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V

«The Higgs mechanism is just a reincarnation of the Communist Party: it controls the masses [1].»

Lenin, apocryphal.
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Abstract

The Standard Model of Particle Physics is one of the most predictive and elegant theories
of the History of Physics. It explains what are the fundamental constituents of matter and how
they interact. This model has been tested in a wide variety of scenarios and essentially all the
experimental measurements seem to agree with its predictions.

However, in this framework the Higgs boson is an elementary particle. This makes the
size of its mass quite unnatural. The Higgs mass, not protected by any symmetry, receives
quadratically divergent contributions coming from arbitrarily large energies and thus there is
no reason that justifies why the Higgs boson should be light. This is the so called hierarchy
problem.

One of the most elegant proposals to face this problem consists of assuming that the Higgs
boson, rather than an elementary particle, is a composite state of unknown heavy fermions
bounded by a new strong interacting sector. This is motivated by the treatment of mesons in
Quantum Chromodynamics. As a consequence, at high energies there is no Higgs because
those heavy fermions would be the fundamental constituents of a new theory that extends the
Standard Model. If this idea is realized in Nature it would end, once and for all, with the
hierarchy problem.

The composite Higgs paradigm can be implemented in many ways, giving rise to a vast
family of models. One of the frameworks that have received more attention is the Littlest Higgs
model with T-parity. In this model the Higgs mass does not receive quadratically divergent con-
tributions. Hence the Higgs is naturally light. Furthermore, the T-parity is a discrete symmetry
under which the Standard Model particles are even and most of the new particles are odd.
As a consequence, the contributions of these particles to precision observables are one-loop
suppressed and thus under control.

Within this framework we will study flavour-changing transitions. In particular, we are
interested in the contributions of a heavy fermion singlet that can be either T-even or T-odd
under the discrete symmetry. We will show that the contributions of the T-odd singlet to lepton
flavour-changing Higgs decays and to neutrino masses do not decouple in the limit of a heavy
singlet mass. These issues are not present in the T-even singlet case.

Motivated by the anomalous behaviour of the singlet, we will prove that the Littlest Higgs
model with T-parity is not invariant under its gauge group. As a consequence, we will develop
a new Littlest Higgs model with T-parity compatible with gauge invariance. For that purpose,
the global symmetry group will be minimally enlarged with respect to the original model and
new fermion and scalar degrees of freedom will be introduced.

To show explicitly the viability of the model we will impose current constraints on exotic
quarks; we will consider that the usual dark photon, the lightest T-odd particle, accounts for all
the dark matter relic density of the Universe; and we will demand that the masses of the new
scalar fields do not exceed the TeV. This fixes the value of certain parameters while others get
correlated, so the particle spectrum gets bounded from below and above, keeping the model
viable. Finally, we will study the main decay channels of the new scalar fields to show that their
decay rate is comparable to that of the Higgs. In terms of production rates, they are relatively
heavy and generated by an electroweak interaction so they are not significantly produced at
the LHC.
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Resumen

El Modelo Estándar de la Física de Partículas es una de las teorías más predictivas y elegan-
tes de la historia de la Física. Explica cuáles son los constituyentes fundamentales de la materia
y cómo son sus interacciones. Ha sido puesto a prueba en una gran variedad de escenarios y
prácticamente todas las medidas experimentales están de acuerdo con sus predicciones.

Sin embargo, en este marco teórico el bosón de Higgs es una partícula elemental. Esto hace
que su masa sea muy antinatural ya que, no estando protegida por ninguna simetría, recibe
correcciones cuadráticas de energías arbitrariamente altas y no hay razón teórica que justifique
que el Higgs sea ligero. Es lo que se conoce como el problema de las jerarquías.

Una de las soluciones más elegantes a este problema consiste en asumir que el bosón de
Higgs, en lugar de ser elemental, es un estado compuesto de fermiones pesados y desconocidos
ligados por un nuevo sector fuertemente interactuante. Esto está motivado por el tratamiento
de los mesones en Cromodinámica Cuántica. Como consecuencia, a energías altas no hay bosón
de Higgs ya que dichos fermiones pesados serían los constituyentes fundamentales de una
nueva teoría que extendería al Modelo Estándar. Si esta idea se lleva a cabo en la Naturaleza se
acabaría de raíz con el problema de las jerarquías.

El paradigma de un Higgs compuesto puede ser llevado a cabo de múltiples maneras, dan-
do lugar a una vasta familia de modelos. Uno de los marcos teóricos que más atención ha
recibido ha sido el “Littlest Higgs model with T-parity”. En este modelo, la masa del Higgs
no recibe correcciones cuadráticamente divergentes, lo que hace que el Higgs sea ligero de for-
ma natural. Por otro lado, la T-paridad es una simetría discreta bajo la cual las partículas del
Modelo Estándar son pares mientras que la mayor parte de las nuevas partículas son impa-
res. Como consecuencia, las contribuciones de las nuevas partículas a observables de precisión
están controladas.

Dentro de este marco teórico estudiaremos transiciones fermiónicas con cambio de sabor.
En particular, estaremos interesados en las contribuciones de un singlete leptónico pesado que
puede ser tanto par como impar bajo la simetría discreta. Veremos que las contribuciones del
singlete impar a desintegraciones del Higgs con leptones de diferente sabor en el estado final,
y también a la masa de los neutrinos, no desacoplan en el límite en que la masa del singlete es
muy pesada. Estas patologías no están presentes en el caso en que el singlete es par.

Motivados por el comportamiento anómalo de este singlete, demostraremos que el “Littlest
Higgs model with T-parity” no es invariante bajo el grupo local de simetrías. Como consecuen-
cia, desarrollaremos un nuevo “Littlest Higgs model” que respeta la invariancia gauge. Para
ello el grupo global de simetrías deberá ser extendido mínimamente con respecto al modelo
original y será necesario introducir nuevos grados de libertad, tanto escalares como fermióni-
cos.

Para mostrar explícitamente la viabilidad de este modelo impondremos cotas actuales a
la masa de quarks exóticos; supondremos que el fotón oscuro, la partícula impar más ligera,
da cuenta de toda la densidad de materia oscura del Universo; y que la masa de los nuevos
escalares no supera el TeV. Esto fija el valor de ciertos parámetros del modelo y correlaciona
otros, de modo que el espectro de partículas queda acotado inferior y superiormente, haciendo
el modelo viable. Finalmente, estudiaremos los principales canales de desintegración de los
nuevos escalares y veremos que su ritmo de desintegración es aproximadamente igual al del
Higgs. Estos escalares son relativamente pesados y producidos por una interacción electrodébil
por lo que no se espera que den lugar a señales apreciables en el LHC.
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Chapter 1

Introduction

1.1. Brief description of the Standard Model of Particle Physics

The deep understanding of the nature of matter and its interactions that the physicists
achieved during the XX century is collected in the Standard Model (SM). It is one of the most
predictive and successful theories of all times and even today most of the experiments seem
to agree with its predictions. It has been tested in a wide range of energies allowing us to find
what today we consider to be the building blocks of the Universe.

The SM is a quantum field theory. This means that it is invariant under global transforma-
tions of the Poincaré group, that includes the Lorentz group together with space-time transla-
tions, and respects the principles of quantum mechanics.1 On the other hand, all the particles
we know have internal quantum numbers and thus live in representations of the gauge (local)
group

SU(3)c × SU(2)L ×U(1)Y. (1.1)

The SU(3)c factor describes the theory of strong interactions or Quantum Chromodynamics
(QCD). Its associated quantum number is the color. The rest of the group GEW ≡ SU(2)L ×
U(1)Y defines the electroweak (EW) interactions, the unification of electromagnetism (EM) with
the weak interaction. The quantum numbers associated to SU(2)L and U(1)Y are the weak
isospin and hypercharge, respectively. The quantum number associated to electromagnetism
is the electric charge.

The matter fields are described by fermions, fields with semi-integer spin under the Lorentz
group. They are cast into quarks (q) and leptons (l) depending on whether they experience the
strong force or not. Under SU(3)c, quarks transform in the fundamental representation while
leptons are color singlets. On the other hand, under the Lorentz group fermions decompose
into their left (L) and right-handed (R) chiralities. The left-handed fermions are SU(2)L dou-
blets while the right-handed are singlets. All of them have different hypercharge under U(1)Y
as shown in table 1.1. Their explicit form is given by

qL =

(
uL
dL

)
, lL =

(
eL
νL

)
, uR, dR, eR. (1.2)

Notice the absence of a right-handed neutrino νR. These fermions are collected into families,
that is, different replicas with the same quantum numbers differing only in their mass. On the
other hand, the force mediators are described by vector gauge bosons, Lorentz vector fields
that under the internal symmetries transform as Lie algebra-valued connections. They are re-
sponsible for the invariance of the theory under local transformations of the group (1.1). There

1The Lorentz group SO(3, 1) does not allow representations with semi-integer spin and thus it cannot describe
fermions. Indeed what we call Lorentz group in this context is the universal cover SL(2, C), the group of complex
2× 2 matrices with unit determinant.



2 Chapter 1. Introduction

is the same number of vector bosons that generators in the Lie algebra of the gauge group:
eight gluons ga

µ, associated to SU(3)c, three weak gauge bosons W i
µ associated to SU(2)L and

the hypercharge gauge boson Bµ. Their quantum numbers are gathered in table. 1.1.
However, the gauge symmetry does not allow to introduce massive vector fields and fer-

mions. But in nature it turns out that the mediators of the weak force W±µ (orthogonal complex
combinations of W1

µ and W2
µ) and Zµ (a combination of W3

µ and Bµ), and most of the fermions
are massive and thus some mechanism must be implemented to provide them with a mass
while keeping the photon Aµ (the remaining orthogonal combination of W3

µ and Bµ) and the
gluons massless.2

According to the ideas of Nambu [2], Goldstone, Salam and Weinberg [3, 4], when a theory
has a continuous global symmetry G that gets spontaneously broken to one of its continuous
subgroups H, that is, the vacuum solution is only invariant under H, a set of massless scalar
fields (Goldstone bosons) appear in the spectrum. If the continuous symmetry is local, Brout, En-
glert, Higgs, Guralnik, Hagen and Kibble [5–8] realized that some of these Goldstone bosons
(the would-be Goldstone bosons) disappear from the physical spectrum turning into the longi-
tudinal modes of the gauge bosons. As a consequence the gauge bosons become massive. This
is the so called Higgs mechanism.

Following the above procedure, the electroweak gauge group SU(2)L ×U(1)Y gets sponta-
neously broken to the electromagnetic group U(1)Q by the vev of an SU(2)L doublet with four
degrees of freedom: the Higgs doublet

H =

(
iπ+

v+h+iπ0√
2

)
. (1.3)

Three of these scalars provide the longitudinal modes of the W±µ and Zµ, which acquire a mass
proportional to the Higgs vev, while the photon and the gluons remain massless. Only one
scalar field remains in the physical spectrum: the Higgs boson.

To provide masses for the fermions, except for the neutrinos that were assumed to be mass-
less in the original SM, different Yukawa Lagrangians that couple the fermions to the Higgs
doublet are introduced. Their masses are thus proportional to the corresponding Yukawa cou-
pling and the Higgs vev .

Finally, the requirement of renormalizability, that is, that all divergences generated at any
order in perturbation theory can be absorbed by a finite set of parameters, fixes the operator
content of the SM. Only operators with mass dimension d ≤ 4 are allowed. Thus the renormal-
izable SM Lagrangian with the field content and symmetries above and the implementation of
the Higgs mechanism reads

LSM = −1
2

tr
(

G̃µνG̃µν
)
− 1

2
tr
(

W̃µνW̃µν
)
− 1

4
BµνBµν

+ qα
Li /Dqα

L + l
α
Li /Dlα

L + uα
Ri /Duα

R + d
α
Ri /Ddα

R + eα
Ri /Deα

R

+ (DµH)†DµH − µ2H†H − λ(H†H)2 −
[
yu

α,βqα
LH̃uβ

R + yd
α,βqα

LHdβ
R + ye

α,βl
α
LHeβ

R + h.c.
]

,

(1.4)

where α, β are flavour indices, H̃ = −iσ2H∗ and y f
αβ are Yukawa couplings. The field strength

tensors are given by

G̃µ = Ga
µ

λa

2
(1.5)

2We will consider massless neutrinos in this discussion.
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SM field SU(3)c SU(2)L U(1)Y

ga
µ 8 1 0

W i
µ 1 3 0

Bµ 1 1 0

qL =

(
uL
dL

)
3 2 1

6

uR 3 1 2
3

dR 3 1 − 1
3

lL =

(
eL
νL

)
1 2 − 1

2

eR 1 1 −1

H =

(
iπ+

v+h+iπ0√
2

)
1 2 1

2

TABLE 1.1: Quantum numbers of the different SM constituents in the weak eigen-
basis.

G̃µν = ∂µG̃ν − ∂νG̃µ − igs

[
G̃µ, G̃ν

]
(1.6)

W̃µ = W i
µ

σi

2
(1.7)

W̃µν = ∂µW̃ν − ∂νW̃µ − ig
[
W̃µ, W̃ν

]
(1.8)

Bµν = ∂µBν − ∂νBµ, (1.9)

where λa/2, gS and σi/2, g are the SU(3)c and SU(2)L generators and gauge couplings, respec-
tively. The covariant derivative /D ≡ iγµDµ is given by

Dµ = ∂µ − igS
λa

2
Ga

µ − ig
σi

2
W i

µ + ig′YBµ (1.10)

where g′ is the U(1)Y gauge coupling.

1.2. The SM as an effective field theory

The discovery of the Higgs boson in 2012 by the ATLAS and CMS experiments [9, 10] finally
completed the SM puzzle. However there still remains open questions that the SM cannot
address satisfactorily. Among others,

1. The underlying mechanism of electroweak symmetry breaking (EWSB) [11–13].

2. The flavour puzzle, that is, the hierarchy between the different SM fermion masses and
mixings [14–17].

3. Related to the previous one, the origin of neutrino masses and mixings [18–26].

4. The nature of dark matter [27–33].

5. The origin of dark energy [34–37].
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6. The quantum behaviour of gravity, which requires a quantum theory of the space-time
itself [38–42].

As a consequence, the SM should not be regarded as the ultimate explanation of nature but
as an effective field theory (EFT), just a partial description of the world that is valid only below
an energy scale ΛSM. Above that scale, a new theory with extra symmetries and degrees of
freedom, with typical masses of size ΛSM, should clarify some of these open questions and
provide a microscopic explanation for the observed values of the SM input parameters. Fol-
lowing a top-down approach, the SM effective field theory (SMEFT) arises as the low energy limit
of a more fundamental theory after integrating out the new heavy degrees of freedom at the
scale ΛSM.3 The SMEFT consists of the SM Lagrangian plus an infinite series of local operators
invariant under the SM gauge group with arbitrary energy dimension d > 4 suppressed by
powers of ΛSM

LSMEFT = LSM + ∑
d>4

cd
i
Oi

d

Λd−4
SM

, (1.11)

where the coefficients cd
i are functions of the parameters of the underlying new theory. This

suppression is an enormous benefit because the higher dimension operators break accidental
symmetries of the SM such as lepton and baryon number or custodial symmetry. Thus the
impact of these operators is small, which explains why we have not (yet) observed transitions
in nature that violate these symmetries. On the other hand, the SMEFT is not a renormalizable
theory in the usual sense, conversely to the SM. However it is renormalizable order by order in
loops and in energy dimension.

Nowadays, the SM cutoff ΛSM remains unknown, since most experiments seem to agree
with the SM predictions.4 One of its tentative values is the Planck mass MPl ≈ 1.2× 1019 GeV
[44], that it is the scale in which gravitational effects start to become important and a quantum
theory of gravity is required. Other models like Grand Unification theories (GUT’s) predict that
there is a scale at which the strong and electroweak gauge couplings unify [45, 46]. This scale
is closely related to the proton decay, whose non observation sets a lower bound for the GUT
scale ΛGUT ∼ 1016 GeV. Finally, oscillation experiments reveal that neutrinos have a small mass
mν ≲ 0.1 eV. Within the SM framework, neutrinos receive masses from the dimension-five
Weinberg operator5 [47]

Od=5 = (lLHc)(Hclc
L), (1.12)

This operator must be suppressed by Λ ≈ 1014 GeV in order to reproduce the observed order of
magnitude of neutrino masses. In any case, there is a huge gap between these tentative values
of ΛSM and the electroweak scale set by the Higgs vev v ≈ 250 GeV. However, in the following
section we will motivate why new physics should play an important role already at the TeV
scale.

3The SMEFT is also an end in itself. It is an extremely useful tool to parametrize, in a model independent
fashion, deviations from the SM predictions. Their unknown coefficients are fixed by the matching procedure to any
UV theory allowing to test its IR predictions and eventually discard theories.

4However, there are current experimental measurements related to lepton flavour non-universality, the electron
and muon anomalous magnetic moments (g− 2) and the W boson mass that challenge the SM and push towards
the direction of New Physics around the TeV scale [43].

5The Weinberg operator is the only dimension 5 operator that can be built using the SM gauge symmetry and
fields.
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1.3. The hierarchy problem and a natural electroweak scale

Previously we have pointed out that operators with energy dimension d > 4 are suppressed
by powers of the cutoff scale Λd−4

SM . Then the same argument states that the Higgs mass param-
eter should be naturally expected to be of size

cΛ2
SMH†H, (1.13)

where c is a constant. Comparing with the measured value of the Higgs mass, mh = 125 GeV,
implies that c ∼ 10−28 ≪ 1 for ΛSM = ΛGUT. Thus the small value of c is a measure of the
huge hierarchy between the Higgs mass and ΛSM.

According to the naturalness criterion [1], mass hierarchies of this type are naturally under-
stood if some symmetry is restored in the limit of vanishing field mass. In that case, the naive
dimensional analysis above does not work to estimate the size of the field mass. For instance,
the lightness of the weak gauge bosons W±, Z is explained due to the restoration of gauge sym-
metry when their masses are turned off since all of them depend on the Higgs vev. The same
happens with fermions. However, this is not the case for the Higgs field since the SM does not
enhance its symmetry by turning off the Higgs mass. The absence of such a symmetry that
protects the Higgs mass squared against quadratically divergent contributions from arbitrarily
high energy scales is the seed of the so called hierarchy problem. This is typical in theories with
elementary scalar fields.

Let us reformulate the hierarchy problem in a more suitable form. This will clarify why one
should expect new physics at the TeV scale. Suppose that we knew the UV theory that extends
the SM beyond ΛSM. Thus the loop corrections to the Higgs mass could be fully computed
evaluating the integral

δm2
h =

∫ ∞

0

dm2
h

dE
dE =

∫ ΛSM

0

dm2
h

dE
(SM)dE +

∫ ∞

ΛSM

dm2
h

dE
(UV)dE ≡ δSMm2

h + δUVm2
h (1.14)

where we split the contributions coming from the SM fields bellow ΛUV and those coming from
the new degrees of freedom of the UV theory above ΛUV. The SM contribution is well known
and can be computed evaluating the Feynman diagrams in fig. 1.1

δSMm2
h ≈

3λ2
t

8π2 Λ2
SM −

Λ2
SM

16π2

(
3g2 + g′2

)
− 3λ

16π2 Λ2
SM, (1.15)

where λt ≈ 0.956 is the top quark Yukawa coupling, g ≈ 0.641 and g′ ≈ 0.344 are the elec-
troweak coupling constants and λ ≈ 0.13 is the Higgs quartic coupling. Numerically, the top
quark quadratic divergence is the most important due to its large Yukawa coupling and color
multiplicity as we show in fig. 1.2. As a first approximation let us consider only this contribu-
tion. Then we can define the degree of fine-tuning as

∆ =

√
δSMm2

h
m2

h
≈
√

3λ2
t

8π2
Λ
mh
≈ Λ

640 GeV
. (1.16)

This allows to talk about fine-tuning in a more quantitative way. For a cutoff of size ΛGUT we
have a fine-tuning ∆ ≈ 1012. This means that the results of the two integrals in eq. (1.14) must
have different sign and agree in the first 12 digits to predict the experimental value of the Higgs
mass. These large cancellations are not natural since both contributions are a priori completely
unrelated. Besides, we will never manage to measure a quantity with such an accuracy. This
implies that we would not be able to unveil the dynamics of EWSB and the Higgs mass would
always be an input parameter of the theory. However, if new physics enter around the TeV
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FIGURE 1.1: Most relevant one-loop quadratically divergent contributions to the
Higgs mass squared in the SM in the gauge eigenbasis.
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gaugetop
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2

FIGURE 1.2: Fine tuning required to obtain the experimental value of the Higgs
mass in the SM for ΛSM ≈ 10 TeV. Figure taken from [49].

scale, ∆ can be reasonably small to generate a natural electroweak scale with only a small
amount of fine-tuning.

The above discussion is mainly focused on quadratic divergences that are generated be-
cause we regularized the theory with a cutoff. One may argue that such divergences are not
physical. Indeed they are not even present in other regularization schemes such as dimen-
sional regularization and we would not have to worry about them. However, even in this kind
of schemes a quadratic sensitivity to high energy scales is still there [48]. For instance, consider
that at high energies the Higgs is coupled to another scalar field Φ with MΦ ≫ mh through a
term of the kind ∼ λΦH2Φ2. This is what happens for instance in GUT models. At one loop,
after subtracting the pole in 1/ϵ where ϵ = 4− d and using the MS renormalization scheme,
one finds

δm2
h ∼ λΦ M2

Φ log

(
µ2

M2
ϕ

)
, (1.17)

where µ is the renormalization scale. Thus, in the form of eq. (1.13) or eq. (1.17) the Higgs
mass always receives quadratic contributions from any high energy scale of the theory. As a
consequence, to keep a light Higgs one needs to fine-tune the parameters of the theory if the
masses involved are large. This fine-tuning is, in general, unstable under quantum corrections.
From the theoretical point of view this is quite unsatisfactory, what justifies the theoretical effort
in the construction of models to address the hierarchy problem in order to generate a natural
electroweak scale.
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1.4. The Higgs as a composite particle

In the previous section we pointed out that in the SM the Higgs suffers from a hierarchy
problem due to its a priori unexpected light mass according to the naturalness criterion. How-
ever there are other scalar fields in nature such as mesons in QCD that are naturally light
compared to the rest of hadronic resonances, with masses of a few hundred MeV. This leads
us to the following question: what is the main difference between the Higgs and the QCD mesons?
The answer to this question is that mesons are not fundamental particles but composite states of
quarks with a finite size and bounded by the strong force. Being composite, their masses are in-
sensitive to energies beyond the inverse of the typical meson size. But in the SM the Higgs field
is an elementary particle and thus receives mass corrections from arbitrarily large energies. If
we could realize the Higgs as a composite state of some kind of strong force analogous to QCD
(but not QCD, or otherwise it would be too light) at the TeV scale we would solve the hierarchy
problem. These ideas were first proposed in the 80’s [50–52] and have received and increasing
attention in recent years [19, 53–69] mainly due to the lack of signals of supersymmetry.

In this section we will review some of the basic aspects of QCD that are responsible for
generating light masses for the mesons. These characteristics guide the construction of models
that realize the Higgs boson as a composite particle.

1.4.1. Motivation: mesons as low energy QCD bound states

QCD and confinement

The high and low energy behaviour of QCD is encoded in the renormalization group evolu-
tion of the strong coupling constant gS. Neglecting the quark masses, at one-loop the running
of gS with the energy reads

dgS

d log µ
= − β0

(4π)2 g3
S with β0 = 11− 2

3
nF, (1.18)

where µ is the renormalization scale and nF is the number of active flavours.6 Since only six
quark flavours seem to exist in nature and β0 is always positive for nF ≤ 15, the r.h.s. of
eq. (1.18) is negative, so QCD has a stable fixed point in the UV and it is an asymptotically free
theory [70]. The study of its low energy behaviour is more interesting. For that purpose, let us
integrate from µ = ΛUV to an arbitrary energy scale E < ΛUV

g2
S (E) =

g2
S (ΛUV)

1− g2
S (ΛUV)

2β0

(4π)2 log
(

ΛUV
E

) . (1.19)

Due to the negative sign in eq. (1.18) there exists an energy scale m∗ < ΛUV such that the strong
coupling constant becomes non-perturbative7

log
(

ΛUV

m∗

)
=

1
2β0

(
4π

gS (ΛUV)

)2

. (1.20)

6A quark flavour is active if its mass mq ≪ E, with E the available energy in the process. For all other purposes,
mq can be set to zero regardless whether it is active or not.

7The value of m∗ is independent of the chosen ΛUV. This is because gS verifies eq. (1.18) and hences physical
observables such as masses do not depend on the energy.
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In the context of QCD, the new physical scale m∗ is called ΛQCD and it is exponentially sup-
pressed with respect to ΛUV allowing for a large separation between both scales.8 Based on
perturbative arguments, one usually takes the UV cutoff satisfying ΛUV ≲ 4πm∗. This mecha-
nism that generates a physical dimensionful parameter through the running of dimensionless
coupling constants at the UV is called dimensional transmutation. This is possible because at ΛUV
we have neglected the quark masses and the only relevant coupling is gS.

Below ΛQCD, QCD is a strongly coupled theory that confines quarks into baryons and
mesons. Consequently a perturbative treatment of QCD below 1 GeV is not consistent. The
way to deal analytically with QCD in this low energy regime is to use an EFT approach [72, 73]
with cutoff ΛUV ∼ 1 GeV. This is based on the fact that a description of the strong interaction
in terms of the physical degrees of freedom at this scale, the pseudoscalar mesons, is possible.

Effective field theory for the light mesons

The link between the QCD Lagrangian and the low-energy EFT’s at energies below ΛQCD
is built from the symmetries of the light-quark sector which appear if the masses of the active
quarks vanish [44, 70, 72, 74]. This is called the chiral limit. Considering only the three lightest
quark flavours u, d and s, the QCD Lagrangian is invariant under global transformations of the
group SU(3)L× SU(3)R, acting on the left-handed and right-handed chiralities independently.9

However, the QCD vacuum is non-trivial and the global symmetry group gets spontaneously
broken to the diagonal SU(3)V at the scale ΛQCD by the quark condensate

⟨0 | qLiqRj | 0⟩ = Λ3
QCDδij. (1.21)

As a consequence, the Goldstone theorem ensures the existence of eight massless scalar fields,
the Goldstone bosons [4]. Physically they represent the octet of pseudoscalar mesons. Their dy-
namics are parametrized by a non-linear sigma model using the Callan-Coleman-Wess-Zumino
formalism (CCWZ) [75, 76] and are fixed by symmetry. Being Goldstone bosons, as far as the
global symmetry remains unbroken, the mesons are massless, what justifies their lightness.

However the global symmetry is not exact but broken at the UV by the different quark
masses. The scalar fields are coupled to this source of breaking of the global symmetry acquir-
ing a tree-level mass of typical size ΛQCD. At low energies the electroweak interactions also
break the global symmetry giving one-loop corrections to the meson masses. These corrections
are controlled since the loops are cutoff at the scale ΛUV ≲ 4πΛQCD. The loop contributions
are proportional to ΛQCD times an electroweak coupling and hence small with respect to the
tree-level contribution.

1.4.2. The composite Higgs idea and a Little Higgs

Once we have described the main features of QCD, let us apply the above mechanisms to
generate a composite Higgs and a natural electroweak scale. Since the Higgs boson is color
blind, we will omit the SU(3)c factor of the SM gauge group in the remaining of this Thesis. As

8The value of ΛQCD depends on the number of active flavours encoded in the parameter β0 in eq. (1.18). This
is because the strong coupling constant gS must vary smoothly when passing a quark threshold gS

(
E = mq, nF

)
=

gS
(
E = mq, nF − 1

)
. This implies [71]

ΛQCD (nF) = ΛQCD (nF − 1)
(

ΛQCD (nF − 1)
mq

)2/(33−2nF)

.

For three active flavours ΛQCD ≈ 250 MeV.
9The global symmetry group also includes an U(1)L ×U(1)R ∼= U(1)V ×U(1)A factor. The U(1)V is associated

to baryon number while the axial U(1)A is anomalous and thus is not a symmetry of the quantized Lagrangian. We
will ignore this factor in what follows.
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a consequence, when we refer to the SM gauge group it will be implicitly assumed that we are
only considering the electroweak subgroup GEW = SU(2)L ×U(1)Y.

First of all we need a new strongly interacting sector that at ΛUV is close to a free fixed
point and confines at the scale m∗. We assume that this confinement or compositeness scale is
generated by the mechanism of dimensional transmutation at the UV, allowing for a natural
separation between ΛUV and m∗ of typically ΛUV ≲ 4πm∗. But unlike QCD, the UV theory is
unknown, we ignore its fundamental constituents, the global and gauge symmetries and the
pattern of spontaneous symmetry breaking. However, from the low energy point of view, the
EFT theory is built postulating a global symmetry group G that gets spontaneously broken
to one of its continuous subgroups H by the vacuum at the scale m∗. This generates a set of
Goldstone bosons living in the G/H coset, among them the Higgs field, whose dynamics are
parametrized à la CCWZ by a non-linear sigma model. Since G and H do not come from first
principles, the composite Higgs idea admits multiple realizations giving rise to a vast family of
models.

To generate a mass for the scalar fields, they must be coupled to the sources of explicit break-
ing of the global symmetry. In contrast with QCD, in most composite Higgs models the global
symmetry is not broken at the UV, that is, there is no analogous to the quark masses.10 Hence,
there are no tree-level contributions to the composite scalar masses. Instead, their masses are
generated from loop effects of terms that at low energies break the global symmetries. Those
are the electroweak interactions, as for the mesons, and the Yukawa couplings. The latter need
to be incorporated because the Higgs is responsible for providing masses to the SM fermions.

In this family of models, the quadratically divergent contributions to the Higgs field coming
from the explicit breaking terms of the global symmetry are controlled. The low energy quanta
have a too large wavelength and cannot resolve the Higgs size lh ∼ 1/m∗. Therefore the Higgs
behaves as an elementary particle and the loop integral in eq. (1.14) grows linearly with the
energy, thus resulting in a quadratic divergence (1.16) like in the SM. However, this growth
gets cancelled by the finite size effects when the energy approaches the compositeness scale
m∗. The linear SM behaviour is then replaced by a peak at the compositeness scale followed
by a steep fall. The Higgs mass generation gets localized around m∗ being insensitive to much
higher energies. Being a composite particle there is no Higgs field at the UV and no dimension
2 mass terms as in eq. (1.13), solving the hierarchy problem.

The earlier attempts to implement this mechanism during the 80’s [50–52] assumed that
the compositeness scale m∗ was not far away from the electroweak scale, and thus m∗ ≳ v.
However new exotic particles are expected at these new scale that have not been observed so
far at colliders. This has pushed m∗ ≳ 1 TeV which is already quite large to be compatible
with the measured Higgs mass mh ≈ 125 GeV so certain amount of fine-tuning is required to
generate a Higgs lighter than the rest of new resonances and stabilize the electroweak scale.

There is another idea that is implemented in Little Higgs models in which we will focus in
this Thesis. This subset of composite Higgs models has a number of global symmetries that
act non linearly on the Higgs ensuring its Goldstone nature when just one gauge or Yukawa
coupling is non-vanishing. However, the combination of all the gauge and Yukawa couplings
breaks all these global symmetries, generating a Higgs mass that is nevertheless not quadrat-
ically sensitive to ΛUV at the one-loop level. This is the so called collective symmetry breaking
mechanism. In terms of Feynman diagrams this can be qualitatively explained as follows. In
order to generate a contribution to the Higgs mass parameter, loop diagrams require insertions
of all the gauge or Yukawa couplings that break the global symmetry, relaxing their degree of
divergence. Otherwise the global symmetry is enough to forbid any mass. Hence the contri-
butions are at most logarithmically divergent of size ∼ m∗/4π, ensuring a natural light Higgs

10This assumption can be relaxed allowing some terms breaking the global symmetry at the UV. However this
does not introduce new radically different phenomena and thus we will disregard this possibility in our discussion.
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without fine-tuning for m∗ ∼ 1 TeV, despite having gauge and Yukawa couplings of order one
and thus stabilizing the electroweak scale. These light pseudo-Goldstone bosons are dubbed
Little Higgses [77, 78].

1.5. Structure of the Thesis

This Thesis is organized as follows:

• In Chapter 2 we introduce the mathematical formalism that allows to realize the Higgs as
a composite state of a strong interacting sector: the Callan-Coleman-Wess-Zumino (CCWZ)
formalism. This characterizes the family of composite Higgs models. Within this vast
family of models we highlight that Little Higgs models are less fine-tuned than other
composite Higgs models because they introduce the collective symmetry breaking mecha-
nism. We also define a discrete Z2 symmetry, T-parity, to alleviate direct and indirect
constraints from EWPD due to the new heavy particles that these models include. We
end this chapter by providing an explicit example of a Little Higgs model.

• In Chapter 3 we focus on a particular realization of the Little Higgs paradigm: the Lit-
tlest Higgs model with T-parity (LHT). This is the minimal setup that implements all the
properties of a Little Higgs model from a simple global group. Within this framework
we study the contributions of an SU(2) lepton singlet, either T-even or T-odd, to different
lepton flavour violating observables. Concerning lepton flavour violating Higgs decays,
we find that the contributions of a T-even singlet are finite and decouple while the contri-
butions of a T-odd singlet are UV divergent and there is no available counterterm. Next,
we provide a small Majorana mass to the left-handed components of the SU(2) singlet to
generate neutrino masses. While a T-even singlet provides neutrino masses that decou-
ple in the limit of a large singlet mass, the T-odd singlet generates neutrino masses that
are independent of the mass of the singlet. Within the T-even singlet scenario we also
study the contributions of the singlet to the relevant process µ → eγ. This provides an
upper bound for the masses of the T-odd mirror fermions. Motivated by the anomalous
behaviour of the T-odd singlet, at the end of this chapter we show that the LHT is non
gauge invariant due to the non-trivial interplay between the non-linear realization of the
global symmetry and the implementation of the discrete T-parity.

• In Chapter 4 we build explicitly a new and gauge invariant Littlest Higgs model with
T-parity (NLHT) that cures the afflictions we find in Chapter 3. For that purpose the
global group is minimally enlarged with respect to the LHT introducing additional scalar
fields and fermions. To evaluate the masses of the physical scalar fields, we introduce
the Background Field Method (BFM). We also use the BFM to compute the counterterm
for lepton flavour violating Higgs decays in the LHT. In the last part of this chapter we
explicitly verify the viability of our model imposing current electroweak precision data
and cosmological constraints. As a consequence, some parameters get fixed while others
get correlated and the particle spectrum is bounded from below and above. Finally, we
evaluate the main decay channels and lifetime of the new scalar fields.

• Chapter 5 is finally devoted to the main conclusions of the Thesis.

Most of original results presented in this Thesis have been published:

– The calculation of several lepton flavour violating observables and the generation of neu-
trino masses (Chapter 3), in refs. [65, 66].

– The proof of the non gauge invariance of the LHT (Chapter 3) and the construction of a
new and gauge invariant Littlest Higgs model with T-parity (Chapter 4), in ref. [68].
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– The phenomenological study within the NLHT framework (Chapter 4), in ref. [69].

Auxiliary material and some unpublished results appear in several appendices:

• Appendix A gives explicit expressions for the SU(5) generators. We also construct the Lie
algebra of the two different SU(3) subgroups of SU(5).

• Appendix B is devoted to the analysis of the cancellation of quadratic and logarithmic
divergences to the Higgs mass in the LHT.

• Appendix C provides an alternative version of the NLHT. We identify the usual top quark
partners, responsible for the cancellation of the quadratic divergence of the Higgs mass
from the top quark, with the new heavy singlets required by gauge invariance of the
NLHT.

• Appendix D shows an application of the FeynRules model file for the NLHT that com-
putes the masses of the new scalar fields using FeynArts and FormCalc.





13

Chapter 2

General formalism for Little Higgs
models

In this Chapter we introduce the Callan, Coleman, Wess and Zumino (CCWZ) [75, 76] formalism
that allows to describe the low energy dynamics of the Goldstone bosons associated to the spontaneous
breaking of a strong interacting sector at the scale f . This formalism characterizes the Composite Higgs
paradigm. The Higgs boson, being part of the set of Goldstone bosons resulting from this spontaneous
breaking, is massless. To provide it with a mass at the one loop level we will discuss the notion of vacuum
misalignment. In a general Composite Higgs model, quadratic divergences to the Higgs mass propor-
tional to the cutoff Λ ∼ 4π f arise. However, in these models a plethora of new particles with masses
of size f are present whose non observation pushes f to the multi-TeV range. As a consequence, the
contributions to the Higgs mass get be large and certain amount of fine-tuning is necessary to generate
a natural electroweak scale. To avoid an excessive fine-tuning one implements the Collective symmetry
breaking mechanism, which avoids quadratic divergences and gives rise to the Little Higgs paradigm.
As a result of this, extra degrees of freedom are required that are responsible for the cancellation of the
unwanted quadratic divergences. However, current collider bounds put strong constraints on these par-
ticles. To reconcile these models with data it is necessary the introduction of an extra Z2 symmetry:
T-parity. Finally we will provide a toy model in which all these features are implemented.

2.1. Symmetries and the CCWZ formalism

2.1.1. Global symmetries and Goldstone bosons

Let G be a compact, connected and semi-simple Lie group of dimension n. This gets spon-
taneously broken by the vev Σ0 of a field transforming in a linear and unitary representation RΣ
of G to one of its continuous subgroups H of dimension d. The particular form of the reference
vacuum Σ0 is arbitrary since a global transformation relates all possible vacua. However, we
will consider that the embedding of H in G is such that contains the electroweak SM group
SU(2)×U(1) as a subgroup. Let us denote with Tb (b = 1, ..., d) the generators of H and Xa

(a = 1, ..., n− d) the remaining generators needed to obtain a basis of the Lie algebra of G. We
assume without loss of generality that they are orthogonal with respect to the Cartan inner
product.

The spontaneous breaking G → H due to the vev Σ0 implies that taking an arbitrary element
U ∈ H,

RΣ(U)Σ0 = Σ0, (2.1)

that is, Σ0 is invariant (a singlet) under the action of the subgroup H. Choosing the exponential
map, the transformation U can be written as U = eiβbTb

with real parameters βb. Taking the
derivative with respect to the parameters and evaluating in the neutral element βb = 0, one
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arrives from the group representation (2.1) to a representationR of the Lie algebra fulfilling

∂

∂βb

∣∣∣
βb=0

RΣ(U)Σ0 = RΣ(Tb)Σ0 = 0. (2.2)

In other words, the unbroken generators annihilate the vacuum.
According to the Goldstone theorem [4], the spontaneous breaking of G to H leads to n− d

Goldstone bosons πa (x) along the direction of the broken generators. Choosing for the Gold-
stone fields the exponential parametrization (see for instance [79]), one can define the non linear
field

ξ = eiπa(x)Xa/ f ≡ eiΠ/ f , (2.3)

where f is the decay constant introduced to keep the argument of the exponential dimension-
less and we defined the Goldstone matrix Π = πaXa. This decay constant is nothing but the
confinement scale m∗ of the model.

Let us derive the transformation properties of the non linear field ξ under G. Close enough
to the identity element, every group element V ∈ G has a unique decomposition of the form

V = eiαaXa
eiβbTb

, (2.4)

where eiβbTb ∈ H and αa, βb are real parameters. Since ξ is spanned by the broken generators
one can take any element V ∈ G and the unique element U ∈ H such that

Vξ = V ′ ≡ ξ
′
U, (2.5)

where

ξ
′
= ξ(Π

′
), Π

′
= Π

′
(V, Π) , U = U (V, Π) (2.6)

are determined by the particular structure of the Lie group and then

ξ
′
= VξU−1. (2.7)

Let us further define

U : Ψ→ RΨ (U)Ψ, (2.8)

where RΨ (U) is a linear and unitary representation of the subgroup H and Ψ is an element of
some Hilbert space. Then the following transformations,

V : ξ → ξ
′
, Ψ→ RΨ (U)Ψ, (2.9)

give a (non linear) realization of G. To verify it, let us observe that taking V1, V2 ∈ G,

V2V1ξ = ξ
′′
Ũ. (2.10)

On the other hand, using that V1ξ = ξ
′
U1 and V2ξ

′
= ξ

′′
U2 and comparing with the previous

expression, we find

ξ
′′
U2U1 = ξ

′′
Ũ, (2.11)
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and hence Ũ = U2U1. Moreover, since R (U) is a representation then

R(Ũ) = R (U2) R (U1) . (2.12)

The transformation of the non linear field ξ or, equivalently, on the Goldstone fields πa(x) is
a group realization by itself. The transformation on Ψ, on the other hand, is meaningful only
together with that of ξ, since U is a function of Π and V according to eq. (2.6) so is RΨ (U) as
well. If RΨ (U) is reducible, the field Ψ decomposes into a set of fields that do not mix.

If V belongs to the subgroup H, then V = U, and one can write

Uξ = UξU−1U ≡ ξ
′
U (2.13)

and comparing with eq. (2.7),

ξ
′
= UξU−1. (2.14)

In this case, the transformation ξ → ξ
′

is a linear transformation independent of Π and there-
fore the transformation of eq. (2.8) is also linear. This implies that, when restricted to the sub-
group H, the group realization in eq. (2.9) becomes a linear representation. Notice that

UΠnU−1 =
(

UΠU−1
)n

(2.15)

and thus the Goldstone matrix transforms linearly in the adjoint representantion of H,

Π
′
= UΠU−1. (2.16)

Considering now transformations only along the direction of the broken generators V = eiαaXa ≈
1+ iαaXa, at leading order in Π and αa one finds, using eq. (2.5) with U ≈ 1,

Π
′
= Π + f αaXa + . . . . (2.17)

This is the shift symmetry that forbids mass terms for the Goldstone fields.
In the special case in which the group G admits the Lie algebra automorphism

Tb → Tb, Xa → −Xa, (2.18)

the transformation on ξ can be simplified. This is the case of symmetric cosets, where the com-
mutation relations between the generators take the schematic form

[T, T] ∼ T, [T, X] ∼ X, [X, X] ∼ T (2.19)

where the first equation holds because H is a subgroup, the second one because the structure
constants are antisymmetric and the last one only holds for symmetric cosets, so it depends in
general on all the generators. Applying the automorphism (2.18) on eq. (2.5) we find

ξD(V−1) = U−1ξ
′
, (2.20)

where D(V) is the image of the group element V by the automorphism and U remains invari-
ant. Substituting U from eq. (2.7) the transformation of ξ reads

ξ
′2 = Vξ2D(V−1). (2.21)
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Equivalently if ξ
′

is obtained from eq. (2.7) one finds

VξU−1 = UξD(V−1). (2.22)

This expression can be interpreted as a definition of the matrix U and depends on the particular
action of the automorphism D on the group.

