,

and non-cooperators. Considering that participants usually have disparate standpoints or interests when

facing real-life GDM, uncertain preferences will be accordingly expressed by different roles under various

decision contexts. Thus, Section 3.1 and 3.2 assume that moderator’s opinion is expressed as uncertain
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preference (denoted by belief degree and uncertainty distribution) while individuals present crisp number

preferences, and then preference structures of those two roles are reversed in Section 3.3 and 3.4. Finally,

in Section 3.5, participants involved in GDM all present their judgements by uncertain preferences. For

more in line with real-life GDM problems, we also deeply explored the influence of non-cooperators in

uncertain MCCMs in Section 3.2 and 3.4, simultaneously aiming to conduct an association research with

previous MCCMs in [19].

4. Application in carbon quota negotiation

A negotiation abstracted from real-life GDM is conducted in this section, over the carbon emission

quota issue between the government and four local heavily polluting enterprises, so as to further illustrate

the validity of the above five uncertain chance-constrained MCCMs and the proposed theorems. In

addition, this section also deeply investigates the relations between the newly constructed models with

the traditional MCCMs through data analysis.

4.1. Research background

The fifth assessment report of the intergovernmental panel on climate change (IPCC) clearly states

that global warming is intensified according to the observable data over the global surface temperatures

and the rising sea levels, which is largely due to human activities [52]. Therefore, how to reduce the

impact of human activities on the environment through greenhouse gas emission reduction has become

a priority for entire mankind. Jiang et al. [53] proved that the most cost-efficient way to deal with

global warming is to build a carbon market under which the key problem becomes to allocate carbon

emission quota (hereafter carbon quota). “Carbon emission right” refers to the right of enterprises to

legally discharge greenhouse gases such as carbon dioxide into the atmosphere according to relevant

laws, and “carbon quota” refers to the legal amount for each enterprise within a certain period through

some bargains with the government. Based on the concept of the carbon market, if the actual emission

amounts of enterprises are more than their quotas, then they need to pay for extra quotas to make up

their illegal amounts; conversely, if the actual emission amounts are smaller, then the balance can be

sold out in the carbon market (http://www.tanpaifang.com). Given the above background, a negotiation

is usually conducted over specific carbon quotas between the government and different enterprises, and

thus, the allocation of carbon quotas for various enterprises is essentially a CRP.

How to allocate carbon quotas? Take a certain region as an example, local government can always

provide a rough carbon quota allocation scheme for each enterprise, through comprehensively considering

their historical emission data, advanced emission reduction measures, and future development strategies.

Then, through bargain or negotiation, the government and all enterprises can reach a carbon quota

consensus. In fact, enterprises are mostly profit-oriented and usually believe that environmental actions

lead to financial cost increasing, because their proactive huge investment in green technology may not pay

off for decades [54]. Therefore, it is relatively difficult for enterprises to provide an exact emission index.

Although an exact emission number sometimes needs to be given by enterprises, it is highly likely to have

17



some deception in that index from the view of enterprises’ interest [49]. Acting as a macro-moderator,

government needs to take into account both economic and social benefits and always stick in line with the

principle of fairness and effectiveness, so as to help enterprises more accurately determine carbon quotas

through multiple means (e.g. game, negotiation, and implementation of relevant administrative orders

or incentives). Obviously, such carbon quota negotiations involving the government (i.e. moderator) and

enterprises (i.e. DMs) can constitute a cost consensus GDM problem. As mentioned earlier, we will not

discuss the economic benefits of enterprises resulting from their subsequent carbon quota transferring (i.e.

trading behaviour in carbon market), which can be viewed as post-consensus decision-making problems

[55], such as how to use tiered pricing after overrun for different heavily polluting enterprises.

4.2. Numerical discussion and sensitivity analysis

Assume four heavily polluting enterprises located in different regions within a same province, with

similar qualifications and scales in the same industry, denoted as di, i ∈ N = {1, 2, 3, 4}. oi is their

original carbon quota (unit: 10,000 tons/year). We assume that to facilitate unified management, the

provincial government needs to set a unified standard (i.e. an optimal carbon quota) for these enterprises.

The optimal carbon quota negotiated above is not only the consensus reached but also the final value

expected by the government, which can be marked as o′. For simplicity, we conduct comparative analysis

with the data in [19, 28] (see Table 1). If there exists a non-cooperator, we might as well assume that

dk = d3, and it holds a special position different from the others (e.g. d3 is a pillar industry within its

region, receiving special support from the government, while others aren’t). Note that, by considering

the moderator’s preference on some specific factors, we can always easily identify such non-cooperators

in real-life GDM.

Table 1 Summary of original decision information

Cases
(1) (2) (3) (4) (5)

o′ ∼ L(a, b) o′ ∼ L(a, b) oi ∼ L(ai, bi) oi ∼ L(ai, bi) o′ ∼ L(a, b);oi ∼ L(ai, bi)

Variables oi ωi oi ωi εi oi ωi oi ωi εi oi ωi

d1 0 1 0 - 5 [14,37] 1 [14,37] - 12 [14,37] 1

d2 3 2 3 - 4 [22,30] 2 [22,30] - 5 [22,30] 2

d3 6 3 6 3 - [64,153] 3 [64,153] 3 - [64,153] 3

d4 10 1 10 - 6 [8,61] 1 [8,61] - 36 [8,61] 1

Unknown a, b, εi, φ a, b, ε3, Z o′, εi, φ o′, ε3, Z a, b, εi, φ
Note: φ indicates the total consensus cost for all plants di, (i ∈ N); Z indicates the consensus cost for the non-cooperator dk.

Unit for oi, o
′: 10,000 tons/year; unit for wi: 10,000 yuan/ton.

Case 1. Assume that the original carbon quotas required by four enterprises are o1 = 0, o2 = 3,

o3 = 6, and o4 = 10 (unit: 10,000 tons/year). To promote the allocation of optimal carbon quotas,

unit costs that the provincial government is willing to pay are: ω1 = 1, ω2 = 2, ω3 = 3, and ω4 = 1

(unit:10,000 yuan/ton). Here, we suppose that the optimal quota expected by the government (i.e. o′)
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obeys a linear uncertainty distribution, represented as o′ ∼ L(a, b), where a and b are unknown.

Model(4− 1) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





M{o′ − 0 ≤ ε1} ≥ α,M{o′ − 0 ≥ −ε1} ≥ α
M{o′ − 3 ≤ ε2} ≥ α,M{o′ − 3 ≥ −ε2} ≥ α,
M{o′ − 6 ≤ ε3} ≥ α,M{o′ − 6 ≥ −ε3} ≥ α,
M{o′ − 10 ≤ ε4} ≥ α,M{o′ − 10 ≥ −ε4} ≥ α
o′ ∼ L(a, b), εi ≥ 0, i = 1, 2, 3, 4

Taking the negotiation cost initiated by the government to minimise as our main goal, an MCCM

based on the carbon quota is constructed as Model (4-1), which is finally transformed as Model (4-

11) (see Appendix D). Without regard to the random distribution for the consensus opinion, optimal

solution obtained by [19] is o∗ = 6 and φ∗ = 16. Table 2 provides the sensitivity results for Model

(4-1) when the step length for the belief degree α is 0.1. In addition, Table 2 indicates that if and

Table 2 Sensitivity results for Case 1

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε1 0 1.11 2.5 3 4 6 6 6 6 6 6

ε2 0 0 0 0 1 3 3 3 3 3 3

ε3 0 0 0 0 0 0 0 0 0 0 0

ε4 0 0 0 3 4 4 4 4 4 4 4

o∗ = [a, b] [0,10] [0,11.11] [0,12.5] [0,10] [0,10] 6 6 6 6 6 6

φ∗ 0 1.11 2.5 6 10 16 16 16 16 16 16

only if α ≥ 0.5, the optimal carbon quota o∗ reached by polluters and the government evolves from an

uncertainty distribution to a single real value 6, and then, the consensus budget φ∗ also reaches a stable

level of 16. Moreover, when we take the belief degree α as an unknown variable, then its optimal solution

solved by Model (4-1) is α∗ = [0.5, 1]. Compared to the results in [19], Corollary 2 holds. As polluters’

original carbon quotas have already been ranked in an ascending order, and due to ω1 + ω2 < ω3 + ω4,

ω1 + ω2 + ω3 > ω4, the optimal quota for minimising the objective function is o∗ = o3 = 6, so Theorem

5 is verified.

Combined with the research background, when the belief degree is rather low (i.e. α < 0.5), the

provincial government can only obtain a threshold for the optimal carbon quota. However, when the

belief degree is no less than 0.5, the optimal carbon quota is constant at 60,000 tons/year, meaning that

once the government’s belief degree reaches a critical value (i.e. 0.5), the optimal quota will stabilize to

a fixed value. Next, we economically explain the changes in carbon quotas for each polluter. Enterprises

d1 and d2 require a relatively low quota at the beginning, possibly due to the overconfidence or lack

of comprehensive verification of their emission capacity, but the government believes that they should

get 60,000 tons of quota per year from the perspective of their previous emission situation or future

development demands. As for d4, a rather high quota is given on the account of excessive conservatism

or the desire to obtain more economic subsidies from the government. However, d4 should finally lower
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its emission standard to balance the environmental and economic benefits.

As we stated earlier, if the actual emission amounts of enterprises are less than the allocated quotas,

the balance can produce certain economic benefits in the carbon market, which can be regarded as an

incentive to promote emission reduction. Conversely, for polluters whose real emission amounts exceed

the allocated quota, only by purchasing extra quotas, can they complete their business targets, and

then, the transaction can be considered as a negative incentive. In short, irrespective of how much the

polluters actually emit, the government can always achieve the emission reduction target by setting an

optimal carbon quota.

Case 2. As shown in Table 1, enterprise d3 acts as a non-cooperator, and the government provides

it a unit negotiation cost as ω3 = 3 (unit: 10,000 yuan/ton). Meanwhile, to make the CRP more

flexible, final optimal carbon quotas for other three polluters have soft- consensus thresholds as ε1 = 5,

ε2 = 4 and ε4 = 6 (unit: 10,000 tons/year). Assume the optimal quota o′ obeys a linear uncertainty

distribution as o′ ∼ L(a, b) by default. Aiming to minimise the total budget, an uncertain carbon quota

MCCM is built as Model (4-2) and its linear equivalent form is Model (4-21) (see Appendix D). Ref

[19] provided an optimal solution as o∗ = 5, Z∗ = 3 without considering DMs’ opinions characterizing

random distributions.

Model(4− 2) : Min Z = 3 ∗ ε3

s.t.





M{o′ − 6 ≤ ε3} ≥ β,M{o′ − 6 ≥ −ε3} ≥ β
M{o′ − 0 ≤ ε1} ≥ α,M{o′ − 0 ≥ −ε1} ≥ α
M{o′ − 3 ≤ ε2} ≥ α,M{o′ − 3 ≥ −ε2} ≥ α
M{o′ − 10 ≤ ε4} ≥ α,M{o′ − 10 ≥ −ε4} ≥ α
0 ≤ ε1 ≤ 5, 0 ≤ ε2 ≤ 4, 0 ≤ ε4 ≤ 6, ε3 ≥ 0

o′ ∼ L(a, b), a ≤ b, 0 ≤ α, β ≤ 1

In fact, Case 2 introduces the soft-consensus constraints based on Case 1, and analyses the consensus

GDM with only considering some non-cooperators instead of all DMs. Table 3 provides sensitivity results

for the variable α in Model (4-2) when another belief degree set for the non-cooperator d3 is fixed as

β = 0.6. For detailed analysis, we identify the consensus reaching conditions with all DMs’ carbon

quotas being crisp numbers, while the emission index for the local government obeys a linear uncertainty

distribution. Namely, we draw conclusions by adapting the belief degree α within the interval of [0,1] for

the other three polluters during the carbon quota negotiation. Through calculation, we find that once

the soft-consensus thresholds are given in advance, the optimal values for variables εi, i 6=k, i∈N always

take the upper limits as ε∗1 = 5, ε∗2 = 4 and ε∗4 = 6, so these values are omitted in Table 3.

Table 3 Sensitivity results for Case 2.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

ε3 0.2 0.25 0.33 0.5 1 1 1 1 1 1 1

o∗ = [a, b] [5,7] [4.75,7.25] [4.33,7.67] [3.5,8.5] [1,11] 5 5 5 5 5 5

Z∗ 0.6 0.75 1 1.5 3 3 3 3 3 3 3
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Table 3 indicates that when α ≥ 0.5, the optimal carbon quota becomes a fixed constant from an

uncertainty distribution. ∀i ∈ N, i 6= k, max(oi − εi) = 4, min(oi + εi) = 5, we have ok=3 = 6 >

min(oi + εi). Therefore, when α ≤ 0.5, we obtain the optimal value for ε∗k and further obtain accurate

values for a and b, by comparing the sizes of (β−0.5)(b−a) and ok−min(oi+εi). Taking the situation of

α = 0.3, β = 0.6 as an example, we have a = [min(oi+εi)−2α∗ok]/(1−2α) = (5−2∗0.3∗6)/(1−2∗0.3) =

3.5 and b = [(2 − 2α)ok − min(oi + εi)]/(1 − 2α) = [(2 − 2 ∗ 0.3) ∗ 6 − 5]/(1 − 2 ∗ 0.3) = 8.5. Thus,

ε∗k = min{(β − 0.5)(b − a), ok −min(oi + εi)} = 0.5. Meanwhile if α ≥ 0.5, for ok = 6 > min(oi + εi)

always holds, thereby a∗ = b∗ = 5, Z∗ = ω3 ∗ (o3 −min(oi + εi)) = 3. Obviously, above calculations are

in accordance with the data in Table 3, so Theorem 6 holds.

Owing to the randomness of data selection, Case 2 only validates the conclusion of ok > min(oi+εi).

By adjusting d3’s original carbon quota, the rest of Theorem 6 can always be validated by a similar

mechanism.

Case 3. Initial emission quotas of the four polluters are listed in Table 1. The local government, for

obtaining an optimal allocation with unified standards, provides each enterprise a unit cost as ω1 = 1,

ω2 = 2, ω3 = 3, and ω4 = 1 (unit:10,000 yuan/ton). Here, the final collective carbon quota is defaulted

as a crisp number, while the original emission indexes for the four polluters obey linear uncertainty

distributions. Thus, an uncertain MCCM is constructed as Model (4-3), whose optimal solution is solved

by Model (4-31) (see Appendix D).

Model(4− 3) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





M{o′ − oi ≤ εi} ≥ α, i = 1, 2, 3, 4

M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 3, 4

o1 ∼ L(14, 37), o2 ∼ L(22, 30),

o3 ∼ L(64, 153), o4 ∼ L(8, 61)

o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

With no uncertain chance-constraints, an optimal solution presented in [28] is o∗ = [37, 61], φ∗ = 95.

Previous work only regards DMs’ opinions as intervals, without considering the characteristics of opinions

obeying random distributions.

Table 4 Sensitivity results for Case 3.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε1 0 0 0 0 1.4 9 11.3 13.6 15.9 18.2 20.5

ε2 7 5.5 4 2.5 2.4 8.5 9.3 10.1 10.9 11.7 12.5

ε3 27 38.2 49.4 60.6 70.4 74 82.9 91.8 100.7 109.6 118.5

ε4 0 0 0 0 0 0 5.3 10.6 15.9 21.2 26.5

o∗ [37,61] [34.7,55.7] [32.4,50.4] [30.1,45.1] [29.2,39.8] 34.5 34.5 34.5 34.5 34.5 34.5

φ∗ 95 125.6 156.2 186.8 217.4 248 283.9 319.8 355.7 391.6 427.5

When belief degree α is an unknown parameter, we obtain α∗ = 0 and o∗ = [37, 61], φ∗ = 95 (see

Column 2 in Table 4), corresponding to the optimal solution in [28]. Note that, keeping α∗ = 0, φ∗ = 95

constant, the variable o∗ can be any optimal value within the interval [37,61] and variables εi, i∈N will
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change with the specific value of o∗. Due to εi, i∈N have no effect on the final results, relevant analysis

is omitted in the paper.

Table 4 intuitively shows that once the uncertain belief degree of the carbon quota negotiation satisfies

α ≥ 0.5, the optimal consensus expected by the moderator becomes a real value from an uncertainty

distribution. As original emission indexes of the four DMs haven’t been ranked in an ascending order,

Table 5 gives the updated values to conveniently verify the effectiveness of relevant theorems. Since

ω(1) + ω(2) < ω(3) + ω(4), ω(1) + ω(2) + ω(3) > ω(4), the optimal carbon quota is obtained as o∗ =
a(3)+b(3)

2 = 69
2 = 34.5. Then, using the analytic formula of the objective function in Theorem 7, values of

φ∗ calculated are identical with the data in Table 4. Thus, Theorem 7 holds.

Table 5 Updated opinions in Case (3-5) with an ascending order

Updated Origin ai bi ai + bi weight

o(1) o1 14 37 51 1

o(2) o2 22 30 52 2

o(3) o4 8 61 69 1

o(4) o3 64 153 217 3
Note: oi represents the opinion for the original i-th DM;

o(i) represents the opinion for the updated i-th DM in an ascending order.

Case 4. Similar as in Case 2, d3 is assumed as the non-cooperating enterprise. Data of polluters’

original carbon quotas, unit cost for d3 as well as the soft-consensus thresholds for the other three

enterprises are all listed in Table 1. Here, the consensus o′ obtained for the government is defaulted as a

crisp number, while DMs’ preferences obey linear uncertainty distributions. Then, Model (4-4) is built

with great emphasis on d3’s interest. Table 6 and Table 7 are obtained by solving Model (4-41) (see

Appendix D).

Model(4− 4) : Min Z = 3 ∗ ε3

s.t.





M{o′ − o3 ≤ ε3} ≥ β,M{o′ − o3 ≥ −ε3} ≥ β
M{o′ − oi ≤ εi} ≥ α,M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 4

o1 ∼ L(14, 37), o2 ∼ L(22, 30),

o3 ∼ L(64, 153), o4 ∼ L(8, 61)

0 ≤ ε1 ≤ 12, 0 ≤ ε2 ≤ 5, 0 ≤ ε4 ≤ 36

o′ ≥ o, ε3 ≥ 0

Table 6 provides the sensitivity results over the belief degree α, which is set for the small alliance

(including polluters d1, d2 and d4), meantime, the belief degree imposed on o3 and o′ is fixed as β = 0.75.

Table 7 gives the sensitivity results over the belief degree β for d3. Similar in Case 2, once εi,i∈N,i6=k are

pre-defined, their optimal values are exactly the pre-determined upper limits, so values of ε∗1, ε
∗
2, ε
∗
4 are

omitted in Table 6 and Table 7.

Values of the total cost and the consensus calculated by the analytic formula in Theorem 8 are exactly

the same as the data in Table 6 and Table 7. However, detailed analysis for Case 4 is omitted here due

to space limitation. Note, Case 4 only validates part of the conclusions in Theorem 8, but by adjusting

the value of o3, the remaining parts can also be verified.
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Table 6 Sensitivity results for Case 4 on α when β = 0.75.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

ε3 95.75 96.55 97.35 98.15 98.95 99.75 100.55 101.35 102.15 102.95 104.75

o∗ 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 26

z∗ 287.25 289.65 292.05 294.45 296.85 299.25 301.65 304.05 306.45 308.85 314.25

i = 1 2 4.3 6.6 8.9 11.2 13.5 15.8 18.1 20.4 22.7 25

i = 2 17 17.8 18.6 19.4 20.2 21 21.8 22.6 23.4 24.2 25

i = 4 -28 -22.7 -17.4 -12.1 -6.8 -1.5 3.8 9.1 14.4 19.7 25

G = Max 17 17.8 18.6 19.4 20.2 21 21.8 22.6 23.4 24.2 25

i = 1 49 46.7 44.4 42.1 39.8 37.5 35.2 32.9 30.6 28.3 26

i = 2 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 27

i = 4 97 91.7 86.4 81.1 75.8 70.5 65.2 59.9 54.6 49.3 44

H = Min 35 34.2 33.4 32.6 31.8 31 30.2 29.4 28.6 27.8 26
Note: G =Max{(1− α) ∗ ai + α ∗ bi − εi}, H =Min{α ∗ ai + (1− α) ∗ bi + εi}, i ∈ N, i 6= k

Table 7 Sensitivity results for Case 4 on β when α = 0.86.

α 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε3 35.88 44.78 53.68 62.58 71.48 80.38 89.28 98.18 107.08 115.98 124.88

o∗ 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12 28.12

Z∗ 107.64 134.34 161.04 187.74 214.44 241.14 267.84 294.54 321.24 347.94 374.64

23



Case 5. Assume all participants involved in this negotiation obey linear uncertainty distributions.

Relevant data is provided as Table 1, so an uncertain chance-constrained MCCM is constructed as Model

(4-5) and its equivalent linear transformation is Model (4-51) (see Appendix D).

Model(4− 5) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





M{o′ − oi ≤ εi} ≥ α, i = 1, 2, 3, 4

M{o′ − oi ≥ −εi} ≥ α, i = 1, 2, 3, 4

o′ ∼ L(a, b), o1 ∼ L(14, 37), o2 ∼ L(22, 30),

o3 ∼ L(64, 153), o4 ∼ L(8, 61)

a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

By solving Model (4-51), optimal solutions under different belief degrees are obtained as Table 8.

Simultaneously, Table 8 provides the changes for both the optimal carbon quota o∗ and the optimal total

cost φ∗ with the variable α.

Table 8 Sensitivity results for Case 5.

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ε1 0 0 0 8.77 38.6 9 11.3 13.6 15.9 18.2 20.5

ε2 0 0 0 11.27 39.6 8.5 9.3 10.1 10.9 11.7 12.5

ε3 0 0 0 0 0 74 82.9 91.8 100.7 109.6 118.5

ε4 0 0 0 0 26.6 0 5.3 10.6 15.9 21.2 26.5

o∗ = [a, b] [0,64] [0,81] [0,102.25] [0,129.57] [0,166] 34.5 34.5 34.5 34.5 34.5 34.5

φ∗ 0 0 0 31.31 144.4 248 283.9 319.8 355.7 391.6 427.5

Once α ≥ 0.5, the optimal allocation values evolves from an uncertainty distribution to the real value

of 34.5. Similar as the analysis in Case 3, o∗ =
a(3)+b(3)

2 = 69
2 = 34.5 is obtained by referring to Table 5.

Negotiation costs calculated by the analytic expression of φ∗ are in accordance with the data in Table 8.

Taking α = 0.7 as an example, φ∗ = (ω(1) +ω(2) +ω(3)−ω(4)) ∗ 34.5 +ω(4) ∗ (0.3 ∗ 64 + 0.7 ∗ 153)−ω(1) ∗
(0.7 ∗ 14 + 0.3 ∗ 37)− ω(2) ∗ (0.7 ∗ 22 + 0.3 ∗ 30)− ω(3) ∗ (0.7 ∗ 8 + 0.3 ∗ 61) = 319.8. So Theorem 9 holds.

4.3. Comparison and discussion

Due to serious deterioration of the global environment, the reduction of carbon emission has become

a key measure to improve the ecological system, so we choose the application in carbon quota negotiation

to verify the feasibility of the proposed models. Results show that the calculated values correspond to the

analytic formulas of the optimal solutions under each scenario, verifying the correctness of the theorems

obtained by theoretical deduction. Moreover, findings in the application indicate that traditional crisp

number- or interval preference-based MCCMs are some special cases of the new uncertain MCCMs,

suggesting that uncertainty theory can build a bridge between deterministic and indeterministic GDM.

