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Summary
Background Idiopathic pulmonary fibrosis is a progressive fibrotic lung disease with a variable clinical trajectory. 
Decline in forced vital capacity (FVC) is the main indicator of progression; however, missingness prevents long-term 
analysis of patterns in lung function. We aimed to identify distinct clusters of lung function trajectory among patients 
with idiopathic pulmonary fibrosis using machine learning techniques.

Methods We did a secondary analysis of longitudinal data on FVC collected from a cohort of patients with idiopathic 
pulmonary fibrosis from the PROFILE study; a multicentre, prospective, observational cohort study. We evaluated the 
imputation performance of conventional and machine learning techniques to impute missing data and then analysed 
the fully imputed dataset by unsupervised clustering using self-organising maps. We compared anthropometric 
features, genomic associations, serum biomarkers, and clinical outcomes between clusters. We also performed a 
replication of the analysis on data from a cohort of patients with idiopathic pulmonary fibrosis from an independent 
dataset, obtained from the Chicago Consortium.

Findings 415 (71%) of 581 participants recruited into the PROFILE study were eligible for further analysis. An 
unsupervised machine learning algorithm had the lowest imputation error among tested methods, and self-organising 
maps identified four distinct clusters (1–4), which was confirmed by sensitivity analysis. Cluster 1 comprised 140 (34%) 
participants and was associated with a disease trajectory showing a linear decline in FVC over 3 years. Cluster 2 
comprised 100 (24%) participants and was associated with a trajectory showing an initial improvement in FVC before 
subsequently decreasing. Cluster 3 comprised 113 (27%) participants and was associated with a trajectory showing an 
initial decline in FVC before subsequent stabilisation. Cluster 4 comprised 62 (15%) participants and was associated 
with a trajectory showing stable lung function. Median survival was shortest in cluster 1 (2·87 years [IQR 2·29–3·40]) 
and cluster 3 (2·23 years [1·75–3·84]), followed by cluster 2 (4·74 years [3·96–5·73]), and was longest in cluster 4 
(5·56 years [5·18–6·62]). Baseline FEV1 to FVC ratio and concentrations of the biomarker SP-D were significantly 
higher in clusters 1 and 3. Similar lung function clusters with some shared anthropometric features were identified 
in the replication cohort.

Interpretation Using a data-driven unsupervised approach, we identified four clusters of lung function trajectory with 
distinct clinical and biochemical features. Enriching or stratifying longitudinal spirometric data into clusters might 
optimise evaluation of intervention efficacy during clinical trials and patient management.

Funding National Institute for Health and Care Research, Medical Research Council, and GlaxoSmithKline.

Copyright © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction 
Idiopathic pulmonary fibrosis is a chronic respiratory 
disease, characterised by progressive lung scarring and 
loss of lung function.1 The prognosis is poor, with a 
median survival of 3–5 years.2 However, the progression 
of disease is variable, with some patients showing stable 
lung function over time, whereas others progress rapidly 
or experience episodes of acute deterioration.2,3 Change in 
forced vital capacity (FVC) is an accepted marker of 
disease progression in patients with idiopathic pulmonary 
fibrosis.4–7 Identifying and characterising pulmonary 
function trajectories soon after diagnosis3 is crucial for 

establishing prognosis, making clinical management 
decisions,2,3,6,7 and interpreting results from interventional 
clinical trials.2,6,7

Evaluation of disease progression in clinical trials and 
observational studies in patients with idiopathic pulmonary 
fibrosis is often hampered by missing data on lung 
function,6–9 affecting the power and accuracy of statistical 
models for assessing decline of lung function.4,5,10,11 As 
idiopathic pulmonary fibrosis progresses, missed spiro­
metry visits promote survivor bias by raising the mean 
FVC because missing values are associated with exacer­
bation of the condition or mortality among patients.6–8 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2589-7500(22)00173-X&domain=pdf
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To mitigate this bias, previous studies have used various 
methods to adjust for data loss.4–7,10,11 However, these 
approaches can introduce alternative biases, making it 
difficult to accurately measure and model the disease 
trajectory of idiopathic pulmonary fibrosis over extended 
time periods.6–9,12,13

Machine learning algorithms can overcome some 
assumptions and might mitigate biases induced by other 
imputation methods.14,15 Missing data remain an issue for 
machine learning tools; however, additional mathematical 
techniques can estimate numerous possible outcomes by 
resampling the underlying distributions thousands of 
times14,15 to generate enhanced synthetic datasets, which 
can be used to train machine learning algorithms16 to 
operate as an imputation tool.17,18

We aimed to enhance the power of a longitudinal cohort 
of patients with incident idiopathic pulmonary fibrosis 
through imputation of data on lung function to estimate 
FVC loss due to disease progression. Subsequently, we 
applied unsupervised self-organising maps (SOMs) to 
identify distinct clusters of disease trajectories among 
patients with idiopathic pulmonary fibrosis, which could 

inform disease management and improve the efficacy of 
clinical trials.

