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Fondo Europeo de Desarrollo Regional (FEDER).

• In Hassan 1st University by the National Grant of the Moroocan Ministry of Higher Education,
Scientific Research and Executive Training.

5



Contents

Declaration of Authorship 2

Dedication 3

Acknowledgments 4

Research funding 5

Contents 6

List of Figures 10

List of Tables 13

General notations 15

Abstract (English) 21

Résumé (Français) 22

Resumen (Español) 23
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PWT := Pyramid-Structure Wavelet Transform.

Pre- and post-processing methods abbreviations

Res(h x w) := Resizing original images to a new size (h x w).
SMI := Subtracting mean images.
SN := Stain normalization.
SN(x) := Stain normalization using method x.
UP := Minority class upsamling.
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NDS := Nuclei Detection and Segmentation using region growing technique.
ETB := E AHE and TB HAT techniques.
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SW(a x a) := Sliding window patches extraction of size (a x a).
MKV(N) := Extraction of N patches using MKV framework.
SQ := Division into non-overlapping square tiles.
JCTF := Joint color-texture features extraction.
Zer := Zernaike moments.
HI := Histogram information extraction.
KAZE := KAZE features extraction.
Tam := Tamura features extraction.
BE := Binarization encoding.
FV(x) := Fisher vector encoded using a model x.
DR(f,x) := Dimentionality reduction of features f using a method x.
Rlf := Relief.
PROJ := Projection into an invariant space.
LR := Logistic Regression.
Integrated := A model combining the best features extractors and classifiers at each magnification level.
SBC := Similarity based comparison using Hamming distance.
NDCNN := A new designed CNN model.
NDCNN(x) := A new designed CNN model inspired from x.
NDCNN(x,trans) := A new designed CNN model constituted of x with an integrated transition layer.
E(C) := Ensemble of classifiers C.
Eiter(C) := Ensemble of the same classifier C outputs captured at different iterations of its training.
Emv(C) := Ensemble of classifiers C using majority voting rule.
Eavg(C) := Ensemble of classifiers C using average rule.
Esum(C) := Ensemble of classifiers C using sum rule.
Emax(C) := Ensemble of classifiers C using max rule.
Emdt(C) := Ensemble of classifiers C using MDT.
ImageNet := The used model was pretrained on ImageNet.
Camelyon := The model was pre-trained on Camelyon16 dataset images.
Im-Break := The used CNN that was fine-tuned on the BreakHis multi-category classification task.

Land use and Land cover classes dictionary

UrbanBlUpArea := Urban .
BarrenLands := Barren.
MossAndLichen := Moss and Lichen.
SrublandClose := Close Shrublands.
ShrublandOpen := Open Shrublands.
WetlandMarshl := Marshland.
WetlandSwamps := Swamp.
WetlandMangro := Mangrove.
Grasslands := Grassland.
CropBroadRain := Rainfed Broadleaf Cropland.
CropBroadIrri := Irrigated Broadleaf Cropland.
CropCereaRain := Cereal Rainfed Cropland.
CropCereaIrri := Cereal Irrigated Cropland.
CropSeasWater := Cropland Seasonal Water.
ForestsDeEvNe := Dense Evergreen Needleleaf Forest.
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ForestsClEvNe := Close Evergreen Needleleaf Forest.
ForestsOpEvNe := Open Evergreen Needleleaf Forest.
ForestsDeEvBr := Dense Evergreen Broadleaf Forest.
ForestsClEvBr := Close Evergreen Broadleaf Forest.
ForestsOpEvBr := Open Evergreen Broadleaf Forest.
ForestsDeDeNe := Dense Deciduous Needleleaf Forest.
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Abstract

C omputer Vision (CV) is an Artificial Intelligence (AI) field that replicate the human eyes and
brain’s ability in perceiving images and understanding them. Deep learning (DL) models and

especially Convolutional Neural Networks (CNNs) have become the state-of-the-art in most complex
CV tasks. These models learn automatically to take decisions based on imagery data without being
explicitly programmed for this purpose as it is the case in self-driving cars or smartphones face recog-
nition systems.
CNNs consist in a huge number of interconnected Artificial Neural Networks (ANNs) with trainable
parameters widely inspired from the way the human brain neurons learn and transmit knowledge to
each other. Hence, training them for a specific task requires a large number of carefully annotated
images. However, for complex problems, such as those addressed in this thesis, creating high qual-
ity training datasets is very expensive, requires a high level of expertise and a huge amount of work.
To overcome these limitations, the main adopted techniques in the literature are data preprocessing
and Transfer Learning (TL). In the latter, CNNs are firstly pretrained on available large natural images
datasets such as ImageNet, then retrained on target domain datasets containing less images. Whereas,
data preprocessing involves all the transformations applied to datasets in order to improve their size
and value. In this thesis, we proposed preprocessing techniques to improve the robustness of DL mod-
els in two complex applications: biomedical and satellite images classification.
In the first application, we combined the state-of-the-art CNN, the most adequate data preproccesing
and transfer learning methods with the benchmark dataset used in that problem called BreakHis, to
elaborate an ideal automatic system for breast cancer diagnosis from both clinical and technical stand-
points. And our analysis has demonstrated that the complexity of this problem related to its data
quality and annotation, hugely affect the performance of the trained DL model even in a well built
methodological approach. In the second use case, we trained DL models on our own built dataset for
automatic Land Use/Land Cover (LULC) classification. To our knowledge, the dataset we proposed
called Sentinel2LULC, is the largest global high resolution and free satellite images dataset adapted for
DL usage in this problem. This dataset was carefully built using the big amount of remote sensing data
available nowadays on free platforms such as Google Earth Engine and a carefully designed method-
ology to transform all these data into a high value dataset for this specific problem. The experimental
analysis in conjunction with DL models in this second scenario has achieved very promising results
and proved the dataset quality importance. The particular conclusion in each one of these two stud-
ies allowed us to build our main conclusion of this thesis: even when the state-of-the-art models and
methods are adopted and combined, the data quality remains the major source gold for CNNs training
and constitute the key factor to reach a good performance in complex CV tasks.
Keywords : Deep Learning, Machine Learning, Computer Vision, Convolutional Neural Networks, Image
Classification, Data Preprocessing, Transfer Learning, Breast cancer, Biomedical Imagery, Remote sensing,
Land use, Land cover, Satellite Imagery.
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Résumé

L a vision par ordinateur (CV) est un domaine de l’intelligence artificielle (AI) qui reproduit
la capacité des yeux et du cerveau humains à percevoir les images et à les comprendre. Les

modèles d’apprentissage profond (DL), et en particulier les réseaux de neurones convolutifs (CNNs),
sont devenus l’état de l’art pour les tâches du CV les plus complexes. Ces modèles apprennent
automatiquement à prendre des décisions en utilisant un ensemble d’images sans être explicitement
programmés pour cette fin, notamment dans les voitures à conduite autonome ou les systèmes de
reconnaissance faciale des smartphones.
Les CNNs sont constitués d’un grand nombre de réseaux neuronaux artificiels (ANNs) avec des
paramètres entraı̂nables inspirés de la façon dont les neurones du cerveau humain apprennent et se
transmettent les connaissances entre eux; et leur entraı̂nement nécessite un grand nombre d’images
soigneusement annotées. Cependant, pour des problèmes complexes, tels que ceux abordés dans
cette thèse, la création d’un ensembles d’images d’entraı̂nement de haute qualité est très coûteuse et
exige une haut expertise. Pour surmonter ces limitations, les principales techniques adoptées dans
la littérature sont le prétraitement des données et l’apprentissage par transfert. Dans ce dernier, les
CNNs sont d’abord pré-entraı̂nés sur de grands ensembles d’images naturelles tels que ImageNet,
puis ré-entraı̂nés sur des ensembles du domaine cible contenant moins d’images. Alors que le
prétraitement des données implique toutes les transformations appliquées pour augmenter la taille
et améliorer la valeur des données. Dans cette thèse, on propose des techniques de prétraitement
pour améliorer la robustesse des modèles du DL dans deux applications complexes : la classification
d’images biomédicales et d’images satellitaires.
Dans la première application, nous avons combiné avec l’ensemble de données appelé BreakHis,
l’état de l’art CNN, ainsi que les méthodes de prétraitement et d’apprentissage par transfert les plus
adéquates, afin de construire un système automatique idéal pour le diagnostic automatique du cancer
du sein, tant du point de vue clinique que technique. Notre analyse a démontré que la complexité
de ce problème, liée à la qualité de ses données, affecte considérablement la performances du DL,
même avec méthodologie bien construite. Dans le deuxième cas d’utilisation, nous avons entraı̂né
des modèles DL sur notre propre ensemble de données appelé Sentinel2LULC pour la classification
automatique de l’utilisation et couverture des sols. À notre connaissance, Sentinel2LULC est le plus
grand ensemble d’images satellitaires à échelle mondiale, à haute résolution et gratuit adaptées au DL.
il a été soigneusement construit à partir de la grande quantité de données de télédétection disponibles
aujourd’hui sur les plateformes gratuites telles que Google Earth Engine avec une méthodologie
soigneusement conçue pour résoudre ce problème. L’analyse des modèles DL dans ce deuxième
scénario a aboutit à des résultats prometteurs et a prouvé l’importance de la qualité des données.
La conclusion particulière de chacune de ces deux applications nous a permis de formuler notre
conclusion principale de cette thèse : même lorsque les modèles DL et méthodes de pointe sont
adoptés et combinés, la qualité initiale des données reste le facteur le plus imporatnt pour atteindre
une bonne performance dans les tâches complexes du CV.
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Resumen

L a visión por ordenador (CV) es un campo de la Inteligencia Artificial (AI) que replica la capacidad
de los ojos y el cerebro humanos para percibir imágenes y comprenderlas. Los modelos de apren-

dizaje profundo (DL) y, en especial, las redes neuronales convolucionales (CNNs) se han convertido
en el estado del arte en las tareas más complejas de CV. Estos modelos aprenden automáticamente
a tomar decisiones en función de los datos sin necesidad de ser programados explı́citamente para
ello, como ocurre en los coches autoconducidos o en los sistemas de reconocimiento facial de los
smartphones.
Las CNNs consisten en un gran cantidad de redes neuronales artificiales (ANNs) interconectadas con
parámetros entrenables inspirados de la forma en que las neuronas del cerebro humano aprenden y se
transmiten conocimientos. Por lo tanto, entrenarlas para una tarea especı́fica requiere un gran can-
tidad de imágenes cuidadosamente anotadas. Sin embargo, para problemas complejos, como los que
se abordan en esta tesis, la creación de datos de entrenamiento de alta calidad es muy cara y requiere
un alto nivel de experiencia. Para superar estas limitaciones, las principales técnicas adoptadas en la
literatura son el preprocesamiento de datos y el aprendizaje por transferencia (TL). En este último, las
CNNs se preentrenan primero en grandes conjuntos de datos de imágenes naturales como ImageNet,
y luego se reentrenan en datos del dominio de destino. Por su parte, el preprocesamiento de datos
implica todas las transformaciones aplicadas a los datos para mejorar su tamaño y valor. En esta tesis,
propusimos técnicas de preprocesamiento para mejorar la robustez de modelos DL en dos aplicaciones
complejas: la clasificación de imágenes biomédicas y de satélite.
En la primera aplicación, combinamos la CNN de última generación, los métodos de preprocesamiento
y de aprendizaje de transferencia más adecuados con el conjunto de datos de referencia utilizado en
ese problema llamado BreakHis, para elaborar un sistema automático ideal para el diagnóstico del
cáncer de mama tanto desde el punto de vista clı́nico como técnico. Y nuestro análisis ha demostrado
que la complejidad de este problema relacionada con la calidad de sus datos y su anotación, afecta
enormemente al rendimiento del modelo DL entrenado incluso en un enfoque metodológico bien
construido. En el segundo caso, entrenamos modelos DL con nuestro propio conjunto de datos para
la clasificación automática del uso y la cobertura del suelo (LULC). Hasta donde sabemos, el conjunto
de datos que propusimos, llamado Sentinel2LULC, es el mayor conjunto de datos global de imágenes
de satélite de alta resolución y gratuitas adaptado para el uso de DL. Este conjunto de datos fue
cuidadosamente construido utilizando la gran cantidad de datos de teledetección disponibles hoy en
plataformas gratuitas como Google Earth Engine (GEE) y una metodologı́a cuidadosamente diseñada
para transformar todos estos datos en un conjunto de datos de alto valor. El análisis experimental con
los modelos DL en este segundo escenario ha logrado resultados muy prometedores y ha demostrado
la importancia de la calidad de datos. La conclusión particular en cada uno de estos estudios nos
permitió construir nuestra conclusión principal de esta tesis: incluso cuando se adoptan y combinan
los modelos y métodos más avanzados, la calidad de los datos sigue siendo el factor clave para alcanzar
un buen rendimiento en tareas complejas de CV.
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1.1 Research context and preliminaries

1.1.1 General context

1.1.1.1 Emergence of Deep Learning and its data-related limitations

Today, AI has become a priority in most countries around the world, at both economical and educa-
tional levels, and constitutes one of the most important levers for human development. Thus, every
week, top of the notch Information Technology (IT) companies and their AI research laboratories in-
cluding: Google, Microsoft, Facebook, Apple, Amazone, etc produce a huge amount of new research
papers, models, datasets, frameworks and computing resources to ease AI usage for practitioners in
the research community. This serious willingness to popularize AI concepts comes from the outstand-
ing breakthroughs achieved recently by the core component of AI: Machine Learning (ML). ML is the
most popular branch of AI that allows computers to be as smart as humans or even outperform them in
solving several complex problems. In ML, computers learn automatically to make predictions and take
decisions from available data in a given problem without being explicitly programmed for this specific
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purpose. In fact, ML is the main used technique to convert data into knowledge understandable by
machines. Mathematics and statistics are the fundamental foundation of ML, and together consist the
basis behind ML algorithms ability of analyzing large amounts of data, identifying their patterns and
deduce the most important features inside these patterns.
Reaching this current era where intelligence is transmitted from humans to machines was not easy,
and both humans and computers went together through many important steps in the history of AI
to achieve this goal. The story started in 1950 when the mathematician Alan Turing was wondering
either machines could also think as humans do or not. Then, several scientists followed this research
line and tried to artificially replicate the human brain behaviour for knowledge acquisition. After
many attempts and a long period of intensive research, the real breakthroughs started at the end of
the 20th Century with the appearance of internet, the availability of Big Data and High Performance
Computing (HPC) processors. Alongside with these computer-side breakthroughs, researchers brought
new reformulations to intelligent machine conception and started to propose new ML models widely
inspired from the human brain structure. In fact, deep ANNs replicate closely the way human neurons
learn and transmit information to each other through the interconnected network of brain nodes.
Nowadays, these models are referred to with ”DL” or ”deep ANNs”; although, original shallow ANNs
were proposed before the end of the 20th century but the available amount of data, the computing
power and training strategies weren’t sufficient enough to make it reach the desired performance.
In general, DL models are trained and learn from input data throughout the continuous adaptation
of their interconnected nodes. The latter are trainable weights and bias values organized into stacked
layers connected with mathematical transformation functions. In fact, DL models are an improved
version of shallow ANNs in terms of the amount of layers, nodes and other parameters that characterize
the ANN depth. In fact, due to their very large number of trainable parameters, DL models are taking
more advantage of large datasets and the computing power available nowadays to reach a considerable
performance. In addition, as DL includes multiple architectures like CNNs, Deep Belief Networks
(DBNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs), etc. it can be
used in conjunction with different types of real-world data types (images, sound, text, time series, etc.)
to perform prediction tasks in various AI applications including CV, audio/speech recognition, machine
translation, recommendation systems, social network filtering, bioinformatics, RS and so much more.
In this Thesis, we focus on two of the most important and complex CV applications which are biomed-
ical and satellite images classification. In concrete terms, CV is an AI technique that allows computers
to perform a human-alike analysis of images captured by a camera or other imagery sensing devices
in order to understand and recognize their content automatically. DL models and especially CNNs
have shown to be very efficient or even exceed humans in recognizing an image, understanding it,
and processing its content. CNNs are DL models that are inspired from the human eyes and brain’s
ability to process and analyze perceived images. Since the first day when these models have proven
themselves, practitioners are continuously trying to delegate them the most complex vision-based hu-
man tasks. Generally, for image classification, CNNs requires a big amount of training samples that
should be images annotated by expert in each domain of application. However, collecting high quality
annotated images for this kind of applications is very expensive, requires an enormous work a high
level of expertise in the domain of application. To overcome these limitations, data preprocessing and
TL have emerged as the reference techniques.

1.1.1.2 Used techniques in Deep Learning to overcome data-related issues

• Data preprocessing Data preprocessing involves all the transformations applied to raw datasets
in order to prepare them for further analysis. In fact, creating a dataset is a human task and as
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all human tasks, it is prone to errors and other factors that introduce noise and inconsistencies
to these data. Thus, the majority of datasets suffers from missing values, redundancies, noise or
even an imbalance ratio between their classes due to the difficulty of collecting sufficient sam-
ples in certain problems. Notably, in biomedical imagery datasets related to a certain disease,
we often face a data imbalance issue. This problem is mainly due to the fact that during data
collection, the nature of a disease and its occurrence rate impose on us to have less positive than
negative samples. Therefore, data preprocessing phase includes data cleaning, data balancing,
data augmentation, normalization, dimension reduction, noise reduction and many other opera-
tions that will help the DL model to reach a better outcome. Another limitation that faces these
kind of datasets is the insufficient number of contained samples. And giving the fact that DL
requires a very large number of data in order to achieve good classification results, practitioners
apply what we call Data Augmentation (DA) with the aim to artificially increase the size of these
datasets. Generally, to augment a dataset size, distortion, rotating, flipping, mirroring, zooming
in/out as long as other more complicated transformations can be applied to raw images to create
new one that belongs to the same classes as the original ones. Preserving the original annota-
tion after DA is easily understandable, but what is more interesting is to know that CNNs are
rotation-invariant, flipping-invariant and so on for all other transformations. This characteris-
tic reveals another interesting analogy between CNNs and the human eye which is also able to
recognize visual features in different positions and conditions.

• Transfer Learning(TL) In TL, CNNs are pretrained on recently available natural images
datasets containing millions samples annotated with thousands classes (e.g., ImageNet), then
further trained on the specific target dataset containing images with labels related to the appli-
cation of interest, which often have less samples than the first pretraining dataset. The intuition
behind this practice comes from the fact that the pretraining step helps the network learn general
features shared between images from different domains, and reuse them on the specific target
task. The solution brought by this two-stage approach to the major problem of AI related to
data availability has attracted the big pioneers in AI, including Google who started to propose
ready-to-use ImageNet pretrained CNN models. In addition to that, they offered open source
frameworks such as TensorFlow and Keras that ease the implementation of these pretrained
models under different environments and adapted them for all kind of computing platforms
ranging from expensive HPC servers to relatively affordable and efficient Graphics Processing
Units (GPUs).

1.1.2 Deep Learning models

as DL includes multiple architectures like CNNs, Deep Belief Networks (DBNs), Generative Adversarial
Networks (GANs), Recurrent Neural Networks (RNNs), etc. it can be used in conjunction with different
types of real-world data types (images, sound, text, time series, etc.) to perform prediction tasks in
various AI applications including CV, audio/speech recognition, machine translation, recommendation
systems, social network filtering, bioinformatics, RS and so much more.

1.1.2.1 Convolutional Neural Networks (CNNs)

Nowadays, CNNs have clearly outperformed all classical handcrafted based models in several CV
benchmark challenges [143]. Notably, Image Large Scale Visual Recognition Challenge (ILSVRC) for
ImageNet [38] dataset classification. In 2012, AlexNet, based on the well known LeNet, achieved out-
standing results on this dataset composed of 1.2 million images distributed in 1000 different classes [93].
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Since then, CNN based models have been leading the first place in this competition and continue to
show an important potential with a large room of improvement.
A CNN model is the concatenation of N layers between the input and the output layers trained in an
end-to-end fashion, in order to learn the hidden function M() that maps each input image X to its
correct class label Y among K outputs. This function calculates a score probability of each image in
regards to each class through the composition of different layer functions Li with (1 ≤ i ≤ N) as
depicted in the definition below and figure 1.1:

M(X) = LN (LN−1(...(L1(X)))) (1.1.1)

Figure 1.1: A typical CNN architecture composed of different layers.

Among all DL models, CNNs are the most adequate to deal with high dimension images. In fact, CNNs
acts like a long dimensionality reduction process binding input images to their classification scores
outputs, along with a learning process of the most significant features for each class. A CNN layer
could be either a convolutional layer, a pooling layer or a fully connected layer:

• Convolutional layer this layer is the core component of CNNs. Often, these models are com-
posed of several convolutional layers placed at different network depth levels. For each convo-
lutional layer L, with an input tensor FML−1 of three dimensions (x1 × y1 × z) containing
obtained feature map from predecessor layer, and a set of weights WL called also filter bank [95]
composed of k weight filters with a receptive field of size (r×r×z) each, in addition to a bias bL.
We have an output feature map FML for each depth slice j computed as follow and illustrated
in figure 1.2:

FML(j) = f(Σi=z
i=1FML−1(i) ∗ WL(i, j) + bL(j)) (1.1.2)

where f() is the activation function at layer L and (∗) denotes a discrete convolution operation
between two tensors.
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Figure 1.2: A convolutional layer illustration for an input slice FML−1(i) into an output slice FML(j)
using one filter WL(j).

As mentioned before, each convolutional layer acts as a dimentionality reduction for an input
feature map FML−1 with size (x1 × y1 × z), to generate the output feature map FML of size
(x2 × y2 × k) computed as follow:

x2 = 1 + (x1 − r + 2 × p)
s

and y2 = 1 + (y1 − r + 2 × p)
s

(1.1.3)

Where FML depth k is the number of filters in the the filter bank WL. And p with s are arbitrary
chosen hyper-parameters. In fact, p is zero-padding around the input border, and s is the stride
at which we move each filter on input image during convolutions.

• Pooling layer this is also an important CNN layer. In fact, different pooling operation are
available notably max pooling and average pooling, but they have all the same goal which is
dimensionality reduction of an input tensor while preserving the spatial variance of his feature
map in terms of translation and distortion [96,97]. For example, given an input feature map FM
of dimension (x1 × y1 × z) and an average pooling layer with a receptive field R of size (r × r)
moving with a stride s. As presented in the equation below and figure 1.3, for each input feature
map depth slice X of size (x × y), an element located at (p, q) and contained in the receptive
field R is averaged to generate a new element located at (i, j) on the output depth slice Y with a

28



reduced size (x2 × y2) [201], resulting in a final output feature map of size (x2 × y2 × z) where:

Y (i, j) = Average(Rp,q(X)) (1.1.4)

x2 = 1 + (x1 − r)
s

and y2 = 1 + (y1 − r)
s

(1.1.5)

While depth z remains the same after the pooling operation.

Figure 1.3: An average pooling illustration

• Fully Connected after stacking several convolution and pooling layers on each other, we usu-
ally add one or two Fully Connected (FC) layers at the end of this model. In fact, the first
layers (convolution and pooling layers) aims to extract the common features between differ-
ent classes, while these fully connected layers tries to understand their high level discriminative
features [79,84]. A FC layer is fully connected to all activation map outputs in its previous layer.
Therefore, its neurons map is calculated in a classic regression fashion as a matrix multiplication
in addition to a bias offset. Generally, at the top of this pipeline we find a prediction layer. This
layer could be the same as the last fully connected layer or another layer stacked on this last fully
connected layer. For a given input image, this layer aims to compute its probability to belong to
each class. Therefore, we use often a softmax probability distribution as a final predictor.

In order to learn and extract the most significant features, a CNN need to be trained. Training this
model on a well defined problem with a fully labeled dataset such as BreakHis in a supervised manner
is performed in an iterative manner. During each iteration, a batch of training images with their ground
truth labels is provided to the network as input. After a feed-forward of this batch images through the
CNN, the network computes in the last layer the error between actual outputs and the expected ones
(ground truth labels). After computing the loss function, all layers filter banks weights and bias are
updated in order to minimize the resulted error and fit the outputs with desired correct labels. This
wights tuning operation is performed using backpropagation algorithm [96] where the error function
gradient is propagated in the opposite direction through the network to adjust filter banks in order to
minimize the output error that is affecting the model performance. After a number of feed-forward and

29



backpropagation iterations, we could test the model classification performance on unseen data using
test set images.
Now that most important CNN components have been presented, a CNN model for breast cancer
images classification into benign or malignant tumors is illustrated in figure 1.4 below:

Figure 1.4: An illustration of a standard CNN trained for a binary classification of breast cancer images

For a full comprehensive review on CNN history and different architectures we recommend the reader
this review [143]. For instance, we will focus on most used CNN models in biomedical and satellite
imagery classification, and present a summary of their characteristics and architectural components:

• LeNet this model was the first CNN to be trained on a large dataset [96,97]. It contained 5 layers
and a total of 60 thousands trainable parameters. This CNN called also LeNet-5 was introduced
simultaneously with its application in MNIST dataset. This application proved CNN efficiency
in a complex task at that time, which is hand written digits classification in bank checks.

