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A B S T R A C T   

The box-counting (BC) algorithm is one of the most popular methods for calculating the fractal dimension (FD) of 
binary data. FD analysis has many important applications in the biomedical field, such as cancer detection from 
2D computed axial tomography images, Alzheimer’s disease diagnosis from magnetic resonance 3D volumetric 
data, and consciousness states characterization based on 4D data extracted from electroencephalography (EEG) 
signals, among many others. Currently, these kinds of applications use data whose size and amount can be very 
large, with high computation times needed to calculate the BC of the whole datasets. In this study we present a 
very efficient parallel implementation of the BC algorithm for its execution on Graphics Processing Units (GPU). 
Our algorithm can process 2D, 3D and 4D data and we tested it on two platforms with different hardware 
configurations. The results showed speedups of up to 92.38 × (2D), 57.27 × (3D) and 75.73 × (4D) with respect 
to the corresponding CPU single-thread implementations of the same algorithm. Against an OpenMP multi- 
thread CPU implementation, our GPU algorithm achieved speedups of up to 16.12 × (2D), 6.86 × (3D) and 
7.49 × (4D). We have also compared our algorithm to a previous GPU implementation of the BC algorithm in 3D, 
achieving a speedup of up to 4.79 × . Finally, as a practical application of our GPU BC algorithm a study 
comparing the FD of 4D data extracted from the EEGs of a schizophrenia patient and a healthy subject was 
performed. The computation time for processing 40 4D matrices was reduced from three hours (sequential CPU) 
to less than three minutes with our GPU algorithm.   

1. Introduction and background 

The box-counting (BC) algorithm [1] is one of the most-widely used 
methods for estimating the fractal dimension (FD) of a signal. 
Computing the FD [2] has relevant applications in many areas, espe-
cially in the biomedical field. The FD has been successfully used for 
diagnosing cancer [3,4], characterizing brain atrophy associated with 
several neurodegenerative diseases [5,6], and determining conscious-
ness and unconsciousness states in sleeping and sedated subjects [7], 
among other biomedical applications. These applications are charac-
terized by using large and multidimensional data such as 2D computed 
axial tomography images, 3D volumetric data from magnetic resonance 
imaging and 4D data extracted from electroencephalography re-
cordings, respectively. 

Basically, the FD of a binarized image (a typical example in 2D) can 
be computed as the least-square linear fit of log(n(s)) against log(1/s), 
where n(s) is the BC for the grid of size s. The BC of the grid of size s is 
computed as the number of boxes of size s that contain any non-zero 

pixels of the image. Equivalent definitions can be made for volumes in 
3D and 4D (the fourth dimension is time), considering grids and boxes in 
the respective dimensions. 

The computational cost of the BC algorithm when applied on large 
datasets of 2D, 3D or 4D data can be very high [8–10]. Moreover, several 
FD applications require real-time processing such as object recognition 
[11,12] and diagnosis based on time-dependent biomedical data [13]. 
The need for improving the computation cost of the BC algorithm 
appeared more than two decades ago [14], and this need is now even 
more crucial in many current applications and research areas. 

To the best of our knowledge, only a few studies have provided 
efficient implementations of the BC algorithm. Hou et al. [15] developed 
a BC algorithm based on identifying each box through the binary rep-
resentation of its coordinates. Then a sorted list with this binary repre-
sentation of all non-zero boxes is used to rapidly identify which boxes 
are covered in each grid of size r. This algorithm, although efficient, was 
designed for executing in a sequential mode, with some other im-
provements such as the one presented in [16]. A fast parallel GPU 
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implementation of this algorithm was provided by Jiménez et al. in [17]. 
This parallel BC algorithm was implemented in CUDA (Compute Unified 
Device Architecture) [18] and achieved an average speedup of 28 ×
regarding the CPU version of the algorithm. 

In this study we also present a fast GPU implementation of the BC 

algorithm using CUDA. Our approach is based on a kernel that is able to 
compute and combine the BC of each individual grid in a very simple 
and efficient way in parallel. This fact allowed us to obtain particular-
ized fast implementations of the BC algorithm for computing the FD of 
2D, 3D and 4D data. 