To construct non-trivial invariants it is useful to introduce the Maurer-Cartan form that can
be decomposed in the Lie algebra of G [80]

iξ−1∂µξ = dµ,aXa + eµ,bTb ≡ dµ + eµ, (2.23)

where dµ,a has an index along the broken generators and eµ,a along the unbroken ones. Both
are functions of the Goldstone fields in Π. Under G, the Maurer-Cartan form transforms as

iξ−1∂µξ
G−→ U

(
iξ−1∂µξ

)
U−1 + iU∂µU−1. (2.24)

Notice that the shift term is the Maurer-Cartan form associated to the transformation U ∈ H.
Therefore it decomposes on the Lie algebra of H and it does not have components along the
broken generators. Since we know that the Goldstone bosons (with components along the
broken generators) transform linearly under H, the shift is carried entirely by the e symbol
while d transforms linearly with U

dµ
G−→ UdµU−1 (2.25)

eµ
G−→ U

(
eµ + i∂µ

)
U−1. (2.26)

Let us point out that dµ, unlike Π transforms under H even if we perform a transformation
under the full G. Inspecting the form of dµ at leading order in the Goldstone fields and using
that our basis of generators is orthogonal, we have

da
µ = itr

[
ξ−1∂µξXa

]
≈ − 1

f
∂µπa + . . . , (2.27)

that can be used, for instance, to construct the kinetic term for the Goldstone fields. On the other
hand, the e symbol transforms as a connection associated with local H invariance. In general,
these two objects can be employed to construct covariant derivatives and field-strengths.

Another important piece to construct invariants is the field Σ that transforms linearly under
the full global group. It is built from the Goldstone fields ξ and the vev Σ0 as follows,

Σ ≡ RΣ (ξ)Σ0
G−→ RΣ

(
VξU−1

)
Σ0 = RΣ (V) RΣ (ξ)Σ0 = RΣ (V)Σ, (2.28)

where in the last step we have used that the vev Σ0 is invariant under the action of H. We will
use this field to build the kinetic term of the Goldstone fields. For that purpose the derivative,
that transforms as Σ under the global group, is simply given by

∂µΣ G−→ RΣ(V)∂µΣ, (2.29)

which allows to write the kinetic term and self interactions for the Goldstone fields

LS,kin = c f 2tr
[
(∂µΣ)† ∂µΣ

]
, (2.30)

where c is a constant to be fixed imposing canonically normalized kinetic terms.
As already emphasized, the transformation of Ψ is only meaningful with that of ξ since
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RΨ (U) is in general a non linear function of the Goldstone fields for a given V ∈ G. Thus
from the transformation of Ψ in eq. (2.8) the derivative ∂µΨ does not transform as Ψ. To find
the appropriate covariant derivative let us construct the object RΨ(ξ)Ψ that under the global
group transforms

RΨ(ξ)Ψ
G−→ RΨ(V) (RΨ(ξ)Ψ) . (2.31)

Taking the derivative

∂µ [RΨ(ξ)Ψ] = ∂µRΨ(ξ)Ψ + RΨ(ξ)∂µΨ, (2.32)

that transforms as RΨ(ξ)Ψ under G,

∂µ [RΨ(ξ)Ψ]
G−→ RΨ(V)∂µ [RΨ(ξ)Ψ] , (2.33)

where we used the transformation of ξ in eq. (2.8). Applying RΨ(ξ
−1), we finally obtain the

covariant derivative that transforms as Ψ under G

DµΨ ≡ RΨ(ξ
−1)∂µ [RΨ(ξ)Ψ] = ∂µΨ + RΨ(ξ

−1∂µξ)Ψ, (2.34)

DµΨ G−→ RΨ(U)DµΨ, (2.35)

where in the second term of (2.34) we can recognize the Maurer-Cartan form in the representa-
tion Ψ that compensates the non linear dependence on the Goldstone fields of ∂µΨ.

2.1.2. Gauge symmetries

We wish to extend the previous construction considering that a subgroup Gg ⊂ G, with
generators λA and coupling constant g, is made local by introducing the corresponding set of
gauge fields AA

µ , which act as components of a Lie-algebra-valued connection. They transform

Aµ ≡ AA
µ λA Gg−→ Vg AµV−1

g − i
g

Vg∂µV−1
g , (2.36)

under a local transformation Vg(x) ∈ Gg. The first term corresponds to the transformation in
the adjoint representation of Gg while the second term is the corresponding shift due to the
connection nature of Aµ.

To introduce gauge interactions in the Lagrangian one has to add couplings to the con-
served currents Jµ,A associated with the global symmetry generators

L → L+ AA
µ Jµ,A (2.37)

to compensate for the variation of the original L under space-time dependent transformations
and thus leading to a locally invariant theory under Gg. For that purpose, one promotes the
derivative of the linear field Σ (2.29) to a covariant derivative

∂µΣ→ DµΣ ≡ ∂µΣ + igRΣ
(

Aµ

)
Σ, (2.38)

that transforms properly under the gauged subgroup

DµΣ
Gg−→ RΣ

(
Vg
)

DµΣ (2.39)
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using eq. (2.36) in the representation RΣ. The covariant derivative (2.38) is valid for any field
transforming in a linear representation of G. With this covariant derivative one can introduce
gauge interactions for the Goldstone fields

LS = c f 2tr
[
(DµΣ)† DµΣ

]
. (2.40)

On the other hand, one has also to add kinetic terms for the gauge bosons. Introducing the
covariant derivative for the gauge fields,

Dµ Aν = ∂µ Aν + igRadj (Aµ

)
Aν = ∂µ Aν + ig

[
Aµ, Aν

]
, (2.41)

one can build the corresponding field-strength tensor

Fµν = Dµ Aν − Dν Aµ (2.42)

and the kinetic term reads

LG = −1
2

tr
(

FµνFµν
)

. (2.43)

To obtain the covariant derivative DµΨ compatible with local transformations Vg ∈ Gg, one
promotes eq. (2.31) to

∂µ [RΨ(ξ)Ψ]→ Dµ [RΨ(ξ)Ψ] = ∂µ [RΨ(ξ)Ψ] + igRΨ(Aµ)RΨ(ξ)Ψ, (2.44)

that transforms properly under the gauge subgroup

Dµ [RΨ(ξ)Ψ]
Gg−→ RΨ(Vg)RΨ(ξ)Ψ. (2.45)

Finally, applying RΨ(ξ
−1) one obtains

DµΨ ≡ RΨ(ξ
−1)Dµ [RΨ(ξ)Ψ] = ∂µΨ + RΨ(ξ

−1)DµRψ(ξ)Ψ, (2.46)

where we have defined the covariant derivative for the ξ field in the representation of the Ψ
field

DµRΨ(ξ) = ∂µRΨ(ξ) + igRΨ(Aµ)RΨ(ξ). (2.47)

2.2. Vacuum misalignment

In the previous section, we have chosen a reference vacuum Σ0 transforming in a certain
linear representation RΣ of the global group G. This vev breaks spontaneously the global group
into one of its subgroups H and thus it is invariant under the action of H. This vacuum choice
is arbitrary but for our construction we will impose that H contains the SM electroweak group
GEW as a subgroup. On the other hand, the coset G/H must contain some generators trans-
forming as doublets under the SM generators because the Higgs field is one of the Goldstone
bosons resulting from the G → H spontaneous symmetry breaking. In order to be identified
with the SM Higgs field, it must take a vev to trigger EWSB. However, the vev of a Goldstone
field is not physical since it can be eliminated by means of a global transformation.

This is no longer true when some G breaking terms are introduced in the theory, because the
(pseudo)-Goldstone bosons now dynamically develop a physical potential through loops and
their vev cannot be eliminated since the global symmetry is not exact [52]. One can interpret this
in a geometrical way (see fig. 2.1). Taking the field Σ transforming in the linear representation
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~F 〈θ〉

v
H

FIGURE 2.1: Illustration of the vacuum misalignment mechanism for the case of
G = SO(3) and H = SO(2), where F⃗ = Σ0 and θ = Π. (Figure extracted from

[80]).

RΣ of the global group in eq. (2.28) and replacing the Higgs field by its vev, v, one can define
⟨Σ⟩ ≡ RΣ(⟨ξ⟩)Σ0, parametrizing the misalignment between the chosen reference vacuum and
the actual vacuum.1 The misalignment angle is defined by sin⟨θ⟩ = v/ f . In Composite Higgs
models one is interested in a large separation between the EWSB scale and the compositness
scale, that is, sin⟨θ⟩ ≪ 1. This angle governs the departure from the SM predictions. The
limit sin⟨θ⟩ → 0 for fixed v, corresponds to decoupling the composite sector from the low-
energy physics by sending to infinity the scale f . In this limit, only the Higgs boson remains in
the spectrum while all the other new bound states and resonances decouple. The theory thus
reduces to the SM and the composite Higgs becomes elementary. This mechanism is called
vacuum misalignment [51, 52, 81]. This is what distinguishes a Composite Higgs model from
Technicolor in which f ∼ v. The Higgs vev in this case is generated directly by dimensional
transmutation at the UV without an intermediate scale [82].

In order to ensure a small misalignment angle, one can assume a certain degree of fine-
tuning taking place in the scalar potential ensuring sin⟨θ⟩ ≪ 1. However this option is not
completely satisfactory because the idea behind a Composite Higgs model is precisely to avoid
the Hierarchy Problem by means of some symmetry. This is why in Little Higgs models an
extra mechanism called collective symmetry breaking is introduced to ensure a small mass term
in the potential relative to the quartic coupling and thus leading to a naturally small vev.

2.3. Collective symmetry breaking and Little Higgs

In a general Composite Higgs scenario, the pseudo-Goldstone masses are generated at one-
loop and are proportional to the sources of explicit breaking of the global symmetry. The loops
are cut off at the scale ΛUV ≲ 4π f with f ∼ 1 TeV and, in general, the scalar masses are propor-
tional to ms ≈ c f , with c a constant. However this is not enough to naturally generate a light
Higgs compared to the rest of the resonances because the scale of new physics is being pushed
to the multi-TeV regime due to the non observation of new heavy particles. This implies that
certain amount of fine-tuning on the different parameters of the model is required ensuring
that c ≪ 1. From the theoretical point of view this is very unlikely since we are dealing again
with a sort of “Little” Hierarchy problem. But we can explore another possibility. Let us sup-
pose that instead of a one-loop quadratically divergent contribution this is substituted by a
logarithmically divergent contribution proportional to the scale f instead of ΛUV [83]. In that

1In most of this Thesis we will consider that the only field that gets a vev is the Higgs field.
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case, the leading one loop contribution to the Higgs mass parameter can be roughly estimated
as

µ2 ∼ λ2

16π2 f 2 log
Λ2

UV
f 2 ∼

λ2

8π2 f 2 log(4π), (2.48)

which is of the right order of magnitude to generate the correct EWSB scale if f ∼ 1 TeV, with
λ ≲ 1 any dimensionless coupling. Notice that the quadratic divergences at two-loop level and
beyond do not need to be cut off at the scale f . The two-loop contribution with cut off Λ reads

δµ2 ∼ λ4

(16π2)2 Λ2
UV ∼

λ4

16π2 f 2, (2.49)

and it is subdominant with respect to the logarithmically divergent contribution in eq. (2.48).
Let us discuss how to implement gauge and Yukawa interactions for the Goldstone fields that
can fulfill the above requirements.

To introduce gauge interactions for the Higgs and the rest of scalar resonances, a subgroup
Gg ∈ G is weakly gauged. This is one source of explicit breaking of the global symmetry and
could potentially generate quadratically divergent contributions to the Higgs mass parame-
ter. However, in Little Higgs models, the gauge group is the product of at least two factors
G1 × G2 × . . . , each of which contains an SU(2) × U(1) subgroup. This gets spontaneously
broken to the SM gauge group at the scale f by the same vev that breaks G → H. The gauged
subgroup is embedded in G in such a way that the each of the Gi factors commute with a
subgroup of G that acts non linearly with the Higgs. This implies that if only one of the Gi
is gauged, the remaining part of the global symmetry of the theory is sufficient to ensure that
the Higgs is an exact Goldstone boson, and is therefore massless to all orders in perturbation
theory and even non-perturbatively [83]. Only when the full G1 × G2 × . . . group is gauged
the Higgs ceases to be an exact Goldstone boson and acquires a potential. This structure is
called collective symmetry breaking by gauge interactions. It implies that any non-vanishing
quantum contribution to the Higgs mass parameter must be necessarily proportional to the
product of all the gauge couplings constants corresponding to the different Gi factors relaxing
the degree of divergence to be, at most, logarithmic. If one the coupling constant is set to zero,
this mechanism ensures a vanishing Higgs mass. As a result of the enlarged gauge group,
these models contain additional gauge bosons at the TeV scale responsible for the cancellation
of the quadratically divergent contributions. This is an important difference with respect to
supersymmetric models where such cancellations are due to the contributions of particles with
different statistics.

In addition to the gauge couplings of the Higgs, the model also needs to incorporate Yukawa
interactions. In a generic model with cutoff ΛUV where the Yukawa interactions explicitly break
the global symmetries, they may generate quadratically divergent contributions to the Higgs
mass parameter of size

µ2 ∼ y2
i Nc

i
16π2 Λ2 ∼ y2

i Nc
i f 2, (2.50)

where yi is the Yukawa coupling of the corresponding fermion running in the loop and Nc
i the

number of colors, 1 for leptons and 3 for quarks. With the exception of the top quark, all SM
fermions have small Yukawa couplings, yi ≲ 0.03 and their contribution does not induce any
fine tuning in the Higgs mass for ΛUV ∼ 10 TeV. However, the top quark has a Yukawa of
order one, and the quadratic divergence induced by top loops needs to be eliminated to avoid
fine tuning. Inspired by the mechanism employed for gauge interactions, several Yukawa cou-
plings are introduced in the Lagrangian, each one preserving by itself enough of the global
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symmetry to ensure exact vanishing of the Higgs mass. Again, quantum corrections to the
Higgs mass must involve all Yukawa couplings, and no quadratically divergent contributions
are generated. This requires the introduction of top partners at the TeV scale.

2.4. T-parity

This class of models typically predicts new particles with masses of size f due to the en-
larged symmetry group required to implement the collective symmetry breaking. They are
responsible for the stabilization of the electroweak scale, cancelling the SM quadratically di-
vergent contributions to the Higgs mass parameter. However, the exchange of these heavy
particles results in large corrections to precision electroweak observables [84–86]. This is be-
cause earlier implementations of Little Higgs models, such the Littlest Higgs model [87], do
not contain the custodial SU(2)C global symmetry [88–91], and thus weak isospin is violated.
As a consequence, the mass of the heavy particles must be raised to be compatible with EWPD,
imposing strong lower bounds on the scale f > 4 − 5 TeV, hence generating a tension with
naturalness and again destabilizing the electroweak scale, that is proportional to f according
to eq. (2.48).

One approach to solve this issue is precisely the incorporation of an approximately exact
SU(2)C global symmetry acting on the Higgs sector. For instance, in [89] a model based in
the global group [SO(5)]8 = [SO(5)L]

4 × [SO(5)R]
4 spontaneously broken to [SO(5)L+R]

4 by
the vev of four different tensor fields each one transforming in the bifundamental of SO(5)Li ×
SO(5)Ri, i = 1− 4 is proposed. This gets explicitly broken by gauging a subgroup SO(5) ×
[SU(2)×U(1)]. An alternative and simpler model is presented in [91], based on the global
SO(9) that gets spontaneously broken to SO(5)×SO(4) by the vev of only one symmetric tensor.
The gauge group is given by SO(4)× [SU(2)×U(1)]. However, these models with extended
global and gauge groups are artificially complicated.

On the other hand, a different approach based on the introduction of a new Z2 discrete
symmetry also improves the consistency with precision electroweak observables while keep-
ing the minimal structure of the minimal Little Higgs models. This is called T-parity and was
introduced by Cheng and Low in [92, 93] in analogy to the R-parity in Supersymmetry. This
can be implemented in any Little Higgs model based on a product gauge group. While the SM
particles are T-even, most of the new heavy particles are T-odd and thus pair-produced for-
bidding most of the tree-level contributions from heavy particles to observables involving only
SM particles as external states. The corrections to precision electroweak observables thus enter
at the one loop level, relaxing all the constraints and allowing to lower the scale f , reconciling
these models with naturalness.

Due to T-parity, the new T-odd particles cannot be singly produced, which implies that
direct searches rely on pair-production. Once they are produced, they will eventually decay
into the lightest T-odd particle (LTP), that is stable, since T-parity forbids it from decaying into
lighter particles that are all T-even. Usually the LTP is the heavy partner of the hypercharge
gauge boson due to the smallness of the U(1)Y gauge coupling and the normalization of the
different U(1) generators. The LTP is thus electrically neutral, providing a potential dark matter
candidate and giving rise to missing energy signals in collider experiments.

2.5. A toy model

In this section we illustrate how these mechanisms work in a toy model. This model al-
ready contains all the features that we will encounter in more realistic models. In particular,
the presence of global SU(3) factors [49, 86, 93–96] that act non linearly on the Higgs when a
single gauge or Yukawa coupling is turned on. This ensures that no quadratically divergent
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contributions to the Higgs mass parameter are generated as we will show explicitly in our toy
model. Another feature is the addition of external U(1) factors in order to accommodate all the
fermion hypercharges.

2.5.1. Global symmetries

The toy model is based on the global G = SU(3)1 × SU(3)2 that gets spontaneously broken
to the diagonal H = SU(3)V at the scale f by the vev of a 6 × 6 tensor transforming in the
bifundamental representation of G

Σ0 =

(
03×3 13×3
13×3 03×3

)
, (2.51)

leaving 16 − 8 = 8 Goldstone bosons. This vev is preserved by the 8 SU(3)V generators Ta

satisfying

TaΣ0 − Σ0Ta = 0, (2.52)

that can be written in block diagonal form

Ta =

(
λa 03×3

03×3 λa

)
, (2.53)

where λa, a = 1 − 8 are the Gell-Mann matrices. The coset SU(3)1 × SU(3)2 → SU(3)V is
symmetric. Hence to characterize the broken generators one can define an outer automorphism
in the Lie algebra such that the unbroken generators satisfy Ta aut−→ Σ0TaΣ0 = Ta while the
broken generators Xa aut−→ Σ0XaΣ0 = −Xa and thus

XaΣ0 + Σ0Xa = 0. (2.54)

They can also be written in block diagonal form

Xa =

(
λa 03×3

03×3 −λa

)
. (2.55)

Following the CCWZ formalism, the 8 Goldstone bosons are conveniently collected in the Gold-
stone matrix πa(x)Xa that allows to define the non linear field Ξ

Ξ = eiπaXa/ f =

(
ξ 03×3

03×3 ξ†

)
, Ξ G−→ VΞV†

V (2.56)

where V is an SU(3)1×SU(3)2 transformation and VV(Π, V) is the compensating SU(3)V trans-
formation that depends on the Goldstone fields and V. They can also be written in block diag-
onal form

V =

(
V1 03×3

03×3 V2

)
, VV =

(
U 03×3

03×3 U

)
, (2.57)

where Vi and U belongs to SU(3)i and SU(3)V , respectively. We have also introduced the field
ξ which is one of the pieces we need to construct invariants

ξ = eiΠ/ f , ξ
G−→ V1ξU† = UξV†

2 , (2.58)
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with Π = πa(x)λa and the transformation properties follows straightforwardly from eq. (2.56).
From ξ we can build the field that transforms linearly under G,

Σ = ξ2, Σ G−→ V1ΣV†
2 , (2.59)

that will allow us to write the kinetic term and gauge interactions for the scalar fields. From
now on we will use the notation of matrices 3× 3 and we will work with ξ and Σ.

2.5.2. Gauge symmetries

In order to break the global symmetries and implement the collective symmetry breaking
mechanism, the subgroup Gg = [SU(2)×U(1)]1 × [SU(2)×U(1)]2 is weakly gauged. Each
Gi = [SU(2)×U(1)]i factor commutes with a global factor SU(3)j with i ̸= j. The gauge group
is spanned by the Hermitian and traceless generators

Qa
i =

1
2

(
σa 0
0 0

)
, Yi =

1
6

diag (1, 1,−2) , (2.60)

with σa the three Pauli matrices. The normalization of the hypercharge generator is chosen to
find a Higgs boson among the Goldstone fields. This can be seen as follows. The fundamental
representation 3 of SU(3) decomposes under SU(2)×U(1) [97]

3 = 2y ⊕ 1−2y, (2.61)

because the generators of the global group, in particular the hypercharge generator, are trace-
less. To fix the hypercharge y one uses that the Goldstone matrix Π transforms in the adjoint
representation 8 of SU(3)V . This can be found in the product 3V ⊗ 3∗V = 8 ⊕ 1 and under
SU(2)×U(1) decomposes

8 = 30 ⊕ 10 ⊕ 23y, (2.62)

where we have used eq. (2.61). To identify the Higgs boson with the doublet, one fixes y = 1/6.
As a consequence, the fundamental representation 3 of SU(3) decomposes into an SU(2) dou-
blet with hypercharge 1/6 and a singlet with hypercharge −1/3 while the Goldstone matrix
decomposes into a neutral SU(2) singlet, a real triplet and a complex doublet. In the SM sym-
metric phase it takes the form

Π =



ω0

2
+

η

2
√

3
ω+

√
2

π+

√
2

ω−√
2

−ω0

2
+

η

2
√

3
h + iπ0

2
π−√

2
h− iπ0

2
− 1√

3
η

 . (2.63)

When the gauge group gets spontaneously broken by Σ0 to the diagonal SU(2) × U(1), the
triplet and the singlet becomes the longitudinal modes of the new heavy gauge fields. Finally,
the Higgs takes a vev that spontaneously breaks the SM gauge group to U(1)em and three of
the four components of the complex doublet become the longitudinal modes of the SM gauge
bosons. The only remaining scalar in the physical spectrum is the Higgs boson.
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2.5.3. Lagrangian

Gauge sector

First one adds the gauge boson kinetic term and self interactions

LG =
2

∑
j=1

[
−1

2
tr
(

W̃jµνW̃µν
j

)
− 1

4
BjµνBµν

j

]
, (2.64)

in terms of fields and field strength tensors,

W̃jµ = Wa
jµQa

j , (2.65)

W̃jµν = ∂µW̃jν − ∂νW̃jµ − igj

[
W̃jµ, W̃jν

]
, (2.66)

Bjµν = ∂µBjν − ∂νBjµ. (2.67)

Scalar sector

To build up kinetic terms and gauge interactions for the scalar fields, and eventually obtain
gauge boson mass terms, one defines the covariant derivative for the linear field Σ,

DµΣ = ∂µΣ + ig1Wa
1µQa

1Σ− ig2Wa
2µΣQa

2 − ig′1B1µY1Σ + ig′2B2µΣY2, (2.68)

where we have used that the tensor Σ transforms according to eq. (2.59). Let us point out
that switching off the coupling constants of [SU(2)×U(1)]1 ([SU(2)×U(1)]2), the covari-
ant derivative transforms covariantly under the global SU(3)2 (SU(3)1). Then the scalar La-
grangian given by

LS =
f 2

4
tr
[(

DµΣ
)† DµΣ

]
(2.69)

is invariant under the global SU(3)2 (SU(3)1) and the Higgs cannot develop a mass due to
the interactions of only one of the factors of the gauge group. However, when both couplings
are non vanishing at the same time, all the global SU(3)’s are explicitly broken. Since both
gauge couplings are needed to generate a non vanishing contribution to the Higgs mass, the
divergence is, at most, logarithmic. After evaluating the Feynman diagrams depicted in fig. 2.2,
the leading order contribution reads

δµ2
gauge =

f 2

16π2

(
3
4

g2
1g2

2 +
1

12
g′21 g′22

)
log Λ2, (2.70)

as a consequence of the collective symmetry breaking mechanism.

Fermion sector

In the fermionic sector we will focus on the top quark that iis the heaviest SM particle
and generates quadratically divergent contributions to the Higgs mass. Again, the idea is to
introduce operators that exactly preserve one of the global SU(3) factors while softly breaking
the other. For that purpose the SM top quark doublet qL = (tL, bL) is promoted to a complete
SU(3) multiplet containing a heavy top partner that can cancel the quadratic divergence of the
top quark. However, we showed that the fundamental representation of SU(3) contains an
SU(2) doublet with hypercharge 1/6 and a singlet of hypercharge −1/3. The doublet has the
appropriate quantum numbers to be identified with the SM left-handed quark doublet, but the
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h h

W a
1 W a

2

g1g2

g1g2

(a)

h h

B1 B2

g′1g
′
2

g′1g
′
2

(b)

FIGURE 2.2: One-loop contribution to the Higgs mass squared from gauge bosons
in the gauge eigenbasis. The big blobs represent off-diagonal mass insertions

proportional to g1g2 and g′1g′2.

singlet is a down-type quark and thus cannot compensate for the quadratic divergence of the
top quark. To address this issue let us instead consider the antifundamental representation
3∗. This contains an SU(2) doublet of hypercharge −1/6 and a singlet of hypercharge 1/3.
Nevertheless, extending the global symmetry group to

SU(3)1 × SU(3)2 ×U(1)1 ×U(1)2 (2.71)

one can assign the extra hypercharge of 1/3 for the doublet and the singlet to the external U(1)
factors according to table 2.1. As a consequence, the gauge hypercharge is now the sum of
those in SU(3)1 × SU(3)2 and U(1)1 × U(1)2, preserving the number of U(1) gauge bosons.
This allows us to define the royal triplet

χL =

( −iσ2qL
iUL

)
, χL

G−→ V∗1 χL (2.72)

transforming in the 3∗1 representation of SU(3)1.
To account for the right-handed counterparts of the top quark and the top partner, we also

introduce the incomplete right-handed multiplets

χR =

(
02
itR

)
, χ

′
R =

(
02

iUR

)
, χR

G−→ V∗2 χR, χ′R
G−→ V∗1 χ′R (2.73)

transforming in the 3∗2 and 3∗1 of the global group, respectively. The fields tR and UR are SU(2)
singlets and they also receive the required extra hypercharge from the external U(1) factors
according to table 2.1.

To provide a mass for the top quark and the top partner in this toy model there are two
possible implementations of a Yukawa Lagrangian. The first one is given by

L1
t = −

λ1 f√
2

χLiΣ
∗
ijχRj −

λ2 f√
2

χLχ
′
R + h.c. = −i

λ1√
2

χLiΣ
∗
i3tR −

λ2√
2

ULUR + h.c., (2.74)

where in the last equality we use that the right-handed multiplets are incomplete. Let us care-
fully inspect the symmetries of this implementation of the top quark Lagrangian, since the use
of incomplete multiplets breaks the global symmetries. It is clear that due to the introduction
of the SU(3)1 left-handed royal triplet, the first term is invariant under a global SU(3)1 trans-
formation. However, it only preserves the upper SU(2)2 block of SU(3)2 due to the incomplete
SU(3)2 right-handed multiplet χR. On the other hand, the second term is invariant under
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[SU(2)×U(1)]2 ⊂ SU(3)2 [U(1)′]2 [SU(2)×U(1)]2gauge

qL (2, 1)(− 1
6 ,0)

( 1
3 , 0
)

(2, 1)( 1
6 ,0)

tR (1, 1)(0, 1
3 )

( 1
3 , 0
)

(1, 1)( 1
3 , 1

3 )

UL, UR (1, 1)( 1
3 ,0)

( 1
3 , 0
)

(1, 1)( 2
3 ,0)

TABLE 2.1: Quantum numbers for quarks. The gauged hypercharge U(1)i is the
sum of that in SU(3)i and the one in the extra U(1)′i.

h h

UL tR

λ2

ULUR

λ1

λ1

λ2

FIGURE 2.3: One-loop contribution to the Higgs mass squared from the top quark
and top partners in the gauge eigenbasis. The big blobs are mass insertions pro-
portional to the λ1, λ2 Yukawa couplings in L1

t and L2
t in eqs. (2.74) and (2.75),

respectively. Diagrams with only tL and tR are absent because they are SU(3)1
symmetric.

SU(3)2 but it only preserves the upper SU(2)1 of SU(3)1. Therefore, this Lagrangian prop-
erly implements the collective symmetry breaking mechanism and no quadratically divergent
contributions to the Higgs mass are generated.

Another proposal for the top quark Yukawa Lagrangian is the following. Consider the
product 3⊗ 3⊗ 3 of SU(3). This contains an antisymmetric singlet that can be built with the
totally antisymmetric Levi-Civita tensor. Applying this argument to the indices of both SU(3)
factors, one can construct

L2
t = −

λ1 f√
2

ϵijkϵxyzχLiΣjxΣkyχRz −
λ2 f√

2
χLχ

′
R + h.c.

= −i
λ1 f√

2
ϵijkϵxyχLiΣjxΣkytR −

λ2 f√
2

ULUR + h.c., (2.75)

where in the last expression ϵijk with {i, j, k} = 1, 2, 3 and ϵxy with {x, y} = 1, 2 are the SU(3)1
and SU(2)2 Levi-Civita tensors, respectively. The global symmetries of this Lagrangian are the
same than in the previous case justifying that again no quadratically divergent contributions
are generated. The advantage of this apparently more sophisticated proposal is that it can also
be applied to simple groups that contain different SU(3) factors that mix, as it is the case of the
Littlest Higgs model [87].

On the other hand, the logarithmically divergent contribution to the Higgs mass is non
vanishing and gives a negative correction

δµ2
top = − 3

16π2 f 2λ2
1λ2

2 log Λ2 (2.76)

in both implementations of the top quark Yukawa Lagrangian in eqs. (2.74) and (2.75) from
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the diagram in fig. 2.3. This term can compete with the positive gauge boson contribution in
eq. (2.70), giving rise to a negative Higgs mass squared and thus triggering the EWSB.

Finally, we add the kinetic term and gauge interactions for fermions taking into account
their quantun numbers, given in table 2.1,

LF = iχLγµD∗µχL + iuRγµ

[
∂µ + ig′1

1
3

B1µ + ig′2
1
3

B2µ

]
tR + iURγµ

[
∂µ + ig′1

2
3

B1µ

]
UR, (2.77)

where the covariant derivative is given by

Dµ = ∂µ − ig1Wa
1µQa

1 + ig
′
1

(
Y1 −

1
3
13×3

)
B1µ. (2.78)

Then, the full Lagrangian of this theory is

L = LG + LS + L1(2)
t + LF. (2.79)

This toy model contains all the features of a Little Higgs model. In particular it is free
of quadratically divergent contributions to the Higgs mass thanks to the use of the collective
symmetry breaking mechanism. However the new heavy particles can generate dangerous
contributions to observables that are very constrained by EWPD as we explained in sec. 2.4. For
that reason, in the following we will show how to implement the discrete T-parity symmetry
in our toy model.

2.5.4. T-parity implementation

Gauge sector

The T-parity leaves invariant the SM fields (T-even) and adds a minus sign to the new
(heavy) fields (T-odd). Thus the latter are pair-produced, relaxing direct and indirect con-
straints from EWPD. The action of T-parity interchanges the two gauge groups

G1
T←→ G2, (2.80)

which requires that the coupling constants of both copies must be equal g1 = g2 =
√

2g and
g′1 = g′2 =

√
2g′. With this condition the Lagrangian in eq. (2.64) is not only gauge but also T-

parity invariant. The T-odd and T-even combinations of Wa
1 , Wa

2 and B1, B2 are identified with
the new and the SM gauge bosons, respectively.

Scalar sector

To define T-parity consistently in the scalar sector, the would-be Goldstone bosons η and
ω±, ω0 must be T-odd while the Higgs remains T-even. For that purpose, we introduce the
element Ω ∈ SU(3) such that

Π T−→ −ΩΠΩ, Ω = diag (−1,−1, 1) . (2.81)

It is important to notice that Ω commutes with the gauge generators but does not commute
with the full set of SU(3) generators. The T-parity transformation of the Goldstone matrix
implies

ξ
T−→ Ωξ†Ω, Σ T−→ ΩΣ†Ω. (2.82)
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The scalar Lagrangian in eq. (2.69) with g1 = g2 =
√

2g and g′1 = g′2 =
√

2g′ is T-parity and
gauge invariant and provides the gauge boson mass terms. However, the action of the collec-
tive symmetry breaking mechanism is now hidden due to the lost of the explicit dependence
on gauge couplings of the different gauge groups.

Regarding to the gauge boson contributions to the Higgs mass term, these are given by the
same diagrams of fig. 2.2 giving rise to the same result of eq. (2.70) with g1 = g2 =

√
2g and

g′1 = g′2 =
√

2g′.

Fermion sector

Introducing T-parity in the fermion sector is less straightforward. Notice that either of the
proposals for the top quark Yukawa Lagrangian in eqs. (2.74) and (2.75) are not invariant under
the T-parity transformations (2.82) assuming that χL and tR are T-even states. For that reason,
keeping tR T-even, one introduces two left-handed royal triplets in the 3∗1 and 3∗2 representations
of the global group

χ1L =

( −iσ2q1L
iU1L

)
, χ2L =

( −iσ2q2L
iU2L

)
, χ1L

G−→ V∗1 χ1L, χ2L
G−→ V∗2 χ2L. (2.83)

For the T-parity transformation of these multiplets one can contemplate two different options,

a) χ1L
T←→ Ωχ2L, (2.84)

b) χ1L
T←→ −χ2L, (2.85)

that differ in the T-parity transformation of the left-handed top partner fields U1L
T←→ ±U2L.

To provide a mass for the top partners, one adds their corresponding right-handed coun-
terparts, U1R and U2R, in incomplete right-handed multiplets transforming in the 3∗1 and 3∗2
representations of the global group, respectively 2

χ′1L =

(
02

iU1R

)
, χ′2L =

(
02

iU2R

)
, χ′1R

G−→ V∗1 χ′1R, χ′2R
G−→ V∗2 χ2R. (2.86)

transforming consistently under T-parity as

a) U1R
T←→ U2R, (2.87)

b) U1R
T←→ −U2R. (2.88)

Then the first proposal for the top quark Yukawa Lagrangian in eq. (2.74), invariant under the
T-parity realization in eqs. (2.84) and (2.87), reads

L1a
t = −i

λ1 f
2

[
χ1LiΣ

∗
i3 + χ2LiΣ

T
i3

]
uR −

λ2 f√
2

[
U1LU1R + U2LU2R

]
+ h.c., (2.89)

providing a mass for the top quark contained in the T-even combination of q1L and q2L. The
dependence on Ω ∈ SU(3) is eliminated using unitarity and Ω33 = 1. To inspect the global
symmetries of this Lagrangian, let us first focus on the terms proportional to λ1. Due to the
transformation properties of Σ and treating tR as an spurious field, the first term requires tR
transforming as a 3∗2 like in the case without T-parity in eq. (2.73). On the other hand, the second
term would require tR transforming as a 3∗1 . Hence, an embedding similar to that in eq. (2.73) is

2They could also be singlets under the full SU(3)1 × SU(3)2 and everything would still be consistent. However
we prefer to keep the theory as symmetric as possible.



2.5. A toy model 29

[SU(2)×U(1)]2 ⊂ SU(3)2 [U(1)′]2 [SU(2)×U(1)]2gauge

q1L (2, 1)(− 1
6 ,0)

( 1
3 , 0
)

(2, 1)( 1
6 ,0)

q2L (1, 2)(0,− 1
6 )

(
0, 1

3

)
(1, 2)(0, 1

6 )

tR (1, 1)(0,0)

( 1
3 , 1

3

)
(1, 1)( 1

3 , 1
3 )

U1L, U1R (1, 1)( 1
3 ,0)

( 1
3 , 0
)

(1, 1)( 2
3 ,0)

U2L, U2R (1, 1)(0, 1
3 )

(
0, 1

3

)
(1, 1)(0, 2

3 )

TABLE 2.2: Quantum numbers for quarks transforming in a linear representation
of the global group. The gauged hypercharge U(1)i is the sum of that inside

SU(3)i and the one in the extra U(1)′i.

h h

U1L tR

λ2

U1LU1R

λ1

λ1

λ2

(a)

h h

U2L tR

λ2

U2LU2R

λ1

λ1

λ2

(b)

FIGURE 2.4: One-loop contribution to the Higgs mass squared from the top quark
and top partners in the gauge eigenbasis in the toy model with T-parity. The big

blobs are mass insertions proportional to the Yukawa couplings λ1 and λ2.

not consistent and tR must be a singlet under SU(3)1 × SU(3)2 with all its gauge hypercharge
laying in the external U(1) factors. As a consequence, the first term is invariant under SU(3)1×
SU(2)2 transformations while the second term is invariant under SU(2)1× SU(3)2, leading to a
potential logarithmically divergent contribution to the Higgs mass proportional to λ4

1 from the
integration of χ1L and χ2L. However, this is not the case because Σ∗i3 has only a free index in
SU(3)1 while ΣT

i3 has a free index in SU(3)2 and the only possible invariant operator that can
be generated is

Olog
1a =

(
Σ∗3iΣ

T
i3

)2
(2.90)

which, from unitarity and complete multiplets, does not depend on the Goldstone fields. Re-
garding the term proportional to λ2, the first one preserves SU(2)1 × SU(3)2 while the second
one preserves SU(3)1 × SU(2)2. So the first term proportional to λ1 and the first proportional
to λ2 can combine in exactly the same fashion as in the case without T-parity, and the same
for the two other terms. As a result of this, the implementation of T-parity in this Lagrangian
leads to two copies of the case without T-parity, hence contributing to the Higgs mass with just
a logarithmic dependence on the cutoff proportional to λ2

1λ2
2 as one can check evaluating the

Feynman diagrams in fig. 2.4.
The second proposal for the top quark Lagrangian in eq. (2.75) invariant under the T-parity

transformations in eqs. (2.84) and (2.87) is given by

L2a
t = −i

λ1 f
2

ϵijkϵxy

[
χ1LiΣjxΣky + χ2LiΣ

†
jxΣ†

ky

]
tR −

λ2 f√
2

[
U1LU1R + U2LU2R

]
+ h.c., (2.91)
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SU(2)×U(1) ⊂ SU(3)V U(1)′1+2 [SU(2)×U(1)]gauge

qHR 2− 1
6

1
3 2 1

6

xHR, xHL 1 1
3

1
3 1 2

3

TABLE 2.3: Quantum numbers for quarks transforming in a non linear represen-
tation of the global group. The gauged hypercharge is the sum of that inside

SU(3)V and the one in the extra U(1)′1+2.

with {i, j, k} = 1, 2, 3 and {x, y} = 4, 5. In order to eliminate the explicit dependence on Ω ∈
SU(3) we used that the Levi-Civita tensor ϵijk is invariant under SU(3) transformations and, on
the other hand, the upper 2× 2 block of Ω is minus the identity and thus leaving ϵxy invariant.
Notice that each of the terms proportional to λ1 should have its own Levi-Civita tensors since in
the first term the i, j, k are SU(3)1 indices and k, l are SU(2)2 indices while for the second term
is just the opposite. However, they have the same mathematical expression which allows to
write them as a common factor for both terms. This in turn implies that the global symmetries
are exactly the same as in eq. (2.89), justifying that the Higgs mass squared only receives a
logarithmically divergent contribution proportional to λ2

1λ2
2. One can explicitly check that the

potential logarithmic contribution proportional to λ4
1 coming from the integration of χ1L and

χ2L leads to

Olog
2a =

(
ϵijkϵxyϵij′k′ϵx′y′ΣjxΣkyΣ†

x′ j′Σ
†
y′k′

)2
, (2.92)

that does not depend on the Goldstone fields after using ϵijkϵij′k′ = δjj′δkk′ − δjk′δkj′ and the
unitarity of Σ.

On the other hand, implementing the T-parity transformations in eqs. (2.85) and (2.88) in
both proposals for the top quark Yukawa Lagrangian leads to

L1b
t = −i

λ1

2

[
χ1LiΣ

∗
i3 − χ2Li(ΩΣTΩ)i3

]
tR −

λ2√
2

[
U1LU1R + U2LU2R

]
+ h.c.. (2.93)

and

L2b
t =− i

λ1

2
ϵijkϵxy

[
χ1LiΣjxΣky − χ2Li(ΩΣ†Ω)jx(ΩΣ†Ω)ky

]
tR

− λ2√
2

[
U1LU1R + U2LU2R

]
+ h.c. (2.94)

These Lagrangians also share the same global symmetries. Out of the two terms proportional to
λ1, the first one is invariant under SU(3)1. However, contrary to the Yukawa Lagrangians (2.74)
and (2.75), the second term depends explicitly on Ω, that cannot be eliminated, and thus it is
not invariant under global SU(3)2 transformations. In L1b

t the element Ω cannot be eliminated
using unitarity because the transformation under T-parity of χ1L in eq. (2.85) does not involve
Ω. On the other hand, in L2b

t , one cannot apply the SU(3) invariance of ϵijk because there is not
the appropriate number of Ω’s to contract with each index of the Levi-Civita tensors. This may
generate a quadratically divergent contribution to the Higgs mass proportional to λ2

1. However,
the unitarity of Ω is enough to forbid this potential quadratic divergence. This can be explicitly
shown in each case inspecting the only operators that arise at one loop proportional to λ2

1 after
integrating χ2L and tR,

Oquad
1b = (ΩΣ∗Ω)3i(ΩΣTΩ)i3, (2.95)
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FIGURE 2.5: One-loop contribution to the Higgs mass squared from LH in the
gauge eigenbasis. The big blobs represent off-diagonal mass insertions propor-

tional to κ and mass insertions proportional to Mx.