• AlexNet After LeNet performance, practitioners spent several research years on CNN’s loss
minimization improvement due to gradient decent poor local minima phenomena [95]. More-
over, computational resources that used to be available were not sufficient to handle the large
amount of data and parameters required to train a deeper CNN, in addition to other theoreti-
cal limitations such as those related to activation functions. During this period, Support Vector
Machine (SVM) have known a great expanse in large application areas [143]. Until 2012, when
Krizhevsky et al. Introduced a new 7 layers CNN called AlexNet [93] with 60 million parameters.
AlexNet as most of its successor was validated during the ILSVRC competition and achieved a
winning top-5 test error rate of 15.3% on 3-channel input images of size 224×224×3, compared
to 26.2% achieved by the second-best entry. Besides the huge improvement brought by this CNN
in this benchmark challenge, AlexNet was introduced with a very efficient GPU implementation
for more time and memory optimizations. Furthermore, to avoid overfitting, AlexNet used a
dropout operation [79] by eliminating the neurons that contribute very poorly in the CNN out-
put. In addition to that, it was the first CNN to use Rectified Linear Units (ReLUs) [125] as an
activation function defined with f(x) = max(0, x), because of its non-saturating non-linearity.
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• GoogLeNet After 2 years, Google announced GoogLeNet or what is also known as Inception
v1 [176] containing 22 layers with 4 million parameters instead of 60 million of its predecessor
AlexNet. Despite of this important computational cost reduction, GoogLeNet won ILSVRC 2014
challenge. In fact, it achieved a very high classification accuracy rates with a to-5 error rate
of 6.67%, claimed to be very close to human performance. The key of this success, is inception
module implementation, the latter is composed of different small convolutions allowing better
performance with a reduced parameters number. In addition to that, this CNN used an average
pooling at the network top instead of fully connected layers, which allowed its authors to elim-
inate a large amount of fully connected parameters, and to prove that these parameters are not
important to achieve a high accuracy. But the core component of this network remains the pro-
posed inception module. Basically, this module acts as a bag of multiple convolution filters with
some pooling. Then, all these operations results are concatenated, which allows the model to
take advantage of multi-level feature extraction. Particularly, it extracts simultaneously general
(5 × 5), (3 × 3) in addition to local (1 × 1) features. Then, their outputs are concatenated. Fur-
thermore, GoogleNet uses two additional softmax prediction layers at different levels in addition
to the standard softmax at the network top. These two additional softmax aims to enhance the
gradient value which tends to vanish during backpropagation though such a deep network. To
illustrate the inception module, an example is presented in the figure 1.5 below:

Figure 1.5: An illustration of inception module

Within its inception modules, GoogLeNet used small size 1 × 1 convolutions very intensively.
This choice was highly inspired by the network in network architecture [103], with two main
purpose. Firstly, they served as a dimensionality reduction to its prior computational-intensive
convolution blocks (3 × 3 and 5 × 5). Secondly, they allowed the inclusion of rectified lin-
ear activation function RELUs [125]. Furthermore, GoogleNet CNN was improved many times
resulting in several variants, but the most famous one is Inception-V3 [177]. In Inception-v3,
authors adopted a new factorization of convolutions to gain more in computations. Addition-
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ally, Inception v3 achieved even higher performance when RMSProp [76] was adopted. More-
over, its authors proposed a new method to prevent overfitting called Label Smoothing, which
is a regularizing component added to the loss formula to prevent the network from becoming
too confident about a class at the expense of another. Furthermore, Inception-V3 used batch-
normalization [83] at each output activation.

• VGGNet This network that will became known later as the VGGNet [161] was initially the
runner-up in ILSVRC 2014 behind GoogleNet. Its best performing version in the challenge con-
tained 16 layers. Its main contribution was in showing that the the network depth is a critical
factor in achieving a better performance. Its proposed architecture was an extremely homoge-
neous pipeline that only performs 3×3 convolutions and 2×2 pooling in an end-to-end manner.
However, a downside of VGGNet was being more expensive in computations and memory con-
suming, with a total number of around 140 million parameters, where most of these parameters
were placed in the fully connected layers. At present, it was found that these FC layers can be
removed with no performance downgrade, which significantly reduced the parameters number.
Furthermore, similarly to GoogLeNet, different VGG variants were proposed throughout past
years.

• ResNet After the infatuation of DL community on the development of more and more deeper
CNNs. It was found that when these networks goes deeper, they becomes highly exposed to
gradient vanishing issue and other optimization degradation problems. To overcome this depth
limitation, ResNet authors [70] proposed what they called a residual function F (x) = H(x)−x,
where H(x) is the standard mapping function that we want to learn with an input x through
few stacked non-linear layers (plain module). By reformulating it as H(x) = F (x) + x, where
F (x) and x represents the stacked non-linear layers and the identity function (identity shortcut
connection) respectively. Based on their hypothesis, it is easier to optimize the reformulated
residual mapping function F (x) than optimizing the original mapping H(x). This reformula-
tion has been motivated by the counter-intuitive phenomena of degradation problem [70], where
they observed that surprisingly during deeper CNNs training, we cannot fit the training data as
we do in shallower CNNs training. By consequence, they claimed that the remaining deeper
CNN’s knowledge is hidden in this residual formulation. Their proposed ResNet based on resid-
ual module achieved outstanding results even with extremely increased depth (over 100 layers).
In fact, RseNet outperformed all other CNNs in ILSVRC 2015 challenge with a to-5 error rate
of 3.57%. Afterwards, many ResNet depth variants were proposed with different depths, but the
most known ones are ResNet-50, RestNet-101 and RestNet-152. For better illustration, a residual
module with the mapping reformulation in comparison to the standard one (plain module) is
presented below in figure 1.6.

• DenseNet Lately, DenseNet was presented in [82] to take advantage from previous findings re-
garding CNN’s depth increasing and shortcut connections. The specificity of this new network
architecture is that each layer is connected to all its previous and next layers. In other words,
each layer in this CNN is provided with feature maps from all its previous layers, while its own
feature map output is provided to all its successors. To omit This fully connected fashion from
leading to an enormous parameters number, its growth complexity is controlled by a regular-
ization hyper-parameter k. In fact, this new proposed module connection called Dense blocks
was motivated by its high density features propagation through the network and its features
reuse at different layers. Inspired by ResNet [70, 71], DensNet authors introduced between each
Dense block a composite concatenation function H(ů) of three consecutive operations, firstly
a Batch Normalization (BN) [83], followed by a rectified linear unit (ReLU) [125] and a 3 × 3
convolution. The main advantage of DenseNets is their improved features and gradients flow
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Figure 1.6: A comparison between a plain module (left) and a residual module (right)

throughout the network, making them more training efficient than their predecessors. This fact
is mainly due to their connection strategy allowing each layer to have a direct access to loss func-
tion gradient and the original input signal, leading to an implicit deep supervision [99]. In fact,
each DenseNet individual layer receives additional supervision from loss function throughout
the shortcut connections, which is inspired by previously shown efficiency of deep supervision in
Deeply Supervised Nets (DSNs) [99] which have their classifiers attached to every hidden layer
forcing intermediate layers to learn discriminative features. In figure 1.7, we present a Dense
block illustration.
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Figure 1.7: An illustration of Dense connections architecture taken from [82]

1.1.2.2 Generative Adversarial Networks (GANs)

Another type of DL models is Generative Adversarial Network (GAN). The latter is composed of two
stacked networks where the first one is called the generator and the second one is the discriminator.
The main idea is to have these two separated neural networks (generator and discriminator) locked
in a competition with each other (this is where the name “adversarial” came from). The generator
creates new images as similar as possible to original ones in a given dataset, while the discriminator
tries to understand if they are original pictures or false ones (if they belongs to this dataset or not). In
other words, the generator generates new data instances, while the discriminator evaluates them for
authenticity (fake or real).
As presented in [58], we can think of a GAN as a competition between a paper money counterfeiter
and a cop in a mini-max game, where the counterfeiter (the generator) is learning to pass false paper
money, while the cop (the discriminator) is learning to detect them. The cop and the counterfeiter are
both dynamic and in continuous training, and each one of them tries to learn the other’s methods.
After this training, we end up having a generator that learned enough knowledge to sneak out the
discriminator and generate new artificial samples that this discriminator will not be able to distinguish
them as fake ones. An example of basic GAN with two stacked neural networks (a generator followed
by a discriminator) applied to generate artificial new images as close as possible to the original ones,
is presented in figure 1.8.
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Figure 1.8: An illustration of a typical Generative adversarial network

1.1.2.3 Autoencoders (AEs)

In opposition to previous supervised learning networks, autoencoders acts in an unsupervised man-
ner trying to learn features distribution of a given dataset. It was first introduced in one of the main
unsupervised learning paradigms [148] to address the problem of unsupervised backpropagation, by
using the input data as the only learning guidance. With the recent improvements in DL, autoencoders
have taken center stage in different application areas, notably being used as a dimensionality reduction
network [78]. In fact, the aim of such a dimensionality reduction autoencoder is to learn a mapping
function MW,b(x) = x′ ≈ x in an end-to-end fashion throughout different stacked hidden layers map-
ping an input data x to its similar identity x′ as depicted in figure 1.9 below. Generally, an autoencoder
is composed of an encoder and a decoder. The first one is trying to learn a set of low dimensional rep-
resentation features z while the second is trying to reconstruct a similar copy of the input data using
only these learned intermediate features z. The identity function is a particularly trivial function to
be learned; but often some constraints are placed on these hidden units, especially when z is having a
lower dimension than x, and training the whole network become pushing these hidden units to learn
the most representative features of input data.

Figure 1.9: An illustration of a typical Autoencoder architecture
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A special case of autoencoders, is called Sparse Autoencoder (SAE) [130], where sparsity is introduced
into the hidden units by making the number of nodes in the hidden layer z bigger than that of the input
layer x. In addition to that, when several (SAE) with only their encoding parts are stacked on each
other, we obtain a Stacked Sparse Autoencoder (SSAE) which is often trained in a bottom-up greedy
fashion. In fact, a (SSAE) model is able to learn deep feature representation from the data throughout
its low-level (SAEs) until its high-level (SAEs) [130].

1.1.2.4 Deep Belief Networks (DBNs)

To learn deep features representation a Deep Belief Network (DBN) [77] is built with a concatena-
tion of Restricted Boltzmann Machines (RBMs) stacked on each other. The core component of DBNs
models [47] is the generative stochastic model called RBM that can be used either for unsupervised or
supervised learning. It is composed of two layers, an input visible layer and a adjacent hidden layer
trained with the aim to learn a probability distribution in the input set. Unlike original Boltzmann
Machine (BM) [1], intra-connections between hidden-hidden or visible-visible layers in a RBM are
disjointed forming a bipartite graph as illustrated in the figure 1.10.

Figure 1.10: An illustration of the difference between a BM architecture(left) and RBM architecture
(right)
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1.2 Motivations

1.2.1 Deep Learning for biomedical images classification

Computer-aided diagnosis (CAD) has become a major research line for bioinformatics practitioners
during the past few decades. Since the appearance of ML for images classification and the appealing
performance of these models in this task, experts started to buid ML based CAD systems for the au-
tomatic diagnosis of many diseases. In fact, ML methods are trained on biomedical images collected
from patients in hospitals and then used to makes assessment of the patient’s condition by assisting
clinicians in their decision-making process.
Automatic breast cancer diagnosis is one of the most important CAD applications. It involves differ-
ent CV tasks such as tumor classification, localization and segmentation based on biomedical imagery.
To elaborate these operations, CAD systems tries to learn the most significant features inside digitized
histopathological images using annotated datasets containing this kind of images and ML classification
models. To build CAD systems for breast cancer diagnosis, many datasets has been proposed. Most
of these datasets has focused on tumor classification purpose only, since data annotation for tissue
components segmentation (i.e. nuclei, cytoplasm and others) or tumors localization, is a very tedious,
expensive and time-consuming task. In this thesis, we focus on one of the most recent benchmark
datasets for tumor classification called BreakHis. The latter contains annotated histopathological im-
ages collected from both malignant and benign patients. Moreover, BreakHis offers a more detailed
annotation of tumors malignancy into four sub-types. Hence, when used in conjunction with ML clas-
sifiers, it allows a binary classification of slides malignancy (benign or malignant tumors), as well as
the ability to classify each one of these two main classes into four different sub-categories depending
on breast lesion appearance.
Traditionally, ML image classification models for this kind of CAD systems are built in a dual-step
process [143]. The first phase consists in a handcrafted features extraction task using various features
descriptors. In the second step, these extracted features are further used to train a standalone classifier
to map each image to its corresponding malignancy class. A large number of CAD systems have
been built with this classical approach, including those trained with BreakHis dataset. However, this
approach presents a major drawback, which is: the classifier’s accuracy relies essentially on the prior
extracted features, whereas getting high quality features in such a complex problem remains a very
difficult task [98].
Lately, many DL models have been proposed to overcome these limitations. The key advantage of these
models is that they are able to automatically elaborate the features extraction and classification steps
into one unique black box mapping function through an trainable ANN. To date, the most efficient DL
models for these kind of CV tasks are CNNs [95]. Indeed, all significant works on BreakHis dataset
adopted these architectures as a base model. However, the main problem related to these models re-
mains the training strategies and the data quality used to train them as we introduced in the thesis
abstract. In fact, the intrinsic complexity of BreakHis dataset imposes on the user to take into consid-
eration its data quality, classes imbalance and the lack of sufficient samples when training DL mod-
els. Therefore, researchers often performed pre- and post-processing methods to increase BreakHis
data value and take the most out of it when using DL. In the first part of this thesis, we elaborated
an overview and a performance comparison of all available CAD systems based on this benchmark
dataset. Then, using all lessons learnt from this analysis, we built an ideal breast cancer CAD system
using DL with our proposed data pre- and post-processing techniques.
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1.2.2 Deep Learning for satellite images classification

During the past years, there has been an extensive amount of remote sensing data growing and col-
lected everyday by satellites orbiting around our planet, drones or other types of remote data collec-
tors. Particularly, a large amounts of high resolution remote-sensing images at the global scale are
acquired daily with a good quality and an accurate precision using very sophisticated satellites. Simul-
taneously, a notable growing in the popularity of ML methods and especially DL models in various
remote-sensing applications has been reported. And thanks to these factors, many research fields are
achieving important breakthroughs, such as geo-spatial object detection, LULC scene classification,
weather forecasting and other applications.
The availability of this large amount of high quality data has played a big role in the development of
remote sensing field in comparison to other applications such as CAD systems elaboration. In fact,
having good quality data remains the most attracting and encouraging element for every person in the
research community. In addition to that, we all know that the required expertise to handle biomedical
images is much bigger than the one needed to analyse remote sensing imagery. A very good example
and highly solicited research area in this discipline is LULC classification using remote sensing data
and especially satellite imagery. LULC mapping is very important field in earth observation science
and serves to establish a better understanding of our planet. Moreover, LULC mapping allows a bet-
ter monitoring of natural resources, agriculture and vegetation preservation, helps a better decision
making for urban planning and prevent natural disasters.
As in the biomedical imagery classification, in remote sensing, classical ML methods needs a prior fea-
ture selection phase to further classify the various LULC types present on the images. Thus, DL models
and especially CNNs that are able to automatically extract and map the most important visual features
to each LULC class seems to be the best choice in this kind of applications. However, satellite images
classification using DL can be a very complex task especially with images collected from different re-
gions of the planet and under different conditions as it is the case for all available LULC datasets. In
fact, many datasets with annotated satellite images has been proposed with the aim to explore their
potential using CNNs. Nevertheless, the sufficient and optimum accuracy degree has not been reached
yet. This is mainly due to the factors exposed above and fact that most datasets suffers from a lack
either at the image quality level, the spatial resolution, the annotation quality, their size or their ge-
ographical coverage. All these drawbacks affect the DL model quality and by consequence its LULC
mapping capability. To circumvent these limitations, we proposed Sentinel2LULC, the first global, high
resolution and freely available satellite images dataset for LULC mapping. During the building of this
dataset, we took into consideration all the necessary requirements to train CNN models and made it
ready-to-use for this specific purpose.
Creating our own dataset for this very complex task has allowed us to further analyse DL performance
under different conditions. And in this new scenario, the preprocessing that we have elaborated was
during the creation of the dataset itself. In this new setting we have a complete control on the data
quality that we will use to train DL models. All DL experiments and evaluation reported for this
second use case of the thesis were carried out using Sentinel2LULC dataset in conjunction with the
most popular CNN models. And an analysis within these new circumstances has offered us a way to
evaluate either the data quality is the only and sufficient factor that was lacking in the first use case
application to reach a good performance or not.
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1.3 Contributions and outline of the thesis

In this thesis, we propose adequate and efficient preprocessing techniques for two DL applications. In
the first application, we applied these preprocessing techniques in conjunction with DL models on an
already available dataset for automatic breast cancer diagnosis. Whereas, in the second use case, our
preprocessing methods were established during the dataset creation itself and allowed us to ensure
that the data quality is high enough to be used with DL in order to build an automatic LULC mapping
system. This analysis has also allowed us to evaluate the importance of data quality in DL training for
these two complex applications. The rest of the thesis is organized as follow:
In Chapter 2 of this thesis, which constitutes the first part of the published paper in Neurocomputing Q1
journal, we will introduce the first complex application: DL models for biomedical images classification.
First, we will present BreakHis dataset, then, we will give an overview on all models and methods used
with this dataset to build automatic breast cancer CAD systems, and given the prevalence of DL models
in our study, we will highlight the achieved performance in all BreakHis based works who explored
DL models. This overview will be also organized given different adopted pre- and post-processing
approaches including DA methods, TL approaches and training settings.
In Chapter 3 which constitutes the second part of the published paper in Neurocomputing Q1 journal
and the entire paper published in the Proceeding of LOPAL international conference, we used all learnt
lessons from the previous section to establish what would be the ideal CAD system for BreakHis based
CAD system from a practical as well as a clinical standpoint. This CAD system is built from the most
adequate DL model, pre- and post-processing methods for this problem. Then, we implemented and
evaluated its performance under different pre- and post processing settings.
In Chapter 4 submitted to Scientific Data Q1 journal, we will start tackling the second complex use
case of this thesis which satellite images classification using DL for LULC mapping. In this chapter,
we introduce Sentinel2LULC a Sentinel-2 RGB imagery dataset that we have carefully created to be
specifically used in conjunction with DL in order to build automatic global LULC mapping.
In Chapter 5 to be submitted to a Q1 journal, we explored the performance of different CNN models in
conjunction with Sentinel2LULC for global LULC mapping. Then, we explored geographically and in
details the best performing CNN in order to find the correlation between the geographic distribution
of the data used in this study and the classification performance.
Finally, Chapter 6 gives the conclusions of this thesis and suggestions for the future works to be elab-
orated.
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2.1 Introduction and motivation

L et us first give a detailed introduction to the main topic of the present chapter: In spite of the
massive growth in breast cancer incidence during last years, its death rate has considerably

decreased [46]. This drop in mortality incidence has mainly occurred in developed countries who
achieved important breakthroughs in early detection methods through medical imaging analysis [45].
The most infallible early breast cancer diagnosis method in clinical routine is biopsy examination [192].
The latter is carried out by pathologists using fine needle expelled slides from breast tissue. For each
patient, an important number of breast tissue slides are analyzed with various microscopic magnifi-
cation levels to better highlight Regions of Interest (ROI). Nevertheless, pathologist’s interpretation
at decision moment could be deviated by several human factors such as eye fatigue, in addition to
instrumental-dependant factors, notably those related to the used microscopic device.
To alleviate the risk of putting a patient life at stake, domain experts thought of entrusting their assis-
tance in this difficult task to Computer Aided Diagnosis (CAD) systems [6,55,66]. In addition to breast
cancer, many high risk diseases are now diagnosed using these AI solutions [81], and a large research
community is continually trying to improve its diagnosis efficiency. The main objective of these re-
searches is to make these CAD systems able to help domain experts making the most accurate decision
to the departure of their patients. To achieve a good performance during diagnosis support, the golden
standard knowledge source for these systems is data collected by experts from real decision-making
situations. For this reason, many breast cancer diagnosis datasets are proposed [5,53,85], but their main
limitation remains that most of them are not publicly available to research community. Moreover, even
when this availability issue is overcome, often public datasets suffers from a lack in sufficient clinical
value to build a reliable CAD system. To our knowledge, the most representative breast cancer dataset
able to overcome both limitations is BreakHis [169].
BreakHis is a recent breast cancer public dataset. Its clinical potential consists of its two-level anno-
tation, which gives information about the malignancy and the exact tumor category for each biopsy
slide. In fact, the first annotation level allows a binary classification according to slides malignancy (i.e
benign or malignant tumors), while the second level enables a multi-category classification option to
further classify each one of both malignancy classes into four different sub-categories each depending
on breast lesion appearance in these slides. Additionally, BreakHis images were acquired with four
microscopic magnification levels (×40, ×100, ×200, ×400), which allows practitioners to either train
a specific model for each magnification level subset (training with a magnification-specific approach)
or train a unique model with all magnification level images combined (training with a magnification-
independent approach).
Since its release in 2016, over 40 studies analyzed BreakHis potential in building breast cancer CAD
systems. Authors of these studies reformulated this problem as either one of the following:

• A magnification-specific binary classification

• A magnification-independent binary classification

• A magnification-specific multi-category classification

• A magnification-independent multi-category classification

To address each one of these classification tasks, researchers used various pre- and post-processing
methods with different learning models and continues to achieve more accurate results, especially with
the recent arrival of outstanding DL models such as CNNs, known for their human-close performance
in several image classification problems.
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To summarize all these research, the present chapter gives a concise overview of all BreakHis based
CAD systems. Along this overview, we highlight more the DL based CAD systems and establish an
analytical comparison of their used pre- and post-processing approaches.

2.2 BreakHis histopathological breast cancer dataset

This section provides a complete description of BreakHis dataset, the experimental protocol established
by its authors, in addition to a discussion of its limitations.

2.2.1 BreakHis dataset description

As is the case for most cellular pathologies, histopathological slides are the core element for breast tu-
mors examination [6]. Histopathological slides are surgically expelled tissues from a given patient after
a biopsy operation on the area of interest. BreakHis current version is composed of 7909 histopatho-
logical biopsy images taken from 82 patients. These images were collected by P&D Laboratory in
Brazil from January 2014 to December 2014. BreakHis is divided into two main malignancy classes:
benign and malignant, with 2480 benign and 5429 malignant tumor images. Each malignancy class is
distributed into four different sub-categories based on the tumor appearance under the microscope. Be-
nign breast tumors are divided into the following sub-categories: Adenosis (A), Fibroadenoma (F), Phyl-
lodes Tumor (PT), and Tubular Adenoma (TA). Malignant tissues are divided into four sub-categories:
Ductal carcinoma (DC), Lobular Carcinoma (LC), Mucinous Carcinoma (MC), and Papillary Carcinoma
(PC). Each patient in this dataset has a different number of collected images which are annotated with
their main malignancy class and corresponding subcategory. A summary of image and patient distri-
butions over main classes and different sub-categories is presented in Table 2.1.

Main category Benign Total
Benign

Malignant Total
Malignant

Total
bothSub-category A F TA PT DC LC MC PC

Number of images 444 1014 453 569 2480 3451 626 792 560 5429 7909
Number of patients 4 10 3 7 24 38 5 9 6 58 82

Table 2.1: Image and Patient distribution among the main categories and each sub-category.

BreakHis images were collected using the same clinical process adopted in similar histopathological
datasets [191]. For each patient, several breast tissue samples were aspired with a fine biopsy needle
in the operating room. Then, each sample undergoes the following preparation phases:

• Starting with formalin fixation and embedding in paraffin to preserve the original tissue structure
and molecular composition

• Then, sections with 3µm of thickness were extracted from paraffin outcomes using a high pre-
cision cutting instrument called microtome

• Subsequently, these sections were mounted on covered glass slides for visualization under mi-
croscope

Generally, components of interest such as nuclei or cytoplasm are not clearly visible inside raw tissue
on mounted sections. Thus, an essential operation called tissue staining takes place before visualiza-
tion. This staining step aims to highlight each morphological component separately for a better visual
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insight under microscope. In fact, several staining methods exists, and the most used one is Hema-
toxylin and Eosin (H&E) [6] as used for BreakHis. In H&E, hematoxylin binds to DNA and thereby
dyes the related structures of interest (i.e. in most cases nuclei) with blue/purple, and eosin binds to
proteins and dyes other structures including cytoplasm and stroma with pink.
Several years ago, this workflow was concluded by sending to pathologists all stained-slides in phys-
ical version for analysis and annotation. Nowadays, with the appearance of Whole Slide Image (WSI)
scanners in these pathology labs, a slide digitization step is added on the top of this workflow, and
a digitized version of these slides is also sent to pathologists, then annotated and stored in the lab-
oratory information system. Furthermore, this additional step may includes slide manipulation and
loading operations, which allows laboratory to collect slides with different magnification factors as
done in BreakHis, where images were taken with four magnification levels (×40, ×100, ×200, ×400).
During analysis and annotation, pathologists starts by identifying ROI in the lowest magnification level
slide (×40), then dive deeper in this ROI with higher magnification levels (×100, ×200) until reaching
a bigger insight on this region (×400). To illustrate this process, a BreakHis slide example captured
with four different magnification factors is presented in figure 2.1.

(a) ×40 magnification level (b) ×100 magnification level

(c) ×200 magnification level (d) ×400 magnification level

Figure 2.1: The same malignant PC(Papillary Carcinoma) tissue captured with different magnification
factors, taken from the patient with ID:9146 in BreakHis dataset

BreakHis images distribution into these four magnification levels for each tumor category and sub-
category is presented in Table 2.2. In fact, BreakHis images are almost equally distributed between
different magnification factors with a narrow range starting from 1794 images in ×400 subset to 2051
images in ×100 subset. For BreakHis patient distribution, each magnification factor subset contains
exactly 82 patients because each patient has images taken with all magnifications. After further statisti-
cal exploration, we found that each magnification factor subset contains around 24 images per patient.
In average 24, 25, 24, and 22 images per patient are available in ×40, ×100, ×200, and ×400 subsets
respectively.

43



Main category Benign Total
Benign

Malignant Total
Malignant

Total
of bothSub-category A F TA PT DC LC MC PC

Number of images
at each

magnification level

×40 114 253 109 149 598 864 156 205 145 1370 1968
×100 113 260 121 150 614 903 170 222 142 1437 2051
×200 111 264 108 140 594 896 163 196 135 1390 1984
×400 106 237 115 130 562 788 137 169 138 1232 1794

Table 2.2: The distribution of BreakHis images into four magnification levels for both main tumor
categories and each sub-category.