Fig. 1. Box occupancy computation in each step of the BC algorithm.  
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The main contributions of our proposal are: (1) We provide, to the 
best of our knowledge, the fastest GPU implementation of the BC algo-
rithm in the literature. (2) Our fast BC algorithm can be run in any PC 
equipped with a GPU, which allows the researchers to process large 
datasets without the need for a supercomputer. (3) Our GPU algorithm 
was carefully designed to minimize GPU-CPU data transfers, computing 
the BC through very simple and efficient bit operations (avoiding 
divergent branches), and providing a launch configuration based on the 
optimal GPU multiprocessor occupancy; as a result, our GPU algorithm 
performs much faster than the single and multi-core CPU versions. (4) 
We provide particularized CUDA implementations of the BC algorithm 
for processing data in 2D, 3D and 4D, which covers a wide spectrum of 
possible datasets. (5) Finally, we also provide the source code of our GPU 
algorithms. 

In the rest of the paper, we first describe the BC algorithm and 
explain how we have implemented it in GPU with CUDA. Next, we show 
the performance analysis of our CUDA algorithms for two different 
hardware platforms. Then we also compare the performance of our GPU 
BC algorithm against previous GPU implementations. Finally, we tested 
our BC algorithm in a biomedical context comparing the 4DFD of 
reconstructed EEG sources from a patient with schizophrenia and a 
healthy control while they were resting with open eyes. 

2. Computational methods and theory 

2.1. The BC algorithm 

The FD of an ideal fractal set F ∈ Rd is computed by using the BC 
algorithm as follows [1,2]: 

FD(F) =
log(n(s))
log

(
1
s

) (1)  

where n(s) is the number of boxes of scale sd that are required to 
completely cover the fractal set F. If set F is not an ideal fractal, for 
example an image in 2D or a voxelized volume in 3D, then the FD is 
estimated as the linear regression of log(n(s)) against log

( 1
s
)

for several 
values of s. 

Biswas et al. [19] proposed a theoretical parallel version of the BC 
algorithm based on a Single Instruction-Multiple Data (SIMD) model 
with shared memory. This implementation selected a set of grid sizes sd 

with s as a power of two. These grid sizes are a subset of all possible grid 
sizes, and therefore the FD value obtained by linear regression is almost 
identical to that obtained with all possible grid sizes. This selection of 
grid sizes allows the BC algorithm to perform efficiently in parallel, 
avoiding the need to traverse the boxes of set F again and again for each 
value of s. However, only the algorithmic complexity of the algorithm 
was shown in Biswas et al.’s study, without providing any imple-
mentation nor experimental result. In the present study we used the grid 
sizes selection and how the combination of results in each grid is per-
formed in Biswas et al.’s BC algorithm as the base of our parallel 
implementation. 

In order to compute the BC of set F, we use as data structure a binary 
matrix M of d dimensions. This matrix can be thought of as a voxeliza-
tion or discretization of F, where a position of M has a value of 1 if this 
position contains some portion of F, or 0 otherwise. Fig. 1 shows an 
example in 2D (d = 2). In this example, F, the binary image in Fig. 1.a (a 
binarized slice of a magnetic resonance image), is represented by means 
of the matrix M of 16 × 16, as shown in Fig. 1.b. 

According to Biswas et al.’s algorithm, the matrix M, of size md, is 
divided into non-overlapping grids of size sd. This value s is the grid size, 
and ranges from 2 to m2 in values which are to the power of two. For each 
grid i of size sd, n(i), the occupancy of the grid i, is computed as:  

n(i) = i1 OR i2 OR … OR isd                                                             (2) 

where ij are the matrix positions of the grid i of size sd. This means that n 
(i) has a value of 1 if any of its positions has a value of 1 (contains some 
portion of F), or 0 otherwise (no portion of F is contained in the grid i). 
Then the box-counting for size s is calculated as: 

n(s) =
∑

i
n(i), s ranging from 2 to

m
2

(3) 

Finally, the FD of F is computed as the slope of the linear fitting of all 
the points 

(
log

(
1
s

)
, log(n(s))

)
. 

