
Journal of Computational Science 66 (2023) 101908

Available online 12 November 2022
1877-7503/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Fast computation of fractal dimension for 2D, 3D and 4D data

J. Ruiz de Miras a,*, M.A. Posadas a, A.J. Ibáñez-Molina b, M.F. Soriano c, S. Iglesias-Parro b

a Software Engineering Department, University of Granada, Granada, Spain
b Department of Psychology, University of Jaén, Jaén, Spain
c St. Agustín University Hospital, Linares, Jaen, Spain

A R T I C L E I N F O

Keywords:
Fractal dimension
Box counting
GPU
Schizophrenia
EEG

A B S T R A C T

The box-counting (BC) algorithm is one of the most popular methods for calculating the fractal dimension (FD) of
binary data. FD analysis has many important applications in the biomedical field, such as cancer detection from
2D computed axial tomography images, Alzheimer’s disease diagnosis from magnetic resonance 3D volumetric
data, and consciousness states characterization based on 4D data extracted from electroencephalography (EEG)
signals, among many others. Currently, these kinds of applications use data whose size and amount can be very
large, with high computation times needed to calculate the BC of the whole datasets. In this study we present a
very efficient parallel implementation of the BC algorithm for its execution on Graphics Processing Units (GPU).
Our algorithm can process 2D, 3D and 4D data and we tested it on two platforms with different hardware
configurations. The results showed speedups of up to 92.38 × (2D), 57.27 × (3D) and 75.73 × (4D) with respect
to the corresponding CPU single-thread implementations of the same algorithm. Against an OpenMP multi-
thread CPU implementation, our GPU algorithm achieved speedups of up to 16.12 × (2D), 6.86 × (3D) and
7.49 × (4D). We have also compared our algorithm to a previous GPU implementation of the BC algorithm in 3D,
achieving a speedup of up to 4.79 × . Finally, as a practical application of our GPU BC algorithm a study
comparing the FD of 4D data extracted from the EEGs of a schizophrenia patient and a healthy subject was
performed. The computation time for processing 40 4D matrices was reduced from three hours (sequential CPU)
to less than three minutes with our GPU algorithm.

1. Introduction and background

The box-counting (BC) algorithm [1] is one of the most-widely used
methods for estimating the fractal dimension (FD) of a signal.
Computing the FD [2] has relevant applications in many areas, espe-
cially in the biomedical field. The FD has been successfully used for
diagnosing cancer [3,4], characterizing brain atrophy associated with
several neurodegenerative diseases [5,6], and determining conscious-
ness and unconsciousness states in sleeping and sedated subjects [7],
among other biomedical applications. These applications are charac-
terized by using large and multidimensional data such as 2D computed
axial tomography images, 3D volumetric data from magnetic resonance
imaging and 4D data extracted from electroencephalography re-
cordings, respectively.

Basically, the FD of a binarized image (a typical example in 2D) can
be computed as the least-square linear fit of log(n(s)) against log(1/s),
where n(s) is the BC for the grid of size s. The BC of the grid of size s is
computed as the number of boxes of size s that contain any non-zero

pixels of the image. Equivalent definitions can be made for volumes in
3D and 4D (the fourth dimension is time), considering grids and boxes in
the respective dimensions.

The computational cost of the BC algorithm when applied on large
datasets of 2D, 3D or 4D data can be very high [8–10]. Moreover, several
FD applications require real-time processing such as object recognition
[11,12] and diagnosis based on time-dependent biomedical data [13].
The need for improving the computation cost of the BC algorithm
appeared more than two decades ago [14], and this need is now even
more crucial in many current applications and research areas.

To the best of our knowledge, only a few studies have provided
efficient implementations of the BC algorithm. Hou et al. [15] developed
a BC algorithm based on identifying each box through the binary rep-
resentation of its coordinates. Then a sorted list with this binary repre-
sentation of all non-zero boxes is used to rapidly identify which boxes
are covered in each grid of size r. This algorithm, although efficient, was
designed for executing in a sequential mode, with some other im-
provements such as the one presented in [16]. A fast parallel GPU

* Correspondence to: Software Engineering Department, Periodista Manuel Saucedo Aranda s/n, 18071 Granada, Spain.
E-mail address: demiras@ugr.es (J. Ruiz de Miras).

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2022.101908
Received 7 July 2022; Received in revised form 13 October 2022; Accepted 10 November 2022

mailto:demiras@ugr.es
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2022.101908
https://doi.org/10.1016/j.jocs.2022.101908
https://doi.org/10.1016/j.jocs.2022.101908
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2022.101908&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 66 (2023) 101908

2

implementation of this algorithm was provided by Jiménez et al. in [17].
This parallel BC algorithm was implemented in CUDA (Compute Unified
Device Architecture) [18] and achieved an average speedup of 28 ×
regarding the CPU version of the algorithm.

In this study we also present a fast GPU implementation of the BC

algorithm using CUDA. Our approach is based on a kernel that is able to
compute and combine the BC of each individual grid in a very simple
and efficient way in parallel. This fact allowed us to obtain particular-
ized fast implementations of the BC algorithm for computing the FD of
2D, 3D and 4D data.

Fig. 1. Box occupancy computation in each step of the BC algorithm.

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

3

The main contributions of our proposal are: (1) We provide, to the
best of our knowledge, the fastest GPU implementation of the BC algo-
rithm in the literature. (2) Our fast BC algorithm can be run in any PC
equipped with a GPU, which allows the researchers to process large
datasets without the need for a supercomputer. (3) Our GPU algorithm
was carefully designed to minimize GPU-CPU data transfers, computing
the BC through very simple and efficient bit operations (avoiding
divergent branches), and providing a launch configuration based on the
optimal GPU multiprocessor occupancy; as a result, our GPU algorithm
performs much faster than the single and multi-core CPU versions. (4)
We provide particularized CUDA implementations of the BC algorithm
for processing data in 2D, 3D and 4D, which covers a wide spectrum of
possible datasets. (5) Finally, we also provide the source code of our GPU
algorithms.