Methods 
Study design 
We did a secondary analysis of longitudinal data on FVC 
collected from a cohort of patients with idiopathic 
pulmonary fibrosis from the PROFILE study;19 a 
multicentre, prospective, observational cohort study. We 
also performed a replication of the analysis on an inde­
pendent dataset (ie, the replication cohort), obtained from 
the Chicago Consortium, which included longitudinal 
FVC measures obtained from the UUS study (in the USA, 
the UK, and Spain) collected by the University of Chicago 
(Chicago, IL, USA).20 The PROFILE study and the 
replication cohort have been described previously 
(appendix p 1).19,20

Data analysis 
Imputation methods were chosen on the basis of the data 
being continuous rather than categorical, and following 
literature review.6,7,13–15,18 Methods included simple 

Research in context

Evidence before this study
We searched PubMed without date or language restrictions 
from date of database inception to Dec 9, 2021, using the 
following search terms: “idiopathic pulmonary fibrosis”, “lung 
function”, and “clustering” or “imputation”. We identified 
three studies that had performed a cluster analysis in 
retrospective or registry collections to identify clusters of 
patients with interstitial lung disease on the basis of various 
clinical features, including lung function. No previous study had 
combined data-driven and self-organising algorithms to 
understand the nature of long-term lung function trajectories 
in patients with idiopathic pulmonary fibrosis. Among studies 
that had imputed missing data on lung function, these data 
were often attributable to a linear change or population 
average, and no studies had assessed several methods for 
imputing missing data. No previous study used unsupervised 
self-organising maps to model and interpret long-term lung 
function to evaluate the presence of distinct lung function 
trajectories and how they associate with clinical outcomes.

Added value of this study
To our knowledge, this is the first study to identify and validate 
lung function trajectories with a two-stage machine learning 
approach, including both supervised and unsupervised 
approaches, in a long-term prospective observational cohort of 
patients with incident idiopathic pulmonary fibrosis. Using a 
Markov Chain Monte-Carlo simulation approach, we were able 
to overcome the challenges associated with low statistical 
power due to missing data, often in cases where disease 
severity was a barrier to lung function testing. We performed 
an extensive series of internal sensitivity and validity analyses, 

as well as external replication, to provide robust conclusions. 
Our analyses showed that a model-based cluster analysis was 
able to find four discrete trajectories of longitudinal lung 
function in patients with idiopathic pulmonary fibrosis. 
These clusters were associated with distinct clinical and 
biochemical features that might have important implications 
for clinical management. Our machine learning analysis 
showed that two-thirds of patients followed a typically 
observed disease trajectory comprising a steady initial decline 
in lung function; however, a third of patients showed 
alternative trajectories with either improved or stable lung 
function overtime, complicating the interpretation of widely 
used endpoints in patients with idiopathic pulmonary fibrosis. 
Importantly, these clusters were associated with an improved 
prognosis in the cohort of treatment-naive patients with 
pulmonary fibrosis. 

Implications of all the available evidence
Our findings on the different lung function trajectories in 
patients with idiopathic pulmonary fibrosis could have major 
implications for research and patient care. Our imputation 
models provide valuable comparisons that can support 
evaluation of endpoints from data with non-random 
missingness. Stratification of patients by lung function cluster 
would support the design of clinical trials and effective 
randomisation to support the assessment of treatment-related 
effects and to minimise confounding of natural disease 
trajectories. Similarly, understanding the natural history of lung 
function in treatment-naive patients might help to inform their 
prognosis in the medium and long term on the basis of short-
term changes in lung function.

See Online for appendix
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interpolation of missing values, including conventional 
linear regression, last observation carried forward, and 
10% annual reduction in percentage predicted FVC 
(–10% decline per year),6,7,13 as well as machine learning 
approaches, including random forest15 and k-nearest 
neighbours14 classifiers16 capable of dealing with non-
linear data and data that are not normally distributed.14,15,18 
Due to the longitudinal connectivity between the 
spirometric visits related to a patient, all imputations 
were performed as consecutive chained equations.18

