
Int. j. racket sports sci. vol. 4(2), 2022, 1-10. eISSN: 2695-4508

1

DOI: 10.30827/Digibug.---Original Investigation

Validation of lower limb muscle activation estimated using 
musculoskeletal modeling against electromyography in the table 
tennis topspin forehand and backhand
Validación de la activación muscular de las extremidades inferiores 
estimada mediante modelado musculoesquelético y electromiografía 
en el topspin de derecha y revés del tenis de mesa

Abstract

This study aimed to validate the lower limb muscle activation, estimated using static optimization against 
electromyography (EMG), in the topspin forehand and backhand strokes. The secondary purpose was to compare 
the estimated activations of the major muscles/muscle groups between the forehand and backhand strokes. Eight 
male college table tennis players hit the cross-court topspin forehands and backhands with maximum effort. Stroke 
motions and ground reaction forces were measured using a motion capture system and two force plates. The EMG 
signals of the 16 lower-limb muscles were recorded using a wireless EMG system. The static optimization algorithm 
of OpenSim was applied to stroke motions to estimate lower limb muscle activation, which was compared to EMG 
activation. Of the seven muscles that showed maximum activation > 0.3 during the forehand, five showed a Pearson 
correlation coefficient > 0.3 Of the four muscles that showed maximum activation > 0.3 during the backhand, all 
four showed a Pearson correlation coefficient >0.3. However, some muscles, such as the bilateral gluteus medius 
muscles, showed a low correlation between estimated and EMG activation. A possible cause is the co-contraction of 
the relevant muscles. Concordance correlation coefficients were smaller than their respective Pearson correlation 
coefficients. This result reflects that EMG envelope (activation) is also an estimate of muscle activation and is subject 
to noise and confounding factors. Comparisons with additional independent measurements, such as ultrasound 
muscle images and instrumented joint loading, are necessary for more robust validation of the musculoskeletal 
modeling and muscle activation. The gluteus maximus and hamstrings on the playing side, and rectus femoris 
on the non-playing side exhibited higher activation during the forehand than during the backhand. The overall 
results suggest that the static optimization algorithm can adequately estimate lower-limb muscle activity during 
the topspin forehand and backhand strokes. 
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Resumen

El objetivo de este estudio fue validar la activación muscular de las extremidades inferiores estimada 
mediante optimización estática y electromiografía (EMG) en el topspin de derecha y revés. El objetivo secundario 
fue comparar las activaciones estimadas de los principales grupos musculares entre los golpes de derecha y 
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INTRODUCTION
Topspin forehand and backhand strokes are 

fundamental techniques used in table tennis, and 
mastering the effective execution of these strokes 
is essential for high performance (Seemiller & 
Holowchak, 1997). A previous study reported that 
topspin forehand was the most frequently used 
stroke in elite matches, followed by counter-topspin 
topspin forehand, with topspin backhand ranking 
fourth (Malagoli Lanzoni, Di Michele, & Merni, 2014). 
The same study found that the topspin forehand 
and counter-topspin forehand were more related 
to winners than other strokes. Both strokes are 
performed by utilizing the kinetic chain of the entire 
body. Previous studies on table tennis strokes have 
reported that joint angular velocities (Bańkosz & 
Winiarski, 2018) and hip joint kinetics (Iino, 2018) are 
associated with racket speed, and have suggested 
that the lower limbs energetically contribute to the 
generation of racket speed in the topspin forehand 
and backhand (Iino & Kojima, 2011; 2016). Kinematic and 
kinetic analyses have been conducted on the lower 
limb motions during table tennis topspin forehands 
and backhands (He et al., 2021; Le Mansec, Dorel, 
Hug, & Jubeau, 2018; Malagoli Lanzoni, Bartolomei, 
Di Michele, & Fantozzi, 2018; Qian, Zhang, Baker, & 
Gu, 2016; Shao et al., 2020; Wang et al., 2018). Two of 
these studies examined the lower limb muscles using 
electromyography (EMG). Wang et al. (2018) compared 
kinematics and EMG data between elite and amateur 
players during topspin backhands. They found 
that the hip and knee flexion angles at backswing 
were larger in elite players than in amateurs and 
that the maximum activation of the rectus femoris 
and tibialis anterior was lower in elite players than 
in amateurs. Le Mansec et al. (2018) reported the 

