catalysts MBPI|

Review
Gold Nanozymes: Smart Hybrids with Outstanding
Applications

Sandra Jimenez-Falcao 1'2-*, Jose M. Méndez-Arriaga !, Victoria Garcia-Almodévar 107,

Antonio A. Garcia-Valdivia -3 and Santiago Gémez-Ruiz 1*

COMET-NANO Group, Departamento de Biologia y Geologia, Fisica y Quimica Inorganica, Universidad Rey
Juan Carlos, Mdstoles, 28933 Madrid, Spain

2 Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

Departamento de Quimica Inorgénica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Correspondence: sandraji@ucm.es (S.J.-F.); santiago.gomez@urijc.es (S.G.-R.)

Abstract: Nanozymes are nanostructured artificial enzymes that have attracted great attention
among researchers because of their ability to mimic relevant biological reactions carried out by their
natural counterparts, but with the capability to overcome natural enzymes” drawbacks such as low
thermostability or narrow substrate scope. The promising enzyme-like properties of these systems
make nanozymes excellent candidates for innovative solutions in different scientific fields such as
analytical chemistry, catalysis or medicine. Thus, nanozymes with different type of activities are
of special interest owing to their versatility since they can reproduce several biological reactions
according to the substrates and the environmental conditions. In this context, gold-based nanozymes
are a representative example of multifunctional structures that can perform a great number of enzyme-
like activities. In addition, the combination of gold-based materials with structures of organic and
inorganic chemical nature yields even more powerful hybrid nanozymes, which enhance their activity
by providing improved features. This review will carry out a deep insight into gold-based nanozymes,
revisiting not only the different type of biological enzymatic reactions that can be achieved with
check for these kinds of systems, but also structural features of some of the most relevant hybrid gold-based
updates nanozymes described in the literature. This literature review will also provide a representative picture
Citation: Jimenez-Falcao, S.; of the potential of these structures to solve future technological challenges.
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Each catalytic reaction presents a specific mechanism.
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For these reasons, enzymes have been widely used in many scientific and industrial
fields such as food and beverages, agriculture, pharmaceutical, bioenergy or environmental
conditions of the Creative Commons  MONitoring [4-6]. Nevertheless, because of their bio-organic-based composition (enzymes
Attribution (CC BY) license (https:// are mainly composed of amino acids and additional saccharides or metal atoms), they
creativecommons.org/ licenses/by/ present intrinsic limitations that have resulted in a great effort to find inert alternative
40/). materials capable of performing enzyme-mimicking reactions. Early research in this field
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resulted in the development of catalytic polymers called synzymes [7,8]. Soon after, this
concept was expanded to include nanomaterials, which emerged as a great alternative,
giving rise to nanozymes: entities in the nano scale with catalytical activity that exhibit
enzyme-like features [9]. This term was first used in the early 2000s to describe a gold
nanoparticle system able to achieve transphosphorylation reactions [10]. In this context,
ease of preparation, large scale production, diverse of activities, high stability towards
denaturation, recyclability, ability to work in a wider range of temperature and pH, and
additional physicochemical features (photodynamic, photothermal or magnetic properties),
are some of the benefits of nanozymes in comparison to their natural counterparts [11].

A variety of nanomaterials, such as metal nanoparticles, metallic derivatives (metal
oxides, metal sulfides, MnSe), carbon-based systems or polymeric materials, have shown
enzyme-like properties [12]. In addition, the potential to design tailor-made synthetic
protocols by surface coating, chemical doping or size and morphology tuning, renders as
many nanozyme systems as can be imagined, providing new functionalities, or improving
their catalytic features. This compositional and morphological versatility make them
excellent tools in a variety of scientific fields, such as biomedicine [13], sensing [9,14] or
environmental engineering [15].

One of the most outstanding elements for the design of advanced nanozymes is gold.
Its physical properties (including surface plasmon resonance), its effectiveness as a catalyst
and its capacity of mimicking a great number of enzymatic reactions make this metal an
interesting subject of study for the scientific community [16,17].

The aim of this review is to explore the catalytic activity of gold nanozymes, and,
in particular, hybrid gold nanozyme systems that combine gold with different nano or
biomaterials in order to improve their performance. Despite the great number of advantages
that nanozymes present, low specificity and relatively poor activity are undeniable features
that arise from the lack of sophisticated active sites in comparison to natural enzymes.
These enzymes possess a combination of different amino acid residues that not only bind
the substrates, but also catalyze the reaction for a specific molecule, while nanozymes can
mimic the reaction of a specific substrate, but also transform other compounds. However,
the scientific community is making a great effort to promote nanozyme catalytic reactions
or to consider their multienzyme mimetic capacity. A smart strategy to accomplish this goal
is the combination of different nanomaterials, resulting in nanohybrids with synergistic
effects. Some of the most relevant hybrid gold-based nanozymes synthesized to date are
collated in Table 1.

Table 1. Relevant hybrid gold-based nanozymes described in the literature.

Inorganic Biohybrids
Carbon-Based
Carbon-Based Material Enzymatic Activity Application Ref.
Sensi Biothiol 18
Carbon dots Oxidase ensing 1oThio™s (18]
Antitumoral Liver cancer [19]
Nanoporous carbon Oxidase Sensing Oxidase [20]
Gastri 21
Carbon nanoshell HRP 2 Antitumoral astric cancet 211
- [22]
Graphite HRP Sensing H,0; and glucose [23]
HRP Sensing Glucose [24]
Tert-butyl
Carbon dots HRP Sensing hydroquinone and
formaldehyde [25]
HRP Catalysis Oxidation of tert-butyl

hydroquinone
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Table 1. Cont.