For testing imputation methods, we used the complete 
dataset, consisting of 82 patients who completed all six 
spirometric visits (appendix p 13), split into learning 
datasets (57 [70%]) and test datasets (25 [30%]). Internal 
ten-fold cross-validation was used to optimise machine 
learning models. Synthetic simulation of missing data 
was conducted by removing data randomly from the test 
dataset, in proportion to the distribution of the occurrence 
of missing spirometric appointments in the whole 
PROFILE cohort. The lowest normalised root mean 
squared deviation (NRMSD) from separate models was 
used to assess the reliability of imputation. This index is 
used to measure the differences between values predicted 
by a model and observed values. The NRMSD represents 
the square root of the differences between predicted and 
observed values divided by the SD of the observed 
values.14,15

To minimise survival bias and to increase statistical 
power, we did an analysis that included imputed values at 
all timepoints, regardless of the reason for missingness, 
including death. Based on the results of the complete 
dataset, we built a continuous autoregressive model.17 
Integrating this model into Markov Chain Monte Carlo 
(MCMC) allowed incorporation of stochastic volatility over 
time, simulating events not experienced by patients in the 
complete dataset, such as abrupt FVC decreases or below-
mean FVC values preceding patient death,11,17 which we 
termed the naive dataset. To mitigate against residual 
survival bias in this naive dataset, we generated a further 
theoretical dataset (10 000 simulations each). In this 
dataset, we substituted 41·7% dummy values (including 
FVC=0) into the naive dataset and distributed these values 
proportionally to the mortality rate observed from the first 
year to the third year in the PROFILE study. We assessed 
the sensitivity of these imputation approaches by 
comparing NRMSD values across all spirometric visits.

We performed the unsupervised cluster analysis using 
SOMs. As a preprocessing step, we normalised the data 
by centralisation and scaling, which transformed the data 
into scale-free values. We performed hyperparameter 
optimisation before clustering. The SOM network was 
trained for the corresponding dataset for 200 iterations to 
minimise quantisation error. The learning rates started 
from 1·00 and was set to 0·90 (ordering) and to 0·02 
(tuning), and a neighbourhood distance was set at 1·00 
with hexagonal topology.21 Due to algorithmic similarities 
between k-means and SOMs, we used the Elbow method 

to identify the optimal number of clusters in our datasets. 
The validity (or stability) of each cluster was assessed by 
Jaccard indices after the sensitivity analysis. The 
minimum threshold for cluster stability by Jaccard 
indices was set at 50%.21

We performed three additional sets of sensitivity 
analyses on the generated clusters. First, clusters were 
generated by use of 3 years of spirometry data from the 
following datasets: the complete PROFILE dataset, the 
complete PROFILE dataset excluding patients with data 
missing due to death, and data from patients who 
completed all spirometric visits without imputation. The 
second sensitivity test analysed the clusters generated by 
use of spirometry data from baseline to the first year, 
baseline to the second year, baseline to the third year, and 
from patients who completed all six spirometric visits. 
Theses analyses were performed in the same way in the 
replication cohort. The final sensitivity test included the 
cluster generation by k-means on the PROFILE dataset.

Serum biomarkers were measured from samples that 
were prospectively collected at baseline and analysed as 
previously described (appendix pp 1–2).19

Statistical analysis 
We implemented a workflow using open-source packages 
from the R project (version 4.1.1). Scripts are deposited 
online. To evaluate associations between lung function 
and disease trajectory between clusters, we applied a 
mixed-effects linear model with repeated measures 
analysis of annual rate of change in FVC. We performed 
the mortality risk assessment between clusters using 
hazard ratios (based on the Cox proportional hazards 
model), Kaplan-Meier plots, and log-rank tests. Survival 
probability at any particular timepoint was calculated by 
the formula: ([number of participants living at the start – 
number of participants who died] / number of participants 
living at the start).

Estimates for the Cox proportional hazards model and 
mixed-effects linear model tests were adjusted for 
covariance and limited to baseline percentile-predicted 
FVC in all analyses. Wilcoxon’s signed-rank test was used 
for continuous variables, and Fisher’s exact test was 
applied for categorical variables.

All comparisons among clusters were adjusted with the 
Bonferroni correction method. Data are median (95% CI), 
unless otherwise indicated. All statistical tests were 
two-sided, and p<0·05 was considered to be significant.

Role of the funding source 
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report.