In the rest of the paper, we first describe the BC algorithm and
explain how we have implemented it in GPU with CUDA. Next, we show
the performance analysis of our CUDA algorithms for two different
hardware platforms. Then we also compare the performance of our GPU
BC algorithm against previous GPU implementations. Finally, we tested
our BC algorithm in a biomedical context comparing the 4DFD of
reconstructed EEG sources from a patient with schizophrenia and a
healthy control while they were resting with open eyes.

2. Computational methods and theory

2.1. The BC algorithm

The FD of an ideal fractal set F ∈ Rd is computed by using the BC
algorithm as follows [1,2]:

FD(F) =
log(n(s))
log

(
1
s

) (1)

where n(s) is the number of boxes of scale sd that are required to
completely cover the fractal set F. If set F is not an ideal fractal, for
example an image in 2D or a voxelized volume in 3D, then the FD is
estimated as the linear regression of log(n(s)) against log

(1
s
)

for several
values of s.

Biswas et al. [19] proposed a theoretical parallel version of the BC
algorithm based on a Single Instruction-Multiple Data (SIMD) model
with shared memory. This implementation selected a set of grid sizes sd

with s as a power of two. These grid sizes are a subset of all possible grid
sizes, and therefore the FD value obtained by linear regression is almost
identical to that obtained with all possible grid sizes. This selection of
grid sizes allows the BC algorithm to perform efficiently in parallel,
avoiding the need to traverse the boxes of set F again and again for each
value of s. However, only the algorithmic complexity of the algorithm
was shown in Biswas et al.’s study, without providing any imple-
mentation nor experimental result. In the present study we used the grid
sizes selection and how the combination of results in each grid is per-
formed in Biswas et al.’s BC algorithm as the base of our parallel
implementation.

In order to compute the BC of set F, we use as data structure a binary
matrix M of d dimensions. This matrix can be thought of as a voxeliza-
tion or discretization of F, where a position of M has a value of 1 if this
position contains some portion of F, or 0 otherwise. Fig. 1 shows an
example in 2D (d = 2). In this example, F, the binary image in Fig. 1.a (a
binarized slice of a magnetic resonance image), is represented by means
of the matrix M of 16 × 16, as shown in Fig. 1.b.

According to Biswas et al.’s algorithm, the matrix M, of size md, is
divided into non-overlapping grids of size sd. This value s is the grid size,
and ranges from 2 to m2 in values which are to the power of two. For each
grid i of size sd, n(i), the occupancy of the grid i, is computed as:

n(i) = i1 OR i2 OR … OR isd (2)

where ij are the matrix positions of the grid i of size sd. This means that n
(i) has a value of 1 if any of its positions has a value of 1 (contains some
portion of F), or 0 otherwise (no portion of F is contained in the grid i).
Then the box-counting for size s is calculated as:

n(s) =
∑

i
n(i), s ranging from 2 to

m
2

(3)

Finally, the FD of F is computed as the slope of the linear fitting of all
the points

(
log

(
1
s

)
, log(n(s))

)
.

For the example in Fig. 1 (d = 2) the matrix M is initialized with the
values of the binarized image (see Fig. 1.b). For s = 2, the occupancy
values for each 2 × 2 grid i are obtained, the corresponding n(i) values
are calculated according to Eq. (2), and n(s) is obtained through Eq. (3).
Then the values of n(i) are stored in the (0, 0) positions of each 2 × 2 grid
i (see yellow cells in Fig. 1.c). For s = 4 (the next power of two value for
s) the occupancy of each 4 × 4 grid can now be obtained without
needing to compare the 16 values that each grid contains, but only
comparing the previously-stored values in the four 2 × 2 grids (gray
cells in Fig. 1.d) that each 4 × 4 grid contains. And again, these values
are stored in the (0, 0) positions of each 4 × 4 grid i (see yellow cells in
Fig. 1.d). These n(i) values are finally added in order to obtain n(s) for
s = 4. Similarly, for s = 8 the occupancy of each 8 × 8 grid can also be
obtained without needing to compare the 64 values it contains, but
comparing only the four values previously stored for the corresponding
four 4 × 4 grids (see Fig. 1.e). This process is repeated until s reaches m2,
obtaining in this way the set of values n(s) which are the box-counting
values needed to compute the FD of F.

A sequential C implementation of the BC algorithm for d = 2 is shown
in Listing 1. Array n stores the box-counting for the matrix M of size m ×
m, i.e. the n(s) values for s ranging from 2 to m/2.

2.2. Parallel BC algorithm

As can be noted, the contribution of each grid of size sd in Equation 2
(value of M[i,j] in lines 9 and 10 in Listing 1) can be performed in
parallel because this computation does not depend on the values stored
in the other grids. In this way, we used OpenMP directives [20] to
develop the parallel BC algorithm for execution in multi-core CPU, as
shown in Listing 2.

The OpenMP directive parallel for in line 9 is used to divide the loop
iterations (lines 10 and 11 in Listing 2) between a set of spawned
threads. Each thread calculates the box occupancy, n(i), for the corre-
sponding grid (line 12). Then the final value of n(s) (variable sum in line
13) is computed through parallel reduction sums (clause “reduction(+:
sum)” in line 9). In line 6, the while-loop cannot be parallelized because
values in M in one iteration depend on values stored in M in the previous
iteration.

2.3. BC algorithm on GPU for 2D data

In this study we used CUDA [18] to implement the GPU version of
the BC algorithm. The data is processed in CUDA through kernels, which
are called as many times as threads are needed to process the data in an
SIMD way. Threads are hierarchically grouped into blocks and blocks
into grids. Threads inside a block are executed in groups (warps) of 32.
On the other side, a CUDA GPU is a set of multiprocessors (MP), each one
containing a set of scalar processors (SP or core). Each core has its own
local memory and registers. Each MP has its own memory (shared
memory) and can also access the main memory of the GPU (global
memory). The CUDA programming model and the GPU hardware match:
a grid of blocks is assigned to a GPU device, each block is assigned to an
MP and each thread is assigned to a core.