Finally, we find that once the belief degree, set for the deviation of polluters’ and government’s quota

indexes, is larger than the critical value of 0.5, then the optimal carbon quota consensus will be crisp

numbers and no longer obey uncertainty distributions. The above conclusion implies that only belief
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degree is large enough, GDM can achieve a deterministic consensus and the carbon quota negotiation

can then be effectively conducted to some extent.

To illustrate the novelty of our research, we conduct a comparative analysis (see Table 9).

Distinguished from previous research, we build the consensus models from three decision roles, by

introducing non-cooperators into traditional MCCMs. Meanwhile, we first introduce Liu’s uncertainty

theory into consensus modeling, by adopting belief degree and uncertainty distribution as a whole to fit

individual preferences, and find out the relations between the deterministic and indeterministic GDM

through theoretical deduction. Finally, we apply the proposed models into the carbon emission quota

allocation negotiation problem to verify their feasibility. However, it is undeniable that some important

contributions in relevant MCCMs/ MACMs may be neglected in this paper, such as setting an

aggregation function over the adjusted individual opinions to obtain a consensus [2, 10, 27], using

consensus level to measure the efficiency of CRP [2, 10], or considering the asymmetric characteristic of

unit costs [5].

Table 9 Comparative analysis on relevant MCCMs/ MACMs.

Consensus models Decision roles DM’s preference Application

This paper

Moderator;

individual DMs;

non-cooperators

Uncertainty distributions

and belief degree
Carbon emission quota allocation

Ben-Arieh and Easton [20]
Moderator;

individual DMs
Crisp numbers None-numerical examples

Dong et al. [10] Individual DMs Linguistic preferences None-numerical examples

Zhang et al. [27] Individual DMs Crisp numbers Apartment selection

Gong et al. [28]
Moderator;

individual DMs
Interval preferences None-numerical examples

Gong et al. [19]
Moderator;

individual DMs
Crisp numbers None-numerical examples

Zhang et al. [2]
Moderator;

individual DMs
Crisp numbers

Loan consensus problems in

Online P2P lending

Cheng et al. [5]
Moderator;

individual DMs
Crisp numbers Trans-boundary pollution control

Inspired by the fact that flexible management has been a premiere goal pursued by Chinese

government, in order to encourage high-quality development of enterprises, the negotiation over the

carbon emission quota allocation problem is chosen as our case background. In fact, when setting

carbon emission reduction quotas for different enterprises with similar scales, it can better reflect the

government’s humanized management by setting uncertain indicators rather than some deterministic

and fixed ones, which may also be understood as the practical significance of the uncertainty

constraints in this paper. Without doubt, our newly proposed uncertain MCCMs can provide

significant managerial implications for moderators to deal with real-life GDM problems with flexible
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requirements, such as targeted recommendation system purchasing based on advertisers’ market share,

and second-hand housing selection bargain from different agencies.

5. Conclusion

Compared to traditional deterministic preferences, fitting DMs’ preferences with uncertainty

distributions is more suitable for real-life decision-making contexts, especially for complex GDM. In

this paper, linear uncertainty distributions are adopted to fit individual judgements, and a series of

uncertain MCCMs are proposed. Through transformation into equivalent linear programming models,

the analytic formulas of the optimal consensus and minimum total cost under each scenario are given

in the paper. We find out that the uncertain preference-based MCCMs are more inclusive than those

traditional ones, in other words, the basic conclusions of the crisp number- or interval preference-based

models are some special cases of uncertain MCCMs under different belief degrees, thus our research is

more flexible in actual GDM. In addition, optimal solution of each uncertain chance-constrained

MCCM is theoretically provided, and the feasibility of the proposed models are further verified with

the application in carbon quota negotiation between enterprises and the local government.

Main contributions of this paper are as follows. Firstly, this paper builds the optimisation-based

MCCMs from multiple decision roles (i.e., the moderator, individual DMs, and non-cooperators).

Secondly, belief degree and uncertainty distributions are used as a whole to simulate DMs’ preference

structure, making the new models more feasible than those traditional ones (i.e., crisp number- or

interval preference-based MCCMs), better avoiding the paradox in interval operations (e.g.

[1, 3] − [1, 3] = [−2, 2] 6= [0, 0]), and maintaining the integrity of decision information by analyzing

individual uncertain opinions as a whole instead of only endpoints being considered. Thirdly, consensus

reaching conditions under different GDM scenarios are presented through mathematical deduction. By

taking the application in carbon quota negotiation, the proposed models are verified as a more general

paradigm of the traditional MCCMs.

This paper explores consensus reaching conditions in homogenous GDM, but real-life decision is

rather complex and changeable, making it highly possible for involved participants to simultaneously

present completely different preference structures. So, in the future, we may deal with heterogeneous

GDM problems [14, 56] by modeling non-linear uncertain chance-constrained MCCMs. At present,

unit costs attached to DMs are subjectively given in the paper, afterwards, we may adopt some robust

methods, such as game theory [46], to assure those parameters to be more reasonable. In specific, we

may need to set variable unit costs for DMs to deal with the situation under which tiered pricing is set

for heavily polluting enterprises after overrun. Finally, in this paper, we aim to figure out how an optimal

consensus can be reached within each certain stage of the whole GDM process under the uncertain chance

constraints, neglecting the dynamic characteristics for the whole process, which are definitely of great

significance for GDM, so our subsequent research may also focus on dynamic uncertain MCCMs with

feedback mechanism [6, 30, 57] or social interactions [12, 29, 49].
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Appendix A. Proof of Theorem 5.

Proof. Without loss of generality, we suppose n DMs participate in GDM, and their decisions satisfy

o1 ≤ o2 ≤ · · · ≤ om ≤ om+1 ≤ · · · ≤ on. Furthermore, let om ≤ a+b
2 ≤ om+1, then when α ≥ 0.5, the

constraints of Model (5) are simplified as

Φ−1(α)− oi ≥ a+b
2 − oi ≥ 0 (i = 1, 2, · · ·m);

−Φ−1(1− α) + oi ≥ −a+b
2 + oi ≥ 0 (i = m+ 1, · · ·n).

At this point, the objective function satisfies

min

n∑

i=1

ωiεi = ω1(Φ−1(α)− o1) + · · ·+ ωm(Φ−1(α)− om)

+ωm+1(−Φ−1(1− α) + om+1) + · · ·
+ωn(−Φ−1(1− α) + on)

≥
n∑

i=m+1

ωioi −
m∑

i=1

ωioi + a+b
2 (

m∑

i=1

ωi −
n∑

i=m+1

ωi)

If and only if Φ−1(α) = Φ−1(1− α) = a+b
2 , the above inequality takes the mark of equality, then we

obtain a = b and min
n∑
i=1

ωiεi =
n∑

i=m+1
ωioi −

m∑
i=1

ωioi + a(
m∑
i=1

ωi −
n∑

i=m+1
ωi).

Next, the optimal analytic expression of the objective function is derived by comparing
m∑
i=1

ωi and

n∑
i=m+1

ωi.

• If
m∑
i=1

ωi =
n∑

i=m+1
ωi, then a = b can be any value in the interval of [om, om+1], and φ∗ =

n∑
i=m+1

ωioi−
m∑
i=1

ωioi.

• If
m−1∑
i=1

ωi <
n∑

i=m
ωi and

m∑
i=1

ωi >
n∑

i=m+1
ωi, because ωi,i∈N are positive constants, the objective

function φ first decreases and then increases with the variable a. Thus, when a = b = om, the

optimal value for the objective function will be φ∗ =
n∑

i=m+1
ωi(oi − om) +

m∑
i=1

ωi(om − oi).

This completes the proof for Theorem 5. �
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Appendix B. Proof of Theorem 6.

Proof. Theorem 6 is derived in two steps: (1) Determination of the analytic formula of the objective

function min Z = ωkεk(a, b). As the parameter ωk is pre-defined, only the formula of ε∗k = min εk(a, b)

actually needs solving. Then (2), determination of the optimal solutions for variables a, b and ε∗k.

Part 1. Determination of ε∗k = min εk(a, b).

As the value of εk only depends on the constraints of (9-1) and (9-2), let A = (1− β)a+ βb− ok and

B = −βa+(β−1)b+ok. Compared to the sizes of A and B, the following three situations are discussed:

• Case 1: If A = B, then a+ b = 2ok, making εk ≥ A = (β − 1
2)(b− a) hold.

– If 1
2 ≤ β ≤ 1, then ε∗k = (β − 1

2)(b− a);

– If 0 ≤ β ≤ 1
2 , then (β − 1

2)(b− a) ≤ 0; also due to εk ≥ 0, then ε∗k = 0 is obtained.

• Case 2: if A > B, we obtain a+ b > 2ok.

– If 1
2 ≤ β ≤ 1, then εk = A ≥ a+b

2 − ok, so if and only if a = b, the above inequality takes the

mark of equality, making ε∗k = a+b
2 − ok;

– If 0 ≤ β ≤ 1
2 , we obtain εk = A ≤ a+b

2 − ok. However, due to εk ≥ 0 and a+b
2 − ok > 0, we get

0 ≤ εk ≤ a+b
2 − ok. Thus, ε∗k = 0.

• Case 3: If A < B, we obtain a+ b < 2ok.

– If 1
2 ≤ β ≤ 1, we obtain εk = B ≥ ok − a+b

2 , so if and only if a = b, the above inequality takes

the mark of equality, then ε∗k = ok − a+b
2 holds;

– If 0 ≤ β ≤ 1
2 , we get εk = B ≤ ok − a+b

2 ; by taking both εk ≥ 0 and ok − a+b
2 > 0 into

consideration, we obtain 0 ≤ εk ≤ ok − a+b
2 . Thus, ε∗k = 0.

Above all,

ε∗k =





(β − 1
2 )(b− a), iff β ∈ [ 12 , 1], a+ b = 2ok (B1− 1)

a+b
2 − ok, iff β ∈ [ 12 , 1], a = b, a+ b > 2ok (B1− 2)

ok − a+b
2 , iff β ∈ [ 12 , 1], a = b, a+ b < 2ok (B1− 3)

0, iff β ∈ [0, 12 ] (B1− 4)

(B1)

Part 2. Determination of optimal solutions for a, b and ε∗k.
As the analytic formula for min εk is determined in Part 1 and the original opinion ok for the non-

cooperator dk with greater influence is known in advance, the value of ε∗k mainly depends on those of

a + b and b − a. Without loss of generality, let a + b = m and b − a = n, then we have a = m−n
2 and

b = m+n
2 . By substituting constraints (9-3) and (9-4), we get

{
(1− α) · m−n2 + α · m+n

2 − oi ≤ εi
−α · m−n2 + (α− 1) · m+n

2 + oi ≤ εi
(B2)
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After simplifying the inequality (B2), ∀i ∈ N, i 6= k, the range of m is solved as

(2α− 1)n+ 2(oi − εi) ≤ m ≤ 2(oi + εi)− (2α− 1)n (B3)

By fully considering the values of oi, εi, and n, the above formula is equivalent to

min [max 2(oi − εi) + (2α− 1)n] ≤ m ≤ max [min 2(oi + εi)− (2α− 1)n] (B4)

Taking both the actual GDM and the construction mechanism of uncertainty theory into account,

opinions of the non-cooperator dk with great influence cannot be ignored, so the belief degree β for dk’s

original opinion ok and the finally reached consensus o′ should satisfy the condition of β ≥ 1
2 . Then,

the CRP makes sense. Based on the conclusion derived from Part 1, the optimal value of the objective

function is always equal to zero when 0 ≤ β ≤ 1
2 . Thus, only the situation of 1

2 ≤ β ≤ 1 will be discussed

below. For simplicity, let E = max 2(oi − εi) + (2α− 1)n and F = min 2(oi + εi)− (2α− 1)n.

Situation 1: When 0 ≤ α ≤ 1
2 and 1

2 ≤ β ≤ 1, we get 2α − 1 ≤ 0, considering n = b − a ≥ 0, so

E monotonically decreases with respect to n, while F monotonically increases with respect to n. On

account of inequality constraints (B4), if ∃a, b, 0 ≤ a ≤ b such that a + b = 2ok, then min εk exists,

satisfying ε∗k = (β− 1
2)(b−a). In view of α, the optimal values of a and b are gained from three scenarios.

i i

i i

E= max2(o - ε )+(2α -1)n

F = min2(o + ε )-(2α -1)n

E F

( )
i i
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i i

min2 o +ε

m= a+b

k
2o

a

E F

( )
i i
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max2 o - ε ( )
i i

min2 o +ε

Fig. B1 Discussion on 0 ≤ α ≤ 1
2 and 1

2 ≤ β ≤ 1

• As shown in Fig. B1(a), when ok > min (oi + εi), then 2ok > min 2(oi + εi) is obtained.

1. If 2ok ≤ F , then min2(oi + εi) < 2ok ≤ min2(oi + εi) − (2α − 1)n, that is, when n ≥
2ok−min2(oi+εi)

1−2α , then a + b = 2ok holds; thus, minεk = (β − 1
2)(b − a) = (β − 1

2)n is derived.

Obviously, εk is a monotonically increasing function of n, so once n takes the minimum value,

namely n = b− a = 2ok−min2(oi+εi)
1−2α , ε∗k exists. On the basis of the formulas of a+ b and b− a,
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we get




a = min (oi+εi)−2αok
1−2α

b = (2−2α)ok−min (oi+εi)
1−2α

ε∗k = (β − 1
2)(b− a)

2. If 2ok > F , then a + b < 2ok, such that minεk = ok − a+b
2 . Obviously, εk monotonically

decreases with the variable of (a+ b). Therefore, once a+ b takes the maximum value, namely

a+ b = m = F = min 2(oi + εi)− (2α− 1)n, then ε∗k exists and a = b holds. In other words,

n = 0 is obtained. Thus, if a = b = min (oi + εi), the optimal objective function will be

ε∗k = ok −min (oi + εi).

As a result, when ok > min (oi+εi), we obtain ε∗k = min {(β− 1
2)(b−a), ok−min (oi+εi)}, where if

ε∗k = (β− 1
2)(b−a), then a = min (oi+εi)−2αok

1−2α and b = (2−2α)ok−min (oi+εi)
1−2α ; if ε∗k = ok−min (oi+εi),

then a = b = min (oi + εi) holds.

• As shown in Fig. B1(b), max(oi − εi) ≤ ok ≤ min(oi + εi), for n = b − a ≥ 0, so 2ok ∈
[max2(oi − εi),min2(oi + εi)] ⊆ [E,F ]. Clearly, ∃m such that m = a + b = 2ok. That is, when

minεk = (β − 1
2)(b − a) = (β − 1

2)n, then n = b − a = 0 holds. Thus, if a = b = ok, we obtain

ε∗k = 0.

• As shown in Fig. B1(c), ok < max(oi − εi), so 2ok < max2(oi − εi).

1. If 2ok ≥ E, then max2(oi − εi) + (2α − 1)n ≤ 2ok < max(oi − εi), and we have n ≥
max2(oi−εi)−2ok

1−2α . Because minεk = (β− 1
2)(b−a) = (β− 1

2)n can be obtained when a+b = 2ok,

obviously, once n takes the minimum value, namely when n = max2(oi−εi)−2ok
1−2α = b−a, ε∗k exists.

Due to the formulas of a+ b and b− a, we obtain




a = max (oi−εi)+(2−2α)ok
1−2α

b = max (oi−εi)−2αok
1−2α

ε∗k = (β − 1
2)(b− a)

2. If 2ok < E, then a + b > 2ok, so we get min εk = a+b
2 − ok. Obviously, εk is increasing with

(a+ b). Thus, if a+ b takes the minimum value, that is, a+ b = m = E = max 2(oi − εi) +

(2α − 1)n, ε∗k exists. Based on the constraint of (B1-2), a = b holds (i.e. n = 0). Therefore,

once a = b = max (oi − εi), we always have ε∗k = max (oi − εi)− ok.

As a result, if ok < max (oi − εi), ε∗k = min {(β − 1
2)(b − a),max (oi − εi) − ok}, where if ε∗k =

(β− 1
2)(b−a), we have a = max (oi−εi)+(2−2α)ok

1−2α and b = max (oi−εi)−2αok
1−2α ; if ε∗k = max (oi−εi)−ok,

we get a = b = max (oi − εi).

Situation 2: When 1
2 ≤ α ≤ 1 and 1

2 ≤ β ≤ 1, we obtain 2α − 1 ≥ 0, as n = b − a ≥ 0, making

E monotonically increase with respect to n and F monotonically decrease with respect to n. Then, we

divide a similar discussion into three scenarios.
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Fig. B2 Discussion on 1
2 < α ≤ 1 and 1

2 ≤ β ≤ 1.

• As shown in Fig. B2(a), if ok > min (oi + εi), then 2ok > min 2(oi + εi); thus, m = a + b ≤
min 2(oi + εi)− (2α − 1)n ≤ min 2(oi + εi) < 2ok and then min εk = ok − a+b

2 . Obviously, εk is

a monotonically decreasing function of (a + b). In view of formula (B1-3) in Part 1, as a = b and

a+ b = min 2(oi + εi), we have a = b = min (oi + εi) and ε∗k = ok −min (oi + εi).

• As shown in Fig. B2(b), if max (oi − εi) ≤ ok ≤ min (oi + εi), then max 2(oi − εi) ≤ 2ok ≤
min 2(oi + εi); if and only if n = 0, then m = a + b = 2ok holds. Thus, a = b = ok and

ε∗k = (β − 1
2)(b− a) = 0.

• As shown in Fig. B2(c), if ok < max (oi− εi), then 2ok < max 2(oi− εi) ≤ max 2(oi− εi) + (2α−
1)n ≤ m = a+b. Considering the formula (B1-2) in Part 1, we obtain a = b and min εk = a+b

2 −ok.
Obviously, εk increases with (a+ b), so if a = b = max (oi − εi), ε∗k = max (oi − εi)− ok holds.

Above all, conditions of the existence for ε∗k and o∗ in Model (9) are obtained as Theorem 6. �

Appendix C. Proof of Theorem 8.

Proof. From constraints (15-3) and (15-4), we have (1− α)ai + αbi − εi ≤ o′ ≤ αai + (1− α)bi + εi,

where i ∈ N, i 6= k. The above inequalities are equivalent to max{(1−α)ai+αbi−εi} ≤ o′ ≤ min{αai+
(1− α)bi + εi}. For simplicity, let G = max{(1− α)ai + αbi − εi} and H = min{αai + (1− α)bi + εi},
(i ∈ N, i 6= k), such that G ≤ o′ ≤ H.

From constraints (15-1) and (15-2), we have

• If (1− β)ak + βbk − o′ = o′ − [βak + (1− β)bk], we have ak + bk = 2o′, then min εk = (1− β)ak +

βbk − ak+bk
2 = (β − 1

2)(bk − ak). When 1
2 ≤ β ≤ 1, then ε∗k = (β − 1

2)(bk − ak) ≥ 0 holds, and when

0 ≤ β ≤ 1
2 , (β − 1

2)(bk − ak) ≤ 0, for εk ≥ 0, we have ε∗k = 0.

• If (1−β)ak +βbk− o′ < o′− [βak + (1−β)bk], we have ak + bk < 2o′, and if and only if 1
2 ≤ β ≤ 1,

ε∗k = o′ − [βak + (1− β)bk] > 0 holds; when 0 ≤ β ≤ 1
2 , for εk ∈ [0, o′ − ak+bk

2 ]; thus, ε∗k = 0.
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• If (1−β)ak +βbk− o′ > o′− [βak + (1−β)bk], we have ak + bk > 2o′, and if and only if 1
2 ≤ β ≤ 1,

ε∗k = (1− β)ak + βbk − o′ > 0 holds; when 0 ≤ β ≤ 1
2 , then εk ∈ [0, ak+bk2 − o′]; thus, ε∗k = 0.

If 1
2 ≤ β ≤ 1, we should discuss the sizes of (ak + bk) and 2o′, so as to obtain the existing conditions

for o′.

a

c

bbb

Fig. C1 Comparative analysis between o′ and ak+bk
2 .

• As shown in Fig. C1(a), if ak+bk
2 < G, namely ak + bk < 2o′, then minεk = o′− [βak + (1−β)bk] is

a monotonically increasing function with respect to o′. Therefore, when o′ = G = max{(1−α)ai+

αbi − εi}, ε∗k exists, and ε∗k = max{(1− α)ai + αbi − εi} −βak − (1− β)bk.

• As shown in Fig. C1(b), if G ≤ ak+bk
2 ≤ H, then ak + bk = 2o′ holds; thus, when o′ = ak+bk

2 ,

ε∗k = (β − 1
2)(bk − ak).

• As shown in Fig. C1(c), if ak+bk
2 > H, namely ak + bk > 2o′, then minεk = (1 − β)ak + βbk − o′

decreases with o′. Therefore, when o′ = H = min{αai + (1 − α)bi + εi}, ε∗k exists and ε∗k =

(1− β)ak + βbk −min{αai + (1− α)bi + εi}.

When 0 ≤ β ≤ 1
2 , due to the constraints of (15-1) and (15-2), we have o′ ∈ [ak+bk2 , βak + (1−β)bk] or

o′ ∈ [(1− β)ak + βbk,
ak+bk

2 ]. Then, o′ ∈ [(1− β)ak + βbk, βak + (1− β)bk] and ε∗k = 0. However, because

of G ≤ o′ ≤ H, we need to comprehensively discuss the final threshold of o′.
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a

c

b

Fig. C2 Discussion on the analytic formulas of the objective function depends on o′.

• As shown in Fig. C2(a), if βak + (1− β)bk < G, then ε∗k = o′ − [βak + (1− β)bk], o
′ = G.

• As shown in Fig. C2(b), if (1− β)ak + βbk > H, then ε∗k = (1− β)ak + βbk − o′, o′ = H.

• As shown in Fig. C2(c), if other circumstances are met, then ε∗k = 0 and o′ ∈ [(1−β)ak+βbk, βak+

(1− β)bk]
⋂

[G,H].

Thus, this completes the proof for Theorem 8. �
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Appendix D. Equivalent forms of carbon quota MCCMs in Case (1-5)

Table D1 Equivalent forms of carbon quota MCCMs in Case (1-5)

Cases Models

Case 1

Model(4− 11) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





ε1 ≥ (1− α)a+ αb− 0, ε1 ≥ −(1− α)b− αa+ 0

ε2 ≥ (1− α)a+ αb− 3, ε2 ≥ −(1− α)b− αa+ 3

ε3 ≥ (1− α)a+ αb− 6, ε3 ≥ −(1− α)b− αa+ 6

ε4 ≥ (1− α)a+ αb− 10, ε4 ≥ −(1− α)b− αa+ 10

a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

Case 2

Model(4− 21) : Min Z = 3 ∗ ε3

s.t.