EMG of the eight lower limb muscles of the playing 
side (right side for a right-handed player) in seven 
typical strokes, including the topspin forehand and 
backhand. They found that the EMG peak amplitudes 
of gluteus maximus and biceps femoris were larger 
than 60% of their maximum voluntary contraction 
amplitudes in the topspin forehands and forehand 
smash. These studies provide valuable insights into 
the unique muscle activation characteristics of elite 
athletes and different stroke types. However, surface 
EMG can only be applied to surface muscles, and this 
alone cannot provide information on muscle forces. 
Therefore, the function of the muscles in table tennis 
forehand and backhand is still not fully understood. 

Estimation of muscle activation and forces in table 
tennis strokes can be used to inform performance 
improvement and injury prevention. As a non-invasive 
approach, musculoskeletal modeling has been utilized 
to estimate lower limb muscle activation and forces 
in human locomotion such as walking and running 
through predictive and tracking simulations (e.g., 
Dorn, Schache, & Pandy, 2012; Liu, Anderson, Schwartz, 
& Delp, 2008; Neptune, Sasaki, & Kautz, 2008) and has 
revealed the mechanical functions of the lower limb 
muscles. To our knowledge, there are no studies that 
have estimated the lower-limb muscle activation in 
table tennis strokes using musculoskeletal modeling. 
The estimated lower limb activation has been 
validated against EMG in locomotion previously 
(Alexander & Schwameder, 2016; Dupré, Dietzsch, 
Komnik, Potthast, & David, 2019; Trinler, Leboeuf, 
Hollands, Jones, & Baker, 2018; Wibawa et al., 2016; 
Żuk, Syczewska, & Pezowicz, 2018), and these studies 
reported moderate to good associations between the 
estimated and EMG activations. Table tennis topspin 
forehands and backhands require whole-body 

revés. Ocho jugadores hombre universitarios de tenis de mesa realizaron con el máximo esfuerzo los golpes 
topspin de derecha y revés cruzados en la pista. Los movimientos de los golpes y las fuerzas de reacción del 
suelo fueron medidos con un sistema de captura del movimiento y dos placas de fuerza. Las señales EMG de los 
músculos de los 16 miembros inferiores fueron grabadas con un sistema EMG inalámbrico. Se usó el algoritmo 
de optimización estática OpenSim para estimar la activación muscular de los miembros inferiores durante los 
golpes, y luego se compararon los resultados con la activación de la EMG. De los siete músculos que mostraron 
activación máxima > 0,3 en el golpe de derecha, cinco mostraron un coeficiente de correlación de Pearson > 0,3. 
De los cuatro músculos que mostraron activación máxima > 0,3 durante el golpe de revés, los cuatro mostraron 
un coeficiente de correlación de Pearson > 0,3. Sin embargo, algunos músculos, como el glúteo medio, mostraron 
una baja correlación entre la activación estimada y la EMG. Una posible causa es la cocontracción de los músculos 
involucrados. Los coeficientes de correlación de concordancia fueron menores que sus respectivos coeficientes de 
correlación de Pearson. Este resultado refleja que la envolvente (activación) de la EMG es también una estimación 
de la activación muscular y está sujeta a ruido y factores de confusión. Es necesario realizar comparaciones 
con otras mediciones independientes, como las imágenes musculares por ultrasonido y la carga articular con 
instrumentos, para lograr una validación más sólida del modelado musculoesquelético y la activación muscular. 
El glúteo mayor y los isquiotibiales en el lado de juego, y el recto femoral en el lado de no juego, mostraron una 
mayor activación durante el golpe de derecha que durante el revés. Los resultados generales sugieren que el 
algoritmo de optimización estática puede estimar adecuadamente la actividad muscular de las extremidades 
inferiores durante el topspin de derecha y revés. 