2.2.2 BreakHis data imbalance and noise

BreakHis histopathological dataset has been released to overcome the lack of previous datasets in terms
of availability and clinical content richness. Nevertheless, BreakHis also suffers from other common
issues that are frequently present in all medical datasets due to the disease nature and limitations in
medical data acquisition. The following limitations are the most relevant in BreakHis dataset, and they
should be taken into consideration when building a robust CAD system:

• Data imbalance As it can be seen in Table 2.1, BreakHis data imbalance occurs at different
levels:

– The uneven patient distribution between main malignancy categories (malignant and be-
nign) with an Imbalance Ratio (IR) of 0.41 (24 benign patient versus 58 malignant patient).

– The uneven image distribution between main malignancy categories (malignant and be-
nign) with an Imbalance Ratio (IR) of 0.45 (2480 benign images versus 5429 malignant im-
ages)

– An uneven distribution is also present between different sub-categories at image and pa-
tient levels. For example, the benign sub-category (F) has 1014 images captured from 10
patients, while a malignant sub-category like (DC) has 3451 images collected from 38 pa-
tients

In fact, this data imbalance issue could bias the discriminative capability of a CAD system to-
wards the majority malignant class at image and patient levels during binary and multi-category
classification tasks. Therefore, one should be aware of this limitation when building any classi-
fication model.

• Label noise During its evolution, breast tumor expands gradually from a region to another in
breast tissue. Hence, sometimes images captured from the same patient may contain tissue sam-
ples from different regions, and by consequence the same image could contains different breast
cancer stages, which means different sub-category annotations for the same image. Notably,
images taken from the malignant patient with ID:13412 which contains morphological features
of two malignant sub-categories, ductal (DC) and lobular carcinoma (LC). This special case can
be considered as a noisy labeled patient, and able to confuse the CAD model during its train-
ing on multi-category classification task that tries to learn discriminative features between both
malignant sub-classes (DC and LC).

2.2.3 BreakHis experimentation protocol

BreakHis has been proposed with the aim to constitute a benchmark for breast cancer CAD systems.
Thus, its authors proposed in [169] the following unified experimentation protocol:
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• For each magnification factor subset, five evaluations are performed.

• During each evaluation the used magnification subset is randomly divided into 70% for training
and 30% for test.

• To guarantee that the CAD model generalizes to unseen patients, the patients used to build the
training set are not used for test.

For a fair comparison between different CAD systems, BreakHis authors proposed two classification
level metrics:

• Image Level Accuracy (ILA) This first metric is the standard classification measurement at
image level. It does not take into account the patient information and it is defined as follows:

ILA = Icorr

Itot
(2.2.1)

Where Itot is the total number of test images and Icorr is the number of correctly classified
images by the evaluated model.

• Patient Level Accuracy (PLA) The second metric reflects the achieved performance in a
patient-wise manner. Firstly, an individual score is computed for each single patient, and then
the mean accuracy is calculated over all test patients.
For a given patient Pi, its patient score Pscore(Pi) is:

Pscore(Pi) = IP corr

IP tot
(2.2.2)

Where IP corr and IP tot are respectively the number of correctly classified images and the total
number of images for this patient.
Then the Patient level accuracy (PLA) is measured by:

PLA = Σi=N
i=1 Pscore(Pi)

N
(2.2.3)

Where N is the total number of patients in the test set.

• Additional metrics To guarantee a fairer comparison between different models regardless of
the uneven data distribution between available classes, several related works adopted other eval-
uation metrics such as:

– F1-score [162], also called F-measure or F-score, was adopted to better highlight the eval-
uated model’s sensitivity to malignant cases which are of higher interest in this kind of
medical diagnosis. Conventionally, a malignant case is considered as positive while a be-
nign one is considered as negative, and F1-score is the harmonic mean between Recall and
Precision where:

Precision = TruePositives

TruePositives + FalsePositives
(2.2.4)

Recall = TruePositives

TruePositives + FalseNegatives
(2.2.5)

And F1-score is calculated as follow:

F1 − score = 2 × (Recall × Precision)
Recall + Precision

(2.2.6)

– Area Under Curve (AUC) [162] was adopted in other works on BreakHis dataset to evaluate
their CAD systems accuracy. This metric was mainly used to illustrate the probability that
a positive case outranks a negative one according to the used classifier.
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2.3 Histopathological images preprocessing methods overview

Models used to build CAD systems relies essentially on the data quality provided to them. Therefore,
usually original data undergoes several preprocessing steps before feeding these models. In this sec-
tion we will provide a general definition of the most used preprocessing methods for histopathological
images, especially those used in almost all BreakHis related works: stain normalization and data aug-
mentation. In addition to some variants of these methods that have never been explored with BreakHis
images yet.

2.3.1 Stain normalization

Alike pathologists, CAD systems relies considerably on histopathological images staining quality [80].
However, due to variations in device settings, experimental parameters, staining protocols, in addition
to differences between slide scanners and patients tissues, often stained slides in the same histopatho-
logical dataset are inconsistent and prone to huge appearance variability [153]. As shown in figure
2.2, BreakHis has also a high variability degree in tissue appearance caused by its staining irregularity.
These variations not only leads to an inconsistency between different pathologists verdicts, but also
hinder the CAD systems learning process [31]. By consequence, it is important to consider a data pre-
processing step to mitigate this staining variability before any color, texture, or stain based features
extraction for breast cancer classification. A natural and straightforward manner to adress this issue
would be a gray-scale transformation [12, 169], but the latter may cause an unwanted loss of very im-
portant characteristics and discriminative colors. Thus, the most used approach is stain normalization
preprocessing which besides being more efficient, it allows color-based information preservation by
transforming colors range instead of eliminating them completely. Practically, several color transfor-
mation methods have been adopted for stain normalization and they can be divided into three broad
categories:

• Color-matching methods These methods normalizes all under or over stained histopatho-
logical images using a reference image. Indeed, their goal is to grant these images the same
colors distribution as in the reference image. The most used method in this category is called
Reinhard [144], it matches the color distribution of an image to that of the reference image by
applying a linear transformation in a perceptual color-space so as to match each color channel
mean and standard deviation for both images.

• Stain-separation methods These methods normalizes each staining channel (Hematoxilyn and
Eosin) independently. The most used one in this category is Macenko [108]. It finds stain vec-
tors using a reference image and a transformation from RGB space to Optical Density (OD)
space. Then, normalizes each histopathological image by converting its color values to their
corresponding optical density (OD) values.
An illustrative stain normalization transformation of some BreakHis images using Reinhard and
Macenko methods is shown in figure 2.2.

• Deep learning based preprocessing methods The main drawback of the two last categories is
the need of a domain expert to pick a high-quality reference image from the used dataset, which is
a hard decision to make. More importantly, it’s clear that limiting this process to one image with
very specific staining characteristics could lead to a poor generalization when applied to other
images with new spatial structures and different morphological components. Nowadays, with
the growth in generative capability of deep learning models especially of Generative Adversar-
ial Networks (GANs) [58](these architectures are presented in Section ??), a new learning-based
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Figure 2.2: Stain normalization of four slides from BreakHis dataset. Two benign images (Benign 1,
Benign 2) and two malignant images (Malignant 1, Malignant 2). The first row shows raw images
before normalization, the second and third rows shows normalized images using Reinhard and Ma-
cenko methods respectively. Both normalization methods have been applied using a randomly chosen
BreakHis reference image shown in the left corner of this figure.

category of stain normalization is emerging. In fact, some recent GAN-based stain normaliza-
tion methods [18, 153] appears to be very efficient in achieving this task. In spite of that, GAN
based methods have never been experimented yet on BreakHis images for stain normalization.
The most attractive method among them is StainGAN [153], where the authors proposed an
end-to-end Generative Adversarial Network (GAN) trained to transfer H&E staining colors be-
tween two different scanners datasets allowing a wider generalization margin. Moreover, this
StainGAN model is trained to transfer staining style between different datasets without the need
of paired (input-output) slides. In fact, this model is inspired from cycle-consistent GAN con-
cept [213] allowing a weakly supervised staining mapping between images taken with two dif-
ferent scanners, this cycle-consistency is a constraint on distance preservation between a given
input image and the reconstructed one (i.e. the normalized image) through the generative model.
Hence, the staining appearance is transferred between different scanners, while textures and all
other morphological components describing the input image are preserved in the generated one.
We believe that these learning-based approaches are capable to overtake the classic stain nor-
malization methods by giving for practitioners more opportunities to extract any normalized
scanner staining style and transfer it to another dataset, while less relying on domain expert’s
availability and additional expenses.

2.3.2 Data augmentation

Generally, efficient machine learning models used for classification and particularly DL ones, have very
large architectures with millions of learnable parameters. To achieve an acceptable generalization rate
while avoiding overfitting, classification models requires a high training samples number [136]. How-
ever, obtaining large and high quality clinical labeled dataset is a very expensive and time consuming
task. To overcome this limitation, practitioners proposed to transform available data to generate new
artificial data samples. The most used approach for this purpose is data augmentation. In fact, after
proving its ability to bring a huge improvement to deep learning models, data augmentation has rapidly
attracted a great interest from research community, and continues to improve along with the growing
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popularity of CNNs [117]. Particularly, in many BreakHis related works, raw images were rotated,
flipped, distorted, zoomed in or out to generate new images with the same discriminative features as
the original ones. Data augmentation can be performed either offline by external pre-training image
processing or online during the training process. Data augmentation is also used to address data im-
balance issues as in the case of BreakHis. An illustrative example of different data augmenters applied
to a BreakHis image is presented in the figure 2.3.

(a) The original slide (b) The same slide rotated with 40°

(c) The same slide flipped (d) The same slide randomly distorted

(e) The same slide zoomed in ×10 (f) The same slide zoomed out ×10

Figure 2.3: An original ×100 slide extracted from a malignant (MC) patient with ID:16456 and five
generated images from this slide using different data augmentation methods
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2.4 BreakHis Computer-aided diagnosis systems overview

Over the past three years, several BreakHis based CAD systems have been built. To survey all this
research we proposed a new taxonomy that organizes BreakHis related works into four different groups
according to their adopted reformulation of this classification problem. The main motivation behind
the proposed taxonomy, is to understand all the proposals that addressed BreakHis dataset for building
CAD systems, their strengths and their weaknesses. The adopted taxonomy, its four groups and the
works that belong to each group are summarized in Table 2.3.

Related works: Reformulated as Number of works
[169] [168] [24] [167] [166] [87] [36]
[193] [164] [62] [2] [149] [64] [128]
[154] [25] [210] [174] [23] [209] [26]

[188] [122] [171] [204] [123] [150] [17]
[89] [63] [141] [44] [39] [4] [7]

[124] [35] [94] [129] [121]

MSB 40

[14] [61] MIB 2
[50] [9] [67] [127] MSM 4

Explored for the first time
in this thesis MIM -

Table 2.3: BreakHis related works and their corresponding reformulations in our taxonomy.

Where MSB reformulation:classifies the input image as benign or malignant depending on its magni-
fication factor. MIB reformulation:classifies the input image as benign or malignant regardless of its
magnification factor. MSM reformulation:classifies the input image into one of the eight subcategories
with taking into consideration its magnification factor. MIM reformulation:classifies each image into
one of the eight subcategories regardless of its magnification factor. To illustrate the proposed taxon-
omy, we present in figure 2.4 the inputs, classifiers and outcomes of each reformulation:
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Figure 2.4: An illustration of each reformulation in the proposed taxonomy

MSB, MIB and MSM works will be presented in sections 5.4, 5.5 and 2.7 respectively, while MIM will
be explored for the first time in this paper in section 3.3. A work that belongs to two different groups
will be reported only within the group that represents its main reformulation, while the results of
its both reformulations will be included separately in their corresponding tables. Namely, MSM is
the main reformulation of [9, 50, 67] while MSB is their secondary reformulation. Besides, the main
reformulation of [24] is MSB while its secondary reformulation is MSM.

2.5 Magnification-specific binary classification works (MSB)

In this section, we will report all works that used an MSB approach. In fact, 85% of BreakHis CAD
systems adopted this reformulation. These MSB works will be organized as follows:

• Section 2.5.1 summarizes works that adopted a traditional handcrafted based model

• Section 2.5.2 presents works that used deep learning based models

• Section 2.5.3 covers works that brought their contributions to the preprocessing phase

• Section 2.5.4 describes works that developed their CAD systems with a content-based histopatho-
logical image retrieval approach
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• Section 2.5.5 highlights works that focused on domain adaptation

Then, in Table 2.4 we will summarize all these works and for each one we will present its best results, the
adopted pre- and post-processing approaches, the used model and the learning strategies. Depending
on the experimental setup used in each paper, results are going to be presented either as a mean value
with a standard deviation over various trials or as a unique trial value. Depending on their availability,
results are reported at different metrics levels including PLA, ILA, AUC and F1-score. For the seek of
space, we used an abbreviation for each method, and the corresponding dictionary can be found in ??.

2.5.1 Handcrafted descriptors based models

First BreakHis CAD systems adopted a traditional dual-stage approach, by extracting handcrafted fea-
tures from the images, then using them to train a standalone classifier. At features extraction phase,
some works evaluated multiple descriptors with the aim to select the most representative ones, while
others used an unique descriptor. In this part, we will present all these works with their adopted image
descriptors:
First, BreakHis authors explored in [169] the effectiveness of six state-of-the-art handcrafted features
descriptors: Local Binary Patterns (LBP) [132], its variant Completed Local Binary Pattern (CLBP) [60],
Local Phase Quantization (LPQ) [133], Gray Level Co-Occurrence Matrices (GLCM) [69], Parameter-
Free Threshold Adjacency Statistics (PFTAS) [32] and Oriented FAST and Rotated BRIEF (ORB) [147],
associated with four different classifiers: 1-Nearest Neighbor (1-NN) [194], Quadratic Linear Analysis
(QDA) [181], Support Vector Machines (SVM) [21], and Random Forests of decision trees [101]. Then,
To evaluate the effectiveness of fractal dimension [110] as the only descriptor; authors in [24] trained
an SVM classifier with the fractal dimension of each image. Results of which demonstrated that using
fractal dimension as a unique descriptor is more suitable when classifying ×40 images with a lot of self-
similarities, but meaningless in higher magnification images with less self-similarities. As an additional
part of this work, a multi-category classification task was elaborated with 16 experiments, each one
classifying a benign and a malignant sub-classes.
Afterwards, authors in [149] evaluated different handcrafted descriptors in conjunction with a k-NN
classifier, including: LBP, GLCM, PWT) and TWT. After that, authors in [26] proposed to use Zernaike
moment, image entropy and fractal dimension features through a signal processing multilevel iterative
Variational Mode Decomposition (VMD) [43], and select the most relevant features using Relief [92],
before classifying them with a Least squares support vector machine (LS SVM). In [87], authors tried to
enable an L1-norm Sparse SVM (SSVM) [212] to select the most relevant features from BreakHis images.
According to their work, L1-norm is inconsistent in establishing features selection precisely and the
SSVM could be biased towards large hyper-plane coefficients. To enhance its features selection quality,
they assigned a weight to each feature depending on its Wilcoxon rank sum [102]. Lately, authors
in [150] evaluated KAZE features [3] performance in a bag-of-features approach. Then, transformed
these features into histogram information using an approximate Nearest Neighbour algorithm, and
used them to train an SVM classifier.
Limitations Results achieved by different traditional handcrafted features were considered relatively
acceptable as preliminary results but highly unstable. In fact, the major drawback of these traditional
approaches is that: the model’s quality depends on the extracted features, while acquiring a highly
representative features is a very complex task. One of the main difficulties is the right descriptor choice,
and even when various descriptors are combined together to increase their discriminative power, or
post-transformed to select the most appropriate ones, their achieved results remains relatively low and
unstable between different magnification levels.
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2.5.2 Deep learning based classification models

To mitigate traditional practices limitations, some authors thought of entrusting features extraction as
well as classification tasks to deep learning models giving their ability to select directly the most signif-
icant global features. These researches tried to successively boost their deep learning based approach,
starting with the exploration of various models, to the analysis of different learning and adaptation
strategies. In this part, we will organize these works according to their contributions at different deep
learning aspects:
From traditional towards deep learning approach BreakHis authors were the first researchers
to move towards the evaluation of a deep learning based CAD system for this dataset, by entrusting
features extraction and classification tasks to a CNN model in [168]. They started by evaluating LeNet
[97], but its results were lower than those reported by their previous traditional based model in [169].
Therefore, they opted for AlexNet [93] as a relatively deeper network.
Deep learning models trained with handcrafted features Generally, CNN models are provided
with raw images as input. However, authors [122] were convinced by the importance of textural and
pixel distributions contained in handcrafted features such as LBP or histogram descriptors. By con-
sequence, they evaluated CNNs provided with various handcrafted features in comparison to those
provided with raw images. After exploring different combinations, their best results were achieved
with a model called (Model1-CNN-CH). The latter was a CNN model with residual blocks inspired from
ResNet [70], and provided with a concatenation of extracted local-features using Contourlet Transform
(CT) [41] and Histogram information descriptors.
CNN models comparison To find the adequate CNN for this classification task, authors in [174]
compared the performance of three different CNN models: CaffeNet which is an AlexNet variant,
GoogleNet [176] and ResNet-50. Results of which proved the efficiency of ResNet, the necessity of data
augmentation, fine-tuning all layers, providing this CNN with large WSIs instead of small patches, and
using ensemble learning by combining different magnification-specific models. In our last work [17],
we explored the performance of another CNN which is a GoogleNet variant called Inception-v3 [177],
and our results shown the efficiency of this CNN in comparison to shallower ones used in previous
works.
Pre-trained CNN for features extraction use The improvement brought by the first CNN evalu-
ations in BreakHis [168], encouraged its authors to explore further deep learning capabilities. They
evaluated in [167] a transfer learning strategy with a pre-trained AlexNet and DeCAF features extrac-
tion approach [42]. The latter consists of extracting features from the pre-trained AlexNet’s last layers,
then using them to train a standalone classifier. Afterwards, authors in [23] explored the impact of
three different dimensionality reduction methods on features extracted from a pre-trained VGG [161]:
Principal Component Analysis(PCA) [145], Gaussian Random Projection(GPR) [19] and Correlation-
Based Feature Selection(CBFS) [116].
Generally, when a pre-trained CNN is adopted as a features extractor, only its final layers features
are exploited. To evaluate the potential contained in every layer of a pre-trained DenseNet-169 [82],
in conjunction with XGBoost classifier [28], authors in [63] proposed a sequential features extraction
framework. This evaluation proved that the last convolutional layers provide more significant features
than the final fully connected layers. Another interesting finding of this work is that: lower level layers
contribute significantly to ×40 images classification. Similarly, mid range magnifications ×100 and
×200 are better represented by mid level features. While ×400 images are better captured by higher
level layers.
Pre-trained CNN for Fine-tuning use For fine-tuning, various practices are adopted. In some works,
all the pre-trained CNN layers are fine-tuned; while in others, only the last fully connected layers are
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retrained. Authors in [210] proposed a dual-stage fine-tuning method, which retrained only the fully
connected layers in a first place, then the whole network. To justify this choice they also evaluated it
against each one of its two independent stages.
Features extraction versus fine-tuning use In [39], the authors demonstrated that fine-tuning the
three last layers of a pre-trained AlexNet is more efficient than SVM classification of concatenated
features extracted from two pre-trained CNNs (AlexNet and VGG16).
Features extraction combined with fine-tuning An ImageNet pre-trained CNN extracted features
are meant to be the common high level features between ImageNet and BreakHis classification tasks.
However, the used CNN is not supervised to extract necessary features for BreakHis classification.
Thus, a gap is generated between the extracted features and the required specific domain features
[100]. To mitigate this gap, [204] proposed a hybrid transfer learning approach called deep domain
knowledge-based features model, by adding a preliminary knowledge adaptation step that consists of
retraining (fine-tuning) the pre-trained CNN on BreakHis classification task in a first place for more
efficient features extraction.
CNN Features extraction versus handcrafted features extraction Authors in [7] evaluated fea-
tures obtained with traditional handcrafted descriptors in comparison with those extracted from a
pre-trained AlexNet. Surprisingly, LBP handcrafted features have proven to be slightly better than
AlexNet features. However, this comparison remains very restrictive with a relatively shallow CNN
which was found also in [168] to be barely capable of outperforming handcrafted based models.
CNN features post-encoding using Fisher Vector Post-encoded CNN features using Fisher Vector
(FV) [138] are known for their good classification potential [30, 52]. To evaluate their performance in
BreakHis problem, authors in [166] started with fine-tuning an pre-trained VGG model as a preliminary
adaptation of this CNN on BreakHis classification. Then extracted a dense set of local features from
its last convolutional layer in order to encode them into FV descriptor. Afterwards, the same authors
presented a second work [164] with the aim to overcome FV high dimensionality issue. In fact, they
proposed a supervised intra-embedding model designed to embed each block of the FV descriptor into
a lower dimensional feature space, using a dimensionality reduction algorithm based on a multilayer
neural network. In their next work [163], they proposed new features representation method called
Component Selective Encoding (CSE). Therefore, they used the same pre-trained VGG as in [166],
along with a new adapted dimensionality reduction method inspired from one of their previous works
[165]. The latter aims to reduce each FV component individually, unlike [164] where they were reduced
uniformly. This adaptation was justified by the fact that some regions in these images are more relevant
than others.
CNN architecture adaptation Inspired by the effectiveness of GoogleNet inception module in cap-
turing multi-scale features with different convolutions, Authors in [2], proposed a new version of this
module called ”Transition module” and integrated it to AlexNet. This new version was designed with
the aim to ease the abrupt transition between the last convolution layer and the first fully connected
layer. Unlike inception module, no prior dimensionality reduction was included to this transition mod-
ule. Then, authors in [128] proposed a new CNN architecture composed of fifty convolutions, and
compared it to several handcrafted features based models. Afterwards, authors in [193] designed a
new CNN called BiCNN inspired from GoogleNet architecture. To use this CNN in the binary classifi-
cation task they proposed to take into consideration sub-class information in conjunction with binary
labels of each image as a prior knowledge. They claimed that this consideration of both annotation lev-
els could help the proposed model to better learn features distance between binary classes. In [188], the
authors tried to leverage recent findings in rotation equivariant CNNs [33] with the inherent symme-
try under rotation and reflection of histopathological images, in order to build a rotation and reflection
equivariant CNN inspired from DenseNet. Lately, another work [94] proposed a CNN model composed
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of different layers combinations (convolutional, pooling and fully connected layers), whereas various
compositions and hyper-parameters were evaluated to determine the most adequate architecture for
BreakHis classification.
Multiple Instance Learning with CNN Practically, CNNs requires original WSIs images to be resized
to fit in their input layer. Some practitioners prefer to extract low size patches from original WSIs in
order to avoid loosing any discriminative information. However, adopting a patch based approach is
very challenging, since only a small number of extracted patches is correctly labeled. This fact is due
to the presence of benign areas in malignant WSIs. To address this mislabeled patches issue, authors
in [171] proposed to use a Multiple Instance Learning (MIL) approach with randomly extracted 64×64
patches. In fact, they noticed that BreakHis distribution at patient and image level is similar to MIL
reasoning, and adapted its formulation to two different settings. The first one meets the labeling at
image level, where each image was considered as a bag of instances. The second setting considered
each patient as a bag. They explored twelve different MIL methods including recent ones such as deep
learning based MIL-CNN [175] and non-parametric MIL [189]. In another MIL based approach [35], the
authors introduced a new MIL CNN layer termed Multiple Instance Pooling (MIP) layer with the aim
to select from each bag their most discriminative instances with the higher feature responses, instead
of capturing all their instances. This constraint was integrated into the loss function by considering
only the loss associated to higher activation instances.
Deep active learning To avoid mislabeled patches when adopting a patch based approach, practition-
ers are forced to annotate all extracted patches. However, this task is expensive, very tedious and time-
consuming. In order to reduce this labeling burden, authors in [44] proposed a deep active learning
framework enhanced with a boosted confidence approach. This approach is based on an active learning
model which is firstly initialised with very limited labeled data. Then, it selects at each iteration the
lowest confidence unlabeled samples (highest entropy samples) and give them to domain experts for
annotation. By consequence, it reduces considerably the annotation cost. However, it ignores the less
representative samples (higher confidence samples with lower entropy) and their potential. Therefore,
authors in [44] provided these remaining samples to the model itself for auto-annotation without any
additional manual-annotation cost.
Ensemble learning To prove the effectiveness of ensemble learning with features learned by differ-
ent classifiers at various scales, authors in [36] explored the performance of an ensemble of different
magnification-specific model where each one is a pre-trained GoogleNet. In fact, these CNNs were
trained separately in a magnification-specific way, but for each test image an ensemble of all these
magnification-specific CNNs was aggregated using a majority voting rule.
Deep Belief Network Inspired by the outstanding results achieved with Deep Belief Networks (DBN)
in many fields applications [202], researchers in [124] used a Deep Belief Network (DBN) composed of
four stacked Restricted Boltzmann Machine (RBM). But, instead of using raw images they provided it
with handcrafted Tamura features [178].
Autoencoder In [141], the authors proposed a hybrid framework that starts with a LandMark ISOMAP
(L-ISOMAP) embedding [180] to extract the most significant features in BreakHis images, followed by
an SSAE with two stacked sparse Autoencoders and a classification output layer. This choice was moti-
vated by the fact that Autoencoders have shown distinguishable results in different image classification
tasks [203]. In their results, they stated that this approach allowed them to achieve an improvement in
classification rate while reducing the overall computational cost.
Limitations Results achieved by different deep learning models are considerably higher than those
presented with traditional approaches. Nevertheless, deep learning models are extremely data-hungry
and require a large amount of data, while medical applications such as breast cancer diagnosis always
suffer from a lack of data. To mitigate this limitation, often practitioners are forced to adopt artificial
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data augmenters as a preprocessing. In addition, determining the best hyper-parameters for this kind
of models is a black art with no guiding theory. Moreover, unlike handcrafted engineered models
where what is learned is easy to comprehend, deep learning approaches are not able to give users
feedback or interpretability on the discriminative features used to decide about each patient diagnosis.
Besides breast cancer, many deep learning based medical applications exists and each one of them has
different limitations [151]. For a full review on this topic, we refer the reader to the following recent
references [8, 20, 27, 49, 75, 109, 113, 120, 155]

2.5.3 Preprocessing methods

To build these CAD systems either with deep learning or traditional approaches, raw images need
various preprocessing transformations. In this part we will present works where the main contribution
is related to the preprocessing phase:
Data augmentation Deep learning models, and especially CNNs requires an important volume of
training data and particularly when they are to be fine-tuned. Thus, to generate a sufficient number of
data samples for fine-tuning a pre-trained inception v3 on ×40 images classification, authors in [25]
evaluated different data augmentation techniques and reported their results.
Clustering as a preprocessing To explore the hidden similarities in morphological textures of
BreakHis images, authors in [123] adopted a clustering algorithm as a preprocessing step. This method
aims to extract statistical and geometrical clusters hidden in the data structure. In order to prove the
efficiency of their approach, they evaluated the performance of a CNN provided with these cluster-
transformed images using various clustering algorithms in comparison to a CNN provided with raw
images. In [154], authors evaluated a segmentation preprocessing step based on a clustering algorithm
to highlight nuclei regions in each image before extracting their features and provide them to different
classifiers. Lately, in [89], the authors used a K-means clustering on each image to highlight its nuclei
segments, before extracting entropy features from these cluster-transformed images using Discrete
Wavelet Transform (DWT) [157]. Then, evaluated an SVM classifier trained with these features.
Stain normalization To address the stain variability of BreakHis images, authors in [62] were moti-
vated by learning the color-texture variation of these images instead of reducing the color-variations
between them. Therefore, they explored several combinations of various color-texture descriptors
along with different classifiers. After identifying the best performing features-classifier combination in
each magnifications subset, they combined them in an integrated model. Then, the same authors tried
in [64] to provide indications about whether it is possible for a model to learn this color-texture vari-
ability instead of normalizing it. Their experiments found that: on one hand; stain normalization could
be substituted by joint color-texture features learning to achieve higher results, on the other hand:
gray scale transformation is not a good stain normalization method and could decrease the classifica-
tion accuracy. Recently, authors in [121] started from the conviction that conventional normalization
techniques amplify the existing noise in images when applied directly, and propose a normalization
strategy that includes a noise amplification control step.