For the example in Fig. 1 (d = 2) the matrix M is initialized with the 
values of the binarized image (see Fig. 1.b). For s = 2, the occupancy 
values for each 2 × 2 grid i are obtained, the corresponding n(i) values 
are calculated according to Eq. (2), and n(s) is obtained through Eq. (3). 
Then the values of n(i) are stored in the (0, 0) positions of each 2 × 2 grid 
i (see yellow cells in Fig. 1.c). For s = 4 (the next power of two value for 
s) the occupancy of each 4 × 4 grid can now be obtained without 
needing to compare the 16 values that each grid contains, but only 
comparing the previously-stored values in the four 2 × 2 grids (gray 
cells in Fig. 1.d) that each 4 × 4 grid contains. And again, these values 
are stored in the (0, 0) positions of each 4 × 4 grid i (see yellow cells in 
Fig. 1.d). These n(i) values are finally added in order to obtain n(s) for 
s = 4. Similarly, for s = 8 the occupancy of each 8 × 8 grid can also be 
obtained without needing to compare the 64 values it contains, but 
comparing only the four values previously stored for the corresponding 
four 4 × 4 grids (see Fig. 1.e). This process is repeated until s reaches m2, 
obtaining in this way the set of values n(s) which are the box-counting 
values needed to compute the FD of F. 

A sequential C implementation of the BC algorithm for d = 2 is shown 
in Listing 1. Array n stores the box-counting for the matrix M of size m ×
m, i.e. the n(s) values for s ranging from 2 to m/2. 

2.2. Parallel BC algorithm 

As can be noted, the contribution of each grid of size sd in Equation 2 
(value of M[i,j] in lines 9 and 10 in Listing 1) can be performed in 
parallel because this computation does not depend on the values stored 
in the other grids. In this way, we used OpenMP directives [20] to 
develop the parallel BC algorithm for execution in multi-core CPU, as 
shown in Listing 2. 

The OpenMP directive parallel for in line 9 is used to divide the loop 
iterations (lines 10 and 11 in Listing 2) between a set of spawned 
threads. Each thread calculates the box occupancy, n(i), for the corre-
sponding grid (line 12). Then the final value of n(s) (variable sum in line 
13) is computed through parallel reduction sums (clause “reduction(+: 
sum)” in line 9). In line 6, the while-loop cannot be parallelized because 
values in M in one iteration depend on values stored in M in the previous 
iteration. 

2.3. BC algorithm on GPU for 2D data 

In this study we used CUDA [18] to implement the GPU version of 
the BC algorithm. The data is processed in CUDA through kernels, which 
are called as many times as threads are needed to process the data in an 
SIMD way. Threads are hierarchically grouped into blocks and blocks 
into grids. Threads inside a block are executed in groups (warps) of 32. 
On the other side, a CUDA GPU is a set of multiprocessors (MP), each one 
containing a set of scalar processors (SP or core). Each core has its own 
local memory and registers. Each MP has its own memory (shared 
memory) and can also access the main memory of the GPU (global 
memory). The CUDA programming model and the GPU hardware match: 
a grid of blocks is assigned to a GPU device, each block is assigned to an 
MP and each thread is assigned to a core. 

Listing 3 shows the C implementation of our CUDA BC algorithm in 
2D (d = 2). First, the matrix M is transferred from the RAM of the CPU to 
the global memory of the GPU. This is a main issue in the design of any 
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GPU algorithm, since data transfer between CPU and GPU slow down 
the overall performance of the program. Trying to optimize this step we 
used pinned memory in cudaMallocHost() calls in lines 3 and 6 in Listing 3. 
These calls avoid the cost of the intermediate transfer between pageable 
and pinned host arrays [21]. Then in line 23 of Listing 3 the CUDA kernel 
BCKernel2D is repeatedly called in order to compute the box-counting 
for each grid of size s. In each kernel call each thread processes a grid, 
so the number of blocks to launch is the number of grids in the matrix M 
divided by the number of threads per block (TPB). The TPB parameter 
has relevant implications in the overall performance of CUDA algo-
rithms, so we explain in detail how this parameter was configured next 
in section 3.1. Once the kernel is launched, each thread computes the 
occupancy of the corresponding grid of size s and updates the value of n 
(s) in the GPU array device_n. Finally, in line 28 of Listing 3 the array 
which stores the box-counting of the matrix M is transferred from the 
global memory of the GPU (array device_n) to the RAM of the CPU (array 
n). 