Listing 3 shows the C implementation of our CUDA BC algorithm in
2D (d = 2). First, the matrix M is transferred from the RAM of the CPU to
the global memory of the GPU. This is a main issue in the design of any

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

4

GPU algorithm, since data transfer between CPU and GPU slow down
the overall performance of the program. Trying to optimize this step we
used pinned memory in cudaMallocHost() calls in lines 3 and 6 in Listing 3.
These calls avoid the cost of the intermediate transfer between pageable
and pinned host arrays [21]. Then in line 23 of Listing 3 the CUDA kernel
BCKernel2D is repeatedly called in order to compute the box-counting
for each grid of size s. In each kernel call each thread processes a grid,
so the number of blocks to launch is the number of grids in the matrix M
divided by the number of threads per block (TPB). The TPB parameter
has relevant implications in the overall performance of CUDA algo-
rithms, so we explain in detail how this parameter was configured next
in section 3.1. Once the kernel is launched, each thread computes the
occupancy of the corresponding grid of size s and updates the value of n
(s) in the GPU array device_n. Finally, in line 28 of Listing 3 the array
which stores the box-counting of the matrix M is transferred from the
global memory of the GPU (array device_n) to the RAM of the CPU (array
n).

Listing 4 shows the CUDA code of the kernel for computing the oc-
cupancy of a grid of size s × s (BCKernel2D in Listing 3). Each thread
computes and stores the occupancy value of the corresponding grid (line
17 in Listing 4) following Eq. (2), and adds this value to the position of
the array n storing n(s), the box-counting for size s (line 20 in Listing 4).

Initially, the matrix M contains the occupancy values (0 or 1) of all grids
of size s / 2. After the execution of all threads for size s, the matrix M
contains the updated occupancy values for grids of size s. The compu-
tation of n(s) is performed through atomic sums. This kind of operation
was highly optimized from the NVIDIA Kepler architecture, so imple-
menting n(s) with a classical reduction sums approach did not provide
better performance [22].

2.4. BC algorithm on GPU for 3D and 4D data

The BC algorithm for matrices of three dimensions is similar to the
2D case but considering one additional dimension when constructing
grids and boxes. This means that each grid of size s × s × s needs to
evaluate eight positions in order to compute its occupancy. In order to
compute the BC of a 3D matrix using the sequential CPU version (Listing
1) or the parallel OpenMP algorithm (Listing 2), another for-loop is
required to traverse the third dimension. Then the computation of the
occupancy is performed similarly by checking the eight values of each
3D grid.

In the CUDA algorithm (Listing 3), the launch configuration of the
kernel for 3D is performed with m

s ⋅ms ⋅ms blocks of TPB threads. Listing 5
shows the implementation of the CUDA kernel for computing the box-

Listing 1
C implementation of the sequential version of the BC algorithm in 2D (d = 2).

Listing 2
C code with the parallel OpenMP version of the BC algorithm in 2D (d = 2).

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

5

counting of 3D grids of size s × s × s. In this kernel, the index k (line 8 in
Listing 5) is added in order to correctly access the eight values of each
grid of size s × s × s. The variable n stores the box-counting with the sum
of the occupancies of all 3D grids in the matrix M.

Similar modifications were performed in all BC algorithms in order
to process 4D matrices. Each 4D grid has a size of s × s × s × s, so an
additional for-loop was included to process the fourth dimension in
Listing 1 and Listing 2. In this case, the occupancy of each grid is
computed by checking the values of sixteen positions. The launch
configuration of the CUDA kernel in 4D consisted of m

s ⋅ms ⋅ms ⋅ms blocks of
TPB threads. Finally, in Listing 6 we show the CUDA kernel for

processing 4D grids. The index l (line 9 in Listing 6) is added in order to
correctly manage the fourth dimension of each grid.

3. Performance analysis

In this section we assess the performance of the CUDA BC algorithms
(2D, 3D and 4D) by comparing them with the corresponding CPU ver-
sions (sequential and parallel OpenMP). We have also compared our
CUDA BC algorithm with a previous CUDA implementation.

Two different platforms (a PC and a Server) were used to test the
performance of our BC algorithms. Table 1 shows the hardware

Listing 3
C code of the CUDA BC algorithm in 2D (d = 2).

Listing 4
CUDA code computing the occupancy and box-counting of grids of size s × s. 2bits_m

= m, 2bits_s
= s, sm = s/2 and 2bits_TPB

= TPB.

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

6

Listing 5
CUDA kernel for computing the occupancy and box-counting of 3D grids of size s × s × s.

Listing 6
CUDA kernel for computing the occupancy and box-counting of 4D grids.

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

7

configuration of each platform.
In order to adequately evaluate the performance and the scalability

of our CUDA BC algorithms, the execution of each algorithm was tested
on a set of four matrices for each dimension. The sizes of these matrices
were: 40962, 81922, 163842 and 327682 (2D); 1283, 2563, 5123 and
10243 (3D); and 324, 644, 1284 and 2564 (4D). The values of all of these
matrices were randomly generated using the same seed in order to
guarantee that all of the algorithms tested processed the same matrix.

3.1. Configuration of threads per block (TPB) parameter

The number of threads per block (TPB) used when launching the

CUDA kernels has a direct impact on performance, since TPB determines
the percentage of use of each GPU multiprocessor [23], known as MP
occupancy. In order to adequately set the TPB parameter, we analyzed
the actual MP occupancy achieved by our CUDA kernels for TPB values
ranging from 32 to 1024 by using the CUDA Compute Visual Profiler tool
[24]. Fig. 2 shows the results of this analysis for the 4D case (CUDA
kernel BCKernel4D). In this figure the kernel speedup of the algorithm
indicates the improvement of CUDA algorithm regarding the CPU
version without taking into account the data transfers between GPU and
CPU. The theoretical MP occupancy was obtained as the ratio of active
threads to the maximum number of threads supported on the MP (see
Table 1).