(1− β)a+ βb− 6 ≤ ε3, −βa+ (β − 1)b+ 6 ≤ ε3
(1− α)a+ αb− 0 ≤ ε1, −αa+ (α− 1)b+ 0 ≤ ε1
(1− α)a+ αb− 3 ≤ ε2, −αa+ (α− 1)b+ 3 ≤ ε2
(1− α)a+ αb− 10 ≤ ε4, −αa+ (α− 1)b+ 10 ≤ ε4
0 ≤ ε1 ≤ 5, 0 ≤ ε2 ≤ 4, 0 ≤ ε4 ≤ 6, ε3 ≥ 0

a ≤ b, 0 ≤ α, β ≤ 1

Case 3

Model(4− 31) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





14(1− α) + 37α− o′ ≤ ε1, o′ − 14α− 37(1− α) ≤ ε1
22(1− α) + 30α− o′ ≤ ε2, o′ − 22α− 30(1− α) ≤ ε2
64(1− α) + 153α− o′ ≤ ε3, o′ − 64α− 153(1− α) ≤ ε3
8(1− α) + 61α− o′ ≤ ε4, o′ − 8α− 61(1− α) ≤ ε4
o′ ≥ 0, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4

Case 4

Model(4− 41) : Min Z = 3 ∗ ε3

s.t.





64(1− β) + 153β − o′ ≤ ε3, o′ − [64β + 153(1− β)] ≤ ε3
14(1− α) + 37α− o′ ≤ ε1, o′ − [14α+ 37(1− α)] ≤ ε1
22(1− α) + 30α− o′ ≤ ε2, o′ − [22α+ 30(1− α)] ≤ ε2
8(1− α) + 61α− o′ ≤ ε4, o′ − [8α+ 61(1− α)] ≤ ε4
0 ≤ ε1 ≤ 12, 0 ≤ ε2 ≤ 5, 0 ≤ ε4 ≤ 36

o′ ≥ o, ε3 ≥ 0

Case 5

Model(4− 51) : Min φ = 1 ∗ ε1 + 2 ∗ ε2 + 3 ∗ ε3 + 1 ∗ ε4

s.t.





a+ (b− a)α+ (37− 14)α− 37 ≤ ε1, (37− 14)α+ (b− a)α− b+ 14 ≤ ε1
a+ (b− a)α+ (30− 22)α− 30 ≤ ε2, (30− 22)α+ (b− a)α− b+ 22 ≤ ε2
a+ (b− a)α+ (153− 64)α− 153 ≤ ε3, (153− 64)α+ (b− a)α− b+ 64 ≤ ε3
a+ (b− a)α+ (61− 8)α− 61 ≤ ε4, (61− 8)α+ (b− a)α− b+ 8 ≤ ε4
a ≤ b, 0 ≤ α ≤ 1, εi ≥ 0, i = 1, 2, 3, 4
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Consensus Reaching in Group Decision Making
with Linear Uncertain Preferences and Asymmetric

Costs
Xiaoxia Xu, Zaiwu Gong, Enrique Herrera-Viedma, Fellow, IEEE, Gang Kou and Francisco Javier Cabrerizo

Abstract—Consensus reaching process (CRP), as an essential
part of group decision making (GDM), can facilitate more
effective consensus by taking human behaviors into account.
Extending the established research on uncertain minimum cost
consensus models (MCCMs), this paper continues to adopt linear
uncertainty distributions (LUDs) to represent decision-maker’s
(DM’s) preference, but considers asymmetric costs into a new
framework of CRP, where DM’s preference and weight are
both adjusted according to democratic consensus. Moreover, in
light of the uncertain distance measure, two novel optimization-
based consensus models are built in this paper: one is to
obtain a minimum cost consensus by simultaneously considering
asymmetric costs, aggregation function and consensus measure;
while the other provides a more flexible way to address GDM
problems without pre-setting a specific consensus level (CL)
threshold. Some 0-1 binary variables are further introduced
to reduce the calculation complexity resulted from piecewise
functions in the new multi-coefficient goal programming models.
Finally, an illustrative example and further discussion reveal the
feasibility and superiority of our new method.

Index Terms—Group decision making (GDM); Consensus
reaching process (CRP); Asymmetric costs; Uncertainty theory;
Feedback mechanism.
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DECISION making is important for human daily life,
featured by the motivation to select an optimal solution

from at least two alternatives [1] or achieve a unanimous
agreement where decision-makers (DMs) express various feel-
ings as to the values in question [2]. Practically speaking,
multiple DMs participate in a dynamic and negotiable process
so as to derive a common solution on behalf of the collective
interest, thereby constituting a group decision making (GDM)
problem [3]. In other words, eliminating disagreements among
DMs becomes necessary to obtain an agreed solution, which
is widely appreciated by all stakeholders in real-life scenarios
[4]. Without loss of generality, a consensus reaching process
(CRP) introduced in GDM can effectively bring DMs’ views
closer to each other through limited rounds of compromises
and adjustments [5]. In fact, Herrera-Viedma et al. [2] con-
cluded that consensus boils down to cooperation, while most
GDM boils down to competition.

Generally, a CRP consists of three steps as consensus
measure, feedback process and selection [6], while an effec-
tive CRP relies heavily on its feedback mechanism, where
identification rule (IR) and direction rule (DR) are exploited
[7]. To date, developing an automatic feedback mechanism
that excludes the moderator’s influence has been increasingly
crucial to consensus [2]. On the other hand, several indicators
are commonly used to measure the CRP performance, such as
the minimum deviation or cost [8], the maximum number of
experts adjusted under a limited budget [9] or the minimum
number of adjusted DMs [10]. Moreover, Labella et al. [11]
proposed a new metric to comprehensively evaluate the per-
formance. Given the significance of deriving a consensus for
GDM, see [2], [5] for more studies on feedback mechanisms.

The concept of the minimum cost consensus (MCC) was
originally proposed by Ben-Arieh and Easton [12] for solving
single and multi-criteria GDM problems via linear-time algo-
rithms. Later, a quadratic cost function was adopted to discuss
the influence of different factors (e.g., cost, opinion elasticity,
the number of adjusted experts) on the consensus [9]. At
the same period, Dong et al.’s optimization-based consensus
models [13], recognized as the minimum adjustment consensus
models (MACMs), aim to maximize the retention of DM’s
original preference, rather than pursuing a minimum resource
consumption. Afterwards, although abundant studies have been
conducted [14]–[16], most are based on traditional preference
structures (e.g., crisp numbers, intervals or linguistic informa-
tion), neglecting the characteristics of stochastic distribution in
DM’s preference. In contrast, linear uncertainty distributions



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 2

(LUDs) with belief degrees provide a feasible way to better
simulate DM’s uncertainty and ambiguous behaviors in actual
GDM problems [17].

When building the minimum cost consensus models (MC-
CMs), unit costs (i.e., the resources used to persuade DMs to
adjust their preference one unit towards the consensus) are usu-
ally preset as fixed values [9], [12], which have been criticized
due to over-idealization. Therefore, under the premise of unit
adjustment costs being intervals, Li et al. [7] facilitated a con-
sensus through optimization modeling, while Zhang et al. [8]
further took Stackelberg game into consideration. Moreover,
[18] associated the variable unit costs with the incompleteness
degree of the DM’s linguistic distribution assessments. In
contrast, Cheng et al. [19] analyzed the impact of experts’
compromise limit and tolerance behaviors on MCCMs based
on one hypothesis that cost coefficients are asymmetric due to
individual different adjustment directions. Subsequently, the
work in [19] was extended through stochastic programming
[20] or data-driven robust optimization [21]. As a result,
how to make the best use of unit costs to portray DM’s
psychological behavior in GDM is worth investigating.

In addition to the above unit costs, weights also play
a vital role in the CRP, measuring the relative importance
of each criterion/DM [22]. Traditionally, weights attached
to DMs in the MCCMs and MACMs are either assigned
directly by the moderator or automatically preset according to
their preferences [23]. However, individuals involved in GDM
prefer their influence (i.e., the weight coefficients) to change
over time as they compromise to achieve the consensus, which
raises a new question of how to determine these coefficients
to avoid strategic manipulation [24]. Hence, we adopt the
idea that important DMs contribute more to the consensus
[11]; meanwhile, the concept of democratic consensus [25]
is also incorporated into our feedback mechanism during the
CRP, where DMs’ weights are variable with the proceeding of
GDM. Specifically, DMs’ initial weights are equally assigned,
but once an initial consensus derived, their weights will be
automatically reallocated based on their own contribution to
the consensus level (CL). Briefly, a new feedback mechanism
excluding the moderator is proposed, by sufficiently respecting
individual values via DM’s established preference information.

In other words, the final results obtained from GDM are
always expected to be as objective as possible; but it’s tough
to accurately predict the outcomes in advance, due to inherent
subjectivity, imprecision and vagueness in DM’s preference
articulation [2]. Pragmatically, valid information in real-life
GDM is insufficient to derive the probability, not to mention
that information sources frequently conflict with each other
[26], leaving the reliability of the occurrence of certain events
to be determined by domain experts. As a result, uncertainty
theory proposed by Liu [27] becomes a new mathematical
tool to address uncertain phenomenon characterized by non-
randomness and non-fuzziness. So far, Liu’s theory has been
verified feasible to solve GDM problems with low frequency
or small sample [17], where the probability cannot be fitted
by frequency. In fact, the LUD provides a more inclusive and
richer expression form for individuals in GDM [28]. Hence,
this paper continues to adopt the LUD to fit DM’s preference

under a new framework of CRP.
Existing studies greatly contributed to the development of

GDM theory, but none has comprehensively explored the CRP
framework combined with uncertain MCCMs, asymmetric
costs, aggregation function, consensus measure and feedback
mechanism. Specifically,

• Prior uncertain MCCMs do not consider asymmetric costs
nor the dynamic characteristic of GDM [28], [29]. In
other words, they primarily focused on optimization-
based consensus modeling while neglecting DM’s unbal-
anced willingness to adjust.

• Extant MCCMs with asymmetric costs do not consider
aggregation functions nor feedback mechanisms [19],
[20]. Namely, they don’t aggregate DMs’ choices into a
collective wisdom [14], thereby failing to portray social
choices or individual values.

• Current studies on the CRP do not take into account
DMs’ changeable influence during neither the consensus
measure nor the feedback mechanism [15], [18], making
the importance of different individuals unable to be fully
demonstrated.

To conclude, this paper extends the established uncer-
tainty theory-based MCCMs into a general CRP framework.
Specifically, our main contributions are threefold: (1) new
optimization-based consensus models are built by simultane-
ously considering aggregation functions, asymmetric costs and
consensus measure; (2) a novel CRP framework is proposed
by respecting individual values with democratic consensus and
simultaneously pursuing a minimum resource consumption
based on uncertain MCCMs; and (3) binary variables are in-
troduced to reduce the computational complexity of piecewise
functions in the new multi-coefficient programming models.

The rest is organized as follows. Section II recalls prelim-
inaries regarding uncertainty theory and traditional consen-
sus GDM theory. Section III reviews methods of consensus
measure and a general CRP framework. Section IV develops
two new uncertain consensus models with asymmetric costs.
Moreover, Section V gives a numerical example, while further
discussion is provided in Section VI. Finally, Section VII gives
concluding remarks and directions for subsequent research.

II. PRELIMINARIES

This section recalls basic knowledge of uncertainty theory
(see II-A) and classic consensus models (see II-B).

A. Uncertainty theory

When no samples are available or only poor information ob-
tained from historical data, the estimated distribution function
will deviate far from the actual frequency, causing the law of
large numbers invalid, and further obtaining some counterintu-
itive results. Thus, some domain experts are invited to evaluate
the belief degree that certain events will happen. Distinguished
from probability theory dealing with randomness of frequency,
uncertainty theory was proposed to address the uncertainty of
belief degrees.
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1) Uncertain variable and uncertainty distribution:
Definition 1: [27] Let Γ be a nonempty set and L be a σ-

algebra over Γ. Each element Λ ∈ L is called an event. A set
function M : L → [0, 1] is called an uncertainty measure if
and only if (i) M{Γ} = 1; (ii) M{Λ} + M{Λc} = 1; (iii)
M {⋃∞i=1 Λi} ≤

∑∞
i=1M{Λi}; and (iv) M {∏∞k=1 Λk} =∧∞

k=1M{Λk}.
For an uncertain variable ξ, its uncertainty distribution Φ is

defined as Φ(x) = M{ξ ≤ x}, where M{ξ ≤ x} is the belief
degree of the event {ξ ≤ x}. Meanwhile, the belief degree is
also measured by α, α ∈ [0, 1]. Thus, Φ(x) = M{ξ ≤ x} = α
holds for any real number x.

Definition 2: [30] An uncertainty distribution Φ(x) is reg-
ular if it is a continuous and strictly increasing function with
regard to x at which 0 < Φ(x) < 1, and satisfies

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1 (1)

An uncertainty distribution Φ is regular iff its inverse
function Φ−1(α) exists and is unique for each α ∈ (0, 1).

Example 1: An uncertain variable ξ is called linear if it has
a LUD Φ(x) (see Fig. 1(a)), denoted by ξ ∼ L(a, b), where
real numbers a and b satisfy a < b.

Φ(x) =





0, if x ≤ a
x− a
b− a , if a ≤ x ≤ b
1, if x ≥ b

(2)

And its inverse uncertainty distribution (see Fig. 1(b)) is

Φ−1(α) = (1− α)a+ αb (3)

0 a b
x

( )x

1

(a) The linear uncertainty distribution

0

a

b

1( )((((( )))))1(

1

(b) The inverse linear uncertainty distribution

Fig. 1: Schematic diagram of a linear uncertain variable
2) Basic properties of uncertain variables:
Theorem 1: [30] Let ξ be an uncertain variable with an

uncertainty distribution Φ, then for any real number x (i.e.,
x ∈ R), we have

M{ξ ≤ x} = Φ(x), M{ξ > x} = 1− Φ(x) (4)

To be noted, when the uncertainty distribution Φ(x) is a
continuous function, we have M{ξ ≤ x} = M{ξ < x} =
Φ(x), and M{ξ > x} = M{ξ ≥ x} = 1− Φ(x).

Theorem 2: [30] Let ξ1, ξ2 · · · ξn be independent
uncertain variables with regular uncertainty distributions
Φ1,Φ2 · · ·Φn. If f(ξ1 · · · ξm, ξm+1 · · · ξn) strictly increases
with ξ1 · · · ξm and decreases with ξm+1 · · · ξn, then
f(ξ1 · · · ξm, ξm+1 · · · ξn) has an inverse uncertainty distribu-
tion f(Φ−1

1 (α) · · ·Φ−1
m (α),Φ−1

m+1(1− α) · · ·Φ−1
n (1− α)).

Example 2: Let ξ1 and ξ2 be independent uncertain variables
with regular uncertainty distributions Φ1 and Φ2, respectively.
Then the inverse uncertainty distribution of ξ1 − ξ2 is

Ψ−1(α) = Φ−1
1 (α)− Φ−1

2 (1− α) (5)

Theorem 3: [31] Let ξ and ς be independent uncertain
variables with regular uncertainty distributions Φ and Ψ,
respectively. Then the distance between ξ and ς is

d(ξ, ς) =

∫ 1

0

|Φ−1(α)−Ψ−1(1− α)|dα. (6)

Example 3: Let ξ and ς be independent uncertain variables
obeying LUDs as ξ ∼ L(a, b) and ς ∼ L(c, d), where a ≤ b
and c ≤ d. Based on Example 1, the distance between ξ and
ς becomes

d(ξ, ς) =

∫ 1

0

|(b+ d− a− c)α+ a− d|dα (7)

B. Traditional consensus GDM theory

Suppose m DMs participate in a GDM problem, and a finite
set D = {d1, d2, · · · , dm} denotes all individuals. Let oi ∈ R
denote di’s original preference, ōi be di’s adjusted preference,
and oc be their reached consensus. In addition, ci ∈ R+

denotes the unit cost of adjusting di’s preference closer to
the consensus, while wi ∈ R+ reflects di’s importance degree
(i.e., weight), i ∈M = {1, 2, · · · ,m}.

1) Traditional consensus models: DMs are normally will-
ing to change opinions after repetitive negotiation efforts,
though it escalates the costs of reaching a consensus. Adopting
the p-norm distance measure (i.e., || ||p, p ≥ 1), Ben-Arieh
and Easton [12] provided a linear-time algorithm to seek
the optimal MCC oc∗ by minimizing the weighted total cost
fc(o

c) =
∑m
i=1 wici||oc − oi||p. Later, they discussed such

scenarios with/without an ε-consensus (denoted as |oc− ōi| ≤
ε, ε > 0) [9]. For brevity, Ref. [14] develops an optimization
model to represent their ideas.

min φ =
m∑
i=1

ci|ōi − oi|

s.t.

{
|oc − ōi| ≤ εi, i ∈M
oc ∈ R, ōi ∈ R

(8)

Solving Model (8) yields the optimal consensus oc∗ and
DM’s optimal adjusted preference ōi

∗. The first constraint
denotes a tolerance behavior, and if εi = 0 (∀i ∈ M ), a hard
consensus is achieved (i.e., ōi∗ = oc∗), which is unrealistic
and uneconomical for most GDM problems [2].

Meanwhile, Dong et al. [13] utilized the ordered weighted
averaging (OWA) operator and a deviation measure to handle
the consensus problems under a 2-tuple fuzzy linguistic envi-
ronment, so as to preserve DMs’ original preferences as much
as possible. Similarly, their main ideas can be mathematically
described as follows.

min φ =
m∑
i=1

d(ōi, oi)

s.t.

{
d(oc, ōi) ≤ ε, i ∈M
oc = Fw(ō1, ō2, · · · , ōm)

(9)

where d(·) represents the rectilinear or Euclidean deviation
measure, Fw denotes an aggregation function, and the objec-
tive function is to minimize all DMs’ adjustments.

Although Model (8) and Model (9) were proposed according
to different consensus mechanisms, Zhang et al. [14] later
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argued that these two models could actually be merged as

min φ =
m∑
i=1

ci ∗ d(ōi, oi)

s.t.

{
d(oc, ōi) ≤ ε, i ∈M
oc = Fw(ō1, ō2, · · · , ōm)

(10)

It turns out that once Fw takes the OWA operator as
( 1

2 · · · 0 · · · 1
2 )T, Model (10) reduces to Model (8); and if the

unit costs of adjusting DMs’ opinions satisfy ci = cj ,∀i, j ∈
M , then Model (10) equals Model (9).

2) Consensus models with asymmetric costs: Cheng et al.
[19], [32] explored GDM problems with cost constraints based
on DM’s different adjustment directions, further extending
Model (10). In specific, Fig. 2 depicts their cost functions un-
der a symmetric or asymmetric scenario by considering DM’s
tolerance and compromise behaviors, where the horizontal axis
is DM’s original preference (i.e., oi), and the vertical axis
represents a unit cost (i.e., ci).
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(b) The asymmetric cost scenario

Fig. 2: Cost functions with tolerance and compromise

Due to space limitations, only the asymmetric cost scenario
is reported hereafter [19]. That is, once taking the tolerance
and compromise limit into account, di’s optimal adjusted
preference is obtained as

ōi
∗ =





oc − ε−i , if oi ∈ [oc − θ−i , oc − ε−i )

oi, if oi ∈ [oc − ε−i , oc + ε+
i ]

oc + ε+
i , if oi ∈ (oc + ε+

i , o
c + θ+

i ]

(11)

The total cost for di to adjust preference becomes

ci(oi) =





c+i (oc − ε−i − oi), if oi ∈ [oc − θ−i , oc − ε−i )

0, if oi ∈ [oc − ε−i , oc + ε+
i ]

c−i (oi − oc − ε+
i ), if oi ∈ (oc + ε+

i , o
c + θ+

i ]

(12)

where c−i denotes di’s unit cost with a downward adjustment,
and c+i conversely indicates the unit cost of an upward
adjustment. In addition, εi measures di’s tolerance of the
consensus, while θi reflects di’s compromise limit.

To be more specific, Fig. 2(b) shows that once di’s original
preference is located at [oc − ε−i , o

c + ε+
i ], a tolerance be-

havior exists (also known as the soft consensus [2]), namely,
any preference within this subinterval is acceptable, thereby
requiring no adjustments nor yielding any costs. Moreover, any
preference located at [oc− θ−i , oc− ε−i ) or (oc + ε+

i , o
c + θ+

i ]
corresponds to a compromise limit behavior, inducing a total
cost of c+i (oc − ε−i − oi) or c−i (oi − oc − ε+

i ), respectively.
In fact, too many preference adjustments go against DM’s
willingness, and incur unnecessary extra costs, thus, those
original preferences smaller than oc − θ−i or larger than

oc + θ+
i won’t be discussed, however, DMs can refresh their

preferences to rejoin the GDM process. In this regard, the
objective function of Model (10) is revised into

min φ =
∑

i: oi∈[oc−θ−i ,oc−ε
−
i )

c+i (oc − ε−i − oi)

+
∑

i: oi∈(oc+ε+i ,o
c+θ+i ]

c−i (oi − oc − ε+
i )

(13)

III. GENERAL CRP FRAMEWORK REGARDING GDM
PROBLEMS

Methods to obtain the CL are reviewed in III-A, while a
general framework of CRP is recalled in III-B.

A. Consensus measure

Consensus level (CL), the current level of unanimous within
a group, is often calculated by distance functions [4] and
generally measured in two ways [11]:
• The distance between DM’s preference and the collective

preference, shown as Eq. (14);

CL(o1, . . . , om) = 1− f2(f1(d(oi, o
c))) ≥ β (14)

• The distance between two arbitrarily chosen individual
preferences, shown as Eq. (15).

CL(o1, . . . , om) = 1− g2(g1(d(oi, oj))) ≥ β, i 6= j (15)

where β is a preset CL threshold, d(·) represents the distance
measure, f1 : R+ → R+, f2 : R+ → [0, 1], g1 : R+ → R+,
g2 : R+ → [0, 1] are mapping functions, and the remaining
notation is defined in Section II-B.

Since DM’s influence is directly reflected by the weight wi
with wi ≥ 0 and

∑
wi = 1, Ref. [11] incorporated individual

weights into the calculation of the CL, that is,

CL(ō1, . . . , ōm) =

m∑

i=1

wi|ōi − oc| ≤ γ (16)

CL(ō1, . . . , ōm) =
m−1∑

i=1

m∑

j=i+1

wi + wj
m− 1

|ōi − ōj | ≤ γ (17)

where γ = 1 − β ∈ [0, 1]. In fact, both Eqs. (16) and (17)
emphasize the greater contribution of the more important DM
to the CL, but only Eq. (16) is used in our subsequent analysis.

B. A general CRP framework

Several basic steps constitute a CRP framework for solving
consensus GDM problems, that is, preference expression, pref-
erence aggregation, consensus measure, preference adjustment
and selection. In addition, Herrera-Viedma et al. [6] provided
a general consensus framework, shown as Fig. 3, to address
GDM problems with heterogeneous preference structures.