Palabras clave: Modelado musculoesquelético, activación muscular, electromiografía, validación.
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rotation (Iino & Kojima, 2009; 2016), and different 
players may have different techniques for these 
strokes (Bańkosz & Winiarski, 2018). Thus, the extent 
to which the estimated lower-limb activations in 
table tennis can be validated against EMG is unclear.

The following two popular algorithms have been 
used to estimate muscle activations and forces in 
OpenSim, which is an open-source software tool for 
musculoskeletal modeling and simulation of movement 
(Delp et al., 2007): static optimization and computed 
muscle control. In this study, a static optimization 
algorithm was used to estimate the muscle activation 
because the computed muscle control algorithm 
conducts forward dynamic simulations to track 
measured kinematics and requires accurate modeling 
of the upper body, which is difficult for table tennis 
strokes that involve complex spine and shoulder 
motions. Additionally, previous studies have shown 
that computed muscle control is not always more 
accurate in estimating muscle activation than static 
optimization (Alvim, Lucareli, & Menegaldo, 2018; 
Roelker et al., 2020; Trinler et al., 2018).

The purpose of this study was to validate the 
lower limb muscle activation estimated using static 
optimization against EMG in table tennis topspin 
forehand and backhand strokes. The secondary 
purpose was to compare the estimated activations 
of the major muscles/muscle groups between the 
two strokes because no studies have yet made these 
comparisons. This could provide a scientific basis for 
developing effective strength-training programs for 
table tennis.

METHODS
Participants

Eight male college table tennis players participated 
in this study. All participants were members of a Division 
I table tennis team in the Kanto Collegiate Table Tennis 
League in Japan. Their mean ± standard deviation age, 
height, body mass, and training experience were 20.2 ± 
1.5 years, 1.72 ± 0.06 m, 67.5 ± 6.5 kg, and 11.5 ± 2.3 years, 
respectively. Six players were right-handed and two 
were left–handed. The dominant hand was judged by 
the hand holding the racket. All were offensive players. 
All participants provided written informed consent. 
The experimental procedures were approved by a local 
ethics committee.

Experimental procedure

After an individual warm-up session, the 
participants were asked to hit the topspin cross-court 
forehands and backhands with maximum effort (Figure 
1). They were asked to place their feet on a separate 
force plate (type 9281; Kistler, Winterthur, Switzerland) 
during preparation, but they were allowed to move 

their feet after the beginning of a stroke. At least 
three successful forehand and backhand strokes were 
recorded for each participant. Before data collection, 
the participants were asked to practice the strokes until 
they became accustomed to the experimental settings. 
The position of the table tennis table was adjusted for 
each stroke type for each participant to ensure that 
the feet were within the boundaries of the force plates 
at preparation. All participants used the same shake-
hands racket (Timo Boll ALC ST, Tamasu Co., Ltd., Japan) 
with inverted rubber (Tenergy 05, Tamasu Co., Ltd., 
Japan). A ball machine (Butterfly Amicus 1000, Tamasu 
Co., Ltd., Japan) was used to feed the players light 
backspin balls (Nittaku premium three-star, Nippon 
Takkyu Co., Ltd.). Balls were projected directly to the 
foreside and backside of participant’s court in topspin 
forehands and backhands, respectively. The spin rate 
of the backspin balls after the bounce on the table 
was 8.6 ± 1.3 rps. The ball feeding frequency was about 
43 balls/min. The ball machine was set at -1 for SPIN 
and 7.0 for SPEED. Finally, they were asked to perform 
a sequence of hip flexion, extension, abduction, and 
circumduction of each leg to estimate the locations of 
the hip joint centers.

Camera

Ball machine

Hitting direction

Force plate

Pelvis at
Forward-facing
position

Figure 1. The experimental setup for the topspin forehand. 
The forward-facing position of the pelvis was defined as the 
position where the pelvis medio-lateral axis was parallel to 
the endline of the table tennis table.