Porous carbon @PDAGCU HRP Sensing PSA P [26]
Carbon nanotubes HRP Sensing Hy,O, [27]
Graphene oxide@CeO, HRP Sensing Nitrites [28]
Yolk shell carbon Oxidase + HRP Antitumoral Colorectal cancer [29]
MOFs
MOF Enzymatic Activity Application Ref.
MIL-101 HRP Sensing Glucose and lactate [30]
NH2-MIL-125 (Ti) HRP Sensing CyStei“I‘iI’gI;IEOZ and [31]
AI-MOF-2D HRP Antibacterial Sﬂ’ﬁfgggfzng’ggzs [32]
Fo-MOF HRP Degradation Methylene blue [33]
HRP Sensing Hydroxyl radical
Co-MOF HRP Sensing ﬁfﬁiﬂz [34]
Metals
Metal Enzymatic Activity Application Ref.
Tubular TiO, HRP Sensing H,O, [35]
Ag alloy HRP Antibacterial Mtyu cboe iiiti)i Zm [36]
Pd@Ir core-shell HRP Sensing PSA [37]
Pt core-shell HRP Sensing Improving ELISA [38]
Escherichia coli,
Co-Fe core—shell HRP Sensing P;izzzzzggscze;zgizsza’ [39]
and Bacillus cereus
Yolk shell TiO, HRP Sensing HyO, and glucose [40]
Fe,O3 nanocubes HRP Sensing Improving ELISA [41]
HRP Sensing P53 autoantibodies [42]
Pt core—shell HRP Sensing Glucose [43]
Organic Hybrids
Aminoacids (aa)
aa Enzymatic Activity Application Ref.
Various HRP Sensing Cu?*, histidine [44]
Histidine HRP Sensing Nitrite [45]
Cysteine HRP Enantioselectivity Dopamine [45]
Peptide HRP Optical imaging Cancer cells (HEL cells) [30]
Histidine Oxidase Sensing Doxycycline [46]
Glucose oxidase Sensing Glucose [47]
Polymers
Polymer Enzymatic Activity Application Ref.
PEG-SH HRP Sensing H,0, [48,49]
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PEG/Carboxylate HRP Sensing Proteins [50]
PAM-4 HRP Sensing Ciprofloxacin [51]
Heparin HRP Microdialysis Cytokines [52]
PCL/Gelatin HRP Antibacﬂf;ﬁ;; Wound MDR Bacteria [53]
Hyaluronic acid HRP Anticancer 4T1 breast cancer cells [54]
Biohybrids
Proteins
Protein Enzymatic Activity Application Ref.
HRP Sensing Trichinella spiralis [55]
Ab© HRP Sensing Influenza A virus [56]
HRP Sensing Ebola [57]
HRP Sensing Influenza virus [58]
Apoferritin HRP Sensing Glucose [59]
SOD 4, Catalase, HRP ROS Scavenger O,~ [60]
HRP Sensing Tea polyphenols [61]
BSA ¢ HRP Sensing Xanthine [62]
Glucose oxidase + HRP Sensing Glucose [63]
B-Cas f HRP Sensing Protease enzyme [64]
Nucleic acids
Nucleic Acid Enzymatic Activity Application Ref.
HRP Sensing C Reactive protein [65]
HRP Sensing CAlziioofj‘;f;rcancer [66]
HRP Sensing Ampicillin [67]
Apt8 HRP Sensing Norovirus [68]
HRP Sensing Acetamiprid pesticide [69]
HRP Sensing Kanamycin [70]
HRP Sensing Zearalenone [71]
HRP Sensing Streptomycin [72]
Polysaccharides
Polysaccharide Enzymatic Activity Application Ref.
Oxidase + HRP B::rtl(:irli)aalc :z;agli;g Helicobacter pylori [73]
Chitosan HRP Sensing H,0; and glucose [74]
HRP Sensing Hg?* [75]
HRP Sensing Glucose [76]
HRP Sensing Melamine [77]

2 Horseradish peroxidase; P Prostate Specific Antigen; ¢ Antibody; 4 Superoxide Dismutase; ¢ Bovine Serum
Albumin; f -Casein; 8 Aptamer.
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2. Types of Gold Nanozyme Activity

Since there is a great variety of proteins that perform catalytic tasks, the number of
activities that enzymes can carry out is almost unlimited. They can be classified in seven
different groups; namely, oxidoreductases, transferases, hydrolases, lyases, isomerases,
ligases and translocases, which can be subdivided according to the concerned reaction
mechanism or the substrate [78]. Nanozymes accomplish a vast number of these typical
enzymatic tasks, which is possible because of the presence of high energy atoms on the
surface of nanozymes. Moreover, nanomaterials’ surface can be grafted with ligands that
present functional groups which are typical in enzymes, favoring classic enzymatic catalytic
reactions [16].

Nevertheless, compositional, and structural differences between them are responsible
for the different catalytic properties exhibited by these kinds of systems. Natural enzymes
present different mechanisms to catalyze chemical reactions, employing usually more than
one to complete the conversion from substrate to desired products. The mechanism of
the enzyme depends on two factors: specificity of the enzyme and the transition state of
the reactants or substrates [79]. The main mechanisms are covalent catalysis, acid-base
catalysis, electrostatic catalysis and cofactor catalysis.

Covalent catalysis [80] involves the formation of a covalent bond between the active
site and at least one of the substrates, while acid-base catalysis [81] involves a proton trans-
fer. In addition, electrostatic catalysis [82] is based on a stabilization of the transition state
with electrostatic interactions and, finally, cofactor catalysis [83] relies on the interaction
with compounds that are not substrates, but that are necessary for the transformation,
desolvation, approximation or strain distortion in specific cases.

Whereas enzymes present a limited number of active sites, nanozymes possess a high
number of them. In addition, the presence of multivalent elements or a great number of
coordination structures permit the coexistence of different catalytic types of activity in a
single nanozyme, which is unusual in natural enzymes [84]. Despite nanozymes presenting
lower substrate specificity, this weakness can be overcome by grafting chiral amino acids,
providing stereoselectivity [85].

In the case of noble metal nanozymes, catalytic activity relies on the adsorption,
activation and electron transfer processes on the catalytic surface, which is possible owing
to the variable oxidation states of the metal atoms [15].

Despite the great number of enzyme activity-like reactions, nanozymes are mainly
focused on performing the tasks of hydrolases and oxidoreductases, which consist of the
hydrolysis of chemical bonds and the accomplishment of redox reactions, based on the trans-
ference of electrons and hydrogen or oxygen atoms between molecules, respectively [15]
(Figure 1).

Gold-based nanozymes are able to mimic a great variety of enzyme-like reactions. The
enzymatic activity of the nanozymes depends on the environmental reaction conditions
(availability of substrates, pH), synthetic conditions of the gold nanosystem [86], surface
coating [63], or presence of certain substances [87].