Regarding all the above mentioned steps, feedback mech-
anisms can be initiated based on diverse principles, such as
the minimum deviation or cost [33], the maximum number
of experts adjusted under a limited budget [9], the minimum
number of adjusted DMs [10] or some optimization-based
rules [8]. In this paper, a CL threshold is used to initiate DMs’
preference modification process.
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Table I: Notation and their meanings

Notation Description

di The i-th DM and i ∈M = {1, 2, · · · ,m}
oi di’s original preference with oi ∼ L(ai, bi) and 0 ≤ ai ≤ bi ≤ 1
ōi di’s adjusted preference with ōi ∼ L(āi, b̄i) and 0 ≤ āi ≤ b̄i ≤ 1
oc Consensus with oc ∼ L(ac, bc) and 0 ≤ ac ≤ bc ≤ 1
α Belief degree with α ∈ [0, 1]

Φ, Φ−1(α) Uncertainty distribution and inverse uncertainty distribution
c+i , c−i Unit cost of di’s upward/downward preference adjustment
εi, θi di’s tolerance/compromise limit threshold over consensus
wi, w̄i di’s original/updated weight with wi, w̄i ≥ 0 and

∑
wi = 1,

∑
w̄i = 1

η Adjusted parameter of weights attached to CL (e.g., η = 1.5)
γ, γ0, ∆γ Thresholds of the overall preference deviation (Dev) with γ=γ0-∆γ and ∆γ ≥ 0

β Predefined threshold of CL with β = 1− γ
λ Trade-off coefficient between CL and the total cost with λ ∈ [0, 1]
δ di’s preference adjustment willingness with δ ∈ [0, 1]

zi1, zi2, zi3, yi1, yi2, yi3, xi 0-1 binary variable

Fig. 3: The general CRP framework in Ref. [6]

IV. UNCERTAIN CONSENSUS MODELS CONSIDERING
ASYMMETRIC COSTS AND CONSENSUS MEASURE

Traditional preference structures (e.g., crisp numbers [9],
[12] or linguistic information [13]) are used in Model (8)
and Model (9), however, providing exact values is rather
difficult. By contrast, DMs are more likely to express their
decisions through LUDs, which give sufficient tolerance to
their inherent uncertainty and hesitation [17]. Therefore, the
LUD is continuously adopted to simulate DM’s preference in
this paper. For brevity, basic notation is listed in Table I, and
four assumptions are given as follows:
• Individual preferences are independent of each other, im-

plying that consensus can be derived through aggregation
functions, where variables (e.g., preference and weight)
are bounded within [0,1].

• DMs are more sensitive to losses than gains (see prospect
theory [34]), so let |c−i | > |c+i | reflect DM’s adjusting
willingness, namely, the changing trend of the downward-
adjusting subinterval is steeper than that of the upward
one (see Fig. 2(b)).

• DM’s influence changes with the procedure of GDM [25].
In specific, DMs initially have equal weights, then their
influence diversifies due to their own contribution to the
CL during the CRP.

• All DMs are committed to reaching a consensus by com-
pletely following feedback suggestions, in other words,
the non-cooperation behavior [3] is neglected.

Since CL is bounded within [0, 1], the GDM problem
discussed can be further simplified: boundary values of DM’s

preference in Fig. 2(b) are preset as oc − θ−i = 0 and
oc + θ+

i = 1. In addition, di’s tolerance behavior is no longer
distinguished as ε+

i or ε−i , that is, only one parameter (i.e.,
εi) is used to denote di’s tolerance to the consensus oc. As a
result, Eq. (13) evolves into

min φ =
∑

oi∈[0,oc−εi)
c+i (oc−εi−oi)+

∑

oi∈(oc+εi,1]

c−i (oi−oc−εi)

(18)

A. Uncertain MCCM with asymmetric costs

Theorem 4: [29] Let oi,i∈M be an independent uncertain
variable obeying a linear uncertainty distribution (LUD) as
oi ∼ L(ai, bi) with ai ≤ bi. Then

∑
wioi obeys a LUD as∑

wioi ∼ L(
∑
wiai,

∑
wibi).

Cost is always a crucial metric to measure the GDM quality
and efficiency, so we take the total cost minimization as our
priority. As stated before, Eq. (16) is used to obtain the CL.
Hence, a new uncertain MCCM is built by comprehensively
considering asymmetric costs, aggregation function and con-
sensus measure.

min φ =
∑m
i=1{c+i , c−i } ∗ d(ōi, oi)

s.t.





d(ōi, o
c) ≤ εi (19− 1)

oc =
∑m
i=1 wiōi (19− 2)∑m

i=1 wi ∗ d(ōi, o
c) ≤ γ (19− 3)

oi ∼ L(ai, bi), ōi ∼ L(āi, b̄i), o
c ∼ L(ac, bc) (19− 4)

0 ≤ āi ≤ b̄i ≤ 1, 0 ≤ ac ≤ bc ≤ 1, i ∈M (19− 5)

(19)

Solving Model (19) yields the minimum cost φ∗, the
optimal consensus oc∗, and di’s optimal adjusted preference
ōi
∗. Note that, d(ōi, oi) is the distance measure between

di’s adjusted preference ōi and original preference oi; the
expression {c+i , c−i } means only one coefficient is taken due
to di’s adjustment direction, corresponding to Eq. (18); (19-
1) reflects di’s tolerance behavior; (19-2) uses the arithmetic
weighted averaging (AWA) operator to fuse DMs’ preferences;
(19-3) is the consensus measure, and (19-4) indicates that all
involved preferences obey the LUDs under (19-5).

Theorem 5: [29] Distance between any two independent
variables with LUDs, denoted as ξ ∼ L(a, b) and ς ∼ L(c, d)
with a ≤ b, c ≤ d, can be transformed into a piecewise
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function as

d(ξ, ς) =





a+ b− c− d
2

, if a > d

c+ d− a− b
2

, if b < c

(d− a)2

b+ d− a− c+ ε
+
a+ b− c− d

2
, otherwise

(20)

where ε is the non-Archimedean infinitesimal. Hereafter, we
take ε = 10−6 to ensure that a rare case of a = b and c = d
still holds in Eq. (20), and then the two uncertain variables
essentially degenerate to two real numbers.

Basically, piecewise functions seldomly exist in final models
due to calculation complexity, meanwhile, distinguished from
the method in [29], which remains the form of absolute values,
we use the big M method to transform Eq. (20) into a hybrid
0-1 programming model (i.e., Model (21)). Here, let U be a
sufficiently large positive number and we take U = 106 in the

subsequent analysis.

d(ξ, ς) = z3 ∗ (d−a)2

b+d−a−c+ε + (0.5− z2) ∗ (a+ b− c− d)

s.t.





−U(1− z2)(1− z3) ≤ d− a < U(1− z1)
−U(1− z1)(1− z3) ≤ b− c < U(1− z2)
−U(1− z1) < a+b−c−d

2
< U(1− z2)

−U(1− z2) < c+d−a−b
2

< U(1− z1)
(d−a)2

b+d−a−c+ε + a+b−c−d
2

> −U ∗ z2

z1 + z2 + z3 = 1
z1, z2, z3 ∈ {0, 1}

(21)

where z1, z2, z3 are binary variables with one and only one
value of 1. For example, if z1 = 1, then z2 = 0, z3 = 0, we
get the first case of a > b; and if z3 = 1, then z1 = 0, z2 = 0,
we have d ≥ a and b ≥ c, which corresponds to the third
case. Detailed transformation from Eq. (20) to Model (21),
which focuses on the relative positions of the four parameters
(i.e., a, b, c and d), is omitted here due to limited space. In
addition, another 0-1 variable xi is introduced to handle the
multi-coefficient problem [35] of Model (19) (i.e., {c+i , c−i }),
we then have Model (22).

min φ =
∑m
i=1[xic

+
i + (1− xi)c−i ] ∗ [zi3 ∗ (bi−āi)2

b̄i+bi−āi−ai+ε + (0.5− zi2) ∗ (āi + b̄i − ai − bi)]

s.t.





−U(1− zi2)(1− zi3) ≤ bi − āi < U(1− zi1) (22− 1)
−U(1− zi1)(1− zi3) ≤ b̄i − ai < U(1− zi2) (22− 2)

−U(1− zi1) < āi+b̄i−ai−bi
2

< U(1− zi2) (22− 3)

−U(1− zi2) < ai+bi−āi−b̄i
2

< U(1− zi1) (22− 4)
(bi−āi)2

b̄i+bi−āi−ai+ε + āi+b̄i−ai−bi
2

> −U ∗ zi2 (22− 5)

yi3 ∗ (
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ (0.5− yi2)(āi + b̄i −
∑
wiāi −

∑
wib̄i) ≤ εi (22− 6)

−U(1− yi2)(1− yi3) ≤∑
wib̄i − āi < U(1− yi1) (22− 7)

−U(1− yi1)(1− yi3) ≤ b̄i −
∑
wiāi < U(1− yi2) (22− 8)

−U(1− yi1) < āi+b̄i−
∑
wiāi−

∑
wi b̄i

2
< U(1− yi2) (22− 9)

−U(1− yi2) <
∑
wiāi+

∑
wi b̄i−āi−b̄i
2

< U(1− yi1) (22− 10)
(
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ āi+b̄i−
∑
wiāi−

∑
wi b̄i

2
> −U ∗ yi2 (22− 11)

zi1 + zi2 + zi3 = 1, yi1 + yi2 + yi3 = 1 (22− 12)
ac =

∑
wiāi, b

c =
∑
wib̄i (22− 13)∑m

i=1 wi ∗ [yi3 ∗ (
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ (0.5− yi2)(āi + b̄i −
∑
wiāi −

∑
wib̄i)] ≤ γ (22− 14)

oi ∼ L(ai, bi), ōi ∼ L(āi, b̄i), o
c ∼ L(ac, bc) (22− 15)

zi1, zi2, zi3, yi1, yi2, yi3, xi ∈ {0, 1}, 0 ≤ āi ≤ b̄i ≤ 1, 0 ≤ ac ≤ bc ≤ 1, i ∈M (22− 16)

(22)

Solving Model (22) yields di’s optimal adjusted preference
ōi
∗ (i.e., āi∗, b̄i

∗), the optimal consensus oc∗ (i.e., ac∗, bc∗),
and the minimum cost φ∗. Here, DM’s preference is fitted
by the LUD as oi ∼ L(ai, bi), with known parameters
ai, bi satisfying 0 ≤ ai ≤ bi ≤ 1. The objective function
is constituted by two parts: the former xic+i + (1 − xi)c

−
i

determines the exact value from the known asymmetric costs
c+i , c

−
i due to di’s adjustment direction; while the latter

zi3 ∗ (bi−āi)2
b̄i+bi−āi−ai+ε + (0.5 − zi2) ∗ (āi + b̄i − ai − bi) is

transformed from the distance measure d(ōi, oi) due to Model
(21), satisfying (22-1)-(22-5) and (22-12). In specific, if a DM
adjusts the preference upwards, the asymmetric cost takes c+i
with xi = 1; otherwise, the unit cost is c−i with xi = 0,
where |c−i | > |c+i | corresponds to the previous second assump-
tion. Similarly, the expression yi3 ∗ (

∑
wib̄i−āi)2

b̄i+
∑
wib̄i−āi−

∑
wiāi+ε

+

(0.5 − yi2)(āi + b̄i −
∑
wiāi −

∑
wib̄i) in (22-6) and (22-

14) is transformed from d(ōi, o
c) under (22-7)-(22-12). In

addition, (22-6) reflects individual tolerance behavior, where

εi is predetermined due to each individual DM’s background,
knowledge and experience, while the unit costs c+i and c−i
accordingly preset by the moderator; (22-13) is derived from
Theorem 4, and (22-14) is the consensus measure (i.e., Eq.
(16)). Generally, the higher the CL the better, so let Dev denote
the overall preference deviation, rather than the CL defined by
[11]. Since Dev = 1− CL, the smaller Dev the better.

Once all DMs provide initial preferences with LUDs, an
initial consensus is reached immediately based on Theorem
(4), thereby obtaining the initial Dev (denoted by γ0) based
on Eq. (16) and Eq. (20), which can be viewed as the Dev
benchmark of Model (22). Generally, the Dev threshold (i.e.,
γ) in Model (22) should be smaller than γ0 to improve the
CL, thus γ = γ0 −∆γ with ∆γ ≥ 0.

B. Uncertain consensus model with asymmetric costs

Inappropriate CL thresholds easily lead to the failure of
reaching a consensus, so some maximum CL models are built
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to aid DM’s preference adjustment [15], [16]. Similarly, solv-
ing Model (22) may not yield the MCC due to inappropriate γ
thresholds. Hence, building a new model that considers both
the CL and the budget is of great necessity [36], where the
Dev (or CL) threshold no longer needs to be pre-determined.
By introducing a trade-off coefficient λ (λ ∈ [0, 1]), a more
flexible model to handle GDM problems is built (i.e., Model
(23)), where variables and constraints are defined same as
in Model (22). Furthermore, since the existence theorem of

optimal solutions [37] (i.e., a single-objective programing
model with non-empty and bounded feasible region must have
an optimal solution), Model (23) surely has optimal solutions.

In fact, if λ = 0, Model (23) reduces to Model (22); and
if λ = 1, Model (23) is the maximum CL model [16]. By
comparison, Model (23) is more objective since it doesn’t
need to pre-determine a Dev threshold; besides, it better
supports GDM by providing a full relationship between the
CL and the total cost with regard to the trade-off coefficient λ.

min λ ∗ γ + (1− λ) ∗ φ

s.t.





φ =
∑m
i=1[xic

+
i + (1− xi)c−i ] ∗ [zi3 ∗ (bi−āi)2

b̄i+bi−āi−ai+ε + (0.5− zi2) ∗ (āi + b̄i − ai − bi)] (23− 1)

−U(1− zi2)(1− zi3) ≤ bi − āi < U(1− zi1) (23− 2)
−U(1− zi1)(1− zi3) ≤ b̄i − ai < U(1− zi2) (23− 3)

−U(1− zi1) < āi+b̄i−ai−bi
2

< U(1− zi2) (23− 4)

−U(1− zi2) < ai+bi−āi−b̄i
2

< U(1− zi1) (23− 5)
(bi−āi)2

b̄i+bi−āi−ai+ε + āi+b̄i−ai−bi
2

> −U ∗ zi2 (23− 6)

yi3 ∗ (
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ (0.5− yi2)(āi + b̄i −
∑
wiāi −

∑
wib̄i) ≤ εi (23− 7)

−U(1− yi2)(1− yi3) ≤∑
wib̄i − āi < U(1− yi1) (23− 8)

−U(1− yi1)(1− yi3) ≤ b̄i −
∑
wiāi < U(1− yi2) (23− 9)

−U ∗ (1− yi1) < āi+b̄i−
∑
wiāi−

∑
wi b̄i

2
< U(1− yi2) (23− 10)

−U(1− yi2) <
∑
wiāi+

∑
wi b̄i−āi−b̄i
2

< U(1− yi1) (23− 11)
(
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ āi+b̄i−
∑
wiāi−

∑
wi b̄i

2
> −U ∗ yi2 (23− 12)

zi1 + zi2 + zi3 = 1, yi1 + yi2 + yi3 = 1 (23− 13)
ac =

∑
wiāi, b

c =
∑
wib̄i (23− 14)∑m

i=1 wi ∗ [yi3 ∗ (
∑
wi b̄i−āi)2

b̄i+
∑
wi b̄i−āi−

∑
wiāi+ε

+ (0.5− yi2)(āi + b̄i −
∑
wiāi −

∑
wib̄i)] ≤ γ (23− 15)

oi ∼ L(ai, bi), ōi ∼ L(āi, b̄i), o
c ∼ L(ac, bc) (23− 16)

zi1, zi2, zi3, yi1, yi2, yi3, xi ∈ {0, 1}, 0 ≤ āi ≤ b̄i ≤ 1, 0 ≤ ac ≤ bc ≤ 1, γ ∈ [0, 1], i ∈M (23− 17)

(23)

C. Feedback mechanism based on democratic consensus

Feedback mechanisms insist the less modified DMs the
better, avoiding unnecessary adjustments and preserving DMs’
original preferences to the fullest extent [36]. Assume only one
DM needs to be adjusted at each iteration, and democratic
consensus is implemented during the CRP, which ensures
DMs’ effective participation and satisfaction by realizing a
soft consensus [25]. Specifically, DMs are first assigned with
equal weights to protect the interest of minorities, then their
influence is updated with their own contribution to the CL.

Definition 3: DM dk’s contribution to the CL is measured
by the deviation between the overall CL and the CL reached
by the remaining m− 1 DMs (i.e., CLk̄), thus,

CLk = CL− CLk̄, k ∈M (24)

Modifying the preference with a maximum deviation from
the consensus and moderately decreasing the weight can sig-
nificantly improve the CL [38]. Next, define the identification
rule (IR) and direction rule (DR) as

• IR: DM with a minimum contribution to CL is identified
as the one to be adjusted, denoted as dk. If there exist
more than two DMs with the same contribution value,
then dk is randomly chosen.

• DR: Preference adjustment and weight reallocation are
both incorporated in the modification process.

– The DM dk’s updated preference is expressed as Eq.
(25), where δ ∈ [0, 1] is the parameter reflecting dk’s
self-confidence, and the larger δ, the less he/she is
willing to make revisions.

ōk = δ ∗ ok + (1− δ) ∗ oc (25)

– The weights are updated by Eq. (26), where η is the
variable that controls the impact of di’s consensus
contribution CLti on the weight wt+1

i . Next, all the
new weights are normalized by Eq. (27).

wt+1
i = wti ∗ (1 + CLti)

η (26)

w̄i =
wt+1
i∑m

i=1 w
t+1
i

(27)

Explicitly, the larger the parameter η, the stronger modifica-
tion of the DM di [38]. Fig. 4 provides a new CRP framework
that combines democratic consensus and the optimization-
based uncertain MCCMs. Essentially, the procedure prior to
Model (22) is an intra-group self-adjustment that fully respects
individual values by adjusting only one DM’s preference but
updating all weights based on each DM’s contribution to the
CL. Note that if the required CL threshold is still not reached
after Model (22) takes effect, all the adjusted preferences
optimized by Model (22) will be used to start the next iteration;
meanwhile, whenever any DM has some changes in either the
preference or the weight, a new CL is calculated, so as to
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Table II: Original example data of Section V

DM Initial weight Original preference Upward cost Downward cost Tolerance
di wi oi c+i c−i εi

d1 0.2 L(0.24, 0.86) 6.0 7.4 0.10
d2 0.2 L(0.25, 0.75) 7.1 8.1 0.12
d3 0.2 L(0.29, 0.90) 2.8 9.3 0.20
d4 0.2 L(0.05, 0.46) 1.5 8.8 0.03
d5 0.2 L(0.55, 0.80) 6.2 9.6 0.08

minimize the overall resource consumption.

Fig. 4: The new CRP framework of this paper

V. ILLUSTRATIVE EXAMPLE

Suppose five cities (DMs) located in the Yangtze River Delta
participate in the trans-boundary water pollution negotiation
under the governance of the Ministry of Water Resources
(MWR) of China (i.e., the moderator) [19], denoted as di,
i ∈ M = {1, 2, 3, 4, 5}. Considering the differences and
flexibility of the environmental capacity, population density,
annual financial goals and historical pollution data, the original
data about the five cities are shown as Table II, including di’s
initial preference as their desired pollution index oi obeying
the LUD (i.e., oi ∼ L(ai, bi)), the asymmetric costs c+i , c−i
satisfying |c−i | > |c+i |, and each tolerance εi to the final index
(i.e., oc). In pursuit of democracy, the weight of each city is
initially assigned with 0.2. Normally, an ideal CL threshold
is pre-determined due to specific GDM problem, hereafter let
CL∗ = 0.85 and the maximum iteration be 5 [16]. The new
CRP is implemented step by step as follows.

Step 1. Calculate an initial CL to determine whether there
exists one DM (i.e., dk) to be adjusted. If yes, go to Step 2;
otherwise, terminate the CRP.

As the weight vector is (0.2, 0.2, 0.2, 0.2, 0.2)T, we initially
get the consensus oc ∼ L(0.28, 0.75) with Theorem 4. Next,

Eq. (20) is adopted to obtain an initial CL by computing
variables in Table III, including the uncertain distance (i.e.,
d(oi, o

c)), the overall Dev/CL except di (i.e., Devī and CLī),
and di’s contribution to the reached consensus (i.e., CLi).
Hence, we get the benchmark Dev γ0 = 0.263, and the
benchmark CL = 0.737 < CL∗, indicating that dk needs
to be identified.

Table III: Results calculated from original data

di d(oi, o
c) Devī CLī CLi

d1 0.276 0.260 0.740 -0.003
d2 0.244 0.268 0.732 0.005
d3 0.278 0.259 0.741 -0.004
d4 0.299 0.254 0.746 -0.009
d5 0.217 0.274 0.726 0.011

Specifically, taking d1 as an example to obtain Table III,
since o1 ∼ L(0.24, 0.86) and oc ∼ L(0.28, 0.75), we get
a = 0.24 < d = 0.75 and b = 0.86 > c = 0.28, then the
third case of Eq. (20) is employed to obtain their distance as

(0.75−0.24)2

0.86+0.75−0.24−0.28+10−6 + 0.24+0.86−0.28−0.75
2 = 0.276. To

be noted, when computing Devī, the remaining four DMs’
weights are changed from 0.2 into 0.25 for w̃j =

wj

1−wi
, j 6= i,

∀j ∈M . Comparing all the values in the last column of Table
III, we have dk = d4 due to his/her minimum contribution
CL4 = −0.009.

Step 2. Recalculate and check whether the new temporary
consensus meets the threshold CL∗ by adjusting dk’s pref-
erence and updating all DMs’ weights. If yes, terminate the
CRP; otherwise, move to Step 3.

Let the parameter of dk’s adjustment willingness be
δ = 0.5, and the controlling parameter in Eq. (26) be
η = 1.5 [25]. Therefore, d4’s adjusted preference is
ō4 ∼ L(0.165, 0.605), and the weight vector is updated
as (0.199, 0.201, 0.199, 0.197, 0.203)T (see Table IV). Here,
the last five columns of Table IV are the weights of the
remaining four DMs except di, which are used to calculate
Devī. For example, the last value of 0.248 is derived by
w̃4 = 0.197

1−0.203 = 0.248. Moreover, using d3 as an instance,
the new weight w̄3 = 0.199 is obtained by first calculating
Eq. (26) (i.e., w1

3 = 0.2∗ (1−0.004)1.5 = 0.1989), then being
normalized with Eq. (27). Repeating the calculation in Step 1,
we have CL = 0.75, which still fails to meet the threshold of
0.85, so proceed to Step 3.

Step 3. Solve Model (22) with γ0 from Step 1 to produce
optimal solutions, then check if the obtained optimal CL meets
CL∗. If yes, terminate the CRP; otherwise, return to Step 1
with derived adjusted preferences.

Use the Dev benchmark in Step 1 (i.e., γ0 = 0.263), instead
of any smaller values, to pre-determine γ in Model (22),
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Table IV: Updated weights due to DM’s variable influence

di wi w̄i w1̄ w2̄ w3̄ w4̄ w5̄

d1 0.2 0.199 0.249 0.248 0.248 0.250
d2 0.2 0.201 0.251 0.251 0.251 0.253
d3 0.2 0.199 0.248 0.249 0.248 0.250
d4 0.2 0.197 0.246 0.247 0.246 0.248
d5 0.2 0.203 0.254 0.255 0.254 0.253

so as to verify if Model (22) is effective. Moreover, solve
Model (22) by adopting updated information in Step 2, to
fully demonstrate individual influence on the CRP.