2.5.4 Content-based histopathological image retrieval CAD systems

Unlike standard CAD systems, in a Content-based Histopathological Image Retrieval (CBHIR) system,
the model search in the dataset for other images with similar content to the query one, and return them
to the pathologist to use their diagnostic information as reference. In this part we will present works
that adopted a CBHIR system:
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One of the first attempts to employ a CBHIR approach is [209]. Authors in this work were aware of the
fact that a CBHIR system is computationally intensive especially when retrieving from a large-scale
dataset, because it is essentially based on feature vectors comparison to measure images similarities. To
address this aspect, they proposed a three-steps framework: Firstly, all images in the dataset undergone
a binarization encoding with different tile sizes in order to decrease the required computations and en-
sure their size-scalabality. Then, for each query image a similarity-based search is conducted to look
for the closest proposals in the encoded dataset. Finally, the retrieved images are ranked, giving their
similarities to the query image using Hamming distance. To reduce retrieving time, authors in [129]
used a pre-trained VGG-19 that extracts class-specific and patient-specific tumorous descriptor simul-
taneously. In fact, they divided the adopted framework into two different phases. In the first phase,
the pre-trained VGG-19 extracts the last layer features as a 1000-dimensional vector from each image
in the gallery set (the training set) and then uses these features to train a multi-patient classifier which
gives for each image a score evaluating if it belongs to a given patient (82-dimensional vector) and a
binary malignancy classifier to determine either is benign or malignant (2-dimensional vector). In the
second phase, they extracted from each query image its 1000-dimensional features using a pre-trained
VGG-19, then these features are passed through the fine-tuned multi-patient and binary classifiers to
find a conjoint patient/class 2-dimensional vector. This vector is used to retrieve similar images from
the gallery set.

2.5.5 Domain adaptation approach

Mostly, all BreakHis models are built with the assumption that the distribution of training and testing
data are the same, whereas; others claimed that this assumption is not correct since histopatholog-
ical images are prepared and stained in different laboratories with different standards, which could
adversely degrade the classification rate. In this part we will present works that proposed a domain
adaptation approach:
Authors in [4] were the first and only to address the aforementioned issue; they proposed a new learn-
ing framework with an unsupervised domain adaptation approach based on the data representation-
learning. The goal of this domain adaptation is to reduce the differences between the marginal dis-
tributions of source and target domains while learning a new representation for both domains. This
method is based on the creation of an invariant space where training and test sets are projected to
adapt their different domains.
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Work Preprocessing Patch/Slide Features extractor Classifier Transfer learning Training/Test Metrics Results(%)
×40 ×100 ×200 ×400

[169] None WSI PFTAS QDA None 70 % / 30 % PLA 83.8 ± 4.1 82.1 ± 4.9 84.2 ± 4.1 82.0 ± 5.9

[168] -Res(350x230)
-SMI

-Rnd(32x32, 64x64)
-SW(32x32, 64x64) Emax(AlexNet) ImageNet 70 % / 30 % ILA 85.6 ± 4.8 83.5 ± 4.8 84.6 ± 4.2 86.1 ± 6.2

PLA 90.0 ± 6.7 88.4 ± 4.8 84.6 ± 4.2 86.1 ± 6.2
[24] Binarization WSI FD SVM None 50 % / 50 % F1 97.9 16.5 16.5 25.3

[167] None MKV(1,4,6) CaffeNet LR ImageNet 70% / 30% ILA 84.6 ± 2.9 84.8 ± 4.2 84.2 ± 1.7 81.6 ± 3.7
PLA 84.0 ± 6.9 83.9 ± 5.9 86.3 ± 3.5 82.1 ± 2.4

[67] -DAB(IV, Rot, Tr, Flip) WSI NDCNN(GoogleNet) ImageNet 50% / 50% ILA 95.8 ± 3.1 96.9 ± 1.9 96.7 ± 2.0 94.9 ± 2.8
PLA 97.1 ± 1.5 95.7 ± 2.8 96.5 ± 2.1 95.7 ± 2.2

[166] None WSI FV(VGG) SVM ImageNet 70% / 30% ILA 87.0 ± 2.6 86.2 ± 3.7 85.2 ± 2.1 82.9 ± 3.7
PLA 90.0 ± 3.2 88.9 ± 5.0 86.9 ± 5.2 86.3 ± 7.0

[87] None WSI DR(ASSVM, WRS) None 70% / 30% PLA 94.97 93.62 94.54 94.42

[36] -Res(370x230)
-DAB(Rot, Flip) Rnd(224x224) GoogleNet ImageNet 80% / 20% ILA 94.82 94.38 94.67 93.49

[193] -SMI
-DA(Rot, Scal, Mir) WSI NDCNN(GoogleNet) ImageNet 75% / 25% ILA 97.89 97.64 97.56 97.97

PLA 97.02 97.23 97.89 97.50

[164] None WSI DR(FV( ConvNet), MNN) SVM ImageNet 70% / 30% ILA 87.7 ± 2.4 87.6 ± 3.9 86.5 ± 2.4 83.9 ± 3.6
PLA 90.2 ± 3.2 91.2 ± 4.4 87.8 ± 5.3 87.4 ± 7.2

[62] None WSI Integrated None 70% / 30% ILA 88.09
PLA 88.40

[2] None P(228x228) NDCNN(AlexNet,trans) None Not specified ILA 82.7% Not evaluated Not evaluated Not evaluated
[149] None None PWT KNN None 75% / 25% ILA Not evaluated Not evaluated Not evaluated 85.62
[64] RGBT WSI JCTF Linear SVM None 70% / 30% PLA 86.88 ± 2.37 88.41 ± 2.73 88.86 ± 3.76 87.55 ± 3.01

[128]
-Res(350x230)

-SMI
-DA(Rot, Flip)

WSI NDCNN None 70% / 30% ILA 77.5 Not evaluated Not evaluated Not evaluated

[154] -ETB
-NDS WSI PFTAS RF None Not specified ILA 81.7 ± 2.8 81.2 ± 2.7 80.7 ± 3.4 81.5 ± 3.1

[25] - DA(Rot, Mir, Dis) WSI Inception v3 ImageNet 70% / 30% ILA 0.86 Not evaluated Not evaluated Not evaluated
[210] -DA(Zoom, Flip) Rnd(224x224) Emax(VGGNet) ImageNet 80% / 20% ILA 91.28 91.45 88.57 84.58

[174] -Res(350x230) WSI Eavg(ResNet) ImageNet Not specified PLA 95.0 ± 3.64

[23] -Res(224Ã 224)
-GSC WSI VGG NN ImageNet 75% / 25% ILA 84.0 88.2 87.0 80.3

[209] None SQ BE SBC None 70% / 30% ILA 47.0 40.0 40.0 37.0

[26] MVD WSI DR((Zer, FD, Ent),Rlf) LSSVM None 70% / 30% PLA 87.7 85.8 88.0 84.6

[188] None Rnd(64x64) NDCNN( DenseNet) Camelyon 75% / 25% ILA 96.1 ± 3.2 Not considered Not considered Not considered

[122] None WSI CT, HI+KM NDCNN None Not specified ILA 94.40 95.93 97.19 96.00
F1 95.00 97.00 98.00 96.00

[171] None Rnd(64x64) PFTAS NPMIL None 70% / 30% ILA 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1
PLA 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 3.0

[204] -Res(224x224)
- DA(CROP, ANP, FLIP) WSI ResNet-152, GoogleNet SVM ImageNet 80% / 20% ILA 81.2 ± 2.5

[123] KM WSI NDCNN None Not specified ILA 85 90 90 90
F1 93 93 92 93

[150] GSC WSI HI, KAZE SVM None 70% / 30%

ILA 85.9 ± 1.6 80.4 ± 1.4 78.1 ± 2.2 71.1 ± 3.3
PLA 86.4 ± 2.2 81.6 ± 1.6 77.8 ± 1.6 72.9 ± 2.8
F1 90.2 ± 1.1 86.5 ± 1.0 84.6 ± 2.2 79.9 ± 3.2

AUC 94 Not specified Not spcified Not specified

[17] SMI WSI Inception-V3 ImageNet 70% / 30%
ILA 86.5 ± 3, 7 83.2 ± 2.4 85.4 ± 0.7 80.3 ± 2.2
PLA 87.6 ± 3.9 82.4 ± 2.7 86.1 ± 0.7 79.7 ± 3.2
F1 93.0 88.9 89.4 86.9

[89] KM WSI DWT LSVM None Not specified ILA 93.3

[63] -Res(224x224)
-DA(Rot, Flip, HS,WS,TR) WSI DR(DenseNet-169,XGB) XGB ImageNet 70% / 30% PLA 94.71 ± 0.88 95.9 ± 4.2 96.76 ± 1.09 89.11 ± 0.12

[141] -GSC
-DA WSI DR(WSI,L-Isomap) SSAE None Not specified ILA 96.8 98.1 98.2 97.5

[50]

-Res(341x224)
- SN

- DA(Rot, Flip, WS, HS)
-UP

SW(224x224)

ResNet-152 ImageNet 70% / 30% ILA 98.6 97.9 98.3 97.6

Emdt(ResNet-152) ImageNet 70% / 30% PLA 98.77
[44] None WSI AlexNet ImageNet 70% / 30% ILA 90.69 90.46 90.64 90.96

[39] Res(227x227) WSI AlexNet ImageNet Not specified ILA 90.96 ± 1.59 90.58 ± 1.96 91.37 ± 1.72 91.30 ± 0.74

[4] None WSI DR(PFTAS,PROJ) QDA None 70% / 30% PLA 89.1 ± 2.6 87.3 ± 3.8 88.4 ± 3.6 86.6 ± 2.8

[7] None WSI LPQ SVM None 70% / 30% ILA 91.1 90.7 86.2 84.3
AUC 0.96 0.96 0.93 0.90

[124] CE WSI Tam DBN None 70% / 30% ILA 88.7 85.3 88.6 88.4

[35] -Res(370x230)
-DA P(224x224) NDCNN None 80% / 20% ILA 89.52 89.06 88.84 87.67

[94] None P(64x64, 32x32) NDCNN None 70% / 30% ILA 82 ± 2.8 86.2 ± 4.6 84.6 ± 3 84 ± 4
PLA 83 ± 3.2 81 ± 4.2 84.2 ± 3.4 81 ± 2.4

[129] -Res(224x224)
-SMI WSI VGG-19 E(SVM) ImageNet 98% / 2% ILA 80

[9] DA(Rot, Flip) WSI Eiter(NDCNN) None 70% / 30% ILA 98.33 97.12 97.85 96.15

[121] SN WSI HI NDCNN None 85% / 15% ILA 95.0 96.6 93.50 94.2

Table 2.4: MSB classification models and results.

2.6 Magnification-independent binary classification works (MIB)

After reporting MSB classification works and their results, we will present in this section binary clas-
sification models that adopted a magnification-independent approach (MIB). In fact, only two works
belongs to this group, and we will present them as follows:

• Section 2.6.1 presents the first attempt that introduced magnification-independent training to
binary classification
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• Section 2.6.2 describes the work that explored the discriminative value contained in each mag-
nification factor subset.

Afterwards, we will summarize in table 2.5 the best model of each work and its achieved results.

2.6.1 From a magnification-specific towards a magnification-independent approach

Magnification-independent approach for BreakHis based models was first introduced in [14], where
authors proposed to classify histopathological images as either benign or malignant regardless of their
magnification factors. To evaluate their MIB reformulation, they elaborated two experiments. In the
first one they explored a single task CNN, while in the second one they trained a multi-task CNN.
The single task CNN was trained on all magnification subsets combined and tested on each magnifica-
tion independently to allow its direct comparison with previous magnification-specific works. Results
of this comparison proved that this magnification-independent model outperformed some previous
magnification-specific works, and more importantly achieved stable results over different magnifica-
tion. In their second experiment, the authors explored the performance of a multi-task version of the
first adopted magnification-independent CNN. This multi-task version was equipped with an additional
classifier which serves to predict the magnification level of each input image. Its binary classification
results decreased slightly in comparison to those obtained with the single task version. This drop in
accuracy was justified by the usefulness of the added magnification factor classifier for the binary
classification task.

2.6.2 Cross-magnification evaluation

Authors in [61] tried to evaluate the discriminative value of each magnification subset independently
with a cross-magnification training/test schema. In other words, they tried to explore all possible train-
ing/test combinations, where each time a model is trained on a given subset and tested on this same
subset or another one. Each model adopted a dual-stage framework. Firstly, it extracted color-texture
features. Then, it provided a concatenation of these features to train a majority voting ensemble com-
posed of: SVM , Nearest neighbors, Decision tree and Discriminant Analysis. After evaluating all pos-
sible cross-magnification data splittings, these experiments revealed some interesting findings: Models
trained with extreme magnification subsets (×40, ×400) achieved lower classification results with a
large variation between different magnification test sets, while those trained with mid-range magnifi-
cation subsets (×100, ×200) obtained higher results and proved to be more stable over all magnification
test sets. The authors justified these facts by the large variability in morphological textures of extreme
magnification images (×40, ×400) in comparison to those captured with mid-range magnifications
(×100, ×200).

Work Preprocessing Patch/Slide Features extractor Classifier Transfer learning Training/Test Metrics Results(%)
×40 ×100 ×200 ×400

[14] -Res(460x460)
-DA(Rot, Crop, Flip) Rnd(100×100) NDCNN None 70% / 30% PLA 83.08 ± 2.08 83.17 ± 3.51 84.63 ± 2.72 82.10 ± 4.42

[61] None WSI JCTF Emv(classifiers) None 70% / 30% PLA 87.2 ± 3.74 88.22 ± 3.28 88.89 ± 2.51 85.82 ± 3.81

Table 2.5: MIB classification models and results.

2.7 Magnification-specific multi-category classification works(MSM)

After reporting all binary classification reformulations, we will present in this section the multi-
category classification models trained with a magnification-specific approach (MSM). Mostly, all MSM
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works were built within a dual-stage framework, where each stage is devoted either to multi-category
or binary classification. Thus, these works will be reported according to the logical ordering of their
two stages as follows:

• Section 2.7.1 presents works where the multi-category classification is elaborated before the
binary classification

• Section 2.7.2 describes works where the binary classification is elaborated before the multi-
category classification

• Section 2.7.3 reports works where both classification stages are elaborated independently

• Section 2.7.4 outlines works where the multi-category classification is elaborated without any
binary classification stage

Then, in table 2.6 we will report the best achieved results in each work.

2.7.1 Multi-category classification stage before binary classification stage

The first CNN that was designed essentially for multi-category classification is [67]. The latter pro-
posed a two-stages framework composed of a multi-category classification model followed by a binary
classification phase. The used CNN was trained only with a multi-category classification output. Then,
the binary classification output was intuitively deduced from its corresponding sub-class. Authors of
this work noticed that this reformulation has never been explored before due to the high similarities
between different sub-classes. According to them, the variance between instances from the same sub-
class are greater than the one between those from different sub-classes. To overcome this issue, they
integrated a learning constraint to the multi-category CNN. This constraint was added to the output
loss function with the aim to control different features similarities during the training, by minimiz-
ing the euclidean distance between instances from the same sub-class, while maximizing it between
those from different sub-classes or main classes. In addition to the proposed constraint, the authors
in this work explored different configurations and also proved the necessity of data augmentation and
transfer learning approaches when training a deep learning CNN.

2.7.2 Binary classification stage before multi-category classification stage

Authors in [50] firstly fine-tuned an ImageNet pre-trained ResNet-152 for the binary classification
task. Then, retrained the same fine-tuned ResNet-152 with a multi-category classification output layer.
The second stage was composed of two modules, the first one was devoted for benign sub-classes and
the second one for malignant sub-classes. After identifying its main class in the binary classification
stage, each instance was provided to its corresponding module for sub-class identification. An image
was considered correctly classified if only its both stages outputs were correctly classified. For both
stages, the decision was made at two levels: At image level; the decision was obtained by merging all
extracted patches outputs using majority voting rule. At patient level; the decision was elaborated with
a Meta-decision Tree (MDT) [182] which acts like a trainable ensemble learning approach combining
all magnification-specific models. Furthermore, this work revealed that the improvement brought by
stain normalization and data augmentation is around 13%.
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2.7.3 Multi-category classification and Binary classification tasks performed inde-
pendently

In [9], the authors tried to elaborate each one of these two classification tasks independently without
any logical link between them. For each classification task, they compared a new-designed CNN to a
handcrafted features based model. In the handcrafted features based approach, they evaluated various
descriptors encoded with two coding models (bag of words and locality constrained linear coding) in
conjunction with an SVM classifier. For the CNN based model, they evaluated a new designed CNN in
different use cases: firstly, as a global end-to-end CNN, then as a features extractor or a final classifier
provided with prior extracted handcrafted features. Results of this comparison proved the efficiency
of the end-to-end CNN model in both classification tasks. Afterwards, they explored the improvement
brought by data augmentation as well as ensemble learning with merging prediction outputs captured
from the same model at ten different training iterations.

2.7.4 Multi-category classification without binary classification

Unlike previous works, [127] used a multi-category classification stage only. In fact, it evaluated the
performance of three different CNNs in this classification task; namely, a ResNet-v1 model and two
Inception variants v1 and v2, all trained in magnification-specific manner. Results of which revealed the
ability of the pre-trained ResNet-v1 model to outperform the inception CNNs and achieve a recognition
rate of around 95% in such a tedious task. This result was achieved in conjunction with different
preprocessing methods including data augmentation and stain normalization, in addition to a fine-
tuning strategy where all ResNet layers were retrained on BreakHis multi-category classification task.

Work Preprocessing Patch/Slide Features extractor Classifier Transfer learning Training/Test Metrics Results(%)
×40 ×100 ×200 ×400

[24] -Bin WSI FD SVM None 50 %/ 50 % F1 96.4 over all magnifications

[67] -DAB(IV, Rot, Tr, Flip) WSI NDCNN ImageNet 50% / 50% ILA 92.8 ± 2.1 93.9 ± 1.9 93.7 ± 2.2 92.9 ± 1.8
PLA 94.1 ± 2.1 93.2 ± 1.4 94.7 ± 3.6 93.5 ± 2.7

[50]

-Res(341x224)
-SN

-DA(Rot, Flip, WS, HS)
-UP

SW(224x224)

ResNet-152 Im-Break 70% / 30% ILA 95.6 94.8 95.6 94.6

Emdt(ResNet-152) Im-Break 70% / 30% PLA 96.25 over all magnifications

[9] -DA(Rot, Flip) WSI Eiter(NDCNN) None 70% / 30% ILA 88.23 84.64 83.31 83.98

[127]
-SN(Macenko)
-DA(Rot, Flip)
-Res(224x224)

WSI ResNet ImageNet 80% / 20% ILA 95.0 over all magnifications

Table 2.6: MSM classification models and results.

2.8 Conclusion

In this chapter, we proposed a taxonomy that classifies BreakHis based CAD systems into four refor-
mulations (MSB, MIB, MSM, MIM). Using this taxonomy, we provided a comprehensive survey of all
CAD systems that used BreakHis dataset. We highlighted their main contributions especially when
DL is adopted, their used preprocessing methods, their training strategies in addition to their achieved
results at different evaluation levels and various metrics. We believe that all these summarized studies
will serves to give an integral and complete idea of the existing literature on this this dataset to all
upcoming researchers who wants to explore its potential. In the context of this thesis, the provided
overview will serve us as a base analysis to the next chapter of this thesis to formulate and evaluate an
ideal BreakHis based CAD system using deep learning. In fact, this analysis conducted us to identify
and evaluate the most suitable reformulation for this problem from the clinical standpoint as well as
the most adequate DL pre- and post-processing approaches. Using all these knowledge, we expose in
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the next chapter an ideal model for this problem which to our knowledge has never been explored or
even identified in the literature before.
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CHAPTER 3

An analysis of the ideal breast cancer
computer-aided diagnosis system using

BreakHis and deep learning
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This chapter constitute the second part of the paper published in Neurocomputing [15] and the entire
paper published in the Proceeding of LOPAL international conference [17].

3.1 Introduction and motivation

T he current chapter is the continuation of the last chapter. Thus, the motivation behind the study
elaborated in this chapter and the last one are similar. However, the novelty of the current chap-

ter aims this time to build and analyze the ideal breast cancer CAD system for BreakHis using DL and
and all learnt lessons from the overview elaborated in the previous chapter. As we presented in the
last chapter, BreakHis based Breast cancer CAD systems were reported into four different groups giv-
ing their adopted reformulation for BreakHis images classification problem. Some works proposed to
explore the binary classification aspect of this dataset to build a CAD system able to help pathologists
decide whether a patient’s slide is benign or malignant, while others preferred to leverage BreakHis po-
tential in its multi-category annotation to find the exact malignancy sub-class for each image and give
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further information about the tumor severity and the required treatment. Each one of these two differ-
ent classification tasks was either built with taking into consideration the microscopic magnification
factor in the used images or regardless of this element. These different possibilities results in the four
reformulation groups of the presented taxonomy in the last chapter. In the last chapter, we reported
each paper in its corresponding reformulation group, we explored its main contribution, its used pre-
processing methods, adopted model, post-processing and learning strategies and its achieved results
at different evaluation levels. In this chapter, we will first, elaborate a comparison between binary
and multi-category classification reformulations. Then, we will compare the magnification-specific to
magnification-independent training approaches. This analysis helped us to identify the ideal formula-
tion for this classification problem from a clinical as well as a practical standpoint. Then, we will build
the corresponding model for this formulation using DL along with the best combination of pre- and
post-processing methods that have shown to be the most efficient in the last chapter.

3.2 Comparison between different reformulations of BreakHis prob-
lem

3.2.1 Binary classification versus multi-category classification

In this part we will build our comparison between between binary classification and multi-category
classification reformulations.
In fact, binary classification is deciding whether a given breast cancer lesion is benign or malignant,
while multi-category classification is responsible for not only identifying whether a lesion is malignant
but also determining the exact benign or cancer subtypes, as both benign and malignant breast lesions
encompass different subcategories. Thus, it would be unfair to say that binary classification is indepen-
dent from multi-category classification, and we prefer to say that it is inherently included in the latter.
This inclusion formulation is always invoked in BreakHis related works that are devoted for multi-
category classification. Most of these works are presented as two-stage framework [9, 24, 50, 67, 119]
where results of each classification task are reported in each stage, except in [127] where the binary
classification results are not explicitly reported but still can be implicitly concluded from their subcat-
egories classification results.
This inclusion formulation leads us to intuitively consider the added value of the encompassing multi-
category classification task as a natural comparison criteria. In fact, as depicted in [9,24,50,67,119,127],
a multi-category classification has more clinical value than a simple binary classification because:

• First, finding the exact tumor sub-category provides more details about patients health con-
ditions, which relieves the workloads of pathologists and guides them to make more optimal
therapeutic schedules.

• Second, different treatment options are available for breast cancer patients and determining its
subtype could be helpful in predicting the patient’s response to a particular therapy; notably,
invasive lobular tumor gains a clear benefit from systemic therapy when compared to invasive
ductal [10].

• Third, the correct recognition of benign lesion type is also important because the patient’s risk
of developing subsequent breast cancer varies among different types of benign lesions [65].

In General, a framework for multi-category classification purpose with an included binary classifica-
tion option could be performed either by one of the following manners:
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• The first solution is applying the binary classification in the first stage before the multi-category
classification phase as in [50]. In this case, a first model is dedicated to determine whether a
test sample is benign or malignant, then depending on its main malignancy class this sample is
given to the corresponding multi-category model in the second stage for further classification of
its exact sub-class (the second stage contains a model for benign subcategories and a model of
malignant subcategories).

• The second solution applying the multi-category classification in the first stage before the binary
classification as in [67]. In this case, only one multi-category classification model is used for all
the eight subcategories combined, then the binary main class is implicitly deduced from the
unique multi-category model without the need of an additional model dedicated for the binary
classification task.