2.1. Peroxidase (HRP)

The enzymatic activity that enables the reduction of hydroperoxides (generally hydro-
gen peroxide) to water is known as peroxidase. This type of enzymatic activity is commonly
abbreviated to HRP, since the most used enzyme used for biotechnological purposes is
extracted from horseradish peroxidase [88]. Most of the main applications of gold-based
nanozymes with HRP activity are in the field of sensing for the determination of H,O, or
glucose [89], Pseudomonas aeruginosa [90] or CA125 cancer biomarker [66].
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Figure 1. Scheme of the major reactions catalyzed by oxidoreductases (oxidases, superoxide dismu-
tases, HRPs and catalases) and hydrolases. Adapted with permission from [15].

2.2. Superoxide Dismutase (SOD)

Removal of superoxide radicals throughout their transformation to H,O, and O,
is catalyzed by superoxide dismutase activity. Therefore, this reaction is tightly related
to oxidative stress [91]; for example, a gold nanozyme-based system presenting SOD
activity [92] is useful in cryopreservation [60].

2.3. Catalase (CAT)

The transformation of H,O, to H,O and O, (a trigger of oxidative stress) is accom-
plished by catalase activity [93]. Catalase-like gold nanozymes are suggested to be promis-
ing tools for the removal of H,O; in industrial applications [94], but also great agents
against cancer cell hypoxia [95].

2.4. Glucose Oxidase (GOD)

Glucose oxidase is a specific type of oxidase activity, which promotes the oxidation
of glucose to gluconic acid and HyO; [96]. As a consequence of gold-based nanozymes’
responsiveness to glucose [97], they are excellent candidates for glucose sensing [98,99].
Nevertheless, they also present additional applications, for example, in tumor ablation
therapy [100].

2.5. Esterase

Esterase catalytic reactions describe the hydrolysis of an ester group, which is released
as an acid [101]. Although less frequent, some examples can be found in the literature of
gold-based nanozymes presenting this kind of special reactivity [102] for gold systems.

2.6. Nuclease

The function of nucleases is to split the phosphodiester bonds of DNA and RNA
nucleic acids [103]. The first publication regarding nanozymes reported a gold-based
system with phosphate diester-cleavage ability [10]. Interestingly, specific applications of
gold-based nuclease nanozymes include DNAse activity to avoid the formation of bacterial
biofilms [104] or with the ability to break plasmid DNA [105].

2.7. Combined Activity

It is frequent to find gold-based systems able to perform more than one enzymatic
activity. The usual way to control the type of reaction that takes place is by switching the pH;
superoxide dismutase and catalase activities perform best at basic to neutral pH, glucose
oxidase at neutral to acidic pH [63], and HRP activity at acidic pH [106-108]. Therefore,
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by modulating the reaction conditions and environment, gold-based nanozymes can be
multifunctional systems with various applications in different biological contexts.

3. Nanozymes Based on Gold Hybrids
3.1. Inorganic Hybrids

In recent years, inorganic hybrid materials have received attention for their use as an
enzyme substitute due to their mimetic active centers throughout the structure. Among
them, noble metal-based nanozymes exhibit special optical properties, excellent chem-
ical stability, adjustable enzyme-like activity and superior biocompatibility, being con-
sidered one of the top research materials in diverse fields such as nanotechnology and
medicine [109]. Specifically, Au and Pt nanozymes can show HRP [89], SOD and CAT
activities [110]. Au quantum dots also present glucose oxidase (GOD) potential, with an
enzymatic activity negatively correlated with particle size (the smaller the particle size, the
higher the GOD activity), demonstrating that surface area is a critical parameter in non-
enzymatic activity [111]. A classification based on the material supporting Au nanosystems
will be presented in this section.

3.1.1. Carbon-Based Supports

Carbon structures have been widely used for different applications, especially energy
storage and sensors [112] due to their large pore volume and high specific surface. Af-
ter modification with gold, one of the more extended applications of carbon/Au-based
scaffolds is their use as sensors [18,27], although without nanozyme behavior in most of
the cases. Nevertheless, carbon-based gold hybrids (C@Au) can also be applied in cancer
treatment by taking advantage of the nanozyme characteristics of the nanomaterial. For
example Lei Fan et al. [29] proposed the use of a single gold nanoparticle core with a porous
hollow carbon shell nanosphere (HCNs@Au). This hybrid possesses great HRP and oxidase
enzymatic activity, leading to reactive oxygen species (ROS) generation under an acidic
environment and NIR radiation at 808 nm (Figure 2).

808 nm
Photothermal Therapy b)
— - ROSgeneration
9 S ~ 120- M No laser
Funcionat anoyme e erhancedrosiew = 20 Wicm?
_______________ -
Tumor catalytic-photothermal therapy el 801
©
A . -
@ P -9; 3 40
FYA .? O
- 0-

Q\qu DRSO

Concentration (ug/mL)

Figure 2. (a) Scheme of the action of Au@HCNs under 808 nm radiation. (b) Relative viabilities
of CT26 cell incubated with Au@HCNs under 808 nm laser irradiation for 10 min. Reprinted with
permission from [29]. Copyright © 2018 American Chemical Society.

Novel C@Au nanohybrids have been developed in recent years, performing enzymatic
activity in similar conditions to the example cited before [21,22]. Ninggiang Gong et al. [19],
for example, synthesized a new carbon dot-supported atomic gold (CAT-g) presenting
sensitivity to acid pH inside cancer cells without the presence of any kind of radiation. CAT-
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g resulted in being highly toxic to liver cancer cell (HepG-2, BEL-7404 and HCCC-9810),
while it was harmless to normal liver cells (L02, QSG-7701) and primary cells.

The use of C@Au hybrid nanozymes have special importance as sensors in the de-
tection of small molecules involved in metabolic processes (like uric acid [20] and mostly
glucose) due to their capacity to mimic HRP activity [23,24]. In several recent studies, Qiu-
lan Li et al. and Qing Shang et al. developed C@Au-based systems for the determination of
contaminants in food [25] and cancer biomarkers [26], respectively.