Table V: Optimal solution of Model (22) with γ = 0.263

di ōi
∗ d(ōi

∗, oc∗) Devī CLī CLi

d1 L(0.5690, 0.5690) 0.000 0.051 0.949 0.010
d2 L(0.4991, 0.4991) 0.070 0.033 0.967 -0.007
d3 L(0.5906, 0.5906) 0.022 0.045 0.955 0.005
d4 L(0.5390, 0.5390) 0.030 0.043 0.957 0.003
d5 L(0.6490, 0.6490) 0.080 0.031 0.969 -0.010

Finally, the reached consensus from Model (22) is oc∗ ∼
L(0.569, 0.569), and the minimum cost is φ∗ = 2.8982.
Meanwhile, Table V provides di’s optimal adjusted preference
along with relevant indicators. Obviously, both the achieved
consensus and DM’s optimal adjusted preferences degenerate
to real numbers. In other words, given the constructed form
of the LUD, all the final preferences have the same upper
and lower bounds. Such findings are consistent with existing
studies on uncertain MCCMs [28], [29]. That is, once certain
conditions are met (e.g., the belief degree is no less than 0.5
[28]), the original LUDs degenerate to crisp numbers. The
obtained final Dev is γ∗ = 0.04, and the optimal CL = 0.96
exceeds its threshold of 0.85, so CRP is terminated at this
point, which implies that Model (22) works in the new CRP
framework. Provided that the current CL still fails to meet
its threshold, all the optimal adjusted preferences from Model
(22) will be used for the next iteration.

VI. FURTHER DISCUSSION

Parametric behavior analysis regarding the two new models
is conducted in VI-A, while a comparative analysis with other
studies is given in VI-B.

A. Parametric behavior analysis

1) Parametric behavior analysis of λ: The influence of λ
(i.e., the trade-off coefficient between the budget and the CL)
on the consensus is discussed with a step of 0.1 due to λ ∈
[0, 1]. Note that initial adjustments of weights or preference
aren’t involved in this section. Namely, results are obtained by
solving Model (23) with data in Table II. Fig. 5 provides the
changing trends of the CL and the consensus cost with λ; and
Table VI exhibits the λ-related optimal solutions, including the
reached consensus and DMs’ optimal adjusted preferences.

Fig. 5 shows that the final range of the CL is [0.9612,
0.9766] and the total cost is [3.0760, 3.1429] in light of
λ. Once the two objectives (i.e., γ and φ) are considered
separately, that is, if λ = 0 (i.e., only the resource is required to
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Fig. 5: Parametric behavior analysis of λ in Model (23)

be least consumed), the optimal cost is 3.0743 with CL being
0; by contrast, if λ = 1 (i.e., the maximum CL becomes the
priority of the discussed GDM), then CL reaches the maximum
value 1 with a cost of 16.596. Since the results of these
two extreme scenarios are far away from the rest, they are
omitted in Fig. 5. Table VI verifies most optimal preferences
end up being LUDs with identical endpoint values, where the
optimized preferences still strictly obeying the LUD with two
different endpoints are underlined. Moreover, results show that
once the trade-off parameter reaches a certain threshold (e.g.,
0.7 in Table VI), the GDM involved focuses more on CL rather
than the total cost, and all preferences become crisp numbers.

Overall, there are sharp fluctuations when λ ∈ [0.3, 0.7],
thus CL is of great necessity for GDM, where detailed reasons
remain to be further explored; although such fluctuations
are negligible once taking the numerical scale into account.
Besides, the consistent volatility trends of the CL and the
cost suggest that increasing budget helps improve CL, but
their conflict within [0.6, 0.7] might due to the complete
transformation of LUDs into crisp numbers with λ = 0.7 or
factors ignored in this paper.

2) Parametric behavior analysis of η: Since DM’s weight
plays an important role during CRP, this section conducts the
parametric behavior analysis of η from 1.5 to 3.5 with a step
of 0.5. Fig. 6 provides the changes of weights regarding η,
and the optimal solutions of Model (22) are shown in Table
VII, where the original data except wi come from Table II.

Fig. 6 shows that once the controlling variable η of DM’s
CL contribution to their new weight gets larger, the more
obvious the differences in weight distribution, where specific
data are shown as the 2nd column of Table VII. In other words,
the smaller the value of η, the more even of all DMs’ weights,
and the less differences among individual influence on the final
decision. Results in Table VII show that Model (22) works,
since all CLs are significantly improved from the benchmark
CL = 0.737 from Step 1 in Section V. Here, only d4’s optimal
adjusted preference ō4

∗ is listed in Table VII due to limited
space and the fact that other four DMs’ preferences have all
degenerated into crisp numbers. Since only minor changes
exist in all the optimal values of φ∗ and CL, the impact of
η on the final results is actually negligible here. Note that the
parameter behavior analysis of δ in Eq. (25), which reflects
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Table VI: Optimal results of Model (23)

λ oc∗ ō1
∗ ō2

∗ ō3
∗ ō4

∗ ō5
∗

0.0 L(0.5599, 0.5699) L(0.5499, 0.5499) L(0.4999, 0.4999) L(0.5948, 0.5948) L(0.5099, 0.5599) L(0.6449, 0.6449)

0.1 L(0.5638, 0.5638) L(0.5638, 0.5638) L(0.4969, 0.4969) L(0.5807, 0.5807) L(0.5338, 0.5338) L(0.6438, 0.6438)
0.2 L(0.5642, 0.5642) L(0.5642, 0.5642) L(0.4988, 0.4988) L(0.5795, 0.5795) L(0.5342, 0.5342) L(0.6442, 0.6442)
0.3 L(0.5584, 0.5684) L(0.5584, 0.5584) L(0.5013, 0.5013) L(0.5805, 0.5805) L(0.5084, 0.5584) L(0.6434, 0.6434)

0.4 L(0.5572, 0.5705) L(0.5572, 0.5572) L(0.5138, 0.5138) L(0.5705, 0.5705) L(0.5004, 0.5673) L(0.6438, 0.6438)

0.5 L(0.5592, 0.5650) L(0.5592, 0.5592) L(0.5063, 0.5063) L(0.5708, 0.5708) L(0.5176, 0.5465) L(0.6421, 0.6421)

0.6 L(0.5583, 0.5713) L(0.5583, 0.5583) L(0.5148, 0.5148) L(0.5713, 0.5713) L(0.5023, 0.5674) L(0.6448, 0.6448)

0.7 L(0.5607, 0.5607) L(0.5607, 0.5607) L(0.5107, 0.5107) L(0.5607, 0.5607) L(0.5307, 0.5307) L(0.6407, 0.6407)
0.8 L(0.5607, 0.5607) L(0.5607, 0.5607) L(0.5107, 0.5107) L(0.5607, 0.5607) L(0.5307, 0.5307) L(0.6407, 0.6407)
0.9 L(0.5650, 0.5650) L(0.5650, 0.5650) L(0.5364, 0.5364) L(0.5650, 0.5650) L(0.5350, 0.5350) L(0.6235, 0.6235)
1.0 L(0.0500, 0.0500) L(0.0500, 0.0500) L(0.0500, 0.0500) L(0.0500, 0.0500) L(0.0500, 0.0500) L(0.0500, 0.0500)

Table VII: Optimal results of Model (22)

η W̄ ō4
∗ oc∗ φ∗ CL

1.5 (0.1990, 0.2014, 0.1989, 0.1973, 0.2034)T L(0.5342, 0.5342) L(0.5642, 0.5642) 3.0774 0.9605
2.0 (0.1986, 0.2019, 0.1985, 0.1964, 0.2046)T L(0.5349, 0.5350) L(0.5650, 0.5650) 3.0774 0.9603
2.5 (0.1983, 0.2023, 0.1981, 0.1955, 0.2058)T L(0.5347, 0.5347) L(0.5647, 0.5647) 3.0773 0.9605
3.0 (0.1980, 0.2028, 0.1977, 0.1946, 0.2069)T L(0.5102, 0.5604) L(0.5604, 0.5702) 3.0743 0.9555
3.5 (0.1976, 0.2033, 0.1973, 0.1938, 0.2081)T L(0.5102, 0.5605) L(0.5605, 0.5702) 3.0743 0.9554

DM’s adjustment willingness [33] is no longer discussed.
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Fig. 6: Changes of weights with regard to η

B. Comparative analysis

1) Comparison between models with/without feedback
mechanism: Using data from Table II and directly setting
γ = 0.15 for Model (22), namely, feedback mechanisms are
no longer considered in this section. Results show that all
adjusted preferences degenerate into crisp numbers (see Table
VIII), the minimum cost is 3.077, and the consensus reached
is oc∗ ∼ L(0.564, 0.564).

The final CL = 0.96 achieves the target 0.85, which
means that the uncertain MCCM still works without feedback
mechanisms. However, the cost required to achieve the same
CL (i.e., CL = 0.96) is less in Section V (φ∗ = 2.8982) than
here (φ∗ = 3.077), implying that the feedback mechanism
does promote a higher cost-effective consensus.

Table VIII: Optimal results of Model (22) with γ = 0.15

di ōi
∗ d(ōi

∗, oc∗) Devī CLī CLi

d1 L(0.564, 0.564) 0.000 0.049 0.951 0.010
d2 L(0.496, 0.496) 0.068 0.032 0.968 -0.007
d3 L(0.582, 0.582) 0.018 0.045 0.955 0.005
d4 L(0.534, 0.534) 0.030 0.042 0.958 0.002
d5 L(0.644, 0.644) 0.080 0.029 0.971 -0.010

2) Comparison with existing approaches: Table IX pro-
vides a comparison of existing research with our new method
from several perspectives, such as individual preference struc-
ture, unit cost setting, aggregation function, feedback mech-
anism and solving method. In fact, Gong et al. [28] also
looked into the influence of non-cooperation behaviors on the
uncertain MCCMs; while Guo et al. [29] incorporated the
utility function into uncertain MCCMs, and presented the rela-
tionships between their new models with traditional MCCMs;
Similarly, Cheng et al. [32] also took the satisfaction functions
into account, and explored the effect of individual behaviors
(i.e., tolerance and compromise limit) on the final decision;
besides, [20], [21] adopted stochastic or robust optimization
theory to deepen Cheng et al.’s research with asymmetric costs.
Meanwhile, Refs. [7], [8] adopted optimization-based models
with CRP to locate specific unit costs from pre-determined
intervals. Concisely, this paper extends the MCCMs with
LUDs into a new CRP framework by integrating asymmetric
costs, aggregation function and consensus measure, which
further generalizes the classic GDM theory by considering
uncertainty theory and individual behaviors.

VII. CONCLUSION

Uncertainty theory well depicts DM’s inherent subjectivity,
imprecision and vagueness, so this paper adopts LUDs to
extend the uncertain MCCMs into a new CRP framework. In
specific, two new consensus models are built by considering
asymmetric costs, aggregation function and consensus mea-
sure, where DM’s preference is fit by the LUD and the setting
of asymmetric costs is further rationalized based on prospect
theory. Moreover, a new CRP is designed by respecting DM’s
values with democratic consensus and minimizing resources
with new uncertain MCCMs. To avoid the calculation com-
plexity from piecewise functions in the uncertain distance
measure, binary variables are introduced to transform the
multi-coefficient goal programming models in view of the big
M method. Furthermore, we found that (i) the new consensus
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Table IX: Comparison with existing consensus studies

Refs Preferences Unit cost Aggregation Feedback mechanism Solving method

[28] LUD Single fixed value — — OM
[29] LUD Single fixed value AWA — OM
[19] Crisp number Asymmetric costs — — OM
[32] Crisp number Asymmetric costs AWA — OM
[7] Crisp number Interval value OWA Adjustment of prefer-

ence & unit costs
OM

[8] Crisp number Interval value AWA Adaptive differential
evolution algorithm

Stackelberg game & OM

[20], [21] Crisp number Asymmetric costs — — Stochastic/Robust OM
This paper LUD Asymmetric costs AWA Preference adjustment &

weight reallocation
OM

Note: “—” means not involved; and “OM” is short for optimization-based modeling.

models exclude moderator’s influence by setting the Dev
threshold of Model (22) with a benchmark from initially
provided information, or by providing a full relationship
between the CL and the cost via Model (23); (ii) CRP helps
promote a higher cost-effective consensus (see Section VI-B);
and (iii) once certain conditions are met, DMs’ preferences fit
by LUDs degenerate into crisp numbers, which is consistent
with previous findings [28], [29]. Note that in addition to trans-
boundary pollution management, our method is also feasible to
handle other GDM problems characterized by non-randomness
and non-fuzziness, such as urban demolition negotiation, trust
evaluation in social networks or emergency management for
natural disasters [39].

It’s widely accepted that heterogeneous preferences [6], [23]
attract more concerns in real-life situations, so transformation
from the LUD to the traditional expression forms needs to be
explored. Moreover, interactions among DMs are truly non-
negligible, thereby building uncertain MCCMs combined with
social network analysis [36] will be our next focus. Finally,
how to integrate well-known decision technology (e.g., survey,
datamining) [39], [40] to practically interpret our findings is
also worth investigating.
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Consensus modeling aims to obtain collective agreement through group decision-making (GDM), generally by build-

ing mathematical programming models. This paper describes the use of optimization consensus modeling to explore

theoretical innovations regarding flexible carbon quota trading mechanisms, with basic allocation schemes provided

within a closed-loop trading system by simultaneously taking revenue and fairness into account. A series of opti-

mization consensus models are constructed from the perspective of maximizing the corresponding revenue, resulting

in optimal/fair carbon quota allocation schemes that include detailed trading information, e.g., participating in-

dividuals, transferred quantities, and unit transaction prices. To solve these models, a relaxation method based

on particle swarm optimization is proposed. The inability to conduct real-life GDM usually stems from conflicts

of interest based on the decision-makers’ mutual competition, thus, two practical strategies are presented to deal

with the resulting unfairness within the trading system. Finally, a numerical example incorporating five regions

demonstrates the effectiveness of the proposed trading mechanisms. The results show that sufficient interactions

among decision-makers are of great significance in achieving fairness within a trading system.
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1. Introduction

Group decision-making (GDM) refers to a process in which multiple individuals participate in decision-making

analysis and make a final choice based on their collective wisdom: Clark & Stephenson (1995) have pointed out that

GDM represents a collective recall of information. Generally, communication and negotiation effectively promote the

interactions among decision-makers (DMs) (Hirokawa & Poole, 1996) and the flow of information within the group.

Moreover, technological innovations have significantly updated the means of group communication and decision-

making (Kiesler & Sproull, 1992). Without loss of generality, three stable states of fragmentation, polarization, or

consensus may finally be achieved by rational DMs considering their own interests (Hegselmann & Krause, 2002;

Liang et al., 2020; Zhao et al., 2016). Among them, consensus usually requires multiple rounds of communication,

coordination, preference modification, and even concessions or compromises within the group. Only in this way can

a relatively consistent collective agreement be obtained (Cabrerizo et al., 2014; Liu et al., 2019; Wu & Chiclana,

2014; Wu et al., 2018; Zhang et al., 2020a,b). For example, if a new allocation scheme of resources is obtained

through GDM within a trading system, which is widely accepted by the whole group, then a consensus is reached.

Liang et al. (2020) clarified that the consensus-reaching process (CRP) does not mean that an optimal solution

must be achieved. Instead, CRP is more like a decision tool or a synthesizing process that assists DMs in building

connections and communicating with each other, thereby providing a more effective way for the group to find unity

on how to proceed (Susskind et al., 1999).

Considering that cost, which may be embodied as human, material, financial, time and other resources, is an

important influencing factor in GDM, Ben-Arieh & Easton (2007) first proposed the concept of minimum cost

consensus, and acquired the optimal collective opinion with a linear/quadratic cost function (Ben-Arieh et al.,

2009). Since then, other scholars have made further extensions to their minimum cost consensus models (MCCMs)

by taking various factors into account, such as uncertain preference structures (Gong et al., 2021; Guo et al., 2021),

aggregation rules (Zhang et al., 2011), measurement of consensus effectiveness (Labella et al., 2020) or parameter

improvements of initial models (Cheng et al., 2018; Lu et al., 2021; Zhang et al., 2020a). Since unit costs are

difficult to objectively determine in advance, and DMs’ opinions are hard to modify during GDM, Dong et al.

(2010) proposed minimum adjustment consensus models (MACMs) with an ordered weighted average operator,

which preserve the DMs’ initial preference information as much as possible. Similarly, their modeling idea has also
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been widely explored (del Moral et al., 2018; Dong et al., 2016; Gong et al., 2020; Yu et al., 2021; Zhang et al.,

2018), especially under social networks (Cheng et al., 2020; Wu et al., 2018) or opinion evolution contexts (Chen

et al., 2021; Liang et al., 2020). Moreover, Zhang et al. (2020b) summarized the original and basic consensus models

based on feedback mechanisms with a minimum cost/adjustment and reviewed diverse consensus modeling under

some complicated GDM scenarios.

Different from the above consensus modeling with a minimum cost/adjustment, this paper was partially inspired

by the construction of consensus models that aim to maximize the total revenue. By introducing linear primal-dual

theory, various MCCMs (including hard and soft consensus (Herrera-Viedma et al., 2014; Zhang et al., 2011)) with

specific preference structures (e.g., DM’s opinion denoted by crisp numbers or interval values) were adopted as the

primal models, and then their corresponding dual forms (i.e., the optimization maximum compensation consensus

models) along with their economic significance were deeply explored by Gong et al. (2015a,b) and Zhang et al.

(2019). Subsequently, taking the essential architecture of Stackelberg’s game into account, Zhang et al. (2020a)

presented a bi-level optimization consensus model that depicts the interaction between DMs and the moderator,

and divided the DM’s total return into a modification component (also known as external compensation) provided

by the moderator for the DM’s initial preference adjustment and a recognition component based on the similarity

between the DM’s original opinion and the final consensus. It is well known that the market is profit-oriented (i.e.,

simultaneously pursuing the maximization of revenue and the minimization of costs) and its operating mechanism

is mostly affected by pricing strategy, participants’ competition, supply and demand, and etc. (Lamba et al., 2019;

Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Therefore, in discussing closed-loop trading mechanisms,

the revenue maximization of either the whole group or a single DM is set as our objective function in this paper,

and constraints such as supply and demand or prices are introduced. A series of optimization consensus models are

then constructed as a means of deriving the optimal resource allocation schemes within a trading system.

Rapid industrialization and economic growth have led to significant increases in emissions of carbon dioxide

and other greenhouse gases, and have rendered environmental pollution and extreme weather events increasingly

serious and frequent, resulting in severe negative impacts on economic development and human health (Wang et al.,

2017). Therefore, mitigating the impact of human activities on the environment through reductions in carbon

emissions has gradually become a global consensus. Diaz-Rainey & Tulloch (2018) conducted the first empirical
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analysis of New Zealand’s carbon trading scheme using allowance importation and exportation data, and found

that the imports of offsets are the major carbon price determinant, with small trading systems able to reap benefits

from imposing quantitative import restrictions. Aiming at developing sustainable supply chain, joint decisions were

made under various carbon emission regulatory policies, with respect to different influence factors, such as inventory,

pricing, financing and ordering (Ruidas et al., 2021; Zhou et al., 2020b; Zou et al., 2021). Furthermore, carbon issues

combined with decision-making technology has also been investigated (Gong et al., 2021; Huang & Xu, 2020; Lamba

et al., 2019). For instance, Lamba et al. (2019) proposed a mixed-integer nonlinear program for supplier selection

and the right lot-sizes determination under a dynamic background with multiple periods, products and suppliers,

and evaluated different costs of carbon emissions under three regulating policies (viz. cap-and-trade, strict cap on

emissions and carbon tax) using big data technology. Huang & Xu (2020) constructed a bi-level multi-objective

programming model to solve the carbon emission quota allocation problem with co-combustion of coal and sewage

sludge, and formulated the interaction between authorities and coal-fired power plants before examining a real case

demonstrating the trade-off between economic development, energy conservation, and renewable energy utilization.

Setting targets for carbon emissions in different countries/regions (i.e., operating collective schemes for optimal

carbon quota allocation) is one of the main obstacles to reaching a comprehensive agreement on global warming.

This is exacerbated by long-term tensions between industrialized and developing countries regarding unfairness

issues on burden-sharing, with industrialized countries pleading special circumstances and seeking differentiation in

their obligations (Rose et al., 1998). Fairness concerns, gained widespread attention in the supply chain management

(Liu et al., 2021; Zheng et al., 2019), are also critical for GDM (Du et al., 2021), because participants are motivated

by not only the final results, but also the fairness they feel compared with others (Adams, 1963). Under a fixed

total carbon quota, the scientific allocation of binding carbon allowances for different regions is a complex and

arduous task, because it directly involves the economic development rights of each region. In general, the fairness

of carbon emissions quotas is measured using the Atkinson index (Hedenus & Azar, 2005), Theil index (Duro &

Padilla, 2006), and Gini coefficient (Chen et al., 2017). The traceability method, which uses historical carbon

emissions as the relevant feature of the initial carbon quota allocation (i.e., the free distribution principle), has

been criticized by Fromm & Hansjürgens (1996) and Sijm et al. (2007) for being inconsistent with the “polluter

pays” principle and lacking fairness from the perspective of society as a whole. In addition, Van Steenberghe (2004)
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found that the so-called fair rule to allocate greenhouse gas emission permits is not beneficial for all nations, with

some countries being worse off under global agreement than under non-cooperative contexts. Under the framework

of the Kyoto Protocol, Gomes & Lins (2008) adopted the zero-sum gains data envelopment analysis method to

provide a fair carbon emissions allocation plan for various countries, which not only stabilizes the concentration of

greenhouse gases in the atmosphere, but also achieves carbon quota trading with no impact on global emissions.

The above studies have mostly considered the fairness of carbon quota allocations at the global level, ignoring the

interest-driven issues of individual/regional perspectives. Therefore, the analysis of carbon trading mechanisms

through consensus modeling with all participators’ interests taken into account is of great significance.

Although many studies have investigated carbon issues, there has been few research on carbon quota trading

mechanisms, and consensus decision-making theory has not been adopted to deal with the design of carbon trading

mechanisms and their resulting unfairness issues. That is, using optimization consensus models to assist DMs in

exchanging carbon quotas and the development of fair connections among them within a closed-loop trading system

are neglected. Hence, the main contributions of this study are as follows: (i) By referring to conventional market

trading mechanisms, a benchmark consensus model with the aim of overall revenue maximization is presented

to derive the optimal carbon quota allocation scheme. (ii) By building a two-stage programming model, new

allocation schemes are acquired that focus on different single DM’s revenue maximization, allowing detailed trading

information such as the transferred quantities, DM’s unit selling and buying prices, and unit transaction prices

to be acquired. (iii) Two strategies based on individual/group development indices are proposed to deal with the

unfairness issue within the trading system. (iv) A relaxation method based on particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995) is proposed to solve the above consensus models. And (v) numerical analysis of a

trading system composed of five regions is conducted to verify the effectiveness of the proposed models.