• The third solution is applying the multi-category classification independently of the binary clas-
sification as in [9]. In this case, models from both tasks are applied independently, and neither
the main class of a given sample is used to specify its subcategory or the opposite. In addi-
tion, one multi-category classification model could be used for all subcategories or two different
multi-category classification models could be adopted.

For our proposed ideal model, we believe that the most intuitive and natural manner to build a multi-
category classification framework with an included binary classification option would be a dual-stage
approach as in the second solution: applying a multi-category classification in the first stage with one
model for all eight subcategories and then deduce directly the main malignancy class of the tested
sample (benign or malignant) in the second stage without any additional model to achieve this binary
classification task. This choice is due to the fact that:

• The first solution requires three different models, resulting in more training and adaptation ef-
forts. Moreover, in this first solution, any misclassification in the binary classification stage will
directly impact the most important task which is the second stage (multi-category classification
stage).

• The third solution requires two or three different models, resulting also in more training and
adaptation efforts. In addition, this third is omitting and neglecting completely the logical linking
between the two classification tasks as they are performed independently, and a test sample could
be classified differently by the two classifications resulting in confusing verdicts.

3.2.2 Magnification-independent approach versus magnification-specific approach

To train such a multi-category classification model, one could take into consideration the magnification
factor of each image or train this model regardless of the magnification feature. For our ideal model
hypothesis, we believe that a training this model with magnification-independent approach is clinically
and practically more suitable than adopting a magnification-specific approach, because to the following
factors:

• First, in a magnification specific approach, one specific model is required for each magnification
subset, resulting in four different models and subsequently more training and adaptation efforts.

• Second, during testing phase in a magnification-specific approach, magnification factor of each
test image must be known and the exact corresponding model should be used. However, such
specific information might not be available for all images.
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• Third, In a magnification-specific approach, the classification model might perform poorly when
test images are acquired at new magnification levels. Because, during training stage, classifiers
learn magnification specific features and they could not adapt themselves to unseen image fea-
tures.

• Fourth, unlike magnification-specific methods, a magnification-independent approach has the
ability to directly benefit from additional training data, and such additional data could be cap-
tured with the same or different magnification factors than previous ones. In other words, this
magnification-independent approach could benefit from additional labeled training data in a
straightforward manner, notably for data augmentation.

• Fifth, when authors of magnification-specific models elaborated in [50, 174], employed at test
phase ensembles with their four magnification-specific models, they all achieved noticeably im-
proved results. Such a fact can be interpreted here as a reinforcement of our hypothesis claiming
that training a model in magnification-independent manner with features from different scales
could implicitly improve the model generalization capability.

• Sixth, a classification system which is intended to be used in a real clinical practice should han-
dle the diversity in microscopic images and should not depend on any device settings such as
magnification level, because this flexibility is necessary when deploying this system in under-
developed, developing countries or in rural areas, which may have microscopes with very limited
magnification levels.

Therefore, our ideal proposition for BreakHis classification reformulation would be: A multi-category
classification system with a binary classification ability trained in a magnification-independent way. To
our knowledge, this work is the first to present and analyze this reformulation and we called it ”MIM”
which stands for magnification-independent multi-category classification. And as we discussed above,
the ideal way to implement this reformulation would be a unique dual-stage model (a multi-category
classification model with an integrated binary classification capability) trained with a magnification-
independent approach.

3.3 Comparison between different approaches at pre- and post-
processing phases

After finding the best reformulation for our BreakHis classification problem, we need to find the most
adequate pre- and post-processing methods to fit this reformulation. In fact, BreakHis based CAD
systems in the literature were presented with several approaches, different models and various trade-
offs at pre and post-processing levels. Some works tried to compare and analyse the impact of dif-
ferent choices and various approaches on different classification tasks. However, their comparisons
and analysis were biased towards their specific inner configurations with very restrictive case studies.
To our knowledge no one of these attempts has elaborated a comparison between different works on
BreakHis and analysed their results. Hence, we believe that an inter-works analysis with an objective
view from above on all their adopted methods, models and best achieved results would be more reli-
able for efficient choices and well-founded assessments. In this section we will analyze and compare
all these approaches, conclusions and results reported in BreakHis related works, with the aim to pick
the most adequate pre and post processing solutions for our BreakHis classification problem reformu-
lation deduced in the previous section. This ideal reformulation needs to be a unique multi-category
classification model with a binary classification capability, trained in a magnification-specific approach.
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Additionally, we will be taking into consideration BreakHis limitations, characteristics and experimen-
tation protocol presented before. In addition to some of the generic methods that have never been used
in BreakHis yet but could be very promising if explored in conjunction with our ideal reformulation
to this problem.

3.3.1 Preprocessing methods comparison

For our ideal model hypothesis we will start with data preparation and necessary pre processing meth-
ods to fit our classification problem reformulation:

• Data preparation First of all, we need to elaborate an examination of suspicious noisy data
samples with the help of a pathologist. Notably, to make sure if the malignant borderline pa-
tient (ID:13412) contains really features from ductal (DC) and lobular carcinoma (LC) sub-classes.
Then, instead of eliminate this patient from the dataset as done in some related works, we will
explore the possibility of separating both features parts into different images, and assign to each
image its corresponding sub-class label. Thus, we could leverage the discriminative potential
of this borderline case without causing a confusion to our multi-category classification model
during its training.
Secondly, we believe that for a fair comparison to other related works, we should follow the
same unified experimentation protocol presented by BreakHis authors in [169] with the aim to
generate 5 random folds of training(70%) /testing(30%) sets. However, unlike author’s shared
script1 which generates these 5 folds for each magnification factor subset separately, ours will
adopt a magnification-independent approach. Therefore, we will generate these 5 folds of train-
ing(70%) /testing(30%) once instead of four times, and using all magnification subsets combined
(the whole dataset). To guarantee that our model generalizes well to unseen patients, we will
be preserving the following constraint during our 5 folds creation: patients used to build the
training set are not used in the test set.

• Preprocessing methods Several preprocessing methods were used in different BreakHis related
works. Particularly, we will focus on the closest works to our reformulation. Notably, [50] which
achieved the best results in both classification tasks combined. In fact, is fair to say that [50] is
the state-of-the-art among works both classification tasks if considering that results achieved
by [24] in multi category classification are not really reflecting this task it should be formulated,
because authors in [24] evaluated it by taking in each test experiment one benign sub-class
versus one malignant sub-class and not all the eight sub-classes at once. Moreover, it’s true
that [50] adopted a reformulation of both classifications with a magnification-specific approach
which is not our case. However, its consideration as a close approach to ours is due to the
fact that it adopts at patient level a kind of trainable ensemble learning method called MDT
which considers classifiers of all magnification levels combined to make a final verdict to the
departure of a given test patient. Hence, we could consider this information fusion of different
magnification-specific factors to be a close reasoning to magnification-independent approach.
Inspired by preprocessing methods adopted in these two frameworks [24,50], we will choose the
following preprocessing methods:

1. Image resizing Firstly, resize original images from 460 × 700 into 224 × 224 with the aim
to fit the ResNet input layer (as we will see in next subsection the chosen CNN to be used
will be ResNet).

1https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-BreakHis/
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2. Stain normalization Then apply a stain normalization to regularize color and brightness
variance between different slides. However, instead of applying similar related work’s stain
normalization methods which requires a lot of expertise for target image choice (reference
image), we believe that stainGAN [153] deep learning based method presented in section
5.3 could constitutes a perfect alternative to avoid the need of any target image choice or
additional domain expert’s expenses. In this case, we could simply use one of the well
known datasets to be containing highly normalized histopathological slides as a target do-
main and train StainGAN model to transfer staining style from this dataset to BreakHis
images. For instance, as already proven in [153], MITOS-ATYPIA-14 challenge2 dataset
seems to be a good ground truth for StainGAN training. In fact, this dataset contains breast
cancer histopathological images taken with two different scanners. Thus, we could choose
one scanner subset and use it as a target domain, while using BreakHis images as an in-
put domain for StainGAN model. This experiment will results in a normalized BreakHis
version with similar staining style to one of MITOS-ATYPIA-14 scanner subsets.

3. Data augmentation Afterwards, giving all comparison studies elaborated in [9, 50, 128,
174, 193] proving the huge improvement at image and patient levels brought by data aug-
mentation especially with deep learning models, we choose to consider a data augmenta-
tion approach, and regarding data augmenter, we will explore a composition of common
techniques in all best models and the closest ones to our reformulation [50, 119], which
are: random rotation and random flipping. Furthermore, we prefer to apply these data
augmentation with a data balancing constraint between all sub-classes, in order to address
the uneven data distribution between them as done in the multi-category models proposed
in [50].

Regarding the chosen order of the proposed preprocessing methods above, image resizing was
placed intentionally as a first step, because when stain normalization or other preprocessing
methods are applied on prior downsized images we could considerably gain in preprocessing
time required to apply these methods on higher resolution version.

3.3.2 DL models and training strategies comparisons

After choosing the most suitable preprocessing methods for our ideal model hypothesis, we will pick
the necessary DL model and training strategy to fit our reformulation for BreakHis classification.
To classify BreakHis images, each related work reported in this paper adopted one of the four following
approaches:

• Handcrafted features extractor + Traditional classifier This first approach is a purely tradi-
tional one, where one or many handcrafted features descriptors are used to extract from BreakHis
images their inner features. Then, these features with their corresponding labels are provided to
a traditional classifier (a non-deep learning model) for training and classification.

• Handcrafted features extractor + deep learning model This second approach is similar to
the first one, except the fact that it uses a deep learning model for training and classification in
the second stage instead of a traditional classifier.

• Deep learning model as features extractor + Traditional classifier This third approach is
similar to the first one, except the fact that it uses a deep learning model for features extraction

2https://mitos-atypia-14.grand-challenge.org/dataset/
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instead of any traditional handcrafted features descriptor. Generally, in this case a pretrained
CNN is used for features extraction from its last layers.

• Global end-to-end deep learning model This fourth approach is a purely deep learning one,
where a deep learning model is provided and trained in an end-to-end manner with BreakHis
images and their corresponding labels.

As expected all best results in all classification tasks were achieved when global deep learning CNNs
were trained in an end to end manner without prior handcrafted features extractors or traditional post
classifiers. Therefore, we believe that a global CNN trained in an en-to-end manner would be more ad-
equate for our ideal model hypothesis. In addition to the outstanding results achieved by this approach
in several related works, from a theoretical point of view this choice could be justified by the conformity
of CNNs architectures to our magnification-independent reformulation. In fact, our reformulation for
this classification problem consists of a model trained with all magnification levels images combined
and as demonstrated in [63], the first CNN layers learns low magnification features while the last ones
captures the higher level features. Thus, a CNN trained with this hierarchical learning process through-
out its multiple layers is the most suitable model for the nature of histopathological images especially
when adopting a magnification-independent approach. Regarding the CNN architecture choice, most
BreakHis related works with deeper CNNs outperformed the shallower based ones in all classifica-
tion tasks. Particularly, ResNet and all its variants especially those adopted in [50, 119] which are
clearly outperforming all other CNNs in the binary and multi-category classification tasks with both
magnification-specific or magnification-independent approaches. For our ideal model hypothesis, we
prefer to explore ResNet CNN model that achieves very high results in most reformulations.
After picking the most adequate preprocessing and CNN model for our reformulation of BreakHis
classification problem, we need to decide which training strategies are the suitable for this model to
explore in future works. In the following points we will discuss the necessary training and learning
approaches to be adopted for our ideal model hypothesis:

• Patch based vs whole slide based training As we mentioned before our proposed ResNet will
be trained in a supervised end-to-end manner provided with images and their corresponding
labels. To feed this CNN we could use one of the following approaches:

– A whole slide based approach where the CNN model is provided in the input layer with
WSIs after applying all necessary preprocessing operations

– A patch based approach where the CNN model is provided with small size patches extracted
from the WSIs after applying all necessary preprocessing operations

Mostly, all related works on BreakHis dataset [9,63,67,119,121,122,127,174,193] that achieved a
higher accuracy at image and patient levels in all reformulations adopted a whole slide approach
instead of a patch based one, except [50] which extracted for each class or sub-class a different
number of overlapping patches with size 224 × 224 using a sliding window approach. Never-
theless, images in [50] were resized to 341 × 224 before 224 × 224 patches extraction. By conse-
quences, roughly speaking we could consider this large-size patch extraction step adopted in [50]
as a whole slide approach, because resulted patches are having almost similar size to source im-
ages which by their turn are similar to original images because they were only downsized during
the preprocessing and still contains the same original information. In fact, we believe that the
key point of results in [50] is the implicit data balancing operation which consists of taking into
consideration the imbalance ratio of each class to decide how many patches to be extracted from
it. Therefore, we prefer to opt for a whole slide based approach to train our proposed ideal model
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and as we mentioned before in the preprocessing section original WSIs will be downsized from
460×700 into 224×224 in order to fit the ResNet input layer. This WSI training based approach
could help us also avoid any additional domain expert’s expenses for patches labeling, because
when a patch based approach is adopted extracted patches are not obligatory having the same
labels as their source images and needs to be annotated, which pushed some authors to opt for
a MIL approach or a deep active learning method.

• Features distance constraint To elaborate a multi-category classification model with a very
high discriminative capability between different sub-classes, we believe that is necessary to in-
tegrate a learning constraint on this model during its training as shown in [67, 193] to separate
different classes as wider as possible in their features space. In fact, this choice is justified by the
complexity of this task in comparison to the standard binary classification one, with subtle visual
and morphological appearance differences between the eight sub-classes as depicted in [9, 67].
This learning constraint applied on features space distance between intra-class and inter-class
training instances is necessary for controlling features similarities of different sub-classes and
improve the model ability to discriminate each one in the features space correctly. Regarding the
learning constraint’s choice, we prefer to use the one presented in [67], simply because the lat-
ter’s distance constraint is well defined and explained and could be directly injected to the loss
function during the training, unlike the one used in [193] which is unclear and not explicitly
formulated.

• Transfer learning Naturally, when adopting a CNN for a relatively small dataset as our case
with various classes we should adopt a transfer learning approach. Most CNN based works
with BreakHis images and especially those with an end to end global CNN as our proposition,
adopted a transfer learning approach by fine tuning an ImageNet pre-trained CNN on BreakHis
classification task. Results of which guaranteed to be a very good trade-off between model com-
plexity and results accuracy, in addition to providing a good initial state for the adopted CNN’s
weights. As demonstrated in [204], when adopting any transfer learning approach we should
be aware of the gap between ImageNet and BreakHis domains. Therefore, an adaptation should
be elaborated for the used pre-trained CNN. To achieve this adaptation we choose to explore
the interesting dual-stage fine-tuning approach presented in [210]. The pre-trained CNN used
in the latter, undergone a two stage fine tuning method, starting by freezing the first convolu-
tions while retraining only the fully connected layers, then fine tuning all layers. This choice is
justified by two factors:

– On one hand, as explored in [210] this combined approach achieved higher results than
approaches where only one of these fine-tuning stages is performed.

– On the other hand, we believe that when following the same order of both stages we could
build a good adaptation to mitigate the knowledge gap between the two different domains
(ImageNet and BreakHis). In fact, starting with retraining the last layers only present a
good initial adaptation step, because ImageNet specific features which are the less common
features with BreakHis images are mostly hidden in these last layers. Then, retraining the
whole network in a second step seems to be adequate for further adaptation, because as
depicted in [63] low and mid-range layers are containing the majority of BreakHis specific
features.

• Ensemble learning as shown in [9,36,50,61,168,169,174,193,210] ensemble learning is neces-
sary to achieve better results in terms of accuracy and stability over all magnification test sets.
Therefore, adopting an ensemble could help us improve the overall performance of our proposed
model. Regarding the ensemble learning strategy to use, we propose to explore an ensemble of
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all RestNet variants which achieved higher results in BreakHis classification task (i.e ResNet-50
ResNet-101 and ResNet-152). Regarding the aggregation rule between these different classifiers,
the trainable MDT approach in [50] seems to be a good choice to achieve higher accuracy, but
cannot be adapted to our proposed model, because as presented before this MDT method in
opposition to our magnification-independent reformulation requires images at different magni-
fication levels. Thus, we could explore the efficiency of various fusion rules starting with the
max rule which outperformed the sum and product rules when compared with them in [168],
we could also evaluate the majority voting rule used in [61], or even the average rule as used
in [174] with ResNet CNNs.

Furthermore, we believe that we should adopt the same metrics as the one used by the majority of
BreakHis related works and authors of this dataset themselves: Image Level Accuracy (ILA) in or-
der to evaluate our ideal model hypothesis and guarantee a fair comparison to other related works.
Moreover, and to allow a possible comparison with all other reformulations for this problem, the ideal
model should be evaluated in all classification tasks including the binary, malignant multi-category
and benign multi-category classifications.

3.4 Summary and ideal model

• Summary After presenting lessons learnt from all these works, we discussed and analysed their
various approaches and findings. Our analysis of all DL models, pre- and post-processing meth-
ods and the comparison between the four different reformulations present in the literature, led
us to conclude the following points:

– A multi-category classification system with a binary classification ability trained in a
magnification-independent way would be the most adequate reformulation for BreakHis
problem form a practical as well as a clinical standpoint.

In the second stage, we elaborated a comparison between all pre and post-processing approaches
reported in the literature with more focus on deep learning based ones in order to find out what
would be the most suitable methods, models, and learning approaches to fit our concluded best
reformulation for this problem. After these comparisons, our proposed hypothesises to build an
ideal model for this problem are the following:

– Deep learning models would be more adequate for this problem than traditional hand-
crafted based models.

– Among all used deep learning models, CNNs would be more adequate for this problem.
– Among all used CNN models, a ResNet trained in an end-to-end manner without prior

features extractor or post-classifier would be the ideal choice for this problem.
– A transfer learning approach would be of high interest for training a CNN with this small

dataset.
– As a transfer learning approach with a pre-trained CNN, fine-tuning use would be better

than features extraction use.
– For fine-tuning, it would be better to adopt a dual-stage fine-tuning, by firstly retraining

the last layers only before retraining the whole network in a second stage.
– Providing the used CNN with whole slide images(WSIs) would be better than adopting a

patch-based approach.
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– Applying a constraint on features distance such as the one used in [67] during the CNN
training could help us ease the similarity issue between different sub-categories.

– Ensemble learning would be of high interest in this problem.
– As an ensemble learning approach, we could merge decisions made by all ResNet variants

that proved to be the more efficients when used alone in this task (ResNet-50, ResNet-101
and ResNet-152).

– As preprocessing methods, the ideal combination would be image resizing, stain normal-
ization and data augmentation.

– For image resizing, it would be better to resize the images to fit the CNN’s input layer.
– For stain normalization, a deep learning GAN based method such as StainGAN would be a

better choice than classical methods.
– For data augmentation, a promising combination would be random rotation with random

flipping.
– To tackle data imbalance issue, data augmentation would be better applied with a data

balancing purpose between different sub-categories.

• Ideal model These comparisons and their conclusions when merged together allowed us to
formulate a global hypothesis. This hypothesis is a proposition of what would be an ideal model
to build a CAD system for BreakHis or even for similar breast cancer datasets. A summary of
the proposed ideal model with the adopted DL model, data pre- and post-processing approaches
is presented in the figure 3.1.
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Figure 3.1: The proposed framework for the ideal model hypothesis

3.5 Ideal model evaluation and learnt lessons

To our knowledge, our work is the first one in the literature to analyze the magnification-independent
multi-category (MIM) classification on BreakHis dataset. In this section, we evaluate experimentally
the designed ideal model for this task and report the learnt lessons. The structure of this experimental
study is presented as follows:

• Section 3.5.1 presents the used experimental protocol, then report the achieved results

• Section 3.5.2 summarizes the lessons learnt from this experimental study

3.5.1 Experimental results

In this part we explored the proposed ideal MIM approach using DL. In addition, we analyzed the
impact brought by data augmentation and stain normalization as preprocessing techniques and fine-

72



Classification task Fine-tuning stage The ideal model
Without DA and SN

The ideal model
With DA(Rot,Flip)

The ideal model
With DA(Rot,Flip) and SN(Macenko) The ideal model

Binary last layers 78.1 ± 2.5 80.3 ± 3.0 75.0 ± 1.3 76.3 ± 0.7
last layers then all layers 83.5 ± 1.5 88.1 ± 2.1 87.2 ± 1.4 88.9 ± 2.588.9 ± 2.588.9 ± 2.5

Malignant
multi-category

last layers 62.3 ± 1.5 61.2 ± 2.0 60.1 ± 1.2 60.31.3
last layers then all layers 57.4 ± 2.0 60.1 ± 1.7 56.0 ± 2.3 63.6 ± 2.263.6 ± 2.263.6 ± 2.2

Benign
Multi-category

last layers 33.8 ± 1.9 38.4 ± 2.3 35.0 ± 2.4 37.2 ± 1.5
last layers then all layers 47.6 ± 1.6 52.7 ± 2.352.7 ± 2.352.7 ± 2.3 39.0 ± 1.5 41.3 ± 0.9

Table 3.1: Results of each task of the proposed MIM ideal model at ILA.

tuning different layers of the used CNN. We believe that this formulation reflects more the pathologists
workflow that analyzes the exact sub-category to decide the corresponding treatment for their patients.
To train our model we used a magnification-independent approach, and for each one we used five
trials with different folds, where each fold consists of 70% of BreakHis images as a training set and
30% for test. For each trial, we followed the major constraint adopted by BreakHis authors in MSB
which guarantee that patients who were used for training were not reused during the test phase. This
proposed model has been designed based on comparison and analysis of different works reported in
the literature. In fact, this experimental study will evaluate the efficiency of the chosen DL models,
the proposed pre- and post-processing methods and explore their coherency with the suggested ideal
reformulation for this problem.
Recall that our MIM system is able to perform a binary classification (benign or malignant) as well as
a multi-category classification for each one of these two main malignancy classes. Thus, we evaluated
our proposed ideal model results according to each one of these three classification tasks and reported
their performance in Table 3.1. Results are presented according to the classification accuracy mean
value and standard deviation at image level (ILA) over five trials. These results are also organized at the
preprocessing level to explore the improvement brought by stain normalization and data augmentation
methods. Furthermore, we present the performance of our model at each stage of the adopted fine-
tuning strategy.
In general, we can see that results of the binary classification task are very competitive when com-
pared to those reported within the MIB reformulation in table 2.5, especially those using the same
data partition protocol (70%,30%) [14, 61]. However, results for the MIM tasks achieved low accuracy
in the malignant sub-classes classification and even lower in the benign sub-classes classification. In
addition, at the binary classification and malignant multi-category classification tasks, our proposed
data augmentation and stain normalization approaches achieved better results than other standard data
augmentation or stain normalization methods. On the other side, we observed that in the majority of
cases adopting a two-stages fine tuning approach has been always better than fine tuning only the last
layers of the adopted CNN.

3.5.2 learnt lessons

As it can be seen from this experimental study, the MIM classification accuracy is very low in compar-
ison to the MSM counterpart. This could be explained by the following reasons:

• Learning the differences between the eight subcategories regardless of their magnification levels
is much harder for the CNN, especially for the benign sub-categories (minority sub-classes) even
after data balancing.

• The irregularities generated by the optical microscopic magnifications used to collect BreakHis
data. When a ROI in a breast tissue is magnified optically, some new morphological components
appears as long as we dive deeper into the tissue. In other words, it remains very hard for a CNN
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to learn the most representative features when the same sub-class contains images at different
levels with different morphological structures.

Given the current BreakHis structure and characteristics, the most reasonable approach is MSM as it
maintains the same clinical value as MIM, while it scarifies only its practical counterpart. Otherwise,
to achieve good results with the MIM approach itself, several solutions must be explored such as data
fusion at the same magnification levels between BreakHis and other available histopathological breast
cancer datasets. However, since these datasets have different labeling purposes, this data fusion needs
more adaptation efforts especially in terms of expert annotation.

3.6 Conclusion

The proposed model in this chapter is the product of the comparison and analysis of different BreakHis
related works in terms of the adopted reformulation and all used classification techniques. From a prac-
tical and medical point of view, our study concluded that in a real clinical routine, a CAD system based
on the MIM reformulation is the best approach for this problem. To establish the ideal model for this
problem that will correspond to the MIM reformulation, we merged the best performing DL approach
at both pre- and post-processing. Our expectations were that such a sophisticated combination will
outperform the state-of-the-art results in this problem. However, after the experimental evaluation of
this hypothesis, we wind up with a limited accuracy for the three classification tasks in this problem.
The most reasonable explanation for this outcome is that given the current state and organisation of
BreakHis dataset, building such an automatic system using the best CNN configuration does not lead
to an acceptable accuracy yet. For instance, we could consider that MSM is the closest reformulation to
MIM from a clinical standpoint that fits the actual BreakHis composition. Whereas, for an MIM based
model, more labeling effort are still required and would be of high interest if established on similar
datasets such as Bioimaging and MITOSATYPIA with the aim to meet BreakHis structure under a data
fusion scenario. This point brings us back to the main hypothesis of this thesis and make us wonder
either a well designed DL model is immune to any data related issue and can perform efficiently in
every scenario. Here, in the case of BreakHis dataset, we can see clearly that even the best combi-
nation of DL at pre- and post-processing phases can not be as good as we expect for a new problem
that is different than the dataset main objective. Thus, we can conclude from this analysis that the
dataset quality remains the most important key in allowing a DL model to either perform well or not.
Another conclusion that we deduced from this study is: the fact that BreakHis has been mainly built
for MSB classification constitutes a limitation for us when we want to use this dataset for other classifi-
cation tasks. In fact, this observation comes from the good performance achieved by BreakHis in MSB
classification with many DL models and preprocessing techniques. This point can be reformulated as
follow: Besides its data quality, BreakHis data structure and the goal that it was originally built for,
affect DL models performance when trying to address a new classification problem. To overcome these
limitations, in the next chapter of this thesis, we will create our own dataset where we have control
on the annotation quality and the classification structure and make sure that it would be suitable to
be used with DL models. The perfect scenario in this thesis would have been to create our own breast
cancer dataset but this task is very difficult and requires a huge medical expertise as it is the case in the
creation of any other biomedical images dataset. Therefore, the dataset we will create will also contain
images, but this time we will be tackling another complex application of DL which is satellite images
classification; which will allow us to continue the evaluation and analysis of our hypothesis but in a
new different scenario.
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CHAPTER 4

Sentinel2GlobalLULC: A deep-learning-ready
Sentinel-2 RGB image dataset for global land

use/cover mapping
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This chapter is submitted as a manuscript under review in Scientific Data-Nature Publishing Group ,
and published as a preprint in BioRxiv [16].