Results 
415 (71%) of 581 participants recruited into the PROFILE 
study were eligible for this secondary analysis, while 
180 (40%) of 455 participants from the independent 

For scripts see https://github.
com/MTWGroup/TrajectoriesIPF1

https://github.com/MTWGroup/TrajectoriesIPF1
https://github.com/MTWGroup/TrajectoriesIPF1
https://github.com/MTWGroup/TrajectoriesIPF1
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dataset were eligible for inclusion in the replication 
cohort (figure 1). Mean baseline FVC was 80·1% 
(SD 18·9). 321 (77%) participants were men, 94 (23%) 
were women, and mean age among participants was 
70·6 years (SD 7·8; appendix p 13). Data on complete 
lung function were available in 82 (20%) participants. 
Data were missing due to death in 173 (42%) participants, 
of whom 48 (12%) died during the first year, 68 (16%) in 

the second year, and 57 (14%) in the third year. These 
missing data values meant that 488 (29·4%) of 1660 data 
points required imputation for the full analysis of lung 
function. A further 196 (11·8%) data points were missing 
for unknown reasons. Overall, from the complete 
PROFILE dataset of 415 patients, the dataset excluding 
patients with data missing due to death comprised 
242 patients, and all data points were available from 
82 patients who completed all spirometric visits.

Across all simulations, the random forest MCMC 
approach had the lowest mean NRMSD (0·4 [SD 0·2]), 
compared with models performing imputation by value 
interpolation and the other machine learning algorithm, 
k-nearest neighbours. Linear regression had the highest 
mean NRMSD (1·3 [0·8]) at each timepoint beyond 
6 months, compared with all other methods (appendix 
p 3). In the sensitivity analysis that was performed for 
random forest MCMC imputation to compare unimputed 
data with naive and theoretical imputation models, there 
was little effect of imputation at 12 months (figure 2). 
After 2 years, differences were observed between the 
unimputed dataset (mean value 75·9 [95% CI 73·9–77·8]) 
and the naive model (69·5 [67·6–71·5]; p=0·0050), and 
between the unimputed dataset and the theoretical 
model (66·0 [63·9–68·0]; p<0·0001). After 3 years, 
differences were observed between all three models 
(unimputed 74·9 [72·9–76·8] vs naive 66·6 [64·7–68·5] vs 
theoretical 60·2 [58·1–62·3]; p<0·0001). The naive 
random forest imputation model had the lowest NRMSD 
mean value and was, therefore, used for further SOM 
cluster analysis (appendix p 4). The cluster sensitivity and 
validity analyses of these datasets suggested that the 
optimal number of discrete clusters derived using SOMs 

Figure 1: Cohort profiles and data analysis workflow
(A) Cohort profiles for the PROFILE cohort and the replication cohort. (B) Workflow used to generate each step of the data analysis. FVC=forced vital capacity. 
*Participants with insufficient data—ie, patients who missed the initial spirometric appointment and were also missing FVC datapoints at 90 days or 180 days.

581 participants recruited
330 from Nottingham University Hospitals 
251 from Royal Brompton Hospital

415 participants included in the final analysis

166 excluded
70 did not have idiopathic 

pulmonary fibrosis
13 had no baseline data
83 had excessive missing 

data*

455 participants recruited
314 from University of Chicago 
141 from the UUS study

180 participants included in the final analysis
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Figure 2: Lung function per imputation model among patients in the PROFILE cohort
Each data point represents a single lung function value. Each trendline represents mean (SD) percentile-predicted 
FVC values for the unimputed dataset, the naive imputation model, and the theoretical imputation model. 
FVC=forced vital capacity.
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across all datasets was four, regardless of the dataset. The 
mean Jaccard indices, used to assess the validity and 
internal sensitivity of the clusters obtained, were 0·75 
(SD 0·20) for cluster 1, 0·64 (0·16) for cluster 2, 
0·73 (0·15) for cluster 3, and 0·63 (0·10) for cluster 4 
(appendix pp 5–6, 12).

Cluster 1 was the largest cluster, with 140 (34%) of 
415 participants, and was associated with a disease 
trajectory showing a linear decline in mean FVC over 
3 years (table 1; figure 3A, B). Cluster 2 comprised 
100 (24%) participants and was associated with a 
trajectory of improving lung function during the first 
year, before a subsequent decline in function over the 
second and third year (figure 3C, D). Cluster 3 comprised 
113 (27%) participants and was associated with a trajectory 
of initial linear decline over the first year, before 
subsequent stabilisation in lung function (figure 3E, F). 
Cluster 4 was the smallest cluster, comprising 62 (15%) 
participants, and was associated with a trajectory showing 
largely stable mean lung function over all 3 years 
(figure 3G, H).

In the replication cohort, comprising 180 individuals 
who qualified for imputation, the optimal number of 
clusters was also four (appendix p 8). SOM analysis 
showed similar cluster architecture with regard to the 
size of each cluster and the nature of lung function 
trajectories, with 74 (44%) participants in cluster 1, 

38 (21%) in cluster 2, 42 (23%) in cluster 3, and 26 (14%) 
in cluster 4 (table 2; appendix p 8). Furthermore, the four 
clusters generated by SOMs in the PROFILE dataset 
were reproduced with the k-means clustering algorithm. 
These k-means clusters had identical architecture and 
similar membership allocation to those generated by 
SOMs (appendix p 12).