Finally, it is mandatory to highlight graphene-based nanozymes, owing to the excellent
properties of graphene as supporting systems. Those graphene@Au materials have proven
to be great candidates for diverse applications, such as fast and highly selective colorimet-
ric sensors against carcinogenic agents (Figure 3) [28]. In this example, a multimaterial
hybrid nanozyme based on chemically modified gold nanoparticle (AuNP)-cerium oxide
(CeOy) NP-anchored graphene oxide (GO) was proposed for the determination of nitrite.
Graphene@Au hybrids are also useful as adsorbents for pollutants, or catalysts for the
transformation of H,O, to *OH radicals, subsequently exhibiting outstanding removal per-
formance toward different organic dyes [113]. This multivalent behavior of graphene-Au
nanozymes makes them one of the most promising alternatives for the next decade.

A 0 100 pm 250 ym 500 pm 1000 pm 1500 pm 2000 pm 2500 pm 3000 pm 3500 ym 4000 ym 4500 m 5000 pm
N > =3 =5 s = Z 7. -

24
B
2 - y = 0.0003x + 0.4093
R? = 0.9961
1.6 -
1.2 -

0.8

Absorbance

Absorbance

0.4

2000 2500 3000 3500 4000
[Nitrite]. M

0 1000 2000 3000 4000 5000
[Nitrite], uM

Figure 3. (A) Photographic colorimetric response of the AuNP-CeO, NP@GO nanozyme to nitrite
detection at different incubation times and the corresponding catalytic absorbance signals generated
at the different detection times (B). Reprinted with permission from [28]. Copyright © 2020 Elsevier.

3.1.2. MOF-Based Supports

Despite the use of metalorganic frameworks (MOFs) being relatively recent in this
field, they are one of the most versatile materials to combine with gold in order to obtain
nanozymatic hybrids. The presence of a metallic center and bridging linkers favors post-
synthetic modifications [114], making these systems excellent candidates to be used as
enzyme-substitutes in a wide range of applications such as luminescence, magnetism,
catalysis or biomedicine [115-117].

One of the first structures used as a nanozyme was synthesized by Yihui Hu et al. in
2017 [30]. This MOF@Au hybrid, composed by MIL-101 MOF doped with AuNPs, presents
HRP enzymatic activity to detect glucose and lactate in living tissues (Figure 4).
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Figure 4. (A) Schematic illustration of in vitro detection of glucose (or lactate). (B) Plots of Raman
1 ys. glucose concentrations. Inset: linear response to
-1

intensity of malachite green at 1615 cm
glucose concentrations. (C) Plots of Raman intensity of malachite green at 1615 cm
concentrations. Inset: linear response to lactate concentrations. Reprinted with permission from [30].
Copyright © 2017 American Chemical Society.

vs. lactate

In the last few years, MOF@Au-based nanozymes have been widely explored for
biomedical applications [118]. One of the most interesting approaches was proposed by
Yanmei Zhang et al., who developed a MOF-MIL-125(Ti)@Au hybrid able to detect a
broad range of biomolecules such as cysteine or H,O, and some metallic cations such as
Hg?* [31]. HRP-like behavior permitted the evaluation of the presence of the analytes with
this colorimetric tool. In addition, another interesting study was carried out by Wen-Chao
Hu et al. who reported a 2D-MOF@Au system useful for antibacterial therapy, using its
HRP action to generate OH- radicals to fight Staphylococcus aureus [32].

Finally, it is important to note that the very high sensitivity of these materials, specif-
ically those with HRP activity, has permitted its wide usage for the development and
improvement of chemical sensors [33,34].

3.1.3. Metal-Based Supports

Metals and metallic derived alloys have shown excellent properties in electrochem-
istry and photochemistry, making them attractive candidates for catalysis and energy
conversion [35,36,39,119]. On the other hand, metallic nanoparticles have been mainly
used for biological purposes and sensing, providing high sensitivity for the detection of
biomarkers [120]. In this context, Jianbo Liu et al. reported using a AuNP@Pt system with
HRP and oxidase-like enzymatic behavior as an electronic biosensor for the simultaneous
determination of H,O, and glucose [43]. Following this research direction in the sensing
applications, Haihang Ye et al. [38] and Zhuanggiang Gao et al. [37] published gold core—
metal shell nanoparticles for the determination of biomarkers by enzymatic colorimetry,
improving the classic colorimetric ELISA assay (Figure 5).
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Figure 5. Schematic illustration of conventional colorimetric enzyme-linked immunosorbent assay
(left) and Au@Pt nanohybrid-based immunoassay. Reprinted with permission from [37]. Copyright ©
2015 Elsevier.

Metal oxide-based nanozymes, in particular, iron and titanium oxides, have shown
to be promising materials for sensing applications [40-42,121]. No significant biomedical
applications have been reported for gold-core metal hybrid nanozymes to date.

3.2. Organic Hybrids

Organic AuNP hybrids are one of the most employed nanozymatic materials in recent
years. The extraordinary variety of organic ligands available makes it necessary to limit the
development of this review work to just a few options. Only the versatility of applications of
amino acids and the potential to modify the physical properties of hybrid organic polymers
will be discussed in this section.

3.2.1. Amino Acids

The use of chemical reducing agents in the presence of surfactants, polymers, or other
biomolecules is usually the standard method to obtain metal nanoparticles. However,
amino acids (aa) as reducing and functionalizing molecules are becoming an environmen-
tally benign and green alternative for making metal nanoparticles and even functionalize
their surface [122-124]. The adsorption of different amino acids on the gold nanoparticle
surface depends on the peptide length [125]. Aspartic acid (Asp), lysine (Lys), tryptophan
(Trp) or tyrosine (Tyr) present interesting functionals groups along with amine and car-
boxyl groups, which thus provide an alternative route to synthesize nanoparticles with
functionalized surfaces. The reducing ability of histidine from its imidazole group can
also lead to gold nanoclusters biocompatible with bio-organisms [126]. Coupled with their
photoluminescence properties, this method allows the use of noble metal nanoclusters as
biological labels or biosensors. Gold nanoparticle sizes are a critical parameter to determine
the affinity of diverse types of amino acids to bind the nanomaterial surface, as supported
by recent molecular simulation studies by Qing Shao et al. [127].