Listing 4 shows the CUDA code of the kernel for computing the oc-
cupancy of a grid of size s × s (BCKernel2D in Listing 3). Each thread 
computes and stores the occupancy value of the corresponding grid (line 
17 in Listing 4) following Eq. (2), and adds this value to the position of 
the array n storing n(s), the box-counting for size s (line 20 in Listing 4). 

Initially, the matrix M contains the occupancy values (0 or 1) of all grids 
of size s / 2. After the execution of all threads for size s, the matrix M 
contains the updated occupancy values for grids of size s. The compu-
tation of n(s) is performed through atomic sums. This kind of operation 
was highly optimized from the NVIDIA Kepler architecture, so imple-
menting n(s) with a classical reduction sums approach did not provide 
better performance [22]. 

2.4. BC algorithm on GPU for 3D and 4D data 

The BC algorithm for matrices of three dimensions is similar to the 
2D case but considering one additional dimension when constructing 
grids and boxes. This means that each grid of size s × s × s needs to 
evaluate eight positions in order to compute its occupancy. In order to 
compute the BC of a 3D matrix using the sequential CPU version (Listing 
1) or the parallel OpenMP algorithm (Listing 2), another for-loop is 
required to traverse the third dimension. Then the computation of the 
occupancy is performed similarly by checking the eight values of each 
3D grid. 

In the CUDA algorithm (Listing 3), the launch configuration of the 
kernel for 3D is performed with m

s ⋅ms ⋅ms blocks of TPB threads. Listing 5 
shows the implementation of the CUDA kernel for computing the box- 

Listing 1 
C implementation of the sequential version of the BC algorithm in 2D (d = 2).  

Listing 2 
C code with the parallel OpenMP version of the BC algorithm in 2D (d = 2).  
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counting of 3D grids of size s × s × s. In this kernel, the index k (line 8 in 
Listing 5) is added in order to correctly access the eight values of each 
grid of size s × s × s. The variable n stores the box-counting with the sum 
of the occupancies of all 3D grids in the matrix M. 

Similar modifications were performed in all BC algorithms in order 
to process 4D matrices. Each 4D grid has a size of s × s × s × s, so an 
additional for-loop was included to process the fourth dimension in 
Listing 1 and Listing 2. In this case, the occupancy of each grid is 
computed by checking the values of sixteen positions. The launch 
configuration of the CUDA kernel in 4D consisted of m

s ⋅ms ⋅ms ⋅ms blocks of 
TPB threads. Finally, in Listing 6 we show the CUDA kernel for 

processing 4D grids. The index l (line 9 in Listing 6) is added in order to 
correctly manage the fourth dimension of each grid. 

3. Performance analysis 

In this section we assess the performance of the CUDA BC algorithms 
(2D, 3D and 4D) by comparing them with the corresponding CPU ver-
sions (sequential and parallel OpenMP). We have also compared our 
CUDA BC algorithm with a previous CUDA implementation. 

Two different platforms (a PC and a Server) were used to test the 
performance of our BC algorithms. Table 1 shows the hardware 

Listing 3 
C code of the CUDA BC algorithm in 2D (d = 2).  

Listing 4 
CUDA code computing the occupancy and box-counting of grids of size s × s. 2bits_m 

= m, 2bits_s 
= s, sm = s/2 and 2bits_TPB 

= TPB.  
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Listing 5 
CUDA kernel for computing the occupancy and box-counting of 3D grids of size s × s × s.  