Data collection

The participants wore tight-fitting swim pants 
and table tennis shoes. A total of 51 retro-reflective 
markers (diameter, 16 m) were attached to landmarks 
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on the whole body. Four markers were attached to 
the lateral side of the racket face. Three-dimensional 
marker coordinates were obtained using a 12-camera 
motion capture system (MAC3D System; Motion 
Analysis, Santa Rosa, CA, USA) at 200 Hz. The force 
plate data were recorded at 2,000 Hz. The surface EMG 
activity was recorded using a wireless EMG system 
(Trigno Wireless System, DELSYS. Boston, MA, USA). 
EMG signals were bandpass filtered (20-450 HZ) and 
sampled at 2,000 Hz. EMG electrodes were placed 
bilaterally on the gluteus maximus, gluteus medius, 
biceps femoris, rectus femoris, vastus medialis, tibialis 
anterior, soleus, and gastrocnemius lateralis muscles. 
Electrode placement was determined according to 
SENIAM guidelines (Hermens, Freriks, Disselhorst-
Klug, & Rau, 2000). The skin where the electrodes 
were placed was shaved if necessary and cleaned with 
alcohol to reduce impedance.

Data processing

The forehand and backhand strokes with the highest 
racket tip speed for each participant were selected for 
analysis. Several virtual landmarks were created to 
scale a generic model using the OpenSim scale tool. 
The ground reaction force data and kinematics were 
smoothed using a zero-lag 6 Hz second-order low-
pass Butterworth filter. The EMG signals were full-
wave rectified and filtered to create a linear envelope 
using a 6 Hz second-order low-pass Butterworth filter. 
The positions of the hip joint centers were estimated 
using a functional method (Gamage & Lasenby, 2002; 
Halvorsen, 2003).

Musculoskeletal model and estimation of muscle 
activations

We used a modified version of the OpenSim 
musculoskeletal model published by Lai et al. (2017). 
Two additional degrees of freedom of adduction/
abduction and internal/external rotation were added 
to each knee joint. The range of motion was -5° to 5° 
for adduction (+) and -30° to 30° for internal rotation 
(+). These values were determined according to 
Ramsey & Wretenberg, (1999).

Lower limb muscle activation was estimated using 
a static optimization algorithm with OpenSim 3.3 
(Seth, Sherman, Reinbolt, & Delp, 2011). The modified 
model was scaled for each participant in a static 
standing position. The maximum isometric force of 
each muscle actuator was scaled by a factor of 1.8–2.1 
to account for possible stronger muscles in younger 
players. The scale was set so that the estimated 
activation level would not remain at the maximum 
(i.e., 1) for more than 15 ms for all muscles because 
such persistent full activation was not observed in 
EMG activation. Subsequently, the joint angles during 
stroke sequences were determined using the Inverse 
Kinematics tool. The calculated joint angles and ground 

reaction forces were then used to estimate the lower 
limb muscle activations through static optimization, 
which resolves the indeterminacy of muscle forces by 
minimizing the squared sum of muscle activations.

EMG envelope data were time-shifted by 40 ms 
to account for the electromechanical delay (Begovic, 
Zhou, Li, Wang, & Zheng, 2014; Dupré et al., 2019; Zhou, 
Lawson, Morrison, & Fairweather, 1995). The timings 
of stroke events were determined in accordance with 
previous studies (Iino & Kojima, 2011; 2016); However, 
the origin of the pelvis instead of the shoulder joint 
was used to define the beginning of a backhand 
stroke as described below because the present study 
focused on the lower limb movements. The beginning 
of a forehand stroke was defined as the time when 
the pelvis negative (clockwise) axial angular velocity 
exceeded -0.5 rad/s (for the players who temporarily 
stopped the pelvis rotation between two strokes) 
and the time when the pelvis rotated backward 
beyond the forward-facing position (for the remaining 
players) (Figure 1). The beginning of a backhand 
stroke was defined as the time when the origin of 
the pelvis (midpoint of both hip joint centers) made 
a preliminary downward movement. The beginning of 
the forward swing was defined as the time when the 
pelvis began to rotate forward for the forehand and 
the time when the pelvis began to move upward for 
the backhand. Time was normalized to the duration 
from the beginning of the stroke to the peak racket 
speed. Muscle activation data were analyzed from 
0% (beginning of stroke) to 120% (follow-through) 
normalized time. 