Participants in cluster 1 followed a linear decline in 
lung function, and this represented the most common 
phenotype in both the PROFILE cohort and the 
replication cohort (figure 3; table 1; appendix p 8). These 
patients had similar median survival with and without 
adjustment for baseline FVC in both cohorts (2·87 years 
[IQR 2·29–3·40]; figure 4; appendix p 10). In cluster 1, 
participants were generally younger and contained more 
never smokers, although the association between 
smoking status and disease trajectory was not significant 
(p=0·084). Biochemically, cluster 1 was associated with 
the highest concentrations of serum surfactant protein-D 
(SP-D; figure 5).

Cluster 2 was the third most common cluster in both 
the PROFILE cohort and the replication cohort, and 
had a low number of never smokers in both cohorts 
(table 1). This cluster was associated with older age and 
a history of ever smoking. Concentrations of SP-D, as 
well as the FEV1 to FVC ratio, were significantly lower 
in cluster 2 than in clusters 1 and 3 (figure 5A, D). 

Total Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of patients 415 (100%) 140 (34%) 100 (24%) 113 (27%) 62 (15%)

Age, years 70·6 (7·9) 69·7 (7·6) 71·5 (8·0) 71·7 (7·7) 69·0 (8·3)

Sex

Male 321 109 (78%) 82 (82%) 82 (73%) 48 (77%)

Female 94 31 (22%) 18 (18%) 31 (27%) 14 (23%) 

Never smoker 117 (28%) 46 (33%) 24 (24%) 33 (29%) 14 (23%)

Ethnicity

European descent 398 (96%) 134 (96%) 95 (95%) 110 (98%) 59 (95%)

Other 17 (4%) 6 (4%) 5 (5%) 3 (2%) 3 (5%)

Never used immunosuppressive medication 407 (98%) 137 (98%) 100 (100%) 111 (98%) 59 (95%)

Never used antifibrotic medication 303 (73%) 96 (70%) 70 (70%) 87 (77%) 50 (81%)

Completed all visits 82 (20%) 23 (16%) 24 (24%) 18 (16%) 17 (27%)

Missed visit at random 160 (39%) 44 (31%) 49 (49%) 32 (28%) 35 (56%)

Missed visit due to death 173 (42%) 73 (52%) 27 (27%) 63 (56%) 10 (16%)

Baseline percentile-predicted FVC 80·11 (19·23) 79·41 (19·80) 80·73 (18·69) 78·90 (18·92) 82·94 (19·49)

Baseline percentile-predicted diffusion capacity 
for carbon monoxide

46·03 (14·98) 43·24 (12·85) 48·66 (16·30) 44·42 (14·26) 51·33 (16·93)

Patients analysed due to missing data 380 (92%) 130 (93%) 89 (89%) 105 (93%) 56 (90%)

Baseline percentile-predicted FEV1 82·70 (18·1) 83·57 (19·1) 83·4 (17·9) 81·1 (17·6) 82·6 (17·1)

Patients analysed due to missing data 413 (100%) 138 (99%) 100 (100%) 113 (100%) 62 (100%)

Frequency of MUC-5B allele 34·67% 36·80% 36·56% 31·37% 35·85%

Patients analysed due to missing data 378 (91%) 125 (89%) 93 (93%) 102 (90%) 58 (94%)

<5-year survival 149 (36%) 32 (23%) 47 (47%) 31 (27%) 39 (63%)

Survival, years 4·18 (3·87–4·37) 2·87 (2·29–3·40) 4·74 (3·96–5·73) 2·23 (1·75–3·84) 5·65 (5·18–6·62)

Data are n (%), mean (SD), or median (IQR). FVC=forced vital capacity. FEV1=forced expiratory volume in 1 s. 

Table 1: Clinical characteristics per cluster in the PROFILE cohort
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Additionally, in the PROFILE cohort, participants in 
cluster 2 had significantly longer median survival 
(4·74 years [IQR 3·96–5·73] than did those in cluster 1 
(2·87 years [2·29–3·40]) and in cluster 3 (2·23 years 
[1·75–3·84]; p<0·0001; figure 4). The unadjusted 
median survival of participants in cluster 2 did not 
differ significantly from that of participants in cluster 1 
or cluster 3 in the replication cohort (appendix p 9), but 
was similar to that of participants in cluster 2 in the 
PROFILE cohort when adjusted for baseline lung 
function (appendix p 10).