Almost equal values of MP occupancy were obtained at 96 threads
per block: 89.4% for RTX3060 (PC) and 89.5% for RTX 3090 (Server).
Our CUDA kernels use a small amount of registers per thread and no
shared memory storage is needed, and these two factors are key in
obtaining high values of MP occupancy [23]. Finally, we selected the
TPB values which achieved the best speedups: 96 (PC) and 128 (Server)
in 2D; 96 (PC) and 512 (Server) in 3D; and 96 (PC) and 128 (Server) in
4D.

3.2. Performance of CUDA BC algorithms

We tested the performance of our CUDA BC algorithms (cudaBC in
Listing 3 with kernels for 2D in Listing 4, 3D in Listing 5 and 4D in Listing
6) by comparing them to the two CPU versions (sequential version
seqDBC in Listing 1 and the parallel OpenMP version parDBC in Listing
2). All implementations were tested on the two hardware platforms (see
Table 1) using four incremental-size matrices for each dimension.
Table 2 shows the timing and speedups achieved.

The sequential algorithm (seqBC) performed better on the PC plat-
form than on the Server because of the computational power of the in-
dividual cores in both CPUs. Nevertheless, the multi-threaded OpenMP
CPU implementation executed much faster on the Server due to the
difference in the number of cores between both CPUs. Top speedups of
5.83 × (2D), 5.58 × (3D) and 6.31 × (4D) were obtained when
comparing the parallel CPU version against the sequential algorithm
(seqBC/parBC in Table 2) on the PC platform; and 25.46 × (2D),
23.90 × (3D) and 21.34 × (4D) when comparing on the Server plat-
form. These speedup results show that the OpenMP parallel algorithm

Table 1
Hardware capabilities of the platforms used to test the algorithms.

Platform

PC Server

Operating System Windows 10 × 64 Debian Linux 5.10 × 86_64
CPU
Model Intel Core i7–11800 H

@ 2.30 GHZ
2 x Intel Xeon CPU Silver
4210 @ 2.20 GHz

Cores – Threads 8 – 16 20 – 40
RAM 32 GB 96 GB
Power consumption 45 W 85 W
GPU
Model NVIDIA GeForce RTX

3060
NVIDIA GeForce RTX 3090

Computing
Capability

8.6 8.0

CUDA SDK 11.0 11.0
Arqchitecture Ampere Ampere
MPs 30 82
SPs 3584 10,496
Warp Size 32 32
Maximum Threads

per Block
1024 1024

Global Memory Size 6 GB 24 GB
Shared Memory per

Block
48KB 48KB

Registers per Block 64 K 64 K
L2 Cache Size 3MB 6MB
Error Correcting

Codes
Disabled Disabled

Power consumption 170 W 350 W

Fig. 2. MP occupancy and kernel speedup achieved by BCKernel4D for different values of TPB.

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

8

achieved very high utilization of the multi-core CPU for the PC platform
(74% on average), and a value even greater than full utilization for the
Server platform (118% on average) due to hyper-threading technology.

Very high top speedups were achieved on both platforms when
comparing the performance of the CUDA BC algorithm against the
sequential CPU version (seqBC/cudaBC in Table 2): 92.38 × (2D),
31.14 × (3D) and 47.22 × (4D) on the PC platform, and 69.68 × (2D),
57.27 × (3D) and 75.73 × (4D) on the Server platform. Compared to the
parallel OpenMP implementation (parBC/cudaBC in Table 2), the CUDA
algorithm achieved speedups of 16.12 × (2D), 6.86 × (3D) and 7.49 ×

(4D) on the PC platform, and 4.38 × (2D), 5.17 × (3D) and 4.04 × (4D)
on the Server platform. These results indicate that the CUDA BC algo-
rithm performs very efficiently and scales well when the dimension of
the data increases.

Data transfers between CPU and GPU have an important impact on
the overall performance of our CUDA algorithm. These data transfers

need similar times in both platforms, and this is the reason why the
overall computation times of the CUDA algorithms do not reflect the
actual difference in computation power between the GPUs of both
platforms. Nevertheless, that difference in GPU performance is clearly
shown in kernel speedups, where timing does not consider data transfers
(see Fig. 3). Top kernel speedups of 465.74 × (2D), 173.25 × (3D) and
257.93 × (4D) were obtained for the Server platform, while top kernel
speedups of 248.82 × (2D), 38.08 × (3D) and 54.38 × (4D) were ach-
ieved on the PC platform (points with black border in Fig. 3).

The speedups of the CUDA BC algorithms (2D, 3D and 4D) achieved
on the two platforms are shown graphically in Fig. 3. For the 2D case,
when the size of the matrix increases, the speedup trends also grow. This
fact implies that the CUDA algorithm scales very well. This situation also
occurs in 3D and 4D on the PC platform. On the server platform the
speedup trend plateaus, but still at very high values.

Table 2
Execution times and speedups of the BC algorithms. CUDA times include data transfers between CPU and GPU. Average values for ten executions. Time expressed in
seconds. Bold values correspond to the highest speedups achieved on each platform.