Statistical analysis

Pearson correlation coefficients were determined 
between the EMG envelope and the estimated muscle 
activation data for 121 time points. Pearson correlation 
coefficients were classified as small (r = 0.1–0.29), 
moderate (r = 0.3–0.49) or large (r = 0.5–1) (Cohen, 2013). 
In addition, Lin’s concordance correlation coefficients 
(CCC) (Lin, 1989) were determined between the EMG 
and estimated muscle activations. CCC quantifies the 
closeness of the two measurements to the 45 degree 
line that passes through the origin. 

The Shapiro-Wilk test was used to evaluate the 
non-normality of the distribution for the maximum 
activation of the following lower limb muscles/
muscle groups during the forehand and backhand: 
gluteus maximus, gluteus maximus, adductor magnus, 
hamstrings, vastus muscles, gastrocnemius, soleus, and 
anterior tibialis. The test revealed that the distribution 
for the gluteus maximus on the playing side during 
forehand significantly departed from normality (P 
= 0.0017); hence, the Wilcoxon signed-rank test was 
used to compare the maximum activation between the 
strokes for that muscle. A two-tailed t-test was used to 
analyze the remaining muscles. Statistical significance 
was set at P < 0.01.
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RESULTS
The maximum racket speed was 20.6 ± 1.6 m/s 

for the forehand topspin and 21.5 ± 1. 6 m/s for the 
backhand topspin.

In the forehand, seven muscles showed a maximum 
estimated activation of > 0.3 (Table 1). The rectus 
femoris and gluteus maximus of the playing side and 
the rectus femoris of the non-playing side showed a 
maximum estimated activation of > 0.5. The tibialis 
anterior and biceps femoris of the playing side and 
the gastrocnemius lateralis and gluteus maximus of 
the non-playing side showed maximum estimated 
activation between 0.3 and 0.5. The Pearson correlation 
coefficient between EMG and estimated activations was 
> 0.3 for eight muscles of the forehand (Table 1). Most 
muscles that showed substantial maximum activation 
(> 0.3) exhibited a Pearson correlation coefficient higher 
than 0.3, except the gastrocnemius lateralis and gluteus 
maximus on the non-playing side, with mean Pearson 
correlation coefficients of 0.277 and 0.218, respectively 
(Table 1). Concordance correlation coefficients were 
smaller than their respective Pearson coefficients and 
were > 0.3 for five muscles. Peak EMG activation was 
observed during the forward swing phase for all muscles 
that showed substantial activation (Table 1, Figure 2). 
The rectus femoris and gluteus maximus of the playing 

side and rectus femoris of the non-playing side showed 
peak EMG activation after the beginning of the forward 
swing (Figure 2).

For the backhand, four muscles showed a maximum 
activation > 0.3 (Table 1). Only the rectus femoris on 
the playing side showed a maximum activation of > 
0.5. The soleus of the playing side and rectus femoris 
and gluteus maximus of the non-playing side showed 
maximum activations between 0.3 and 0.5. These 
muscles exhibited a Pearson correlation coefficient of > 
0.3 (Table 1). As was in the forehand stroke, concordance 
correlation coefficients were smaller than Pearson 
coefficients and were > 0.3 for seven muscles in the 
backhand (Table 1). In the backhand stroke, peak EMG 
activation was also observed during the forward swing 
phase, except for the vastus medialis on the non-
playing side, which showed higher activation during the 
backswing phase (Figure 3).

The gluteus maximus, hamstrings of the playing side, 
and rectus femoris of the non-playing side showed a 
statistically higher maximum estimated activation in the 
forehand than in the backhand (P = 0.0078, P = 0.00055, 
and P = 0.0002, respectively, Figure 4). Three muscles 
showed a maximum estimated activation of > 0.5 during 
the forehand, whereas only the rectus femoris of the 
playing side showed a maximum activation > 0.5.