For nanozyme-based biosensing applications, current research is mostly oriented
towards HRP mimics. One of the main applications of amino acid gold nanozyme materials
is focused on ion sensing and detection. The HRP-like catalytic ability of histidine-Au
nanoclusters (His@ AuNCs) can be inhibited by the addition of Cu?* [44] (Figure 6). In
the presence of Cu?*, the enzyme-like activity of His@ AuNCs can be efficiently restrained.
Upon addition of His, the chelation between Cu?* and the imidazole group of histidine
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leads to Cu®* liberation from His@AuNCs, and subsequently results in a dramatic enzyme
activity enhancement of His@ AuNCs. The ambidentate nature of His triggers the selective
recognition of Cu®* to enzyme inhibition of His@ AuNCs, being fully reversible by the
addition of more His.

1.4 b ¢ d a
124 ‘ )
: 3

o 1.0-
<
= !
= 08+
=
5 !
@n
= 0.6
< -

0.4 4

0.2 1

b-d
0.0 T T T T
500 550 600 650 700 750
Wavelength(nm)

Figure 6. UV-visible absorption spectra of different system: (a) TMBHis-AuNC-H,O,, (b)TMB-H;,0,,
(c) TMB-His-AuNC and (d) TMB-His-H,O,. Reprinted with permission from [44]. Copyright © 2017
Elsevier.

The use of this aa@Au hybrids is not limited to the detection of metal cations. There
are also several works where the hybrid nanozyme is sensitive to anions such as ni-
trites [45]. It is interesting that nitrite inhibits the catalytic and electrocatalytic processes of
His@AuNCs/RGO in the oxidation of TMB, and the results shown by the authors indicate
that TMB and nitrite may share the same catalytic active sites. The use of His@Au as a
sensor has also been extended to the detection of glucose [47] and biological active drugs,
such as doxycycline, by colorimetric techniques [46].

In addition to sensing applications, enantioselective nanomaterials can be also pro-
duced by the aa@Au combination [128]. In the oxidation of chiral DOPA, the gold nanozyme
with D/L-Cysteine (Cys) shows preference over L/D-Dopamine (Dopa) (Figure 7). Molecu-
lar simulations showed that the different affinity precipitated by hydrogen bond formation
between chiral Cys and Dopa is the origin of the chiral selectivity.

D-Cys/L-Cys@AuUNPs-EMSN

selectors for chiral recognition

p2e” PO OTe
- Enantioselective Oxidation ¢« ¢

. S { :: j~.
‘ DIL-DOPA DiL-dopachrome

Figure 7. Scheme of the enantioselective D/L-Cys@Au nanozyme. Reprinted with permission
from [128]. Copyright © 2020 Wiley.
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On the other hand, different uses of amino acid metal nanozymes with biological
activities can be found in the literature. For example, a leucine/GOy/ Fe?* material [129]
can be internalized by cancer cells and exhibits excellent antibacterial efficiency without
additional H,O,, which indicates the occurrence of cascade reactions from H,O, generation
by glucose oxidation to the production of highly active -OH via the Fenton reaction.

Focusing on amino acid-gold hybrids, we note that their use in antimicrobial therapy
has been spreading in the last decade [130,131]. The combinations between gold nanozymes
and peptides have led to biological applications such as the improvement of optical imaging
in cancer cells. Accurate cancer cell immunoassays require rational cell-labeling efficiency
and HRP-like nanozymes have demonstrated much potential in quantifying tumor cells by
aiding its efficient targeting capacity to special antigens or receptors on target cells [132]
(Figure 8). With the aid of bioconjugation, peptide gold nanoparticles as nanoprobes can
selectively recognize integrin on HEL cell membranes.
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& |

Peptide-AuNPs Integrin

Figure 8. (i) Selective recognition-mediated coupling of gold nanoparticles inducing two-photon
photoluminescence to display GPIIb/Illa integrin on the surface of HEL cell. (ii) Intrinsic enzyme-like
catalysis amplifying signal to sensitively and accurately quantify GPIIb/Illa expression. Reprinted
with permission from [132]. Copyright © 2015 American Chemical Society.

The use of coated gold nanoparticles with peptide chains, mainly with Tyr or Trp
residues, as antibiotic molecules has gained interest in the last years, as described by
Parvesh Wadhwani et al. [133], who showed that the modification confers stability against
trypsin. In addition, Bruno Casciaro et al. [134] proposed the use of an engineered peptide-
Au conjugated PEG@Au to enhance the anti-pseudomonal activity of the membrane-active
peptide without being toxic to human cells.

3.2.2. Organic Polymers

The use of organic polymers for coating gold nanoclusters and nanoparticles has
been very extensive in the last decade. The possibility of modifying the surface of an
organic matrix, improving the biocompatibility of the hybrid, and increasing its adherence
capability, has led to interesting sensing and biological applications [135].

The synthesis of assembled Au nanorices induced by polyaniline (PANI) led to highly
sensitive nanosystems for the detection of HyO, [136]. Owing to their high catalytic activity
and unique Surface-enhanced Raman scattering (SERS) properties, the PANI@Au nanorices
display promising potential applications in the fields of biocatalysis, disease diagnosis and
environmental monitoring. Additional examples can be found with nanorods mimicking
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HRP activity as potential tools for H,O, detection [48,49]. Poly(ethylene glycol) and
carboxylate coatings on AuNP are also used for the plasmonic detection of proteins [50].

One of the biological applications of polymer gold hybrids which is receiving more
attention is their use as nanocarriers for cancer therapy [137]. Nevertheless, the versatility
of different biocompatible polymers, such as heparin [138] or hyaluronic acid [54], make
these hybrid nanozymatic systems excellent candidates not only as anticancer or sensing
agents, but also for many other applications. Moreover, the combination of the above-
mentioned polymers to coat/decorate gold nanoparticles has receivedf great attention in
the last few years [139]. As an example, a composite integrated by 6-aminopenicillanic acid
(APA)-coated-AuNP with fibers of poly(e-caprolactone) (PCL)/gelatin was developed with
good performance against multidrug resistant (MDR) bacteria wound infection, which is a
major challenge due to the inability of conventional antibiotics to treat such infections [53]
(Figure 9).
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Figure 9. Schematic representation of the synthesis of APA-coated AuNP for wound healing
treatment in bacterial infection. Reprinted with permission from [53]. Copyright © 2017 American
Chemical Society.

Chang et al. [51] developed recently a highly selective and sensitive colorimetric assay
for the monitoring of ciprofloxacin. The resultant AuNPs coated with polyacrylamide
(PAM-4) exhibited better HRP-like activity than other PAM ligands with shorter or longer
chain in the TMB-H;O; assay.