Listing 6 
CUDA kernel for computing the occupancy and box-counting of 4D grids.  
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configuration of each platform. 
In order to adequately evaluate the performance and the scalability 

of our CUDA BC algorithms, the execution of each algorithm was tested 
on a set of four matrices for each dimension. The sizes of these matrices 
were: 40962, 81922, 163842 and 327682 (2D); 1283, 2563, 5123 and 
10243 (3D); and 324, 644, 1284 and 2564 (4D). The values of all of these 
matrices were randomly generated using the same seed in order to 
guarantee that all of the algorithms tested processed the same matrix. 

3.1. Configuration of threads per block (TPB) parameter 

The number of threads per block (TPB) used when launching the 

CUDA kernels has a direct impact on performance, since TPB determines 
the percentage of use of each GPU multiprocessor [23], known as MP 
occupancy. In order to adequately set the TPB parameter, we analyzed 
the actual MP occupancy achieved by our CUDA kernels for TPB values 
ranging from 32 to 1024 by using the CUDA Compute Visual Profiler tool 
[24]. Fig. 2 shows the results of this analysis for the 4D case (CUDA 
kernel BCKernel4D). In this figure the kernel speedup of the algorithm 
indicates the improvement of CUDA algorithm regarding the CPU 
version without taking into account the data transfers between GPU and 
CPU. The theoretical MP occupancy was obtained as the ratio of active 
threads to the maximum number of threads supported on the MP (see 
Table 1). 

Almost equal values of MP occupancy were obtained at 96 threads 
per block: 89.4% for RTX3060 (PC) and 89.5% for RTX 3090 (Server). 
Our CUDA kernels use a small amount of registers per thread and no 
shared memory storage is needed, and these two factors are key in 
obtaining high values of MP occupancy [23]. Finally, we selected the 
TPB values which achieved the best speedups: 96 (PC) and 128 (Server) 
in 2D; 96 (PC) and 512 (Server) in 3D; and 96 (PC) and 128 (Server) in 
4D. 

3.2. Performance of CUDA BC algorithms 

We tested the performance of our CUDA BC algorithms (cudaBC in 
Listing 3 with kernels for 2D in Listing 4, 3D in Listing 5 and 4D in Listing 
6) by comparing them to the two CPU versions (sequential version 
seqDBC in Listing 1 and the parallel OpenMP version parDBC in Listing 
2). All implementations were tested on the two hardware platforms (see 
Table 1) using four incremental-size matrices for each dimension.  
Table 2 shows the timing and speedups achieved. 

The sequential algorithm (seqBC) performed better on the PC plat-
form than on the Server because of the computational power of the in-
dividual cores in both CPUs. Nevertheless, the multi-threaded OpenMP 
CPU implementation executed much faster on the Server due to the 
difference in the number of cores between both CPUs. Top speedups of 
5.83 × (2D), 5.58 × (3D) and 6.31 × (4D) were obtained when 
comparing the parallel CPU version against the sequential algorithm 
(seqBC/parBC in Table 2) on the PC platform; and 25.46 × (2D), 
23.90 × (3D) and 21.34 × (4D) when comparing on the Server plat-
form. These speedup results show that the OpenMP parallel algorithm 

Table 1 
Hardware capabilities of the platforms used to test the algorithms.   

Platform  

PC Server 

Operating System Windows 10 × 64 Debian Linux 5.10 × 86_64 
CPU   
Model Intel Core i7–11800 H 

@ 2.30 GHZ 
2 x Intel Xeon CPU Silver 
4210 @ 2.20 GHz 

Cores – Threads 8 – 16 20 – 40 
RAM 32 GB 96 GB 
Power consumption 45 W 85 W 
GPU   
Model NVIDIA GeForce RTX 

3060 
NVIDIA GeForce RTX 3090 

Computing 
Capability 

8.6 8.0 

CUDA SDK 11.0 11.0 
Arqchitecture Ampere Ampere 
# MPs 30 82 
# SPs 3584 10,496 
Warp Size 32 32 
Maximum Threads 

per Block 
1024 1024 

Global Memory Size 6 GB 24 GB 
Shared Memory per 

Block 
48KB 48KB 

Registers per Block 64 K 64 K 
L2 Cache Size 3MB 6MB 
Error Correcting 

Codes 
Disabled Disabled 

Power consumption 170 W 350 W  

Fig. 2. MP occupancy and kernel speedup achieved by BCKernel4D for different values of TPB.  
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achieved very high utilization of the multi-core CPU for the PC platform 
(74% on average), and a value even greater than full utilization for the 
Server platform (118% on average) due to hyper-threading technology. 