Table 1. 
Pearson correlation coefficients and concordance correlation coefficients between EMG and estimated activation levels for lower limb muscles 
during forehand and backhand topspin strokes.

Forehand Backhand

Pearson 
Correlation 

Coefficient, r

Concordance Correlation 
Coefficient

Maximum 
activation

Pearson 
Correlation 

Coefficient, r

Concordance Correlation 
Coefficient

Maximum 
activation

rc s.e. rc s.e.

Playing side

tibialis anterior 0.300±0.164 0.204±0.106 0.062±0.014 0.31±0.17 0.033±0.266 0.023±0.193 0.055±0.014 0.08±0.08

gastrocnemius 
lateralis

0.145±0.272 0.087±0.184 0.061±0.010 0.15±0.07 0.335±0.434 0.274±0.355 0.057±0.016 0.13±0.07

soleus 0.528±0.163 0.451±0.161 0.062±0.010 0.24±0.12 0.650±0.138 0.581±0.153 0.052±0.011 0.33±0.17

vastus medialis 0.349±0.317 0.282±0.292 0.064±0.022 0.23±0.16 0.566±0.244 0.534±0.247 0.056±0.024 0.20±0.08

rectus femoris 0.616±0.201 0.572±0.193 0.055±0.015 0.58±0.22 0.605±0.152 0.555±0.149 0.058±0.014 0.53±0.16

biceps femoris 0.640±0.267 0.530±0.257 0.049±0.017 0.43±0.23 0.139±0.293 0.101±0.209 0.050±0.018 0.06±0.05

gluteus medius 0.088±0.230 0.056±0.143 0.052±0.007 0.24±0.17 0.120±0.339 0.059±0.224 0.059±0.018 0.07±0.05

gluteus maximus 0.883±0.080 0.860±0.089 0.023±0.013 0.93±0.10 0.081±0.314 0.063±0.289 0.064±0.013 0.11±0.10

Non-playing side

tibialis anterior 0.069±0.368 0.066±0.298 0.066±0.012 0.17±0.15 0.333±0.217 0.219±0.176 0.055±0.014 0.14±0.06

gastrocnemius 
lateralis

0.277±0.0457 0.215±0.324 0.058±0.013 0.34±0.17 0.245±0.309 0.221±0.288 0.070±0.021 0.25±0.14

soleus 0.169±0.349 0.128±0.281 0.072±0.013 0.26±0.13 0.288±0.335 0.208±0.264 0.066±0.012 0.16±0.11

vastus medialis 0.343±0.292 0.251±0.306 0.047±0.028 0.27±0.31 0.442±0.264 0.345±0.246 0.045±0.025 0.19±0.16

rectus femoris 0.795±0.099 0.746±0.112 0.038±0.011 0.85±0.21 0.354±0.248 0.323±0.257 0.067±0.022 0.34±0.23

biceps femoris 0.234±0.257 0.171±0.190 0.055±0.011 0.13±0.23 0.666±0.281 0.614±0.287 0.046±0.024 0.23±0.11

gluteus medius 0.00±0.237 -0.010±0.177 0.076±0.010 0.19±0.10 0.282±0.319 0.223±0.310 0.060±0.023 0.13±0.11

gluteus maximus 0.218±0.272 0.147±0.219 0.065±0.020 0.35±0.33 0.667±0.223 0.604±0.235 0.049±0.023 0.40±0.14

Correlation coefficients > 0.3 (moderate or large in accordance with Cohen (2913)) are shown in bold for clarity.
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Figure 2. Normalized estimated (red) and EMG (black) activations of the lower limb muscles during the topspin forehand. 
Vertical lines represent the completion of backswing (dashed) and the occurrence of maximum racket speed (solid). Shared 
areas show standard deviations for the participants. TA; tibialis anterior, GL; gastrocnemius lateralis, SOL; soleus, VM; vastus 
medialis, RF; rectus femoris, BF; biceps femoris, GMED; gluteus medius, GMAX; gluteus maximus.
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Figure 3. Normalized estimated (red) and EMG (black) activations of the lower limb muscles during the topspin backhand. 
Vertical lines represent the completion of backswing (dashed) and the occurrence of maximum racket speed (solid). Shared 
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Figure 4. Maximum estimated activation of the lower limb muscles/muscle groups during topspin forehand and backhand. 
***P<0.001, **P<0.01.