The rest of this paper is organized as follows. Section 2 briefly reviews the optimization consensus models,

then Section 3 presents some assumptions of the trading mechanisms, and justifies the rationality of the hypothesis

through theoretical deduction. Section 4 constructs a series of new consensus models from which optimal/fair allo-

cation schemes are obtained within the closed-loop trading system, and further proposes an optimization algorithm

to solve these models. A numerical example is reported in Section 5 to demonstrate the feasibility of the proposed

mechanisms. Finally, Section 6 gives some concluding remarks and identifies future research directions.
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2. Preliminaries on optimization consensus modeling

To better understand the subsequent construction of optimization closed-loop carbon trading consensus models,

this section briefly reviews theoretical GDM models for obtaining the optimal consensus. However, before introduc-

ing the basic consensus models, we define some related notation. Let D = {d1, d2, · · · , dn} be the set of all DMs,

where di denotes the i-th DM and i ∈ N = {1, 2, · · · , n}. Let O = {o1, o2, · · · , on} and O
′

= {o′
1, o

′
2, · · · , o

′
n} be the

sets of initial and final preferences (i.e., opinions, judgements) of the group, where oi, o
′
i denote di’s initial and final

opinions, respectively. The existing forms of expressions for DMs include, but are not limited to, linear uncertainty

preferences (Gong et al., 2020, 2021), linguistic preferences (Cabrerizo et al., 2013; Wu et al., 2018; Yu et al., 2021),

fuzzy preference (Herrera-Viedma et al., 2014; Wu & Chiclana, 2014; Zhang et al., 2018). Nevertheless, aiming to

solve real-life GDM problems, we adopt traditional forms, i.e., positive and real numbers, to denote DM’s opinions

in this paper. Let ωi denote the unit cost provided by the moderator for di adjusting his opinions, i ∈ N . In fact,

the modeling mechanisms are similar for both MCCM (Ben-Arieh & Easton, 2007; Ben-Arieh et al., 2009) and

MACM (Dong et al., 2016, 2010). If all DMs’ unit costs satisfy wi = wj ,∀i, j ∈ N, i 6= j, then the former reduces to

the latter (Zhang et al., 2020b). A general framework of the minimum cost/adjustment consensus model provided

by Zhang et al. (2011) can be introduced as:

min
n∑

i=1

wi ∗ d(o
′
i, oi)

s.t.





oc = F (o
′
1, o

′
2, · · · , o

′
n) (1− 1)

CD(o
′
i, o

c) ≤ α,∀i ∈ N (1− 2)

(1)

In Model (1), d(o
′
i, oi) represents the distance or deviation between di’s initial and final (or adjusted) opinions

(del Moral et al., 2018), which is generally given by the Manhattan distance (Ben-Arieh & Easton, 2007) or Euclidean

distance (Ben-Arieh et al., 2009). Constraint (1-1) means that the collective opinion (i.e., consensus) oc should be

obtained by the aggregation function F over all DMs’ final opinions {o′
1, o

′
2, · · · , o

′
n}, which corresponds to various

social selections; and constraint (1-2) measures the consensus level CD attached to di’s adjusted opinion o
′
i and

the consensus oc, where α is a pre-defined threshold that is usually employed when solving soft consensus problems

(Herrera-Viedma et al., 2014; Zhang et al., 2011, 2019).
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The above model is an optimization consensus model with a minimum cost/adjustment from the moderator’s

perspective. However, individuals in GDM always expect some compensation for adjusting their opinion, the more

the better. Hence, introducing linear primal-dual theory, Gong et al. (2015a,b) and Zhang et al. (2019) explored the

dual forms of Model (1) in specific contexts so as to obtain the maximum compensation for all DMs. In particular,

Zhang et al. (2019) provided a concise form of the maximum compensation consensus models (i.e., Model (2)),

where R means the set of real numbers, and yi is the unit compensation expected by di. As discussed earlier, Zhang

et al. (2020a) divided the objective function of Model (2) into a modification return provided by the moderator for

the DM’s opinion adjustment and a recognition return based on the similarity between the DM’s initial opinion

and the final consensus. However, their model is omitted here due of space limitations.

max
n∑

i=1

yi ∗ (oi − oc)

s.t. yi ∈ R, i ∈ N
(2)

The optimal collective opinion oc can always be obtained, regardless from the minimum cost perspective (i.e.,

Model (1)) or the maximum compensation perspective (i.e., Model (2)). Therefore, the idea of discussing the

closed-loop carbon quota trading mechanism with an objective function that maximizes the overall revenue is

feasible. In addition, the above two models obtain the optimal collective opinion oc, whereas this paper aims to

derive all DMs’ optimal adjusted opinions (i.e., the set of O
′
) during the trading process. Thus, in the following

discussion, we introduce some influential factors into the conventional market trading mechanisms and build a series

of optimization consensus models that provide optimal or fair carbon quota allocations within a closed-loop trading

system.

3. Assumptions for carbon quota trading mechanisms

This paper explores how to develop a satisfactory carbon quota allocation scheme under the goal of maximizing

the revenue for either the whole group or a single DM through market trading mechanisms. To facilitate a better

understanding, Table 1 presents the main notation used in this paper. Suppose that multiple DMs (e.g., companies,

regions, nations) form a closed-loop trading system with a fixed total carbon quota. Let ri be di’s initial fixed unit

revenue and r1 ≤ r2 ≤ ... ≤ rn, where ri is determined by each DM’s unique qualities, such as social and economic
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development, natural conditions, resource endowments, industrial structures, and energy usage rates.

Table 1 Summary of notation used in this paper

Notation Meaning Notation Meaning

di The i-th DM Iij Quantity transferred from di to dj

ri Initial fixed unit revenue of di’s CQ Tij Unit transaction price between di and dj

pi Unit selling price of di’s CQ δ Non-archimedean infinitesimal

qi Unit buying price of di’s CQ γ Fairness threshold

oi di’s initial CQ α Fairness measure variable

o
′
i di’s final CQ Z1 Obj to maximize overall revenue

o−i Lower limit of di’s IECQI Z2 Obj to maximize a specific DM’s revenue

o+i Upper limit of di’s IECQI Z3 Obj regarding revenue and fairness

Hi Individual development index H̄ Group development index

Note: CQ, IECQI and Obj are short for carbon quota, initially expected carbon quota interval and the objective function, respectively.

To be noted, this paper aims to depict the most essential trading behavior within a carbon quota market by

consensus modeling. Meanwhile, in order to reduce the computational complexity of the subsequent models, we

currently simplify the problem to the greatest extent. Therefore, several basic assumptions need to be clarified as:

1. The carbon quota market discussed remains stable during a certain period, and DMs can freely participate

in the trading system;

2. Variables of unit prices (i.e., pi, qi, Tij) are static, meaning that they don’t fluctuate with time, supply and

demand, and etc.;

3. Unit revenue of di’s carbon quota (i.e., ri) is a constant, which is only determined by di’s own inherent char-

acteristics rather than oi, meaning that the standard law of diminishing returns assumption is not considered;

4. Factors regarding costs within the profit-oriented trading system are implicit in di’s initial unit revenue, which

means we only need to conduct analysis from the perspective of revenue maximization.

Actually, assumptions listed above are all to reduce the complexity of our GDM problem, and each point could

be an interesting topic in our subsequent research. Anyway, the final results obtained from the closed-loop trading

system through consensus modeling should satisfy two main objectives:

• Goal 1: Each DM’s total revenue derived from the trading is no less than his initial fixed total revenue;

• Goal 2: The sum of all DMs’ revenue acquired from the closed-loop trading system should be maximized.

Goal 1 is set from the DM’s perspective, and aims to maximize each DM’s economic benefits. All DMs are as-

sumed to be rational (that is, once the carbon quota trading is conducted, they must benefit themselves); otherwise,
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the transactions are invalid. This corresponds to real-life market trading and can be understood as the effectiveness

of the trading mechanisms. On the contrary, Goal 2 is set from the collective angle. In general, the representative

for the collective benefit is the participant who determines the initial carbon quota for all DMs, and also the one

who plays the role as a moderator in GDM problems (Ben-Arieh & Easton, 2007; Gong et al., 2021), such as local

governments or world organizations. For those representatives, the primary goal is to maximize the overall revenue.

To realize Goal 1, we have the following constraints: (1) pi ≥ ri, (2) qi ≤ ri, where pi denotes the unit selling

price, qi represents the unit buying price, and ri is the original fixed revenue for one unit of di’s carbon quota.

Let the quantity transferred from di to dj be Iij , and their final unit transaction price be Tij . Then, the following

statement holds: If pi ≤ qj , then the one-way carbon quota transaction from di to dj can be realized, that is, di

can sell a carbon quota to dj , and so Iij ≥ 0 and the unit transaction price Tij ∈ [pi, qj ], which indicates there is a

negotiable space in the trading process between di and dj . At the same time, we derive Iji = 0, since Iij ∗ Iji = 0

holds under the premise of one-way trading.

The above constraint indicates that there is a directionality in the carbon quota trading between any two DMs.

Specifically, once a carbon transaction occurs between di and dj , the transferred quantity sold by di to dj is Iij ,

and we get ri ≤ pi ≤ qj ≤ rj . Moreover, because the unit transaction price satisfies pi ≤ Tij ≤ qj , we have that

ri ≤ pi ≤ Tij ≤ qj ≤ rj . Thus, di’s revenue is TijIij − riIij ≥ 0, whereas dj ’s revenue is rjIij − TijIij ≥ 0. This

trading mechanism guarantees that every carbon transaction that occurs is profitable for both parties, implying

that each DM’s final revenue after the carbon trading is no less than their initial total fixed revenue. Thereby, Goal

1 is always met.

Theorem 1. Iij ∗ Iji = 0 and Iij ≥ 0, Iji ≥ 0 (i 6= j, i, j ∈ N), if and only if pi = qi = pj = qj = ri = rj, Iij ≥ 0,

and Iji ≥ 0 hold simultaneously. At this time, the unit selling and buying prices, as well as the initial fixed unit

revenue for both di and dj, are equal. In this case, the transaction does not bring about a change in revenue, so it

has no economic significance.

Proof. As pi ≥ ri and qi ≤ ri, we have pi ≥ ri ≥ qi. When Iij ≥ 0 and Iji ≥ 0 hold simultaneously, pi ≤ qj

and pj ≤ qi are obtained, that is, ri ≤ pi ≤ qj ≤ rj ≤ pj ≤ qi ≤ ri. So when pi = qi = pj = qj = ri = rj , both

Iij ≥ 0 and Iji ≥ 0 hold. Under other situations, if Iij ≥ 0, we have Iji = 0; on the contrary, if Iji ≥ 0, we get

Iij = 0. To sum up, based on the aforementioned four assumptions, once DM di buys (sells) carbon quota from

9



(to) dj , he/she will no longer sell (buy) carbon quota to (from) dj .

Theorem 1 guarantees that the transactions between any two DMs in the closed-loop carbon quota trading system

are one-way. When the initial parameters provided by the two DMs (including unit buying and selling prices as

well as their initial fixed unit revenue) are all equal, their transaction has no direction constraint. However, any

transaction realized under these conditions cannot increase the DMs’ revenue, so it has no economic value.

Theorem 2. Suppose ri is di’s initial fixed unit revenue and r1 ≤ r2 ≤ ... ≤ rn, if i ≤ j, Iij ≥ 0 holds; if i > j and

ri 6= rj, Iij = 0 holds; and if i > j and ri = rj, Iij ≥ 0 holds.

Proof. If i ≤ j, we have ri ≤ rj , and because pi ≥ ri, qj ≤ rj , there must exist pi, qj such that ri ≤ pi ≤ qj ≤ rj ,

then Iij ≥ 0. Besides, if i > j and ri 6= rj , then ri > rj , and since pi ≥ ri, qj ≤ rj , that is, pi ≥ ri > rj ≥ qj , thus

there exist no pi, qj such that pi ≤ qj , thereby we have Iij = 0. Similarly, if i > j and ri = rj , then pi ≥ ri = rj ≥ qj .

Clearly, only if pi = ri = rj = qj , Iij ≥ 0 holds, otherwise, we have Iij = 0.

Theorem 2 takes the basic hypothesis of this paper into consideration: all DMs are arranged in order based on

the relationships among their original fixed unit revenues, that is, r1 ≤ r2 ≤ ... ≤ rn. The quantity of the carbon

quota that is transferred is not only affected by the DM’s location index, but also by the size of the DM’s fixed

unit revenue. This theorem implies that carbon quota trading can only be carried out from one DM with a smaller

fixed unit revenue to another with a larger unit revenue. Therefore, DMs with small fixed unit revenues have to sell

their carbon quota to increase their total revenue, because pi ≥ ri. On the contrary, DMs with large unit revenues

can only improve their revenue by purchasing carbon quotas, because qi ≤ ri.

Theorem 3. Let di’s final carbon quota be o
′
i. Considering that some uncertainty exists during the trading process,

the above final carbon quota is represented by an interval value, denoted as [o−i , o
+
i ], whose endpoints satisfy:

n∑

i=1

o−i ≤
n∑

i=1

oi ≤
n∑

i=1

o+i

Proof. Since o−i ≤ o
′
i ≤ o+i , we have

∑n
i=1 o

−
i ≤

∑n
i=1 o

′
i ≤

∑n
i=1 o

+
i . Meanwhile, because the total carbon

quota in the closed-loop trading system is fixed, namely
∑n

i=1 o
′
i =

∑n
i=1 oi, then

∑n
i=1 o

−
i ≤

∑n
i=1 oi ≤

∑n
i=1 o

+
i .
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Theorem 3 is based on the assumption that the total carbon quota in the closed-loop trading system is fixed,

which complies with the provisions of the clean development mechanism. That is, under the premise of fixed global

carbon emission levels, high-emission countries can finance some projects in low-emission countries to reach their

established limit (i.e., compensatory reduction) (Gomes & Lins, 2008). In short, the so-called “carbon market” can

reduce the economic impact on high-emission countries and achieve the overall goal of reducing carbon emissions.

In addition, for rational DMs, threshold constraints attached to their final carbon quota can better exhibit the

uncertainties during the trading process (Ruidas et al., 2021); for the moderator, there is no need to grasp all

transaction details, namely, the moderator only needs to have overall control of the total amount, that is, the lower

limit of the final total carbon quota is no greater than the initial total amount, while the upper limit should be no

less than the sum of all DMs’ original carbon quotas.

An example of carbon quota trading conducted by three regions is presented below to preliminarily clarify our

modeling ideas. Initial information is listed in Table 2, while the trading results, including the final carbon quota,

and the corresponding revenue, are shown in Table 3. Meanwhile, the specific trading process is exhibited in Fig. 1.

Note that the elaborated example only corresponds to the aforementioned basic assumptions, and does not really

involve the consensus modeling in the next section.

Table 2 Example of the initial information provided

by three regions

d1 d2 d3

oi 10 10 10

ri 50 80 120

rioi 500 800 1200

Table 3 Example of the final carbon quotas through

the trading conducted by three regions

d1 d2 d3

o
′
i 3 11 16

ri 50 80 120

rio
′
i 150 880 1920

Trading revenue 530 -35 -495

Total revenue 680 845 1425

Table 2 provides the initial carbon quota (i.e., oi) allocated to each region along with its fixed unit revenue (i.e.,

ri), from which the initial total revenue (i.e., rioi) of each region can be obtained. As d1 has the smallest unit

revenue r1, this DM can only increase his revenue by selling a carbon quota; as d3 has the largest unit revenue r3,

this DM can only increase his total revenue by purchasing a carbon quota. For d2, revenue may be increased by

selling, purchasing, or combining both trading behavior (see Fig. 1).

To make the trading mechanism effective and feasible, DM’s unit selling price should be no less than his initial

unit revenue (i.e., pi ≥ ri), while the unit buying price should be no larger than the fixed unit revenue (i.e., qi ≤ ri).
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Fig. 1 Schematic diagram of carbon quota trading among three regions

Take d2 as an example for detailed analysis: the total revenue for d2’s initial carbon quota is 10 ∗ 80 = 800, and

suppose through optimization consensus modeling, d2’s unit selling and buying prices are derived as p2 = 90 and

q2 = 70, respectively. The parameters for other regions see Fig. 1. Since Tij ∈ [pi, qj ], here we might as well let

the unit transaction price be Tij =
pi+qj

2 , then we derive T12 = 65, T23 = 95, and the transferred carbon quota

quantities related to d2 are assumed to be obtained through mathematical modeling as I12 = 2, I23 = 1. As a result,

d2’s total carbon quota is 10 + 2− 1 = 11, and the new fixed revenue for holding his carbon quota is 11 ∗ 80 = 880,

while the transaction revenue (i.e., the difference between the income from selling carbon quotas and the cost of

buying quotas) is 1 ∗ 95 − 2 ∗ 65 = −35, making d2’s final total revenue of 880 − 35 = 845 be larger than the

initial total revenue of 800. Results in Tables 2 and 3 demonstrate that the final revenue of every region in the

closed-loop trading system has increased with respect to their initial total revenue, indicating that the proposed

trading mechanism is feasible.

4. Optimization consensus modeling concerning carbon quota trading mechanism

Chu & Shen (2006) indicated that the purpose of designing a trading mechanism is to provide a method

for ensuring that the allocation decisions and pricing decisions in decision-making processes result in the desired

outcomes. They also found that, once the allocation principle is set in a truthful mechanism, the prices are

determined; similarly, once the pricing rule is determined, the allocation is settled. Different from the extant

research on the carbon market (Diaz-Rainey & Tulloch, 2018; Gomes & Lins, 2008; Lamba et al., 2019; Ruidas

et al., 2021; Van Steenberghe, 2004; Zhou et al., 2020b; Zou et al., 2021), this section takes the maximization of the
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overall revenue or a single DM’s revenue as the objective function, and uses optimization consensus modeling to

determine the allocation scheme (i.e., determination of variables o
′
i, Iij) and the pricing scheme (i.e., determination

of variables pi, qi, Tij) in the carbon quota trading system.

4.1. Benchmark carbon trading consensus model with overall revenue maximization

To realize Goal 2 (as defined in Section 3), we build the following optimization consensus model (i.e., Model

(3)) to maximize the sum of the revenues of all DMs within the closed-loop trading system as:

max Z1 =
n∑

i=1

rio
′
i

s.t.





o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, i ∈ N (3− 1)

qi ≤ ri ≤ pi, i ∈ N (3− 2)



Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

(3− 3)

o−i ≤ o
′
i ≤ o+i , i ∈ N (3− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, i, j ∈ N (3− 5)

(3)

The objective function Z1 in Model (3) attempts to maximize the final total revenue for all DMs within the carbon

quota trading system. Constraint (3-1) is the expression of di’s final quota, which is equal to the initial quantity

minus all the sold quantities
n∑

j=1,j 6=i

Iij and plus all the purchased quantities
n∑

j=1,j 6=i

Iji, where Iij denotes the

carbon quota quantity transferred from di to dj . Since the sum of all transfer-out quantities equals to the sum

of all transfer-in quantities, we can easily obtain
∑n

i=1 o
′
i =

∑n
i=1 oi through constraint (3-1), corresponding to

the fact that the total carbon quota amount in the closed-loop trading system is fixed. Constraint (3-2) is the

threshold constraint attached to the unit selling price pi and the unit buying price qi based on the pre-defined

initial fixed unit revenue ri. Constraint (3-3) specifies the achievable conditions of the carbon trading between any

two DMs. Namely, only when the seller’s location index is smaller than the purchaser’s index, and the unit selling

price pi is no greater than the unit buying price qj , will the transaction from di to dj be achieved (i.e., Iij ≥ 0).

Constraint (3-4) assumes that di’s final quota is located in his own expected interval provided initially. Constraint

(3-5) indicates that all variables are nonnegative. Hence, Model (3) explores the optimal carbon quota allocation
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problem under the maximization of the overall revenue of the trading system, where Z1, o
′
i, Iij , pi, qi, (i ∈ N) are

decision variables and ri, oi, o
−
i , o

+
i are known parameters. In fact, due to insufficient constraints (e.g., the absence

of specific transaction prices building connections with the unit price variables), only the ranges of pi and qi instead

of their optimal values can be obtained through Model (3).

Theorem 4. There must exist an m-th DM such that
m−1∑
i=1

o−i + o
′
m +

n∑
i=m+1

o+i =
n∑

i=1

oi and o−m ≤ o
′
m ≤ o+m. By

then, the optimal value for the objective function of Model (3) is
m−1∑
i=1

rio
−
i + rmo

′
m +

n∑
i=m+1

rio
+
i and the optimal

solution is o
′
i = o−i (1 ≤ i ≤ m− 1), o

′
m =

n∑
i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′
i = o+i (m+ 1 ≤ i ≤ n).

Proof. First, when o
′
i = o−i (1 ≤ i ≤ m − 1), o

′
m =

n∑
i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′
i = o+i (m + 1 ≤ i ≤ n), there

exists no Iij > 0 to further increase the objective function. That is, except dm, all DMs have reached their critical

points of their expected carbon quota intervals (i.e., [o−i , o
+
i ]), either the lower limit of di (1 ≤ i ≤ m − 1) or the

upper limit of di (m + 1 ≤ i ≤ n), making DMs with a location index smaller than m cannot further sell carbon

quota while DMs with a location index larger than m cannot further buy carbon quota, based on the given condition

as r1 ≤ r2 ≤ ... ≤ rn. In a nutshell, if Iij > 0, the objective function of Model (3) increases to f∗ = f+(rj−ri)∗Iij ,

where f is the total revenue before the transaction. Due to rj ≥ ri, (i < j), we get f∗ ≥ f , indicating that if and only

if Iij = 0, the value of the objective function no longer increases and becomes the optimal value. Thus, the solution

at this point is exactly the optimal solution, and the objective function becomes
m−1∑
i=1

rio
−
i + rmo

′
m +

n∑
i=m+1

rio
+
i .

Next, we prove that this critical DM with the m-th location index always exists. Because o−i ≤ o
′
i ≤ o+i ,

we have
n∑

i=1

rio
−
i ≤

n∑
i=1

rio
′
i ≤

n∑
i=1

rio
+
i . If m = 1, then r1o

−
1 +

n∑
i=2

rio
+
i ≤

n∑
i=1

rio
′
i ≤

n∑
i=1

rio
+
i . If m = 2, then

2∑
i=1

rio
−
i +

n∑
i=3

rio
+
i ≤

n∑
i=1

rio
′
i ≤ r1o

−
1 +

n∑
i=2

rio
+
i . In the same way, if m = n, then

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′
i ≤

n−1∑
i=1

rio
−
i +

rno
+
n . Therefore, once m takes a specific value within the set N ,

n∑
i=1

rio
′
i can take any value from the interval

[
n∑

i=1

rio
−
i ,

n∑
i=1

rio
+
i ], and so the known constraint

n∑
i=1

rio
−
i ≤

n∑
i=1

rio
′
i ≤

n∑
i=1

rio
+
i means that dm must exist such that

o
′
i = o−i (1 ≤ i ≤ m− 1), o

′
m =

n∑
i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
′
i = o+i (m+ 1 ≤ i ≤ n) hold.

Theorem 5. When Model (3) reaches its maximum value, we obtain
n∑

j=1,j 6=i

Iij−
n∑

j=1,j 6=i

Iji = oi−o−i (1 ≤ i ≤ m−1),

n∑
j=1,j 6=m

Imj −
n∑

j=1,j 6=m

Ijm = om −
n∑

i=1

oi +
m−1∑
i=1

o−i +
n∑

i=m+1

o+i ,
n∑

j=1,j 6=i

Iij −
n∑

j=1,j 6=i

Iji = oi − o+i (m+ 1 ≤ i ≤ n).

Proof. Theorem 4 implies that once Model (3) reaches its maximum value, and if 1 ≤ i ≤ m−1, then o
′
i = o−i
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holds, meantime, due to o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, we have
n∑

j=1,j 6=i

Iij −
n∑

j=1,j 6=i

Iji = oi − o−i (1 ≤ i ≤ m− 1).

Similar analysis can be conducted for the rest situations.

Theorems 4 and 5 indicate that the optimal solution of Model (3) and the maximum value of the objective

function exist and are unique. Therefore, the optimal allocation for all DMs’ carbon quotas is determined. In other

words, by solving Model (3), we obtain all information about carbon quota transfers within the trading system.

However, note that only the feasible regions can be obtained by Model (3), rather than the optimal values of the

decision variables pi, qi.