Dim. Size seqBC (s) parBC (s) cudaBC (s) seqBC/parBC seqBC/cudaBC parBC/cudaBC

PC Server PC Server PC Server PC Server PC Server PC Server

2D 40962 0.1105 00.186 0.0205 0.0120 0.0026 0.0027 5.39 × 15.46 × 41.88 × 67.64 × 7.77 × 4.38 £
81922 0.4081 00.740 0.0803 0.0419 0.0059 0.0106 5.08 × 17.64 × 68.66 × 69.68 £ 13.51 × 3.95 ×

163842 1.6825 02.954 0.2887 0.1693 0.0195 0.0436 5.83 £ 17.44 × 85.88 × 67.68 × 14.74 × 3.88 ×

327682 6.8252 11.901 1.1909 0.4674 0.0738 0.1765 5.73 × 25.46 £ 92.38 £ 67.40 × 16.12 £ 2.65 ×

3D 1283 0.0147 00.024 0.0032 0.0021 0.0013 0.0005 4.60 × 11.08 × 11.24 × 44.47 × 2.44 × 4.01 ×

2563 0.1114 00.177 0.0260 0.0160 0.0038 0.0030 4.27 × 11.07 × 29.31 × 57.27 £ 6.86 £ 5.17 £
5123 0.9566 01.415 0.1880 0.0683 0.0318 0.0268 5.09 × 20.70 × 30.02 × 52.68 × 5.90 × 2.54 ×
10243 7.4656 11.323 1.3379 0.4738 0.2397 0.2526 5.58 £ 23.90 £ 31.14 £ 44.82 × 5.58 × 1.88 ×

4D 324 00.010 00.015 0.0027 0.0009 0.0008 0.0002 3.79 × 17.20 × 12.22 × 53.04 × 3.22 × 3.08 ×

644 00.163 00.220 0.0259 0.0117 0.0034 0.0029 6.31 £ 18.72 × 47.22 £ 75.73 £ 7.49 £ 4.04 £
1284 02.397 03.468 0.4345 0.1828 0.0623 0.0569 5.52 × 18.97 × 38.45 × 60.91 × 6.97 × 3.21 ×

2564 37.769 56.339 6.5587 2.6402 1.0003 0.8878 5.76 × 21.34 £ 37.76 × 63.46 × 6.56 × 2.97 ×

Fig. 3. 2D, 3D and 4D Speedups (seqBC / cudaBC) and kernel speedups: (seqBC / cudaBC, without CPU-GPU transfers).

J. Ruiz de Miras et al.

Journal of Computational Science 66 (2023) 101908

9

3.3. Comparison with previous work

As shown in Section 1, there are not many studies about optimizing
the computational performance of the BC algorithm. Hou et al.’s algo-
rithm [15] and its later optimization by Nikolaides et al. [16] were
presented to be executed only sequentially on CPU. Jiménez et al. [17]
presented a fast GPU implementation of Hou et al.’s algorithm based on
CUDA, the only GPU BC algorithm to the best of our knowledge.

Table 3 shows the execution times and speedups of the comparisons
between Jiménez et al.’s CUDA algorithm (code provided by authors)
and our GPU BC algorithm. These comparisons were also performed on
PC and Server platforms. Jiménez et al.’s code can only process 3D
matrices, so we compared it to our cudaBC algorithm (Listing 3) with
BCKernel3D (Listing 5). Our CUDA algorithm obtained speedups of up to
4.62 × (PC) and 4.79 × (Server) when considering data transfers
(cudaBC and cudaJim), and speedups of up to 4.31 × (PC) and 7.33 ×

(Server) when only the time of the kernel execution was considered
(cudaBCk and cudaJimk).

The high speedups achieved by our GPU algorithm are mainly due to
the fact that Jiménez et al.’s GPU algorithm, like Hou et al.’s original BC
algorithm, needs to create and sort a list with the binary representation
of non-zero positions of the matrix. Although this list allows the algo-
rithm to compute the occupancy of grids very efficiently, the compu-
tation time needed to create and sort it, even using highly optimized
CUDA libraries such as Thurst [23], prevent Jiménez et al.’s GPU
implementation from being competitive against our GPU algorithm
which does not need any pre-processing step.

4. A case study: 4D FD analysis of the EEG signal in
schizophrenia

In order to test our fast BC algorithm in a real biomedical application,
we performed a 4D FD analysis of the EEG signal in schizophrenia. Two
subjects were included in this study, recruited at the University Hospital
of San Agustín Linares (Jaén, Spain): one subject suffering from
schizophrenia and one healthy control subject. Resting state EEG data
was acquired in a three-minute session where participants sat in a lab-
oratory room at the hospital. The cap consisted of 31 electrodes in the
10–20 system. Signals were recorded at a frequency of 500 Hz. Blinks
and other artifacts were extracted using the infomax ICA algorithm in
EEGLAB.

Source modeling was performed in order to localize 15,000 primary
electromagnetic sources of scalp EEG activity at each sample time. After
source modeling a binarization process was performed in order to
identify the significant sources. The point clouds described by the 3D
localizations associated with the significant sources at each time sample
define the 4D matrices with the spatiotemporal representation of brain
activation. Details of the whole process for obtaining the 4D matrices
from the EEG data were provided previously in [7].

For the present study, we selected for analysis the twenty central
seconds of the range of three minutes. Due to the size limitation of the
global memory of the GPU, an individual 4D matrix of size 2564 was
created for each second of brain activation. This 4D matrix represented a
down-sampling to 256 time-samples (fourth dimension) of the brain
activation spatially located in 3D grids of size 2563. Therefore, twenty

4D matrices were processed for each subject.
Table 4 shows the computation times for processing the whole

experiment (40 4D matrices) by executing the three versions of our BC
algorithm (seqBC, parBC and cudaBC) and also using a widely-referred
MATLAB implementation [25] modified to be able to process 4D
matrices. The experiment took less than three minutes for our CUDA
algorithm, while more than three hours were required when executing
on sequential CPU. The MATLAB algorithm required sixteen hours to
complete the experiment.

The 4D FD values obtained for the twenty matrices of each subject
are listed in Table 5 and graphically represented in the boxplot shown in
Fig. 4. As can be seen, the 4D FD differentiates the brain activation in
resting state between subjects very well. According to the t-student test,
4D FD is significantly lower for the schizophrenia patient (t(18) =
10.12; p < 0.001).

5. Conclusions

We have presented an efficient BC algorithm on GPU, valid for 2D,
3D and 4D data, which greatly outperforms the execution-time
compared to the sequential and parallel OpenMP CPU versions. A set
of matrices of incremental sizes have been used to test the performance
of the algorithms on two different hardware platforms. Our GPU BC
algorithm achieved speedups of up to 92.38 × with respect to the
sequential CPU implementation, and speedups of up to
16.12 × compared to the parallel OpenMP CPU version.