3.3. Biohybrids

Materials composed of two or more elements, in which at least one is a biomolecule,
are known as biohybrids. The study of this type of hybrid compound is currently booming
as there are multitude of combinations which can be applied to catalytic, biological or
detection processes or even as substitutes for cells in regenerative medicine. The most
remarkable feature of protein@Au nanozymes is the utilization of natural entities that
ensure biocompatibility of the nanosystems.

3.3.1. Protein
Antibodies

As a consequence of the intrinsic capacity of antibodies to participate in biorecognizing
events, most antibody (Ab) Ab@AuNP nanozymes found in the literature are used for
sensing purposes.
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The use of natural enzymes, such as HRP or alkaline phosphatase, as labelling agents
for the preparation of immunoassays is a widespread strategy in the development of
sensing platforms. Owing to the progress of nanotechnology and to the intrinsic HRP-like
activity of AuND, several examples can be found in the literature in which gold nanozymes
have replaced their natural counterparts in sensing platforms such as enzyme-linked
immunosorbent assays (ELISA) [140]. As an example, Goma compared the results using
a traditional ELISA and a nano-based ELISA in which Au nano probes substituted the
HRP conjugate for the detection of Trichinella spiralis; better sensitivity and accuracy were
obtained with the nanozyme-based system [55].

Some of the requirements for the design of sensing devices is robustness, speed,
simplicity and ease of use. In order to achieve these goals, different strategies can be
explored. Modulating the support where capture antibodies are immobilized may facilitate
handling, contributing to the obtention of point of care diagnosis tools. Sangjin Oh et al.
proposed the use of silica-shelled magnetic nanobeads to develop a nanozyme-linked
immunosorbent assay, which provides ultrasensitive detection of Influenza A virus [56]
(Figure 10). The authors used an immobilized antibody on the positively charged AuNPs
via electrostatic attraction, employing also monodispersed Fe3O4 nanoclusters (FNCs)
capture probes modified with silica shells to prohibit enzyme activity from the surface of
iron oxide.
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Figure 10. (a) Capture probe and Ab-Au nanozyme preparation for a magnetic nanobead-based
nanozyme-linked immunosorbent assay (MagLISA). (b) Methodology for the determination of
Influenza virus using the MagLISA strategy. Reprinted with permission from [56]. Copyright © 2018
American Chemical Society.
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Cellulose for the development of immunochromatographic strips (ICS) is an interesting
support as well. This alternative is simple, cheap, does not either require qualification for
the accomplishment of the assay, or a special facility or electricity, and is amenable to mass
production. Therefore, some research groups have considered cellulose as support for the
capture antibody. Demin Duan et al. proposed a simple nanozyme strip design for the
rapid local diagnosis of Ebola [57] (Figure 11).

A

Absorbent pad »

Nitrocellulose
membrane

Figure 11. Nanozyme-strip constituents for the rapid diagnosis of Ebola. (A) Standard colloidal gold
strip. (B) Nanozyme gold probe placed in the nanozyme strip. Reprinted with permission from [57].
Copyright © 2015 Elsevier.

The development of naked-eye readout tools also contributes to the massive use of
sensors. In this sense, gold-based materials are good candidates since they possess size-
dependent optical properties and high extinction coefficients, which permit the detection
of bio-recognition events as a change in AuNPs’ suspension colour. This alternative to
conventional detection techniques such as fluorescence or electrochemical assays is very
attractive, since it facilitates detection of biomolecules of interest or pathogens without
sophisticated instrumentation. In this context, Qian Zhao et al. developed a sandwich-
antigen-antibody structure for an original detection strategy: gold nanoclusters (AuNCs)
modifying the outer antigen serve as triggers for the on-site reduction of HAuCly into
AuNP. This platform was used for the determination of different molecules of biological
interest [140] (Figure 12).
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Figure 12. Sandwich-based plasmonic Ab-Au nanozymatic sensor for the determination of different
molecules of biological interest. Reprinted with permission from [140]. Copyright © 2016 American
Chemical Society.
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Ahmed et al. used the same principle for the detection of H5N1 Virus [58] (Figure 13).
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Figure 13. Platform preparation and determination principle for the determination of H5N1. (a) Virus
deposition; (b) Recognition of H5N1 virus by a selective antibody modified with Au ions; (c) Au
nanostructures formation upon TMBZ addition, resulting in a bluish-green color; (d) Color change of
the solution as a consequence of TMBZ oxidation upon the presence of HyO,. Inset: (A) Principle for
the appearance of the bluish-green color; and (B) resulting UV-Vis spectra. Reprinted with permission
from [58]. Copyright © 2017 Nanotheranostics.

Apoferritin

Apoferritin (Ft) is a widely present protein in most organisms, including vertebrates,
invertebrates, microorganisms, or plants. It is an essential protein, since one of its main
functions is to avoid hazardous accumulation of iron by removing the ion as ferrihydrite
phosphate, to be further used as an enzymatic cofactor [141,142]. This spherical protein
presents a nanoscale hollow interior which can be used for biotechnological purposes. Many
authors have taken advantage of this natural nanocontainer and have used it as a template
to synthesize nanomaterials in a limited-growth field, avoiding aggregation and providing
homogeneity to the synthetic systems. In particular, the histidine amino acid (one of the six
amino acid residues that constitute the ferroxidase centre) permits the strong binding of Au
clusters, resulting in an Ft@ Au nanozyme which presents HRP activity. In this context, Xin
Jiang et al. developed an Ft—Au nanozyme with higher HRP activity than the natural protein
which was able to catalyze the oxidation of 3,355 -tetramethylbenzidine (TMB) for the
development of a highly sensitive and reproducible glucose sensor [59]. However, Ft@Au
nanozymes not only present HRP activity; for example, Fariba Dashtestani, et al. prepared a
silver—gold nanohybrid with SOD, catalase and HRP activities, and this hybrid nanozymatic
system was used as a ROS scavenger against oxidative damage [59,60] (Figures 14 and 15).
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Figure 14. Glucose determination principle using a Ft—-Au nanozyme. Reprinted with permission
from [59]. Copyright © 2015 Elsevier.