Oquad
2b = ϵijkϵij′k′ϵxyϵx′y′(ΩΣ†Ω)jx(ΩΣ†Ω)ky(ΩΣΩ)x′ j′(ΩΣΩ)y′k′ . (2.96)

The first operator does not depend on the Goldstone fields because Ω and Σ are unitary. For
the second operator, after applying ϵijkϵij′k′ = δjj′δkk′ − δjk′δkj′ and unitarity, it does not depend
on the scalar fields either. Regarding the logarithmically divergent contributions proportional
to λ4

1, the integration of χ2L leads to the same operators Oquad
1b and Oquad

2b but squared. On the
other hand, the integration of χ1L, χ2L and tR, combining properly the different SU(3) indices
leads to

Olog
1b =

[
Σ∗3iΣ

T
i3

] [
(ΩΣTΩ)3i(ΩΣ∗Ω)i3

]
=
[
Σ∗3iΣ

T
i3

]2
(2.97)

Olog
2b =

[
ϵijkϵxyϵij′k′ϵx′y′ΣjxΣkyΣ†

x′ j′Σ
†
y′k′

]
×
[
ϵijkϵxyϵij′k′ϵx′y′(ΩΣΩ)jx(ΩΣΩ)ky(ΩΣ†Ω)x′ j′(ΩΣ†Ω)y′k′

]
=
[
ϵijkϵxyϵij′k′ϵx′y′ΣjxΣkyΣ†

x′ j′Σ
†
y′k′

]2
, (2.98)

that due to the unitarity of Ω do not depend on the Goldstone fields. Therefore this T-parity
realization also provides a contribution to the Higgs mass squared proportional to λ2

1λ2
2 from

the diagrams in fig. 2.4.
One may think that depending on the T-parity implementation, the diagrams in fig. 2.4

would give a different result. However, the two different T-parity realizations only differ in the
sign of the couplings of U2L to tR. Since there are two of those couplings in the second diagram
of fig. 2.4, the same contribution is generated in both cases. Another crucial feature is that there
is no diagram mixing U1 and U2 as we discussed above.

Contrary to the case without T-parity, this is not the end of the story. Due to the introduction
of two different doublets q1L and q2L, their T-odd combination dubbed mirror quarks, remains
massless at this stage. To provide it with a heavy vector-like mass proportional to f we compose
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two incomplete left-handed multiplets in the anti-fundamental representation of SU(3)1 and
SU(3)2 respectively

Ψ1 =

( −iσ2q1L
0

)
, Ψ2 =

( −iσ2q2L
0

)
, (2.99)

with the same transformation properties under the global group and T-parity as those for χ1L,
χ2L in eqs. (2.83), (2.84) and (2.85). They are coupled through the ξ field to a complete right-
handed multiplet transforming in the 3∗ of SU(3)V

ΨR =

( −iσ2qHR
ixHR

)
, ΨR

G−→ U∗ΨR, (2.100)

where U is the non linear transformation depending on V1, V2 and Π, that becomes linear
when V1 = V2 = U ∈ SU(3)V . Under the SM gauge group ΨR decomposes in a doublet with
hypercharge 1/6 and a singlet of hypercharge 2/3 with quantum numbers under the different
factors of the global symmetry group given in table 2.3. Notice that, as a consequence of T-
parity and the complete ΨR multiplet, the fermion content of the model is, at least, doubled
with respect to the case without T-parity. Under the different T-parity implementations ΨR
transforms

a) ΨR
T←→ ΩΨR (2.101)

b) ΨR
T←→ −ΨR, (2.102)

that differ on the T-parity assignation of the right-handed field xHR. Consequently one can
construct two different versions of a Yukawa Lagrangian

a) La
H = −κ f

(
Ψ1ξ∗ + Ψ2ξT

)
ΨR + h.c. (2.103)

b) Lb
H = −κ f

(
Ψ1ξ∗ + Ψ2ΩξTΩ

)
ΨR + h.c., (2.104)

depending on the T-parity realization. Let us analyse each option. In option a) the matter con-
tent of the right-handed multiplet ensures that the Lagrangian respects the collective symmetry
breaking mechanism. The first term is invariant under SU(3)2 preserving an SU(2)1 ⊂ SU(3)1
and the second term is invariant under SU(3)1 preserving an SU(2)2 ⊂ SU(3)2 and hence the
Higgs mass can only receive a logarithmically divergent contribution from these interactions
proportional to κ4 from the two first diagrams in fig. 2.5. However, in option b) the second term
is not invariant under SU(3)1 global transformations due to the presence of Ω. This could yield
again to a potential quadratically divergent contribution to the Higgs mass from the integration
of Ψ2 and ΨR. However, the only operator that can contribute to this quadratic divergence has
the form

Oquad
Rb = tr(A†ΩξTΩBB†Ωξ∗ΩA), (2.105)

where

A =

( −iσ2

0

)
, B =

( −iσ2

i

)
(2.106)

take into account that Ψ2 and ΨR are incomplete and complete multiplets, respectively. This
operator does not depend on the Goldstone fields due to the unitarity of Ω and the complete
ΨR in eq. (2.100) that implies BB† = 13×3.
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On the other hand, to provide a heavy mass for the right-handed field xHR we introduce a
left-handed singlet xHL to build

Lx = −MxxHLxHR + h.c.. (2.107)

The mass term for the fermion singlet is not invariant under the global SU(3)V , but without
involving the Higgs, it is unable to reintroduce a quadratically divergent contribution to the
Higgs mass. However, logarithmically divergent contributions are generated from the Feyn-
man diagrams in fig. 2.5. Assuming a single family of quarks those read

δµ2
H,a =

3
4π2 log Λ2

(
−κ4 f 2 +

κ2

2
M2

x

)
, (2.108)

δµ2
H,b =

3
4π2 log Λ2 f 2 +

κ2

2
M2

x, (2.109)

for the T-even and T-odd realization, respectively. This kind of contributions are typical in
Little Higgs model with T-parity. Contrary to the top sector, they differ because the second
Feynman diagram in fig. 2.5 involves couplings of xHR with a t1L and a t2L and those with t2L
have opposite sign in the different T-parity implementations. For the Littlest Higgs model with
T-parity these are discussed in more detail in Appendix A.

Finally we add the kinetic term and gauge interactions for all the fermions using the quan-
tum numbers given in tables 2.2 and 2.3. On the one hand, for the fermions transforming
linearly

LF = iχ1LγµD1∗
µ χ1L + iχ2LγµD2∗

µ χ2L + iuR

[
∂µ + i

√
2g′
(

1
3

B1µ +
1
3

B2µ

)]
tR

+ iU1R

(
∂µ + i

√
2g′

2
3

B1µ

)
U1R + iU2R

(
∂µ + i

√
2g′

2
3

B2µ

)
U2R, (2.110)

where the covariant derivatives read

D1
µ = ∂µ − i

√
2gWa

1µQa
1 + i
√

2g′
(

Y1 −
1
3
13×3

)
B1µ (2.111)

D2
µ = ∂µ − i

√
2gWa

2µQa
2 + i
√

2g′
(

Y2 −
1
3
13×3

)
B2µ, (2.112)

independently on the action of T-parity. On he other hand, the CCWZ formalism (see eq. (2.46))
provides the kinetic term and gauge interactions for the right-handed fermions transforming
non linearly under the global group in eq. (2.100). Applying invariance under the realization
(2.101) of the discrete T-parity symmetry leads to

La
F′ = iΨRγµ

(
∂µ +

1
2

ξT(D1
µξ)∗ +

1
2

ξ∗(D2
µξ)T +

1
6

B1µ13×3 +
1
6

B2µ13×3

)
ΨR (2.113)

or under the alternative realization (2.102)

Lb
F′ = iΨRγµ

(
∂µ +

1
2

ξT(D1
µξ)∗ +

1
2

Ωξ∗(D2
µξ)TΩ +

1
6

B1µ13×3 +
1
6

B2µ13×3

)
ΨR, (2.114)

where we used that Ω commutes with the gauge generators. The covariant derivatives of the ξ
field under SU(3)i are defined as

D1
µξ = ∂µξ −

√
2igWa

1µQa
1ξ +

√
2ig′B1µY1ξ (2.115)
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D2
µξ = ∂µξ +

√
2igWa

2µξQa
2 −
√

2ig′B2µξY2. (2.116)

The full Lagrangian invariant under T-parity that implements the collective symmetry break-
ing mechanism is given by

L = LG + LS + Lt + LH + Lx + LF + LF′ . (2.117)

2.6. Chapter summary

In this chapter we have introduced the general formalism to build a consistent Little Higgs
model that addresses the Hierarchy problem.

The first part has been devoted to the CCWZ formalism that allows to consider the Higgs
as one of the Goldstone bosons resulting from the spontaneous breaking of a global symmetry.
As far as this global symmetry remains exact, none of the Goldstone fields develops a potential
but only derivative interactions.

In the following step, the addition of different gauge and Yukawa interactions for the Gold-
stone fields breaks the global symmetries and a potential for the Goldstone fields is generated
through loops. However, it is customary a mechanism that controls how this breaking prop-
agates to the scalar fields, eliminating the quadratically divergent contributions to the Higgs
mass and avoiding the reintroduction of the fine-tuning we try to eliminate. Such a mechanism
is called collective symmetry breaking. Each of the breaking terms preserves a different sub-
group of the global symmetry that acts non linearly on the Higgs and thus, individually, any
of them can generate a mass. However, the combination of several of these terms break all the
global symmetries protecting the Higgs, generating a squared mass that is not quadratically
sensitive to the cutoff scale.

As consequence of the extended global and gauge symmetries, there are new heavy par-
ticles at the TeV scale. To avoid unacceptable large contributions to the electroweak precision
observables, a new discrete symmetry called T-parity is implemented in such a way that the SM
particles are T-even and most of the new heavy particles are T-odd and pair-produced, relaxing
direct and indirect constraints.

In the final part we have built a toy model implementing all the previous features. This is
based on the global symmetry group SU(3)1 × SU(3)2 spontaneously broken to SU(3)V at a
scale f ∼ TeV leading to 8 Goldstone bosons. To implement the collective symmetry breaking,
a subgroup [SU(2)×U(1)]1 × [SU(2)×U(1)]2 of the global symmetry is weakly gauged and
gets spontaneously broken to the the diagonal SU(2) × U(1) ⊂ SU(3)V identified as the SM
gauge group giving rise to 4 heavy gauge fields. Once the SM gets spontaneously broken,
only the Higgs field remains as a physical Goldstone boson. Since each factor of the gauge
group leaves an exact SU(3) factor of the global symmetry untouched, the Higgs mass does not
develop a quadratically divergent contribution proportional to the gauge couplings of just one
of the factors. However, the combination of the gauge couplings of both factors generate just a
logarithmically divergent contribution to the Higgs mass.

Regarding fermions, the top quark has the largest Yukawa coupling in the SM and generates
a quadratically divergent contribution to the Higgs mass. To implement the collective symme-
try breaking in this sector, one needs to enforce an SU(3) global symmetry promoting the SM
left-handed quark doublet to a complete SU(3) triplet, containing a heavy top partner. How-
ever, the fundamental representation of SU(3) does not contain an extra up-type quark, but a
down-type quark. Hence, to accommodate the quantum numbers of the top partner, the global
symmetry group needs to be enlarged with an extra U(1)1 ×U(1)2. The gauged hypercharge
Yi is thus the sum of the hypercharge inside of the SU(3)i factor and the one laying in the extra
U(1)i factor, preserving the number of U(1) gauge bosons. Using the extended global symme-
try group, two different kinds of Yukawa Lagrangians are built. They provide the top quark
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with a a mass and couplings to the Higgs as well as a heavy mass of size f for the top partner,
without generating a quadratically divergent contribution to the Higgs mass at one loop. On
the other hand, the logarithmically divergent contribution has a negative sign and can compete
with the gauge boson contribution, hence leading to the SM spontaneous symmetry breaking.

In order to avoid direct and indirect constraints from EWPD due to the heavy new particles,
the discrete T-parity symmetry is implemented in the toy model. T-parity interchanges the
factors of the gauge group and so the couplings constants to both of them must be equal. As
a consequence the new (heavy) gauge bosons are T-odd while the SM gauge bosons are T-
even. To be consistent, all would-be Goldstone bosons must be T-odd except for the Higgs
doublet. For that purpose, one introduces the matrix Ω ∈ SU(3) that commutes with the
gauge generators but not with the full global symmetry. The implementation of T-parity in
the top sector is less straightforward. It requires two different SU(3) left-handed multiplets
that include two top partners that can be related through T-parity in two different ways. The
T-even combination contains the T-even left-handed quark doublet that gets a mass from the T-
invariant version of the Yukawa Lagrangians introduced in the case without T-parity, together
with the T-even and T-odd heavy top partners. However, there still remains a massless T-odd
combination of left-handed quark doublets (mirror quarks). To provide them with a vector-like
mass proportional to f one introduces a complete right-handed multiplet transforming non
linearly under SU(3)V that contains the right-handed counterpart of the mirror quark doublet
and an extra singlet than can be either T-even or T-odd. Left and right-handed multiplets
are coupled through the non linear-field ξ to build a new Yukawa Lagrangian. Finally, one
introduces the left-handed counterpart of the singlet to to provide it with a vector-like mass.
This singlet is essential to cancel the quadratically divergent contribution to the Higgs mass
squared generated by the mirror quark doublets. As a consequence of the introduction of the
T-parity, the fermion spectrum at least doubles with respect to the case without T-parity.

All these features will be implemented in the Littlest Higgs model with T-parity in the next
chapter.
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Chapter 3

The Littlest Higgs model with T-parity

This chapter reviews the Littlest Higgs model with T-parity (LHT) as a paradigmatic example of a
Composite Higgs model. Its prominent feature is the implementation of the discrete T-parity symmetry
to alleviate direct and indirect constraints from EWPD. To that end, the SM particles are T-even and
(most of) the new particles are T-odd and pair-produced. This has an impact on the phenomenology
that we will show. We will study in particular how the usual matter content together with the non
trivial interplay between the non linear realization of the global symmetry and T-parity break the gauge
invariance of the original model. This chapter ellaborates on earlier studies [61, 64] and is based on
original work published in refs. [65, 68].

3.1. Littlest Higgs model with T-parity setup

3.1.1. Requirements

Here we closely follow the discussion in [87]. The goal is to realize the Higgs as the pseudo-
Goldstone boson whose low energy dynamics comes from an approximate global symmetry in
a way that its mass is not quadratically sensitive to the cutoff at one loop. As a consequence
the model will be weakly coupled up to energies one loop factor above the electroweak scale.

We assume that the Higgs is part of a pseudo-Goldstone multiplet parametrizing a coset
space G/H, with the decay constant f of the order of a TeV. As previously emphasized, the
origin of this symmetry breaking pattern is irrelevant since the construction will ensure that the
electroweak scale is insensitive to it. The sigma model model does not spontaneously break the
SM gauge group at the scale f , so the subgroup H should contain an SU(2)×U(1) subgroup.
As in the SM, the electroweak interactions will induce at one loop a quadratically divergent
mass for the Higgs. To avoid this we use the collective symmetry breaking mechanism: we
assume that G contains a weakly gauge subgroup consisting of two copies of SU(2)×U(1) :
G ⊃ G1 × G2 = [SU(2)×U(1)]2. Each Gi must commute with a different subgroup of G that
acts non linearly on the Higgs, hence protecting it from developing a mass. The combination of
both types of weak gauge interactions breaks all the global symmetries that act on the Higgs,
and then it ceases to be an exact Goldstone boson. The quadratically divergent contributions
to the Higgs mass from gauge interactions must involve both types of couplings, and hence
appear first at two loops. In this case the Higgs mass squared is raditatively stable with a cutoff
of order 10 TeV, when the model becomes strongly coupled and this effective description looses
its validity.

Let us now look for the minimal implementation of the above requirements. Since G con-
tains the subgroup [SU(2)×U(1)]2 it must be at least of rank 4. Also G must contain two
different subgroups of the form Gi × Xi, i = 1, 2, where Xi acts non linearly on the Higgs. Fur-
thermore each Xi must contain an SU(2)×U(1) subgroup with some generators transforming
like doublets. Taking Xi = SU(3)i and G = SU(5) we fulfil the aforementioned requirements.
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A candidate for the subgroup H is SO(5), which contains the diagonal part of the product
G1 × G2. Then we will consider the coset SU(5)/SO(5).

Since each gauge group Gi commutes with a different SU(3) global symmetry subgroups
of SU(5), none of them alone can generate a potential for the Higgs. The two gauge groups
together, however, break all global symmetries protecting the Higgs. As a consequence, the
Higgs mass is proportional to both gauge couplings and a quadratic divergence cannot be
generated at one loop.

3.1.2. Global symmetries

Here we will describe the implementation of the global symmetries. The model is based on
the global symmetry group G = SU(5) broken spontaneously to H = SO(5) by the vev of a
symmetric tensor,1

Σ0 =

 02×2 0 12×2
0 1 0

12×2 0 02×2

 , (3.1)

leaving 24− 10 = 14 broken generators. This spontaneous breaking direction fixes the embed-
ding of SO(5) in SU(5) with the fundamental representation of the latter reduced to the defining
(real) representation of the former. The vacuum is preserved by the unbroken generators ful-
filling the relation

TaΣ0 + Σ0TaT = 0. (3.2)

Since SU(5)/SO(5) is a symmetric coset there is an inherited automorphism in the Lie algebra
[97]. The above expression suggests the definition of the inner automorphism

Ta aut−→ −Σ0TaTΣ0 = Ta, (3.3)

where the last equality follows from eq. (3.2). Thus the unbroken generators commute with the
automorphism. The set of broken generators anticommute with the automorphism and thus
are orthogonal to the previous set

Xa aut−→ −Σ0XaTΣ0 = −Xa. (3.4)

This characterizes the broken generators as the set that verifies

XaΣ0 − Σ0XaT = 0. (3.5)

As a result of this automorphism, broken and unbroken generators verify the following schematic
commutation relations

[T, T] ∼ T, [T, X] ∼ X, [X, X] ∼ T, (3.6)

The first two equations are general for any subgroup of a group. However the third one is only
valid for a symmetric coset. Without loss of generality, for the rest of the work we will take an
orthonormal and hermitian basis of generators. Following the CCWZ formalism, one defines
the Goldstone matrix Π = πaXa. This is the key ingredient to introduce the nonlinear field ξ

1The global group only contains the electroweak part of the SM. One must add an external SU(3) color factor to
include strong interactions.
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that under the global group transforms,

ξ = eiΠ/ f , ξ
G−→ VξU† (3.7)

where f is the scale of spontaneous symmetry breaking of the global group, V is an SU(5) trans-
formation and U = U (V, Π) is the compensating SO(5) non linear transformation, depending
on V and the Goldstone fields encoded in Π. This non linear transformation preserves the ex-
ponential form of the transformed ξ. At leading order in the f expansion, the transformation
of ξ along the direction of the broken generators corresponds to a shift transformation on the
Goldstone fields as pointed out in chapter 2.

Let us derive one of the most relevant properties that the non linear transformation U veri-
fies. The characterization of the broken generators in eq. (3.5) leads to Π = Σ0ΠTΣ0 and using
that Σ2

0 = 15×5 one obtains

ξ = Σ0ξTΣ0, (3.8)

independent of the chosen basis to parametrize the Goldstone fields. Applying the transforma-
tion given by the CCWZ formalism in eq. (3.7) to the previous expression and using eq. (3.2)
together with the hermiticity of the generators that implies UΣ0 = Σ0U∗ one gets

VξU† = Σ0(VξU†)TΣ0 = UξΣ0VTΣ0. (3.9)

Eq. (3.9) can be interpreted as a definition of the non linear transformation U. It is a conse-
quence of the particular embedding of SO(5) in SU(5) and the action of the inner automorphism
over the Lie algebra.

This formalism allows to define a tensor field Σ that transforms linearly under the global
symmetry group

Σ = ξΣ0ξT = ξ2Σ0, Σ G−→ VΣVT, (3.10)

where we have used eq. (3.5) to commute ξ with Σ0. This field will allow to build the kinetic
terms and gauge interactions for the Goldstone fields.

3.1.3. Gauge symmetry

The gauge subgroup is generated by the hermitian and traceless generators

Qa
1 =

1
2

 σa 0 0
0 0 0
0 0 02×2

 , Y1 =
1
10

diag (3, 3,−2,−2,−2) , (3.11)

Qa
2 =

1
2

 02×2 0 0
0 0 0
0 0 −σa∗

 , Y2 =
1
10

diag (2, 2, 2,−3,−3) , (3.12)

with σa the three Pauli matrices. For the gauge generators the normalization used is tr
(

Qa
j Qb

k

)
=

1
2 δabδjk and tr

(
YjYk

)
= 1

10 δjk +
1
5 and the rest of traces vanish. Thanks to the automorphism de-

fined in eq. (3.3), one can relate the generators of both copies of SU(2) × U(1) through the
expressions

Qa
1 = −Σ0QaT

2 Σ0, Y1 = −Σ0YT
2 Σ0, (3.13)
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that allows a consistent definition of the discrete T-parity symmetry. The vev along the direc-
tion of Σ0 also breaks spontaneously the gauge group down to the diagonal subgroup SU(2)L×
U(1)Y identified as the SM gauge group, generated by the combinations {Qa

1 + Qa
2, Y1 + Y2} ⊂

{Ta}, while the unbroken combinations is a subset of the broken generators {Qa
1 −Qa

2, Y1 −Y2} ⊂
{Xa}. The set of broken generators span the Goldstone matrix

Π =



−ω0

2
− η√

20
−ω+

√
2

−i
π+

√
2

−iΦ++ −i
Φ+

√
2

−ω−√
2

ω0

2
− η√

20
v + h + iπ0

2
−i

Φ+

√
2

−iΦ0 + ΦP
√

2

i
π−√

2
v + h− iπ0

2

√
4
5

η −i
π+

√
2

v + h + iπ0

2

iΦ−− i
Φ−√

2
i
π−√

2
−ω0

2
− η√

20
−ω−√

2

i
Φ−√

2
iΦ0 + ΦP
√

2
v + h− iπ0

2
−ω+

√
2

ω0

2
− η√

20


, (3.14)

where v is the Higgs vev. Under the SM gauge group the Goldstone matrix decomposes as

Π : 10 ⊕ 30 ⊕ 21/2 ⊕ 31, (3.15)

including a complex symmetric SU(2) triplet and its hermitian conjugate

Φ =

 −iΦ++ −i
Φ+

√
2

−i
Φ+

√
2
−iΦ0 + ΦP
√

2

 , Φ† =

 iΦ−− i
Φ−√

2

i
Φ−√

2
iΦ0 + ΦP
√

2

 , (3.16)

the SM Higgs doublet

H =

 iπ+

v + h + iπ0
√

2

 , (3.17)

plus an SU(2) triplet

ω =

 −
ω0

2
−ω+

√
2

−ω−√
2

ω0

2

 (3.18)

and a singlet, η. After SSB, the latter two will become the longitudinal modes of the heavy
gauge fields.

3.1.4. Lagrangian

Gauge sector

In the construction of the Lagrangian we take into account the action of the discrete T-parity
symmetry. This is introduced to keep the SM gauge bosons T-even while the new ones are T-
odd and thus pair-produced, relaxing direct and indirect constraints from EWPD [93, 98]. After
the spontaneous breaking of the global symmetry, the set of T-odd gauge bosons are naturally
heavy while the SM gauge bosons remain massless. The action of T-parity on the gauge sector
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consists of an interchange of the two gauge groups

G1
T←→ G2. (3.19)

This requires that the coupling constants of both copies must be equal g1 = g2 =
√

2g, g′1 =

g′2 =
√

2g′, with the first set of couplings referring to SU(2) and the second to U(1). The gauge
Lagrangian then takes the form

LG =
2

∑
j=1

[
−1

2
tr
(

W̃jµνW̃µν
j

)
− 1

4
BjµνBµν

j

]
, (3.20)

in terms of fields and field strength tensors,

W̃jµ = Wa
jµQa

j , W̃jµν = ∂µW̃jν − ∂νW̃jµ − i
√

2g
[
W̃jµ, W̃jν

]
, Bjµν = ∂µBjν − ∂νBjµ, (3.21)

where in the first expression the index j is fixed. Before the electroweak SSB, the SM gauge
bosons come from the T-even combinations

W± =
1
2

[(
W1

1 + W1
2

)
∓ i
(
W2

1 + W2
2
)]

, W3 =
W3

1 + W3
2√

2
, B =

B1 + B2√
2

, (3.22)

while the remaining T-odd combinations will define the heavy fields

W±H =
1
2

[(
W1

1 −W1
2

)
∓ i
(
W2

1 −W2
2
)]

, W3
H =

W3
1 −W3

2√
2

, BH =
B1 − B2√

2
. (3.23)

Scalar sector

In order to assign a T-even parity to the SM Higgs boson and T-odd parities to the rest of
scalar fields, one defines

Π T−→ −ΩΠΩ, Ω = diag (−1,−1, 1,−1,−1) . (3.24)

It is important to remark that the element Ω belongs to the center of the gauge group and
consequently commutes with the gauge generators but not with the full global symmetry. This
fact will be crucial when discussing the non gauge invariance of the model. One can also
check that Ω belongs to SO(5) since it leaves Σ0 invariant. The T-parity transformation of the
Goldstone fields implies

ξ
T−→ Ωξ†Ω, Σ T−→ Σ̃ ≡ ΩΣ0Σ†Σ0Ω. (3.25)

With these ingredients one builds the scalar Lagrangian which is gauge and T-parity invariant
using eq. (3.13),

LS =
f 2

8
tr
[
(DµΣ)† DµΣ

]
, (3.26)

where the covariant derivative is defined as

DµΣ = ∂µΣ−
√

2i
2

∑
j=1

[
gWa

jµ

(
Qa

j Σ + ΣQaT
j

)
− g′Bjµ

(
YjΣ + ΣYT

j

)]
. (3.27)
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Notice that, as in the toy model in Chapter 2, switching off the gauge couplings of one of the
SU(2)×U(1) factors of the gauge group, the covariant derivative transforms covariantly under
global transformations of the SU(3) containing that factor. This is because the global SU(3) and
the remaining gauge subgroup commute. As a consequence the Higgs cannot develop a mass
term that involves couplings of only one of the gauge factors.

Fermion sector

Implementing T-parity and providing masses to all fermions is less straightforward. In fact,
this is the main source of the non gauge invariance of the model.

First of all, in the usual procedure [93, 98] one introduces two left-handed SU(5) quintuplets
in the anti-fundamental and fundamental representations, respectively, for leptons and quarks,

Ψ1 =

 −iσ2l1L
0
02

 , Ψ2 =

 02
0

−iσ2l2L

 , Ψq
1 =

 −iσ2q1L
0
02

 , Ψq
2 =

 02
0

−iσ2q2L

 .

(3.28)

These incomplete multiplets break explicitly the global symmetry, but the gauge group is pre-
served. Under a gauge transformation these multiplets transform

Ψ(q)
1

Gg−→ V∗g Ψ(q)
1 , Ψ(q)

2
Gg−→ VgΨ(q)

2 . (3.29)

From these transformation properties, it is clear that leptons and quarks would receive the
same hyperchages under the gauge group since those are fixed by the form of the generators in
eqs. (3.11) and (3.12). For that reason one needs to enlarge the global symmetry group with two
extra factors U(1)′′1 and U(1)′′2 hence preserving gauge invariance and the collective symmetry
breaking mechanism [61]

SU(5)×U(1)′′1 ×U(1)′′2 . (3.30)

Then for any field the actual hypercharges under the gauged U(1)1 and U(1)2 will be the sum
of those under the U(1)′1 and U(1)′2 present in SU(5) plus the extra ones.

For a T-parity transformation it is common to contemplate two options [61, 65, 93, 98]:

a) Ψ(q)
1

T−→ ΩΣ0Ψ(q)
2 , (3.31)

b) Ψ(q)
1

T−→ −Σ0Ψ(q)
2 . (3.32)

Then one can define T-even and T-odd combinations given respectively by

a) Ψ(q)
+ =

Ψ(q)
1 + ΩΣ0Ψ(q)

2√
2

, Ψ(q) =
Ψ(q)

1 −ΩΣ0Ψ(q)
2√

2
, (3.33)

b) Ψ(q)
+ =

Ψ(q)
1 − Σ0Ψ(q)

2√
2

, Ψ(q) =
Ψ(q)

1 + Σ0Ψ(q)
2√

2
. (3.34)

The T-odd combination of left-handed lepton and quarks lHL = (l1L + l2L) /
√

2 and qHL =
(q1L + q2L) /

√
2 needs to be paired with right-handed doublets lHR and qHR so that the ‘mir-

ror’ fermions lH, qH get a vector-like mass. To that end, a right-handed SO(5) quintuplet is
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introduced

ΨR =

 −iσ2(l̃c)R
iχR

−iσ2lHR

 , Ψq
R =

 −iσ2(q̃c)R
iχq

R
−iσ2qHR

 . (3.35)

We will denote with a subscript± the T-parity assignment to be defined below. The T-odd dou-
blets (l̃c)R and (q̃c)R describe the ‘mirror-partner’ fermions and χ

(q)
R are SU(2) singlets, that in

principle can be taken either (χ(q)
+ )R or (χ(q)

− )R. Some authors [99–102] leave these quintuplets
incomplete, assuming that the mirror-partner fermions and the singlets decouple, so they just
include in them the doublets lHR, qHR.

The transformation under the gauge subgroup reads

Ψ(q)
R

Gg−→ UgΨ(q)
R , (3.36)

where Ug is the SO(5) non linear transformation that satisfies eq. (3.9) for a given Vg. Conse-
quently with the T-parity transformations for the left-handed quintuplets defined above, there
are also two different T-parity actions over the right-handed quintuplets

a) ΨR
T−→ ΩΨR, (3.37)

b) ΨR
T−→ −ΨR. (3.38)

The first one differs from the second in that χ
(q)
R are T-even; the rest of the fields are all T-odd. It

is important to mention that the cancellation of the quadratic divergence caused by the mirror
fermions to the Higgs mass is independent on the T-parity assignation of χ

(q)
R . With this in

mind, one can correspondingly construct two versions of a Yukawa Lagrangian,

L(a)
YH

= −κl f
(

Ψ2ξ + Ψ1Σ0ξ†
)

ΨR + h.c., (3.39)

L(b)
YH

= −κl f
(

Ψ2ξ + Ψ1Σ0Ωξ†Ω
)

ΨR + h.c. (3.40)

for leptons and similarly for quarks

L(a)
YqH

= −κq f
(

Ψq
2ξ + Ψq

1Σ0ξ†
)

Ψq
R + h.c., (3.41)

L(b)
YqH

= −κq f
(

Ψq
2ξ + Ψq

1Σ0Ωξ†Ω
)

Ψq
R + h.c. (3.42)

Those are tailored to provide the mirror fermions with a mass order κ f .
Let us show how the collective symmetry breaking works in this sector and justify why,

in principle, the SO(5) quintuplet must be complete. For concreteness let us focus on leptons
since quarks can be worked out in the same fashion. As in the gauge sector, the key ingredient
is the presence of an exact global SU(3) acting non linearly on the Higgs when a single term that
breaks the global SU(5) is turned on. This means that each of the terms in eqs. (3.39) and (3.40)
should be invariant under a different SU(3) factor that we construct explicitly in Appendix A.
Notice that due to the field content in Ψ2, this quintuplet is invariant under the action of the
SU(3) located in the upper-left corner of SU(5). These SU(5) transformations, when acting on
the left on ξ, leave invariant its last two rows that couple to the non vanishing components
of Ψ2. However, the associated SO(5) transformations U, that at the infinitesimal level can be
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written as

U ≈ 1+ iβbTb + ..., (3.43)

involve SO(5) generators (see Appendix A) that acting on ΨR mix the mirror and mirror part-
ner leptons with the singlet. Consequently the SU(3) invariance tells us that the mirror partner
leptons and the singlet cannot be ignored. Analogously, the second term in eq. (3.39) is invari-
ant under the SU(3) located in the lower-right corner of the SU(5) matrices if ΨR is complete.
Consequently the collective symmetry breaking mechanism ensures that no quadratic contri-
butions to the Higgs mass proportional to κl are generated. On the other hand, the second term
in eq. (3.40) is not invariant under the lower-right SU(3) because of the presence of Ω that does
not commute with any of the SU(3)’s. This could potentially lead to a quadratic divergence to
the Higgs mass coming from the operator

O = tr(B†Σ0Ωξ†ΩCC†ΩξΩΣ0B) = tr(B†B), (3.44)

where

B =

 −iσ2

0
02

 , C =

 −iσ2

i
−iσ2

 (3.45)

take into account the Ψ1 and ΨR are incomplete and complete multiplets, respectively. But this
operator does not depend on the Goldstone fields due to the unitarity of Ω and the complete ΨR
quintuplet. Nevertheless, not all the fields in the right-handed quintuplet have the appropriate
quantum numbers to participate in the Higgs self-energy. As we show in Appendix B, only the
mirror leptons and the singlet contribute and thus the singlet cannot be ignored in a consistent
Little Higgs model. This justifies why some authors do not include the mirror partner leptons
in the SO(5) quintuplet.

In order to give a mass of order λv to the SM leptons and down-type quarks after the
electroweak SSB, the following Yukawa Lagrangian has been proposed [103–108],

LY = −i
λl f
4

ϵxyzϵrs

[
(ΨX∗

2 )xΣryΣsz + (ΨX
1 Σ0Ω)xΣ̃ryΣ̃sz

]
ℓR + h.c., (3.46)

LYd = −i
λd f

4
ϵxyzϵrs

[
(ΨqX∗

2 )xΣryΣsz + (ΨqX
1 Σ0Ω)xΣ̃ryΣ̃sz

]
dR + h.c., (3.47)

where {x, y, z} = 3, 4, 5 and {r, s} = 1, 2. Here the left-handed fermions are embedded in
incomplete SU(5) quintuplets,

ΨX
1 =

 Xl1L
0
02

 , ΨX∗
2 =

 02
0

X∗l2L

 , ΨqX
1 =

 Xq1L
0
02

 , ΨqX∗
2 =

 02
0

X∗q2L

 (3.48)

transforming under the global group as

Ψ(q)X
1

G−→ VΨ(q)X
1 , Ψ(q)X∗

2
G−→ V∗Ψ(q)X∗

2 (3.49)

and under T-parity as

Ψ(q)X
1

T−→ ΩΣ0Ψ(q)X∗
2 = −Σ0Ψ(q)X∗

2 , (3.50)

where the last equality follows from the field content of these multiplets. This is because the
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Y′1 Y′2
Σ13

1
10

2
5

Σ14
1

10 − 1
10

Σ15
1

10 − 1
10

Σ23
1

10
2
5

Σ24
1

10 − 1
10

Σ25
1

10 − 1
10

Σ13Σ24
1
5

3
10

Σ13Σ25
1
5

3
10

Σ23Σ14
1
5

3
10

Σ23Σ15
1
5

3
10

TABLE 3.1: Hypercharges under U(1)′1 ×U(1)′2 ⊂ SU(5) of the Σ components in
eqs. (3.46) and (3.47).

element Ω changes the T-parity assignation of the field in the middle of the multiplets with
respect to the others and in this case there is no field in this position. As a consequence both
T-parity realizations in these sectors are equivalent. Although ℓR and dR are SU(5) singlets
and all indices are contracted, this Lagrangian is not invariant under the global SU(5) sym-
metry, broken by Σ0 and the incomplete multiplets. Nevertheless we just need that the gauge
symmetry Gg is preserved, and this requires the introduction of Ψ(q)X

1 (Ψ(q)X∗
2 ) transforming

opposite to Ψ(q)
1 (Ψ(q)

2 ) so that the SM charged leptons and down-type quarks, with left-handed
components in the T-even doublets lL = (l1L − l2L)/

√
2 and qL = (q1L − q2L)/

√
2, get a mass.

On the other hand, ℓR and dR inherit no hypercharge from the global SU(5) symmetry group.
Therefore their hypercharges must lie in the external U(1)′′1 ×U(1)′′2 introduced above to get
the proper SM hypercharge, Y = −1 and Y = −1/3, respectively.

The auxiliary field X and its complex conjugate X∗ are introduced in eq. (3.48) in order to
reverse the U(1) charges of the left-handed components and at the same time compensate for
the hypercharge assignment of the right-handed leptons and quarks. From the hypercharges
of the Σ components in table 3.1 (note that all relevant products have the same values) and
the requirements above one derives the charge assignments for the fermion fields of table 3.2.
A particular realization of the scalar X can be constructed with the fields already present in
the model [99, 103, 107]. The element Σ33 has hypercharges (Y1, Y2) = (− 2

5 , 2
5 ), and it is a

SU(2) singlet, so we can identify X = Σ−
1
4

33 and X∗ = (Σ†
33)
− 1

4 , which also verifies the right

transformation under T-parity X T−→ X∗.2

To provide masses to the SM up-type quarks we must take into account that the top quark is
the heaviest SM particle and introduces a quadratic divergence to the Higgs mass proportional
to its Yukawa coupling. The rest of the SM quarks also introduce such a divergence, but their
Yukawa couplings are much smaller. For that reason, in the LHT one implements the collec-
tive symmetry breaking mechanism only in the top sector, assuming that the rest of quadratic
divergences introduced by other SM quarks are negligible. To that end, the up-type quarks of

2In view of the charge assignments in table 3.2, it is clear that X∗ is not the complex conjugate of X, since they
do not have opposite hypercharges under the U(1) factors. However only gauged hypercharges matter and they
are actually opposite, so we prefer to keep this notation. Indeed, the particular realization for these fields shows
that one is the hermitian conjugate of the other.
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Y′1 Y′2 Y′′1 Y′′2 Y1 Y2

ℓR 0 0 − 1
2 − 1

2 − 1
2 − 1

2

dR 0 0 − 1
6 − 1

6 − 1
6 − 1

6

uR, tR 0 0 1
3

1
3

1
3

1
3

T2R 0 0 2
15

8
15

2
15

8
15

T1R 0 0 8
15

2
15

8
15

2
15

l2L − 1
5 − 3

10 0 0 − 1
5 − 3

10

l1L − 3
10 − 1

5 0 0 − 3
10 − 1

5

X∗l2L
1
5

3
10 − 1

2 − 1
2 − 3

10 − 1
5

Xl1L
3

10
1
5 − 1

2 − 1
2 − 1

5 − 3
10

q2L, T2L − 1
5 − 3

10
1
3

1
3

2
15

1
30

q1L, T1L − 3
10 − 1

5
1
3

1
3

1
30

2
15

X∗q2L
1
5

3
10 − 1

6 − 1
6

1
30

2
15

Xq1L
3

10
1
5 − 1

6 − 1
6

2
15

1
30

T2L − 1
5

1
5

1
3

1
3

2
15

8
15

T1L
1
5 − 1

5
1
3

1
3

8
15

2
15

X∗ 2
5

3
5 − 1

2 − 1
2 − 1

10
1

10

X 3
5

2
5 − 1

2 − 1
2

1
10 − 1

10

TABLE 3.2: Hypercharge assignments under U(1)′1 × U(1)′2 ⊂ SU(5) and
U(1)′′1 ×U(1)′′2 for fermions transforming in a linear representation of the gauge
group. The hypercharges under the gauge group U(1)1 × U(1)2 come from

Yj = Y′j + Y′′j , j = 1, 2.

Y′ Y′′ Y

ΨR =

 −iσ2(l̃c)R
i(χ+)R
−iσ2lHR

  1
2
0
− 1

2

  0
0
0

  1
2
0
− 1

2


Ψq

R =

 −iσ2(q̃c)R
i(χq

+)R
−iσ2qHR

  1
2
0
− 1

2




2
3
2
3
2
3




5
6
2
3
1
6


(l̃c)L

1
2 0 1

2

(χ±)L 0 0 0

(q̃c)L
1
2

2
3

5
6

(χ
q
±)L 0 2

2
2
3

TABLE 3.3: Hypercharge assignments under the diagonal U(1)′ ⊂ SO(5) and
U(1)′′ for fermions transforming in a non linear representation of the gauge

group.
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the first two generations receive a mass from

LYu = −i
λu

4
f ϵijkϵxy

[(
Q1
)

i ΣjxΣky +
(
Q2Σ0Ω

)
i Σ̃jxΣ̃ky

]
uR + h.c. (3.51)

{i, j, k} = 1, 2, 3 and {x, y} = 4, 5 and the new multiplets multiplets are defined as follows

Q1 =

 −iσ2q1L
0
02

 , Q2 =

 02
0

−iσ2q2L

 . (3.52)

For the top quark one implements the collective symmetry breaking mechanism in [87, 98, 103,
109]

LYt =− i
λ1

4
f ϵijkϵxy

[(
Qt

1

)
i
ΣjxΣky +

(
Qt

2Σ0Ω
)

i
Σ̃jxΣ̃ky

]
tR

− λ2 f√
2

(
T1LT1R + T2LT2R

)
+ h.c., (3.53)

by promoting the top quark left-handed doublet to a triplet of the different SU(3) global factors
contained in SU(5). Those are embedded in the quintuplets

Qt
1 =

 −iσ2T1L
iT1L
02

 , Qt
2 =

 02
iT2L
−iσ2T2L

 , (3.54)

with

TrL =

(
trL
brL

)
, r = 1, 2. (3.55)

The transformation properties under the gauge group and T-parity for the multiplets in eqs. (3.52)
and (3.54) are given by

Q(t)
1

Gg−→ V∗g Q(t)
1 , Q(t)

2
Gg−→ VgQ(t)

2 , Q(t)
1

T−→ ΩΣ0Q(t)
2 (3.56)

and for the SU(2) singlets are consistently given by

T1R
T−→ T2R, tR

T−→ tR. (3.57)

The other possible realization of T-parity in these sectors

Q(t)
1

T−→ −Σ0Q(t)
2 , T1R

T−→ −T2R, (3.58)

is completely equivalent. This is because the Lagrangian for the quarks of the first two families
in eq. (3.51) has the same structure as the those for SM leptons and down-type quarks and
the same argument applies. On the other hand, the multiplets in eq. (3.54) include a set of
‘cancelon’ fields or top partners T1L, T2L and their corresponding right-handed counterparts
T1R, T2R. The different transformations under T-parity only changes the combinations that are
defined as T-even and T-odd, having no impact on the phenomenology.