Currently, to our knowledge the only GPU implementation of the BC
algorithm is the one presented by Jiménez et al. [17]. Compared with
this GPU implementation our CUDA algorithm achieved a speedup of up
to 4.79 × in 3D.

We have also proved the usefulness of our GPU BC algorithm by
applying it in a spatiotemporal 4D FD analysis of EEG data in schizo-
phrenia. Our fast BC algorithm was able to reduce the computation time
of 40 4D matrices, extracted from the EEG of two subjects, from sixteen
hours (MATLAB) and three hours (sequential CPU) to less than three
minutes with the GPU algorithm. This experiment also showed 4D FD as
a promising measure for differentiating schizophrenia patients from
healthy controls. These preliminary results need to be further validated
with a larger representative sample.

The CUDA source code of our GPU BC algorithms is publicly avail-
able and can be downloaded from https://www.ugr.es/~demiras/fbc.

CRediT authorship contribution statement

J. Ruiz de Miras: Conceptualization, Methodology, Software,
Formal analysis, Investigation, Data curation, Writing – original draft,
Funding acquisition. M.Á. Posadas: Conceptualization, Methodology,
Software, Data curation, Writing – review & editing. A.J. Ibáñez-
Molina: Methodology, Investigation, Resources, Data curation, Writing
– review & editing. M.F. Soriano: Methodology, Investigation, Re-
sources, Data curation, Writing – review & editing. S. Iglesias-Parro:
Methodology, Investigation, Resources, Data curation, Writing – review
& editing, Funding acquisition.

Table 3
Execution times and speedups comparing our CUDA BC algorithm (cudaBC) with Jiménez’s CUDA implementation (cudaJim). Times for cudaBCk and cudaJimk do not
include data transfers between CPU and GPU. Average values for ten executions. Time expressed in seconds.

Size cudaBC (s) cudaJim (s) cudaBCk (s) cudaJimk (s) cudaJim/cudaBC cudaJimk/cudaBCk

PC Server PC Server PC Server PC Server PC Server PC Server

643 0.00077 0.00021 0.00144 0.00103 0.00073 0.00017 0.00122 0.00084 1.86 × 4.79× 1.67 × 4.93 ×

1283 0.00131 0.00058 0.00397 0.00223 0.00119 0.00030 0.00300 0.00220 3.04 × 3.81 × 2.51 × 7.33 £
2563 0.00380 0.00312 0.01754 0.00882 0.00319 0.00115 0.01378 0.00651 4.62× 2.83 × 4.31× 5.62 ×

5123 0.03186 0.02524 0.12259 0.05495 0.02632 0.00823 0.10379 0.03751 3.85 × 2.18£ 3.94 × 4.56 ×

J. Ruiz de Miras et al.

https://www.ugr.es/~demiras/fbc

Journal of Computational Science 66 (2023) 101908

10

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgment

This work is part of the research project PID2019-105145RB-I00
supported by the Spanish Government (MCIN/AEI/10.13039/
501100011033).

References

[1] D.A. Russell, J.D. Hanson, E. Ott, Dimension of strange attractors, Phys. Rev. Lett.
45 (1980) 1175–1178, https://doi.org/10.1103/PhysRevLett.45.1175.

[2] B.B. Mandelbrot, The Fractal Geometry of Nature, 1983. 〈https://doi.org/10.111
9/1.13295〉.

[3] A.C. de Mattos, J.B. Florindo, R.L. Adam, I. Lorand-Metze, K. Metze, The fractal
dimension suggests two chromatin configurations in small cell neuroendocrine
lung cancer and is an independent unfavorable prognostic factor for overall
survival, Microsc. Microanal. (2022) 1–5, https://doi.org/10.1017/
S1431927622000113.

[4] R. Ternifi, Y. Wang, E.C. Polley, R.T. Fazzio, M. Fatemi, A. Alizad, Quantitative
biomarkers for cancer detection using contrast-free ultrasound high-definition
microvessel imaging: fractal dimension, Murray’s deviation, bifurcation angle &
spatial vascularity pattern, IEEE Trans. Med. Imaging 40 (2021) 3891–3900,
https://doi.org/10.1109/TMI.2021.3101669.

[5] C.-W. Jao, C.I. Lau, L.-M. Lien, Y.-F. Tsai, K.-E. Chu, C.-Y. Hsiao, J.-H. Yeh, Y.-
T. Wu, Using fractal dimension analysis with the Desikan–Killiany atlas to assess

the effects of normal aging on subregional cortex alterations in adulthood, Brain
Sci. 11 (2021), https://doi.org/10.3390/brainsci11010107.

[6] V. Meregalli, F. Alberti, C.R. Madan, P. Meneguzzo, A. Miola, N. Trevisan,
F. Sambataro, A. Favaro, E. Collantoni, Cortical complexity estimation using fractal
dimension: a systematic review of the literature on clinical and nonclinical
samples, Eur. J. Neurosci. n/a (2022), https://doi.org/10.1111/ejn.15631.

[7] J. Ruiz de Miras, F. Soler, S. Iglesias-Parro, A.J. Ibáñez-Molina, A.G. Casali,
S. Laureys, M. Massimini, F.J. Esteban, J. Navas, J.A. Langa, Fractal dimension
analysis of states of consciousness and unconsciousness using transcranial magnetic
stimulation, Comput. Methods Prog. Biomed. 175 (2019) 129–137, https://doi.
org/10.1016/j.cmpb.2019.04.017.

[8] A.P.H. Don, J.F. Peters, S. Ramanna, A. Tozzi, Quaternionic views of rs-fMRI
hierarchical brain activation regions. Discovery of multilevel brain activation
region intensities in rs-fMRI video frames, Chaos Solitons Fractals 152 (2021),
111351, https://doi.org/10.1016/J.CHAOS.2021.111351.