4.1 Introduction and motivation

L et us first give a detailed introduction to the main topic of the present chapter: Land-Use and
Land-Cover (LULC) mapping is relevant for many applications, from climate modelling to terri-

torial, agricultural and urban planning. Global LULC products are continuously developing as remote
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sensing data and related methods grow. However, there is still a very low consistency among LULC
products due to low accuracy for some regions of the world and several LULC types. In this chapter, we
introduce Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the consensus of 15 global
LULC maps available in Google Earth Engine (GEE). Sentinel2GlobalLULC v1.1 contains 195572 RGB
images organized into 29 global LULC mapping classes. Each image has 224 × 224 pixels at 10 × 10
m spatial resolution each, and was built as a cloud-free composite from all Sentinel-2 images acquired
between June 2015 and October 2020. Each image has a unique LULC type annotation, a level of con-
sensus and its name contains the reverse geo-referencing information, and the corresponding global
human modification index. Sentinel2GlobalLULC was optimized to be used with the state-of-the-art
DL models with the aim of building precise and robust global or regional LULC maps. The creation
of this dataset as we announced in the conclusion of the last chapter will help us to answer the ques-
tion related to either the data structure and the classification task that it was originally built for, affect
also DL models performance or not. In this new setting we will have a total control on the annota-
tion quality and the classification structure to ensure that this dataset will be suitable to be used with
DL models to solve this specific problem which is LULC mapping. In this chapter, we introduce Sen-
tinel2GlobalLULC dataset, explain the used methodology to built it in details and report the results of
its technical validation. Sentinel2GlobalLULC dataset and its corresponding metadata are stored in the
following Zenodo repository(DOI:10.5281/zenodo.5055632).

4.2 Background & Summary

Land-Use and Land-Cover mapping aims to comprise the continuous biophysical properties of the
Earth surface into synthetic categorical classes of natural or human origin, such as forests, shrublands,
grasslands, marshlands, croplands, urban areas or water bodies [40]. High resolution LULC mapping
plays a key role in many fields, from natural resources monitoring, to biodiversity conservation, urban
planning, agricultural management or climate and earth system modelling [115, 140, 190]. Multiple
LULC products have been derived using satellite information at the global scale (Table 4.2), contributing
to a better monitoring and understanding of our planet [37, 139].
However, despite the acceptable accuracy of each individual product, a considerable disagreement
between products has been reported [11,29,74,105,114,118,142,156,173,183–185,190,195,197,208,211].
There are several methodological reasons behind this problem:

• Different satellite sensors with different spatial resolutions were used in each product, so the
difference in precision from coarse to fine resolution partially determines the final quality of
each product.

• Different preprocessing techniques, like atmospheric corrections, cloud removal and image com-
position were used in each LULC product.

• Each LULC product has a different temporal updating rate, some are regularly updated, whereas
others have never been updated.

• Different classification techniques, field-data collection approaches and subjective interpreta-
tions were used to create each product.

• Different classification systems (LULC legends) were adopted in each product, usually focused
on distinct applications.

• Different validation techniques and different ground truth reference data were used in each prod-
uct, which impedes a reliable accuracy comparison.
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Over the last few years, several attempts have been made to overcome these inconsistencies with
a harmonised approach capable of providing greater control in the validation and comparison over
the growing number of existing LULC products [51, 104]. Even though, users still have some issues
regarding appropriate product selection due to the following factors:

• In most cases, users are unable to find a product that fits their desired LULC class or geographic
region of interest [54, 198].

• These products are usually collected at a coarse resolution, which makes analysis at a finer scale
difficult [185].

• These products offers a limited number of LULC classes that usually change from one product
to another [48].

In parallel, Deep artificial neural networks, also known as Deep learning (DL), are increasingly used in
LULC mapping with promising potential [214]. This interest is motivated by the good performance of
DL models in computer vision and, particularly of Convolutional Neural Networks (CNNs) in remote
sensing image classification and many applications [15, 107, 131, 143, 159]. However, to reach high
performance, DL models need to be trained on large smart datasets [205]. The concept of smart data
involves all preprocessing methods that improve value and veracity of the data in addition to the quality
of the associated expert annotations [106].

Dataset Source Source mapping
type

Number of
images Image Size Spatial

Resolution
No.

Bands
No.

Classes Extent

ISPRS Vaihingen
( [146]) - Airborne 33 im 2000 x 2000 0.09 3 6 Local

ISPRS Postdam
( [146]) - Airborne 38 im 6000 x 6000 0.09 3 6 Local

Brazilian coffee
scenes
( [135])

SPOT-5 Spaceborne 50,004 im 64 x 64 10 3 3 Local

SAT-4
( [13]) NAIP program Airborne 500,000 im 28 x 28 1 4 4 Local

SAT-6
( [13]) NAIP program Airborne 405,000 im 28 x 28 1 4 6 Local

UCMerced
( [200]) OPLS Airborne 2100 im 256 x 256 0.3 4 21 Local

Zeebruges
(link) LiDAR Airborne 100,000 im 10 x 10 0.05 3 8 Local

WHU-RS19
( [34]) Google Earth Airborne 1005 im 600 x 600 Up to 0.5 3 19 Local

SIRI-WHU
( [207]) Google Earth Airborne 2.240 im 200 x 200 2 3 12 Local

RSSCN7
( [215]) Google Earth Airborne 2800 im 400 x 400 - 3 7 Local

RSC11
(link) Google Earth Airborne 1232 im 512 x 512 0.2 3 11 Local

NWPU-RESISC45
( [29]) - - 31,500 im 256 x 256 3̃0-0.2 3 45 Local

AID
( [196]) Google Earth Airborne 10,000 im 600 x 600 8̃-0.5 3 30 Local

BigEarthNet
( [173]) Sentinel-2 Satellite 590,326 img. - - - - 10 European countries

SpaceNet-7
( [187])

Dove Satellite
Constellation
Planet Labs’

Satellite img. - - - - 100 cities

Table 4.1: List of existing Land-Use and Land-Cover (LULC) datasets ready for training Deep Learning
(DL) models.
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Currently, there exist several remote sensing datasets derived from satellite and aerial imagery ready
for training DL models for LULC mapping (Table 4.1). However, they still suffer from some limitations,
particularly to be used with DL models:

• None of them represent the global heterogeneity of the broad categories of LULC classes through-
out the Earth. Usually, they are biased towards specific regions of the world, limited to national
or continental scales, which can propagate such bias to the DL models [56, 126, 199]. As illus-
tration, the reader can see how visual features of urban areas may change from one country to
another (Figure 4.1).

• They are relatively small and have only hundreds to few thousands of annotated data records
[73].

• They suffer from high variability in atmospheric conditions, and they have high inter-class sim-
ilarity and intra-class variability, which makes class differentiation difficult [73, 73].

Italy Japan Mexico Nigeria USA

Figure 4.1: Illustration from different countries of the Sentinel-2 satellite images corresponding to
one of the 29 Land-Use and Land-Cover (LULC) classes (e.g. Urban and built-up area) extracted from
Sentinel2GlobalLULC dataset. Each image has 224 × 224 pixels of 10 × 10 m resolution. Pixel values
were calculated as the 25th-percentile of all images captured between June 2015 and October 2020 that
were not tagged as cloudy. Fifteen LULC products available in GEE agreed in annotating each image
to represent one LULC class

To overcome these limitations, we introduce in this thesis Sentinel2GlobalLULC, a smart dataset with
29 fully annotated LULC classes at global scale built with Sentinel-2 RGB imagery. Every image in
this dataset is geo-referenced and labeled with its corresponding LULC annotation. Each image label
was carefully built from a consensus approach of up to 15 global LULC maps available on GEE [59].
We released a Tagged Image File (tif) and jpeg version of each image. Moreover, we attached to these
images, a Comma-separated values (CSV) file for each LULC class containing the coordinates of each
image center, and additional metadata. Sentinel2GlobalLULC could be used to train and/or evaluate DL
based models for global LULC mapping. Sentinel2GlobalLULC aims to foster the creation of accurate
global LULC products exploiting the advantages that currently offer deep learning models. We expect
this dataset to improve our understanding and modelling of natural and human systems around the
world.

4.3 Methods

To build Sentinel2GlobalLULC, we followed two main steps. First, we established a spatial consensus
between 15 global LULC products for 29 LULC classes. Then, for each class, we carefully extracted
the maximum possible number of Sentinel-2 RGB images in 224 × 224 pixel tiles at 10 m/pixel spatial
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resolution. Both tasks were implemented using GEE, an efficient programming, processing and visu-
alisation platform that allowed us to have free manipulation and access to all used LULC products and
Sentinel-2 imagery, simultaneously.

4.3.1 Finding spatio-temporal agreement across 15 global LULC products

To establish the spatio-temporal consensus between different LULC products for each one of the 29
LULC classes, we followed four steps: 1) identification of the LULC products to use for the consensus,
2) standardization and harmonization of the LULC legend that was subsequently used as annotation,
3) spatio-temporal aggregation across selected LULC products, and 4) spatial reprojection and tile se-
lection based on optimized spatial purity thresholds.

4.3.1.1 Global LULC products selection

To find areas of high consensus in their LULC mapping, we selected the 15 global LULC products avail-
able in GEE (Table 4.2). Reaching consensus across such rich diversity of LULC products, in terms of
spatial resolution, time coverage, satellite source, LULC classes and accuracy, made our LULC anno-
tation robust. This way, each image was annotated with a LULC class only if all combined products
agreed (i.e., 100% of agreement in space and time). For some LULC classes, we had to decrease the
purity threshold to reach a large number of samples. The purity level is always provided as metadata
for each image (details in the subsection Re-projection and Selection of purity threshold).

LULC product Satellite or Spaceborne Resolution Used years Reference
P1: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type1: Annual International Geosphere-Biosphere
Programme (IGBP) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 [172]

P2: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 2: Annual University of Maryland (UMD) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 [172]

P3: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 3: Annual Leaf Area Index (LAI) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 [172]

P4: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 4: Annual BIOME-Biogeochemical Cycles (BGC) classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 [172]

P5: MCD12Q1.006 MODIS LULC
Type Yearly Global 500m
LULC Type 5: Annual Plant Functional Types classification (version 6)

Aqua, Terra 500 meters 2017 to 2019 [172]

P6: Copernicus Global LULC Layers: CGLS-LC100 collection 3 (version 3.0.1) PROBA-V 100 meters 2017 to 2019 [22]
P7: Global Forest Cover Change (GFCC) Tree Cover Multi-Year Global 30m (version 3.0) Multi-satellite 30 meters 2015 [152]
P8: GlobCover: Global LULC Map (version 2.0) ENVISAT 300 meters 2009 ESA 2010 and UCLouvain
P9: GFSAD1000: Cropland Extent 1km Multi-Study Crop Mask,
Global Food-Support Analysis Data (version 0.1) Multi-satellite 1000 meters 2010 [179]

P10: Global PALSAR-2/PALSAR Forest/Non-Forest Map (version fnf) ALOS, ALOS 2 25 meters 2017 [158]
P11: Hansen Global Forest Change (version 1.7) Landsat 8 1 arc seconds 2000 to 2019 [68]
P12: Global Forest Canopy Height (version 2005) Lidar 30 arc seconds 2005 [160]
P13: JRC Yearly Water Classification History (version 1.2) Landsat (5,7,8) 30 meters 2017 to 2019 [134]
P14: JRC Global Surface Water Mapping Layers (version 1.2) Landsat(5,7,8) 30 meters 1984 to 2019 [134]
P15: Tsinghua FROM-GLC year of change to impervious surface(version 10) Landsat 30 meters 1985 to 2019 [57]

Table 4.2: Main characteristics of the 15 global Land-Use and Land-Cover (LULC) products available in
GEE that were combined to find consensus in the global distribution of 29 main LULC classes

4.3.1.2 Standardization and Harmonization of LULC legends

Land cover (LC) data describes the main type of natural ecosystem that occupies an area; either by
vegetation types such as shrublands, grasslands and forests, or by other biophysical classes such as
permanent snow, bare land and water bodies. Land use (LU) includes the way in which people modify
or exploit an area, such as in urban areas or agricultural fields.
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To build our 29 LULC classes nomenclature, we established a standardization and harmonization ap-
proach based on expert knowledge. During this process we took into account the needs of different
practitioners in the LULC mapping field and the thematic resolution of the global LULC legends avail-
able in GEE. Hence, our nomenclature consists of 23 LC and 6 LU distinct classes interoperable through
a set of criteria across 15 LULC products specified in our consensus rules (Table 4.3). A six-level (L0 to
L5) hierarchical structure was adopted in the creation of these 29 LULC classes (Figure 4.2).
The LC part contains 20 terrestrial ecosystems and three aquatic ecosystems. The terrestrial systems
are: Barren lands, Grasslands, Permanent snow, Moss and Lichen lands, Close Shrublands, Open Shrub-
lands, in addition to 12 Forests classes that differed in their tree cover, phenology, and leaf type. The
aquatic classes are: Marine water bodies, Continental water bodies, and Wetlands; furthermore, wet-
lands are divided into three classes: Marshlands, Mangroves and Swamps. The LU part is composed of
urban areas and five coarse cropland types that differed in their irrigation regime and leaf type.
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Figure 4.2: Tree representation of the six-level (L0 to L5) hierarchical structure of the Land-Use and
Land-Cover (LULC) classes contained in the Sentinel2GlobalLULC dataset. Outter circular leafs rep-
resent the final or most detailed 29 LULC classes of level L5. The followed path to define each class
is represented through inner ellipses that contain the names of intermediate classes at different levels
between the division of the Earth’s surface (square) into LU and LC (level L0) and the final class circle
(level L5). All LULC classes belong to three levels at least, except the 12 forest classes that belong to
L5 only.

4.3.1.3 Combining products across time and space

For each one of the 29 LULC classes, we combined in space and time the global LULC information
among the 15 GEE LULC products. For each product and LULC type, we first set one or more criteria
to create a global mask at the native resolution of the product in which each pixel was classified as
0 or 1 depending on whether it met the criteria for belonging to that LULC type or not, respectively
(see first stage in Table 4.3). Then (see second stage in Table 4.4), for each LULC type, we calculated
the average of all the masks obtained from each product to create a final global probability map at the
finest resolution from all products with values ranging between 0 and 1. Value 1 meant that all products
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
C1 16 15 NA 7 11 60 TCC < 10 200 0 2 (TC < 10) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH < 1 1 ∪ 0 0 Not(≥ 1)
C2 16 15 NA 7 11 NA TCC < 10 200 ∪ 150 0 2 (TC < 10) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH < 1 1 ∪ 0 0 Not(≥ 1)
C3 10 10 1 6 6 30 TCC < 10 140 NA 2 (TC < 10) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH < 2 1 ∪ 0 0 Not(≥ 1)
C4 7 7 2 NA 5 20 ∩ (10 < SCF < 50) TCC < 10 150 0 2 (TC < 10) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH < 2 1 ∪ 0 0 Not(≥ 1)
C5 6 6 2 NA 5 20 ∩ (SCF > 50) TCC < 10 130 0 2 (TC < 10) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH < 2 1 ∪ 0 0 Not(≥ 1)
C6 NA NA NA 4 4 4 + (15 < TCF < 30) 15 < TCC < 30 60 NA 1 (15 < TC < 30) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C7 NA NA NA 4 4 4 + (40 < TCF < 60) 40 < TCC < 60 50 NA 1 (40 < TC < 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C8 4 4 6 4 4 4 + (TCF > 60) TCC > 60 50 NA 1 (TC > 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C9 NA NA NA 3 3 3 + (15 < TCF < 30) 15 < TCC < 30 NA NA 1 (15 < TC < 30) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C10 NA NA NA 3 3 3 + (40 < TCF < 60) 40 < TCC < 60 NA NA 1 (40 < TC < 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C11 3 3 8 3 3 3 + (TCF > 60) TCC > 60 NA NA 1 (TC > 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C12 NA NA NA 2 2 2 + (15 < TCF < 30) 15 < TCC < 30 40 NA 1 (15 < TC < 30) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C13 NA NA NA 2 2 2 + (40 < TCF < 60) 40 < TCC < 60 40 NA 1 (40 < TC < 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C14 2 2 5 2 2 2 + (TCF > 60) TCC > 60 40 NA 1 (TC > 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C15 9 9 NA 1 1 1 + (15 < TCF < 30) 15 < TCC < 30 90 NA 1 (15 < TC < 30) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C16 8 8 4 1 1 1 + (40 < TCF < 60) 40 < TCC < 60 70 NA 1 (40 < TC < 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C17 1 1 7 1 1 1 + (TCF > 60) TCC > 60 70 NA 1 (TC > 60) ∩ (G = 0) ∩ (L = 0) ∩ (D ̸= 2) TH > 2 1 ∪ 0 0 Not(≥ 1)
C18 11 11 NA NA NA 90 TCC > 10 170 NA NA (TC > 10) ∩ (G = 0) ∩ (L = 0) ∪ (D = 2) TH > 2 2 ∪ 3 1 Not(≥ 1)

C19 11 11 NA NA NA 90 TCC > 10 a.160 ∪ 180
b.Not(170) NA NA (TC > 10) ∩ (G = 0) ∩ (L = 0) ∪ (D = 2) TH > 2 2 ∪ 3 1 Not(≥ 1)

C20 11 11 NA NA NA 90 TCC < 10 160 ∪ 170
∪180 NA NA (TC < 10) ∩ (G = 0) ∩ (L = 0) ∪ (D = 2) TH < 2 2 ∪ 3 1 Not(≥ 1)

C21 17 0 0 0 0 200 NA 210 NA 3 NA NA 3 1 Not(≥ 1)
C22 17 0 0 0 0 80 NA 210 NA 3 NA NA 3 1 Not(≥ 1)
C23 15 NA NA NA 10 70 NA 220 NA NA NA NA 1 ∪ 0 0 Not(≥ 1)

C24 12 12 3 ∪ 1 5 ∪ 6 7 ∪ 8 40 NA 11 ∪ 14 1 ∪ 2 ∪ 3
∪4 ∪ 5 NA NA NA 2 ∪ 3 0 ∪ 4∪

∪8 ∪ 10 Not(≥ 1)

C25 12 12 1 6 7 40 NA 11 1 ∪ 2 NA NA NA 1 ∪ 0 0 Not(≥ 1)
C26 12 12 1 6 7 40 NA 14 3 ∪ 4 ∪ 5 NA NA NA 1 ∪ 0 0 Not(≥ 1)
C27 12 12 3 5 8 40 NA 11 1 ∪ 2 NA NA NA 1 ∪ 0 0 Not(≥ 1)
C28 12 12 3 5 8 40 NA 14 3 ∪ 4 ∪ 5 NA NA NA 1 ∪ 0 0 Not(≥ 1)
C29 13 13 10 8 9 50 NA 190 NA NA NA NA 1 ∪ 0 0 NU

Table 4.3: First stage of the rule set criteria used to find consensus across the 15 Land-Use and
Land-Cover (LULC) products available in GEE for each of the 29 LULC classes contained in the Sen-
tinel2GlobalLULC dataset. P1 to P15: product 1 to 15. C1 to C29: class 1 to class 29. For each product,
one or multiple criteria were established to create a global probability map (pixel values 0 or 1) for
a given LULC class. A total number of 15x29 = 435 of global probability maps were calculated. The
numbers in each column (i.e., from 0 to 220) correspond to the pixel values from each product band.
NU: Not Used, NA: Not Available, TC: Tree Cover, G: Tree Gain, L: Tree Loss, D: Datamask, TH: Tree
Hight, TCC: Tree Canopy Cover, TCF: Tree-Cover Fraction, and SCF: Shrub-Cover Fraction. ∩:”AND”,
∪:”OR” , +:”ADD”.

agreed to assign that pixel to a particular class and value 0 meant that none of the products assigned
it to that particular class (Figure 4.3). These 0-to-1 values are interpreted as the spatio-temporal purity
level of each pixel to belong to a particular LULC class.
As an example of the first stage (see details in Table 4.3), to specify if a given pixel belongs to a dense,
evergreen or needleleaf forest, we evaluated its tree cover level using ”≤” and ”≥”, while for bands
containing the leaf type information, we used the equal operator ”=”. For the spatio-temporal combi-
nation of multiple criteria we have used the following operators: ”AND”,”OR” and ”ADD”. For example,
we combined the tree cover percentage criteria with the leaf type criteria using ”AND” in order to se-
lect forest pixels that meets both conditions. To combine many years instances of the same product we
used ”ADD”, except for product P13 where we used ”AND” to select permanent water areas. Whenever
we used the ”ADD” operator, we normalized pixel values afterwards to bring it back to a probability
interval between 0 and 1 using the division by the total number of combined years or criteria.
In the second stage (see details in Table 4.4), we combined for each LULC class, the 15 global probability
maps resulted from the previous stage to create a final global probability map. This combination was
carried out using various operators such as ”ADD”, ”MULTIPLY” and ”OR”, depending on the LULC
type. When ”ADD” was used, the final pixel values were normalized by dividing the final addition value
of each pixel by the total number of added products. The ”MULTIPLY” operator was mostly used at the
end, to remove urban areas from non-urban LULC classes, or to remove water from non-water systems.
The multiplication operator was also adopted to make sure that a certain criteria was respected in the
final probability map. For instance, for the swamp class, we multiplied all pixels in the final stage by a
water mask where saline water areas have a value of 0 in order to eliminate mangroves from swamp

82



pixels and vice versa. Finally, we used ”OR” operator between different water related products in order
to take advantage of the fact that each one complements the other in terms of spatial coverage and
accuracy.

Figure 4.3: Example of the process of building the final global probability map for one of the 29 Land-
Use and Land-Cover (LULC) classes (e.g. C1: ”Barren”) by means of spatio-temporal agreement of
the 15 LULC products available in GEE. The final map is normalized to values between 0 (white, i.e.,
areas with no presence of C1 in any product) and 1 (black spots, i.e., areas containing or compatible
with the presence of C1 in all 15 products), whereas the shades of grey corresponds to the values in
between (i.e., areas that did not contain or were not compatible with the presence of C1 in some of the
products). This process is divided into two stages: the first stage (the blue part, see details in Table 4.3)
and the second stage (the yellow part, see details in Table 4.4). LULC products available for several
years are represented with superposed rectangles, while single year products are represented with
single rectangles. GMP: global probability map, NA: Not Available.