DISCUSSION
This study aimed to validate the estimation of 

lower-limb muscle activation during table tennis 
forehand and backhand through comparison with EMG 
measurements. We also aimed to compare the estimated 
activation between forehand and backhand strokes. 
The maximum racket resultant velocities (20.6 ± 1.6 m/s 
for the forehand and 21.5 ± 1.3 m/s for the backhand) 
were similar to or higher than those in previous studies 
(Bańkosz & Winiarski, 2018; Iino & Kojima, 2009; 2016). 

The comparison between the estimated and EMG 
activation suggests that the static optimization algorithm 
can adequately estimate lower limb muscle activity 
during table tennis topspin forehand and backhand. 
For the four muscles that showed maximum activation 
of > 0.5, the Pearson correlation coefficients were > 0.5 
(Table 1). Of the seven muscles that showed maximum 
activation between 0.3 and 0.5, five showed a Pearson 
correlation coefficient > 0.3 (Table 1). However, the 
Pearson correlation coefficients for the gastrocnemius 
and gluteus maximus of the non-playing side during 
forehand were lower than 0.3 (although their maximum 
activations were higher than 0.3; Table 1). 

Co-contraction is a possible cause for the lower 
correlations observed in the gluteus medius on the 
playing side and the gluteus maximus and gluteus 
medius on the non-playing side. EMG recordings 
showed that the gluteus maximus on the non-playing 
side was active for 60–80% of the swing phase during 

the forehand (Figure 2), but the estimated activation 
was small because the hip joint on the non-playing side 
exerted flexion torque during that phase (not shown in 
the Results section). EMG recordings also showed that the 
bilateral gluteus medius muscles were activated during 
the follow-through phase of the forehand. However, six 
of the eight players demonstrated adduction torque at 
each hip joint during this phase, which resulted in lower 
estimated activation of the gluteus medius muscles in 
these players (Figure 2). These results suggest that the 
co-contraction of the adductor/abductor and flexor/
extensor muscles that occurred at both hip joints in the 
forehand stroke resulted in lower correlations observed 
in the relevant muscles. Methods for estimating muscle 
co-contraction using shift parameters (MacIntosh & Keir, 
2017) or contraction entropy (Jiang & Mirka, 2007) have 
been proposed. Future research is needed to establish 
when and at which joint co-contraction occurs in table 
tennis strokes to accurately estimate the activation of 
the lower limb muscles.

Another reason for the lower correlation for 
some muscles in some participants may be that the 
model parameters used were not adjusted for each 
participant as indicated in previous studies (Dupré et 
al., 2019; Trinler et al., 2018; Wibawa et al., 2016; Żuk 
et al., 2018). For example, the Pearson correlations 
for the gastrocnemius of the non-playing side during 
the forehand and the gastrocnemius of the playing 
side during the backhand varied substantially 
among the players (see standard deviation values 
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in Table 1). Muscle parameters, such as the force-
length relationship of the muscle and tendon in the 
generalized model, might not have been appropriate 
for some players. 

Concordance correlation coefficients were smaller 
than respective Pearson correlation coefficients. 
Only the gluteus maximus of the playing side during 
the forehand exhibited a concordance correlation 
coefficients > 0.8. These results suggest that there 
was “scale shift” or “location shift” between EMG and 
estimated activations (Lin, 1989). It should be noted 
that this reflects that EMG linear envelope is only an 
estimate of muscle activation and is subject to noise 
and confounding factors (Staudenmann, Roeleveld, 
Stegeman, & van Dieën, 2010). For more robust 
validation of the musculoskeletal modeling and muscle 
activation, comparisons with additional independent 
data, such as ultrasound images of muscles and 
instrumented joint loading, would be necessary (Hicks, 
Uchida, Seth, Rajagopal, & Delp, 2015).