[9] I.V. Grossu, I. Grossu, D. Felea, C. Besliu, A. Jipa, T. Esanu, C.C. Bordeianu, E. Stan,
Hyper-fractal analysis: a visual tool for estimating the fractal dimension of 4D
objects, Comput. Phys. Commun. 184 (2013) 1344–1345, https://doi.org/
10.1016/j.cpc.2012.11.018.

[10] S. Liu, W. Bai, N. Zeng, S. Wang, A fast fractal based compression for MRI images,
IEEE Access 7 (2019) 62412–62420, https://doi.org/10.1109/
ACCESS.2019.2916934.

[11] D. Hong, Z. Pan, X. Wu, Improved differential box counting with multi-scale and
multi-direction: a new palmprint recognition method, Optik 125 (2014)
4154–4160, https://doi.org/10.1016/J.IJLEO.2014.01.093.

[12] H. Wang, B. Zhang, W. Chen, Robust and real-time object recognition based on
multiple fractal dimension, Multimed. Tools Appl. 80 (2021) 36585–36603,
https://doi.org/10.1007/s11042-021-11447-1.

[13] O.J. Escalona, M. Mendoza, G. Villegas, C. Navarro, Real-time system for high-
resolution ECG diagnosis based on 3D late potential fractal dimension estimation,
Comput. Cardiol. (2011) 789–792.

[14] X. Chen, W. Chang, Z. Gao, Method and parallel architecture for extracting the
image fractal dimension in real time, Proc. SPIE (1998), https://doi.org/10.1117/
12.311096.

[15] X.-J. Hou, R. Gilmore, G.B. Mindlin, H.G. Solari, An efficient algorithm for fast box
counting, Phys. Lett. A 151 (1990) 43–46, https://doi.org/10.1016/0375-9601
(90)90844-E.

[16] J. Nikolaides, E. Aifantis, Z-box merging: ultra-fast computation of fractal
dimension and lacunarity, in: Proceedings of the IEEE 30th International
Symposium on Computer-Based Medical Systems, 2017, pp. 312–317. 〈https://doi.
org/10.1109/CBMS.2017.121〉.

[17] J. Jiménez, J. Ruiz de Miras, Fast box-counting algorithm on GPU, Comput.
Methods Prog. Biomed. 108 (2012), https://doi.org/10.1016/j.cmpb.2012.07.005.

[18] NVIDIA Corporation, Cuda C++ Programming Guide v11.6, 2022. 〈https://docs.
nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf〉.

[19] M.K. Biswas, T. Ghose, S. Guha, P.K. Biswas, Fractal dimension estimation for
texture images: a parallel approach, Pattern Recognit. Lett. 19 (1998) 309–313,
https://doi.org/10.1016/S0167-8655(98)00002-6.

[20] B. Chapman, G. Jost, R. van der Pas, Using OpenMP: Portable Shared Memory
Parallel Programming, MIT Press, 2007. 〈https://ieeexplore.ieee.org/servlet/opac?
bknumber=6267237〉.

[21] N. Wilt, The CUDA Handbook, Addison-Wesley, 2013.
[22] J. Ruiz de Miras, M. Salazar, GPU inclusion test for triangular meshes, J. Parallel

Distrib. Comput. 120 (2018) 170–181, https://doi.org/10.1016/j.
jpdc.2018.06.003.

[23] D.B. Kirk. Programming Massively Parallel Processors: A Hands-on Approach, third
ed., Morgan Kaufmann Publishers, 2016 https://doi.org/10.1016/B978-0-12-
415992-1.00022-5.

[24] NVIDIA, Compute Visual Profiler, 2019. 〈http://docs.nvidia.com/cuda/pdf/CUDA_
Profiler_Users_Guide.pdf〉.

[25] F. Moisy, Boxcount, MATLAB Cent., 2008. 〈https://www.mathworks.com/matla
bcentral/fileexchange/13063-boxcount〉.

Table 4
Execution times and speedups for computing the 4D FD values corresponding to 40 4D matrices of size 2564 (20 4D matrices for the schizophrenia patient and 20 4D
matrices for the healthy control). Time expressed in seconds. Computations performed in the Server platform.

Size MATLAB (s) seqBC (s) parBC (s) cudaBC (s) MATLAB/
cudaBC

seqBC/
cudaBC

parBC/
cudaBC

40 × 2564 57,772.25 8393.20 496.91 171.04 337.77 × 49.07 × 2.90 ×

Table 5
4D FD values obtained for each second of the EEG data analyzed. 20 4D FD values for the schizophrenia patient (SCZ) and 20 4D FD values for the healthy control
subject (HC).

Subject 4D FD values Avg. Std.

HC 3.327 3.311 3.314 3.329 3.320 3.308 3.330 3.318 3.313 3.310 3.324 0.011
3.316 3.330 3.344 3.330 3.349 3.318 3.321 3.333 3.345 3.329

SCZ 3.270 3.269 3.270 3.286 3.259 3.193 3.234 3.238 3.275 3.275 3.259 0.026
3.249 3.274 3.252 3.257 3.217 3.305 3.253 3.240 3.270 3.298

Fig. 4. Box plot showing differences in 4D FD values between the schizo-
phrenia patient (SCZ) and the healthy control subject (HC). 20 4D FD values for
each subject, one value for each second of the EEG data analyzed.