4.3.1.4 Re-projection and Selection of purity threshold

After the consensus assessment, the 29 final probability maps maintained the spatial resolution of the
last aggregated LULC product, i.e., the water product at 30m/pixel. Since our objective was finding
pure tiles of 224 × 224 10-m pixels (i.e. Sentinel-2 pixels) for each LULC class, we reprojected the 30
m/pixel probability maps to 2240 m/pixel by using the spatial mean reducer in GEE.
For each one of the reprojected maps, we defined a pixel value threshold to decide whether a given
2240 × 2240 m tile was representative of each LULC class or not. If the number of available pure
tiles (i.e., pixel value = 1) was too small for one class, we decreased the threshold for purity level for
that class until getting a large enough number of tiles (the purity level is always provided as metadata
for each tile). On the other hand, when the number of pure tiles for a LULC class was too large, (i.e.,
greater than 14000), we applied a stratified selection to download a maximum of 14000 images. This
selection was carried out through an automatic maximum geographic distance algorithm to guarantee
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Class ID LULC class Spatial Combination
C1 Barren lands Norm(Add(P1:P12)*P13*P14*P15)
C2 Moss and Lichen lands Norm(Add(P1:P12)*P13*P14*P15)
C3 Grasslands Norm(Add(P1:P12)*P13*P14*P15)
C4 Open Shrublands Norm(Add(P1:P12)*P13*P14*P15)
C5 Close Shrublands Norm(Add(P1:P12)*P13*P14*P15)
C6 Open Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C7 Close Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C8 Dense Deciduous Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C9 Open Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C10 Close Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C11 Dense Deciduous Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C12 Open Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C13 Close Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C14 Dense Evergreen Broadleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C15 Open Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C16 Close Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C17 Dense Evergreen Needleleaf Forests Norm(Add(P1:P12)*P13*P14*P15)
C18 Mangrove Wetlands Norm(Add(P1:P7,P9:P14)*P8*P15)
C19 Swamp Wetlands Norm(Add(P1:P7,a.P8,P9:P14)*b.P8*P15)
C20 Marshland Wetlands Norm(Add(P1:P6,P8:P10,P13,P14)*(P11 OR P12 OR P7)*P15)
C21 Marine Water Bodies Norm(Add(P1:P12)*P13*P14*P15)
C22 Continental Water Bodies Norm(Add(P1:P12)*P13*P14*P15)
C23 Permanent Snow Norm(Add(P1:P12)*P13*P14*P15)
C24 Croplands Flooded with seasonal water Norm(Add(P1:P12)*(P13 OR P14)*P15)
C25 Cereal Irrigated Cropland Norm(Add(P1:P12)*P13*P14*P15)
C26 Cereal Rainfed Cropland Norm(Add(P1:P12)*P13*P14*P15)
C27 Irrigated Broadleaf Cropland Norm(Add(P1:P12)*P13*P14*P15)
C28 Rainfed Broadleaf Cropland Norm(Add(P1:P12)*P13*P14*P15)
C29 Urban and built-up areas Norm(Add(P1:P12)*P13*P14*P15)

Table 4.4: Second stage of the rule set criteria used to find consensus across the 15 Land-Use and
Land-Cover (LULC) products available in GEE for each of the 29 LULC classes contained in the Sen-
tinel2GlobalLULC dataset. P1 to P15: product 1 to 15. C1 to C29: class 1 to class 29. For each LULC
class, the 15 global probability maps (with pixel values 0 or 1) obtained in the first stage from products
P1 to P15 were spatially combined to build 29 final global probability maps (with pixel values 0 to 1),
one for each LULC class (C1 to C29). ”Add”:ADD, ”*”:MULTIPLY, ”Norm”: the normalization using
division by number of used products
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LCLU Class Consensus probability values (%) Number of selected images Stratified selection0.75 (75%) 0.80 (80%) 0.85 (85%) 0.90 (90%) 0.95 (95%) 1.00 (100%)
Urban 63953 - 34102 21814 12590 192 12590 no
Barren 4330418 - 4055836 3876467 3545756 2668009 14000 (2668009) yes

Moss and Lichen 59120 - 18438 4669 1158 0 4669 no
Close Shrublands 41407 12502 1872 226 16 0 12502 no
Open Shrublands 2461415 - 1209375 644272 101288 805 14000 (101288) yes

Marshland 4205 - 675 143 15 0 4205 no
Swamp 489 - 4 0 0 0 489 no

Mangrove 425 - 63 3 0 0 425 no
Grassland 4022949 - 1894337 943177 128263 8895 8895 no

Rainfed Broadleaf Cropland 427314 - 209143 99337 32123 416 416 no
Irrigated Broadleaf Cropland 224867 - 92488 53064 30691 354 354 no

Cereal Rainfed Cropland 1185497 - 604459 284914 91147 1022 1022 no
Cereal Irrigated Cropland 517789 - 167994 52959 23555 842 842 no
Cropland Seasonal Water 6048 - 3192 2008 995 15 2008 no

Dense Evergreen Needleleaf Forest 474138 - 178293 66151 13995 0 13995 no
Close Evergreen Needleleaf Forest 43040 3875 69 0 0 0 3875 no
Open Evergreen Needleleaf Forest 17462 3939 331 0 0 0 3939 no
Dense Evergreen Broadleaf Forest 2131269 - 1829897 1594657 1232914 144026 14000 (144026) yes
Close Evergreen Broadleaf Forest 12512 1270 77 1 0 0 1270 no
Open Evergreen Broadleaf Forest 574 42 0 0 0 0 574 no

Dense Deciduous Needleleaf Forest 60866 - 12954 2888 148 0 2888 no
Close Deciduous Needleleaf Forest 42166 6383 35 0 0 0 6383 no
Open Deciduous Needleleaf Forest 10439 23 0 0 0 0 10439 no
Dense Deciduous Broadleaf Forest 399264 - 176176 97182 31284 1 14000 (31284) yes
Close Deciduous Broadleaf Forest 71127 - 1353 23 1 0 1353 no
Open Deciduous Broadleaf Forest 25342 4439 466 2 0 0 4439 no

Permanent Snow 1065127 - 1033466 1013490 984014 877232 14000 (877232) yes
Continental Water Bodies 3543953 - 3199652 343779 318483 265214 14000 (265214) yes

Marine Water Bodies 3606955 - 3357810 2903459 2822544 2577444 14000 (2577444) yes

Table 4.5: Summary of the varying number of found and eventually selected Sentinel-2 image tiles
of 224 × 224 pixels depending on the different consensus level reached across the 15 Land-Use and
Land-Cover (LULC) products available in GEE for each of the 29 LULC classes contained in the Sen-
tinel2GlobalLULC dataset. LULC classes that due to the too large number of samples had to undergo a
stratified selection by maximizing geographical distance among samples are highlighted in bold.

that selected images were as geographically far from each other as possible. In Table 4.5, we present
the number of tiles we found and downloaded for each LULC class using thresholds ranging from 0.75
to 1. We illustrated the reprojection and selection processes in Figure 4.4.

4.3.2 Data Extraction

Sentinel2GlobalLULC provides the user with two types of data: CSV files and Sentinel-2 RGB images.
In the following subsections, we first present the additional gHM index attached to these both data
types, then the adopted methods to generate each one of them.

4.3.2.1 Global human modification (gHM) values extraction

As an additional metadata related to the level of human influence in each image, we calculated for each
tile the spatial mean of the global human modification (gHM) index for terrestrial lands [90], where 0
means no human modification and 1 means complete transformation. Since the original gHM product
was mapped at 1×1 km resolution, we reprojected it to 2240×2240 m using the same procedure than
explained for the LULC consensus masks.

4.3.2.2 Comma-separated values (CSV) files generation

Once we identified tiles to be selected for each LULC class, we have grouped their center coordinates
into a CSV file each. Tiles were organized giving their probability values in an descendant order. Each
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row in the CSV file corresponds to a selected tile in that class. In fact, these CSV files contains the
geographical center point coordinates, the pixel purity value, the name of the attributed LULC class in
addition to the extracted gHM value for that tile. Then, we used the geographical coordinates of each
tile to identify its exact administrative address geolocation. To implement this reverse geo-referencing
operation, we used a free request-unlimited python module called reverse geocoder. This method has
allowed us to identify the country code, the administrative department at two levels and the locality
of each tile in the CSV files. This way, we integrated in all LULC classes CSV files these reverse geo-
referencing information as new columns.
For LULC class that has more than 14000 pure tiles, we have released the coordinates before and after
the stratified selection in case the user was interested in all tiles and not only the exported ones. These
coordinates could allow the end user to download new images if needed.

4.3.2.3 Sentinel-2 RGB images exportation

After extracting all these pieces of information and grouping them into CSV files, we went back to the
geographic center coordinates of each tile and used them to extract the corresponding 224 × 224 pixel
Sentinel-2 RGB tiles using GEE. Each exported image was identical to the 2240 × 2240 m area covered
by its Sentinel-2 tile.
We chose ”Sentinel-2 MSI (Multi-Spectral Instrument) product” since it is free and publicly available
in GEE at the fine resolution of 10 × 10 m. We chose ”Level-1C” since it provides the longest data
availability of Sentinel-2 images. To build RGB images, we extracted the three bands B4, B3 and B2
that correspond to Red, Green and Blue channels, respectively.
To minimize the effect of atmospheric effects on the RGB images, such as clouds, aerosols, smoke,
etc., every image was built from the 25th-percentile aggregation of its corresponding image collection
gathered by Sentinel-2 satellites between June 2015 and October 2020. In addition, we previously
discarded all pixels where the maximum cloud probability exceeded 20% according to the metadata
provided in the Sentinel-2 collection.
Usually, Sentinel-2 MSI product includes true colour images in JPEG2000 format, except for the ”Level-
1C” collection used here. The three original bands (B4, B3, and B2) required a saturation stretching
of their reflectance values into 0-255 RGB digital values. Thus, we stretched the saturation reflectance
of 3558 into 255 to obtaine true RGB channels with digital values between 0 and 255. The choice of
these mapping numbers was taken from the Sentinel-2 true colour image recommendations section of
Sentinel user guidelines. Finally, after exporting the selected tiles for each LULC class as ”.tif” images,
we converted them into ”.jpeg” format using a lossless conversion algorithm.

4.3.3 Technical implementation

To implement all our methodology steps, we first created a javascript in GEE for each LULC class. Each
script is a multi-task javascript where we implemented a switch command to control which task we
want to execute. In each one of these scripts, we selected from GEE LULC datasets repository the 15
LULC products used to build the consensus of that LULC class. Each script was responsible of elaborat-
ing the spatio-temporal combination of the selected products and generating the final consensus map
for that LULC class as described in the subsection Combining products across time and space. Then,
it exports the final global probability map as an asset into GEE server storage to make its reprojection
faster. In the same script, once the consensus map exportation was done, we imported it from the GEE
assets storage and reprojected it to 2240 × 2240 m resolution; then, we exported the new reprojected
map into GEE assets storage again to make its analysis and processing faster. Afterwards, we imported
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the reprojected map into the same script and apply different processing tasks. During this processing
phase, many purity threshold values were evaluated. Then, we elaborated in this same script the pure
tiles identification and their center coordinates exportation into a CSV file. A distinct GEE script was
developed to import, reproject and export the global gHM map. The resulted gHM map was saved as
an asset, then imported and used in each one of the 29 LULC multi-task scripts.
A python script was developed separately to read the exported CSV files for each LULC class and apply
the reverse geo-referencing on their pure tiles coordinates then add the found geolocalization data
(country code, locality…etc) to the original CSV files as new columns. Then, another python script was
implemented to read the new resulted CSV files with all their added columns (reverse geo-referencing
data, gHM data) and use the center coordinates of each pure tile in that class to export its corresponding
Sentinel-2 satellite tif image within GEE through the python API. Finally, after downloading all the
exported tif images from our Google drive, we created another python script to convert the exported
tif images into JPEG format.

4.4 Data Records

Sentinel2GlobalLULC dataset is stored in the following Zenodo reposi-
tory(DOI:10.5281/zenodo.5055632). This dataset consists of three zip compressed folders:

• Sentinel-2 GeoTiff images folder: This folder contains the exported Sentinel-2 RGB images for
each LULC class grouped into sub-folders named according to each LULC class. Each image has
a filename with the following structure: ”LULC class ID LULC class short name Pixel probabil-
ity value Image ID GHM value Latitude Longitude Country code Administrative department
level1 Administrative department level2 Locality”. Pixel probability value can be interpreted as
the spatial purity of the image to represent that LULC class and was calculated as the spatial
mean of all the pixels of the final probability maps contained in each image tile, reprojected and
expressed as a percentage. Short names for all classes were derived from the original ones in a
way to have exactly 13 characters each, and IDs for different classes were assigned randomly.
This information for each class is explained in Table 4.6.

• Sentinel-2 JPEG images folder: This folder contains the same images as in the GeoTiff folder,
but converted into ”.jpeg” format while preserving the same nomenclature and organization. In
Figure 4.5, we illustrate a sample of each one of the 29 classes images in JPEG format.

• CSV files folder: For user convenience, the metadata of every image tile (i.e., the same informa-
tion already contained in the image filenames) is also provided in CSV format. Image tiles in the
CSV files are organized from the highest to the lowest consensus probability value. These CSV
files have 11 columns: ID of LULC Class, Short name of LULC Class, ID Image, Pixel Probability
Value as percentage, GHM Value, Center Latitude, Center Longitude, Country Code, Administa-
tive Departement Level 1, Administative Departement Level 2, Locality.
For too large LULC classes (i.e., with more than 14000 potential samples) that had to undergo a
stratified selection, we provide the user with 2 CSV files: one containing all pure tiles coordi-
nates without geo-referencing columns, and another file just containing the 14000 exported tiles
coordinates with their geo-referencing information.
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LCLU Class Short name Class ID

Urban UrbanBlUpArea 29
Barren BarrenLands 1

Moss and Lichen MossAndLichen 2
Close Shrublands SrublandClose 5
Open Shrublands ShrublandOpen 4

Marshland WetlandMarshl 20
Swamp WetlandSwamps 19

Mangrove WetlandMangro 18
Grassland Grasslands 3

Rainfed Broadleaf Cropland CropBroadRain 28
Irrigated Broadleaf Cropland CropBroadIrri 27

Cereal Rainfed Cropland CropCereaRain 26
Cereal Irrigated Cropland CropCereaIrri 25
Cropland Seasonal Water CropSeasWater 24

Dense Evergreen Needleleaf Forest ForestsDeEvNe 17
Close Evergreen Needleleaf Forest ForestsClEvNe 16
Open Evergreen Needleleaf Forest ForestsOpEvNe 15
Dense Evergreen Broadleaf Forest ForestsDeEvBr 14
Close Evergreen Broadleaf Forest ForestsClEvBr 13
Open Evergreen Broadleaf Forest ForestsOpEvBr 12

Dense Deciduous Needleleaf Forest ForestsDeDeNe 11
Close Deciduous Needleleaf Forest ForestsClDeNe 10
Open Deciduous Needleleaf Forest ForestsOpDeNe 9
Dense Deciduous Broadleaf Forest ForestsDeDeBr 8
Close Deciduous Broadleaf Forest ForestsClDeBr 7
Open Deciduous Broadleaf Forest ForestsOpDeBr 6

Permanent Snow PermanentSnow 23
Continental Water Bodies WaterBodyCont 22

Marine Water Bodies WaterBodyMari 21

Table 4.6: Dictionary to map each Land-Use and Land-Cover (LULC) class to its corresponding short
name and ID in the Sentinel2GlobalLULC dataset
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L0 F1 L1 F1 L2 F1 L3 F1 L4 F1 L5 F1

Land Cover 0.99

Terrestrial Lands 1.00

BarrenLands 0.97 BarrenLands 0.97 BarrenLands 0.97 BarrenLands 0.97
MossAndLichen NA MossAndLichen NA MossAndLichen NA MossAndLichen NA
Grasslands 0.75 Grasslands 0.75 Grasslands 0.75 Grasslands 0.75

Shrubland 0.89 ShrublandOpen 0.76 ShrublandOpen 0.76 ShrublandOpen 0.76
SrublandClose 0.97 SrublandClose 0.97 SrublandClose 0.97

Forests 1.00

ForestsDe 1.00

ForestsDeBr 1.00
ForestsOpDeBr 0.82
ForestsCIDeBr 0.89
ForestsDeDeBr 0.96

ForestsDeNe 1.00
ForestsOpDeNe 0.92
ForestsCIDeNe 0.88
ForestsDeDeNe 0.95

ForestsEv 0.99

ForestsEvBr 0.99
ForestsOpEvBr 0.70
ForestsCIEvBr 0.72
ForestsDeEvBr 0.91

ForestsEvNe 1.00
ForestsOpEvNe 0.82
ForestsCIEvNe 0.88
ForestsDeEvNe 0.99

PermanentSnow 1.00 PermanentSnow 1.00 PermanentSnow 1.00 PermanentSnow 1.00

Aquatic Lands 0.98
Wetland 0.96

WetlandMangro 0.96 WetlandMangro 0.96 WetlandMangro 0.96
WetlandSwamps 0.99 WetlandSwamps 0.99 WetlandSwamps 0.99
WetlandMarshl 0.94 WetlandMarshl 0.94 WetlandMarshl 0.94

WaterBody 0.99 WaterBodyMari 0.95 WaterBodyMari 0.95 WaterBodyMari 0.95
WaterBodyCont 0.93 WaterBodyCont 0.93 WaterBodyCont 0.93

Land Use 0.98 Croplands 0.98

CropSeasWater 0.93 CropSeasWater 0.93 CropSeasWater 0.93 CropSeasWater 0.93

CropCerea 0.99 CropCereaIrri 1.00 CropCereaIrri 1.00 CropCereaIrri 1.00
CropCereaRain 0.98 CropCereaRain 0.98 CropCereaRain 0.98

CropBroad 0.99 CropBroadIrri 1.00 CropBroadIrri 1.00 CropBroadIrri 1.00
CropBroadRain 0.99 CropBroadRain 0.99 CropBroadRain 0.99

UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99 UrbanBlUpArea 0.99
Mean 0.99 0.98 0.95 0.95 0.95 0.91

Table 4.7: Results of the validation procedure of the representativeness of the images contained in the
Sentinel2GlobalLULC dataset for each Land-Use and Land-Cover (LULC) class at different levels of the
hierarchical legend (from L0 to L5). Accuracy is expressed as the mean F1 score (i.e., a balance between
precision and recall) for each LULC class at each level, rounded to two decimal values.

4.5 Technical Validation

To assess the quality of the Sentinel2GlobalLULC dataset in terms of its representativity of each LULC
class and of image quality, two of the coauthors visually inspected very high resolution imagery
(Google Earth and Bing Maps) of a random sample of each class. The validation process was estab-
lished in three stages:

• First, for each LULC class, we selected 100 samples to visually verify their LULC annotation. To
maximize the global representativity of the validated samples, the selection of these 100 samples
was carried out by maximizing the geographical distance among all samples using an add-hoc
script in R. In Figure4.6, we present the distribution map of the 100 samples selected for each
LULC class.

• Second, each one of the selected samples was visually inspected in Google Earth and Bing Maps
by two of the co-authors (E.G. and D.A-S.) to independently assign it to one of the 29 LULC
classes. These two experts assigned each sample to a LULC class when it occupied more than
70% of the image tile.

• Third, the confusion matrix for this validation was calculated at six different levels of our LULC
classification hierarchy (from L0 to L5 as presented in Figure4.2). In Table4.7, we summarized
the obtained F1 scores at each level.
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The obtained mean F1 scores ranged from 0.99 at level L0 to 0.91 at level L5 (Table4.7). Such decrease
in accuracy as the number of classes increased from level L0 to level L5 was mainly due to the hard dis-
tinction between forest types at L5 and the complexity of visual features in Grasslands and Shrublands
classes from level L2.

4.6 Usage Notes and code availability

To make the Sentinel2GlobalLULC dataset easier to use, reproduce, and exploit and to promote its usage
with DL models, we have provided users with a python code to load all RGB images and train several
Convolutional Neural Networks (CNNs) models on them using different learning hyper-parameters.
Knowing that most CNN frameworks admit only jpeg or png images formats, we provided a python
script to convert ”.tif” into ”.jpeg” format with a full control on the conversion quality and the choice
of images to convert. Moreover, as for some LULC classes we limited the number of exported images
to 14000, we have provided a python script that can help the user to export more Sentinel-2 images of
these classes if needed, using the coordinates stored in the CSV files.
In addition, to provide a global insight about the consistency and accuracy of the global distribution
of these 29 LULC classes, we also publicly shared the final reprojected global consensus maps for each
class as GEE assets. To help the user to visualize the global distribution of each LULC class, we have
provided a GEE script with the assets links to choose, import, manipulate, and visualize any LULC
class map. Image exportation is also possible through python API for GEE and we gave the user a
complete control on the number of tiles to export, the time interval to select for image collections,
the cloud removal parameters, the true RGB colors calibration, and the Google drive account where to
store the exported images. The user should be aware that GEE imposes a limited request number with
a maximum of 3000 exportation tasks to run simultaneously on the same Google account.
All used scripts to implement our dataset and links to the GEE stored assets are available in the fol-
lowing Github repository (DOI:10.5281/zenodo.5638409) with guidelines stored in a README file ex-
plaining all instructions about their execution.

4.7 Conclusion

In this chapter, we have created a new free, smart and global LULC mapping dataset called Sen-
tinel2GlobalLULC. This dataset will help researchers in the creation of accurate global LULC products
by using DL models and techniques. We expect this dataset to improve our understanding and mod-
elling of natural and human systems around the world. On the other side, in the context of this thesis,
all the used methodology to create Sentinel2GlobalLULC as a high quality dataset constitutes in itself
the preprocessing that will prepare the data to be used with DL models. In fact, after evaluating DL
performance on an already available dataset in another complex problem which is breast cancer based
CAD systems; this dataset that we have created will allow us to establish a different analysis of our
hypothesis but under a new scenario. In this scenario we have our own dataset that we made deep-
learning-ready as much as possible with all the preprocessing methods and preparation techniques
used during its creation. Another important point that will be addressed with this dataset is to verify
either the data structure and the classification task that it was originally built for, affect DL models
performance or not. In the next chapter, we will analyze the performance of multiple DL models on
Sentinel2GlobalLULC dataset for the complex problem of LULC classification at the global scale.
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Figure 4.4: Example of the workflow to obtain a Sentinel-2 image tile of 2240×2240 m for one of the 29
Land-Use and Land-Cover (LULC) classes (e.g. C1: ”Barren”). The process starts with the reprojected
final global probability map obtained from stage two (Table 4.4) and ends with its exportation to the
repository of a Sentinel-2 image tile of 224 × 224 pixels. The white rectangle is the only one having
a probability value of 1 (Recall that the purity threshold used for Barren was 1, i.e., 100%). The black
pixels has a null probability value, while the probability values between 0 and 1 are represented in gray
scale levels.

91



1 BarrenLands 2 MossAndLichen 3 Grasslands 4 ShrublandOpen 5 SrublandClose

6 ForestsOpDeBr 7 ForestsClDeBr 8 ForestsDeDeBr 9 ForestsOpDeNe 10 ForestsClDeNe

11 ForestsDeDeNe 12 ForestsOpEvBr 13 ForestsClEvBr 14 ForestsDeEvBr 15 ForestsOpEvNe

16 ForestsClEvNe 17 ForestsDeEvNe 18 WetlandMangro 19 WetlandSwamps 20 WetlandMarshl

21 WaterBodyMari 22 WaterBodyCont 23 PermanentSnow 24 CropSeasWater 25 CropCereaIrri

26 CropCereaRain 27 CropBroadIrri 28 CropBroadRain 29 UrbanBlUpArea

Figure 4.5: Samples of images for each one of the 29 Land-Use and Land-Cover (LULC) classes contained
in the Sentinel2GlobalLULC dataset
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Figure 4.6: Global distribution of the selected 100 images for each Land-Use and Land-Cover (LULC)
class to perform the validation of the 29 LULC classes contained in the Sentinel2GlobalLULC dataset.
An add-hoc script in R was used to maximize the geographical distance among the 100 points of each
class.
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CHAPTER 5

A first study exploring the performance of deep
learning CNNs in Sentinel2GlobalLULC

classification for global land use/cover mapping
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This chapter is to be submitted as a paper to a Q1 journal.

5.1 Introduction and motivation

L et us first give a detailed introduction to the main topic of the present chapter. As we introduced in
the last chapter remote sensing data and especially data related to LULC mapping of our planet

is continuously growing in parallel to new methods and models to exploit all these data. Now that
all these ingredients are available, the research community is trying to build more robust automatic
LULC mapping systems using new high performance DL models. In fact, the choice of DL comes from
the outstanding results achieved by the latter in most computer vision tasks and especially in image
classification; in addition to the fact the current abundance in remote sensing images. Particularly,
Sentinel2LULC which to our knowledge is the largest, free, global and high resolution RGB images
dataset. All these characteristics represents a real source gold for DL models. Hence, in this chapter
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we will explore for the first time: the performance of our deep-learning-ready Sentinel2LULC dataset
using various CNN models with the aim to build a robust global LULC mapping model. During this
first analysis we will not apply any additional preprocessing methods, and this assuming that all the
preprocessing that our dataset has undergone during its creation to make it a high quality product is
sufficient for DL models training. The exploitation of various CNN models and the analysis of their
results allowed us to expose all learnt lessons and conclusions that would serve to establish our future
works and improve the achieved results. In the first part of this chapter, we will report related works
that tried to build an automatic LULC mapping system using other remote sensing datasets. Then,
we will present the used methodology in our DL analysis in conjunction with Sentinel2LULC dataset.
Afterwards, we will expose the achieved results of this experimental study along with a geographic
representation and analysis of these results. Finally, we will present what has been concluded from
this study.

5.2 Related works

According to the Food and Agriculture Organisation (FAO) Land mapping in earth observation is di-
vided into two main categories: land cover and land use [170]. Land cover is the biophysical cover
on Earth’s surface, whereas land use represents the way Earth’s surface is exploited, maintained or
changed by humans. Land use and land cover are strongly related, and their joint classification is al-
most inevitable. For this reason, in most related works as it is the case in our dataset, land use and
land cover (LULC) classification is considered as a whole and not separated concepts. The differences
in related works consist more in their geographic coverage as being global or local, their classification
schema that represent the number of considred LULC classes, the used data type and the adopted DL
models. To summarize all these researches, in this section we will report all DL based LULC map-
ping related works in regards to all these specifications. In fact, The number of papers dealing with
DL applications into land cover and land use classification is doubling each year since 2015, and for
a complete overview we recommend the reader to consult the following paper summarizing all these
studies [186].
Firstly, authors in [111] explored the performance of an ImageNet pre-trained CNN with an aerial UC
Merced dataset for LULC mapping. This study focused more on the evaluation of different scenarios
for the CNN fine-tuning and the importance of the pre-trained features from ImageNet in this task.
Regarding the CNN model choice, they opted for Overfeat which is an improved version of AlexNet.
Whereas, in [206], the authors evaluated the performance of a novel CNN model called ASPP-Unet
and ResASPP-Unet in urban land use classification over the city of Beijing in China. In fact, these
models were built from the well known U-Net by integrating the ASPP approach to the latter. To reach
their objective, they trained these CNNs from scratch and tested them on WorldView-2 (WV2) and
WorldView-3 (WV3) imagery over the area of interest. Then, authors in [73], explored the problem of
automatic LULC mapping using DL in conjunction with five different LULC mapping datasets including
a new one that they proposed in their study. this new dataset they proposed consists of 10 various
classes with a total of 27,000 labeled Sentinel-2 satellite images. As a DL evaluation they explored the
performance of two different CNNs (ResNet-50 and GoogLeNet). To our knowledge, the only work that
proposed a global LULC map is [88]. The study in this work was based on a novel and large dataset of
24,000 5km x 5km sentinel-2 image at 1Om resolution that were hand labeled giving ten classes (water,
trees, grass, flooded, vegetation, crops, scrub/shrub, built area, bare ground, snow/ice, and clouds).
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Related work Evaluated dataset Source Nbr classes Total Nbr Images Geographic scale Evaluated DL models Pretrained on Best results (%)
[72] Eurosat Sentinel-2 10 27000 Local GoogLeNet and ResNet-50 ImageNet 98.57 (ResNet-50)

[72] UC Merced Land Use USGS National
Geospatial Program 21 21000 Local GoogLeNet and ResNet-51 ImageNet 97.32 (GoogLeNet)

[72] AID Multi-source
(Google Earth Imagery) 30 10000 Local (Limited

number of countries) GoogLeNet and ResNet-52 ImageNet 94.38 (ResNet-50)

[72] SAT-6 NAIP National Agriculture
Imagery Program 6 450000 Local GoogLeNet and ResNet-53 ImageNet 99.56 (ResNet-50)

[72] BCS Spot sensor 2 37015 Local (Limited
number of countries) GoogLeNet and ResNet-54 ImageNet 93.57 (ResNet-50)

[111] UC Merced Land Use Arial 21 2100 Local Overfeat(AlexNet) ImageNet 92.4
[206] WorldView2 imagery and WorldView3 imagery Maxar 6 NA Local New developped models(ASPP-Unet and ResASPP-Unet) None ResASPP-Unet: 87.1(WV2) 84(WV3)
[88] private dataset Sentinel-2 10 24000 Global UNet None 85

5.3 Methodology

In this section, we present the adopted methodology to explore the performance of 12 different CNNs
trained on a subset of our Sentinel2LULC dataset. The used methodology is composed of three
main steps: First, we will describe the characteristics of the new balanced subset selected from Sen-
tinel2LULC and the motivation behind this selection. Second, we will present the used CNN models
and describe the followed experimental setup to train them on Sentinel2LULC images.