Participants in cluster 3 showed an initial decline in 
lung function with subsequent stabilisation, and this 
cluster was the second most common cluster in both 
cohorts (figure 3E, F; table 1). This cluster was associated 
with high mortality (figure 4; table 1), high FEV1 to FVC 
ratio (figure 5), and high concentrations of PRO-C28 
(figure 5C). Similarly, high mortality was observed 
among participants in cluster 3 in the replication cohort 
(appendix p 10).

Cluster 4 represented the smallest group of patients in 
both cohorts and reflected stable lung function over 3 years 

Figure 3: SOMs of FVC trajectory per cluster among patients in the PROFILE cohort 
Individual data points indicate the values obtained by the naive imputation model for each patient. Trendlines show mean (SD) ppFVC values at each timepoint. Individual spirometry traces clustered 
by SOMs from each patient are represented as scale-free normalised values for cluster 1 (A), cluster 2 (C), cluster 3 (E), and cluster 4 (G), and as non-normalised values for cluster 1 (B), cluster 2 (D), 
cluster 3 (F), and cluster 4 (H). Decline refers to percentage year decline in ppFVC from baseline. Significance tested following Bonferroni correction. SOM=self-organising map. FVC=forced vital 
capacity. pp=percentile-predicted. QE=quantisation error. NS=not significant. 
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(figures 3, 4). Participants were younger (table 1) and had 
low concentrations of SP-D, but a tendency for high 
concentrations of RE-C1M and the lowest FEV1 to FVC 
ratio (figure 5). Cluster 1 had the highest number of ever 
smokers in the PROFILE cohort, although this was not 
significantly associated (table 1). This cluster had the 
longest median survival of the PROFILE cohort (5·56 years 
[95% CI 5·18–6·62]), differing significantly from that of 
cluster 1 (p<0·0001), cluster 2 (p=0·03), and cluster 3 
(p<0·0001; figure 4). Although cluster architecture was 
similar between the PROFILE cohort and the replication 
cohort, mortality was higher in the replication cohort, even 
after adjusting for baseline FVC (appendix p 10).

The genetic analysis of common variants of idiopathic 
pulmonary fibrosis between the four clusters showed 
some nominal associations, but nothing of significance. 
Furthermore, no cluster was found to be associated with 
frequency of the at-risk MUC-5B minor allele (table 1; 
appendix p 15).

Discussion 
This study used machine learning methods to analyse 
lung function trajectories in two cohorts of patients 
with idiopathic pulmonary fibrosis. Using a random 
forest MCMC approach, we overcame the challenges 
associated with missing data and low statistical power 
in simple interpolation methods, such as last 
observation carried forward and simple linear 
regression.4,6,8,12,13 Conventional linear regression was 
acceptable for imputing data in the first year, similar to 
previous studies, including 12-month daily home 
spirometry studies.22,23 However, in these studies, a 
degree of heterogeneity exists that is not observed by 
regression to the mean, even in home spirometry 
studies that are often limited to short durations.22,23

We applied a model-based cluster analysis that, 
following a series of internal sensitivity and validity 
analyses, showed four discrete clusters of lung function 
trajectory. These clusters were associated with distinct 
anthropometric features with important implications for 
clinical management and future clinical trial design.

Cluster analysis in interstitial lung disease is an 
emerging concept. At least three studies have performed 
such analyses using registry cohorts, integrating various 
clinical features (including comorbidities) in an attempt 
to identify distinct phenotypes.24–26 However, these studies 
did not seek to identify discrete patterns of disease 

Total Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of patients 180 (100%) 74 (41%) 38 (21%) 42 (23%) 26 (14%)

Age, years 68·4 (8·1) 67·8 (8·7) 69·5 (6·5) 69·1 (8·0) 67·6 (8·6)

Sex

Male 141 (78%) 60 (81%) 31 (82%) 32 (76%) 18 (69%)

Female 39 (22%) 14 (19%) 7 (18%) 10 (24%) 8 (31%) 

Never smoker 58 (32%) 28 (38%) 10 (26%) 11 (26%) 9 (35%)

Patients analysed due to missing data (smokers) 4 (2%) 2 (3%) 1 (3%) 1 (2%) 0

Ethnicity

European descent 158 (88%) 69 (93%) 31 (82%) 39 (93%) 19 (73%)

Other 22 (12%) 5 (7%) 7 (18%) 3 (7%) 7 (27%) 

Completed all visits 15 (8%) 4 (5%) 4 (11%) 2 (5%) 5 (19%)

Missed visit at random 78 (43%) 32 (43%) 17 (45%) 22 (52%) 7 (27%)

Missed visit due to death 87 (48%) 38 (51%) 17 (45%) 22 (43%) 14 (54%)

Baseline percentile-predicted FVC 69·20 (16·26) 71·80 (10·66) 64·66 (12·36) 74·83 (20·87) 59·27 (20·27)

<5-year survival 44 (24%) 15 (20%) 9 (24%) 13 (31%) 7 (27%)

Survival, years 3·65 (3·29–4·02) 2·87 (2·49–3·89) 2·98 (2·14–4·87) 3·41 (2·45–4·40) 2·64 (1·59–5·00)

Data are n (%), mean (SD), or median (IQR). FVC=forced vital capacity.