Theorem 6. The achievable constraints of the carbon quota trading mechanism are determined by di’s unit selling

price pi and dj’s unit buying price qj as:





Iij ≥ 0, if pi ≤ qj and i < j, i, j ∈ N

Iij = 0, otherwise

which is equivalent to





Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(4)

where δ is the non-Archimedean infinitesimal, viz. a sufficiently small positive value approaching zero (Charnes

et al., 1994; Mehrabian et al., 2000).

Proof. If i < j, i, j ∈ N , then carbon quota trading between the seller di and the purchaser dj is achievable,

so Iij ≥ 0 holds. Next, we discuss the effect of prices on the transferred quantity: when pi < qj , according to Eq.

(4), we have Iij <
2(qj − pi)

δ
, and because δ is the non-Archimedean infinitesimal, Iij < +∞, that is, Iij ≥ 0 holds;

when pi ≥ qj , based on Eq. (4), we have Iij = 0. In addition, if i ≥ j, i, j ∈ N , the one-way transaction from di to

dj cannot be achieved, so we have Iij = 0. This completes the proof of Theorem 6.

Theorem 6 states the achievable conditions for a closed-loop trading system. Specifically, carbon quota trading

can only be achieved when the unit selling price of one DM with a small location index is no greater than the unit

buying price of another DM with a large location index; otherwise, their carbon quota transaction fails.
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4.2. Carbon trading consensus models with single DM’s revenue maximization

The competition mechanism refers to the struggle among market practitioners to maximize their own economic

benefits, so it focuses more on individual standpoints than the collective perspective. The model developed in

Section 4.1 only maximizes the overall revenue of the trading process, and ignores the individual DM’s interests and

the resulting unfairness issues. This section considers individual DMs as the research object, and uses optimization

consensus models to derive detailed information about the trading process, including the participating DMs, trans-

ferred quantities, and the final unit transaction prices. That is, when the group realizes its optimal allocation by

considering every DM’s revenue maximization, this section attempts to determine not only di’s final carbon quota

o
′
i from its expected interval [o−i , o

+
i ], but also each DM’s psychological expected unit selling and buying prices (i.e.,

pi, qi) and the transferred quantity Iij along with the best achievable unit transaction price Tij . Based on the above

principles, a two-stage programming model is built as:

max Z2 = rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

s.t.









pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(5− 1)





Max
n∑

i=1

rio
′
i

o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, i ∈ N

qi ≤ ri ≤ pi, i ∈ N



Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

o−i ≤ o
′
i ≤ o+i , pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N

(5− 2)

(5)

Model (5) introduces constraint (5-1) into Model (3), that is, adding the expression of the unit transaction price

Tij between DMs di and dj , which is a range bounded by di’s unit selling price pi and dj ’s unit buying price qj . As

stated in Section 3, only the location indices satisfy i < j, i, j ∈ N , and pi ≤ qj holds, can the unit transaction price

between di and dj be denoted as Tij ∈ [pi, qj ]. Here, the unit transaction price Tij obeys a uniform distribution

by default, as each point within the interval [pi, qj ] can be selected with equal possibility, which makes it easy to
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calculate, understand and be applied into real-life GDM. The objective function in Model (5) is the sum of di’s

final carbon quota holding revenue (i.e., rio
′
i) and the transaction revenue for selling or buying carbon quotas (i.e.,

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji), and this value the larger the better. Model (5) indicates that maximizing a single

DM’s revenue is not unconstrained; instead, it should be carried out within the context of maximizing the overall

revenue for the whole group (i.e., constraint (5-2)). Referring to Theorem 4, Model (5) can be further transformed

into Model (6), where constraints (6-2)–(6-9) provide the analytical formula of constraint (5-2). The definitions of

other variables and constraints in Model (6) are consistent with those in Models (3) and (5).

Theorem 4 states that the optimal solution of Model (3) exists and is unique. Thus, there must exist feasible

solutions for Model (6). Actually, constraints (6-6)–(6-8) in Model (6) provide the analytical formula for the DM’s

final carbon quota o
′
i, and are acquired by solving Model (3). Hence, variables Z2, Iij , pi, qi, Tij and m in Model

(6) are decision variables, while ri, oi, o
−
i , o

+
i , δ are known parameters. In short, under the premise of maximizing

the overall revenue, and by further adding the expression of the unit transaction prices, Model (6) determines

the optimal values for di’s unit selling and buying prices (i.e., pi and qi), and further obtains detailed trading

information including the quantity Iij transferred from di to dj and their corresponding unit transaction price Tij .

max Z2 = rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

s.t.









pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(6− 1)

n∑
i=1

rio
′
i =

m−1∑
i=1

rio
−
i + rmo

′
m +

n∑
i=m+1

rio
+
i (6− 2)

o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, i ∈ N (6− 3)

qi ≤ ri ≤ pi, i ∈ N (6− 4)



Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(6− 5)

o
′
i = o−i , 1 ≤ i ≤ m− 1 (6− 6)

o
′
m =

n∑
i=1

oi −
m−1∑
i=1

o−i −
n∑

i=m+1

o+i , o
−
m ≤ o

′
m ≤ o+m (6− 7)

o
′
i = o+i ,m+ 1 ≤ i ≤ n (6− 8)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i, j,m ∈ N (6− 9)

(6)
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4.3. Identification and adjustment rules for discordant DMs

In Section 4.2, we considered the case in which every single DM pursues the maximization of his own revenue,

which inevitably results in unfairness (e.g., the unbalanced growth of the DMs’ revenue). Therefore, this section

examines the potential to achieve a relatively balanced state within the closed-loop carbon quota trading system by

adjusting some DMs’ initial parameters. Once fairness is achieved, DMs with too much revenue growth or too little

revenue growth should no longer exist in the final stage of carbon trading. Any such DMs are collectively referred to

as discordant DMs in the trading system. During CRP, if the DMs’ improper initial parameters can be modified

as early as possible, systemic losses (e.g., cost, time) will be significantly reduced. In short, an earlier intervention

during GDM is more advantageous (Liang et al., 2020). Compared with extant research adopting utility function

(Du et al., 2021) or fuzzy theory (Liu et al., 2021) to characterize the fairness concerns, this paper defines two

indicators to directly judge whether the GDM results are fair, so as to further identify discordant DMs and make

some corresponding adjustments.

Definition 1. An individual development index is defined as a relative proportion of the DM’s final revenue

obtained through the carbon quota trading process with respect to their initial fixed revenue, that is,

Hi =

rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

rioi
, i ∈ N

Definition 2. The group development index is defined as a relative proportion of the final total revenue obtained

through the carbon quota trading process with respect to the initial fixed total revenue of the group, that is,

H̄ =

n∑
i=1

rio
′
i

n∑
i=1

rioi

This section follows the idea of fair development of all DMs in the trading system. By default, the difference

between the individual development index Hi and the group development index H̄ should be within a certain

range, otherwise DMs will be identified as discordant DMs with too much or too little revenue growth. These two

development indices mainly depend on the DM’s final carbon quota o
′
i, which further depends on the endpoints

of the expected interval [o−i , o
+
i ] provided by DM di. Here, we choose interval values instead of crisp numbers to

18



denote di’s expected carbon quota quantity due to various uncertainties (Ruidas et al., 2021). Hence, by adjusting

the expected carbon quota range [o−i , o
+
i ] of discordant DMs, an equilibrium state with a minimum loss can be

achieved within the trading system (see Fig. 2(c)). Let a discordant DM be dk, k ∈ {0, 1, · · · , n}, and his expected

final carbon quota be adjusted from [o−k , o
+
k ] to [o

′−
k , o

′+
k ] through the following adjustment rules.

• When Hk << H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and << denotes far less than, dk

is identified as a discordant DM with too little revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(a), and his adjustment rules are:

– If k > m, then the amount purchased is too little, and so o+k needs to be increased;

– If k < m, then the amount sold is too little, and so o−k needs to be further decreased;

– If k = m, then the current expected interval is improperly set, and we need to simultaneously reduce o−k

and increase o+k .

• When Hk >> H̄ and |Hk − H̄| > γ, where γ is a pre-determined threshold and >> means far more than, dk

is identified as a discordant DM with too much revenue growth. This DM is located in the unbalanced state

shown in Fig. 2(b), and his adjustment rules are:

– If k > m, then the quantity purchased is too great, and so o+k needs to be decreased;

– If k < m, then the amount sold is too great, and so o−k should be increased;

– If k = m, then the current interval of the DM’s expected carbon quota is inappropriate, and we need to

increase o−k and decrease o+k at the same time.

Through the above adjustment rules, a set of updated trading information for all DMs can always be acquired.

Based on the individual/group development indices, we obtain the values of all |Hi − H̄| based on Model (6) so

as to determine the threshold for the variable γ, as well as the difference value |Hi −Hj | between any two DMs.

By repeating the calculations of Models (3) and (6), it is then possible to verify whether the above adjustments

are effective or not. The above rules are used to identify discordant DMs and provide the corresponding direction

of adjustments. However, the identification parameter γ needs to be manually set, and the specific adjustment

range for each DM cannot be accurately specified, that is, we cannot determine by how much each discordant DM
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Fig. 2 Identification of non-equilibrium states in closed-loop carbon trading system

needs to adjust the upper and lower limits of their initial expected carbon quota intervals. To overcome these

deficiencies, a fairness measure variable α is introduced in the next section, and the optimal carbon quota allocation

scheme considering fairness is directly acquired through consensus modeling. Furthermore, by applying a sensitivity

analysis to the variable α, we can obtain flexible allocation schemes according to specific GDM scenarios.

4.4. Carbon trading consensus model regarding fairness and revenue

When only a single DM’s revenue is considered, the overall revenue cannot be maximized; moreover, when

only the overall revenue is taken into account, there can be large gaps between the total revenue of different DMs,

highlighting the unfairness issues. Thus, this section introduces a fairness constraint (that is, the difference between

any two individual development indices should be within a certain acceptable threshold) under the premise of

ensuring the maximization of the overall revenue. Specifically, the fairness constraint is expressed as |Hi −Hj | ≤

α(α ≥ 0, i < j, i, j ∈ N), and the optimization carbon quota consensus model considering both revenue and fairness
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is built as follows:

max Z3 =
n∑

i=1

rio
′
i

s.t.





o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, i ∈ N (7− 1)

qi ≤ ri ≤ pi, i ∈ N (7− 2)



pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(7− 3)





Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(7− 4)

Hi =

rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

rioi
, i ∈ N (7− 5)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (7− 6)

o−i ≤ o
′
i ≤ o+i , qi ≥ 0, pi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (7− 7)

(7)

Z3 in Model (7) aims to maximize the overall revenue after carbon quota trading under the premise that each DMs’

revenue has been fairly developed. Constraint (7-1) is the expression of di’s final carbon quota, which guarantees

n∑
i=1

o
′
i =

n∑
i=1

oi. Constraint (7-2) sets di’s optimal psychological expected unit selling price pi and unit buying price

qi based on his own initial fixed unit revenue ri. Constraint (7-3) denotes the unit transaction price between any

two DMs, and (7-4) provides the achievable conditions for carbon quota trading considering both the DMs’ location

indices (i.e., i, j) and the relationships between pi and qj . Constraint (7-5) defines the individual development index

(i.e., Definition 1), and (7-6) specifies the fairness constraints attached to different DMs, where α ≥ 0 is the fairness

measure variable that is pre-determined from the differences among individual development indices (see Section

4.3). Finally, (7-7) provides the thresholds for all variables. Variables Z3, o
′
i, Iij , pi, qi, Tij , Hi, (i 6= j, i, j ∈ N) in

Model (7) are to be solved, while ri, oi, o
−
i , o

+
i , α, δ, (i ∈ N) are determined in advance.

4.5. Solution method to solve carbon trading consensus models

Clearly, Model (6) is a non-convex optimization problem with many decision variables to be determined. As

the pricing decisions (i.e., variables pi, qi) have no direct effect on the objective function Z2, we remove these two
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variables using constraints (6-1), (6-4), and (6-5), thus obtaining the following relaxation model:

max Z2 = rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

s.t.









Tij = 0, if i ≥ j, i, j ∈ N

ri ≤ Tij ≤ rj , if i < j, i, j ∈ N
(8− 1)

n∑
i=1

rio
′
i = max Z1 (8− 2)

o
′
i = oi −

n∑
j=1,j 6=i

Iij +
n∑

j=1,j 6=i

Iji, i ∈ N (8− 3)




Iij = 0, if i ≥ j, i, j ∈ N

Iij ≤
2(rj − ri)

δ
, if i < j, i, j ∈ N

(8− 4)

o−i ≤ o
′
i ≤ o+i , Iij ≥ 0, Tij ≥ 0, δ > 0, i, j ∈ N (8− 5)

(8)

where Z1 is the maximum value obtained from Model (3), and definitions of other variables and constraints refer to

Model (6). Without loss of generality, Model (6) is the original problem, and the relaxation model (i.e., Model (8))

is its sub-problem, thus the solution of Model (6) can be directly obtained after solving Model (8). In other words,

as the submodel of Model (6), the solution of the relaxation Model (8) doesn’t affect the results of Model (6).

To our knowledge, PSO algorithm was put forward to optimize nonlinear functions based on the initial point

and stopping criteria (Kennedy & Eberhart, 1995), and has been proven to be an effective tool for streamlining

decision making (Cabrerizo et al., 2013; Zhou et al., 2020a). In this paper, a relaxation method based on the PSO

algorithm (i.e., Algorithm 1) is proposed for determining the optimal solution of Model (6). In specific, Algorithm

1 is proposed to solve the original problem (i.e., Model (6)), while PSO algorithm is used to solve its sub-problem

(i.e., Model (8)). Note that, if the selection of parameters (e.g., initial points) is appropriate, a global optimal

solution can be found (Campana et al., 2010; Sun et al., 2012). Generally, the above-mentioned non-convex models

can be linearized and solved using standard exact solvers, but linearization only obtains an approximate solution,

while our proposed relaxation method can derive the equivalent form of the original problem. By adopting similar

principles, a fine-tuning algorithm can be used to solve Model (7), but it is omitted here due to space limitations.
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Algorithm 1 Relaxation method based on PSO algorithm for solving Model (6).

Input: Number of DMs, N ; di’s initial carbon quota, oi; di’s initial fixed unit revenue, ri; di’s expected carbon quota
interval, [o−i , o

+
i ]; the maximum overall revenue obtained from Model (3), Z1; the maximal number of iterations, limit;

population size, M .
Output: di’s final carbon quota, o

′
i; di’s unit selling and buying prices, pi, qi; the transferred quantity, Iij ; the unit trans-

action price, Tij ; the specific DM’s maximum total revenue, Z2.
Step 1: Remove decision variables pi, qi to obtain a relaxation optimization model (see Model (8)), based on constraints

(6-1), (6-4) and (6-5);
Step 2: Use PSO algorithm to solve Model (8);

1: Set current iteration as t = 0;
2: for each particle i do
3: Initialize velocity Vi and position Xi for particle i;
4: Evaluate particle i by the defined fitness function and set pBesti = Xi;
5: end for
6: gBest=min {pBesti};
7: while t¡limit do
8: for i = 1 to M do
9: Update the velocity and position of particle i;

10: Evaluate particle i by the defined fitness function;
11: if fit(Xi) ¡ fit(pBesti) then return pBesti=Xi;
12: end if
13: if fit(pBesti) ¡ fit(gBest) then return gBest = pBesti;
14: end if
15: end for
16: end while
17: Z2= –fit(gBest);

18: return Best solution of o
′
i, Iij , Tij , Z2.

Step 3: Derive the optimal values of pi, qi based on relaxation constraints (6-1) and (6-5) .

5. Numerical analysis

To verify the feasibility of the optimization consensus models proposed in this paper, this section presents a

numerical case study. Suppose there are five regions (d1, d2, d3, d4, d5) in a closed-loop carbon quota trading

system (i.e., N = {1, · · · , 5}). The initial information provided by each region is summarized in Table 4.

Table 4 Summary of the initial trading information provided by five regions

Regions ri oi o−i o+i rioi

d1 12 16 13 19 192

d2 15 20 16 24 300

d3 23 34 27 41 782

d4 34 18 14 22 612

d5 40 12 10 26 480

Total — 100 80 132 2366

Note: di is the i-th region; ri denotes the initial fixed unit revenue; oi is di’s initial carbon quota; o−i and o+i are the lower and upper

limit of di’s initially expected interval, respectively; and rioi is di’s initial carbon quota holding revenue.

23



5.1. Steps of the research on carbon quota trading mechanism

To clarify the construction mechanism described in this paper, five steps are presented below.

Step 1: Referring to Model (3), an optimization carbon trading model is built to achieve overall revenue max-

imization, i.e., to obtain the optimal carbon quota allocation scheme for different regions from the collective per-

spective. Specifically, the carbon quota quantities transferred among regions and the maximum value of the final

total revenue of the system are acquired.

Step 2: Using the maximum overall revenue obtained in Step 1, and by adding the constraint of the unit

transaction price, a series of optimization consensus models are built based on Model (6). Hence, a total of n

allocation schemes are derived by maximizing each region’s revenue, and detailed information such as di’s unit

buying and selling prices, transferred quantities, and unit transaction prices is obtained.

Step 3: Through a comparison of the individual/group development indices, it can be determined whether

regions have developed fairly or not. If not, some discordant regions are identified by a pre-defined threshold γ,

then their initial parameters are adjusted accordingly. Next, the calculations in Steps 1 and 2 are repeated until

the allocation scheme satisfies the fairness requirement.

Step 4: Introduce the fairness measure variable α to build consensus models based on Model (7), so as to directly

obtain fair carbon quota allocation schemes for the five regions in terms of the maximum overall revenue, quantities

of carbon quota transferred, and the unit transaction prices. Additionally, a sensitivity analysis is applied to α to

provide flexible suggestions for authorities involved in the trading system.

Step 5: Conduct a comparison and discussion based on the results obtained in each step.
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5.2. Analysis of the overall revenue maximization model

Based on Model (3), we obtain a closed-loop carbon quota trading system involving the five regions listed in

Table 4. Aiming to maximize the overall revenue, an optimization consensus model is constructed:

max Z1 = 12 ∗ o′
1 + 15 ∗ o′

2 + 23 ∗ o′
3 + 34 ∗ o′

4 + 40 ∗ o′
5

s.t.









o
′
1 = 16−

5∑
j=2

I1j +
5∑

j=2

Ij1; o
′
2 = 20−

5∑
j=1,j 6=2

I2j +
5∑

j=1,j 6=2

Ij2

o
′
3 = 34−

5∑
j=1,j 6=3

I3j +
5∑

j=1,j 6=3

Ij3; o
′
4 = 18−

5∑
j=1,j 6=4

I4j +
5∑

j=1,j 6=4

Ij4

o
′
5 = 12−

4∑
j=1

I5j +
4∑

j=1

Ij5

(9− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (9− 2)



Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(9− 3)

13 ≤ o′
1 ≤ 19, 16 ≤ o′

2 ≤ 24, 27 ≤ o′
3 ≤ 41, 14 ≤ o′

4 ≤ 22, 10 ≤ o′
5 ≤ 26 (9− 4)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, δ > 0, i, j ∈ N (9− 5)

(9)

The objective function in Model (9) aims to maximize the total holding revenue for all five regions through the

carbon quota trading process, where o
′
i, i ∈ N is the final quota for the i-th region, which is restricted by both (9-1)

and (9-4). Constraints (9-2)–(9-3) concern the unit selling and buying prices, and the transferred quantity for each

region. δ in constraint (9-3) is a non-Archimedean infinitesimal, and hereafter it is set as δ = 10−6. The optimal

solution of Model (9) is presented in Table 5.

Table 5 Optimal solution of Model (9) with overall revenue maximization

Regions ri o
′
i rio

′
i Iij Value-I

d1 12 13 156 (1,5) 3

d2 15 16 240 (2,5) 4

d3 23 27 621 (3,5) 7

d4 34 18 612

d5 40 26 1040

Total — 100 2669 — —

Note: di denotes the i-th region; ri denotes the initial fixed unit revenue of carbon quota; o
′
i is di’s final carbon quota; rio

′
i is di’s final

carbon quota holding revenue; and Iij denotes the quantity transferred from di to dj .

The results in Table 5 show that the maximum value of the objective function in Model (9) is 2669. According

to Theorem 4, the critical region within the trading system is d4, namely, m = 4. When i < m, the regions with
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small original fixed unit revenues are d1, d2, d3. These regions can increase their revenue by selling carbon quotas,

and their final quotas are the lower limit of their original expected intervals, namely 13, 16, and 27, respectively

(i.e., o−i in Table 4). When i > m, i.e., for d5, the only way to increase revenue is to purchase carbon quotas, and

the final quota for this region is the upper limit of the original interval, namely 26 (i.e., o+i in Table 4). Moreover,

the final quota for d4 is located in the initial range, and the data of Iij show that region d4 does not become involved

in the trading. In summary, Theorem 4 has been verified. Region d1 sold three carbon quota units to d5; region

d5 bought three, four, and seven carbon quota units from regions d1, d2, d3, respectively, making its total buying

quantity 3 + 4 + 7 = o
′
5 − o5 = 26− 12 = 14. The transferred quantities for the remaining regions can be obtained

in the same way. Thus, Theorem 5 has also been verified. Note that the revenue for each region in Table 5 only

involves the fixed revenue for holding a certain carbon quota, while the transaction revenue from the trading of

carbon quotas is not included.

5.3. Analysis of the single-region revenue maximization model

Model (9) can only provide feasible regions for variables pi, qi, (i ∈ N), rather than their optimal values (see

Section 4.1). Therefore, we construct Model (10) to acquire these optimal values under the objective of maximizing

the revenue of individual regions, which follows the research ideas of Models (5) and (6). Obviously, we obtain five

allocation schemes, one for each of the five regions taking part in the carbon quota trading process. For brevity,
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only the model that maximizes revenue for d4 is illustrated here.

max Z2 = 34 ∗ o′
4 +

5∑
j=1,j 6=4

T4jI4j −
5∑

j=1,j 6=4

Tj4Ij4

s.t.









pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(10− 1)

12 ∗ o′
1 + 15 ∗ o′

2 + 23 ∗ o′
3 + 34 ∗ o′

4 + 40 ∗ o′
5 = 2669 (10− 2)




o
′
1 = 16−

5∑
j=2

I1j +
5∑

j=2

Ij1; o
′
2 = 20−

5∑
j=1,j 6=2

I2j +
5∑

j=1,j 6=2

Ij2

o
′
3 = 34−

5∑
j=1,j 6=3

I3j +
5∑

j=1,j 6=3

Ij3; o
′
4 = 18−

5∑
j=1,j 6=4

I4j +
5∑

j=1,j 6=4

Ij4

o
′
5 = 12−

4∑
j=1

I5j +
4∑

j=1

Ij5

(10− 3)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (10− 4)



Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(10− 5)

13 ≤ o′
1 ≤ 19, 16 ≤ o′

2 ≤ 24, 27 ≤ o′
3 ≤ 41, 14 ≤ o′

4 ≤ 22, 10 ≤ o′
5 ≤ 26 (10− 6)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, δ > 0, i ∈ N (10− 7)

(10)

The objective function Z2 in Model (10) is the maximum total revenue that can be achieved by region d4 through

carbon trading. This is composed of fixed revenue for holding carbon quotas (i.e., 34 ∗ o′
4) and transaction revenue

for trading behavior (i.e.,
5∑

j=1,j 6=4

T4jI4j−
5∑

j=1,j 6=4

Tj4Ij4). Constraint (10-2) ensures that the above trading is carried

out under the premise of maximizing the overall revenue, where 2669 is the maximum value obtained by solving

Model (9). Other definitions see Model (9). Using Algorithm 1, the optimal solution of Model (10) is presented in

Table 6, while the results of maximizing the revenue for other regions see Table A1. Here, all the demand parameters

in Algorithm 1 are set as N = 5, Z1 = 2669, limit = 5000 and M = 50. In addition, the values for oi, ri, o
−
i , o

+
i

refer to Table 4 and the parameters regarding the PSO algorithm are set in Matlab R2016a by default.