5.3.1 Sentinel2GlobalLULC subset selection

In general, a skewed data distribution arises naturally in many applications where some class occurs
with reduced frequency in comparison to the other classes. Particularly, in such a complex and global
setting, as in Sentinel2GlobalLULC dataset, the global distribution varies from one LULC class to an-
other. This fact makes that Sentinel2LULC with 29 LULC classes is inherently unbalanced and the
number of images in LULC classes varies from few hundreds to several thousands depending on the
abundance of each class around the world. Many studies in the literature explored the impact of class
imbalance on the outcome performance. Notably, in [86], the authors have found that the classifier
sensitivity to the data imbalance increases as the problem complexity increases. Hence, giving the
complexity of our classification problem, we know that this class unbalance could seriously affect the
performance of the evaluated classifier on our dataset. Therefore, we elaborated a downsampling ap-
proach with a data balancing algorithm that selects 354 images from each LULC class. In fact, this
number equals exactly the number of images contained in the smallest LULC class. The adopted se-
lection algorithm was based on the center coordinates (longitude and latitude) of each image and it
uses them to guarantee an evenly distributed and large geographic representation for each LULC class.
In summary, the created subset after this selection winded up having 10.266 images carefully selected
from Sentinel2LULC and distributed into 29 LULC classes where each class has exactly 354 images
carefully annotated and well distributed around the world.

5.3.2 Deep learning models training

After building the new subset containing 10.266 images carefully extracted from the original Sen-
tinel2LULC, we trained 12 different CNNs on the resulted subset of Sentinel2LULC dataset. All analyzed
CNNs were fine tuned on our Sentinel2LULC subset using their pre-trained version on ImageNet. No
preprocessing methods were performed. The used subset was split into a training set of 70% and a test
set of 30% evenly distributed on all LULC classes. All CNNs were trained using a batchsize = 8 and a
learningrate = 0.03 during 100 epochs. We have used the following 12 different CNN models:

• InceptionV3

• VGG16

• VGG19
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• ResNet50

• Xception

• InceptionResNetV2

• MobileNet

• DenseNet121

• DenseNet169

• DenseNet201

• NASNetLarge

• NASNetMobile

5.4 Experimental results

5.4.1 Overall accuracy results

In this subsection, we will present the results achieved by each one of the 12 evaluated CNNs. Therefore,
we will explore for each CNN, the overall accuracy which is calculated in the following manner:

Overall accuracy = Correctly classified test images for all LULC classes
All images in the test set
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Trained CNN Overall Accuracy (%)
InceptionV3 68.28875281985176
VGG16 63.55140186915887
VGG19 56.07476635514018
ResNet50 19.497260715436673
Xception 72.60715436674187
InceptionResNetV2 72.51047373509507
MobileNet 75,70093457943925
DenseNet121 82.53303254914599
DenseNet169 82.04962939091202
DenseNet201 80.59941991621012
NASNetLarge 75.81647530259264
NASNetMobile 73.25169191105382

As you can see in the table above, the three DenseNet CNNs variants (DenseNet121, DenseNet169,
DenseNet201) were the only ones to exceed 80% in the overall accuracy. Thus in the following subsec-
tions, we will focus on highlighting their results in more details.

5.4.2 Exploration in details of the three best performing CNNs

In this subsection, we will focus and expose in detail the results achieved by the three DenseNet variants
(DenseNet121, DenseNet169, DenseNet201) that were the only CNNs among the 12 explored ones to
achieve an overall accuracy higher than 80%. Therefore, we will present for each one of the three CNNs
regrading each LULC class: the number of True Positive (TP), the number of False Negative (FN), the
number of True Negative (TN), the number of False Positive (FP). In fact, computing these numbers for
each LULC class will help us find the reached Accuracy(%), Recall(%), Precision(%) and F1-score(%) for
each one of the 29 LULC classes.
These used metrics were calculated in the following manner:

For each LULC class C:

TP = the number of correctly classified images as C
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TN = the number of correctly classified images as other LULC class while they belong to C

FN = the number of misclassified images as other LULC class while they belong to C

FP = the number of misclassified images as C while they belong to other LULC classes

Accuracy = (TP + TN)
(TP + FP + FN + TN)

Precision = (TP )
(TP + FP )

Recall = TP

TP + FN

F1score = 2 × Recall × Precision
Recall + Precision

As we can see in the results presented in the tables below (Table5.1, Table5.2, Table5.3), for the
three DensNet models (DenseNet121, DenseNet169, DenseNet201), most LULC classes achieved an
F1-score higher than 80% except (WetlandMarshl, WaterBodyCont, ForestsOpEvNe, CropCereaR-
ain, ForestsClEvNe) for DenseNet121, these classes (WetlandMarshl, WaterBodyCont, Forest-
sOpEvNe, CropCereaRain, ForestsClEvBr, ForestsClEvNe) for DenseNet169 and the following classes
(WetlandMarshl, ForestsOpDeBr, ForestsOpEvNe, ForestsDeDeNe, ForestsOpDeNe, WaterBodyMari,
CropCereaRain, ForestsClEvBr, ForestsClDeNe, ForestsClEvNe) for DenseNet201. These LULC classes
in each CNN model are the ones who has achieved the lowest accuracy too and by consequence Den-
sNet201 who has 10 classes with an F1-score below 80% was the one with the lowest overall accuracy.
From these results, we can also notice that there are three LULC classes (WetlandMarshl, CropCereaR-
ain, ForestsClEvNe) that were difficult to classify correctly for all the evaluated DensNet variants. In
fact, we believe that these three classes has a larger geographic distribution which induce a high vari-
ability in the visual features of their images and by consequence they are more difficult to detect for
the trained CNNs. A proposition that we will explore in future works to overcome issues related to
these three classes and improve our CNN accuracy: is to elaborate an additional preprocessing step to
reduce their data variability and normalize their visual characteristics.
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5.4.2.1 Exploration in details of DenseNet121 results

LULC Class F1-score TP FP TN FN Accuracy Recall Precision
Class 18 WetlandMangro 92.82297 194 10 2986 20 99.06542 90.65421 95.09804
Class 12 ForestsOpEvBr 88.37209 190 26 2970 24 98.44237 88.78505 87.96296
Class 23 PermanentSnow 98.8345 212 3 2993 2 99.84424 99.06542 98.60465
Class 20 WetlandMarshl 69.97389 134 35 2961 80 96.41745 62.61682 79.28994
Class 8 ForestsDeDeBr 90.16787 188 15 2981 26 98.72274 87.85047 92.61084
Class 4 ShrublandOpen 91.78744 190 10 2986 24 98.94081 88.78505 95
Class 22 WaterBodyCont 79.38144 154 20 2976 60 97.50779 71.96262 88.50575
Class 6 ForestsOpDeBr 86.95652 180 20 2976 34 98.31776 84.11215 90
Class 5 SrublandClose 89.85507 186 14 2982 28 98.69159 86.91589 93
Class 2 MossAndLichen 95.962 202 5 2991 12 99.4704 94.39252 97.58454
Class 15 ForestsOpEvNe 77.19298 154 31 2965 60 97.16511 71.96262 83.24324
Class 11 ForestsDeDeNe 80.59701 162 26 2970 52 97.57009 75.70093 86.17021
Class 9 ForestsOpDeNe 82.35294 168 26 2970 46 97.75701 78.50467 86.59794
Class 21 WaterBodyMari 83.29298 172 27 2969 42 97.85047 80.37383 86.43216
Class 25 CropCereaIrri 85.85859 170 12 2984 44 98.25545 79.43925 93.40659
Class 17 ForestsDeEvNe 78.125 150 20 2976 64 97.38318 70.09346 88.23529
Class 24 CropSeasWater 86.33094 180 23 2973 34 98.2243 84.11215 88.66995
Class 27 CropBroadIrri 91.74312 200 22 2974 14 98.8785 93.45794 90.09009
Class 26 CropCereaRain 79.60199 160 28 2968 54 97.44548 74.76636 85.10638
Class 13 ForestsClEvBr 80.59701 162 26 2970 52 97.57009 75.70093 86.17021
Class 14 ForestsDeEvBr 96.71362 206 6 2990 8 99.56386 96.26168 97.16981
Class 28 CropBroadRain 86.91358 176 15 2981 38 98.34891 82.24299 92.1466
Class 10 ForestsClDeNe 80.59701 162 26 2970 52 97.57009 75.70093 86.17021
Class 1 BarrenLands 93.26923 194 8 2988 20 99.12773 90.65421 96.0396
Class 29 UrbanBlUpArea 98.82353 210 1 2995 4 99.84424 98.13084 99.52607
Class 7 ForestsClDeBr 87.65743 174 9 2987 40 98.47352 81.30841 95.08197
Class 16 ForestsClEvNe 73.09645 144 36 2960 70 96.69782 67.28972 80
Class 3 Grasslands 88.56448 182 15 2981 32 98.53583 85.04673 92.38579
Class 19 WetlandSwamps 83.90244 172 24 2972 42 97.94393 80.37383 87.7551

Table 5.1: Experimental results of DenseNet121 exposed in details
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5.4.2.2 Exploration in details of DenseNet169 results

LULC Class F1-score TP FP TN FN Accuracy Recall Precision
Class 18 WetlandMangro 89.95215 188 16 2980 26 98.69159 87.85047 92.15686
Class 12 ForestsOpEvBr 88.47059 188 23 2973 26 98.47352 87.85047 89.09953
Class 23 PermanentSnow 97.9021 210 5 2991 4 99.71963 98.13084 97.67442
Class 20 WetlandMarshl 67.88512 130 39 2957 84 96.16822 60.74766 76.92308
Class 8 ForestsDeDeBr 87.37864 180 18 2978 34 98.38006 84.11215 90.90909
Class 4 ShrublandOpen 91.56627 190 11 2985 24 98.90966 88.78505 94.52736
Class 22 WaterBodyCont 77.86667 146 15 2981 68 97.41433 68.2243 90.68323
Class 6 ForestsOpDeBr 82.93963 158 9 2987 56 97.97508 73.83178 94.61078
Class 5 SrublandClose 86.13861 174 16 2980 40 98.25545 81.30841 91.57895
Class 2 MossAndLichen 94.73684 198 6 2990 16 99.31464 92.52336 97.05882
Class 15 ForestsOpEvNe 74.80519 144 27 2969 70 96.97819 67.28972 84.21053
Class 11 ForestsDeDeNe 81.38958 164 25 2971 50 97.66355 76.63551 86.77249
Class 9 ForestsOpDeNe 82.17822 166 24 2972 48 97.75701 77.57009 87.36842
Class 21 WaterBodyMari 83.41232 176 32 2964 38 97.81931 82.24299 84.61538
Class 25 CropCereaIrri 88.66499 176 7 2989 38 98.59813 82.24299 96.17486
Class 17 ForestsDeEvNe 81.92771 170 31 2965 44 97.66355 79.43925 84.57711
Class 24 CropSeasWater 86.13861 174 16 2980 40 98.25545 81.30841 91.57895
Class 27 CropBroadIrri 88.78505 190 24 2972 24 98.50467 88.78505 88.78505
Class 26 CropCereaRain 75.91241 156 41 2955 58 96.91589 72.8972 79.18782
Class 13 ForestsClEvBr 78.78788 156 26 2970 58 97.38318 72.8972 85.71429
Class 14 ForestsDeEvBr 97.16981 206 4 2992 8 99.62617 96.26168 98.09524
Class 28 CropBroadRain 85.21303 170 15 2981 44 98.16199 79.43925 91.89189
Class 10 ForestsClDeNe 84.50704 180 32 2964 34 97.94393 84.11215 84.90566
Class 1 BarrenLands 92.23301 190 8 2988 24 99.00312 88.78505 95.9596
Class 29 UrbanBlUpArea 99.06542 212 2 2994 2 99.87539 99.06542 99.06542
Class 7 ForestsClDeBr 89.81481 194 24 2972 20 98.62928 90.65421 88.99083
Class 16 ForestsClEvNe 67.72487 128 36 2960 86 96.19938 59.81308 78.04878
Class 3 Grasslands 88.78049 182 14 2982 32 98.56698 85.04673 92.85714
Class 19 WetlandSwamps 85.64477 176 21 2975 38 98.16199 82.24299 89.3401

Table 5.2: Experimental results of DenseNet169 exposed in details
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5.4.2.3 Exploration in details of DenseNet201 results

LULC Class F1-score TP FP TN FN Accuracy Recall Precision
Class 18 WetlandMangro 91.80328 196 17 2979 18 98.90966 91.58879 92.01878
Class 12 ForestsOpEvBr 89.83452 190 19 2977 24 98.66044 88.78505 90.90909
Class 23 PermanentSnow 98.36066 210 3 2993 4 99.78193 98.13084 98.59155
Class 20 WetlandMarshl 67.92453 126 31 2965 88 96.29283 58.8785 80.25478
Class 8 ForestsDeDeBr 90.56604 192 18 2978 22 98.75389 89.71963 91.42857
Class 4 ShrublandOpen 92.82297 194 10 2986 20 99.06542 90.65421 95.09804
Class 22 WaterBodyCont 80.20305 158 22 2974 56 97.57009 73.83178 87.77778
Class 6 ForestsOpDeBr 79.59698 158 25 2971 56 97.47664 73.83178 86.3388
Class 5 SrublandClose 89.7561 184 12 2984 30 98.69159 85.98131 93.87755
Class 2 MossAndLichen 96.68246 204 4 2992 10 99.56386 95.3271 98.07692
Class 15 ForestsOpEvNe 74.4186 144 29 2967 70 96.91589 67.28972 83.23699
Class 11 ForestsDeDeNe 78.84615 164 38 2958 50 97.25857 76.63551 81.18812
Class 9 ForestsOpDeNe 79.03614 164 37 2959 50 97.28972 76.63551 81.59204
Class 21 WaterBodyMari 79.02439 162 34 2962 52 97.32087 75.70093 82.65306
Class 25 CropCereaIrri 86 172 14 2982 42 98.25545 80.37383 92.47312
Class 17 ForestsDeEvNe 83.90244 172 24 2972 42 97.94393 80.37383 87.7551
Class 24 CropSeasWater 85.08557 174 21 2975 40 98.09969 81.30841 89.23077
Class 27 CropBroadIrri 89.41176 190 21 2975 24 98.59813 88.78505 90.04739
Class 26 CropCereaRain 72.44094 138 29 2967 76 96.72897 64.48598 82.63473
Class 13 ForestsClEvBr 74.03599 144 31 2965 70 96.85358 67.28972 82.28571
Class 14 ForestsDeEvBr 97.65258 208 4 2992 6 99.68847 97.19626 98.11321
Class 28 CropBroadRain 82.494 172 31 2965 42 97.72586 80.37383 84.72906
Class 10 ForestsClDeNe 75.62189 152 36 2960 62 96.94704 71.02804 80.85106
Class 1 BarrenLands 94.45783 196 5 2991 18 99.28349 91.58879 97.51244
Class 29 UrbanBlUpArea 98.34515 208 1 2995 6 99.78193 97.19626 99.52153
Class 7 ForestsClDeBr 85.3598 172 17 2979 42 98.16199 80.37383 91.00529
Class 16 ForestsClEvNe 59.13043 102 29 2967 112 95.60748 47.66355 77.8626
Class 3 Grasslands 87.29017 182 21 2975 32 98.34891 85.04673 89.65517
Class 19 WetlandSwamps 83.95062 170 21 2975 44 97.97508 79.43925 89.00524

Table 5.3: Experimental results of DenseNet201 exposed in details

5.4.3 Geographic exploration of the best performing CNN

In this section, we will focus on the best performing CNN in our analysis which is DenseNet-121 and
highlight visually its results in a global map. This analysis helped us to have more insights on the
CNN behaviour from a visual standpoint and see how this CNN learns to classify each one of the
29 LULC classes according to the geographic distribution of their training and test data points. This
visualization was carried out using geographic coordinates of each data record in the training and test
sets. We presented the 29 figures of this elaborated analysis in the Appendix. Each one of the 29 figures,
represents the geographic distribution of the training and test images around the world for each one
of the 29 LULC classes, and for the test images we highlighted separately the correctly classified and
misclassified ones. In fact, the green points are training images used for that class, while pistachio green
and grey point correspond to the correctly classified and misclassified images respectively after test for
that LULC class. Each point in the maps was created using the center coordinates of its corresponding
image.
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As we can see in most LULC classes, the distribution of correctly classified points follows the training
one, and most correctly classified images are the one situated within the geographic cluster formed
by the training points in that LULC class. In fact most misclassified images are outliers situated away
or detached from the main training body. This observation allow us to establish a n idea about the
geographic behavior of the trained CNN. In fact, we can conclude that the geographic position of a
certain point is very deterministic in its classification and the explanation of this fact is that images
of the same LULC class that are geographically close to each others are more prone to have similar
visual features. Particularly, the geographic distribution in (WetlandMarshl, WaterBodyCont, Forest-
sOpEvNe, CropCereaRain, ForestsClEvNe) classes that causes the decrease in the overall accracy for
DenseNet121 CNN, containes various clusters; and this fact could be the hint behind their classifica-
tion results. Thus, a possible outlook for future improvement of the actual best analysed CNN model is
to apply a normalization preprocessing step to reduce data variability in these classes. Furthermore, a
training strategy that could help take this geographic distribution factor into consideration is to include
the center coordinates (longitude and latitude) of used images as additional input during the training
and the test phases of the CNN model in a multi-input training scenario.

5.5 Conclusion

In this chapter, we explored for the first time the performance of DL models on our dataset Sen-
tinel2GlobalLULC for global LULC mapping. In fact, we evaluated 12 different CNNs and reported
the overall accuracy reached in each one of them. Then, we presented the results of the three best
performing CNNs among them with more metrics and exposed the number of TP, FP, TN, FN in each
one to conclude the F1-score of these models regarding each LULC class. In this experimental, DensNet
variants (DenseNet121, DenseNet169, DenseNet201) have shown to be the most efficient as they were
the only ones that exceeded an overall accuracy of 80%. Afterwards, we dived deeper in the results of
the most efficient CNN of these three variants which is DenseNet121. In fact, we provided 29 figures
to vizualize the learning behaviour of this CNN for each LULC class. In each one of these figures we
represented the geographic distribution in the world map of the training images, the correctly classi-
fied and misclassified images in a given LULC class. This analysis has allowed us to examine the effect
of data variability in images from different locations in the world on the test results. We concluded
that a normalization preprocessing phase might bring an improvement to the classification accuracy
since most classes that caused a drop in accuracy are the one where training and test set are distributed
over different areas of the world. Another interesting conclusion that will be a part of our future work
regarding Sentinel2GlobalLULC dataset is the inclusion of each image coordinates (longitude and lat-
itude) as an additional input to train the used CNN for this complex task.
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CHAPTER 6

Conclusions & future works

T his thesis was devoted principally to evaluation our proposed data preprocessing approaches
with the aim to train DL models for two complex image classification tasks: biomedical images

classification for automatic breast cancer diagnosis and satellite images classification for global LULC
mapping.
In the first application, we started by elaborating an overview analysis of all related works to to the
benchmark dataset BreakHis. Then, we combined all learnt lessons from this analysis, to design an ideal
system for breast cancer automatic diagnosis from both clinical and technical standpoints. In fact, the
system we designed was built from the best reformulation for BreakHis dataset classification problem
in conjunction with the most adequate preprocessing methods, the best performing CNN in this task
and the appropriate learning strategies. After the experimental implementation of all these ingredients
together, we didn’t reach what we were hypothetically expecting from such a system that constitutes
a combination of the best performing methods and models in the literature at pre- and pos-processing
levels for this problem. We concluded from these results that the complexity of this problem is mostly
related to its data quality and annotation, and adopting such a dataset in a very complex classification
problem hugely affect the performance of the trained DL model even in a well built methodological
approach with very efficient data preprocessing techniques.
To avoid these data quality related issues, we built our own dataset in the second application of this
thesis. The latter consists in satellite images classification for global LULC mapping. The dataset we
created called Sentinel2LULC is the largest global high resolution and free satellite images dataset for
this purpose. During its creation we combined all global remote sensing data available in the literature
for this problem. We consider that the way Sentinel2LULC was created itself consists in the data
preprocessing and the contribution we brought to this problem as we were having during this process
a full control on the annotation quality and classification structure and we made sure that it is the most
suitable for DL models training. Then, we evaluated the potential of Sentinel2LULC for global LULC
mapping using various CNN models. The elaborated experimental analysis achieved very promising
results and confirmed the the high quality of our dataset.
These two applications explored in this thesis under different data quality circumstances has clearly
showed us that one should be aware of the most important point which is the data quality he uses and
its suitability for DL training when dealing with very complex CV tasks such as those addressed in this
thesis. In fact, the data itself, its quality and its characteristics remains the key element that decides
either the DL model will reach a good performance or not.
As future works, and based on the learnt lessons in this thesis, we will give below a list of possi-
ble extensions related to each application of this thesis that we will address within a Postdoctoral work:

104



The possible future work planned for the first application presented in chapters 2 and 3 would
be : After BreakHis analysis within the ideal reformulation for this problem MIM and after the
experimental evaluation of this reformulation using the most adequate DL models, pre- and post
processing methods; we have concluded that to achieve a good performance for MIM classification we
should have a better quality dataset made specially for this task. Thus, a very promising future work
in this research line would be to take all the necessary time, expenses and medical expertise to create
a new histopathological imagery dataset that will fit all these requirements to establish an ideal breast
cancer CAD system for this problem as we formulated in our analysis.

The possible future work planned for the second application presented in chapters 4 and 5 would be:
After the creation of the high quality Sentinel2GlobalLULC dataset and exploring its potential for the
first time in global LULC mapping using DL models, we deduced many promising future works. First,
we think that applying additional preprocessing phase like image normalization for samples collected
from different locations in the world might bring an improvement to the classification accuracy and
overcome the data variability issue. Second, since we have discovered that there is a possible correlation
between the geographic coordinates and the LULC class in the images of our dataset, an interesting
future work would be the inclusion of each image coordinates (longitude and latitude) as an additional
input to train DL models for this complex task.
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APPENDIX A

Annexe

A.1 Appendix: Geographic exploration of DenseNet-121 results on
Sentinel2LULC

This section is an appendix to Chapter 5. In this section we will vizualize results of DenseNet-121
in Sentinel2LULC classification in a global map. This visualization was carried out using geographic
coordinates of each data record in the training and test sets. Each one of the 29 figures presented
below represents the geographic distribution of the training, the correctly classified and misclassified
images for each one of the 29 LULC classes. Green points are training records used for that class, while
pistachio green and grey point correspond to correctly classified and misclassified images respectively.
Each point in the maps was created using the center coordinates of its corresponding image.
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Figure A.1: Geographic distribution of DenseNet-121 results of BarrenLands class
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Figure A.2: Geographic distribution of DenseNet-121 results of MossAndLichen class
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Figure A.3: Geographic distribution of DenseNet-121 results of Grasslands class
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Figure A.4: Geographic distribution of DenseNet-121 results of ShrublandOpen class
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Figure A.5: Geographic distribution of DenseNet-121 results of SrublandClose class
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Figure A.6: Geographic distribution of DenseNet-121 results of ForestsOpDeBr class
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Figure A.7: Geographic distribution of DenseNet-121 results of ForestsClDeBr class
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Figure A.8: Geographic distribution of DenseNet-121 results of ForestsDeDeBr class
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Figure A.9: Geographic distribution of DenseNet-121 results of ForestsOpDeNe class
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Figure A.10: Geographic distribution of DenseNet-121 results of ForestsClDeNe class
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Figure A.11: Geographic distribution of DenseNet-121 results of ForestsDeDeNe class
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Figure A.12: Geographic distribution of DenseNet-121 results of ForestsOpEvBr class
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Figure A.13: Geographic distribution of DenseNet-121 results of ForestsClEvBr class
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Figure A.14: Geographic distribution of DenseNet-121 results of ForestsDeEvBr class

121



Figure A.15: Geographic distribution of DenseNet-121 results of ForestsOpEvNe class
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Figure A.16: Geographic distribution of DenseNet-121 results of ForestsClEvNe class
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Figure A.17: Geographic distribution of DenseNet-121 results of ForestsDeEvNe class
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Figure A.18: Geographic distribution of DenseNet-121 results of WetlandMangro class
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Figure A.19: Geographic distribution of DenseNet-121 results of WetlandSwamps class
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Figure A.20: Geographic distribution of DenseNet-121 results of WetlandMarshl class
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Figure A.21: Geographic distribution of DenseNet-121 results of WaterBodyMari class
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Figure A.22: Geographic distribution of DenseNet-121 results of WaterBodyCont class
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Figure A.23: Geographic distribution of DenseNet-121 results of PermanentSnow class
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Figure A.24: Geographic distribution of DenseNet-121 results of CropSeasWater class
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Figure A.25: Geographic distribution of DenseNet-121 results of CropCereaIrri class
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Figure A.26: Geographic distribution of DenseNet-121 results of CropCereaRain class
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Figure A.27: Geographic distribution of DenseNet-121 results of CropBroadIrri class
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Figure A.28: Geographic distribution of DenseNet-121 results of CropBroadRain class
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Figure A.29: Geographic distribution of DenseNet-121 results of UrbanBlUpArea class
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