Very high top speedups were achieved on both platforms when 
comparing the performance of the CUDA BC algorithm against the 
sequential CPU version (seqBC/cudaBC in Table 2): 92.38 × (2D), 
31.14 × (3D) and 47.22 × (4D) on the PC platform, and 69.68 × (2D), 
57.27 × (3D) and 75.73 × (4D) on the Server platform. Compared to the 
parallel OpenMP implementation (parBC/cudaBC in Table 2), the CUDA 
algorithm achieved speedups of 16.12 × (2D), 6.86 × (3D) and 7.49 ×

(4D) on the PC platform, and 4.38 × (2D), 5.17 × (3D) and 4.04 × (4D) 
on the Server platform. These results indicate that the CUDA BC algo-
rithm performs very efficiently and scales well when the dimension of 
the data increases. 

Data transfers between CPU and GPU have an important impact on 
the overall performance of our CUDA algorithm. These data transfers 

need similar times in both platforms, and this is the reason why the 
overall computation times of the CUDA algorithms do not reflect the 
actual difference in computation power between the GPUs of both 
platforms. Nevertheless, that difference in GPU performance is clearly 
shown in kernel speedups, where timing does not consider data transfers 
(see Fig. 3). Top kernel speedups of 465.74 × (2D), 173.25 × (3D) and 
257.93 × (4D) were obtained for the Server platform, while top kernel 
speedups of 248.82 × (2D), 38.08 × (3D) and 54.38 × (4D) were ach-
ieved on the PC platform (points with black border in Fig. 3). 

The speedups of the CUDA BC algorithms (2D, 3D and 4D) achieved 
on the two platforms are shown graphically in Fig. 3. For the 2D case, 
when the size of the matrix increases, the speedup trends also grow. This 
fact implies that the CUDA algorithm scales very well. This situation also 
occurs in 3D and 4D on the PC platform. On the server platform the 
speedup trend plateaus, but still at very high values. 

Table 2 
Execution times and speedups of the BC algorithms. CUDA times include data transfers between CPU and GPU. Average values for ten executions. Time expressed in 
seconds. Bold values correspond to the highest speedups achieved on each platform.  

Dim. Size seqBC (s) parBC (s) cudaBC (s) seqBC/parBC seqBC/cudaBC parBC/cudaBC 

PC Server PC Server PC Server PC Server PC Server PC Server 

2D 40962  0.1105  00.186  0.0205  0.0120  0.0026  0.0027 5.39 × 15.46 × 41.88 × 67.64 × 7.77 × 4.38 £
81922  0.4081  00.740  0.0803  0.0419  0.0059  0.0106 5.08 × 17.64 × 68.66 × 69.68 £ 13.51 × 3.95 ×

163842  1.6825  02.954  0.2887  0.1693  0.0195  0.0436 5.83 £ 17.44 × 85.88 × 67.68 × 14.74 × 3.88 ×

327682  6.8252  11.901  1.1909  0.4674  0.0738  0.1765 5.73 × 25.46 £ 92.38 £ 67.40 × 16.12 £ 2.65 ×

3D 1283  0.0147  00.024  0.0032  0.0021  0.0013  0.0005 4.60 × 11.08 × 11.24 × 44.47 × 2.44 × 4.01 ×

2563  0.1114  00.177  0.0260  0.0160  0.0038  0.0030 4.27 × 11.07 × 29.31 × 57.27 £ 6.86 £ 5.17 £
5123  0.9566  01.415  0.1880  0.0683  0.0318  0.0268 5.09 × 20.70 × 30.02 × 52.68 × 5.90 × 2.54 ×
10243  7.4656  11.323  1.3379  0.4738  0.2397  0.2526 5.58 £ 23.90 £ 31.14 £ 44.82 × 5.58 × 1.88 ×