The decision variable o
′
i in Model (6) is directly given by constraints (6-6)–(6-8), but needs to be solved under

constraints (10-3) and (10-6) in Model (10). The results in Tables 6 and A1 indicate that, regardless of which region’s

revenue is maximized, the optimal allocation scheme is fixed and consistent with the results obtained in Section

5.2, that is, o
′
1 = 13, o

′
2 = 16, o

′
3 = 27, o

′
4 = 18, o

′
5 = 26. Moreover, the unit selling and buying prices of each region
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Table 6 Optimal solution of Model (10) with d4’s revenue maximization

Regions o
′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915

d2 16 15 15 (2,4) 4 15 1.0000 0.1281

d3 27 23 23 (3,4) 7 23 1.0000 0.1281

d4 18 34 34 (4,5) 14 40 1.4951 0.3670

d5 26 [40,+∞) 40 1.0000 0.1281

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;

and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.

are also consistent, although the transferred quantities, corresponding unit transaction prices, and the individual

development indices differ in each model. Note that, the values of p5, q1 are intervals due to the reason that they

are subjected to unilateral constraints of corresponding Tij . In fact, these are auxiliary variables for realizing the

trading process, because d1 cannot purchase carbon quotas and d5 cannot sell carbon quotas considering their fixed

order of unit revenues. Optimal values of all Tij , (i, j ∈ N) are provided during the calculation, but most are

omitted here because they don’t affect our analysis on the results.

The relationship between the individual development index Hi and the group development index H̄ is now

analyzed to identify whether there exist some discordant regions with too much or too little revenue growth.

First, based on
∑5

i=1 rioi = 2366 in Table 4 and
∑5

i=1 rio
′
i = 2669 in Table 5, we derive the group development

index as H̄ =
2669

2366
= 1.128064. Based on the data in Tables 4, 5, and 6, individual development indices for

each region can then be computed. Taking d4 as an example, H4 =
r4o

′
4 + T45I45 − T14I14 − T24I24 − T34I34

r4o4
=

34 ∗ 18 + 14 ∗ 40− 3 ∗ 12− 4 ∗ 15− 7 ∗ 23

34 ∗ 18
= 1.4951. The individual development indices in Tables 6 and A1 can

be derived using a similar calculation method.

5.4. Identification and parameter adjustment of discordant regions

Using the individual development indices Hi in Table A1, we obtain the absolute values of the differences in

development indices between each region and the group (i.e., |Hi − H̄|) or the absolute difference between any two

regions (i.e., |Hi − Hj |). Generally, in actual GDM problems, we can always judge whether the development of

different regions is balanced, namely, we can always pre-determine a threshold γ to identify discordant regions.

To determine the value of the parameter γ, Table 7 summarizes various development indices based on Table A1,

including the maximum, minimum, and mean for the abovementioned difference values. Numbers in bold font
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indicate relatively large values in each column, which require more attention.

Table 7 Summary of the development indices under the region’s revenue maximization

Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3094 0 0.1461 0.4375 0 0.2336

0.4853 0.0396 0.1692 0.6133 0 0.2789

0.2594 0.1281 0.1543 0.3875 0 0.1550

0.3670 0.1281 0.1759 0.4951 0 0.1980

0.5032 0.1281 0.2031 0.6313 0 0.2525

Referring to the adjustment rules designed in Section 4.3, the initial parameters provided by discordant regions,

namely, their predetermined expected carbon quota interval [o−i , o
+
i ], will be adjusted accordingly. If we set γ = 0.5,

then only d5 is identified as a discordant region with too much revenue growth. However, if the difference between

the development indices of any two regions is considered, the corresponding maximum values for d2, d5 should be

considered, as they are both greater than 0.6. Thus, the threshold for the parameter is adjusted to γ = 0.45. Liang

et al. (2020) concluded that the shorter the time required to reach a consensus, the more necessary it is to make

greater adjustments to the initial opinions. Initially concluded from a phenomenon of 20% people possessing 80%

of the wealth in the world, the 80/20 Rule (i.e., the Pareto principle) is now extended to a fact that an optimal

ratio exists between the effort and gain. In other words, once we change 20% of the key factors, qualitative change

will occur, implying that we can derive enough (like 80% of) expected results on that critical point. Therefore, we

may wish to adjust the endpoints of the expected carbon quota interval by 20% of their initial values. Because d2

sold too much of his quota, the quota interval is adjusted from [16, 24] to [20, 24]; and as d5 purchased too much

carbon quota, his expected range is adjusted from [10, 26] to [10, 23.6]. Here, taking d2 as an instance for specific

explanation. Acted as a seller, d2 needs to decrease its sales volum to reduce its revenue growth, so d2 increases

its lower limit by adding 20% of its initial carbon quota (i.e., o2), thus we derive the adjusted lower limit of d2’s

expected interval as 16 + 20% ∗ 20 = 20. Distinguished from d2, the buyer d4 should decrease its upper limit so as

to possess less carbon quota at the end.

After repeating the calculations of Models (3) and (6), new allocation schemes are obtained. For brevity, the

specific calculation models are omitted here. Using updated information, the new optimal allocation scheme for

overall revenue maximization is as presented in Table 8; the schemes maximizing different region’s revenue are
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presented in Table A2. Table 9 provides an updated summary of the development indices after adjusting the initial

parameters of d2, d5 by 20% of their initial carbon quotas.

Table 8 Optimal solution for maximizing overall revenue after adjusting the initial parameters of d2, d5

Regions ri o
′
i rio

′
i Iij Value-I

d1 12 13 156 (1,2) 3

d2 15 20 300 (2,5) 3

d3 23 27 621 (3,5) 7

d4 34 16.4 557.6 (4,5) 1.6

d5 40 23.6 944

Total — 100 2578.6 — —

Note: Definitions of notation see Table 5.

Table 9 Summary of the development indices under the region’s revenue maximization after adjusting the initial

parameters of d2, d5

Difference between individual and group |Hi − H̄| Difference between individuals |Hi −Hj |
Maximum Minimum Average Maximum Minimum Average

0.3476 0.0064 0.1211 0.4375 0 0.2073

0.1901 0.0064 0.0896 0.2800 0 0.1443

0.1697 0.0699 0.1018 0.2596 0 0.1078

0.2575 0.0899 0.1234 0.3474 0 0.1390

0.3531 0.0899 0.1425 0.4429 0 0.1772

Results in Tables 7 and 9 show that the unfairness in the system is ameliorated by adjusting the initial parameters

of d2, d5. Specifically, the maximum difference between the individual and group development indices drops from

0.5032 to 0.3531, while the maximum difference between any two regions drops from 0.6313 to 0.4429. In fact, if

policy-makers are not satisfied with the results in Table 9, they may repeat the above calculations. The maximum

value of each region’s revenue declines in most scenarios because the total transaction amount decreases as the

overall revenue drops from 2669 to 2578.6 (see column Z2 in Tables A1 and A2). Note that the identification of

discordant regions, adjustment of their parameters, and fairness of the final result all depend on the experience of

the policy-makers. In addition, the adjustment range of the initial parameters for those discordant regions has a

significant influence on the number of adjustments and the final allocation scheme of the trading system. Obviously,

the “fairness” reached through the above strategy is effective, but subjective and rather complicated.

5.5. Analysis regarding both fairness and revenue

Based on Table 4 and Model (7), this section considers the optimization consensus model (i.e., Model (11)) for

obtaining a relatively fair carbon quota allocation scheme with the goal of maximizing the final overall revenue
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within the closed-loop trading system.

max Z3 = 12 ∗ o′
1 + 15 ∗ o′

2 + 23 ∗ o′
3 + 34 ∗ o′

4 + 40 ∗ o′
5

s.t.









o
′
1 = 16−

5∑
j=2

I1j +
5∑

j=2

Ij1; o
′
2 = 20−

5∑
j=1,j 6=2

I2j +
5∑

j=1,j 6=2

Ij2

o
′
3 = 34−

5∑
j=1,j 6=3

I3j +
5∑

j=1,j 6=3

Ij3; o
′
4 = 18−

5∑
j=1,j 6=4

I4j +
5∑

j=1,j 6=4

Ij4

o
′
5 = 12−

4∑
j=1

I5j +
4∑

j=1

Ij5

(11− 1)

q1 ≤ 12 ≤ p1, q2 ≤ 15 ≤ p2, q3 ≤ 23 ≤ p3, q4 ≤ 34 ≤ p4, q5 ≤ 40 ≤ p5 (11− 2)



pi ≤ Tij ≤ qj , if pi ≤ qj , i < j, i, j ∈ N

Tij = 0, otherwise

(11− 3)





Iij ≤
|qj − pi|+ qj − pi

δ
, i < j, i, j ∈ N

Iij = 0, otherwise

(11− 4)

13 ≤ o′
1 ≤ 19, 16 ≤ o′

2 ≤ 24, 27 ≤ o′
3 ≤ 41, 14 ≤ o′

4 ≤ 22, 10 ≤ o′
5 ≤ 26 (11− 5)

Hi =

rio
′
i +

n∑
j=1,j 6=i

TijIij −
n∑

j=1,j 6=i

TjiIji

rioi
, i ∈ N (11− 6)

|Hi −Hj | ≤ α, i < j, i, j ∈ N (11− 7)

pi ≥ 0, qi ≥ 0, Iij ≥ 0, Tij ≥ 0, Hi ≥ 0, δ > 0, α ≥ 0, i, j ∈ N (11− 8)

(11)

Z3 in Model (11) maximizes the overall revenue of the carbon quota trading system. Constraint (11-1) describes the

relationship between the final quotas and the carbon quotas transferred by each region, and
n∑

i=1

o
′
i = 100. Constraints

(11-2)–(11-4) concern the unit buying and selling prices, the unit transaction prices and transferred quantities, where

δ is a pre-determined non-Archimedean infinitesimal. Constraint (11-5) is the threshold for decision variable o
′
i,

and (11-6) defines the individual development index. Constraint (11-7) is the fairness restriction, where α is the

pre-determined fairness measure variable. Other variables are consistent with those in Model (7).

Table 10 presents the solution set for Model (11) when the fairness measure variable α = 0. At this time, the

trading system achieves an absolutely fair state, that is, all individual development indices are equal to the group

development index of 1.1281. The results of a sensitivity analysis of α are given in Table B1, and show that any

value of α in the interval [0,0.5] gives an optimal value of the objective function of 2669. The final carbon quotas

for all regions are also fixed to o
′
1 = 13, o

′
2 = 16, o

′
3 = 27, o

′
4 = 18, o

′
5 = 26.
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Table 10 Solutions to Model (11) when α = 0

Regions pi qi Iij Value-I Value-T Iij Value-I Value-T Hi

d1 15 [0,12] (1,2) 0.09 15 (2,5) 1.82 36.15 1.1281

d2 15 15 (1,3) 1.54 23 (3,4) 5.36 34 1.1281

d3 34 23 (1,4) 1.37 17.36 (3,5) 3.51 34 1.1281

d4 36.15 34 (2,3) 0.32 15 (4,5) 8.68 36.15 1.1281

d5 [40,+∞) 36.15 (2,4) 1.95 15 1.1281

Note: Definitions of notation see Table 6.

Tables 10 and B1 show that, as the fairness measure variable α gradually decreases, although the final carbon

quota of each region o
′
i is fixed, the transaction frequency significantly increases, implying that carbon quotas are

fully traded within the system. Besides, when α is greater than 0.1, the variables pi, qi for each region are fixed,

but when α ≤ 0.1, those pricing decisions change. Overall, the introduction of the fairness measure changes the

allocation schemes by increasing the number of trading paths in the system. Clearly, as the closed-loop carbon

quota trading mechanism gradually complicates the transaction process, a state of absolute fairness is finally reached,

namely, sufficient interactions among regions are achieved as the fairness measure variable decreases to zero.

5.6. Discussion

To verify the rationality and effectiveness of the proposed models in the paper, this section has considered the

example of carbon quota trading among five regions. Our optimization consensus models can derive the optimal

allocation scheme from the global perspective (i.e., the moderator’s perspective in GDM), and can also obtain

allocation schemes from different DM’s perspectives, in which the maximization of each region’s revenue is the

modeling goal. The following findings can be elicited from our results:

• Consensus modeling to maximize the overall revenue can obtain the optimal allocation scheme for the whole

group, but cannot identify specific pricing decisions. Moreover, the final carbon quotas of different regions

obtained from the models that maximize each region’s revenue are the same as those obtained from the former

modeling mechanism. That is, the optimal values of o
′
i are fixed. However, detailed trading information, such

as the trading regions involved and the unit transaction prices, change with the specific region being studied

(see Tables 5, A1, 8, and A2).

• The unit selling and buying prices of each region (i.e., variables pi, qi) derived from the proposed optimization

consensus models do not change according to which region’s revenue is being maximized (see Tables A1 and
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A2) and do not depend on the value of the fairness measure variable (see Table B1). This indirectly implies

that the carbon quota trading mechanism discussed in this paper is robust to some extent.

• For the two strategies proposed to deal with the unfairness issue within the trading system, adjusting the initial

parameters of discordant regions is effective (see Tables 7 and 9), but complicated in practice. In addition, the

parameter γ for identifying discordant regions, the adjustment range for each region, and whether the final

allocation scheme meets the GDM requirements are all subjective (see Section 5.4). In contrast, the strategy

of directly introducing the fairness measure variable α is convenient and effective, and further sensitivity

analysis enables feasible allocation schemes to be obtained (see Tables 10 and B1).

• The introduction of the fairness measure variable increases the number of trading paths among different regions

(see Tables 10 and B1), meaning that absolute fairness within the closed-loop system is realized only when

carbon quotas are fully traded among different regions. Thus, sufficient interactions among participators are

highly significant in achieving consensus or the pursuit of DMs’ balanced development during a GDM process.

6. Conclusion

This paper has described the use of optimization consensus modeling theory to explore theoretical innovations

regarding flexible carbon trading mechanisms. Specifically, we have investigated essential carbon quota allocation

schemes within a closed-loop trading system with the aim of ensuring both revenue maximization and fairness.

First, the optimal carbon quota allocation scheme was derived by maximizing the overall revenue through Model (3).

Then, its analytical formula and the achievable conditions for successful trading were provided through theoretical

deduction. Next, simultaneously taking the group revenue maximization and the competition mechanism into

account, models for deriving the optimal allocation schemes by maximizing individual’s revenues were constructed

as Models (5) and (6). Since conflicts of interest are the main reasons for the failure of GDM in the real world,

individual/group development indices were defined as Definitions (1) and (2), and two fairness strategies were

further presented. The former is based on calculating the difference between the development indices, with fairness

achieved through the identification of discordant DMs and the adjustment of their initial parameters. The latter

introduces a fairness measure variable, allowing fair allocation schemes to be directly obtained from Model (7).

Finally, a numerical example was conducted to demonstrate the performance of the proposed models.
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The results show that the final carbon quotas of all regions can be determined through the proposed consensus

models, but detailed trading information (including the participating regions and the unit transaction prices) can

only be acquired through the models that focus on single-region revenue maximization. In addition, the strategies

for dealing with the unfairness issue are both practical and effective, but the second strategy of directly introducing

a fairness measure variable is more objective and easier to operate. Finally, the results of a sensitivity analysis of

the fairness measure variable show that, as the variable decreases to zero, that is, when the group approaches the

state of absolute fairness, the frequency of DMs’ transactions within the group increases significantly, corresponding

to the fact that reaching fairness within a group requires sufficient interactions among DMs.

In the future, some varaibles in our proposed models will be comprehensively determined to be more in line

with real-life, for example, price variables are no longer static and could be accurately positioned by combining

with game theory (Liu et al., 2021; Zheng et al., 2019). In addition, trading mechanisms should also focus on some

critical factors, such as risk or utility (Zheng & Chang, 2021) in practical markets, rather than only considering

the allocation and pricing decisions from the revenue maximization perspective. Moreover, with large-scale GDM

problems (Dong et al., 2018; Zhang et al., 2017), especially under social network contexts (Liu et al., 2019; Wu

et al., 2019), attracting increased attention, the use of artificial intelligence methods (Ding et al., 2020) to solve

large-scale trading issues will also be a focus of our subsequent research.

Appendix A. Results with single region’s revenue maximization

Based on Sections 4.2 and 4.3, Table A1 lists the optimal solutions (including o
′
i, pi, qi, Iij , Tij , and Z2) to Model

(6) and the values of the development indices (including Hi and |Hi − H̄|) in the case of each region maximizing

its revenue (note: the specific region discussed in Model (6) is marked with ? in the first column in Table A1).

Moreover, Table A2 exhibits the corresponding results after the initial parameters of d2, d5 have been adjusted by

20% of their initial carbon quotas.

Appendix B. Sensitivity analysis of the fairness measure variable

If the fairness measure variable α in Model (11) is decreased from 0.5 at intervals of 0.1, then the optimal

solutions of the above optimization consensus model are as listed in Table B1.
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Table A1 Optimal solution of Model (6) with different region’s revenue maximization

Regions o
′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

?d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3094

276

d2 16 15 15 (2,4) 2.10 15 1.0000 0.1281

d3 27 23 23 (2,5) 1.90 15 1.0000 0.1281

d4 18 34 34 (3,4) 3.50 23 1.1280 0

d5 26 [40,+∞) 40 (3,5) 3.50 23 1.2930 0.1650

– – – – (4,5) 5.60 34 – –

d1 13 12 [0,12] (1,2) 3 12 1.0000 0.1281

484

?d2 16 15 15 (2,5) 7 40 1.6133 0.4853

d3 27 23 23 (3,4) 3.50 23 1.0000 0.1281

d4 18 34 34 (3,5) 3.50 23 1.0629 0.0652

d5 26 [40,+∞) 40 (4,5) 3.50 34 1.1677 0.0396

d1 13 12 [0,12] (1,3) 3 12 1.0000 0.1281

1085

d2 16 15 15 (2,3) 4 15 1.0000 0.1281

?d3 27 23 23 (3,5) 14 40 1.3875 0.2594

d4 18 34 34 1.0000 0.1281

d5 26 [40,+∞) 40 1.0000 0.1281

d1 13 12 [0,12] (1,4) 3 12 1.0000 0.1281

915

d2 16 15 15 (2,4) 4 15 1.0000 0.1281

d3 27 23 23 (3,4) 7 23 1.0000 0.1281

?d4 18 34 34 (4,5) 14 40 1.4951 0.3670

d5 26 [40,+∞) 40 1.0000 0.1281

d1 13 12 [0,12] (1,5) 3 12 1.0000 0.1281

783

d2 16 15 15 (2,5) 4 15 1.0000 0.1281

d3 27 23 23 (3,5) 7 23 1.0000 0.1281

d4 18 34 34 1.0000 0.1281

?d5 26 [40,+∞) 40 1.6313 0.5032

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;

and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table A2 Optimal solution of Model (6) with different region’s revenue maximization after adjusting the initial

parameters of d2, d5

Regions o
′
i pi qi Iij Value-I Value-T Hi |Hi − H̄| Z2

?d1 13 12 [0,12] (1,5) 3.00 40 1.4375 0.3476

276

d2 20 15 15 (3,4) 4.64 23 1.0000 0.0899

d3 27 23 23 (3,5) 2.36 23 1.0000 0.0899

d4 16.4 34 34 (4,5) 6.24 34 1.0835 0.0064

d5 23.6 [40,+∞) 40 1.1615 0.0716

d1 13 12 [0,12] (1,2) 3.00 12 1.0000 0.0899

384

?d2 20 15 15 (2,5) 3.00 40 1.2800 0.1901

d3 27 23 23 (3,4) 4.64 23 1.0000 0.0899

d4 16.4 34 34 (3,5) 2.36 23 1.0835 0.0064

d5 23.6 [40,+∞) 40 (4,5) 6.24 34 1.1615 0.0716

d1 13 12 [0,12] (1,3) 3 12 1.0000 0.0899

985

d2 20 15 15 (3,5) 10 40 1.0000 0.0899

?d3 27 23 23 (4,5) 1.6 34 1.2596 0.1697

d4 16.4 34 34 1.0000 0.0899

d5 23.6 [40,+∞) 40 1.0200 0.0699

d1 13 12 [0,12] (1,4) 3 12 1.0000 0.0899

824.6

d2 20 15 15 (3,4) 7 23 1.0000 0.0899

d3 27 23 23 (4,5) 11.6 40 1.0000 0.0899

?d4 16.4 34 34 1.3474 0.2575

d5 23.6 [40,+∞) 40 1.0000 0.0899

d1 13 12 [0,12] (1,5) 3 12 1.0000 0.0899

692.6

d2 20 15 15 (3,5) 7 23 1.0000 0.0899

d3 27 23 23 (4,5) 1.6 34 1.0000 0.0899

d4 16.4 34 34 1.0000 0.0899

?d5 23.6 [40,+∞) 40 1.4429 0.3531

Note: o
′
i is di’s final carbon quota; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with

Value-I as its specific value and Value-T as its corresponding unit transaction price; Hi, H̄ are individual/group development index;

and Z2 is the optimal value of the objective function regarding single DM’s revenue maximization.
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Table B1 Sensitivity of the results to the fairness measure variable α

Regions pi qi Iij Value-I Value-T Hi α

d1 12 [0,12] (1,5) 3 40 1.4375

0.5

d2 15 15 (2,5) 4 40 1.3333

d3 23 23 (3,5) 7 40 1.1522

d4 34 34 1.0000

d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 0.42 23 1.4000

0.4

d2 15 15 (1,5) 2.58 40 1.3333

d3 23 23 (2,5) 4 40 1.1614

d4 34 34 (3,5) 7.42 40 1.0000

d5 [40,+∞) 40 1.0000

d1 12 [0,12] (1,3) 1.55 23 1.3000

0.3

d2 15 15 (1,5) 1.45 40 1.3000

d3 23 23 (2,5) 4 37.5 1.1859

d4 34 34 (3,5) 8.55 40 1.0000

d5 [40,+∞) 40 1.0208

d1 12 [0,12] (1,3) 2.68 23 1.2000

0.2

d2 15 15 (1,5) 0.32 40 1.2000

d3 23 23 (2,5) 4 30 1.2000

d4 34 34 (3,5) 9.68 39.15 1.0000

d5 [40,+∞) 40 1.1004

d1 15 [0,12] (1,3) 1.15 23 1.0946

0.1

d2 23 15 (1,4) 1.85 15 1.1358

d3 34 23 (2,5) 4 25.19 1.1186

d4 40 34 (3,4) 1.93 34 1.0946

d5 [40,+∞) 40 (3,5) 6.22 34.51 1.1946

— — — (4,5) 3.78 40 —

Note: di denotes the i-th region; pi, qi are di’s unit selling and buying prices; Iij is the quantity transferred from di to dj with Value-I

as its specific value and Value-T as the corresponding unit transaction price; Hi is the individual development index; and α is the

fairness measure variable.
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