It is worth comparing the results of the present 
study with those obtained for walking and other 
types of locomotion in previous studies (Alexander 
& Schwameder, 2016; Dupré et al., 2019; Trinler et al., 
2018; Wibawa et al., 2016; Żuk et al., 2018). Although 
these studies have reported that lower limb muscle 
activation estimated using musculoskeletal modeling 
generally showed moderate to good agreement with 
EMG activation, Trinler et al. (2018) suggested that the 
consistency of agreement between measured and 
estimated activation levels at different walking speeds 
was not high enough to recommend immediate clinical 
adoption. Many factors, such as the musculoskeletal 
models used (OpenSim, AnyBody), EMG signal 
processing methods, statistical methods (Pearson or 
Spearman), and the phase of analysis (stance phase or 
complete gait cycle), differed between studies, making 
it difficult to quantitatively compare the correlation 
coefficients between these studies. Overall, the present 
study suggests that the static optimization algorithm 
can estimate lower-limb muscle activity during table 
tennis forehand and backhand with a similar degree of 
validity to that of locomotion.

The results suggest that the gluteus maximus and 
hamstrings of the playing side and the rectus femoris 
of the non-playing side exhibit higher activation 
during the forehand than during the backhand. The 
gluteus maximus and biceps femoris muscles show 
high activation. These results were consistent with 
Le Mansec et al.’s (2018) findings on lower limb EMG 
and the previous studies (Chen et al., 2022; Qian et al., 
2016) that suggested that advanced players would use 
lower limb drive more effectively than intermediate 
players in the topspin forehand. Our study also 
suggests that the rectus femoris on the non-playing 
side is highly activated during the topspin forehand.

In contrast, the lower limb muscles showed 
relatively low activation during the topspin backhand. 
This result is consistent with a previous study that 

found that the angular velocities of playing and 
non-playing side hip extension and ankle flexion 
are positively correlated with racket speed in the 
topspin forehand whereas the angular velocities of 
the racket arm are correlated with racket speed in 
the topspin backhand (Bańkosz & Winiarski, 2018). 
Previous studies (Iino & Kojima, 2011; 2016) have 
reported that approximately 80% of the mechanical 
energy of the racket arm at ball impact was due 
to the energy transfer from the trunk in both the 
backhand and forehand strokes. Considering that the 
maximum racket speeds were similar for both strokes 
in the present study, the trunk muscles may be more 
highly activated for mechanical work in the backhand 
than in the forehand, or mechanical energy may be 
transferred more efficiently through the trunk in the 
backhand than in the forehand. 

The present study has some limitations. First, 
EMG data were not recorded for maximum voluntary 
contraction (MVC). Thus, EMG activation could not 
be normalized to MVC values. Second, the maximum 
isometric forces of each muscle actuator did not 
reflect the maximum isometric joint torque for each 
player because such kinetics were not measured. 
We focused instead on the patterns of estimated 
and EMG activations, which were not affected by 
these normalizing values. Finally, only the static 
optimization algorithm using the OpenSim model was 
assessed. Other algorithms such as computed muscle 
control and other musculoskeletal models should be 
investigated in future studies.

CONCLUSIONS
The present study suggests that the static 

optimization algorithm can adequately estimate 
lower-limb muscle activity during table tennis 
topspin forehand and backhand strokes. The gluteus 
maximus and rectus femoris on the playing side 
and rectus femoris on the non-playing side showed 
high activation during the forehand. Only the rectus 
femoris on the playing side showed high activation 
in the backhand. For these four muscles, the Pearson 
correlation coefficients were higher than 0.5. A lower 
Pearson correlation between the estimated and EMG 
activation was observed for some muscles, including 
both gluteus medius muscles, during the forehand. 
A possible cause is the co-contraction of relevant 
muscles. All concordance correlation coefficients were 
smaller than their respective Pearson correlation 
coefficients. The gluteus maximus and hamstrings on 
the playing side, and rectus femoris on the non-playing 
side exhibited higher activation during the forehand 
than during the backhand.
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