The collective symmetry breaking in the top quark sector works similarly as in the toy
model in Chapter 2. In both realizations of T-parity, the first term proportional to λ1 is invariant
under the SU(3) in the upper-left corner of the SU(5) matrices. The second term is invariant
under the SU(3) in lower-right corner of SU(5) in the first realization of T-parity because Ω



48 Chapter 3. The Littlest Higgs model with T-parity

can be eliminated using that the Levi-Civita tensors ϵijk and ϵxy are invariant under the action
of Ω.In the second realization of T-parity, there are not enough Ω’s to eliminate them using
the invariance of the Levi-Civita tensors. However the unitarity of Ω and its explicit form is
enough to forbid a quadratic divergence coming from the term

OΛ2 = ϵijkϵxyϵij′k′ϵx′y′ Σ̃jxΣ̃kyΣ̃†
jxΣ̃†

ky (3.59)

that is invariant under the lower-right SU(3). Concerning a possible logarithmically divergent
contribution proportional to λ4

1 from the first two terms in brackets, the only operator that can
arise is

Olog Λ2 =
(

ϵijkϵxyΣjxΣkyϵij′k′ϵx′y′Σ†
j′x′Σ

†
k′y′

) (
ϵijkϵxyΣ̃jxΣ̃kyϵij′k′ϵx′y′ Σ̃†

j′x′ Σ̃
†
k′y′

)
, (3.60)

independently of the chosen realization of T-parity. In the last step we applied the properties
of Ω. Notice that it factorizes in two independent pieces that do not mix the different SU(3)
factors and thus no logarithmically divergent contribution to the Higgs mass can be generated.

The terms proportional to λ2 are not invariant under any of the SU(3) factors but they have
no couplings to the Higgs. Thus both couplings are required to generate just a logarithmically
divergent contribution to the Higgs mass at one loop. This structure leads to a mixing between
the top quark and the corresponding T-even partner as we will show later.

The mirror-partner fermions (l̃c
−), (q̃c) and the gauge SU(2) singlets χ±, χ

q
± must be heavy.

It is customary [93, 98] to give them a large vector-like mass introducing the left-handed SU(2)
doublets (l̃c

−)L, (q̃c)L and singlets (χ±)L, (χq
±)L in incomplete SO(5) multiplets,

ΨL =

 (l̃c
−)L
0
02

 , Ψq
L =

 (q̃c)L
0
02

 , Ψχ
L =

 0
(χ±)L

02

 , Ψχq
L =

 0
(χ

q
±)L
02

 . (3.61)

Their direct mass terms are assumed to be a soft breaking of the SO(5) global symmetry and
have the form

LM̃,Mχ
= −M̃l(l̃c)L(l̃

c)R −Mχ(χ±)L(χ±)R − M̃q(q̃c)L(q̃
c)R −Mχq(χ

q
±)L(χ

q
±)R + h.c. (3.62)

Finally, the CCWZ formalism provides us with the kinetic terms and gauge interactions of
all fermions transforming in a non linear representation,

LF = LFL + LFR + (ΨR → ΨL) + (ΨR → Ψχ
L) (3.63)

where

LFL = iΨ1γµD∗µΨ1 + iΨ2γµDµΨ2 + iΨq
1γµDq∗

µ Ψq
1 + iΨq

2γµDq
µΨq

2 (3.64)

and depending on the T-parity implementation,

L(a)
FR

= iΨRγµ

[
∂µ +

1
2

ξ† (Dµξ
)
+

1
2

ξΣ0D∗µ
(

Σ0ξ†
)]

ΨR

+ iΨq
Rγµ

[
∂µ +

1
2

ξ† (Dq
µξ
)
+

1
2

ξΣ0Dq∗
µ

(
Σ0ξ†

)]
Ψq

R, (3.65)

L(b)
FR

= iΨRγµ

[
∂µ +

1
2

ξ† (Dµξ
)
+

1
2

ΩξΣ0D∗µ
(

Σ0ξ†
)

Ω
]

ΨR

+ iΨq
Rγµ

[
∂µ +

1
2

ξ† (Dq
µξ
)
+

1
2

ΩξΣ0Dq∗
µ

(
Σ0ξ†

)
Ω
]

Ψq
R, (3.66)
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with the covariant derivative for leptons defined as

Dµ = ∂µ −
√

2ig
(

Wa
1µQa

1 + Wa
2µQa

2

)
+
√

2ig′
(

B1µY1 + B2µY2
)

. (3.67)

and for quarks

Dq
µ = ∂µ −

√
2ig
(

Wa
1µQa

1 + Wa
2µQa

2

)
+
√

2ig′
[

B1µ

(
Y1 +

1
3

15×5

)
+ B2µ

(
Y2 +

1
3

15×5

)]
,

(3.68)

Dq∗
µ = ∂µ +

√
2ig
(

Wa
1µQaT

1 + Wa
2µQaT

2

)
−
√

2ig′
[

B1µ

(
Y1 −

1
3

15×5

)
+ B2µ

(
Y2 −

1
3

15×5

)]
,

(3.69)

where we took into account the extra hypercharge assigned in the external U(1)′′1 ×U(1)′′2 as
shown in table 3.2 and the property in eq. (3.13). Finally for the SM right-handed fermions

LF′ = iℓR
(
∂µ + ig′Bµ

)
ℓR + idR

(
∂µ + i

1
3

g′Bµ

)
dR + iuR

(
∂µ − i

2
3

g′Bµ

)
uR. (3.70)

and the top quark-partners

LF′T1,T2
=iT1L

[
∂µ −

√
2ig′

(
8
15

B1µ +
2
15

B2µ

)]
T1L + iT2L

[
∂µ −

√
2ig′

(
2
15

B1µ +
8
15

B2µ

)]
T2L

+ L→ R. (3.71)

3.1.5. Mass eigenfields

Gauge fields

After electroweak SSB, the T-even SM gauge bosons eigenstates are obtained diagonalizing
LS in eq. (3.26)

W± =
1√
2

(
W1 ∓ iW2

)
,
(

Z
A

)
=

(
cW sW
−sW cW

)(
W3

B

)
(3.72)

with

Wa =
Wa

1 + Wa
2√

2
, B =

B1 + B2√
2

; (3.73)

whereas the T-odd mass eigenstates, expanding LS up to order v2/ f 2 are

W±H =
1√
2

(
W1

H ∓ iW2
H

)
,
(

ZH
AH

)
=

(
1 −xH

v2

f 2

xH
v2

f 2 1

)(
W3

H
BH

)
(3.74)

with

Wa
H =

Wa
1 −Wa

2√
2

, BH =
B1 − B2√

2
, xH =

5gg′

4 (5g2 − g′2)
. (3.75)



50 Chapter 3. The Littlest Higgs model with T-parity

Their corresponding masses to order v2/ f 2 are

MW =
gv
2

(
1− v2

12 f 2

)
, MZ = MW/cW , e = gsW = g′cW ,

MWH = MZH = g f
(

1− v2

8 f 2

)
, MAH =

g′√
5

f
(

1− 5v2

8 f 2

)
, (3.76)

where e is the unit of electric charge and sW , cW are respectively the sine and cosine of the
Weinberg angle θW .

Scalar fields after gauge fixing

The spontaneous breaking of gauge symmetries leads to kinetic mixing between gauge
bosons and would-be Goldstone boson fields. In the mass eigenbasis, these unwanted mix-
ing terms can be removed, up to an irrelevant total derivative, by introducing the appropriate
gauge-fixing Lagrangian

Lgf = −
1

2ξγ
(∂µ Aµ)2 − 1

2ξZ
(∂µZµ − ξZ MZπ0)2 − 1

ξW
|∂µWµ + iξW MWπ−|2

− 1
2ξAH

(∂µ Aµ
H + ξAH MAH η)2 − 1

2ξZH

(∂µZµ
H − ξZH MZH ω0)2

− 1
ξWH

|∂µWµ
H + iξWH MWH ω−|2, (3.77)

defining which Goldstone fields are unphysical and can be absorbed.
After the SSB, the kinetic terms of the scalar fields we have introduced are neither diagonal

nor canonically normalized. In order to define the physical scalars and identify the actual
would-be-Goldstone fields we will perform the following redefinitions [106]

π0 → π0
(

1 +
v2

12 f 2

)
,

π± → π±
(

1 +
v2

12 f 2

)
,

h → h ,

Φ0 → Φ0
(

1 +
v2

12 f 2

)
,

ΦP → ΦP +
(√

10η −
√

2ω0 + ΦP
) v2

12 f 2 ,

Φ± → Φ±
(

1 +
v2

24 f 2

)
± iω±

v2

12 f 2 , (3.78)

Φ++ → Φ++ ,

η → η +
5g′η − 4

√
5[g′(ω0 +

√
2ΦP)− 6gxHω0]

24g′
v2

f 2 ,

ω0 → ω0 +
5g(ω0 + 4

√
2ΦP)− 4

√
5η(5g + 6g′xH)

120g
v2

f 2 ,

ω± → ω±
(

1 +
v2

24 f 2

)
± iΦ±

v2

6 f 2 .
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After these redefinitions, the scalars η, ω0 and ω± are the would-be-Goldstone bosons of the
SSB of the gauge group down to the SM gauge group, eaten by AH, ZH and W±H . Similarly, π0

and π± are the would-be-Goldstone bosons of the SSB of the SM gauge group down to U(1)em,
eaten by Z and W±. The physical pseudo-Goldstone bosons include the Higgs boson and the
complex scalar triplet Φ composed of Φ±±, Φ±, Φ0 and ΦP.

Fermion fields

Fermion masses and mass eigenvectors are obtained from the diagonalization of the 3× 3
matrices κl , κq, λl , λu, λd, Mχ, Mχq , M̃l , M̃q in and the mixing between the top quark and its
corresponding T-even partner coming from eq. (3.53).

Omitting flavour indices, for each of the three SM (T-even) left-handed fermion doublets
(lL, qL) there is a vector-like doublet of heavy T-odd mirror fermions (lH, qH)

lL =

(
νL
ℓL

)
=

l1L − l2L√
2

, lHL =

(
νHL
ℓHL

)
=

l1L + l2L√
2

, lHR =

(
νHR
ℓHR

)
, (3.79)

qL =

(
uL
dL

)
=

q1L − q2L√
2

, qHL =

(
uHL
dHL

)
=

q1L + q2L√
2

, qHR =

(
uHR
dHR

)
(3.80)

where

lrL =

(
νrL
ℓrL

)
, qrL =

(
urL
drL

)
, r = 1, 2 (3.81)

are part of the SU(5) multiplets Ψ(q)
r in eq. (3.28) and lHR, qHR are part of the SO(5) multiplets

Ψ(q)
R in eq. (3.35). The SM right-handed charged leptons ℓR and quarks dR, uR are singlets under

the full SU(5) but have hypercharges under the external U(1)′′ groups.
In addition there is a heavy right-handed doublet of mirror-partner fermions,

(l̃c)R =

(
(ν̃c)R

(ℓ̃c)R

)
, (q̃c)R =

(
(ũc)R

(d̃c)R

)
(3.82)

together with a right-handed SU(2) singlet (χ±)R to complete the SO(5) right-handed quintu-
plet in eq. 3.35 and their corresponding left-handed counterparts,

(l̃c)L =

(
(ν̃c)L

(ℓ̃c)L

)
, (q̃c)L =

(
(ũc)L

(d̃c)L

)
. (3.83)

and
(

χ
(q)
±
)

L
living in the incomplete SO(5) left-handed quintuplets in eq. (3.61).

Now we work out the top quark sector LYt in eq. (3.53), that requires extra couplings and
extra fermion fields T1L and T2L, belonging to Qt

1 and Qt
2 respectively, and their right-handed

counterparts T1R, T2R required to implement the collective symmetry breaking mechanism and
avoid dangerous quadratically divergent contributions to the Higgs mass. One can define the
T-even and T-odd combinations of top partners

(T+)L,R =
(T1)L,R + (T2)L,R√

2
, (T )L,R =

(T1)L,R − (T2)L,R√
2

. (3.84)

The T-odd combination does not mix with any other T-odd quark since it is isolated in this
sector. However, the T-even combination mixes with tR. Expanding Lt

Y at leading order in v/ f



52 Chapter 3. The Littlest Higgs model with T-parity

we find that the top quark matrix is given by

−LYt ⊃
(
tL,
(
T+

)
L

) ( λ1v√
2

0
λ1 f√

2
λ2 f√

2

)(
tR

(T+)R

)
+ h.c. . (3.85)

This matrix can be diagonalized at leading order redefining the right-handed fields(
tR

(T+)R

)
→
(

cR sR
−sR cR

)(
tR

(T+)R

)
, cR =

λ2√
λ2

1 + λ2
2

, sR =
λ1√

λ2
1 + λ2

2

. (3.86)

Then the physical mass of the SM top quark in the LHT is given by3

mt =
1√
2

λ1λ2√
λ2

1 + λ2
2

v. (3.87)

Notice that according to the previous expression, the Yukawa couplings λ1 and λ2 are not
independent but verify

1
λ2

1
+

1
λ2

2
=

(
v√
2mt

)2

, (3.88)

where the top quark mass is mt ≈ 173 GeV [110]. For the T-even and T-odd partners one finds4

MT+ =

√
λ2

1 + λ2
2

2
f , MT =

λ2√
2

f . (3.89)

Next we introduce flavour indices and derive the mass eigenstates. Since T-parity is exact, the
SM (T-even) fermions do not mix with the heavy T-odd combinations. However, the SM neutral
leptons and up-type quarks could mix, depending on the T-parity realization, with χ+, χ

q
+ (see

table 3.5). Therefore, at leading order, the SM mass eigenstates result from the diagonalization
of the matrices λl , λd and λu in eqs. (3.46), (3.47) and (3.51). Thus in general

ℓL → Vℓ
LℓL, ℓR → Vℓ

RℓR, (3.90)

dL → Vd
L dL, dR → Vd

RdR, (3.91)
uL → Vu

L uL, uR → Vu
R uR, (3.92)

and the masses of SM charged leptons, down-type quarks and up-type quarks read from

λlv√
2

(
1− v2

12 f 2

)
= Vℓ

L mℓVℓ†
R , (3.93)

λdv√
2

(
1− v2

12 f 2

)
= Vd

L mdVd†
R , (3.94)

λuv√
2

(
1− v2

3 f 2

)
= Vu

L muVu†
R , (3.95)

3The fact that the top mass is proportional to the product of the Yukawa couplings λ1 and λ2 is a consequence
of the collective symmetry breaking mechanism. Since the mass of the top is nothing but its coupling to the Higgs
boson, its contribution to the Higgs mass at one loop is just logarithmically divergent and proportional to the
product λ1λ2.

4We have an extra factor
√

2 multiplying the top and top partner masses with respect to [111] due to the different
definitions of the top Yukawa couplings λ1 and λ2 in eq. (3.53).



3.1. Littlest Higgs model with T-parity setup 53

tL (T+)L (χ
q
+)L

tR • – –

(T+)R v • –

(χ
q
+)R v – •

TABLE 3.4: Order of the mixing between the top quark and the rest of T-even up-
type quarks once the diagonalization in eq. (3.86) is performed. A dot means that
they are connected by the mass term and a dash indicates that no mixing term is

generated to order v2.

where Vℓ
L,R, Vd

L,R, Vu
L,R are unitary matrices in flavour space. Likewise, the heavy charged lepton

and down-type quark mass eigenstates are obtained by the replacements

ℓHL → V lH
L ℓHL, ℓHR → V lH

R ℓHR, (3.96)

dHL → VdH
L dHL, dHR → VdH

R dHR, (3.97)(
ℓ̃c
)

L
→ Ṽ l

L

(
ℓ̃c
)

L
,
(
ℓ̃c
)

R
→ Ṽ l

R

(
ℓ̃c
)

R
, (3.98)(

d̃c
)

L
→ Ṽq

L

(
d̃c
)

L
,
(

d̃c
)

R
→ Ṽq

R

(
d̃c
)

R
, (3.99)

with
√

2κl f = V lH
L mℓH V lH†

R , (3.100)
√

2κq f = VdH
L mdH VdH†

R , (3.101)

M̃l = Ṽ l
Lm̃lṼ l†

R , (3.102)

M̃q = Ṽq
L m̃qṼq†

R , (3.103)

where V lH
L,R, VdH

L,R, Ṽ l
L,R, Ṽq

L,R are also unitary matrices in flavour space.
For the neutral lepton sector and up-type quarks the fields have to be redefined at leading

order as follows,5

νL → Vℓ
L νL, (3.104)

νHL → V lH
L νHL, νHR → V lH

R νHR, (3.105)

uHL → VqH
L uHL, uHR → VqH

R uHR, (3.106)

(ν̃c)L → Ṽ l
L(ν̃

c)L, (ν̃c)R → Ṽ l
R(ν̃

c)R, (3.107)

(ũc)L → Ṽq
L (ũ

c)L, (ũc)R → Ṽq
R(ũ

c)R, (3.108)
(χ±)L → Vχ

L (χ±)L, (χ±)R → Vχ
R (χ±)R, (3.109)

(χ
q
±)L → Vχq

L (χ
q
±)L, (χ

q
±)R → Vχq

R (χ
q
±)R. (3.110)

5In [61] the partner lepton fields l̃ (equivalently the mirror-partner quarks) are rotated with matrices Ṽl
L,R. Here

we adopt the convention of rotating their conjugates l̃c, which seems more natural as these are the ones embedded

in the SO(5) quintuplet. To relate both conventions, Ṽl
L ≡

(
Ṽl

R

)∗
and Ṽl

R ≡
(

Ṽl
L

)∗
.
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(χ+)L, (χq
+)L (χ )L, (χq)L νL, uL νHL, uHL (ν̃c)L, (ũc)L

(χ+)R, (χq
+)R • – v – –

(χ )R, (χq)R – • – v –

νR, uR – – • – –

νHR, uHR – – – • –

(ν̃c)R, (ũc)R – – – v2 •

TABLE 3.5: As in table 3.4 but for the neutral lepton fields, SM up-type quarks of
the first two generations and rest of the new LHT up-type quarks.

Note that the SM neutrinos rotate in flavour space with the same matrix as the charged
leptons, Vℓ

L . Their corresponding masses up to corrections from the mixing in table 3.5 are

mνH = mℓH

(
1− v2

8 f 2

)
, (3.111)

muH = mdH

(
1− v2

8 f 2

)
, (3.112)

Mdiag
χ = Vχ

L MχVχ†
R , (3.113)

Mdiag
χq = Vχq

L Mχq Vχq†
R . (3.114)

The neutral mirror-partner leptons and up-type mirror-partner quarks masses verify the same
relation as the charged mirror-partner leptons and down-type mirror-partner quarks respec-
tively in eqs. (3.102) and (3.103).

The misalignment between different fermion sectors will be a source of flavour violation.
Thus, parametrizing these misalignments we define the following unitary matrices

V = V lH†
L Vℓ

L , W = Ṽ†
L V lH

L , Z = Vχ†
R V lH

R , (3.115)

for leptons and similarly for quarks

Vu = VqH†
L Vu

L , Vd = VqH†
L Vd

L , Wq = Ṽq†
L VqH

L , Zq = Vχq†
R VqH

R , VCKM = Vu†
L Vd

L . (3.116)

However, since we have separated the third generation of quarks to implement the collective
symmetry breaking mechanism for the top sector, it is useful and we will consider that the
Yukawa coupling λu is diagonal in flavour space from the very beginning. This implies that
the rotation matrices Vu

L = Vu
R = 1 and the misalignment matrices Vu and VCKM take the

simpler form Vu = VqH†
L and VCKM = Vd

L . This completes the derivation of the full Lagrangian.

3.2. Phenomenology of the LHT

In this section we will study the phenomenology of the LHT with special emphasis on the
contributions of the heavy singlet χ± to different physical observables. In particular we will
focus on Higgs decays to charged leptons of different flavour, the generation of neutrino masses
and finally the lepton anomalous magnetic dipole moment factor (g− 2)ℓ.
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3.2.1. Lepton flavour violating Higgs decays

First of all it is worthwhile to discuss briefly the case without the singlet. The global sym-
metries of the LHT prevent tree level lepton flavour violating (LFV) Higgs decays, but they
are generated at one loop via the new T-odd particles. In particular, the key ingredient is the
misalignment between the Yukawa sectors in eq. (3.46) and eq. (3.39) (or equivalently eq. (3.40)
without the singlet) and the mass matrix of the mirror-partner leptons in eq. (3.62). Without
loss of generality the SM charged lepton Yukawa coupling, λl , is assumed to be diagonal. Let
us comment the parametric dependence of the amplitude of this process. All the contributions
to this observable come from the new particles and thus they are one loop suppressed. So there
is a universal factor of 1/(16π2). On the other hand, since the Yukawa couplings of the SM
charged leptons are diagonal, the LFV Higgs decay amplitude must proceed via higher dimen-
sional operators, that are suppressed by a high energy scale that we will call generically M,
and scale at leading order like v2/M2. As we will show later, any contribution of order 1 to this
process can be reabsorbed through a rotation of the charged lepton fields. Moreover, the am-
plitude of this decay must be proportional to the SM Yukawa couplings λl and to the Yukawa
couplings κl squared through couplings and/or masses.6 Hence, the amplitude for the Higgs
decay h→ ℓℓ′ scales as

M ∝
1

16π2
v2

M2 λ∆κ2 sin 2θ, (3.117)

where we call generically θ to any of the misalignment angles between the different leptonic
sectors, and ∆κ2 are splittings of Yukawa couplings squared.

In [61] it was shown that only including the contributions of the mirror and mirror-partner
leptons, lH and l̃c respectively, one can obtain a finite amplitude for lepton flavour violating
Higgs decays in the LHT model. It was also shown that the mirror-partner leptons cannot
be decoupled in these decays and furthermore, they introduce a new source of lepton flavour
violation via their coupling to the physical pseudo-Goldstone triplet Φ through the Yukawa
Lagrangian in eq. (3.39) or equivalently eq. (3.40). The divergent part of the amplitude can be
parametrized as

Mdiv(h→ ℓℓ′) =
1

16π2

(
C(1)

UV +
v2

f 2 C

(
v2

f 2

)
UV

)
1
ϵ ∑ V†

ℓ′iViℓ
m2

ℓHi
f 2 u

(
p′, mℓ′

) (mℓ′

v
PL +

mℓ

v
PR

)
v (p, mℓ) ,

(3.118)

since the infinite parts of the Passarino-Veltman functions do not depend on the internal masses
running in the loop.7 The different topologies that contribute to this process are listed in fig. 3.1.
The cancellations between different contributions are shown in tables 3.6 and 3.7. The infinities
of order 1 cancel without introducing the mirror-partner leptons, and the same for the finite
parts. This implies that the mixing of order v2 in table 3.5 between the mirror and mirror-
partner neutral leptons contributes to higher order in the expansion v/ f and thus it is negli-
gible at the order we work. However, for the infinities of order v2/ f 2 both sets of leptons are
necessary to give a finite result. On the other hand, to show the non decoupling behaviour of
the mirror-partner leptons when their mass is taken large, we parametrize the finite part of the
amplitude

M
(

h→ ℓℓ′
)
=

1
16π2 u

(
p′, mℓ′

) (mℓ′

v
cLPL +

mℓ

v
cRPR

)
v (p, mℓ) (3.119)

6We neglect higher powers of the Yukawa coupling λl because ist entries are small.
7This in turn implies that due to the unitarity of the missalignment matrix W, between the mirror and mirror-

partner leptons, it will not appear in the divergent parts of the Passarino-Veltman functions.
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I II III IV

V VI VII VIII

IX X XI XII

FIGURE 3.1: Topologies contributing to h→ ℓℓ′.

with

cL,(R) = g2 v2

f 2

[
3

∑
i=1

V†
ℓ′iViℓF

(
mℓHi , MWH , MAH , MΦ

)
+

3

∑
i,j,k=1

V†
ℓ′i

mℓHi

MWH

W†
ijWjk

mℓHk

MWH

VkℓG
(

M̃l j, mℓHk(i)
, MΦ

)]
. (3.120)

The first term depends on the function F that can be found in the Appendix of ref. [61] and
only involves mirror leptons. As a consequence, this first source of lepton flavour violation
comes from the matrix V parametrizing the misalignment between the SM leptons and the
mirror leptons. The second term is the contribution of the mirror-partner leptons and depends
on the matrices V and W, with the latter parametrizing the misalignment between the mirror
and mirror-partner leptons, giving rise to a new source of lepton flavour violation. The non
decoupling behaviour of the mirror-partner leptons is encoded in the function G

G
(

M̃l j, mℓHk(i)
, MΦ

)
=

1
16
− 1

2
C00

(
0, m2

h, 0; M2
Φ, M̃2

l j, m2
ℓHk

)
− 1

8
M̃l jmℓHk C0

(
0, m2

h, 0; M2
Φ, M̃2

l j, m2
ℓHk

)
− 1

12
M2

ΦC1

(
0, m2

h, 0; M2
Φ, M̃2

l j, m2
ℓHk

)
. (3.121)

In particular, the term proportional to C00 scales with log M̃j and there is no decoupling. This
is a consequence of the soft breaking of the SO(5) global symmetry by these mass terms.

To estimate the corresponding branching ratio for the most interesting channel, h→ τ±µ∓,
the SM charged leptons have to be rotated in flavour space. This is because the process h→ ℓℓ′

contributes to the charged leptons mass matrix when the Higgs field is replaced by the vev.
This rotation results in an extra factor of 2/3 for the final amplitude. To understand this factor
we can parametrize the SM charged lepton masses and their couplings to the Higgs boson by
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C(1)
UV I II III IV V+VI VII+VIII IX+X XI+XII Sum

ω, νH – – • • – – 1
2 − 1

2 •
ω0, ℓH – – • • – – 1

4 − 1
4 •

η, ℓH – – • • – – 1
20 − 1

20 •
Total – – • • – – 4

5 − 4
5 •

TABLE 3.6: Divergent contributions proportional to 1
ϵ , with ϵ = 4− d the extra

dimensions in dimensional regularization, of each particle set running in the loop
and topology in fig. 3.1 contributing at O(1). A dash means that the field set
does not run in the diagram, whereas a dot indicates that infinite and finite parts

vanish.

C
( v2

f 2 )

UV I II III IV V+VI VII+VIII IX+X XI+XII Sum

WH, νH 0 0 – – – • – – 0

WH, ω, νH – – – – 0 – – – 0
ω, νH – – 1

8 − 1
16 – – − 1

12
5

48
1

12

ZH, ℓH • 0 – – – • – – 0

ZH, ω0, ℓH – – – – 0 – – – 0

ω0, ℓH – – • − 1
32 – – − 5

48 +
1
2 xH

cW
sW

3
16 − 1

2 xH
cW
sW

5
96

AH, ℓH • 0 – – – • – – 0

AH, η, ℓH – – – – 0 – – – 0

η, ℓH – – • − 1
32 – – − 17

240 − xH
sW

10cW
− 1

80 + xH
sW

10cW
− 11

96

ZH, AH, ℓH – 0 – – – – – – 0

ω0, η, ℓH – – – 1
16 – – – – 1

16

WH, Φ, νH – – – – 0 – – – 0

Φ, νH – – • • – – − 1
16

1
48 − 1

24

ω, Φ, νH – – – 1
12 – – – – 1

12

ω0, ΦP, ℓH – – – 1
48 – – – – 1

48

η, ΦP, ℓH – – – − 1
48 – – – – − 1

48

Φ, ν̃c – – − 1
8

1
48 – – • − 1

48 − 1
8

Total 0 0 0 1
24 0 • − 47

240
37

240 0

TABLE 3.7: As in table 3.6 but to O(v2/ f 2).
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the following effective Lagrangian in the LHT,

Leff = −λlilLi HℓRi +
λli

6 f 2

(
H†H

)
lLi HℓRi +

cij

M2

(
H†H

)
lLi HℓRj + h.c. (3.122)

⊃
[(
−mℓi δij +

1
2
√

2
v3

M2 cij

)
+

h
v

(
−mℓi δij + mℓi δij

v2

6 f 2 +
3

2
√

2
v3

M2 cij

)]
ℓLiℓRj + h.c.,

(3.123)

where cij are the corresponding one-loop Wilson coefficients. In the second step we have used
eq. (3.93) to relate the Yukawa couplings of the SM leptons with their actual mass. The key
point is the relative factor of 3 between the Yukawa coupling and the mass term at order v2/ f 2,
originating from the expansion (v + h)3 = v2 + 3v2h + . . . . Diagonalizing the first term in
parentheses in eq. (3.123) does not diagonalize the second. We can rotate the charged leptons
to express them in the physical basis,

ℓLi →
[

δij +
v2

M2 (AL)ij

]
ℓLj, (3.124)

ℓRi →
[

δij +
v2

M2 (AR)ij

]
ℓRj, (3.125)

where AL and AR are order 1-loop anti-unitary matrices (A†
L,R = −AL,R) satisfying

mℓi (AR)ij − (AL)ij mℓj =
cij

2
√

2
v (i ̸= j, physical basis). (3.126)

Then

Leff ⊃
1√
2

v2

M2 cijhℓLiℓRj + h.c. (i ̸= j, physical basis) (3.127)

and comparing with eq. (3.123) we see that the effect of going to the physical basis just amounts
to a simple re-scaling of the off-diagonal Yukawa couplings by a factor 2/3. The LFV partial
width can be written as

Γ
(
h→ τ+µ− + τ−µ+

)
=

mh

16π

m2
τ + m2

µ

v2
4
9
(
|cτµ

L |2 + |c
τµ
R |2

)
, (3.128)

and its branching ratio

Br (h→ τµ) = Br
(

h→ bb
) Γ (h→ τ+µ− + τ−µ+)

Γ
(

h→ bb
) ≈ 0.6

m2
τ

6m2
b

4
9
(
|cτµ

L |2 + |c
τµ
R |2

)
. (3.129)

Now assuming that only the second and third families of leptons mix, we parametrize the
matrices V, W

V =

 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 , W =

 1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

 . (3.130)

Choosing a benchmark point f = 1 TeV, mℓH2,3 = 1.0, 8.1 TeV, M̃2,3 = 10, 50 TeV, θ1,2 = π
3 , π

25
and the relation MΦ ≈

√
2mh f /v [111], we obtain

Br (h→ τµ) ≈ 0.2× 10−6. (3.131)
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To obtain this result it is important the non decoupling behaviour of the mirror-partner leptons.
In general this branching ratio tends to be smaller when all the T-odd masses are similar and
there are often large cancellations. In the following we will investigate how the different T-
parity assignations of the SU(2) leptonic singlet affect the previous result.

T-even heavy singlet

In this part we consider a T-even singlet, χ+. Hence we will use the Yukawa Lagrangian in
eq. (3.39) to obtain its corresponding couplings to scalar fields. The purpose of this section is
to first prove that the contributions of the singlet to the process h → ℓLiℓRj are UV finite. The
finite part can be split into order 1 and order v2/M2 contributions. However we will show that
these order 1 contributions can be absorbed through a rotation of the charged SM lepton fields
as in eq. (3.126) leaving an order v2/ f 2 remnant. Finally we will illustrate that the singlet can
be decoupled from the spectrum.

Being T-even, the contributions of the singlet to h → ℓLiℓRj can be worked out separately
from those of the T-odd sector. Through the Yukawa Lagrangian in eq. (3.39), this singlet cou-
ples to the SM Higgs doublet and the T-even left-handed leptons. Their quantum numbers are
appropriate to generate order 1 vertices and consequently order 1 contributions to this LFV
process. In view of the mixing between the neutral lepton fields in table 3.5, there is a term
that mixes the right-handed singlet with the SM neutrino of order v. Due to the, a priori, non
vanishing order 1 contributions to h → ℓLiℓRj, it is mandatory a diagonalization of the corre-
sponding mass matrix up to order v3. After performing the rotations in flavour space of the
neutral leptons in eq. (3.104) the mass matrix takes the form

L ⊃ −
(

νL (χ+)L

)( 0 v
2 f

(
1− v2

12 f 2

)
V†mℓH Z†

0 Mdiag
χ

)(
νR

(χ+)R

)
+ h.c.. (3.132)

In view of the entries of the mass matrix in eq. (3.132) one can notice that at leading order it
does not depend on the scale f since mℓH =

√
2κl f . Thus the largest scale are the diagonal

entries of Mχ and one can consider a perturbative diagonalization expanding in powers of
v/Mχ. The first step corresponds to block-diagonalize the mass matrix in eq. (3.132) rotating
the left-handed fields by the perturbative unitary matrix(

νL
(χ+)L

)
→
(
1− 1

2 θ†θ θ†

−θ 1− 1
2 θθ†

)(
νL

(χ+)L

)
(3.133)

fulfilling8

(
1− 1

2 θ†θ −θ†

θ 1− 1
2 θθ†

)(
0 v

2 f

(
1− v2

12 f 2

)
V†mℓH Z†

0 Mdiag
χ

)
=

(
0 0
0 mχ

)
. (3.134)

The solution of the above matrix equation gives the matrix θ and the non diagonal mass matrix
mχ,

θ =
v

2 f

(
1− v2

12 f 2

)(
m−1

χ

)†
ZmℓH V, mχ =

[
1+

1
2

θθ†
]

Mdiag
χ . (3.135)

8The full rotation matrix is unitary but each block is not.
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Finally, to diagonalize mχ up to order v2, the new left-handed (χ+)L and right-handed (χ+)R
fields must be rotated

(χ+)L,R → (1+ BL,R) (χ+)L,R (3.136)

where BL,R are anti-hermitian matrices (B†
L,R = −BL,R) of order v2/m2

χ verifying the diagonal-
ization equation

m̃χ = (1− BL)mχ (1+ BR) (3.137)

and m̃χ is diagonal at the order we work. The expressions of BL,R are not important for the
final result. However, at the order we work and assuming that the diagonal entries of mχ are
different, one can apply successive 2× 2 SU(2) infinitesimal rotations to mχ obtaining

(BL)ij = −
1
2

(
θθ†
)

ij

m̃2
i + m̃2

j

m̃2
i − m̃2

j
; i ̸= j, (BL)ii = 0, (3.138)

(BR)ij = −
(

θθ†
)

ij

m̃im̃j

m̃2
i − m̃2

j
; i ̸= j, (BR)ii = 0. (3.139)

Thus the expression for the matrix θ in terms of the physical mass of the singlet is given by

θ =
v

2 f

(
1− v2

12 f 2

)
(1+ BL) m̃−1

χ Z̃mℓH V, (3.140)

where we have defined Z̃ := (1− BR) Z that takes into account the physical misalignment
between the Yukawa coupling κ and the physical mass of the singlet m̃χ. Like the full mass
matrix, θ does not depend on f at leading order and it is of order v/mχ. In view of the first
entry of the unitary matrix in eq. (3.133) it is clear that the neutrino eigenfields contribute to the
LFV process through the combination θ†θ. Hence our Feynman rules include both the singlet
and the neutrino. The relevant Feynman rules in the mass eigenbasis are collected in tables 3.8,
3.9, 3.10 and 3.11 in terms of generic couplings for the following general vertices involving
scalars (S), fermions (F) and/or gauge bosons (V):

[(S...S)SFF] = i(cLPL + cRPR) ,
[SVµVν] = iKgµν ,

[VµFF] = iγµ(gLPL + gRPR) ,
[S(p1)S(p2)Vµ] = iG(p1 − p2)

µ ,

[SS(p1)S(p2)] = i J
(

p2
1 + p2

2 + 4p1 · p2
)

,

where all momenta are assumed incoming. The conjugate vertices are obtained by replacing

cL,R ↔ c∗R,L , K ↔ K∗ , gL,R ↔ g∗R,L , G ↔ −G∗ , J ↔ J∗ . (3.141)

The Feynman diagrams that contribute to this process are those in fig. 3.1 with the neutrino,
the singlet and SM charged gauge bosons and unphysical charged scalars running in the loop.
Not all the topologies contribute to the LVF observable at the order we work. For instance,
topology II is of next order. This is because the coupling hW+W− is order v and to produce
lepton flavour changing one needs the θ†θ part of the coupling W+νLℓL when the neutrino runs
in the loop. Since the order of magnitude of θ is v/mχ, this contribution is at least of order v4

when the /p of the internal fermion propagator acts over the external legs giving the mass of the
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[SFF] cL cR

h χ+ ν −
(

1− v2

6 f 2

)
m̃χ

θ
v +

1
2 m̃χθθ†θ + m̃χBL

θ
v 0

h χ+ χ+ −m̃χ
θθ†

v − θθ†

v m̃χ

π+ ν ℓ 0 i
√

2 mℓ
v

(
1 + v2

12 f 2

)
π+ χ+ ℓ −

√
2im̃χ

θ
v

(
1 + v2

12 f 2

)
+ i
√

2m̃χBL
θ
v i

√
2θ mℓ

v

(
1 + v2

12 f 2

)
− i
√

2BLθ mℓ
v

h ℓ ℓ −mℓ
v

(
1− v2

6 f 2

)
−mℓ

v

(
1− v2

6 f 2

)
TABLE 3.8: Scalar-Fermion-Fermion couplings at O(v2/ f 2).

[SSFF] cL cR

h π+ ν ℓ 0 −i
3
√

2 f 2 mℓ +
i

6
√

2 f 2 θ†θmℓ

h π+ χ+ ℓ i
3
√

2 f 2 m̃χθ −i
3
√

2 f 2 θmℓ

TABLE 3.9: Scalar-Scalar-Fermion-Fermion couplings at O(v2/ f 2).

[SVµVν] K [VµFF] gL

h W+ W− g2 v
2

(
1− v2

3 f 2

)
W+ ν ℓ g√

2
1− g

2
√

2
θ†θ

W+χ+ℓ
g√
2
θ

TABLE 3.10: Scalar-Vector-Vector and Vector-Fermion-Fermion couplings at
O(v2/ f 2). The right-handed Vector-Fermion-Fermion couplings gR vanish.

[S(p1)S(p2) Vµ] G [SS(p1)S(p2)] J
hπ+W− ig

2 h π+ π− v
6 f 2

TABLE 3.11: Scalar-Scalar-Vector and Scalar-Scalar-Scalar couplings atO(v2/ f 2).
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corresponding charged lepton. On the other hand, if the left-handed part of the singlet runs
in the loop, the coupling W+(χ+)LℓL is of order θ and after applying the equation of motion
on the external legs this other contribution is again of order v4. The sum of the contributions
of order v2/ f 2 coming from topologies VII and VIII cancel exactly as it happened in the case
without the singlet (see tables 3.6, 3.7).

Parametrizing the amplitude as in eq. (3.119) where we now split the Wilson coefficients

cL,R into order 1 and order v2, cL,R = c(1)L,R + c(v
2)

L,R and using the definition of θ in eq. (3.140), the
non trivial order 1 contributions come from topologies III and IX+X and those are

c(1)L

∣∣∣
III

= −2
(

V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1

[
B0
(
m2

h; m2
χk

, 0
)
+ M2

WC0
(
0, m2

h, 0; M2
W , m2

χk
, 0
)]

(3.142)

c(1)L

∣∣∣
IX+X

= 2
(

V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1
B0
(
0; m2

χk
, 0
)

, (3.143)

while the rest are

c(v
2)

L

∣∣∣
I
=g2v2

(
V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1
×[

C0
(
0, m2

h, 0; M2
W , m2

χk
, 0
)
+ C2

(
0, m2

h, 0; M2
W , m2

χk
, 0
)
+ C2

(
0, m2

h, 0; M2
W , 0, m2

χk

)]
(3.144)

c(v
2)

L

∣∣∣
III

=
v2

3 f 2

(
V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1

[
B0
(
m2

h; m2
χk

, 0
)
+ M2

WC0
(
0, m2

h, 0; M2
W , m2

χk
, 0
)]

+ 2
(

V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

km

(
V† mℓH

2 f
Z̃†
)

ml

(
Z̃

mℓH

2 f
V
)

1

v2

m2
χk

×[
B0
(
m2

h; m2
χl

, 0
)
+ M2

WC0
(
0, m2

h, 0; M2
W , m2

χl
, 0
)

−B0
(
m2

h; m2
χl

, m2
χk

)
−M2

WC0
(
0, m2

h, 0; M2
W , m2

χl
, m2

χk

)
+ 2m2

χk
C2
(
0, m2

h, 0; M2
W , m2

χl
, m2

χk

)]
(3.145)

c(v
2)

L

∣∣∣
IV

=− v2

3 f 2

(
V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1

[
B1
(
0; m2

χk
, M2

W
)
+ 2B0

(
0, m2

χk
, M2

W
)

−2
(
m2

h −M2
W
) (

C2
(
0, m2

h, 0; m2
χk

, M2
W , M2

W
)
+ C0

(
0, m2

h, 0; m2
χk

, M2
W , M2

W
))]

(3.146)

c(v
2)

L

∣∣∣
V+VI

=g2
(

V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1

v2

m2
χk

[
B0
(
0; 0, M2

W
)
− B0

(
0; m2

χk
, M2

W
)

+M2
W
(
C0
(
0, m2

h, 0; 0, M2
W , M2

W
)
− C0

(
0, m2

h, 0; m2
χk

, M2
W , M2

W
))

−m2
χk

C2
(
0, m2

h, 0; m2
χk

, M2
W , M2

W
)]

(3.147)

c(v
2)

L

∣∣∣
IX+X

=− v2

3 f 2

(
V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1
B0
(
0, M2

W , m2
χk

)
(3.148)

c(v
2)

L

∣∣∣
XI+XII

=
v2

3 f 2

(
V† mℓH

2 f
Z̃†
)

2k

(
Z̃

mℓH

2 f
V
)

k1

[
B0
(
0; M2

W , m2
χk

)
− B1

(
0; M2

W , m2
χk

)]
. (3.149)

The corresponding Wilson coefficients cR are obtained from cL just by the substitution C2 →
C1. The calculation has been explicitly checked using the Mathematica package Package X [112].
As one can check in table 3.12, the order 1 UV divergences coming from III + IX+X cancel but
not the finite parts as it happened in the case of the mirror leptons. On the other hand, the
contributions order v2 coming from III + IX+X and IV + XI+XII also cancels as we show in
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C(1)
UV I II III IV V+VI VII+VIII IX+X XI+XII Sum

π, χ+, ν – – −1 – – – 1 – 0

TABLE 3.12: Order 1 singlet and neutrino divergent contributions proportional
to 1

ϵ , with ϵ = 4− d the extra dimensions in dimensional regularization. A dash
means that the field set does not run in the diagram, whereas a 0 indicates that

only the infinite part vanishes.