J. Ruiz de Miras et al.

https://doi.org/10.1103/PhysRevLett.45.1175
https://doi.org/10.1119/1.13295
https://doi.org/10.1119/1.13295
https://doi.org/10.1017/S1431927622000113
https://doi.org/10.1017/S1431927622000113
https://doi.org/10.1109/TMI.2021.3101669
https://doi.org/10.3390/brainsci11010107
https://doi.org/10.1111/ejn.15631
https://doi.org/10.1016/j.cmpb.2019.04.017
https://doi.org/10.1016/j.cmpb.2019.04.017
https://doi.org/10.1016/J.CHAOS.2021.111351
https://doi.org/10.1016/j.cpc.2012.11.018
https://doi.org/10.1016/j.cpc.2012.11.018
https://doi.org/10.1109/ACCESS.2019.2916934
https://doi.org/10.1109/ACCESS.2019.2916934
https://doi.org/10.1016/J.IJLEO.2014.01.093
https://doi.org/10.1007/s11042-021-11447-1
http://refhub.elsevier.com/S1877-7503(22)00267-8/sbref12
http://refhub.elsevier.com/S1877-7503(22)00267-8/sbref12
http://refhub.elsevier.com/S1877-7503(22)00267-8/sbref12
https://doi.org/10.1117/12.311096
https://doi.org/10.1117/12.311096
https://doi.org/10.1016/0375-9601(90)90844-E
https://doi.org/10.1016/0375-9601(90)90844-E
https://doi.org/10.1109/CBMS.2017.121
https://doi.org/10.1109/CBMS.2017.121
https://doi.org/10.1016/j.cmpb.2012.07.005
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.1016/S0167-8655(98)00002-6
https://ieeexplore.ieee.org/servlet/opac?bknumber=6267237
https://ieeexplore.ieee.org/servlet/opac?bknumber=6267237
http://refhub.elsevier.com/S1877-7503(22)00267-8/sbref18
https://doi.org/10.1016/j.jpdc.2018.06.003
https://doi.org/10.1016/j.jpdc.2018.06.003
https://doi.org/10.1016/B978-0-12-415992-1.00022-5
https://doi.org/10.1016/B978-0-12-415992-1.00022-5
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_Profiler_Users_Guide.pdf
https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount
https://www.mathworks.com/matlabcentral/fileexchange/13063-boxcount

Journal of Computational Science 66 (2023) 101908

11

J. Ruiz de Miras is a senior lecturer at the Software Engi-
neering Department of the University of Granada (Spain). Dr.
Ruiz de Miras received an MS degree in Computer Science in
1995 and a PhD in Computer Science in 2001. He was visiting
Dr. Sepulcre’s Brain Connectomics Lab in Harvard University
(Boston - USA) for three months in 2015, and Dr. Angela
Comanducci’s Multimodal Neurophysiology Laboratory for
Rehabilitation at Fondazione Don Carlo Gnocchi (Milan - Italy)
for three months in 2022. His current main research interests
are in Fractal Analysis, Optimization of geometric processing
algorithms using GPU and multi-core CPU architectures, and
Computing applied to medical image analysis and biomedicine.

M.A. Posadas is a postgraduate student collaborating at Soft-
ware Engineering Department of University of Granada
(Spain). He received a MS degree in Computer Science in 2021.
His main research lines are in GPU programming and software
engineering.

A.J. Ibáñez Molina started to research in the group of Lan-
guage and Memory in the University of Granada (Spain). He
also received a grant from the Spanish government (FPU) that
allowed him to obtain a European PhD in 2009. In that period
he researched 4 months in the University of Sussex (UK) as a
Marie Curie fellow, and at the Radboud University in Nijmegen
(The Netherlands). He also researched as a posdoc fellow in the
Basque Center on Cognition Brain and Language where he
collaborated with researchers from different countries and had
the opportunity to learn advanced methods in time series an-
alyses. After that, in the University of Jaén, Dr. Ibáñez met
Professor Iglesias-Parro and in collaboration with him, he
became interested in non-linear analyses applied to EEGs and

whole brain neurocomputational models based on coupled differential equations. They
developed these type of methods to investigate conscious states in healthy and patients
with different disorders.

M.F. Soriano have worked as a Clinical Psychologist in a Day
Hospital for severe mental disorders since 2005. Her PhD
research was focused on cognitive dysfunctions in schizo-
phrenia. The main interest of her research work has been the
understanding of mental and neurophysiological undepinnings
of the most relevant severe disorders. Dr. Sorianós research
work has included patients with schizophrenia, but also with
bipolar disorder and autism spectrum disorders, with publica-
tions in these areas. To this end, Dr. Sorianós have tried to
integrate the concepts and methodology of Experimental Psy-
chology and Neuroscience (acquired during my doctoral
training) with her clinical training and experience.

S. Iglesias-Parro is a professor (tenured) in Psychometrics at
the University of Jaén (Spain), and external postdoc lecturer at
the Universidad Nacional de Educación a Distancia, Madrid,
(Spain). Dr. Iglesias obtained a MS degree in Psychology from
the University of Granada in 1993. Dr. Iglesias also completed
the Doctoral Thesis in the University of Granada. Invited to
research in the US, University of Duke, 2006, under the su-
pervision of Prof. John Payne and at UNED (Madrid, Spain),
2012, under the supervision of Prof. Francisco Morales. Dr.
Iglesias participated in numerous research projects and pub-
lished more than 30 articles in prestigious journals, mainly
related to two lines of research. A first line of research revolves
around cognition in decision making. Dr. Iglesias studied the

role of different variables of the automatic - controlled spectrum in decision making:
memory, cognitive effort, prejudice, inhibition, among others. Deepening the issue of
automaticity and cognitive control, Dr. Iglesias have been approaching his second line of
research: consciousness. As a result of this interest Dr. Iglesias published several works in
JCR indexed journals and participated in various research projects funded in competitive
calls.

J. Ruiz de Miras et al.

	Fast computation of fractal dimension for 2D, 3D and 4D data
	1 Introduction and background
	2 Computational methods and theory
	2.1 The BC algorithm
	2.2 Parallel BC algorithm
	2.3 BC algorithm on GPU for 2D data
	2.4 BC algorithm on GPU for 3D and 4D data

	3 Performance analysis
	3.1 Configuration of threads per block (TPB) parameter
	3.2 Performance of CUDA BC algorithms
	3.3 Comparison with previous work

	4 A case study: 4D FD analysis of the EEG signal in schizophrenia
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgment
	References