4D 324  00.010  00.015  0.0027  0.0009  0.0008  0.0002 3.79 × 17.20 × 12.22 × 53.04 × 3.22 × 3.08 ×

644  00.163  00.220  0.0259  0.0117  0.0034  0.0029 6.31 £ 18.72 × 47.22 £ 75.73 £ 7.49 £ 4.04 £
1284  02.397  03.468  0.4345  0.1828  0.0623  0.0569 5.52 × 18.97 × 38.45 × 60.91 × 6.97 × 3.21 ×

2564  37.769  56.339  6.5587  2.6402  1.0003  0.8878 5.76 × 21.34 £ 37.76 × 63.46 × 6.56 × 2.97 ×

Fig. 3. 2D, 3D and 4D Speedups (seqBC / cudaBC) and kernel speedups: (seqBC / cudaBC, without CPU-GPU transfers).  
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3.3. Comparison with previous work 

As shown in Section 1, there are not many studies about optimizing 
the computational performance of the BC algorithm. Hou et al.’s algo-
rithm [15] and its later optimization by Nikolaides et al. [16] were 
presented to be executed only sequentially on CPU. Jiménez et al. [17] 
presented a fast GPU implementation of Hou et al.’s algorithm based on 
CUDA, the only GPU BC algorithm to the best of our knowledge. 

Table 3 shows the execution times and speedups of the comparisons 
between Jiménez et al.’s CUDA algorithm (code provided by authors) 
and our GPU BC algorithm. These comparisons were also performed on 
PC and Server platforms. Jiménez et al.’s code can only process 3D 
matrices, so we compared it to our cudaBC algorithm (Listing 3) with 
BCKernel3D (Listing 5). Our CUDA algorithm obtained speedups of up to 
4.62 × (PC) and 4.79 × (Server) when considering data transfers 
(cudaBC and cudaJim), and speedups of up to 4.31 × (PC) and 7.33 ×

(Server) when only the time of the kernel execution was considered 
(cudaBCk and cudaJimk). 

The high speedups achieved by our GPU algorithm are mainly due to 
the fact that Jiménez et al.’s GPU algorithm, like Hou et al.’s original BC 
algorithm, needs to create and sort a list with the binary representation 
of non-zero positions of the matrix. Although this list allows the algo-
rithm to compute the occupancy of grids very efficiently, the compu-
tation time needed to create and sort it, even using highly optimized 
CUDA libraries such as Thurst [23], prevent Jiménez et al.’s GPU 
implementation from being competitive against our GPU algorithm 
which does not need any pre-processing step. 

4. A case study: 4D FD analysis of the EEG signal in 
schizophrenia 

In order to test our fast BC algorithm in a real biomedical application, 
we performed a 4D FD analysis of the EEG signal in schizophrenia. Two 
subjects were included in this study, recruited at the University Hospital 
of San Agustín Linares (Jaén, Spain): one subject suffering from 
schizophrenia and one healthy control subject. Resting state EEG data 
was acquired in a three-minute session where participants sat in a lab-
oratory room at the hospital. The cap consisted of 31 electrodes in the 
10–20 system. Signals were recorded at a frequency of 500 Hz. Blinks 
and other artifacts were extracted using the infomax ICA algorithm in 
EEGLAB. 

Source modeling was performed in order to localize 15,000 primary 
electromagnetic sources of scalp EEG activity at each sample time. After 
source modeling a binarization process was performed in order to 
identify the significant sources. The point clouds described by the 3D 
localizations associated with the significant sources at each time sample 
define the 4D matrices with the spatiotemporal representation of brain 
activation. Details of the whole process for obtaining the 4D matrices 
from the EEG data were provided previously in [7]. 