C
( v2

f 2 )

UV I II III IV V+VI VII+VIII IX+X XI+XII Sum

π, χ+, ν 0 – 1
6 − 1

4 0 • − 1
6

1
4 0

TABLE 3.13: As in table 3.12 but to order v2/ f 2 singlet and neutrino divergent
contributions proportional to 1

ϵ , with ϵ = 4− d the extra dimensions in dimen-
sional regularization. A dash means that the field set does not run in the diagram,

whereas a 0 indicates that only the infinite part vanishes.

table 3.13. Thus the contribution of the singlet to this LFV process is finite if it is chosen to be
T-even. It is important to mention that the result does not depend on the anti-hermitian matrix
BL as previously advertised but depends on BR through Z̃. The matrices BR and the original
Z are not physical, being Z̃ the physical combination and the new source of flavour violation.
In this sense, our Wilson coefficients are a function of physical parameters only. As one can
notice, not all terms order v2 are suppressed by f 2 but some of them are suppressed by m2

χ.
These come from order 1 vertices with the neutrino in the non rotated basis that generate terms
with θ order v2 due to the mixing between the left-handed neutrino and the left-handed singlet.

As happened in the case without the singlet, the previous results must be re-scaled because
they contribute to the SM charged lepton matrix when the Higgs is replaced by its vev. The
effective Lagrangian that parametrizes the couplings of the Higgs boson to the SM charged
leptons including the one-loop contributions reads in this case

Leff = −λlilLi HℓRi +
λli

6 f 2

(
H†H

)
lLi HℓRi + αijlLi HℓRj +

βij

M2

(
H†H

)
lLi HℓRj + h.c. (3.150)

⊃
(
−mℓi δij +

αij√
2

v +
1

2
√

2
v3

M2 βij

)
ℓLiℓRj

+
h
v

(
−mℓi δij + mℓi δij

v2

6 f 2 +
αij√

2
v +

3
2
√

2
v3

M2 βij

)
ℓLiℓRj + h.c., (3.151)

where we include now a new term with the order 1 Wilson coefficient. As we did above, the
SM leptons are rotated by

ℓLi →
[
δij + (AL)ij

]
ℓLj, (3.152)

ℓRi →
[
δij + (AR)ij

]
ℓRj, (3.153)

where AL,R are again order one-loop anti-hermitian matrices. In this case we do not factor out
any scale from the matrices since they include order 1 and v2/M2 contributions as showed
below. The diagonalization of the charged SM leptons imposes

mℓi (AR)ij − (AL)ij mℓj =
αij√

2
v +

βij

2
√

2M2
v3 (i ̸= j, physical basis). (3.154)
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FIGURE 3.2: In blue and orange respectively, real and imaginary parts of the one
loop function in cphys

L . The singlet χ+ decouples.

Thus, substituting the rotation and using the previous condition we find

Leff ⊃
(

αij√
2

v2

6 f 2 +
βij√

2
v2

M2

)
hℓLiℓRj + h.c.. (3.155)

Comparing with eq. (3.150), the order 1 contribution is multiplied by a factor v2

6 f 2 and the order

v2/M2 is re-scaled again by a factor 2/3 and the physical cL is

cphys
L =

v2

6 f 2 c(1)L +
2
3

c(v
2)

L . (3.156)

We would like to highlight the importance of the term
(

H†H
)

lLi HℓRi in the effective La-
grangian. Due to its presence, it is impossible to completely reabsorb the order 1 contribution
in the diagonalization of the SM charged leptons mass matrix. Thus all the physical contribu-
tion to this LVF observable is order v2/M2 with M = f , mχ. With this in mind we can show
that the T-even singlet decouples in this observable. In fig. 3.2 we plot the leading contribu-
tions that are precisely those of order v2/ f 2 while the contributions order v2/m2

χ coming from
Topology I and Topology III are subleading in comparison. This behaviour is independent of
the mechanism that provides a mass to the singlet.

T-odd heavy singlet

In this section we will assume that the singlet is T-odd, χ−. This implies that now, instead of
coupling to the SM Higgs doublet, it couples to the T-odd triplets ω and Φ through the Yukawa
Lagrangian in eq. (3.40). The purpose of this section is to show that the contributions of a heavy
T-odd singlet are UV divergent.

Through the Yukawa Lagrangian in eq. (3.40), the right-handed singlet couples to the triplets
ω and Φ with hypercharges 0 and 1, respectively, and to the T-even (SM) left-handed leptons.
This implies that there are no order 1 vertices with the singlet and the SM charged leptons,
contrary to the T-even case. An addtional Higgs doublet is necessary to obtain a singlet from
the combination of all these fields. As a consequence, any vertex with these scalar fields and
the right-handed (χ−)R is at least order v/ f . Thus there is no need to diagonalize the mixing
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[SFF] cL cR

h χ νH Z
mℓH
2 f

(
1− v2

4 f 2

)
0

ω+ νH ℓ −i
mℓH√

2 f
V iV mℓ√

2

(
1 + v2

8 f 2

)
ω+ χ ℓ iZ

mℓH√
2 f

V v
4 f 0

ϕ+ νH ℓ
mℓH√

2 f
V v2

8 f 2 V mℓ√
2

(
1− v2

8 f 2

)
ϕ+ χ ℓ −Z

mℓH√
2 f

V v
4 f 0

TABLE 3.14: Scalar-Fermion-Fermion couplings at O(v2/ f 2) involving νH and a
T-odd singlet.

[SSFF] cL cR

h ω+ χ ℓ iZ
mℓH

4
√

2 f 2 V
(

1− v2

6 f 2

)
0

h ϕ+ χ ℓ −Z
mℓH

4
√

2 f 2 V
(

1− v2

12 f 2

)
0

TABLE 3.15: Scalar-Scalar-Fermion-Fermion couplings at O(v2/ f 2) involving a
T-odd singlet.

between the T-odd singlet, νH and ν̃c in table 3.5 and it is ignored everywhere. The leading
contributions of the T-odd singlet to this process are of order v2/ f 2.

To extract the UV divergent part of this process coming from the introduction of the T-odd
singlet, we can use part of the information previously learned from the case without the singlet
and the case with a T-even singlet. The topologies one has to evaluate are again those depicted
in fig. 3.1. Since the left-handed singlet does not couple to the charged gauge bosons, Topology
I requires an insertion of the mixing between the singlet and νH to give a new contribution.
However at order 1 this topology is finite by its own as one can read from table 3.6. Thus
no divergences order v2/ f 2 are generated through mixing. The same argument applies for
Topology II but in this case two mixing insertions are necessary. Topology III has a potential
divergence of order v2/ f 2 when the right-handed components of the singlet run in the loop.
Topology IV may generate a divergence but this is of next order since the couplings between
the singlet and the scalar T-odd triplets are of order v/ f as was discussed above. Furthermore
the couplings between the Higgs doublet and the triplets are of order v/ f 2 as one can infer from
the structure of the LS Lagrangian in eq. (3.26) and the SU(2) quantum numbers of the involved
scalar fields. Besides, any insertion of the mixing would require a νHL in the loop and a right-
handed SM charged lepton in an external leg, leading again to negligible corrections at the
order we work. Topology V+VI and VII+VII do not contribute either, by the same arguments
as Topologies I and II. Topology IX+X with only the right-handed components of the singlet
running in the loop vanishes as in the T-even case. Thus since the left-handed components
of the singlet do not have Yukawa couplings, an insertion of the mixing with νH is needed.
However, since the order 1 divergences of these diagrams cancel with Topology XI+XII, the
corresponding diagrams with mixing insertions also cancel and the only remaining possibility
is Topology XI+XII with only the right-handed components of the singlet running in the loop.
Thus to evaluate Topology III and XI+XII the Feynman rules are listed in tables 3.14 and 3.15
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C
( v2

f 2 )

UV III XI+XII Sum

ω, νH, χ − 1
8 – − 1

8

ω, χ – 1
32

1
32

Φ, νH, χ 1
8 – 1

8

Φ, χ – 1
32

1
32

Total 0 1
32

1
32

TABLE 3.16: Order v2

f 2 T-odd singlet contributions to the UV divergent part of

h→ ℓiℓj.

lL lL

〈H〉 〈H〉
Φ, ω

(χ )R

FIGURE 3.3: Feynman diagrams that generate the divergent operators in
eq. (3.158) in LFV Higgs decays in the T-odd χ scenario.

As in the case without the singlet, the divergent part of the amplitude can be parametrized
by the following expression

Mχ
div(h→ ℓℓ′) =

1
16π2

v2

f 2 C

(
v2

f 2

)
UV

1
ϵ ∑ V†

ℓ′iViℓ
m2

ℓHi
f 2 u

(
p′, mℓ′

) (mℓ′

v
PL +

mℓ

v
PR

)
v (p, mℓ) , (3.157)

where all the new contributions are of order v2/ f 2 and the UV divergences do not depend on
the mass of the particles running in the loop. The results are collected in table 3.16.

As one can notice, the contributions coming from Topology III cancel since they have op-
posite signs. On the other hand, the contributions from Topology XI+XII have the same sign
and they do not cancel. Since only the right-handed components of χ run in the loop, the
divergence comes exclusively from the κ sector in eq. (3.40). Thus one has to disregard the
T-odd possibility to have a one-loop predictive model and adopt the T-even realization for the
singlet within the minimal LHT scenario. If one still insists in the T-odd realization, one needs
to generate the tree level operator in the SM symmetric phase (see fig. 3.3)

O =
(

liLσaH
)

i/∂
(

H†σaljL

)
+

1
2

(
liLσaH̃

)
i/∂
(

H̃†σaljL

)
, (3.158)

in a [SU(2)×U(1)]2 gauge invariant fashion and with this relation between the coefficients to
renormalize the divergent contribution. In the above equation H̃ = iσ2H∗, σa are the three
Pauli matrices and i, j are flavour indices. The first term comes from integrating out the singlet
and the triplet Φ and the second term comes from the integration of the singlet and the triplet
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Y′1 Y′2 Y′′1 Y′′2 Y1 Y2

χ1L
1
5 − 1

5 0 0 1
5 − 1

5

χ2L − 1
5

1
5 0 0 − 1

5
1
5

xχ1L − 1
5

1
5 − 1

2 − 1
2 − 7

10 − 3
10

x̃χ2L
1
5 − 1

5 − 1
2 − 1

2 − 3
10 − 7

10

x − 2
5

2
5 − 1

2 − 1
2 − 9

10 − 1
10

x̃ 2
5 − 2

5 − 1
2 − 1

2 − 1
10 − 9

10

TABLE 3.17: As in table 3.2 for the extra χ1L and χ2L left-handed fields and the
new scalar fields x, x̃ required for the left-handed couplings of χ to ℓ.

ω.9 This option has the pathology of LFV operators at tree level and one would need to find
a mechanism to explain why the corresponding coefficients should be small to be compatible
with the current LHC constraints [113]. On the other hand this operator cannot be generated
in a gauge invariant manner. We will show that precisely the Yukawa Lagrangian (3.40) is
not invariant under global transformations along the direction of the gauge generators. As
a consequence these operators do not respect gauge invariance under the full gauge group
[SU(2)×U(1)]2 but preserve the diagonal SM gauge group.

Another possibility one could explore is trying to involve the λ sector in eq. (3.46) to cancel
this divergence through couplings of the form (h + v)2 ω+(χ )LℓR and (h + v)2 ϕ+(χ )LℓR. To
do so, one would need to introduce the left-handed fields χ1L, χ2L in the SU(5) multiplets in
eq. (3.28). The T-odd combination would pair with (χ )R and receive a mass of order κ f from
eq. (3.40) whereas the remaining T-even combination would remain massless unless another
mechanism is provided to generate a mass. Those fields would have hypercharges

( 1
5 ,− 1

5

)
and

(
− 1

5 , 1
5

)
under the gauge group according to the transformation properties of the SU(5)

multiplets in eq. (3.28). However, it is not possible to introduce such fields in the multiplets of
eq. (3.48) since they live in the opposite representation of the gauge group as those in eq. (3.28).
There are no available scalar fields x, x̃ to reverse the corresponding hypercharges of the new
fermions fields and at the same time take into account the extra hypercharge required to iden-
tify ℓR with the SM right-handed charged leptons as it is shown in table 3.17. Thus we would
have to assign ℓR to larger representations as in [114, 115].

3.2.2. Neutrino masses in the LHT

T-even heavy singlet

In this part we will assume that the lepton field χ is T-even (χ+). The left-handed χL living
in the incomplete SO(5) multiplet in eq. (3.61) is an SU(2) singlet. Therefore it is natural to
include a small Majorana mass for it. We will assume that lepton number (LN) is only broken
by small Majorana masses µ by a term of the form

Lµ = −µ

2
(χc

+)L (χ+)L + h.c., (3.159)

where (χc
+)L = C(χ+)

T
L with C the particle-antiparticle conjugation operator defined in terms

of the Dirac matrices, C = iγ0γ2 (see for instance ref. [116]). This term is also assumed as a new

9There is another operator arising from the integration of the singlet η, (lL H̃)i/∂(H̃†lL). However this operator
does not contribute to LFV Higgs decays.
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FIGURE 3.4: Diagrammatic expansion of the tree-level integration out of χ+ in
eq. (3.165).

source of soft breaking of the SO(5) global symmetry. To generate the neutrino mass matrix we
use the inverse seesaw mechanism and thus we integrate out at tree-level the quasi-Dirac χ+

using the corresponding equations of motion. Ignoring contributions from gauge bosons and
derivatives of Goldstone bosons in the kinetic term for the non-linear right-handed fermions in
eq. (3.65) we obtain

i/∂ (χ+)L −Mχ (χ+)R − µ (χ+)
c
L = 0 (3.160)

i/∂ (χ+)R −M†
χ (χ+)L + iκ†

l f
(

ξ†Ψ2 + ξΣ0Ψ1

)
3
+ (...) = 0, (3.161)

where (...) includes the gauge boson interactions and derivative interactions of Goldstone
bosons with leptons. Combining these two equations one can obtain second order differen-
tial equations for the left and right-handed components of the singlet ignoring derivatives
of Goldstones and fermions in Ψ1,2. Since the mass of the quasi-Dirac singlet is much larger
than the momentum transfer, one can consider an expansion of the inverse of the operator(
∂2 + M2

χ

)−1 ≈ M−2
χ obtaining at leading order in µ

(χ+)L ≈
(

M†
χ

)−1
iκ†

l f
(

ξ†Ψ2 + ξΣ0Ψ1

)
3

(3.162)

(χ+)R ≈ iM−1
χ µ

(
M−1

χ

)T
κT

l f
(

ξTΨc
2 + ξ∗Σ0Ψc

1

)
3

. (3.163)

Substituting the expressions for (χ+)L and (χ+)R we find

L ⊃ 1
2

(
κ f M−1

χ

)∗
µ
(

κl f M−1
χ

)† (
Oχ +O′χ

)
+ h.c., (3.164)
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where omitting family indices

Oχ = Ψc
1ξ
1+ Ω

2
ξTΨ1 + Ψc

2ξ∗
1+ Ω

2
ξ†Ψ2, (3.165)

O′χ = Ψc
1Σ0ξT1+ Ω

2
ξ†Ψ2 + Ψc

2ξ∗
1+ Ω

2
ξΣ0Ψ1. (3.166)

These operators contain the dimension 5 Weinberg operator

L ⊃ − 1
2 f 2

(
κl f M−1

χ

)∗
µ
(

κl f M−1
χ

)† (
l
c
LH̃∗

) (
H̃†lL

)
+ h.c., (3.167)

where H̃ = −iσ2H∗ and also contributions from dimension 7 operators including the triplet
∆ ≡ −iσ2Φ (that absorbes the prefactor −iσ2 in the definition of ΨR in eq. (3.35))

L ⊃ 1
2 f 4

(
κl f M−1

χ

)∗
µ
(

κl f M−1
χ

)†
[

1
6

(
l
c
L∆T∆∗H̃∗

) (
H̃†lL

)
+

1
6

(
l
c
LH̃∗

) (
H̃†∆†∆ lL

)]
+ h.c..

(3.168)

These latter operators would contribute to the neutrino mass matrix once T-parity gets broken
by the vev of the neutral component of the triplet

〈
Φ0〉 ̸= 0. Notice that there is no dimension

4 and 5 operators involving only triplets. The dimension 4 operator is forbidden by T-parity
since it should come from a dimension 5 T-parity preserving operator. This is also the reason
why the type II seesaw is not allowed in the LHT but it is in the model without T-parity [104].
The dimension 5 operator with two triplets is allowed by T-parity but two extra Higgses are
required to compensate for the hypercharge of the two lepton doublets. Thus the only pos-
sibility is the dimension 7 operators above that are subleading with respect to the Weinberg
operator by a factor −

〈
Φ0〉 /6 f 2. Hence keeping the leading order contribution, the tree-level

integration of the singlet gives the neutrino mass matrix when the Higgs is replaced by the vev

Meven
ν = θTµθ, (3.169)

where the Yukawa coupling κl and the mass matrix Mχ have been rotated at leading order in
flavour space according to eqs. (3.100) and (3.111), we have redefined without loss of generality
µ→ Vχ∗

L µVχ†
L and the SM neutrinos have been rotated according to eq. (3.104) to introduce the

definition of θ in eq. (3.140). For consistency of the model we will assume that the natural size
of the eigenvalues for Mχ are∼ 10 TeV, of the order of 4π f with f ∼ TeV, as required by current
EWPD with the κl eigenvalues of order 1. The µ eigenvalues that parametrize the LN violation
will be much smaller than the GeV. The predictions of the SM neutrino masses and the lepton
flavour violation (LFV) contributions of the quasi-Dirac singlets χ+ are those of the inverse
seesaw [117–119] as we will review in the following.

Inverse seesaw masses and mixings The neutrino mass matrixMeven
ν is not diagonal in the

basis where the charged leptons mass matrix is diagonal. In fact,

Meven
ν = U∗PMNSDeven

ν U†
PMNS (3.170)

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix [120–123] and Dν is the
diagonal neutrino mass matrix. Then, solving eq. (3.169),

µ = (θT)−1U∗PMNSDeven
ν U†

PMNS(θ)
−1. (3.171)
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Therefore, for an invertible matrix θ, µ can always be adjusted to fit light neutrino masses and
mixings. For instance, for a single family, if f > 1 TeV, κ = 1 and Mχ = 10 TeV, we find
that µ ∼ 0.3 keV for neutrino masses of order 0.1 eV. These values of µ are natural, since they
parametrize the explicit breaking of LN [13].

The experimental limits on θ can always be satisfied without implementing flavour sym-
metries on the model but LFV constraints set stringent limits on the high energy scale f as well
as on the mixing between light and heavy leptons.

LFV limits The θ matrix elements give the mixing between the light and heavy quasi-Dirac
neutrinos, ν and χ+, respectively, according to eq. (3.133),

(UPMNS)ij νLj →
[
1− 1

2
θ†θ

]
ij

νLj + θ† (χ+)Lj , (χ+)Li →
[
1− 1

2
θθ†
]

ij
(χ+)Lj − θijνLj,

(3.172)

where we neglect the contributions of the LN violating parameter µ to the rotations. θ is also
constrained by lepton flavour conserving processes at tree level because they modify the SM
charged and neutral currents. Using the notation introduced in [124, 125],

Lν
W =

g√
2

νLiWijγ
µℓLjW+

µ + h.c., with Wij =

{
U†

PMNS

[
1− 1

2
θ†θ

]}
ij

,

Lν
Z =

g
2cW

νLiXijγ
µνLjZµ , with Xij =

{
U†

PMNS

[
1− θ†θ

]
UPMNS

}
ij

, (3.173)

where X is hermitian verifying X = WW† at leading order. Hence X can be diagonalized by
a unitary matrix. Since U†

PMNSθ†θUPMNS is hermitian, all its eigenvalues are positive and, at
leading order, proportional to v2/ f 2. This implies that all the eigenvalues of X are less than 1.
In these conditions, X verifies the following positivity constraints [124, 125]

|Xij|2 ≤ XiiXjj and |δij − Xij|2 ≤ (1− Xii)(1− Xjj). (3.174)

This latter equation reduces to the Schwarz identity |
(
θ†θ
)

ij |2 ≤
(
θ†θ
)

ii

(
θ†θ
)

jj.
More stringent are the constraints coming from one loop LVF processes like (g− 2)ℓ and,

at higher order, the Electric Dipole Moment of the electron (EDMe).10 Even though they are
suppressed by the corresponding loop factor 1/16π2, they significantly restrict the θ matrix
elements and the mass of the heavy quasi-Dirac neutrinos, Mχ. The couplings between the SM
leptons and χ+ are given by

Lχ+

W =
g√
2
(χ+)Liθijγ

µℓjW+
µ + h.c., Lνχ+

Z =
g

2cw
(χ+)Li (θUPMNS)ij γµνl

LjZµ + h.c.. (3.175)

Finally, the SFF coupling in table 3.8 plays a crucial role in Higgs decays. At leading order,

Lν
χ = −νLi

(
U†

PMNSθ
)

ij

mχj

v
(χ+)R h + h.c.. (3.176)

We can now derive conservative bounds for the LFV parameter θ. In the upper part of table 3.18
we collect the limits from EWPD obtained assuming that each neutrino mixes only with one
light neutrino of a given flavour and that only one mixing is non-vanishing at a time [126, 129].
This means that only θii ̸= 0 in the basis where the charged leptons are diagonal. On the other

10The addition of heavy neutrinos does not modify the SM neutral currents for charged leptons at tree level and
then, they remain lepton flavour conserving and universal.
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EWPD (only one θii ̸= 0, at 95 % C.L. [126])
|θe1| < 0.04 |θµ2| < 0.03 |θτ3| < 0.09

LFV at 90 % C.L. (mχk = 10 TeV)
Br(µ→ e γ) < 4.2× 10−13 [127] Br(τ → e γ) < 3.3× 10−8 [128] Br(τ → µ γ) < 4.4× 10−8 [128]

|θ∗jeθjµ| < 0.26× 10−4 |θ∗jeθjτ| < 0.62× 10−2 |θ∗jµθjτ| < 0.71× 10−2

TABLE 3.18: Limits on the mixing between the SM and the heavy quasi-Dirac
neutrinos from electroweak precision data (top) and from lepton flavour violating

processes (bottom). The sum on the repeated index j = 1, 2, 3 is understood.

[Vµ (p1)Vν (p2)Vρ (p3)] C [S (p1) S (p2)Vµ] G [SVµVν] K
γW+W− −e π+π−γ −e π+W−γ i e2

sW
v

TABLE 3.19: Vector-Vector-Vector, Scalar-Scalar-Vector couplings and Scalar-
Vector-Vector couplings for γ→ ℓℓ′.

hand, if one assumes universality, implying that the three diagonal mixings θii are equal, their
absolute value is found to be |θii| < 0.03 at 95% C.L [130]. This implies that using the definition
of θ in eq. (3.140) at leading order and v ≈ 246 GeV, one finds

|Z̃κ
diag
l V|ii < 0.17

( mχi

TeV

)
. (3.177)

This expression can be translated into information about the diagonal components of the Yuka-
wa coupling κl under the following assumptions. Taking the Yukawa coupling λl in eq. (3.46)
diagonal implies V l

L = V l
R = 1 and thus V = VH†

L . On the other hand, taking also the mass
matrix of the (χ+) diagonal at leading order implies that Vχ

L = Vχ
R = 1 and thus Z ≈ Z̃ = VH

R .
Hence Z̃κ

diag
l V = κl . This in turn translates into an upper bound on the mass of the T-odd

mirror leptons mℓH =
√

2κl f .
To further constraint the θ matrix, one can consider the most stringent bounds coming from

the non observation of the radiative decays ℓ→ ℓ′γ. The contribution of (χ+) can be evaluated
in the ’t Hooft-Feynman gauge in a similar way as its corresponding contribution to LFV Higgs
decays. The potential one-loop topologies for a vector field coupled to leptons are listed in
fig. 3.5. Not all of them give a contribution for the photon since it does not couple to neutral
leptons and thus I and III are zero. On the other hand, gauge invariance reduces the vertex for
an on-shell photon to a dipole transition

iΓµ
γ (pℓ, pℓ′) = ie

[
iFγ

M
(
Q2)+ Fγ

E
(
Q2) γ5

]
σµνQν, (3.178)

where Qν = (pℓ′ − pℓ)ν. The topologies that according to Package X [112] give a contribution to
this operator are II, IV and VI. Thus to the Feynman rules given above in subsection 3.2.1 we
have to add those in table 3.19,

[Vµ (p1)Vν (p2)Vρ (p3)] = i J
[
gµν (p2 − p1)

ρ + gνρ (p3 − p2)
µ + gρµ (p1 − p3)

ν] ,

where all momenta are assumed incoming.
The decay width of the process is, neglecting mℓ′ ≪ mℓ,

Γ
(
ℓ→ ℓ′γ

)
=

α

2
m3

ℓ

(
|Fγ

M|2 + |F
γ
E |2
)

, (3.179)
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FIGURE 3.5: Topologies contributing to γ→ ℓℓ′.

with α = e2/4π, and the form factor

Fγ
M = θ∗jℓ′θjℓ

αW

16π

mℓ

M2
W

Fχ,ν
M

(
M2

W
m2

χj

)
, (3.180)

where αW = α/s2
W and

Fχ,ν (x) = −2 + 5x− x2

4 (1− x)3 −
3x

2 (1− x)4 log x x→0−−→ −1
2

, (3.181)

with x = M2
W/m2

χj
. The form factor Fγ

E verifies Fγ
E = iFγ

M. The corresponding branching ratio
reads

Br
(
ℓ→ ℓ′γ

)
=

3α

2π

∣∣∣∣∣θ∗jℓ′θjℓFχ,ν
M

(
M2

W
m2

χj

)∣∣∣∣∣
2

. (3.182)

Then, to estimate the bounds on the mixing, one can substitute Fχ,ν
M by its limit −1/2 for x → 0

which implies m2
χj
≫ M2

W in eq. (3.181). This results in the bounds for |θ∗jℓ′θjℓ| in table 3.18.
The mixing matrix θ ≃ v/(2 f )mℓH m−1

χ between the light and heavy neutrinos delimits the
mχ − mℓH region allowed by the bound θ < 0.03. This region is also slightly restricted by the
non observation of heavy lepton production since no bound can be set searching for the direct
production of ℓH [131]. In fig. 3.6 we draw these regions for f = 2.0 and 2.5 TeV for κl = 0.2. In
both cases, quasi-Dirac neutrino masses below 500 GeV are excluded. We must emphasize that
the ℓH production limit depends on f dramatically because pair production of new vector-like
leptons decaying into a SM lepton and the lightest T-odd gauge boson, AH (missing energy),
at the LHC is very much suppressed for f > 2 TeV [131], then drastically relaxing the lower
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FIGURE 3.6: Allowed mass region for the mirror leptons mass mℓH versus the
quasi-Dirac neutrino mass mχ for different values of the NP scale f . Solid lines
are fixed by the upper bound of 0.03 on the mixing between the SM and heavy
neutrinos for f = 2 TeV and 2.5 TeV. The dashed lines correspond to a fixed value

of κl = 0.2 according to [131].

bound on mχ. The limit from neutrino mixing will improve with a more precise determination
of the constraints from EWPD while the improvement of the bound on lepton-pair production
will mainly require a higher colliding energy. Both will cut down the allowed mass region
in the LHT as a function of the NP scale f , mainly fixed by the non-observation of the heavy
quarks (with masses above 2 TeV [131, 132]) and the T-odd gauge bosons (with MZH ≳ 1.25
TeV and thus f ≳ 1.5 TeV), mostly independent of the heavy quarks Yukawa coupling κq. The
chosen value of κl in [131] will be compatible with the T-odd AH gauge boson as dark matter
candidate in the context of a new and gauge invariant LHT (see chapter 4).

On the other hand, although it is flavour conserving (ℓ′ = ℓ), we can also compute at this
stage the contribution of the singlet to the muon magnetic moment aµ = 2mµFγ

M (the contribu-
tion of the the full set of T-odd leptons can be found in [64]), whose current experimental value
is aexp

µ = (116592061± 41)× 10−11 [110]. Assuming universality, δT-even
µ = −1.1× 10−9θ∗jµθjµ

and then equal to −9.9 × 10−13 for θ∗jµθjµ = 0.032. This result is too small and negative to
explain a significant departure from the SM prediction aSM

µ = (116591810± 59)× 10−11 [110].
The contribution of the heavy quasi-Dirac (χ+) to the EDMe vanishes at one loop. This

is because Fγ
M for ℓ′ = ℓ is real. The loop functions are real since the masses of the particles

running in the loop are not close to any physical threshold and the mixing matrix elements as
well as their complex conjugates enter symmetrically. Thus due to the relation Fγ

E = iFγ
M, Fγ

E is
purely imaginary at one loop.

T-odd heavy singlet

In this part we will briefly consider a mechanism for neutrino masses with the T-odd real-
ization for the singlet (χ ). We already proved that this case presents pathologies in LFV Higgs
decays, giving an UV divergent contribution, and neutrino masses are not an exception as we
will show below. However it presents the advantage of being one loop suppressed. Since it is
an SU(2) singlet, it is natural to include a small Majorana mass for the left-handed component
of the singlet

Lµ = −µ

2
(χ )

c
L (χ )L + h.c. (3.183)
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FIGURE 3.7: Feynman diagrams that lead to neutrino mass generation in the ra-
diative inverse seesaw scenario with a T-odd singlet (χ ).

as in the T-even case for the inverse seesaw. However, in this case we have to use the couplings
derived from the Yukawa Lagrangian in eq. (3.40). Since the singlet is T-odd, it does not have
renormalizable couplings with the Higgs and the SM neutrino of the form hνL (χ )R. However
we can find couplings with the neutral components of the T-odd triplets ω, Φ and with the
scalar singlet η coming from dimension 5 operators,

Lκ ⊃ iZik
mℓHk

f
Vkj

1
8 f

hω0(χ )RiνLj + Zik
mℓHk

f
Vkj

1
4
√

2 f
hϕ0(χ )RiνLj

+ iZik
mℓHk

f
Vkj

1
4
√

2 f
hω0(χ )RiνLj + iZik

mℓHk

f
Vkj

3
8
√

5 f
hη(χ )RiνLj + h.c.. (3.184)

Thus to obtain neutrino masses the quasi-Dirac (χ ) as well as the neutral components of the
triplets and the scalar singlet must run in the diagrams at one loop if T-parity is preserved. This
is the so called radiative inverse seesaw mechanism [133]. On the other hand, if T-parity gets
broken in the scalar sector by a tiny vev along the direction of the CP-even neutral components
of the triplets and the singlet, we would generate a tree-level operator for neutrino masses
with χ running in the diagrams. However, as in the T-even case, we will not consider such a
T-parity violating scenario.

Notice that except for the coupling with the scalar singlet η these couplings are the analo-
gous to those in table 3.15 that enter in Topology XI+XII and give the UV divergent contribution
to LFV Higgs decays but with the neutral SM leptons. To obtain the neutrino mass matrix one
has to evaluate the one-loop diagrams in fig. 3.7 when the Higgs is replaced by its vev.

In this case evaluating the diagrams we obtain the mass matrix for the SM neutrinos

(
Modd

ν

)
ij
=

1
16π2

(
Z

mℓH

f
V
)T

ik
mχk µklmχl

(
Z

mℓH

f
V
)

l j

v2

f 2×(
1
64

Fkl (MWH ) +
9

320
Fkl (MAH ) +

1
16

Fkl (MΦ)

)
, (3.185)

where the one-loop function Fkl (ms) is defined by

Fkl (ms) =

m2
χk

log
(

m2
χl

m2
χk

)
(
m2

χk
−m2

χl

) (
m2

χk
−m2

s
) + m2

s log
(

m2
χl

m2
s

)
(
m2

χk
−m2

s
) (

m2
χl
−m2

s
) (3.186)

and after some algebra it is straightforward to show that it is symmetric under k↔ l. However,
the neutrino masses do not go to zero in the limit mχ → ∞. Assuming degenerate masses mχ
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for the different flavours of χ in the one-loop function in eq. (3.186) one gets

lim
m2

χk
→mχ

Fkl (ms) =
1

m2
χ −m2

s
+

m2
s log

(
m2

χ

m2
s

)
(
m2

χ −m2
s
)2 , (3.187)

and finally taking the limit mχ → ∞ in the neutrino mass matrixModd
ν with mχk = mχ yields

lim
mχ→∞

(
Modd

ν

)
ij
=

1
16π2

(
Z

mℓH

f
V
)T

ik
µkl

(
Z

mℓH

f
V
)

l j

17
160

v2

f 2 . (3.188)

Hence the neutrino masses in the LHT with a T-odd realization for the lepton singlet with
the radiative inverse seesaw mechanism go like 1/ f 2 instead of 1/m2

χ and the χ fields do
not decouple as we already knew from LFV Higgs decays. This can be expected a priori. By
power counting, the vertices between the SM neutrino, the T-odd singlet χ and the T-odd
scalar fields, once the Higgs is replaced by its vev are of order ∼ v/ f , and thus the neutrino
mass is proportional to µv2/ f 2 times a one loop function that must be dimensionless since
the prefactor has already dimensions of mass. Inside the loop-function, the numerators of the
fermion propagators give a m2

χ. Since mχ is the highest scale in the integral, one can take the
limit of vanishing scalar masses and thus the integral of the rest of the loop-function must give
∼ 1/m2

χ. Therefore the result goes like ∼ 1/(16π2)×m2
χ/m2

χ ∼ 1/(16π2), independent of the
singlet mass.

One last comment regarding the T-parity violating scenario. If the T-odd scalar fields are
replaced by a tiny vev , v′, then the vertices between the Higgs, the singlet and the SM neutrino
are order ∼ κvv′/ f , and thus the neutrino mass would be proportional to µκ2v2v′2/ f 2 times
the contribution coming from the intermediate singlet propagators that go like ∼ 1/m2

χ and
the neutrino masses of size µκ2(v/ f )2(v′/mχ)2 that is suppressed by v2/ f 2 as the T-parity
preserving case and by v′2/m2

χ.
Finally, as in the T-even case, the neutrino mass matrix is not flavour diagonal in the basis

where the charged leptons are diagonal. Hence introducing the PMNS rotation matrix,

Modd
ν = U∗PMNSDodd

ν U†
PMNS, (3.189)

one can adjust µ to fit light neutrino masses and mixings. Considering only one family and
taking f ≈ 1 TeV and κ = 1, we find that µ ≈ 1.2 keV. That is a factor of 3 greater than in the T-
even case with the same set of data. One can notice that the one loop suppression is not enough
to increase the µ parameter in a significant amount if the result does not depend explicitly on
the mass of the singlet.

3.3. Non gauge invariance of the LHT

This section is devoted to one of the main results of this Thesis. Motivated by the unex-
pected pathologies we found in the T-odd realization of the fermion singlet (χ ) in LFV Higgs
decays and neutrino masses due to interactions of the right-handed singlet through the Yukawa
Lagrangian in eq. (3.40), we will show that this sector does not preserve gauge invariance un-
der [SU(2)×U(1)]2. The same happens for the quark sector in eqs. (3.41), (3.42) and so we will
focus on the lepton sector. In particular, the Lagrangian is not gauge invariant under global
transformations along the direction of the gauge generators and, as a consequence, gauge in-
variance is explicitly broken in the T-odd realization. On the other hand, we will also show
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that any SO(5) quintuplet should be completed and all its components must get the same mass.
This also affects the T-even realization.

Let us start from eq. (3.9), that defines the non linear SO(5) transformation matrices in terms
of a fixed SU(5) matrix V and the Goldstone bosons encoded in ξ. This equation is consequence
of the particular embedding of SO(5) in SU(5) coming from the definition of the vacuum Σ0 in
eq. (3.1) and the action of the inner automorphism in the Lie algebra. Consider an arbitrary
global SU(5) transformation in a neighbourhood of the identity and let us find the correspond-
ing SO(5) transformation

V = eiαaXa+iβbTb
, U = eiσbTb

, (3.190)

where we used the exponential parametrization for the transformation matrices in a neighbour-
hood of the identity. U depends only on the unbroken SO(5) generators Tb whereas V depends
in general on all the set of SU(5) generators. The matrix U depends on the Goldstone fields
and the SU(5) matrix V through the parameters σb which are a function of Π, αa and βb. To
derive the explicit form of these coefficients we take an infinitesimal transformation V and U
in eq. (3.9). This means that we will keep just the first order in the transformation parameters
αa and βb and to obtain(

1+ iαaXa + iβbTb
)

ξ
(

1− iσbTb
)
=
(
1+ iσbTb

)
ξΣ0

(
1+ iαaXaT + iβbTbT

)
Σ0

⇒ σb
{

Tb, ξ
}
= βb

{
Tb, ξ

}
+ αa [Xa, ξ] , (3.191)

where [A, B] and {A, B} are the commutator and anti-commutator, respectively. In the last
step we used the properties that unbroken and broken generators satisfy with respect to Σ0
in eqs. (3.2) and (3.5) to eliminate it from the equation. On the other hand, motivated by the
Taylor expansion on the NP scale f of the matrix ξ,

ξ =
∞

∑
n=0

1
n!

(
iΠ
f

)n

, (3.192)

we parametrize the dependence on f (and consequently on the Goldstone fields) of the param-
eters σb,

σb =
∞

∑
n=0

σb
n

f n . (3.193)

Let us substitute order by order in 1/ f in eq. (3.191). The zeroth order gives σb
0 = iβb, which

is the linear part of the transformation. Particularizing to a transformation along the direction
of the gauge generators, neglecting higher order corrections, the matrix Ug would depend only
on the SM gauge generators and then the Yukawa Lagrangians in eqs. (3.39) and (3.40) would
be both gauge invariant, with or without completing the SO(5) quintuplet ΨR with the singlet
χ and the mirror-partner leptons. Besides, if for phenomenological interests one decided to
include all the fields, each component could get unrelated masses. This is because due to the
form of the SM generators, they do not mix the upper and lower components of the quintuplet.
However, including the Π-dependent effects of the transformation, one must solve eq. (3.191)
for higher orders in 1/ f ,

∞

∑
n,m=0

σb
m

1
f n+m

in

n!

{
Tb, Πn

}
= βb

∞

∑
n=0

1
f n

in

n!

{
Tb, Πn

}
+ αa

∞

∑
n=0

1
f n

in

n!
[Xa, Πn] . (3.194)
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Renaming the indices of the term in the l.h.s one obtains

∞

∑
n,m=0

σb
m

1
f n+m

in

n!

{
Tb, Πn

}
=

∞

∑
n=0

n

∑
m=0

σb
m

1
f n

in−m

(n−m)!

{
Tb, Πn−m

}
(3.195)

and then identifying term by term of the sum,

n

∑
m=0

σb
m

in−m

(n−m)!

{
Tb, Πn−m

}
= βb in

n!

{
Tb, Πn

}
+ αa in

n!
[Xa, Πn] , n ≥ 0. (3.196)

From the previous expression and using the information we obtained from the zeroth-order
σb

0 = βb we get

n

∑
m=1

σb
m

in−m

(n−m)!

{
Tb, Πn−m

}
= αa in

n!
[Xa, Πn] , n ≥ 1. (3.197)

This expression reveals that the non linear part of the infinitesimal SO(5) transformation only
has a dependence on the coefficients that parametrize transformations along the direction of the
broken generators. From this we can obtain the coefficient σb

1 using that the basis of generators
we chose is orthogonal,

2σb
1 = iαatr

(
[Xa, Π] Tb

)
. (3.198)

This trace is different from zero because the automorphism in the Lie algebra implies that the
commutator between broken generators11 implies

[
Xa, Xb] ∼ Tc (see eq. (3.6)). The fact that in

this expression appears the commutator between the Goldstone matrix and the broken gener-
ators in short implies that σb

1 Tb is a linear combination of all SO(5) generators. Coming back
to eq. (3.197), separating the term m = n from the rest and taking traces on both sides of the
equation, we obtain a recursive formula for the n-th coefficient for n > 1,

2σb
nTb = −

n−1

∑
m=1

σb
m

in−m

(n−m)!

{
Tb, Πn−m

}
+ αa in

n!
[Xa, Πn] . (3.199)

In general, the right-handed side will depend on all the SO(5) generators. Using our orthogonal
basis, we can multiply both sides of the previous equation by Tc and take the trace to find

2σc
n = tr

[(
−

n−1

∑
m=1

σb
m

in−m

(n−m)!

{
Tb, Πn−m

}
+ αa in

n!
[Xa, Πn]

)
Tc

]
, n > 1. (3.200)

Just for completeness, we also derive σc
2 that turns out to be zero,

2σc
2 =tr

[(
−iσb

1

{
Tb, Π

}
− 1

2
αa [Xa, Π2]) Tc

]
=

1
2

tr
[(

αatr
(
[Xa, Π] Tb

) {
Tb, Π

}
− αa [Xa, Π2]) Tc

]
=

1
2

tr
[(

αa {[Xa, Π] , Π} − αa [Xa, Π2]) Tc]
=

1
2

tr
[(

αa [Xa, Π2]− αa [Xa, Π2]) Tc] = 0, (3.201)

11Notice that the Goldstone bosons are the excitations along the direction of the broken generators.
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where we have substituted σb
1 calculated above, then we have replaced A = 1

2 [X
a, Π] =

tr
(

ATb) Tb in {A, Π} = tr
(

ATb) {Tb, Π
}

and finally we have used {[Xa, Π] , Π} = [Xa, Π]Π+
Π [Xa, Π] =

[
Xa, Π2]. Therefore, given an infinitesimal SU(5) transformation

V ≈ 1+ iαaXa + iβbTb, (3.202)

the corresponding infinitesimal SO(5) transformation reads

U ≈ 1+ iβbTb − 1
2 f

αa [Xa, Π] +O
(

Π3

f 3

)
, (3.203)

which is the result of the particular embedding of SO(5) into SU(5) and the automorphism
defined in the Lie algebra.