Au-Ag-AFT
nanozyme

Ag-Au NPs

Figure 15. Ft-Au—-Ag nanozyme synthesis procedure and O, ~ scavenging and H,O, reduction by
the triple enzyme-like activity of the proposed nanozyme. Reprinted with permission from [60].
Copyright © 2019 Elsevier.

Bovine Serum Albumin

Bovine serum albumin (BSA) is one of the most abundant bovine plasma proteins.
Owing to its low cost, aqueous solubility, and easy purification [143], it has been widely
used for biotechnological purposes, especially for the development of BSA@Au systems,
providing biocompatibility, stability and robustness in aqueous environments [115-118].

While some authors suggest that surface modification of AuNP may provoke an
inhibition of the nanozymatic activity, Haijiao Zhang et al. proved that Au catalytic activity
could be retained in spite of grafting a BSA protein, since dual HRP and GOD-like activity
were achieved [63] (Figure 16).

The functionalization of AuNPs capable of mimicking GOD activity with BSA enables
an increase of the enzymatic activity, making this biohybrid an interesting option to be
used as a sensor for the determination of H,O, and xanthine oxidase (XOD) in urine and
human serum samples [62] (Figure 17).
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Figure 16. Colorimetric glucose determination by a BSA-Au/graphene oxide composite. (a) Working
principle of the nanozymatic system that accomplishes TMB oxidation to TMB**; (b) Reaction
solutions of different glucose concentration stocks; (c) Resulting UV-vis spectra; and (d) Linear
correlation between absorbance and [Glucose]. Reprinted with permission from [63]. Copyright ©
2018 Wiley.

This biohybrid is also useful for the development of a very sensitive method for the
determination of tea polyphenols (TP), which has a better performance than the traditional
tartaric acid-based determination procedure [61] (Figure 18). The oxidation of TMB by HRP
in the presence of H,O, produced by the BSA@Au nanozyme results in a coloured solution,
which permits the identification and quantification of relevant components for the food
industry such as tyrosol, protocatechuate, chlorogenic acid, theophylline, I-theanine and
l-norepinephrine hydrochloride [120].
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Figure 17. Colorimetric response of BSA—Au clusters under UV radiation and in the presence of
H;,0,. UV-vis spectra of a TMB and H,O; solution in the presence and in the absence of the BSA-Au
nanozyme. Reprinted with permission from [62]. Copyright © 2011 Elsevier.
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Figure 18. (A—C) Schematic strategy for the determination of tea polyphenols based on the partial
inhibition HRP activity of the BSA—Au nanozymatic system in the presence of tea polyphenols.
Reprinted with permission from [61]. Copyright © 2016 Elsevier.

B-Casein

As the most abundant protein in milk, 3-Casein (3-Cas) exhibits amphiphilicity in
aqueous solution, thus having great capacity for self-assembly into stable micelles. The
presence of a high content of acidic amino acid residues, which are negatively charged
at neutral pH, causes steric repulsion between polypeptide brushes. These inherent char-
acteristics contribute to the stabilization of the system and improves the affinity of the
substrates [144], making this protein a desirable candidate for the preparation of biocom-
patible 3-Cas@Au derivatives. Most 3-Cas@Au nanozymes found in the literature are
used as biomarker sensors and rely on the same working principle, namely, that 3-Cas
inhibits intrinsic HRP activity from AuNP and is used as a recognition element for the
desired biomarker. As an example, Claire McVey et al. proposed a 3-Cas@Au nanozymatic
system for the determination of proteolytic biomarkers using TMB as an optical probe [64]
(Figure 19).
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Figure 19. Strategy for the determination of proteolytic biomarkers using the 3-Cas@Au nanozyme,
based on the partial inhibition of nanozyme activity in the presence of the proteolytic biomarkers.
(a) Peroxidase-like activity of AuNP; (b) Nanozymatic activity inhibition because of casein coating;
(c) Partial recovery of peroxidase-mimicking activity in the presence of proteolytic biomarkers.
Reprinted with permission from [64]. Copyright © 2018 Springer.
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3.3.2. Nucleic Acids

Nucleic acids are remarkable biomolecules since they keep and transport genetic
information. They are constituted by the polymerization of nucleotides, which are inte-
grated by phosphoric acid, an aldopentose and a nitrogenous base [145]. Although double
stranded nucleic acids DNA or RNA are not widely used for the development of Au-based
nanozymes, aptamers (which are a special type of nucleic acid) are contributing in a great
manner to the development of this technology. Aptamers (Apt) are single-stranded small
oligonucleotides (20 to 60 DNA or RNA nucleotides) with high affinity and selectivity for
certain molecules to which they can bind.

In this sense, they are like antibodies since they recognize and bind target molecules.
Nevertheless, they present some advantages over antibodies, such as lower production
cost and time, improved thermal stability due to their chemical synthesis, non-variability
between batches, and lower risk of toxicity and immunogenicity since an in vitro screening
of the sequence is carried out. For these reasons, they are widely used in biomedicine
and sensing [146], and several examples of Apt@Au nanozymes can be found in the
literature for the development of sensors that permit the determination of biomolecules
or molecules of biological interest. As an example, C-reactive protein, a cardiovascular
biomarker associated with the occurrence of cardiovascular events, was determined by Jing
Xie et al., who proposed a colorimetric Apt@Au nanozymatic system with HRP activity
able to oxidize TMB, replacing the traditional ELISA assay [65].

The oovarian cancer serum biomarker CA125 can also be detected by Apt@Au nan-
zoymes, as Pranav Tripathi et al. demonstrated with a cost-effective lateral flow assay, with
promising applications as a point-of-care device [66] (Figure 20).
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Figure 20. Functioning principle of an Apt-Au nanozyme lateral flow assay for the determination of
the CA125 cancer biomarker. Reprinted with permission from [66]. Copyright © 2020 Elsevier.

Besides biomarkers, drugs can also be determined using a nanozymatic strategy based
on Apt@Au. Some authors have proposed different strategies for the determination of
antibiotics in milk samples; Xuping Zhang et al. developed a sensor using TMB as an optical
probe for the determination of ampicillin [67], while Jing Zhao et al. developed a protocol
using ABTS as an optical probe for the determination of streptomycin [72]. These examples
confirmed that the applicability of these systems is not just limited to biomedical purposes,
but they are also useful in other fields like food industry. Hazardous pesticides like
acetamiprid, for example, may also be determined using Apt@Au systems. For example,
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Pabudi Weerathunge et al. proposed an analogous procedure to the classic enzymatic
competitive inhibition process, permitting the rapid determination of this dangerous
substance [69].