Table 2: Clinical characteristics per cluster in the Chicago cohort 

Figure 4: Kaplan-Meier estimates of survival per cluster among patients in 
the PROFILE and replication cohorts
(A) Survival probability estimates (95% CI) based on cluster allocation. 95% CIs 
were calculated from a non-parametric asymptotic distribution. (B) The number 
of deaths in every cluster over 5 years.
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behaviour in patients with idiopathic pulmonary fibrosis. 
Our analyses identified four distinct FVC trajectories, 
which challenge the current understanding of the natural 
history of idiopathic pulmonary fibrosis.3,6,7,10–12,27 Patients 
in clusters 1 and 3 showed disease trajectories that 
followed the expected decline in lung function over the 
first year, and this continued throughout the duration of 
illness for patients in cluster 1, but stabilised for patients 
in cluster 3. Patients in clusters 1 and 3 were, 
unsurprisingly, more likely to have data missing due to 
death. More surprisingly, a third of patients in the overall 
cohort followed an alternative trajectory (ie, clusters 2 
and 4) and showed either improved or stable lung 
function in the first year followed by a conventional 
trajectory (cluster 2), or remained stable throughout the 
duration of the study (cluster 4). Clusters 2 and 4 were 
associated with a better prognosis in patients with 
incident idiopathic pulmonary fibrosis than were 
clusters 1 and 3. Similar findings were found in a post-
hoc analysis of the INPULSIS studies, which investigated 
the efficacy and safety of nintedanib added to pirfenidone 
in patients with idiopathic pulmonary fibrosis. However, 
this analysis was performed without imputation, which 
might underestimate the effect in patients receiving 
placebo and lead to immortal time bias in favour of 
therapy, thus reinforcing the need to undertake 
imputation in such analyses.4

The reasons behind the improvement in lung function 
among participants in cluster 2 are unclear, but there are 
several possible explanations. These patients might have 
had acute, or infective, exacerbations at enrolment into 
both studies that improved before the typically observed 
deterioration in lung function occurred.28 Nevertheless, 
this potential reason is unlikely given that it would require 
over 20% of patients with idiopathic pulmonary fibrosis to 
have an acute or infective exacerbation within a 6-month 
period of enrolment into both studies. Although such 
exacerbations are common, most estimates of incidence of 
acute exacerbations are lower than 20% within 1 year and 
are associated with poor prognosis.3,28 Another explanation 
could be that cluster 2 included patients with concomitant 
chronic obstructive pulmonary disease who showed labile 
results on spirometry.29 Compared with the other three 
clusters, cluster 2 contained more ever smokers and the 
FEV1 to FVC ratio was lower; however, this cluster was not 
associated with a lower diffusion capacity for carbon 
monoxide, suggesting that these patients did not have 
substantial emphysema, the form of chronic obstructive 
pulmonary disease most commonly associated with 
idiopathic pulmonary fibrosis.30 The disease trajectory in 
cluster 2 might reflect response to antifibrotic or immuno­
suppressive therapy, although patients in both studies 
were not receiving antifibrotic therapy at the time of 
recruitment, and treatment in idiopathic pulmonary 