Now let us focus on the particular case of a global SU(5) transformation belonging to
the gauged subgroup [SU(2)×U(1)]1 × [SU(2)×U(1)]2 that is spontaneously broken to the
SM subgroup [SU(2)×U(1)] ⊂ SO(5). Let us denote this kind of transformations with the
subindex g, Vg and Ug respectively. Vg is expanded by no more than the union of the set{

Xa
g

}
= {Qa

1 −Qa
2, Y1 −Y2} of broken generators and the set

{
Tb

g

}
= {Qa

1 + Qa
2, Y1 + Y2}

of unbroken ones. However, from eq. (3.203) it is clear that, due to the non linearity of the
SO(5) transformation matrices U, restricting ourselves to transformations Vg along the direc-
tions of the gauge generators does not imply that the matrix Ug depends only on the diag-

onal gauge subgroup generators. The key point is the presence of the commutator
[

Xa
g, Π

]
that cannot be expanded in general in terms of just the SM gauge generators since

[
Xa

g, Π
]
̸=

tr
([

Xa
g, Π

]
Tb

g

)
Tb

g , rather requiring the full set of SO(5) generators. One of the consequences

of this fact is that the Lagrangians L(b)
YH

and L(b)
YqH

in eqs. (3.40) and (3.42), whose second term
(the T-parity transformed of the first one) depend explicitly on the center of the gauge group
element Ω (hence commuting with gauge generators) is not invariant under a global transfor-
mation along the direction of the gauge generators and consequently is not gauge invariant.
Taking for instance eq. (3.40):

−κl f
(

Ψ2ξΨR + Ψ1Σ0Ωξ†ΩΨR

) Gg−→ −κl f
(

Ψ2ξΨR + Ψ1Σ0Ωξ†U†
gΩUgΨR

)
, (3.204)

where Ug and U†
g cannot be simplified because in general they do not commute with Ω.

This has two important implications. First, it is clear that this implementation of the discrete
T-parity in the fermionic sector with a T-odd χ must be discarded because it is incompatible
with gauge invariance. Thus one does not have to worry about the pathologies we found re-
lated to the UV divergent contributions of the singlet found in Higgs decays in § 3.2.1 and
the non dependence of neutrino masses on the mass of the singlet in § 3.2.2 in the T-odd case
because, in particular, the result is gauge dependent: all the contributions to these processes
come from the Yukawa Lagrangian in eq. (3.40) and the operators generated are not invariant
under global transformations along the direction of broken generators and thus under gauge
transformations. On the other hand, regardless of the T-parity realization, it results apparent
that the SO(5) multiplets must be complete (as for instance ΨR with the mirror fermions and
the singlet) because a non-linear transformation Ug mixes all its components and not just those
laying in the invariant subspaces under the linear part of (3.203). In particular, the incomplete
SO(5) representations Ψ(q)

L and Ψ
χ(q)
L in eq. (3.61), introduced to give a vector-like mass to the

mirror fermions and the singlets through eq. (3.62) by coupling them with their correspond-
ing right-handed counterparts in Ψ(q)

R , do not only break the global SO(5) but also the gauge
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invariance, as we have just shown.
In contrast to the case with a T-odd singlet (χ ), the amplitudes for LFV Higgs decays are

finite at one loop if the gauge singlet is chosen to be T-even as we showed in § 3.2.1, and
the contribution decouples when its mass is taken infinitely large. The same happens to its
contribution to neutrino masses. However, LFV Higgs decays exhibit a non-decoupling be-
haviour proportional to the logarithm of the mirror-partner masses and to the misalignment
between the mass matrices of mirror and mirror-partner leptons in eq. (3.120). This new source
of flavour violation can be interpreted as a vestige of the broken gauge invariance, that it is
restored when partners, mirror-partner fermions and singlet share a complete multiplet and
hence get their masses from the same coupling. Recall that, as already emphasized, the mirror-
partner fermions could not be ignored to obtain a finite LFV Higgs decay amplitude, since they
cancel the divergence of the mirror fermions. The contribution of χ+ is finite on its own as we
showed in subsec 3.2.1.

At any rate, we need to provide a new mechanism to give masses at least of order f to the
mirror-partner fermions and the χ, since they should be heavy enough to fulfill the EWPD con-
straints [103, 106]. A way to proceed that at the same time is compatible with the gauge symme-
try and T-parity is the object of the next chapter where we will also study its phenomenological
implications.

3.4. Chapter summary

In the first part of this chapter we have introduced the Littlest Higgs model with T-parity
as a paradigmatic example of a Little Higgs model. The Higgs and new scalar degrees of
freedom arise as the pseudo Nambu-Goldstone bosons of an approximate global symmetry
explicitly broken by gauge and Yukawa interactions. The advantage of this model with respect
to the model without T-parity is that the new particles must be pair-produced to preserve T-
parity. This symmetry significantly relaxes direct and indirect constraints coming from EWPD.
The full Lagrangian was derived and we discussed the two different implementations of the
discrete T-parity symmetry in the fermionic sector affecting the gauge singlets χ.

Once the Lagrangian was built, we explored the phenomenology of the model. First we
reviewed the calculation of the LFV Higgs decays including the set of mirror-partner leptons
whose contribution together with the mirror leptons leads to a finite result. We noticed that the
amplitude exhibits a logarithmic non decoupling behaviour in the mass of the mirror-partner
leptons. Thus they cannot be ignored as in previous phenomenological studies. Later on, we
explore the gauge singlet contribution to this process. It turns out that if it is chosen to be T-
even the contributions to LFV Higgs decays are UV finite and decouple. On the other hand
if it is chosen to be T-odd, the corresponding amplitude is UV divergent. The origin of this
divergence are the couplings of the right-handed components of the singlet with the T-odd
scalar triplets coming from the Yukawa Lagrangian L(b)

YH
in eq. (3.40). Within this minimal LHT

setup we introduced it is not possible to cure the divergence since the quantum numbers of
the multiplets in eq. (3.48) do not allow to introduce the left-handed χ and involve the SM
leptons Yukawa Lagrangian in eq. (3.46) to provide the proper couplings in order to cancel the
UV divergence.

On the other hand, it is natural to consider a small Majorana mass µ for the left-handed
counterpart of the singlet and provide a mechanism for neutrino masses. In the T-even case,
the SM neutrinos receive masses at tree-level through the inverse seesaw mechanism. The
singlet is integrated out using the tree-level equations of motion generating neutrino masses
of size ∼ κ2µv2/m2

χ that also decouples in the limit mχ → ∞. On the contrary, taking a T-
odd singlet implies that neutrino masses are generated at one loop due to T-parity. However
the integration at one loop of the singlet results in a non decoupling contribution to neutrino
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masses of size ∼ 1/(16π2)κ2µv2/ f 2 independent of the singlet mass. This is because the one-
loop function is dimensionless and taking the limit of vanishing scalar masses, being mχ the
highest scale in the integral, the result is a constant independent of any mass. As for LFV Higgs
decays, the involved couplings come from the Yukawa Lagrangian in eq. (3.40).

Finally, motivated by the anomalous behaviour of the T-odd singlet in LFV Higgs decays
and neutrino masses, we showed that the Yukawa Lagrangian in eq. (3.40) responsible of pro-
viding masses to the mirror fermions in the T-odd case is not gauge invariant. The scalar fields
are part of the non linear field ξ transforming with an SO(5) matrix. These transformations,
even particularizing for a transformation in the gauge group depend in general on all SO(5)
generators and not only on those associated to the SM subgroup. Since Lb

YH
depends explicitly

on the element of the center of the gauge group Ω, that commutes with the gauge generators
but not with the full set of SO(5) or SU(5) generators, this Lagrangian is not gauge invariant.
This forces us to rule out the T-odd realization of the singlet. On the other hand, the form of the
SO(5) transformations has also a consequence in the matter content of the model transforming
in a non linear SO(5) representation. Since under a gauge transformation there are no invariant
subspaces in these non linear representations, the SO(5) multiplets must be completed and thus
the mirror-partner leptons and the T-even singlet cannot be ignored from the spectrum. How-
ever, their mass terms are not allowed by gauge invariance since the components of a SO(5)
multiplet cannot be separated to receive different masses. Consequently a new mechanism to
provide them with a mass, at least of order f , is required since they must be heavy enough to
fulfill the EWPD constraints.
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Chapter 4

The New and gauge invariant Littlest
Higgs model with T-parity

In the last part of chapter 3 we showed that the original Littlest Higgs model with T-parity with the
minimal setup is not gauge invariant. The non linear SO(5) transformations depends on the full set of
SO(5) generators even if we restrict to transformations along the directions of the gauge generators. As
a consequence, the T-odd realization of T-parity in which the singlet in the center of the SO(5) multiplets
is T-odd was discarded because the Lagrangian depends explicitly on the element of the gauge group
Ω. This has also consequences on the T-even realization: the SO(5) multiplets must be completed since
SO(5) generators mix all their components and thus all of them must receive the same mass. Throughout
this chapter we will build the Lagrangian of a full gauge invariant Littlest Higgs model with T-parity.
This model will require an enlarged global group and a new set of scalar fields. In the fermion sector
we will include the minimal set that provides gauge invariant masses to all everyone. Later on we will
derive the Coleman-Weinberg potential using the Background Field Method, that will allow us to obtain
the masses of all the scalar fields of our theory. Finally we will study part of the rich phenomenology of
this model. We will show that our model has enough room to accommodate a viable candidate for dark
matter and at the same time be compatible with current EWPD and cosmology. This chapter is based on
original work published in refs. [68, 69].

4.1. The New Littlest Higgs model with T-parity setup

In this section we construct in full detail the Lagrangian of the New Littlest Higgs model
with T-parity (NLHT) with explicit compatibility between gauge invariance and T-parity in or-
der to address the problems we found at the end of the previous chapter. The guiding line is
the necessity of giving a vector-like mass term compatible with gauge invariance to the mirror-
partner fermions and the T-even singlet (χ+), without introducing their left-handed counter-
parts in additional SO(5) multiplets transforming like ΨR, which would then be incomplete
and hence at odds with the gauge symmetry.

4.1.1. A minimal extension of the global symmetry

To introduce the minimal set of fermion fields we will assume that left-handed components
of χ and the mirror-partner fermions transform only under an external SU(2) × U(1). Then
they will not mix with the others, as it would happen if they belonged to the same SO(5) multi-
plets, since the SM gauge generators do not mix different subspaces. This requires the minimal
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enlargement of the original global symmetry group SU(5) to1

G = SU(5)× [SU(2)×U(1)]′′1 × [SU(2)×U(1)]′′2 . (4.1)

This larger global group gets broken spontaneously when two non-linear tensor fields, Σ and
Σ̂, acquire a vev at an energy scale f ,2

SU(5)× [SU(2)×U(1)]′′1 × [SU(2)×U(1)]′′2
Σ0,Σ̂0−−−→ SO(5)× [SU(2)×U(1)]′′ , (4.2)

where Σ0 in eq. (3.1) breaks spontaneously SU(5) down to SO(5) as before, and Σ̂0 = Σ0
breaks the extra piece to its diagonal subgroup [SU(2)×U(1)]′′, leaving 14 + 4 = 18 Gold-
stone bosons. This particular breaking direction allows to take advantage of all the properties
we showed in § 3.1.2.

Throughout the rest of this Thesis, the notation we follow for the extra fields and their
corresponding transformation properties under the global and gauge group consist of putting
a hat over their symbols. In our construction the new tensor field Σ̂ transforms only under
[SU(2)×U(1)]′′1 × [SU(2)×U(1)]′′2 piece of the global group. To be consistent, for the scalar
and fermionic sector we take the representation of the extra piece of the global group over a
5-dimensional complex space generated by the same set of matrices of eqs. (3.11) and (3.12).
This in particular means that we will be able to keep the structure of multiplets we have been
using in the fermion sector.

Regarding to the gauged subgroup, it is still [SU(2)×U(1)]1 × [SU(2)×U(1)]2 but now it
is contained in the product

[SU(2)×U(1)]1 × [SU(2)×U(1)]2 ⊂
(
[SU(2)×U(1)]′1 × [SU(2)×U(1)]′2 ⊂ SU(5)

)
×

[SU(2)×U(1)]′′1 × [SU(2)×U(1)]′′2 . (4.3)

This in particular allows us to preserve the number of gauge bosons. Likewise, the diagonal
SM gauge group is

[SU(2)×U(1)] ⊂
(
[SU(2)×U(1)]′ ⊂ SO(5)

)
× [SU(2)×U(1)]′′ . (4.4)

In this way, we can introduce fermions whose corresponding non linear transformations in-
volve only the SM gauge generators and thus alleviating the aforementioned difficulties. The
Lagrangian for the gauge fields and their self-interactions is as shown before in eq. (3.20).

1We omit the extra U(1)′′′j , j = 1, 2 factors required to assign the proper hypercharges to the right-handed SM
leptons and all quarks. We will assume that this factor is always implicit. Notice also that the double prime has

been replaced by a triple prime. The double prime is now reserved for the extra piece
(
[SU(2)×U(1)]′′

)2
of the

global group.
2One could take different SSB scales in the different sectors. However, for simplicity we will assume that the

SSB of both pieces of the global group occurs at the same energy scale f .
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4.1.2. The additional Goldstone fields

According to the SSB pattern defined above, the additional Goldstone matrix is expanded
by the set of broken generators of the extra group, namely {Qa

1 −Qa
2, Y1 −Y2}. It reads

Π̂ =



− ω̂0

2
− η̂√

20
− ω̂+

√
2

0 0 0

− ω̂−√
2

ω̂0

2
− η̂√

20
0 0 0

0 0

√
4
5

η̂ 0 0

0 0 0 − ω̂0

2
− η̂√

20
− ω̂−√

2

0 0 0 − ω̂+

√
2

ω̂0

2
− η̂√

20


. (4.5)

These Goldstone fields are charged only under the extra piece of the global group [SU(2)×U(1)]′′1 ×
[SU(2)×U(1)]′′2 . Under the SM gauge group, it decomposes in

Π̂ : 10 ⊕ 30, (4.6)

including a new SU(2) triplet

ω̂ =

 −
ω̂0

2
− ω̂+

√
2

− ω̂−√
2

ω̂0

2

 (4.7)

and a singlet, η̂. One can notice that these scalar have the same quantum numbers as the
corresponding would-be Goldstone bosons of the original LHT. They will actually mix with
them and we will have to redefine the scalar fields to define the actual would-be Goldstone
bosons of the NLHT. From the Goldstone matrix Π̂ and following the CCWZ formalism we
define the non-linear sigma field

ξ̂ = eiΠ̂/ f G−→ V̂ ξ̂Û† = Ûξ̂Σ0V̂TΣ0, (4.8)

where V̂, Û are transformations of the extra piece of the global group. We have also used eq. 3.5
to write the right-handed side of the last equality. It is important to notice that in the particular
case of a gauge transformation Vg and V̂g coincide. However, from eqs. (3.9) and (4.8) it turns
out that Ug and Ûg are different as we wish, since the former depends on Vg and Π, involving
all SO(5) generators according to eq. (3.203), while the latter depends on Vg and Π̂, requiring
just the SM generators. This can be derived straightforwardly from eqs. (3.203) and (4.8) since
U and Û verify similar equations at the infinitesimal level with the substitutions mentioned
above.

We also introduce the tensor field transforming linearly under the extra piece of the global
group,

Σ̂ = ξ̂Σ0ξ̂T = ξ̂2Σ0, Σ̂ G−→ V̂Σ̂V̂T. (4.9)

We assign a T-odd parity to all the new scalar fields defining

Π̂ T−→ −Π̂ (4.10)
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h h

AH

(a)

h h

ZH

(b)

h h

W
±
H

(c)

FIGURE 4.1: One-loop Feynman diagrams that would lead to unacceptable
quadratic divergences in the Higgs mass if the mixed Lagrangian of eq. (4.13)

did not vanish.

and therefore

ξ̂
T−→ ξ̂†, Σ̂ T−→ Σ0Σ̂†Σ0. (4.11)

One can build a T-parity and gauge invariant Lagrangian for the kinetic terms and self-
interactions of the new scalars similarly to LS in eq. (3.26) according to the transformation
properties of the tensor field Σ̂ under the gauge group taking V̂ = Vg in eq. (4.9),

LŜ =
f 2

8
tr
[(

DµΣ̂
)†

DµΣ̂
]

, (4.12)

where the covariant derivative for Σ̂ is defined similarly to that in eq. (3.27),

DµΣ̂ = ∂µΣ̂−
√

2i
2

∑
j=1

[
gWa

jµ

(
Qa

j Σ̂ + Σ̂QaT
j

)
− g′Bjµ

(
YjΣ̂ + Σ̂YT

j

)]
. (4.13)

At this point one could think on considering an additional term mixing both scalar sectors,

LSŜ = αSŜ f 2tr
[
(DµΣ)† DµΣ̂

]
+ h.c., (4.14)

allowed by both gauge symmetry and T-parity and hence should be included in the Lagrangian.
However this Lagrangian involves couplings of heavy gauge bosons to scalar fields that lead
to unacceptable quadratically divergent contributions to the Higgs mass from the diagrams of
fig. 4.1. Therefore, one must take αSŜ = 0.3

4.1.3. Extra fermions and their interactions

The original LHT allows for masses of SM and mirror fermions through Yukawa interac-
tions but, in order to be consistent with gauge and T-parity invariance, the right-handed com-
ponents of the mirror fermions must share a complete SO(5) quintuplet Ψ(q)

R with the T-odd

mirror-partner fermions (ℓ̃c)R, (q̃c)R and the T-even singlet (χ(q)
+ )R according to eq. (3.204). To

provide these fields with a heavy mass one needs to introduce their left-handed components
as well, but they cannot live in SO(5) multiplets transforming non linearly like Ψ(q)

R (as the Ψ(q)
L

3The operator mixing both scalar sectors in eq. (4.13) can be generated at one loop for instance integrating out
gauge bosons. This might translate into quadratically divergent contributions to the Higgs mass at two loops. How-
ever, since we are interested in a one-loop predictive model with at most logarithmically divergent contributions to
the Higgs, we will not pay attention to this issue.
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and Ψ
χ(q)
L of eq. (3.61) usually introduced) because then they would be incomplete and their

vector-like mass terms would break gauge invariance.
We will show below that it is possible to provide mass terms to all fermions in a gauge and

T-parity invariant fashion in the context of the extended global symmetry with the new SSB
pattern described in the previous section. We will consider two different scenarios and, in or-
der to explore their implications, we will focus on the leptonic sector since the quark sector will
be a copy of the former. In a first proposal we include the left-handed (ℓ̃c)L and (χ+)L in a quin-
tuplet charged only under the external [SU(2)×U(1)]′′ subgroup of the enlarged global sym-
metry, but this minimal model will generate undesired quadratic contributions to the Higgs
mass. Then, as a viable solution, we will be forced to further extend the fermion content with
additional T-even mirror-partners l̃c

+ and a T-odd (χ ) embedding their left and right-handed
components in appropriate representations of SU(5) and [SU(2)×U(1)]′′, respectively.

A minimal setup that introduces quadratic Higgs mass corrections

Let us introduce the left-handed components of l̃c and (χ+) in such a way that they trans-
form under the SM gauge group but do not mix under an SO(5) transformation. Then, taking
a representation of the extra group that acts over the 5-dimensional space, we compose the
following multiplet

Ψ̂L =

 −iσ2(l̃c)L
i(χ+)L

0

 , Ψ̂L
Gg−→ ÛgΨ̂L, (4.15)

emphasizing that it transforms non linearly, and not under SO(5) but just under the diagonal
subgroup of the extra group. For simplicity, we have chosen that both fields lay in the same
multiplet. However they could be split into two and our conclusions would not change since
the gauge generators in eqs. (3.11) and (3.12) do not mix different subspaces. Under the discrete
T-parity symmetry we define

Ψ̂L
T−→ ΩΨ̂L, (4.16)

in order to assign the proper parities. The right-handed fields form the SO(5) quintuplet ΨR of
eq. (3.35) with

ΨR =

 −iσ2(l̃c
−)R

i(χ+)R
−iσ2lHR

 , ΨR
Gg−→ UgΨR, ΨR

T−→ ΩΨR. (4.17)

We may now pair Ψ̂L and ΨR in the following Yukawa Lagrangian

Lξ̂ξ = −κ′ f Ψ̂L

(
ξ̂†ξ + ξ̂ξ†

)
ΨR + h.c. (4.18)

to give l̃c and χ+ a mass of order κ′ f . This is compatible with gauge invariance and T-parity
since the combinations

ξ̂†ξ
Gg−→ Ûg ξ̂†ξU†

g , (4.19)

ξ̂†ξ
T−→ Ωξ̂ξ†Ω, (4.20)

transform properly under the gauge group and T-parity. In the last equation we have used that
Ω commutes with ξ̂ because only gauge generators appear in the Taylor expansion of ξ̂.
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h h
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νL

(a)

h h

νH

(b)

h h

χ+

(c)

h h

ν̃
c

−

(d)

FIGURE 4.2: One-loop Feynman diagrams contributing to the quadratic diver-
gences of the Higgs self-energy from the fermion sector in the LHT extended
with Ψ̂L (4.15). Diagrams (a) and (b) from LYH cancel each other, whereas (c) and

(d) from Lξ̂ξ
Y (4.18) are proportional to κ′2 and do not cancel.

Unfortunately, this minimal setup leads to unacceptable quadratic divergences to the Higgs
boson mass from the diagrams in fig. 4.2. The quadratic divergences coming from diagrams (a)
and (b), already in the original LHT, cancel each other (see § B.2). However diagrams (c) and
(d), from the new interaction Lagrangian in eq. (4.18) do not cancel and add up to yield

δµ2 =
3

4π2 tr
(

κ′lκ
′
l
†
)

Λ2 (4.21)

where µ2 is the parameter of the quadratic term parameter in the Higgs potential.4 Thus, in
order to prevent such a quadratic divergence, an alternative mechanism to give masses to the
singlet χ+ and the mirror-partner leptons is required.

A viable model with consistent fermion representations

Instead of including the new left-handed fields in quintuplets transforming non linearly
under the extra piece of the global group as above, we proceed to complete the SU(5) multiplets
as follows

Ψ1 =

 −iσ2l1L
iχ1L

−iσ2 l̃c
1L

 , Ψ2 =

 −iσ2 l̃c
2L

iχ2L
−iσ2l2L

 , (4.22)

with the usual transformation properties under the gauge group

Ψ1
Gg−→ V∗g Ψ1, Ψ2

Gg−→ VgΨ2, Ψ1
T−→ ΩΣ0Ψ2, (4.23)

so that (χ+)R and the (l̃c)R inside the SO(5) quintuplet ΨR of eq. (4.17) can couple to the combi-
nation with the right T-parity and quantum numbers and get a mass proportional to κ f through
the same LYH in eq. (3.39) as the mirror leptons do.

But still the T-odd combination (χ )L = (χ1L − χ2L)/
√

2 and the T-even combination of the
mirror-partner (l̃c

+)L = (l̃c
1L− l̃c

2L) remain massless.5 At this stage, barring the explicit breaking
of the global symmetry due to the gauge interactions of [SU(2)×U(1)]2, the theory would be
SU(5) invariant because now the fermion multiplets are complete. This implies that the Higgs
would be an exact Goldstone boson with no mass corrections. To give a mass to this additional

4The analogous to Lagrangian in eq. (4.13) for quarks would give the same contribution multiplied by the
corresponding color factor.

5Notice that although the T-parities of these fields are different, the relative sign in their corresponding defi-
nitions is the same due to the presence of Ω that changes the sign of the field of the middle of the multiplets in
eq. (3.33).
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combination of fields we are forced to break the global group introducing their corresponding
right-handed components in an incomplete multiplet that transforms under the extra piece of
the global group (analogous to eq. (4.15) but for opposite chiralities and T-parities),

Ψ̂R =

 −iσ2(l̃c
+)R

i(χ )R
0

 , Ψ̂R
Gg−→ ÛgΨ̂R, Ψ̂R

T−→ −ΩΨ̂R, (4.24)

where we emphasize one more time that the new T-even partner lepton doublet and the new T-
odd singlet do not mix under a gauge group transformation what allows them to be separated
in different multiplets. Finally, we couple this multiplet to Ψ1 and Ψ2 through the non linear
field ξ̂,

LŶH
= −κ̂ f

(
Ψ2ξ̂ −Ψ1Σ0ξ̂†

)
Ψ̂R + h.c., (4.25)

using again the fact that Ω commutes with ξ̂. Thus l̃c
+ and χ get a mass of order κ̂ f .

We can justify that this construction does not lead to unwanted quadratically divergent con-
tributions to the Higgs mass, in contrast to Lξ̂ξ in eq. (4.18). On the one hand, the new sector
in eq. (4.25) does not have a direct coupling to the Higgs field. On the other hand, as empha-
sized above, the Yukawa Lagrangian in eq. (3.39) with complete SU(5) and SO(5) multiplets is
fully SU(5) invariant. Thus both couplings κ and κ̂ are needed to generate a contribution to the
Higgs boson mass just proportional to the logarithm of the cutoff. As one may notice, this is
exactly the same philosophy used to build the top quark Lagrangian in eq. (3.53): the collective
symmetry breaking mechanism. In order to explicitly check this, one has to evaluate the one
loop-diagrams showed in fig. 4.3 that add up to yield

δµ2 =
3 f 2

4π2 tr
(

κlκ
†
l κ̂l κ̂

†
l

)
log Λ2. (4.26)

This result obtained diagrammatically will be reproduced in section 4.2 from the calculation
of the Coleman-Weinberg potential using the background field method. The SM right-handed
leptons receive their masses from the same Yukawa Lagrangian as in eq. 3.46.

There remains the introduction of kinetic terms and gauge interactions for all fermion fields
in this viable version of the model. The new left-handed fields l̃c

rL and χrL that make up the
left-handed components of l̃c

± and χ± belong to the SU(5) quintuplets Ψr (r = 1, 2) so they will
get their kinetic terms and gauge interactions from the same Lagrangian LFL of eq. (3.64). The
right-handed components of l̃c and χ+ where already in the SO(5) quintuplet ΨR with kinetic
terms and interactions from LFR in eq. (3.65). For the right-handed fields (l̃c

+)R and (χ )R in the
new quintuplet Ψ̂R, following the CCWZ formalism, we introduce

LF̂R
⊃ iΨ̂Rγµ

[
∂µ +

1
2

ξ̂†
(

Dµ ξ̂
)
+

1
2

ξ̂Σ0D∗µ
(

Σ0ξ̂†
)]

Ψ̂R, (4.27)

with the covariant derivative as in eq. (3.67). Notice that under a T-parity transformation we
have

Ψ̂R ξ̂†Dµ ξ̂Ψ̂R
T−→ Ψ̂R ξ̂Σ0D∗µ

(
Σ0ξ̂†

)
Ψ̂R, (4.28)

since again Ω commutes with ξ̂ and the gauge generators, where we used the property in
eq. (3.13). The SM right-handed leptons receive their hypercharge from the extra U(1) factors
as in the original LHT model and their corresponding gauge interactions come from LF′ in
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FIGURE 4.3: One-loop Feynman diagrams contributing to the quadratic diver-
gences of the Higgs self-energy from the fermion sector in the NLHT. Diagrams
(a) and (b) arise from LYH and cancel each other, as in fig. 4.2. The rest stem from

LŶH
in eq. (4.25) and also cancel among themselves.

eq. (3.70).
Now let us briefly comment on the quark sector. The SU(5) multiplets in the Yukawa La-

grangian in eq. (3.41) need also to be completed by

Ψq
1 =

 −iσ2q1L
iχq

1L
−iσ2q̃c

1L

 , Ψq
2 =

 −iσ2q̃c
2L

iχq
2L

−iσ2q2L

 , (4.29)

with the same transformation properties under the gauge group and T-parity as those for lep-
tons in eq. (4.23). They couple to the fields in the SO(5) and [SU(2)×U(1)]′′ quintuplets

Ψq
R =

 −iσ2(q̃c)R
i
(
χ

q
+

)
R

−iσ2qHR

 , Ψ̂q
R =

 −iσ2(q̃c
+)R

i (χq)R
02

 (4.30)

with transformation properties given in eqs. (4.17) and (4.24), through the Yukawa Lagrangian
in eq. (3.41) and the new Lagrangian

Lq
ŶH

= −κ̂q f
(

Ψq
2ξ̂ −Ψq

1Σ0ξ̂†
)

Ψ̂q
R + h.c., (4.31)

respectively.
Except for the top quark, the rest of SM quarks, receive their masses from the Yukawa

Lagrangians in eqs. (3.47) and (3.51). For the top quark sector, we introduce a different Yukawa
Lagrangian respecting the collective symmetry breaking mechanism,

Lt
Y =− i

λ1 f
4

ϵijkϵxy

[(
Qt

1

)
i
ΣjxΣky +

(
Qt

2Σ0Ω
)

i
Σ̃jxΣ̃ky

]
tR

− λ2 f√
2

(
T1LX̂T1R + T2LX̂∗T2R

)
+ h.c., (4.32)

where {i, j, k} = 1, 2, 3 and {x, y} = 4, 5, tR is a T-even right-handed singlet and (T1,2)R are also
SU(2) right-handed singlets. The multiplets that appear in the previous Lagrangian are those
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[SU(2)′ ×U(1)′]2 ⊂ SU(5) [U(1)′′′]2 [SU(2)×U(1)]2gauge

ℓR (0, 0)(0,0)

(
− 1

2 ,− 1
2

)
(0, 0)(− 1

2 ,− 1
2 )

dR (0, 0)(0,0)

(
− 1

6 ,− 1
6

)
(0, 0)(− 1

6 ,− 1
6 )

uR, tR, T1R, T2R (0, 0)(0,0)

( 1
3 , 1

3

)
(0, 0)( 1

3 , 1
3 )

l2L (1, 2)(− 1
5 ,− 3

10 )
(0, 0) (1, 2)(− 1

5 ,− 3
10 )

l1L (2, 1)(− 3
10 ,− 1

5 )
(0, 0) (2, 1)(− 3

10 ,− 1
5 )

q2L, T2L (1, 2)(− 1
5 ,− 3

10 )
( 1

3 , 1
3

)
(1, 2)( 2

15 , 1
30 )

q1L, T1L (2, 1)(− 3
10 ,− 1

5 )
( 1

3 , 1
3

)
(2, 1)( 1

30 , 2
15 )

T2L (1, 1)(− 1
5 , 1

5 )
( 1

3 , 1
3

)
(1, 1)( 2

15 , 8
15 )

T1L (1, 1)( 1
5 ,− 1

5 )
( 1

3 , 1
3

)
(1, 1)( 8

15 , 2
15 )

χ2L (1, 1)(− 1
5 , 1

5 )
(0, 0) (1, 1)(− 1

5 , 1
5 )

χ1L (1, 1)( 1
5 ,− 1

5 )
(0, 0) (1, 1)( 1

5 ,− 1
5 )

l̃c
2L (2, 1)( 3

10 , 1
5 )

(0, 0) (2, 1)( 3
10 , 1

5 )

l̃c
1L (1, 2)( 1

5 , 3
10 )

(0, 0) (1, 2)( 1
5 , 3

10 )

χ
q
2L (1, 1)(− 1

5 , 1
5 )

( 1
3 , 1

3

)
(1, 1)( 2

15 , 8
15 )

χ
q
1L (1, 1)( 1

5 ,− 1
5 )

( 1
3 , 1

3

)
(1, 1)( 8

15 , 2
15 )

q̃c
2L (2, 1)( 3

10 , 1
5 )

( 1
3 , 1

3

)
(2, 1)( 19

30 , 8
15 )

q̃c
1L (1, 2)( 1

5 , 3
10 )

( 1
3 , 1

3

)
(1, 2)( 8

15 , 19
30 )

TABLE 4.1: Quantum numbers for fermions transforming in a linear representa-
tion. These fields are singlets under [SU(2)′′ ×U(1)′′]2.

defined in eq. (3.52) and fullfill the transformation properties in eqs. (3.56) and (3.57). The auxil-
iary field X̂ = Σ̂−1/2

33 = e−i
√

4/5η̂ and its complex conjugate with hypercharges under the gauge
group (Y1, Y2) =

( 1
5 ,− 1

5

)
and

(
− 1

5 , 1
5

)
respectively, are introduced to change the gauge hyper-

charges of the right-handed top quark-partners (T1,2)R to those of the right-handed tR, namely
(Y1, Y2) =

( 1
3 , 1

3

)
. This new hypercharge assignment seems more natural since all fermions in a

linear representation of the global group that require extra hypercharge receive half of it in each
of the external U(1)′′′j factors (j = 1, 2). The quarks transforming in a non-linear representation
receive the extra hypercharge needed in the diagonal U(1)′′′. This is because the hypercharge

under the gauged part of the global SU(5) ×
(
[SU(2)×U(1)]′′

)2
is fixed by the form of the

hypercharge generators in eqs. (3.11) and (3.12). Thus the quantum number assignments for all
the fermions of the NLHT model are depicted in tables 4.1 and 4.2. The fields belonging to the
complete SO(5) representation are written in their corresponding multiplet to emphasize that
they mix under a gauge transformation (3.203).

According to table 4.2, the left-handed quarks and the right-handed quarks transforming
under SU(5) and SO(5) receive their kinetics term and gauge interactions through eqs. (3.64)
and (3.65), whereas the right-handed quarks transforming in a non linear representation of the



90 Chapter 4. The New and gauge invariant Littlest Higgs model with T-parity

SU(2)′ ×U(1)′ ⊂ SO(5) SU(2)′′ ×U(1)′′ [U(1)′′′] [SU(2)×U(1)]gauge −iσ2(l̃c)R
i(χ+)R
−iσ2lHR


 2 1

2

10
2− 1

2

 10 0

 2 1
2

10
2− 1

2


 −iσ2(q̃c)R

i(χq
+)R

−iσ2qHR


 2 1

2

10
2− 1

2

 10
2
3

 2 7
6

1 2
3

2 1
6


(l̃c
+)R 10 2 1

2
0 2 1

2

(χ )R 10 10 0 10

(q̃c
+)R 10 2 1

2

2
3 2 7

6

(χq)R 10 10
2
3 1 2

3

TABLE 4.2: Quantum numbers for right-handed fermions transforming in a non
linear representation.

extra piece of the global group interact through

LF̂R
⊃ iΨ̂q

Rγµ

[
∂µ +

1
2

ξ̂†
(

Dq
µ ξ̂
)
+

1
2

ξ̂Σ0Dq∗
µ

(
Σ0ξ̂†

)]
Ψ̂q

R (4.33)

according to the CCWZ formalism, with Dq
µ defined in eq. (3.68). Finally the right-handed

SM leptons, down-type quarks and up-type quarks of the first and second generations receive
their kinetic term and gauge interactions from eq. (3.70) whereas the top quark-partners kinetic
terms are given in the NLHT by

LF′T1,T2
= iT1L

[
∂µ −

√
2ig′

(
8
15

B1µ +
2
15

B2µ

)]
T1L + iT2L

[
∂µ −

√
2ig′

(
2
15

B1µ +
8
15

B2µ

)]
T2L

+ iT1R

[
∂µ −

√
2ig′

(
1
3

B1µ +
1
3

B2µ

)]
T1R + iT2R

[
∂µ −

√
2ig′

(
1
3

B1µ +
1
3

B2µ

)]
T2R.

(4.34)

Now we proceed to get the physical fields.

4.1.4. Physical fields

Gauge bosons

After the electroweak SSB, the SM gauge bosons are obtained from the T-even fields of
eq. (3.72) by diagonalizing the Lagrangian LS of eq. (3.26). In order to obtain the mass eigen-
states of the T-odd gauge bosons one has to expand both LS (3.26) and LŜ (4.12) up to order
v2/ f 2 to get

W±H =
1√
2

(
W1

H ∓ iW2
H

)
, (4.35)(

ZH
AH

)
=

(
1 −xH

v2

f 2

xH
v2

f 2 1

)(
W3

H
BH

)
(4.36)
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with

Wa
H =

Wa
1 −Wa

2√
2

, BH =
B1 − B2√

2
, xH =

5gg′

8 (5g2 − g′2)
. (4.37)

Notice that the mixing angle xH between the neutral T-odd gauge bosons in the NLHT and
LHT in eq. (3.75) are different. This is because xH accounts for the mixing v2/ f 2 and in the
NLHT only LS contains the Higgs boson whereas the LŜ sector is absent in the LHT.

The corresponding masses to order v2/ f 2 are given by

MW =
gv
2

(
1− v2

12 f 2

)
, MZ = MW/cW , (4.38)

MWH = MZH =
√

2g f
(

1− v2

16 f 2

)
, (4.39)

MAH =

√
2
5

g′ f
(

1− 5v2

16 f 2

)
. (4.40)

Notice also that even though the gauge boson are the same as in the original model (the gauge
group is still [SU(2)×U(1)]2), the masses of the T-odd combinations are at leading order a
factor of

√
2 heavier than in (3.75). The reason is that the new extra scalar sector parametrized

by Σ̂ also takes the vev Σ0 hence giving an additional contribution to the heavy T-odd gauge
boson masses. On the other hand, at leading order the T-even gauge bosons receive a mass
proportional to the Higgs vev and this only belongs to Σ, so their masses do not change.

Scalars after gauge fixing

The successive spontaneous breaking of the gauge symmetry leads to a kinetic mixing be-
tween gauge bosons and the would-be Goldstone bosons fields. In the mass eigenbasis, these
unwanted mixing terms can be removed, up to an irrelevant total derivative, by introducing
the appropriate gauge-fixing Lagrangian,

Lgf = −
1

2ξγ
(∂µ Aµ)2 − 1

2ξZ
(∂µZµ − ξZ MZπ0)2 − 1

ξW
|∂µWµ + iξW MWπ−|2

− 1
2ξAH

(∂µ Aµ
H + ξAH MAH η)2 − 1

2ξZH

(∂µZµ
H − ξZH MZH ω0)2 − 1

ξWH

|∂µWµ
H + iξWH MWH ω−|2,

(4.41)

defining the unphysical Goldstone fields that can be absorbed from the spectrum in the unitary
gauge.

After the SSB, the kinetic terms of the scalar fields we have introduced are neither diagonal
nor canonically normalized. Besides, the new set of T-odd scalars belonging to Σ̂ resulting
from the SSB of the extra piece of the global group mix with the old ones that have the same
quantum numbers. In order to define the physical combination of scalar fields and identify
the actual would-be Goldstone fields at least at order v2/ f 2, we perform the following field
redefinitions in two steps. First we perform a rotation of 45◦ in the subspace of every scalar
pair with the same quantum numbers, so that only one of them (the unhatted) will retain the
kinetic mixing with a gauge boson, hence becoming the actual would-be Goldstone field at
leading order,

ω± → 1√
2

(
ω± − ω̂±

)
, ω̂± → 1√

2

(
ω± + ω̂±

)
, (4.42)
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ω0 → 1√
2

(
ω0 − ω̂0) , ω̂0 → 1√

2

(
ω0 + ω̂0) , (4.43)

η → 1√
2
(η − η̂) , η̂ → 1√

2
(η + η̂) . (4.44)

At this point all kinetic-mixing terms are of order v2/ f 2. In the next step we impose that all
kinetic terms are canonically normalized and diagonal so that the actual would-be Goldstone
fields can be removed by the gauge fixing (3.77) at order v2/ f 2. To that end we rescale and mix
them as follows, according to the method described in [106] for the original LHT,

h→ h, (4.45)

π0 → π0
(

1 +
v2

12 f 2

)
, (4.46)

π± → π±
(

1 +
v2

12 f 2

)
, (4.47)

Φ0 → Φ0
(

1 +
v2

12 f 2

)
, (4.48)

ΦP → ΦP
(

1 +
v2

12 f 2

)
+
(
−ω0 − ω̂0 +

√
5 (η + η̂)

) v2

12 f 2 , (4.49)

Φ± → Φ±
(

1 +
v2

24 f 2

)
± i
(
ω± + ω̂±

) v2

12
√

2 f 2
, (4.50)

Φ±± → Φ±±, (4.51)

η → η

(
1 +

5v2

48 f 2

)
+
−5g′η̂ −

√
5
[
g′
(
ω0 − ω̂0 + 2ΦP)− 12gxHω0]

12g′
v2

f 2 , (4.52)

ω0 → ω0
(

1 +
v2

48 f 2

)
+

5g
(
−ω̂0 + 2ΦP +

√
5η̂
)
−
√

5 (5g + 12g′xH) η

60g
v2

f 2 , (4.53)

ω± → ω±
(

1 +
v2

48 f 2

)
+
(
±i
√

2Φ± − ω̂±
) v2

12 f 2 , (4.54)

η̂ → η̂

(
1 +

5v2

48 f 2

)
+
(

5η −
√

5ω0
) v2

24 f 2 , (4.55)

ω̂0 → ω̂0
(

1 +
v2

48 f 2

)
+
(

ω0 −
√

5η̂ −
√

5η
) v2

24 f 2 , (4.56)

ω̂± → ω̂±
(

1 +
v2

48 f 2

)
+ ω±

v2

24 f 2 . (4.57)

After these redefinitions, the scalars η, ω0 and ω± are the would-be Goldstone bosons of
the SSB of the gauge group [SU(2)×U(1)]2 to the SM gauge group, eaten by AH, ZH and
W±H respectively and thus becoming their longitudinal modes. Similarly, π0 and π± are the
corresponding would-be Goldstone bosons of the SSB of the SM gauge group down to U(1)em
eaten by the Z and W±. The remaining scalar fields are all physical. They are the Higgs boson,
a T-odd complex triplet of hypercharge Y = 1, composed of Φ±±, Φ±, Φ0 and ΦP, and the four
new T-odd scalars with the same quantum numbers as the would-be Goldstone fields of the
original LHT, a singlet η̂ and a real triplet with Y = 0 composed of ω̂0 and ω̂±. All of them will
get a mass by gauge and Yukawa interactions from the Coleman-Weinberg potential [104, 134].
The triplet Φ will receive a mass of order f from the quadratically divergent contributions to
the potential and the rest of physical scalars from the logarithmically divergent contributions.
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As a consequence, the masses of η̂, ω̂0 and ω̂± are independent of f , but they could still be
large thanks to the interplay of different Yukawa couplings (see § 4.2.2 and § 4.3).