Not only chemical molecules can be detected with an Apt@Au nanozyme technology;
viruses can also be detected. For example, human norovirus (the most frequent cause of
viral gastroenteritis) can be tracked, achieving the most sensitive detection of norovirus to
date using a biosensing methodology [68] (Figure 21).
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Figure 21. Steps involved in the determination of norovirus using an Apt-Au nanozyme. Reprinted
with permission from [68]. Copyright © 2019 American Chemical Society.

3.3.3. Polysaccharides

Despite the enormous variety of polysaccharides that exist in nature, most polysaccharide-
based Au nanozymes described in the literature are chitosan-based. Chitosan (Ch) is a
positively charged biopolymer obtained by deamination of chitin, which is a fundamental
component of crustacean shells” exoskeleton. Its composition (random rearrangement of
-(1-4)-linked D-glucosamine and N-acetyl-d-glucosamine) and origin make this material
an interesting choice for the development of biotechnological applications, since it is
biocompatible, biodegradable, and presents antimicrobial properties [147,148].

Most Ch@Au-based nanozyme systems are used for sensing purposes. Junrong Li
et al., who prepared Ch-modified popcorn-like Au—-Ag nanoparticles for the detection of
melamine in milk powder, used Ch because of its biocompatibility [77] (Figure 22).
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Figure 22. Working mechanism for the determination of melamine in milk powder using a Ch-Au
nanozyme with Surface Enhanced Raman Scattering detection (SERS). Reprinted with permission
from [77]. Copyright © 2015 Elsevier.
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Other authors used chitosan in order to perform a more active role. As an example,
Li-Xia Yan et al. prepared mesoporous silica (MS)@AuNP with a chitosan-benzeneboronic
acid coating for bacterial targeting, permitting selective imaging and killing of Helicobacter
pylori [73] (Figure 23).

a NaSal/CTAB
TEOS/APTES

3 pH<2.0

H. pylori infection 3 Intestinal condition

gastric condition 4 0,4 2
pH 7.0~8.0

ST
® 0 L
P o TH=oOH > 5 &
TN ey ROS ROS ~ C
y (0, /+OH) " -

Bacterial infection pH < 6.0

abscess condition Healthy tissue condition

Figure 23. (a) Synthesis procedure for the obtention of mesoporous silica (MS) coated with persistent
luminescence nanoparticles (MSPLNP) and with Au nanoparticles (AuNP); (b) pH responsiveness
with OD and HRP-like activity in different biological environments. Reprinted with permission
from [73]. Copyright © 2021 American Chemical Society.

Gyubok Lee et al. synthesized a hybrid multimetallic nanozyme, whose HRP activity
was improved by the presence of chitosan. The branched morphology of this polysaccharide
and its surface charge permitted the uniform distribution of the metal ions [74].

Interestingly, chitosan has also been used in the literature as an Au-reducing agent
for the preparation of AuNP. Cuifeng Jiang et al. used this strategy for the synthesis of
Ch@AuNP systems, which were applied in the detection of glucose [76]. In a subsequent
work, the same group used an identical nanosystem for the determination of Hg?* ions,
proving the versatility of Ch@ AuNP nanozymes [75].

4. Conclusions

Gold-based nanozymes have proven to be versatile tools for the development of a
variety of hybrids with many different applications. From sensing to tumor or infection
treatment, catalysis or ROS scavenging are some of the most remarkable fields where
gold-based hybrid nanozymes have shown to be valuable instruments. Despite the va-
riety of enzyme-like activities that gold entities can perform, the most remarkable for
practical applications are glucose oxidase and mostly HRP-like processes. Tunability of
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the enzymatic activity that gold-nanosystems can perform by choosing the appropriate
environmental conditions is one of the most interesting features that gold-based nanozymes
exhibit in comparison to their natural counterparts. Other remarkable advantages to be
highlighted are large-scale production, ease of preparation, recyclability, and high stability.
On the contrary, low selectivity towards substrate is one of the most noteworthy limitations
of gold-based nanozymes. Nevertheless, selectivity can be ameliorated by gold-surface
grafting with adequate molecules.

The number of gold-based nanozymatic hybrids that can be prepared is nearly un-
limited, since gold nanoparticles can be combined with almost any nanomaterial. In this
context, inorganic@Au hybrids stand out for their excellent chemical stability, while or-
ganic@Au hybrids deserve special attention because of the vast number of organic ligands
that can be used, widening the number of possibilities imaginable. In addition, the most
remarkable feature that biomolecules can provide to Au-biohybrids is the possibility to
selectively interact with a specific molecule, and with an excellent biocompatibility. While
each family of hybrids can be notable for a certain reason (which is related to the chemical
nature of the component of the hybrid), all of them can be applied to similar uses, since the
enzyme-like activity originates from the Au constituent.

Nanozymes, therefore, represent an opportunity to face current and future social
challenges in fields such as agriculture or energy, that differ from those that have been
more extensively explored in recent years (such as sensing, catalysis or biomedicine).
Nevertheless, traditional applications may undergo several advances by exploring new
technologies too.

Regarding biomedicine, nanozymatic tracking of molecules in the brain or improve-
ment of target therapies by nanozymatic cell vectorization could be future goals capable of
being addressed with gold-based nanozymes.

In the case of sensing applications, novel composite hybrids are desirable in order to
improve catalytic efficiency, requiring less dosage. Thus, incorporation of biomolecules
could also be a solution for future nanozymatic designs that improve signal amplification
to ameliorate detection sensitivity. However, the definite step forward would be the
incorporation of gold-based nanozymes into micro devices that contributes to advanced
lab-on-a-chip technologies and point-of-care testing, democratizing fast, easy and affordable
diagnostic tools.

Additionally, there are some examples of multicomponent hybrids that envision a
bright future for complex Au-based nanozymes integrated by more than one material.
Moreover, the presence of an additional element providing nanozymatic activity would
result in advanced systems able to operate in a more autonomous and controlled manner,
paving the way for more ambitious applications in several fields of work, not only in
catalysis but also in a wide variety of potential therapies.
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