Figure 5: Baseline biochemical characteristics per cluster among patients in the PROFILE cohort
Baseline values for FEV1 to FVC ratio (A), FVC to DLco ratio (B), and the biomarkers PRO-C28 (C), SP-D (D), and RE-C1M (E) in each cluster obtained from the 
unimputed dataset. Data are median (IQR); each data point represents an individual value. The overall p values shown represent those obtained from the Kruskal-
Wallis test for each biochemical characteristic. Significance was accepted at post-Bonferroni correction p<0·025. FEV1=forced expiratory volume in 1 s. FVC=forced 
vital capacity. DLco=diffusion capacity for carbon monoxide. 
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fibrosis slows disease progression, rather than improves 
lung function.5,6 Furthermore, it is possible that individual 
variation in FVC values might have resulted in unusual 
patterns of lung function following cluster analysis; 
however, this is unlikely given the large number of patients 
in cluster 2 and that the nature and size of the cluster were 
replicated in the replication cohort. Although the reasons 
for the observed increase in FVC over the first year in 
cluster 2 are yet to be elucidated, it is important to recognise 
its occurrence in a substantial proportion of patients with 
idiopathic pulmonary fibrosis. Failure to recognise this 
occurrence could mislead interpretation of clinical 
response if unequal randomisation occurs in trials. 
Importantly, in the CAPACITY1 study and the CAPACITY2 
study,6 the groups receiving placebo showed a different 
disease trajectory to those receiving pirfenidone, which 
ultimately delayed the regulatory approvals and 
introduction of this treatment into clinical practice. It is 
possible that this finding might have been due to the 
inclusion of patients showing cluster 2 or 4 trajectories in 
the placebo groups, who, combined, made up 40% of the 
patient cohort with idiopathic pulmonary fibrosis in both 
the PROFILE cohort and the replication cohort.

Identifying patients who are likely to show the disease 
trajectories of clusters 2 and 4 could have practical 
implications for clinical management. The notion of a 
therapeutic trial would be misleading for patients in 
cluster 2, who are likely to show an improvement in FVC 
despite, rather than because of, therapy. Furthermore, 
the risk–benefit ratio of any given therapy might be 
altered among patients in cluster 4, particularly those 
recently diagnosed with an FVC of more than 80%. 
However, further studies to prospectively test the 
predictive power of such models are needed.

There are various strengths to the approach used in this 
study. We used several validity and sensitivity analyses to 
identify optimal imputation methods over both the short 
and long term. Importantly, when trying to define natural 
history, we were able to analyse data from a prospective 
cohort of largely untreated patients to generate the 
imputation models and to identify the clusters of lung 
function trajectory. Additionally, we were able to replicate 
the clusters’ architecture in an external cohort of patients 
with idiopathic pulmonary fibrosis, and both cohorts 
shared some common anthropometric features.

However, our study also has several limitations. Due to 
the extent of missing data, there was only a small number 
of patients with idiopathic pulmonary fibrosis to effectively 
train the imputation algorithm, which might reduce the 
model’s ability to effectively identify further smaller 
clusters.21 Missing data are a challenge for all studies of 
idiopathic pulmonary fibrosis, both reducing statistical 
power and promoting survival bias in studies of individuals 
with idiopathic pulmonary fibrosis.9,18 We observed that a 
random forest-based imputation method had the lowest 
NRMSD, particularly at later timepoints 2 years or 
more from baseline, suggesting that machine learning 

approaches were most appropriate for these studies. 
However, we acknowledge that any imputation algorithm 
might not reflect the accurate decline in FVC, especially 
over longer periods of time. We also recognise that this 
approach might also introduce potential imputation 
biases, affecting cluster formation and subsequent 
interpretation of results. However, we believe that the 
advantages of data imputation with machine learning over 
standard interpolation models, as well as the extended 
sensitivity, validity, and replication analyses performed, 
substantially outweigh these limitations. Heterogeneity of 
individual lung function trajectories exists within clusters, 
which is unsurprising given the nature of lung function 
decline in patients with idiopathic pulmonary fibrosis.5,11 
Nevertheless, this heterogeneity does not detract from 
strategies to stratify patients in clinical studies, given that, 
until now, all lung function trajectories were considered to 
be a uniform cluster. A further limitation to the current 
study is the absence of unadjusted replication of the 
relationship between cluster and mortality signal between 
the PROFILE cohort and the replication cohort. This 
difference might reflect the different nature of the 
two cohorts; PROFILE was a prospective cohort of patients 
with incident idiopathic pulmonary fibrosis, whereas the 
replication cohort was obtained from a registry cohort of 
patients with prevalent idiopathic pulmonary fibrosis and 
substantially less lung function at entry into the cohort. 
The small number of patients in cluster 4 of the replication 
cohort might have amplified the mortality signal. However, 
following adjustment for baseline FVC, clusters 1, 2, and 3 
had similar survival in both cohorts.

This study identifies distinct trajectories of lung function 
in patients with idiopathic pulmonary fibrosis and has 
important implications for the development of clinical 
trials and clinical practice. Further improvement in 
collection of patient registry data and cluster methodology, 
as well as collaboration between research groups, will 
increase the accuracy of imputation and granularity of 
cluster analysis, thus facilitating further understanding 
of unique clusters of patients with pulmonary fibrosis, 
including those with pulmonary fibrosis of known cause. 
Development of these approaches could help to treat each 
patient with the correct treatment at the correct time.
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