Fermion masses and mixings in the NLHT

When the fermion content of the model is extended beyond one family, the different Yukawa
couplings κ, κ̂ and λ for leptons and quarks in LYH , LŶH

and LY, respectively, must be pro-
moted to 3× 3 matrices in flavour space. Omitting flavour indices, for each of the three SM
(T-even) left-handed fermion doublets (lL, qL) there is a vector-like doublet of heavy T-odd mir-
ror fermions (lH, qH) as in the original LHT in eq. (3.79). In the NLHT there are also two heavy
right-handed mirror-partner fermion doublets,

(l̃c)R =

(
(ν̃c)R

(ℓ̃c)R

)
, (q̃c)R =

(
(ũc)R

(d̃c)R

)
, (4.58)

(l̃c
+)R =

(
(ν̃c

+)R

(ℓ̃c
+)R

)
, (q̃c

+)R =

(
(ũc

+)R

(d̃c
+)R

)
. (4.59)

The first set is T-odd and necessary to complete the SO(5) quintuplets ΨR and Ψq
R together

with (χ+)R and
(
χ

q
+

)
R while the second is T-even and lives in the incomplete multiplets Ψ̂R

and Ψ̂q
R in eqs. (4.24) and (4.30) along with (χ )R, charged under the external piece of the global

group
(
[SU(2)×U(1)]′′

)2
. Their corresponding left-handed counterparts come from the SU(5)

multiplets

(l̃c)L =

(
(ν̃c)L

(ℓ̃c)L

)
=

(l̃c
1)L + (l̃c

2)L√
2

, (q̃c)L =

(
(ũc)L

(d̃c)L

)
=

(q̃c
1)L + (q̃c

2)L√
2

(4.60)

(l̃c
+)L =

(
(ν̃c

+)L

(ℓ̃c
+)L

)
=

(l̃c
1)L − (l̃c

2)L√
2

, (q̃c
+)L =

(
(ũc

+)L

(d̃c
+)L

)
=

(q̃c
1)L − (q̃c

2)L√
2

. (4.61)

with

(l̃c
r )L =

(
(ν̃c

r )L

(ℓ̃c
r)L

)
, (q̃c

r)L =

(
(ũc

r)L

(d̃c
r)L

)
, r = 1, 2. (4.62)

Finally, we have the aforementioned SU(2) singlets (χ+)R,
(
χ

q
+

)
R and (χ )R, (χq)R. Their

left-handed counterparts are the combinations with proper T-parities of the fields χ
(q)
1L and χ

(q)
2L

completing the SU(5) quintuplets,

(χ
(q)
+ )L =

χ
(q)
1L + χ

(q)
2L√

2
, (χ(q))L =

χ
(q)
1L − χ

(q)
2L√

2
. (4.63)

The top quark sector includes a set of top partners T1L and T2L, belonging to Qt
1 and Qt

2,
respectively and their right-handed counterparts T1R, T2R. The corresponding T-parity eigen-
states are defined in eq. (3.84). To determine the mass eigenstates one has to diagonalize the
top mass matrix in eq. (3.85) as in the original LHT in eq. (3.86).

Next we introduce flavour indices and derive the mass eigenstates. In the NLHT, since
T-parity is also exact, the SM fermions do not mix with the heavy T-odd combinations. They
cannot mix with the T-even combination of mirror-partner fermions l̃c

+, q̃c
+ either, because they

have an extra hyperharge ∆Y = +1 and a coupling through the Yukawa Lagrangian LŶH
would

require a T-even compensating scalar field of hypercharge Y = 1 acquiring a vev. Therefore the
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SM charged lepton and down-type quark mass eingenstates are those obtained from the diag-
onalization of the matrices λl and λd in eqs. (3.46), (3.47) with the replacements in eqs. (3.90)
and (3.91), that leads to the corresponding masses in eq. (3.93). On the other hand, the heavy
charged lepton and down-type quark mass eigenstates are obtained by the replacements

ℓHL → V lH
L ℓHL, ℓHR → V lH

R ℓHR, (4.64)

dHL → VdH
L dHL, dHR → VdH

R dHR, (4.65)

(ℓ̃c)L → V lH
L (ℓ̃c)L, (ℓ̃c)R → VH

R (ℓ̃c)R, (4.66)

(d̃c)L → VdH
L (d̃c)L, (d̃c)R → VdH

R (d̃c)R, (4.67)

(ℓ̃c
+)L → V ℓ̃c

+
L (ℓ̃c

+)L, (ℓ̃c
+)R → V ℓ̃c

+
R (ℓ̃c

+)R, (4.68)

(d̃c
+)L → V q̃c

+
L (d̃c

+)L, (d̃c
+)R → V q̃c

+
R (d̃c

+)R, (4.69)

with
√

2κl f = V lH
L mℓH V lH†

R = V lH
L mℓ̃c V lH†

R (4.70)
√

2κq f = VqH
L mdH VqH†

R = VqH
L md̃c VqH†

R (4.71)
√

2κ̂l f = V ℓ̃c
+

L ml̃c
+

V ℓ̃c
+†

R (4.72)
√

2κ̂q f = V d̃c
+

L md̃c
+

V d̃c
+†

R . (4.73)

Notice that in contrast to the LHT (see for instance [61]), in the NLHT the T-odd mirror fermions
doublets lH and qH and their partners l̃c, q̃c rotate with the same matrix as the T-even singlets
χ+ and χ

q
+, at leading order, getting a mass proportional to the Yukawa couplings κl and κq

from LYH and Lq
YH

. The new combinations with opposite T-parities, l̃c
+, q̃c

+ and χ , χq, get
masses proportional to κ̂l and κ̂q from LŶH

and Lq
ŶH

. Then for the neutral lepton sector and
up-type quarks the fields have to be redefined at leading order as follows,

νHL → V lH
L νHL, νHR → V lH

R νHR, (4.74)

uHL → VqH
L uHL, uHR → VqH

R uHR, (4.75)

(ν̃c)L → V lH
L (ν̃c)L, (ν̃c)R → V lH

R (ν̃c)R, (4.76)

(ũc)L → VqH
L (ũc)L, (ũc)R → VqH

R (ũc)R, (4.77)

(ν̃c
+)L → V ℓ̃c

+
L (ν̃c

+)L, (ν̃c
+)R → V ℓ̃c

+
R (ν̃c

+)R, (4.78)

(ũc
+)L → V d̃c

+
L (ũc

+)L, (ũc
+)R → V d̃c

+
R (ũc

+)R, (4.79)

(χ+)L → V lH
L (χ+)L, (χ+)R → V lH

R (χ+)R, (4.80)

(χ
q
+)L → VqH

L (χ
q
+)L, (χ

q
+)R → VqH

R (χ
q
+)R, (4.81)

(χ )L → V ℓ̃c
+

L (χ )L, (χ )R → V ℓ̃c
+

R (χ )R, (4.82)

(χq)L → V d̃c
+

L (χq)L, (χq)R → V d̃c
+

R (χq)R, (4.83)

whereas we will assume that the Yukawa coupling λu in eq. (3.51) is diagonal in flavour space
as in the LHT and thus Vu

L = Vu
R = 1. The corresponding mass matrices are diagonalized at



4.1. The New Littlest Higgs model with T-parity setup 95

TABLE 4.3: Order of the mixing between neutral fields and up-type quarks in
the NLHT. A dot means that they are connected by the mass term and a dash

indicates that no mixing term is generated to order v2.

(χ+)L, (χq
+)L (χ )L, (χq)L νL, uL νHL, uHL (ν̃c

+)L, (ũc
+)L (ν̃c)L, (ũc)L

(χ+)R, (χq
+)R • – v – v –

(χ )R, (χq)R – • – – – –

νR, uR – – • – – –

νHR, uHR – v – • – v2

(ν̃c
+)R, (ũc

+)R – – – – • –

(ν̃c)R, (ũc)R – v – v2 – •

leading order by

√
2κl f

(
1− v2

8 f 2

)
= V lH

L mνH V lH†
R = V lH

L mν̃c V lH†
R , (4.84)

√
2κq f

(
1− v2

4 f 2

)
= VqH

L muH VqH†
R = VqH

L mũc VqH†
R , (4.85)

√
2κl f = V lH

L mχ+V lH†
R , (4.86)

√
2κq f = VqH

L mχ
q
+

VqH†
R , (4.87)

√
2κ̂l f = V ℓ̃c

+
L mχ V ℓ̃c

+†
R = V ℓ̃c

+
L mν̃c

+
V ℓ̃c

+†
R , (4.88)

√
2κ̂q f = V d̃c

+
L mχq V d̃c

+†
R = V d̃c

+
L mũc

+
V d̃c

+†
R . (4.89)

To find the mass eigenstates of the neutral leptons and up-type quarks one also has to take into
account that they mix when the Lagrangian is expanded up to order v2/ f 2 (see table 4.3) as
in the LHT but now with the extra fields participating in the mixing. The mixing order v/ f is
the most pressing to include, since it corrects the masses at order v2/ f 2. The mixing of order
v2/ f 2 only plays a role in the diagonalization matrix entering in the masses at order v4/ f 4. The
mixing in the top quark sector is the same as in the LHT in table 3.4.

The misalignment between the sectors κl , κ̂l and λl in the leptonic sector and κq, κ̂q, λd
and λu in the leptonic sector is a source of flavour mixing. The matrices parametrizing this
misalignment can be defined as follows:

V ≡ V lH†
L VℓL , Ŵ ≡ V ℓ̃c

+†
L V lH

L (4.90)

in the leptonic sector and

Vu ≡ VqH†
L , Vd ≡ VqH†

L Vd
L , Ŵq ≡ V d̃c

+†
L VqH

L , VCKM = Vd
L , (4.91)

in the quark sector, where in the first and second definitions we have assumed that λu is diago-

nal and thus Vu
L = Vu

R = 1. One could argue that additional mixing matrices V ℓ̃c
+

L Vℓ
L for leptons

and V d̃c
+

L Vu
L , V d̃c

+
L Vd

L for quarks are needed, but this is not the case because there is no gauge
or Yukawa coupling between the SM doublets lL, qL and the new fields. On the other hand,

the flavour matrices of the LHT W ≡ V ℓ̃c

L V lH
L , Wq ≡ V d̃c

L VdH
L and Z ≡ Vχ†

R V lH
R , Zq ≡ Vχq†

R VqH
R
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introduced in eqs. (3.115) and (3.116) are both the identity in our model, since now the T-odd
combination of mirror-partner fermions and the T-even combination of SU(2) singlets χ+, χ

q
+

receive their masses from the same Yukawa Lagrangian LYH , Lq
YH

.
This completes the derivation of the full Lagrangian. Now we proceed to a brief discussion

about the contribution of the new lepton fields to LFV Higgs decays.

4.1.5. New lepton contributions to LFV Higgs decays

In the original LHT one could define two different implementations of T-parity on the
fermion fields, namely T-even and T-odd χ. In § 3.3 we have shown that the T-odd case is
incompatible with gauge invariance and leads to an infinite contribution to LFV Higgs decays
at order v2/ f 2 (see § 3.2.1). However we have also shown in § 3.2.1 that the T-even option gives
a finite result since the contribution of the singlet is finite by itself.

As already emphasized, gauge invariance requires the singlet in the SO(5) quintuplet to
be T-even as it is the case in the NLHT. Our (χ+)R has the same couplings to the SM leptons
as the T-even singlet of the original LHT, so its contribution to LFV Higgs decays is finite as
well. Moreover, to provide gauge invariant mass terms to all fermions in our model, we had
enlarge the fermion field content. Firstly we have completed the left-handed SU(5) quintuplets
in eq. (4.22). Their combination with well defined T-parity now includes two new singlets
(χ±)L and two new doublets of mirror-partner leptons (l̃c

±)L apart from the usual doublets lL
and lHL of SM and mirror leptons, respectively. And secondly we have introduced the right-
handed quintuplet Ψ̂R in eq. (4.24) including a T-even doublet of mirror-partner leptons (l̂c

+)R
and a T-odd singlet (χ )R. One may argue that these new fields could reintroduce unwanted
divergences in LFV Higgs decays, since in particular there is a new T-odd (χ) . To show that
this is actually not the case, we will analyze below their couplings to the SM charged leptons.
They are needed to compute the divergences of the different classes of one loop diagrams in
fig. 3.1. The relevant vertices come from the Lagrangians LFL , LYH , LŶH

and LY in eqs. (3.64),
(3.39), (4.25) and (3.46), respectively.

The couplings between gauge bosons and left-handed fermions in LFL involve the gauge
generators in eqs. (3.11) and (3.12), that cannot connect the upper and lower components of the
quintuplets and thus forbidding any coupling between the SM charged leptons and the new
left-handed lepton fields. Concerning the Yukawa Lagrangian LYH , the new left-handed fields
share the SU(5) quintuplets in eqs. (4.22) with l1L and l2L preventing any coupling to the SM
charged leptons. On the other hand, the new Yukawa Lagrangian LŶH

couples l1L and l2L to

the multiplet Ψ̂R in eq. (4.24) through the non linear sigma field ξ̂. Since it is built as the expo-
nential of the new Goldstone bosons multiplying the broken combination of gauge generators,
the same argument applied in LFL is also valid for this sector. In particular, the T-odd right-
handed singlet only couples to its T-even and T-odd left-handed counterparts through the new
Goldstone fields, hence avoiding also any coupling to the Higgs. Therefore, its interactions are
completely different to those of the original model with the T-odd singlet option. Finally, the
Yukawa Lagrangian LY only couples the the right-handed SM charged leptons ℓR to l1L and
l2L because the multiplets ΨX

1 and ΨX∗
2 in eq. (3.48) are incomplete and as we discussed at the

end of § 3.2.1, their quantum numbers under the gauge group do not allow to introduce the
left-handed χ1L and χ2L in the center of these multiplets.

Finally, the new neutral fields might still generate a divergent contribution through mixing
with other neutral fields that have direct couplings to the Higgs and the SM charged leptons,
as νHR for instance. Restricting ourselves to order v2/ f 2 the possible terms are presented in
table 4.3. Among the one-loop diagrams listed in fig. 3.1, one can distinguish two different
cases. In the case where the diagram involves a Higgs coupling to two neutral fermions, that
can be inferred from eq. (4.84) and table 4.3 by substituting the vev by a Higgs boson according
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to v → h and v2 → (v + h)2, at least a mass or a mixing insertion is required. On the other
hand, one may check that before the mixing insertion the degree of divergence of this kind of
topologies is at most of order log Λ in the cutoff regularization scheme. Therefore, the contri-
bution of the new fermion fields to this kind of topologies is finite. This is because the mass of
the propagator contributes as ∼ M/p2 to the loop and each mixing insertion is accompanied
by the propagator of the new field that contributes at least as ∼ 1//p, with p the corresponding
loop momentum. In the remaining subclass of diagrams, in which the Higgs does not cou-
ple to two neutral fermions, at least two mixing insertions are required and those topologies
are at most divergent as ∼ Λ before the mixing insertions. Thus the contributions of the new
fermion fields to LFV Higgs decays are finite. This stems from two reasons: the NLHT is gauge
invariant and we have chosen the appropriate fermion field representations.

4.2. The Background Field Method

In this section we derive a master formula to obtain the divergences of any theory generated
at one loop in a gauge invariant fashion. For that purpose we will apply the background field
method (BFM) with a cutoff in the so called proper time variable. In particular this will allow
us to classify the divergences into quadratic and logarithmic. This classification is crucial in a
Composite Higgs model since only logarithmically divergent contributions to the Higgs boson
mass are admissible as we have emphasized in previous sections. Once the master formula
is derived, we will employ it to calculate the Coleman-Weinberg potential for the scalar fields
[134], generated by integrating out fermions and gauge bosons, and the divergent operator for
the LFV Higgs decays in § 3.2.1, generated by integrating out the T-odd singlet χ and scalar
fields.

4.2.1. Deriving the master formula for the background field method

The BFM allows to find the divergent terms of a theory in a gauge invariant way, translating
the divergences in the space-time integration into those of the functional trace of a heat kernel
in a new variable called proper time [135, 136]. This method has been extensively employed in
the literature to study the renormalization of the linear realization of the SM [137, 138] and more
recently to its non linear realization in refs. [139, 140], where a master formula was derived in
the dimensional regularization scheme using super-heat kernel tools [141]. The BFM is also
useful when dealing with the Standard Model Effective Field Theory (SMEFT). In particular,
in [142] a master formula that includes the effects of bosonic operators up to dimension six is
applied to the calculation of the Renormalization Group equations in the context of the SMEFT.

Our starting point is a general Lorentz-invariant four-dimensional action containing real
bosonic fields and operators at most bilinear in the fermion fields,

S
[

φi, Aa
µ, ψb, ψ

b
]
=
∫

d4xL
(

φi, Aa
µ, ψb, ψ

b
)

, (4.92)

that it is all we need for our case. The latin indices refer to the different species of bosons and
fermions in our theory.6 To obtain the generating functional of Green functions, we couple the
fields to external sources

Z[ji, Jµ
a , ρb, ρb] =

∫ [
DφDAµDψDψ

]
exp

{
i
(

S +
〈

ji φi + Jµ
a Aa

µ + ψ
b
ρb + ρbψb

〉)}
, (4.93)

where Z = eiW with W the generating functional of connected Green functions and ⟨· · · ⟩ stands
for integration over spacetime. The normalization of the path integral is Z [0] = 1. We define

6If the bosonic fields are complex they are split into real and imaginary parts.
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the classical, or background fields, as the solutions of the classical equations of motion (EoM),

δS
δφi

∣∣∣∣
φi

cl

+ ji = 0,
δS

δAa
µ

∣∣∣∣∣
Aa

µ,cl

+ Jµ
a = 0, (4.94)

δS

δψ
b

∣∣∣∣
ψb

cl

+ρb = 0,
δS
δψb

∣∣∣∣
ψ

b
cl

−ρb = 0, (4.95)

where the subscript ‘cl’ stands for classical and we used the Grassmannian character of fermion
fields to derive the last two relations.

In order to obtain the one-loop contributions to the scalar potential and the divergent op-
erator generated in LFV Higgs decays after integrating the singlet χR in the T-odd χ case, we
perform a change of variables in the path integral consisting of a linear split of each field in two
parts: the background field and the quantum excitations, which will be the new integration
variables in the path integral,

φi = φi
cl + ϕi, (4.96)

Aa
µ = Aa

µ,cl + aa
µ, (4.97)

ψb = ψb
cl + χb, (4.98)

ψ
b
= ψ

b
cl + χb, (4.99)

The background fields only appear as external legs in the Feynman diagrammatic approach
whereas the quantum excitations only occur inside the loops. Substituting in the Lagrangian,
neglecting terms higher than quadratic in the quantum fluctuations, one may parametrize the
action as

S +
〈

ji φi + Jµ
a Aa

µ + ψ
b
ρb + ρbψb

〉
= S(0) +

〈
ji φi

cl + Jµ
a Aa

µ,cl + ψ
b
clρb + ρbψb

cl

〉
+ S(2)

[
φi

cl, Aa
µ,cl, ψb

cl, ψ
b
cl; ϕi, aa

µ, χb, χb
]

. (4.100)

The first term on the r.h.s is the classical action evaluated in the background fields and the last
is quadratic in the quantum excitations, 7 and takes the general form

S(2)
[

φi
cl, Aa

µ,cl, ψb
cl, ψ

b
cl; ϕi, aa

µ, χb, χb
]
=
∫

d4xL(2)
(

φi
cl, Aa

µ,cl, ψb
cl, ψ

b
cl; ϕi, aa

µ, χb, χb
)

, (4.101)

with

L(2)
(

φi
cl, Aa

µ,cl, ψb
cl, ψ

b
cl; ϕi, aa

µ, χb, χb
)
=− 1

2
Ψk A l

k Ψl + χb (i/∂ − G)bc χc + χcΓi
cΨi + ΨiΓi,cχc

≡− 1
2

ΨT AΨ + χBχ + χΓΨ + ΨTΓχ, (4.102)

where Ψi defined bellow collects the bosonic fluctuations. The dependence on the background
fields φi

cl, Aa
µ,cl is encoded in the bosonic matrices A and G, with {k, l} indices of any type

(Lorentz and internal indices). The matrices Γ and Γ are fermionic and thus contain a linear de-
pendence on the background fermions depending also on the background bosonic fields. After
integrating by parts, the interaction amoing bosonic fields is given by second order differential

7The part of the action that is linear in the quantum fields is identically zero since it is proportional to the
classical EoM δS

δF = 0, with F any background field an those are on shell.
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operators

A = DµDµ + V, with Dµ = ∂µ + Nµ, (4.103)

where Nµ is antisymmetric. Both Nµ and V depend on the background bosonic fields. On
the other hand, the most general Lorentz structure of the boson-fermion interaction that it is
bilinear in the fermion fields is parametrized through

G =
(
r + ρµγµ

)
PR +

(
l + λµγµ

)
PL, (4.104)

where l = r† parametrize the interactions between fermions and scalar fields and ρµ, γµ

parametrize the interactions between fermions and gauge boson fields. To express the bosonic
interactions in the canonical form of eq. (4.103) one must introduce appropriate gauge-fixing
terms for the fluctuating gauge fields, still preserving the gauge invariance of the one-loop ef-
fective action [143]. Now we redefine all the fluctuating gauge fields to have the same sign in
the derivatives of time and space components,

ãa
µ = (iaa

0, aa
i ) ≡ M ν

µ aa
ν, M ν

µ = diag (i, 1, 1, 1) . (4.105)

The contravariant vector aaµ =
(
aa

0,−aa
i
)

transforms with the inverse matrix

ãaµ =
(

M−1
)µ

ν
aaν = (−iaa

0,−aa
i ) , (4.106)(

M−1
)µ

ν
= diag (−i, 1, 1, 1) , (4.107)

implying that ãa
µ = −ãaµ.8 In terms of these new gauge fields, their kinetic term reads

Lkin,g = −1
2

ãa
0∂2ãa

0 −
1
2

ãa
i ∂2ãa

i = −
1
2
(−ãaµ) δν

µ∂2ãa
ν. (4.108)

Thus comparing with eq. (4.102) we collect the quantum excitations of scalar and gauge boson
fields in the object Ψk =

(
ϕi,−ãaµ) and Ψl =

(
ϕi, ãa

µ

)
and thus Ψk = Ψk. The advantage of this

redefinition of the fluctuating gauge fields is that the functions at both sides of the operator A
are the same, which is necessary to later perform a Gaussian integration.

The expansion of the action to second order in the fluctuations is enough to get the gener-
ating functional W to one loop,

W = WL=0 + WL=1 + higher order corrections, (4.109)

where L is the number of loops. Then, to this order, the generating functional Z can be written
as Z = ZL=0ZL=1. The first factor is

ZL=0 = eiWL=0 = ei
(

S(0)+
〈

ji φi
cl+Jµ

a Aa
µ,cl+ψ

b
clρb+ρbψb

cl

〉)
, (4.110)

a constant for the path integral, independent of the quantum variables. Taking logarithms,

WL=0 = S(0) +
〈

ji φi
cl + Jµ

a Aa
µ,cl + ψ

b
clρb + ρbψb

cl

〉
, (4.111)

which after subtracting the source term is nothing but the classical action. The second term
WL=1 is more interesting and includes the one loop effective Lagrangian. This comes from

8The auxiliary matrix M appears in intermediate steps of the calculation but it will cancel at the end.
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eq. (4.102),

eiWL=1 =
∫

[DΨDχDχ] eiS(2)
=
∫

[DΨDχDχ] ei
∫

d4x (− 1
2 ΨT AΨ+χBχ+χΓΨ+ΨTΓχ). (4.112)

Before the Gaussian integration we must remove the crossed term Ψ − χ through the field
redefinition of the quantum fields

Ψk → Ψk, (4.113)

χ→ χ− B−1ΓlΨl , (4.114)

χ→ χ−ΨkΓkB−1, (4.115)

with Jacobian equal to one. Substituting in the one-loop functional we find

eiWL=1 =
∫

[DΨDχDχ] eiS(2)
=
∫

[DΨDχDχ] ei
∫

d4x (− 1
2 ΨT(A+2ΓB−1Γ)Ψ+χBχ). (4.116)

Thus, performing the Gaussian integration over the quantum fluctuations in the path integral
and taking logarithms, the one-loop generating functional reads

WL=1 =
i
2

log Det
(

A + 2ΓB−1Γ
)
− i log Det B (4.117)

where Det stands for the functional determinant and capital letters indicate that it involves a
spacetime integration. Since it does not depend on the source term, WL=1 can be interpreted as
the one-loop effective action. Squaring the operator B as in [135, 144], we may write

log Det B =
1
2

log Det (BBc) , (4.118)

where Bc = −i/∂ − Gc with

Gc =
(
r− γµρµ

)
PL +

(
l − γµλµ

)
PR. (4.119)

Notice that Bc is obtained from B by the replacements γµ → −γµ, PL,R → PR,L. Then we can
write the one-loop generating functional as

WL=1 =
i
2

log Sdet
(

A i
√

2ΓBc

i
√

2Γ BBc

)
≡ i

2
log Sdet ∆. (4.120)

In this compact notation borrowed from supersymmetry, SdetM stands for the superdetermi-
nant or Berezinian of a supermatrix M,

M =

(
a α
β b

)
, Sdet M ≡ Det

(
a− αb−1β

)
/Det b, (4.121)

where the entries a, b (α, β) are bosonic (fermionic) variables. Notice that ∆ can be written in
the canonical form,

∆ = (∂µ + Λµ)
(
∂µ + Λµ

)
+ Y, (4.122)

expression which holds in our case because our starting Lagrangian is, at most, bilinear in the
fermion fields [139, 142]. Going to the Euclidean spacetime, performing the usual change of
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variables in the time coordinate, t = −iτ, we can rewrite the one-loop effective action

WE
L=1 = −iWL=1 =

1
2

log Det
(
−∆E

)
=

1
2

StrE log
(
−∆E

)
, (4.123)

where StrE is the supertrace (StrM = tr a − tr b) that also includes an Euclidean spacetime
integration.9 In the last expression, the operator ∆E is defined as

∆E = −∆ =
(

∂E
µ + ΛE

µ

) (
∂E

µ + ΛE
µ

)
−YE, (4.124)

where the Euclidean versions of the matrices above verify

Λµ (t, x⃗) =

{
Λ0 (t, x⃗) = iΛE

0 (τ, x⃗)
Λi (t, x⃗) = ΛE

i (τ, x⃗) ,
(4.125)

Y (t, x⃗) = YE (τ, x⃗) . (4.126)

To obtain the divergences of the one-loop functional, we rewrite it using the proper time or
Schwinger representation [145]10

WE
L=1 = −1

2

∫ ∞

0

ds
s

StrE es∆E
= −1

2

∫ ∞

0

ds
s

∫
d4xE str K(s; xE; xE), (4.127)

where the integrand is the supertrace of the heat kernel of the elliptic operator ∆E. The reason to
go to Euclidean spacetime is that the heat kernel is better behaved [146]. DeWitt [147] proposes
the following ansatz for the heat kernel in the limit s→ 0,

K(s; xE; xE) =
1

(4πs)2

∞

∑
n=0

an

(
xE, xE

)
sn. (4.128)

The coefficients an are the so called Seeley-DeWitt coefficients [147, 148] which are completely
regular when both arguments are equal. As we will show below, the divergences we are look-
ing for are proportional to the first coefficients. The integral converges in the upper limit.

To regularize the integral in the lower limit, let us focus in the units of the proper time
variable s. Since the argument of the exponential is dimensionless, s has units of inverse mass
squared. Using a proper time cutoff in the lower limit we may write [149]

WE
L=1,reg = −1

2

∫ ∞

Λ−2

ds
s

∫
d4xE str K(s; xE; xE), (4.129)

with Λ → ∞ the usual energy cutoff. Then we can use the DeWitt expansion in eq. (4.128) to
solve the integral in the proper time variable and find the divergences in the lower limit:

∫ E−2
0

Λ−2

ds
s

sn−2 ∼


1

2−n Λ4−2n n < 2
log Λ2 n = 2
− 1

n−2 Λ−(2n−4) n > 2

(4.130)

where we have introduced an upper limit E−2
0 related to the maximum value of the proper

time variable for which the DeWitt expansion of the heat kernel is valid. Actually this energy

9The supertrace and the superdeterminant have the same properties as the usual trace and determinant with
respect to the logarithms.

10The sign in the exponential is appropriate since one has to move to momentum space (∂E
µ → −ipE

µ) introducing
a plane wave basis and this gives the exponential suppression in the upper limit.
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scale should appear in the argument of log Λ2 making it dimensionless, but it will be omitted
here and in the following. As previously advertised, the divergences are found just in the first
three coefficients.11 Since we are interested in quadratic and logarithmic divergences, only the
expressions of a1 and a2 are needed. These can be found in [135] and their values in Euclidean
spacetime are

a1

(
xE, xE

)
= −YE (4.131)

a2

(
xE, xE

)
=

1
12

ZE
µνZE

µν +
1
2

YE2, (4.132)

where

ZE
µν = ∂E

µΛE
ν − ∂E

ν ΛE
µ +

[
ΛE

µ , ΛE
ν

]
. (4.133)

Writing everything together, the divergent part of the effective one-loop action reads

WE
L=1,reg = −1

2
1

16π2

∫
d4xEstr

[
−YEΛ2 +

( 1
12

ZE
µνZE

µν +
1
2

YE2
)

log Λ2
]
. (4.134)

Turning back to the Minkowski spacetime using eq. (4.125), the divergent part of the La-
grangian at one loop is

Ldiv
L=1 = − 1

32π2 str
[

YΛ2 −
(

1
12

ZµνZµν +
1
2

Y2
)

log Λ2
]

. (4.135)

Finally, using equations (4.120) and (4.122), the expressions for the matrices Λµ and Y read

Λµ =

(
Nµ 1√

2
Γγµ

0 i
2 (Gγµ − γµGc)

)
, (4.136)

and

Y =

(
V − 1√

2
Γ
←−
/∂ + 1√

2
Γ /N − i

2
√

2
ΓγµGγµ

i
√

2Γ − i
2 ∂µ (Gγµ − γµGc) + 1

4

(
GγµGγµ − γµGcGγµ + γµG†γµGc)

)
, (4.137)

where we used that Nµ is antisymmetric and the Grassmannian character of Γ and Γ. Thus
substituting in eq. (4.135) we obtain the final expression of the master formula for quadratic
divergences

LΛ2

L=1 = − Λ2

32π2 tr (V − 4rl) (4.138)

and for logarithmic divergences

Llog Λ2

L=1 =
1

32π2 log Λ2
(

tr
[

1
12

NµνNµν +
1
2

V2 − 1
3

ρµνρµν − 1
3

λµνλµν + 2DµrDµl − 2rlrl
]
+ Γi /DΓ

)
,

(4.139)

where

Nµν = ∂µNν − ∂νNµ +
[
Nµ, Nν

]
(4.140)

11The coefficient a0 = 1 is independent of the background fields, being only important if we were dealing with
gravity, since it contributes to the vacuum energy.
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ρµν = ∂µρν − ∂νρµ + i
[
ρµ, ρν

]
(4.141)

λµν = ∂µλν − ∂νλµ + i
[
λµ, λν

]
(4.142)

Dµr = ∂µr + iλµr− irρµ (4.143)
Dµl = ∂µl + iρµl − ilλµ (4.144)

DµΓ = ∂µΓ + NµΓ− i
2

Gγµ. (4.145)

Eq. (4.139) for the logarithmic divergences is in agreement with refs. [137–140, 142] with the
identification log Λ2 ↔ 2/ϵ. From the previous expressions we can obtain the scalar potential
and the divergent operator generated in LFV Higgs decays in the T-odd case. To obtain the
potential we take λµ = ρµ = 0 since these matrices only include background gauge bosons.
Besides, in our model Nµ, which comes from integrating the gauge bosons quantum excita-
tions, does not include background scalar fields (see eq. 3.20) and thus does not contribute to
the scalar potential. Hence only non derivative terms involving l, r and the part of V coming
from integrating the quantum excitations of the gauge bosons will contribute.12 Using that

Vdiv
L=1 ⊂ −Ldiv

L=1, (4.146)

we find that the quadratic and logarithmic parts of the potential from eqs. (4.138) and (4.139)
read

VΛ2

L=1 =
Λ2

32π2 tr V − Λ2

8π2 tr (lr) , (4.147)

and

V log Λ2

L=1 = − 1
64π2 log Λ2tr V2 +

1
16π2 log Λ2tr (lrlr) . (4.148)

Finally, to obtain the divergent operator in LFV Higgs decays in the LHT, which comes from
the integration of scalar fields and fermions in the T-odd case (see eq. (3.158)), we need the term

Ldiv =
1

32π2 log Λ2 Γi/∂Γ, (4.149)

that includes external fermions fields, scalars and one derivative.

4.2.2. Quadratic and logarithmic corrections to the scalar potential

To obtain the quadratic and logarithmic contributions to the scalar one-loop effective po-
tential, we have to evaluate the expression for the matrices V, l and r defined in eqs. (4.102),
(4.103), (4.104). In this work we neglect the contribution of the lightest SM lepton Yukawa in-
teractions in eqs. (3.46) as well as those of the lightest SM quarks in eqs. (3.47) and (3.51), since
their Yukawa couplings are parametrically small. Thus, the leading contributions come from
the interaction between scalars and gauge bosons in eqs. (3.26), (4.12), the Yukawa Lagrangians
for the heavy fermions in eqs. (3.39), (3.41), (4.25) and (4.31), with the field content of eqs. (4.17),
(4.22), (4.24), (4.30) and (4.29), and the top quark Langrangians in eqs. (4.32) and (3.52).

In what follows, the Higgs potential is parametrized as

VHiggs = µ2
(

H†H
)
+ λ

(
H†H

)2
, (4.150)

12In a composite Higgs model, the scalar fields are the pseudo-Nambu Goldstone bosons of the spontaneous
breaking of an approximate global symmetry. Thus the self interactions of scalar fields are derivative and they do
not generate mass terms.
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invariant under the SM gauge group. For the rest of the scalar fields we are only interested
in their mass terms since they cannot develop a vev respecting the T-parity discrete symmetry.
This implies that their mass terms must be positive as we will impose below.

Gauge boson contribution to the scalar potential

Using eq. (4.96) for the fluctuating gauge bosons in eqs. (3.26) and (4.12), we expand to
second order in the quantum excitations,

L(2)
S + L(2)

Ŝ
⊃ f 2

2

2

∑
j,k=1

[
g2ωa

jµω
bµ
k tr

(
Qa

j Qb
k + Qa

j ΣQbT
k Σ†

)
+ g′2bjµbµ

k tr
(

YjYk + YjΣYT
k Σ†

)
− gg′ωa

jµbµ
k tr
(

Qa
j ΣYT

k Σ†
)
− gg′bµ

j ωb
kµtr

(
Qb

kΣYT
j Σ†

) ]
+

f 2

2

2

∑
j,k=1

[
g2ωa

jµω
bµ
k tr

(
Qa

j Qb
k + Qa

j Σ̂QbT
k Σ̂†

)
+ g′2bjµbµ

k tr
(

YjYk + YjΣ̂YT
k Σ̂†

)
− gg′ωa

jµbµ
k tr
(

Qa
j Σ̂YT

k Σ̂†
)
− gg′bµ

j ωb
kµtr

(
Qb

kΣ̂YT
j Σ̂†

) ]
, (4.151)

where the background scalars are parametrized in the non linear sigma fields Σ, Σ̂ and ωa
jµ, bjµ

are the quantum excitations of the gauge bosons associated to SU(2) and U(1), respectively. As
already mentioned, using the appropriate gauge for these fluctuating fields [143], their kinetic
terms take the canonical form in eq. (4.103). The redefinition of the gauge fields as in eqs. (4.105)
and (4.106),

ωa
jµω

bµ
k = −

(
−ω̃

aµ
j

)
δν

µω̃b
kν, (4.152)

bjµbµ
k = −

(
−b̃µ

j

)
δν

µb̃kν, (4.153)

ωa
jµbµ

k = −
(
−ω̃

aµ
j

)
δν

µb̃kν, (4.154)

allows us to find the corresponding matrix V

V =

(
V11 V12
V21 V22

)
, (4.155)

where

V11 = f 2δν
µg2tr

(
2Qa

j Qb
k + Qa

j ΣQbT
k Σ† + Qa

j Σ̂QbT
k Σ̂†

)
(4.156)

V12 = − f 2δν
µgg′tr

(
Qa

j ΣYT
k Σ† + Qa

j Σ̂YT
k Σ̂†

)
(4.157)

V21 = − f 2δν
µgg′tr

(
Qb

kΣYT
j Σ† + Qb

kΣ̂YT
j Σ̂†

)
(4.158)

V22 = f 2δν
µg′2tr

(
2YjYk + YjΣYT

k Σ† + YjΣ̂YT
k Σ̂†

)
. (4.159)

According to eq. (4.147), to obtain the quadratic divergences of this sector we must take the
trace of the matrix in eq. (4.155). V is a block matrix with gauge group as well as Lorentz
indices in each block. Taking the trace implies a = b, j = k, µ = ν in each block and then
summming over the diagonal terms of the matrix (summation over repeated indices in their
corresponding range is understood),

VΛ2

L=1,g =
Λ2

8π2

[
g2 f 2tr

(
Qa

j ΣQaT
j Σ† + Qa

j Σ̂QaT
j Σ̂†

)
+ g′2 f 2tr

(
YjΣYT

j Σ† + YjΣ̂YT
j Σ̂†

) ]
(4.160)
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where a global facor 4 comes from δ
µ
µ = 4 and irrelevant constant terms have been dropped.

This part of the potential contains a mass term for the triplet Φ and a quartic Higgs coupling,

VΛ2

L=1,g ⊃
Λ2

4π2

(
g2 + g′2

)
tr
(

Φ†Φ
)
+

1
16π2

Λ2

f 2

(
g2 + g′2

) (
H†H

)2
, (4.161)

and no mass terms for the rest of the physical scalars. Since the leading order of the mass of
the triplet Φ and the Higgs quartic coupling is Λ2 ≲ 16π2 f 2, we will neglect all logarithmic
contributions to these operators in the following.

To evaluate the logarithmic divergences, from eq. (4.148) we must take the trace of V2. To
construct this matrix we must pair the indices of both V factors. For the sake of clarity, the left
upper block V2

11 would contain

V2
11 ⊃ f 4δν

µg2tr
(

2Qa
j Qb

k + Qa
j ΣQbT

k Σ† + Qa
j Σ̂QbT

k Σ̂†
)
× δ

µ
λ g2tr

(
2Qb

kQc
l + Qb

kΣQcT
l Σ† + Qb

kΣ̂QcT
l Σ̂†

)
.

(4.162)

Then we repeat the same procedure applied above to take the trace. Again a global factor of 4
will appear from the trace over the Lorentz indices δ

µ
ν δν

µ = δ
µ
µ = 4 leading to

V log Λ2

L=1,g = − 1
16π2 f 4 log Λ2

×
[

g4tr
(

2Qa
j Qb

k + Qa
j ΣQbT

k Σ† + Qa
j Σ̂QbT

k Σ̂†
)
× tr

(
2Qb

kQa
j + Qb

kΣQaT
j Σ† + Qb

kΣ̂QaT
j Σ̂†

)
+ 2g2g′2tr

(
Qa

j ΣYT
k Σ† + Qa

j Σ̂YT
k Σ̂†

)
× tr

(
Qa

j ΣYT
k Σ† + Qa

j Σ̂YT
k Σ̂†

)
+ g′4tr

(
2YjYk + YjΣYT

k Σ† + YjΣ̂YT
k Σ̂†

)
× tr

(
2YkYj + YkΣYT

j Σ† + YkΣ̂YT
j Σ̂†

) ]
.

(4.163)

This part of the potential contains a contribution to the µ2 term in the Higgs potential and a
mass term for the triplet ω̂,

V log Λ2

L=1,g ⊃ f 2 log Λ2
(

3g4

8π2 +
g′4

40π2

)(
H†H

)
+

g4

π2 f 2 log Λ2tr (ω̂ω̂)

=
1

16π2 log Λ2 (3g2M2
WH

+ g′2M2
AH

) (
H†H

)
+

g2

2π2 M2
WH

log Λ2tr (ω̂ω̂) , (4.164)

where we have used that at leading order M2
WH

= 2g2 f 2 and M2
AH

= 2
5 g′2 f 2 as well as the field

redefinitions in eq. (4.42). These contribution to their masses are naturally smaller than those
to the mass of the triplet Φ since they are proportional just to log Λ2 and there is a suppression
of 1/(16π2) which allows masses of order of the electroweak scale. No mass term is induced
for the physical scalar η̂ by gauge interactions.

Fermion contributions to the scalar potential

In order to obtain the heavy lepton, heavy quark and top contribution to the potential, the
matrices r and l in eq. (4.104) are needed. Since the Lagrangian for quarks is more involved, we
illustrate the process with the lepton contribution. For simplicity, from eqs. (4.17), (4.22) and
(4.24) we define the new multiplets

Ψ2 = AΨ̃2, Ψ1 = AΨ̃1, ΨR = AΨ̃R, Ψ̂R = B ˜̂ΨR, (4.165)
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where

A =

 −iσ2

i
−iσ2

 , B =

 −iσ2

i
02×2

 (4.166)

factor our the matrices from the multiplets. Splitting the fields as in eq. (4.96) we get

L(2)
YH ,ŶH

⊃ −
(

ψ2 ψ1 • •
)

0 0 κl fA†ξA κ̂l fA† ξ̂B
0 0 κl fA†Σ0ξ†A −κ̂l fA†Σ0ξ̂†B
0 0 0 0
0 0 0 0



•
•

ψR
ψ̂R

+ h.c.