For the present study, we selected for analysis the twenty central 
seconds of the range of three minutes. Due to the size limitation of the 
global memory of the GPU, an individual 4D matrix of size 2564 was 
created for each second of brain activation. This 4D matrix represented a 
down-sampling to 256 time-samples (fourth dimension) of the brain 
activation spatially located in 3D grids of size 2563. Therefore, twenty 

4D matrices were processed for each subject. 
Table 4 shows the computation times for processing the whole 

experiment (40 4D matrices) by executing the three versions of our BC 
algorithm (seqBC, parBC and cudaBC) and also using a widely-referred 
MATLAB implementation [25] modified to be able to process 4D 
matrices. The experiment took less than three minutes for our CUDA 
algorithm, while more than three hours were required when executing 
on sequential CPU. The MATLAB algorithm required sixteen hours to 
complete the experiment. 

The 4D FD values obtained for the twenty matrices of each subject 
are listed in Table 5 and graphically represented in the boxplot shown in  
Fig. 4. As can be seen, the 4D FD differentiates the brain activation in 
resting state between subjects very well. According to the t-student test, 
4D FD is significantly lower for the schizophrenia patient (t(18) =
10.12; p < 0.001). 

5. Conclusions 

We have presented an efficient BC algorithm on GPU, valid for 2D, 
3D and 4D data, which greatly outperforms the execution-time 
compared to the sequential and parallel OpenMP CPU versions. A set 
of matrices of incremental sizes have been used to test the performance 
of the algorithms on two different hardware platforms. Our GPU BC 
algorithm achieved speedups of up to 92.38 × with respect to the 
sequential CPU implementation, and speedups of up to 
16.12 × compared to the parallel OpenMP CPU version. 

Currently, to our knowledge the only GPU implementation of the BC 
algorithm is the one presented by Jiménez et al. [17]. Compared with 
this GPU implementation our CUDA algorithm achieved a speedup of up 
to 4.79 × in 3D. 

We have also proved the usefulness of our GPU BC algorithm by 
applying it in a spatiotemporal 4D FD analysis of EEG data in schizo-
phrenia. Our fast BC algorithm was able to reduce the computation time 
of 40 4D matrices, extracted from the EEG of two subjects, from sixteen 
hours (MATLAB) and three hours (sequential CPU) to less than three 
minutes with the GPU algorithm. This experiment also showed 4D FD as 
a promising measure for differentiating schizophrenia patients from 
healthy controls. These preliminary results need to be further validated 
with a larger representative sample. 

The CUDA source code of our GPU BC algorithms is publicly avail-
able and can be downloaded from https://www.ugr.es/~demiras/fbc. 
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Funding acquisition. M.Á. Posadas: Conceptualization, Methodology, 
Software, Data curation, Writing – review & editing. A.J. Ibáñez- 
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PC Server PC Server PC Server PC Server PC Server PC Server 
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1283  0.00131  0.00058  0.00397  0.00223  0.00119  0.00030  0.00300  0.00220 3.04 × 3.81 × 2.51 × 7.33 £
2563  0.00380  0.00312  0.01754  0.00882  0.00319  0.00115  0.01378  0.00651 4.62× 2.83 × 4.31× 5.62 ×
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Size MATLAB (s) seqBC (s) parBC (s) cudaBC (s) MATLAB/ 
cudaBC 

seqBC/ 
cudaBC 

parBC/ 
cudaBC 

40 × 2564 57,772.25  8393.20  496.91  171.04 337.77 × 49.07 × 2.90 ×

Table 5 
4D FD values obtained for each second of the EEG data analyzed. 20 4D FD values for the schizophrenia patient (SCZ) and 20 4D FD values for the healthy control 
subject (HC).  

Subject 4D FD values Avg. Std. 

HC  3.327  3.311  3.314  3.329  3.320  3.308  3.330  3.318  3.313  3.310  3.324  0.011  
3.316  3.330  3.344  3.330  3.349  3.318  3.321  3.333  3.345  3.329 

SCZ  3.270  3.269  3.270  3.286  3.259  3.193  3.234  3.238  3.275  3.275  3.259  0.026  
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Fig. 4. Box plot showing differences in 4D FD values between the schizo-
phrenia patient (SCZ) and the healthy control subject (HC). 20 4D FD values for 
each subject, one value for each second of the EEG data analyzed. 
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