(4.167)

where ψ1, ψ2, ψR and ψ̂R are the quantum fluctuations of Ψ̃1, Ψ̃2, Ψ̃R and ˜̂ΨR, respectively,
and the bullet means that the corresponding field is not present in the theory. All the flavour
dependence is encoded in the couplings κ and κ̂. Comparing with eqs. (4.102) and (4.104), the
form of the matrices r and l for leptons is

rl = l†
l =


0 0 κl fA†ξA κ̂l fA† ξ̂B
0 0 κl fA†Σ0ξ†A −κ̂l fA†Σ0ξ̂†B
0 0 0 0
0 0 0 0

 . (4.168)

To evaluate the quadratically divergent contribution to the potential arising from this sector,
we need the product lr

llrl =


0 0 0 0
0 0 0 0
0 0 2κ†

l κl f 215×5 κ†
l κ̂l f 2A† (ξ† ξ̂ − ξξ̂†)B

0 0 κ̂†
l κl f 2B† (ξ̂†ξ − ξ̂ξ†)A 2κ̂†

l κ̂l f 213×3

 . (4.169)

As in the gauge boson case, the matrix lr is block diagonal and its trace is the sum of the trace
of each of its diagonal entries,

tr (llrl) = 10tr
(

κ†
l κl f 2

)
+ 6tr

(
κ̂†

l κ̂l f 2
)

, (4.170)

which is independent of the scalar fields. In this model, all the scalars are protected from
quadratic divergences coming from the new sector. Analogously, for the logarithmic diver-
gences we have to evaluate

tr (llrl llrl) = 2tr
(

κlκ
†
l κ̂l κ̂

†
l f 4
)
× tr

[(
ξ̂†ξ − ξ̂ξ†

) (
ξ† ξ̂ − ξξ̂†

)
BB†

]
⊃ −2tr

(
κlκ

†
l κ̂l κ̂

†
l f 4
)

tr
[(

Σ̂†Σ + Σ†Σ̂
)
BB†

]
= −2tr

(
κlκ

†
l κ̂l κ̂

†
l f 4
) 3

∑
a=1

5

∑
b=1

[
Σ̂†

abΣba + Σ†
abΣ̂ba

]
, (4.171)
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using that ξ̂ commutes with BB† and Σ2
0 = 15×5. Then, the logarithmically divergent contribu-

tion to the potential is

V log Λ2

L=1,l = − 1
8π2 log Λ2tr

(
κlκ

†
l κ̂l κ̂

†
l f 4
)
×

3

∑
a=1

5

∑
b=1

[
Σ̂†

abΣba + Σ†
abΣ̂ba

]
. (4.172)

This expression contains leading order contributions to the µ2 parameter of the Higgs potential
and to the masses of ω̂ and η̂

V log Λ2

L=1,l ⊃
f 2

8π2 log Λ2tr(κlκ
†
l κ̂l κ̂

†
l )×

(
6H†H +

36η̂2

5
+ 8tr(ω̂†ω̂)

)
, (4.173)

where we have used the leading order field redefinitions in eq. (4.42). This expression is in
agreement with the diagrammatic calculation for the Higgs part in eq. (4.26).

The last contribution comes from the heavy quarks in eqs. (3.41), (4.31) and the top sector in
eq. (4.32). In this last equation we notice that due to the presence of the three dimensional Levi-
Civita tensor ϵi,j,k with {i, j, k} = 1, 2, 3, only the three upper components of Q1 and Σ0ΩQ2 are
relevant. Then, comparing eqs. (4.29) and (3.54) we have that for i = 1, 2 one could substitute

(Q1,2)i by
(

Ψq
1,2

)
i

and for i = 3 we would have i T1L and i T2L. Then, similarly as we did for
leptons, we perform the following substitutions

Ψq
1 = AΨ̃q

1, Ψq
2 = AΨ̃q

2, Q1 → CΨ̃q
1, Q2 → CΨ̃q

2, (4.174)

where

C =
 −iσ2 0 0

0 0 0
0 0 −iσ2

 , (4.175)

since only the aforementioned components of those multiplets are relevant. The zero in the
middle of C takes into account that the multiplets Q1,2 and Ψq

1,2 differ in the field in its center.
Collecting the left-handed and right-handed quantum fields in vectors

vT
L =

(
ψ

qT
2 , ψ

qT
1 , •, •, •, tT

2L, tT
1L

)
,

vT
R =

(
•, •, ψ

qT
R , ψ̂

qT
R , tTR, tT

2R, tT
1R

)
, (4.176)

we may write

L(2,q)
YH ,ŶH ,t

= −vLrqvR + h.c. (4.177)

where

rq =



0 0 (r2R)
α

mnβ

(
r2R̂

) α

mnβ
(r2t)

α
mβ 0 0

0 0 (r1R)
α

mnβ

(
r1R̂

) α

mnβ
(r1t)

α
mβ 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 (rT2t)

α
β (rT2T2)

α
β 0

0 0 0 0 (rT1t)
α

β 0 (rT1T1)
α

β


, (4.178)

the greek indices are the SU(3) color indices and as before lq = r†
q . As previously advertised,
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this sector is more involved and it manifests in the size of the matrix rq. This is because apart of
the introduction of the right-handed singlets T1,2R the field in the center of the SU(5) multiplets
Ψq

1,2

(
χ

q
1,2L

)
is not the same as that inside of Q1,2 (T1,2L). The components of the matrix rq are

defined as

(r2R)
α

mnβ = κq f
(
A†ξA

)
mn

δα
β, (4.179)(

r2R̂

) α

mnβ
= κ̂q f

(
A† ξ̂B

)
mn

δα
β, (4.180)

(r2t)
α

mβ =
i
4

λ1 f
(
C†Σ0Ω

)
mi

ϵijkϵxyΣ̃jxΣ̃kyδα
β, (4.181)

(r1R)
α

mnβ = κq f
(
A†Σ0ξ†A

)
mn

δα
β, (4.182)(

r1R̂

) α

mnβ
= −κ̂q f

(
A†Σ0ξ̂†B

)
mn

δα
β, (4.183)

(r1t)
α

mβ =
i
4

λ1 fC†
miϵijkϵxyΣjxΣkyδα

β, (4.184)

(rT2t)
α

β =
1
4

λ1 f ϵ3jkϵxyΣ̃jxΣ̃kyδα
β, (4.185)

(rT1t)
α

β =
1
4

λ1 f ϵ3jkϵxyΣjxΣkyδα
β, (4.186)

(rT2T2)
α

β =
λ2√

2
f X̂∗δα

β, (4.187)

(rT1T1)
α

β =
λ2√

2
f X̂δα

β. (4.188)

Proceeding similarly as for leptons, the quadratically divergent part of the potential due to
quarks coming from the product lr reads

VΛ2

L=1,q = −
3Λ2

128π2 λ2
1 f 2ϵijkϵinpϵxyϵqr ×

(
ΣjxΣkyΣ†

nqΣ†
pr + Σ̃jxΣ̃kyΣ̃†

nqΣ̃†
pr

)
, (4.189)

where the factor 3 comes from δα
α = NC = 3. This term contains a contribution to the triplet Φ

mass and to the quartic Higgs coupling,

VΛ2

L=1,q ⊃
3λ2

1
4π2 Λ2tr

(
Φ†Φ

)
+

3λ2
1

16π2
Λ2

f 2

(
H†H

)2
. (4.190)

From the product lrlr we get the quark contribution to the logarithmic part of the potential
given by

V log Λ2

L=1,q =
3

16π2 log Λ2
[ 1

16
λ2

1λ2
2 f 4ϵ3jkϵ3j′k′ϵxyϵx′y′ ×

(
ΣjxΣkyΣ†

j′x′Σ
†
k′y′ + Σ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′

)
+

1
162 λ4

1 f 4
(

ϵijkϵij′x′ϵxyϵx′y′Σ†
jxΣ†

kyΣj′x′Σk′y′ + ϵijkϵij′x′ϵxyϵx′y′ Σ̃†
jxΣ̃†

kyΣ̃j′x′ Σ̃k′y′
)2

+
1
8

(
κqκ†

q

)
33

λ2
1 f 4ϵrjkϵrj′k′ϵxyϵx′y′

(
Σ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′ + ΣjxΣkyΣ†

j′x′Σ
†
k′y′

)
+

1
8

(
κqκ†

q

)
33

λ2
1 f 4ϵrjkϵr′ j′k′ϵxyϵx′y′

(
(ΩΣ0Σ)rr′ ΣjxΣkyΣ̃†

j′x′ Σ̃
†
k′y′ + h.c.

)
+

1
8

(
κ̂qκ̂†

q

)
33

λ2
1 f 4ϵrjkϵrj′k′ϵxyϵx′y′

×
(
(ξ̂Σ0)brΣ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′(Σ0ξ̂†)r′b + (ξ̂Σ0Ω)brΣ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′(ΩΣ0ξ̂)r′b

)
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− 1
8

(
κ̂qκ̂†

q

)
33

λ2
1 f 4ϵrjkϵr′ j′k′ϵxyϵx′y′

(
(ξ̂Σ0)brΣjxΣkyΣ̃†

j′x′ Σ̃
†
k′y′(ΩΣ0ξ̂)r′b + h.c.

)
− 2tr

(
κqκ†

q κ̂qκ̂†
q f 4
) 3

∑
a=1

5

∑
b=1

(
Σ̂†

abΣba + Σ†
abΣ̂ba

) ]
, (4.191)

where the factor 3 comes from the number of colors, r, r′ = 1, 2 because the fields in the middle
of the multiplets Ψq

1 and Ψq
2 are not the same as those in Qt

1 and Qt
2 anb b = 1, 2, 3. This term

contains a negative contribution to the µ2 parameter of the Higgs potential from the first term
in brackets and a contribution similar to leptons up to a factor of 3 coming from the last term

V log Λ2

L=1,q ⊃−
3

16π2 log Λ2 f 2λ2
1λ2

2

(
H†H

)
+

3 f 2

8π2 log Λ2tr(κqκ†
q κ̂qκ̂†

q)×
(

6H†H +
36η̂2

5
+ 8tr(ω̂†ω̂)

)
,

(4.192)

where again we have used the field redefinitions in eq. (4.42). Notice that even though the
singlet scalar field η̂ in X̂ is coupled to the top partners, it does not develop a mass term pro-
portional to λ2. This is because in this sector η̂ can be understood as the Goldstone boson of
the spontaneous breaking of the gauged [U(1)]2 to U(1). This prevents the generation of a new
contribution to its mass at one loop coming from this sector of the theory.

Physical scalar masses and Higgs potential

We can finally collect our results for the physical scalar masses and the Higgs potential at
one loop. From eqs. (4.161) and (4.190) we find the mass of the heaviest T-odd triplet Φ

M2
Φ =

Λ2

4π2

(
g2 + g′2 + 3λ2

1
)

(4.193)

and the Higgs quartic coupling

λ =
1

16π2
Λ2

f 2

(
g2 + g′2 + 3λ2

1
)

, (4.194)

that are proportional to the cutoff squared. This last equation provides an explicit relation
between the cutoff scale and one of the top quark Yukawa couplings since the experimental
value of λ is λ = M2

h(2v2) ≈ 0.13. The mass for the new T-odd triplet ω̂ is given by eqs. (4.164),
(4.173) and (4.192),

M2
ω̂ =

f 2

π2 log Λ2
[

g4 + Tκ

]
, (4.195)

with

Tκ ≡ tr(κκ†
l κ̂l κ̂

†
l ) + 3tr(κqκ†

q κ̂qκ̂†
q). (4.196)

The new T-odd scalar η̂ only receives a contribution from eqs. (4.173) and (4.192),

M2
η̂ =

f 2

π2 log Λ2 9
5

Tκ. (4.197)

And the µ2 parameter of the Higgs potential follows from eqs. (4.164), (4.173) and (4.192),

µ2 =
f 2

16π2 log Λ2
(

6g4 +
2
5

g′4 − 3λ2
1λ2

2 + 12Tκ

)
. (4.198)
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To obtain the physical mass of the Higgs boson we have to minimize the potential of eq. (4.150).
If the contribution of the top sector dominates over the heavy Yukawa and gauge interactions
then µ2 < 0 and the EWSB is triggered,

∂VHiggs

∂H† = 0 ⇒ µ2H + 2λ
(

H†H
)

H = 0 (4.199)

when the neutral component of the Higgs doublet gets a vev

⟨H⟩ = 1√
2

(
0
v

)
, v =

√
−µ2

λ
. (4.200)

In our case, this expression gives

v2 =
f 4

Λ2 log Λ2 3λ2
1λ2

2 − 6g4 − 2
5 g′4 − 12Tκ

g2 + g′2 + 3λ2
1

. (4.201)

Then, from M2
h = −2µ2 = 2λv2, and eqs. (4.194) and (4.201) we have

M2
h =

f 2

8π2 log Λ2
(

3λ2
1λ2

2 − 6g4 − 2
5

g′4 − 12Tκ

)
, (4.202)

whose experimental value is Mh ≃ 125 GeV. Comparing previous expressions, we find the
same relation between the masses of the Higgs and the usual triplet of the LHT,

M2
Φ = 2

f 2

v2 M2
h. (4.203)

Its mass is proportional to the scale f and thus it is naturally heavy. This is a consequence of
the absence of any symmetry or further mechanism that protects its mass from quadratically
divergent corrections. For the rest of the new T-odd scalars we find

M2
ω̂ = 8M2

h
g4 + Tκ

3λ2
1λ2

2 − 6g4 − 2
5 g′4 − 12Tκ

, (4.204)

M2
η̂ =

72
5

M2
h

Tκ

3λ2
1λ2

2 − 6g4 − 2
5 g′4 − 12Tκ

. (4.205)

where 3λ2
1λ2

2− 6g4− 2
5 g′4− 12Tκ must be positive to be compatible with the SM SSB in eq. (4.198).

The masses of the new T-odd scalars are proportional to the Higgs mass and independent of
the scale f . This implies that they are naturally light, but they are strictly increasing with Tκ

for fixed values of λ1, λ2. This is a consequence of the gauge symmetry since these new scalars
share the same quantum numbers as the would-be Goldstone bosons and they mix with them
at leading order (see eq. (4.42)). However, for the theory to be consistent, their masses must
remain below the cutoff scale Λ. Notice that taking the ratio of eqs. (4.204) and (4.204) we
obtain

M2
η̂ =

9
5

Tκ

Tκ + g4 M2
ω̂, (4.206)

and thus from g ≈ 0.653 one finds Mη̂ > Mω̂ if Tκ ≥ 5
4 g4 ≈ 0.227.
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4.2.3. LFV Higgs decays with a T-odd singlet in the LHT revisited

Using the BFM one can obtain the divergent operator for LFV Higgs decays in the T-odd
singlet case (see § 3.2.1) within the original LHT scenario in chapter 3. The divergence comes
from topologies XI+XII in fig. 3.1 when the right-handed T-odd singlet χR and the scalar fields
ω± and ϕ± propagate inside the loop. According to eq. (3.158), the resulting operator in the
SM symmetric phase involves two Higgs doublets, two SM left-handed fermion doublets and
one derivative. Thus, one uses eq. (4.149) to integrate out the right-handed fermion multiplet
ΨR, where χR lives, and one scalar field in ξ.

The Yukawa Lagrangian responsible of providing the couplings to compute the T-odd sin-
glet contribution to LFV Higgs decays is L(b)

YH
in eq. (3.40). This Lagrangian depends explic-

itly on Ω. Consequently, as it was shown in § 3.3, it is not invariant under the gauge group
[SU(2)×U(1)]2 ⊂ SU(5). This is because given a gauge transformation Vg, the associated non
linear transformation Ug in general depends on all the SO(5) generators and Ω does not com-
mute with all of them. Hence, one would not expect that the resulting counterterm respects
the gauge symmetry either. However, L(b)

YH
is invariant under transformations of the diagonal

SU(2)×U(1) ∈ SO(5) associated to the SM gauge group. According to the general CCWZ for-
malism, transformations restricted to the unbroken group becomes linear. As a consequence,
since the SM is contained in the unbroken SO(5), Vg = Ug with Ug depending only on the SM
gauge generators that commute with Ω. Thus the counterterm would be invariant under the
SM as well, since the BFM respects the gauge symmetry.

To start with the derivation of the operator, we need the expression for the matrices Γ and
Γ in eq. (4.102) after expanding the Yukawa Lagrangian L(b)

YH
in fermion and scalar quantum

fluctuations. According to [138, 139, 150], when the scalar fields come parametrized in a non
linear sigma field ξ, it is common to perform a multiplicative split instead of a linear one. In
our case,

ξ
BFM−−→ ξΞ ≈ ξ

(
1+ i

πa
q

f
Xa
)

, (4.207)

where Ξ = eiπa
q Xa/ f and πa

q are the quantum fluctuations of the Goldstone fields. The expo-
nential is expanded up to first order since only a single scalar field propagates inside the loop.
On the other hand one performs the usual linear split for the right-handed fermion fields in
eq. (4.96) and uses eq. (4.165)

L(b,2)
YH
⊃ −κij f

(
Ψ2iξ

iπa
q

f
Xa + Ψ1iΣ0Ω

−iπa
q

f
Xaξ†Ω

)
AψRj + h.c. (4.208)

where i, j are flavour indices and we used the basis of hermitian generators. Thus, the matrices
Γ and Γ read

Γa
= −iκij

(
Ψ2iξXa −Ψ1iΣ0ΩXaξ†Ω

)
A, (4.209)

Γa = iκ†
jiA†

(
Xaξ†Ψ2i −ΩξXaΩΣ0Ψ1i

)
. (4.210)

Substituting in eq. (4.149) and using that A is unitary due to the complete SO(5) right-handed
multiplet ΨR yields

Lc.t. =
1

32π2 log Λ2κijκ
†
jl

(
Ψ2iξXa −Ψ1iΣ0ΩXaξ†Ω

)
i/∂
(

Xaξ†Ψ2l −ΩξXaΩΣ0Ψ1l

)
. (4.211)
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However, a careful inspection of the previous expression reveals that T-parity is not preserved.
Using eqs. (3.25) and (3.32) in the operator above results in(

Ψ2iξXa −Ψ1iΣ0ΩXaξ†Ω
)

i/∂
(

Xaξ†Ψ2l −ΩξXaΩΣ0Ψ1l

)
T−→
(

Ψ2iΩXaΩξ −Ψ1iΣ0Ωξ†ΩXa
)

i/∂
(

ξ†ΩXaΩΨ2l − XaΩξΩΣ0Ψ1l

)
=
(

Ψ2iXaξ −Ψ1iΣ0Ωξ†XaΩ
)

i/∂
(

ξ†XaΨ2l −ΩXaξΩΣ0Ψ1l

)
, (4.212)

where in the last equality we used that Ω belongs to SO(5) because ΩΣ0Ω = Σ0 and thus
leaves invariant the Lie algebra subspace generated by the orthogonal set of broken generators
ΩXaΩ = Xa′ = ca′

a (Ω) Xa with ca′
a are in general a function of the SO(5) transformation verify-

ing the orthogonality condition ca′
a ca′

b = δab. This is the action of the adjoint representation of
SO(5) in the Lie algebra of SU(5). Notice that the non T-invariance comes from the fact that Xa

and ξ are interchanged with respect to the original expression (4.211).
Consequently, the usual multiplicative split for the scalar fields parametrized in a non linear

sigma field is not valid in general. To understand why the multiplicative split fails, consider
the following scheme

ξ
BFM→ ξΞ

T↓ ↓T

Ωξ†Ω BFM→ ΩΞ†ξ†Ω ?
= Ωξ†Ξ†Ω,

(4.213)

where the last equality only holds when
[
Π, Πq

]
= 0 and this is not the case. Then, since the

BFM and T-parity do not commute, we are forced to use the linear split for the scalar fields

Π BFM−−→ Π + Πq. (4.214)

Again, as only a single scalar field propagates inside the loop, we Taylor-expand up to first
order in the quantum fluctuations of the scalar fields. This yields

ξ
BFM−−→ ei(Π+Πq)/ f ≈ ξ + ξa

(1)
πa

f
, (4.215)

where ξa
(1) is the parametric derivative of ξ with respect to the Goldstone fields [151]

ξa
(1) = f

∂ξ

∂πa = f
∞

∑
n=1

1
n!

(
i
f

)n ∂Πn

∂πa . (4.216)

Since the generators Xa do not commute among themselves the derivative of any power of Π
with respect to the Goldstone fields can be written as

∂Πn

∂πa = XaΠn−1 + ΠXaΠn−2 + ... + Πn−2XaΠ + Πn−1Xa. (4.217)

The parametric derivative of ξ, ξa
(1), can be expressed in closed form using the integral repre-

sentation [151, 152]

ξa
(1) = f

∫ 1

0
dτe(1−τ)Π/ f iXaeτΠ/ f . (4.218)
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Substituting eq. (4.215) and the linear split for the fermion field in L(b)
YH

L(b,2)
YH
⊃ −κij f

(
Ψ2iξ

a
(1)

πa
q

f
+ Ψ1iΣ0Ω

πa
q

f
ξa†
(1)Ω

)
AψRj + h.c. (4.219)

we find the form of the new matrices Γ and Γ,

Γa
= −κij

(
Ψ2iξ

a
(1) + Ψ1iΣ0Ωξa†

(1)Ω
)
A, (4.220)

Γa = −κ†
jiA†

(
ξa†
(1)Ψ2i + Ωξa

(1)ΩΣ0Ψ1i

)
, (4.221)

and the form of the new counterterm,

Lc.t. =
1

32π2 log Λ2κijκ
†
jl

(
Ψ2iξ

a
(1) + Ψ1iΣ0Ωξa†

(1)Ω
)

i/∂
(

ξa†
(1)Ψ2l + Ωξa

(1)ΩΣ0Ψ1l

)
. (4.222)

In order to check whether the new operator is invariant under the SM group and T-parity,
one needs to obtain the transformation properties of the parametric derivative ξa

(1). To that

end, one substitutes Π
SO(5)−−−→ UΠU† and Π T−→ −ΩΠΩ in eq. (4.218),

ξa
(1)

SO(5)−−−→ ca′
a (U)Uξa

(1)U
†, ξa

(1)
T−→ −ca′

a (Ω)Ωξa†
(1)Ω. (4.223)

Thus, particularizing for a SM transformation U = Ug and using the orthogonality property
of the coefficients ca′

a , the counterterm Lagrangian (4.149) is invariant under the SM group and
T-parity. 13

Since the singlet χR lives in the third entry of the fermion multiplet ΨR, to isolate its contri-
bution from the operator in eq. (4.222) one needs to select the third entry of the row and column
vectors Γ and Γ. Using the expression for the broken generators in appendix A, the resulting
operators involving two Higgs doublets read

Lc.t. ⊃
1

32π2 log Λ2κijκ
†
jl

1
8 f 2

[(
liLσaH

)
i/∂
(

H†σallL

)
+

1
2

(
liLσaH̃

)
i/∂
(

H̃†σallL

)]
, (4.224)

in agreement with eq. (3.158). Using the EoM for the lepton fields, substituting one of the Higgs
doublets for their corresponding vev and the relation mℓH =

√
2κ f , one can recover the result

for the divergences in LFV in § 3.2.1 (reminding the identification 2/ϵ↔ log Λ2),

Lc.t. ⊃ 2× 1
16π2 log Λ2 v2

64 f 2 V†
ℓ′ j

m2
ℓHj

f 2 Vjℓhℓ
′
(mℓ′

v
PL +

mℓ

v
PR

)
ℓ, (4.225)

where we have diagonalized the Yukawa coupling κ according to eq. (3.100) and the left-
handed leptons are rotated as in eq. (3.96). The factor of two comes from the sum of the two
different operators in eq. (4.224).

An important remark is that in the T-even case, that can be obtained straightforwardly from
the T-odd case through the substitution Ω → 1 in eq. (4.222), one obtains an operator similar
to that in eq. (4.224) but with the T-odd mirror leptons instead of the SM leptons. This explains
why in the T-even case the contributions of the singlet to LFV Higgs decays are finite on their
own.

13Technically speaking this piece is only invariant under SM global transformations. The full counterterm would
include the rest of the interactions coming from the terms including Nµ and Gγµ in eq. (4.140) leading to the SM
gauge invariance.
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Finally, the operator in eq. (4.222) should be added to the original LHT Lagrangian with an
arbitrary constant in order to renormalize the corresponding divergence. This constant is thus
a free parameter that should be measured by the experiment. However, this is very unlikely
from the theoretical point of view because apart from being unable to predict the contribution
of the singlet to LFV Higgs decays in the T-odd scenario, there is no fundamental reason why
the constant should be small in order to reproduce the current measures.

4.3. Phenomenology of the NLHT

In this section we will study the parameter space and the particle spectrum of the NLHT
compatible with current EWPD and cosmology constraints paying special attention to the de-
cay channels and lifetime of the new T-odd scalars. We will restrict ourselves to a simplified
version of the model. This will lead to interesting correlations between the top quark and the
rest of the heavy quarks Yukawa couplings, constraining the interval of allowed values of the
NP scale f and fixing the value of the leptons Yukawa coupling.

4.3.1. Parameter space

Before constraining the parameter space of the model, some relations must be taken into
account. Let us focus first on the Yukawa couplings λ1 and λ2 in eqs. (3.87). They are not
independent but related through the top quark mass mt ≈ 173 GeV [153] in eq. (3.87). At
leading order in v one finds

1
λ2

1
+

1
λ2

2
=

(
v√
2mt

)2

. (4.226)

We will choose λ1 as the independent parameter. On the other hand, it is clear from eq. (3.89),
that the T-even top partner T+ is heavier and we have to impose that its mass must remain
below the cutoff scale Λ. Otherwise it should be integrated out and would not be part of
the spectrum of the theory. The cutoff scale Λ is related to the Higgs quartic coupling λ =
1
2 (Mh/v)2 ≈ 0.13, the Yukawa coupling λ1 and the gauge couplings g ≈ 0.641 and g′ ≈ 0.344
through eq. (4.194), where g = e/sW and g′ = e/cW with s2

W = 1− M2
W/M2

Z and e2 = 4πα.
This condition constrains the value of λ1 to be in the interval λ1 ∈ [1.05, 1.71] and equivalently
λ2 ∈ [1.22, 3.10], as shown in fig. 4.4. Since the cutoff scale and the top quark-partner masses
are proportional to the NP scale f , fig. 4.4 also shows that Λ/ f ∈ [1.49, 2.32]. These values of
the cutoff are compatible with the perturbative limit Λ ≤ 4π f . In addition, current EWPD con-
straints impose that vector-line quarks must be heavier than about 2 TeV [131, 132]. Therefore,
we will force the lighter top partner T to have a mass MT > 2 TeV, implying f ≃ 900 GeV.

In the NLHT, T-parity is an exact discrete symmetry. This implies that the lightest T-odd
particle (LTP) of the spectrum is stable. To be a viable dark matter, the LTP must be electrically
neutral and have weak interactions. In this model, the potentially light and neutral T-odd
particles are the AH gauge boson, the neutral leptons with masses proportional to the free
parameters κl and κ̂l in eq. (4.84), the T-odd singlet η̂ and the neutral component of the T-odd
real triplet ω̂0. The neutral components of the original complex triplet Φ, ϕ0 and ϕP, do not play
a role here. They are always heavier than AH since comparing eqs. (4.40) and (4.203) one finds
that MAH / f = g′

√
2/5 ≈ 0.217 and MΦ/ f =

√
2Mh/v ≈ 0.718. At leading order, the neutral

leptons share the same mass as the charged ones and the same happens with the neutral and
the charged components of the real triplet ω̂. This rules them out. Therefore, the possible dark
matter candidates in our model are the scalar singlet η̂ and the AH gauge boson.

Let us briefly comment the scenario in which the singlet η̂ is the dark matter candidate. As
we discussed in § 4.2.2, in the region of the parameter space where the traces Tκ in eq. (4.196)
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FIGURE 4.4: The interval of λ1 ∈ [1.05, 1.71] yielding a top quark-partner mass
MT+ below the scale Λ on the left-hand-side plot determines the range of possible
values of λ2 ∈ [1.22, 3.10] through eq. (3.87) on the plot of the right-hand side.

These intervals are independent of f but the mass scales are proportional to f .

0.0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

1.1 1.2 1.3 1.4 1.5 1.6 1.7
40

50

60

70

80

FIGURE 4.5: Left: masses of the Higgs and the new T-odd scalars as a function of
Tκ for a chosen value of λ1 = 1.5. They are naturally light except for Tκ close to its
minimum (Tmax(λ1 = 1.5) ≈ 0.90). Right: mass of the new T-odd singlet scalar

field η̂ as a function of the allowed values of λ1 ∈ [1.05, 1.71] when Mη̂ = Mω̂.

satisfies the bound Tκ < 5
4 g4 ≈ 0.211, the scalar singlet is lighter than the real triplet ω̂ (see

eq. (4.206)). According to fig. 4.5, its mass is bounded from above to Mη̂ ≲ 80 GeV, and since
MAH ≳ 200 GeV for f ≳ 900 GeV, the singlet would be the LTP if the non SM leptons are
heavy enough. This opens a possible window to light scalar dark matter, as already suggested
in ref. [154], that in principle has room in the NLHT. However, vector dark matter candidates
are less constrained (see for instance [155]) and then we will work assuming the scenario where
AH is the LTP. This will allow us to compare with previous works [103, 156, 157] in the context
of the original LHT. Then the new scalars must be heavier than the heavy photon AH, which
also implies that the singlet is heavier than the triplet. For that reason necessarily Tκ > 0.227
in order to get scalar masses above 200 GeV due to the strictly increasing behaviour of the new
scalar masses with Tκ as it is shown in fig. 4.5.
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4.3.2. A simplified model

It is well known that, in order to reproduce within the LHT the current dark matter relic
density Ωh2 = 0.120 ± 0.001 [158], it is necessary the presence of co-annihilators if the LTP
has MAH ≳ 200 GeV since AH cannot account by itself all the dark matter relic density. In
ref. [156], for instance, the T-odd leptons and quarks share masses and were taken nearly mass-
degenerate with the AH gauge boson. However, according to the current constrains on the
vector-like quark masses already mentioned [131, 132], this assumption would lead to a very
heavy LTP. In contrast, the NLHT includes more leptonic degrees of freedom than the LHT due
to the requirements of gauge invariance and absence of quadratically divergent contributions
to the Higgs mass (see § 4.1).

Here we will analyze a simplified NLHT model in which all heavy lepton and quark Yukawa
couplings are diagonal and degenerate in flavour space, that is, κl,i = κ̂l,i ≡ κl for leptons
and κq,i = κ̂q,i ≡ κq for quarks, but they have different masses mℓH =

√
2κl f ≳ MAH and

mqH =
√

2κq f . The chosen degeneracy implies that the traces appearing in the expression for
the masses of the new T-odd scalars in eqs. (4.204) and (4.205) reduce to Tκ = 3κ4

l + 9κ4
q . We

will consider that only the T-odd heavy leptons can act as co-annihilators.
One should keep in mind that the contribution of a co-annihilator to the dark matter relic

density is exponentially suppressed with the temperature as ∼ e−∆/Tfo , where ∆ is the mass
splitting between the dark matter candidate and the co-annihilator and Tfo ∼ 20 − 30 GeV
is the freeze-out temperature [159]. To prevent that the scalars influence the relic density, we
safely impose a lower bound to the mass of the lighter T-odd real triplet Mω̂ > MAH + Mh
using the fact that the scalar masses can take any value, adjusting Tκ according to fig. (4.5).
This condition sets a minimum value for the traces Tmin

κ,ω̂ depending on f , through MAH , and
λ1.

Implementing this simplified version of our model in FeynRules [160], using micrOMEGAs
[161] to evaluate the relic density together with the relevant processes and finally running T3PS
[162] to scan the parameter space we obtain the plot in fig. 4.6. The main contributions to the
dark matter relic density come from the co-annihilation between T-odd leptons to pair-produce
SM gauge bosons W± and Z. In the plot, the narrow orange band covers the region where the
relic abundance of AH is compatible with 100% of the observed dark matter density. This can
be approximated by the expression

mℓH ≈ 1.16MAH , (4.227)

for MAH ∈ [200, 800] GeV. From the expressions of MAH in eq. (4.40) and mℓH =
√

2κl f , the
heavy lepton Yukawa coupling is then fixed to κl ≈ 0.185 for f ≳ 900 GeV.

We have already set a lower bound to the lighter T-odd scalar mass, Mω̂ > MAH + Mh.
Using naturalness arguments one can also expect upper bounds for the scalars. As previously
emphasized, the new scalar masses are proportional to the Higgs mass and are independent
of the NP scale f , so they should remain light. To be definite we impose the upper bound
Mη̂ < 1 which provides the maximum trace values Tmax

κ,η̂ for which Mη̂ = 1 TeV given λ1 and
it is independent of the scale f . Imposing the condition Tmax

κ,η̂ > Tmin
κ,ω̂ in the λ1 − f plane yields

to the upper bound f ≲ 3.1 TeV as shown in fig. 4.7. The lower bound that follows from
MT > 2 TeV is also depicted.

On the rest of heavy quarks, with masses proportional to κq, the condition that sets the
AH as the LTP implies mqH / f > MAH / f , that is κq > g′/

√
5 ≈ 0.16. footnoteThis condition

is not necessary for the top quark-partners. The lighter T has a mass MT = f λ2/
√

2 with
λ2 ∈ [1.22, 3.10] and is always heavier than AH since λ2/

√
2 >
√

2/5g′. However the current
bound on the heavy quark masses sets a limit κq >

√
2 TeV/ f , condition that is stronger for
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FIGURE 4.6: Region in the MAH −mℓH plane compatible with AH as dark matter
candidate (white). The AH constitutes 100% (50%) of the dark matter abundance
for masses within the orange (green) bands. The grey region is excluded because
it would yield dark matter overabundance and the blue region is excluded be-

cause AH would not be the LTP.

values of f ≲ 3 TeV allowed by fig. 4.7. From this and the already constrained value of κl ≈
0.185 we derive the restriction Tκ > Tmin

κ,qH
( f ) ≡ 0.0035 + 36 TeV4/ f 4. Imposing the condition

Tmax
κ,η̂ > Tmin

κ,qH
( f ) sets a lower bound for f and the definite allowed region in the λ1− f plane of

fig. 4.7, which features a possible window for f between 2.0 and 3.1 TeV. The minimum for the
traces is actually given by Tmin

κ,ω̂ (λ1, f ).

4.3.3. Particle spectrum and scalar decays

As a consequence of all the previous constraints, the Yukawa couplings of the heavy quarks
κq and the top quark coupling λ1 get strongly correlated as we show in fig. 4.8. This correla-
tion is nearly independent of f . This is because the maximum and minimum values of κq are
extremely close to each other due to the asymptotic behaviour of the new scalar masses with
Tκ since they must be heavier than AH with MAH ≳ 450 GeV for f ≈ 2 TeV and Tmax

κ,η̂ does
not depend on f . However, not all the values of λ1 are available for every possible value of
f , except for f ∈ [2.5, 3.0], as can be seen in fig. 4.7 and is reflected in fig. 4.8. Comparing
figs. 4.4 and 4.8 one can explicitly check that heavy quarks are safely below the cutoff scale
because mqH / f =

√
2κq < Λ/ f . Their common masses are in practice a function of λ1, ranging

between 0.8 f and f .
Regarding the scalar masses, fig. 4.9 shows that they are constrained to the intervals Mω̂ ∈

[600, 800] GeV and Mη̂ ∈ [800, 1000] GeV. These intervals only depend on f . The maximum
values are fixed by the condition Mη̂ < 1 TeV. The minimum values come from the condition
Mω̂ > MAH + Mh depending on f . The allowed values for λ1 for a given f are determined by
the conditions Tmax

κ,η̂ (λ1) > Tmin
κ,ω̂ (λ1, f ) and Tmax

κ,η̂ (λ1) > Tmin
κ,qH

( f ). For completeness we show
below the mass ranges of the T-odd gauge bosons, the usual T-odd complex scalar triplet and
the heavy leptons for the allowed values of the scale f ,

MAH ∈ [450, 680] GeV, (4.228)
MWH = MZH ∈ [1850, 2750] GeV, (4.229)
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FIGURE 4.7: Values of f compatible with MT > 2 TeV as a function of λ1
(light blue). The region is further constrained (darker blue) by the conditions
Tmax

κ,η̂ (λ1) > Tmin
κ,ω̂ (λ1, f ) (upper bound) and Tmax

κ,η̂ (λ1) > Tmin
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( f ) (lower bound)
as explained in the text.
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FIGURE 4.8: Correlation between the heavy quarks Yukawa coupling κq and the
top quark Yukawa coupling λ1 for different values of the scale f .
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FIGURE 4.9: Ranges of allowed masses of the new T-odd scalars for different
values of the scale f as a function of λ1

0

1000

2000

3000

4000

5000

FIGURE 4.10: Typical NLHT spectrum for f ≈ 2.7 TeV and λ1 = 1.2.

MΦ ∈ [1450, 2150] GeV, (4.230)
mℓH ∈ [530, 800] GeV. (4.231)

Our vector-like leptons decay to one standard lepton and a heavy photon, an exotic decay
that is not excluded in principle by current LHC searches within these mass ranges [163]. For
f = 2.7 GeV, the typical situation is shown in fig. 4.10, where we show the scalar fields on the
left-hand side, the gauge bosons on the middle and the fermions on the right-hand side. We
also show the cutoff scale for these particular values of f and λ1 for further comparison. In
the NLHT, as in the original LHT, the top quark-partners T± with masses proportional to the
order one Yukawa couplings λ1 and λ2 are the heaviest particles. The rest of heavy T-even and
T-odd quarks are lighter, since their masses are proportional to the Yukawa coupling κq in our
simplified model, with κq ∈ [0.55, 0.73]. Both types of quarks are heavier than 2 TeV to avoid
current EWPD constraints [131, 132]. Moving to the gauge bosons sector, the T-odd WH and
ZH are the the following heaviest particles after the top quark-partners. There is a gap of more
of 1 TeV with the neutral AH gauge boson, being the LTP and our dark matter candidate. As
our model requires co-annihilations to reproduce the current dark matter relic density of the
universe, the heavy T-odd leptons, that share masses with the T-even ones, are a few tens of
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FIGURE 4.11: Decay widths for the triplet and singlet scalar fields normalized to
the Higgs width for λ1 = 1.1 and λ1 = 1.5 (lighter color). The upper and lower
bounds correspond to the maximum and minimum values of the scalar masses.

GeV heavier than the LTP. Finally, in the scalar sector, we have fixed the maximum mass of
the new T-odd scalars to 1 TeV using a naturalness argument. This implies that the usual LHT
complex triplet Φ is the heaviest scalar with a mass 1 TeV above the singlet η̂. This is followed
by the lighter triplet ω̂. The SM particles are lighter than the LTP, so the spectrum we show, for
comparison, just the heaviest ones: the top quark, the W± and Z gauge bosons and the Higgs.

Now that we have studied the full spectrum of the model, let us discuss the decay channels
of the new T-odd scalars ω̂ and η̂. At leading order they decay mostly into a left-handed SM
lepton and a right-handed T-odd mirror lepton preserving both T-parity and electric charge.
The couplings involved are independent of the Higgs vev because the SM left-handed leptons
are SU(2) doublets and so are their corresponding mirror versions with same hypercharge as
the SM leptons. The strength of the interaction is given by the Yukawa coupling κl in eq. (3.39)
fixed to κl ≈ 0.185 and scale as

ω̂± : ω̂0 : η̂ ∼ 1√
2

:
1
2

:
1√
20

. (4.232)

Thus the quantum numbers of mirror and SM leptons are the appropriate to match those of a
triplet for ω̂ and a singlet for η̂. The decays to other leptons (with opposite T-parities) involve
couplings suppressed by powers of v/ f < 0.12 or are kinematically suppressed by the higher
masses, of at least mℓH ≳ 530 GeV in our simplified model. In addition, from eqs. (3.26) and
(4.12), the charged components of the triplet ω̂± decay into a gauge boson AH and a SM W±

while the neutral component ω̂0 can decay into an AH and a Higgs boson. The singlet η̂ can
decay similarly to the neutral component of the triplet but, being heavier, it can also decay to
the neutral component of the triplet and a Higgs boson. However those couplings are also
suppressed by powers of the Higgs vev. We have explicitly checked that these other channels
contribute less than a 3% to the total decay widths.

In fig. 4.11 we show the range of values of the triplet and the singlet decay widths normal-
ized to the Higgs boson width (Γh ≈ 4 MeV) for a couple of values of λ1. The charged and
neutral components of the triplet have the same width at this order because the couplings to
the neutral component are a factor 1/

√
2 smaller than those for the charged components but

for the neutral component one can exchange particles for antiparticles in the final state adding
a contribution that compensates the factor (1/

√
2)2 in the decay width. Note that the upper

bounds for the width of the triplet and singlet are of the same order. This is because the singlet
is heavier than the triplet but the couplings of the singlet to leptons are a factor

√
5 smaller
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than those for the neutral component of the triplet. On the other hand, the lower bound of the
triplet decay width is much smaller. This suppression comes from the kinematic factor since
the lower bound for the triplet mass is only a few tens of GeV larger than the mass of the T-odd
mirror leptons. In any case their lifetimes are small, since in the worst case the triplet could live
twice more than the Higgs in the available parameter space.

Nevertheless, these new T-odd scalar particles would not be generated in a significant
amount at the LHC. They are produced by an electroweak interaction together with another
T-odd particle and the energy threshold for this process is very high considering the usual
spectrum in fig. 4.10.

4.4. Chapter summary

In this chapter we have built a new and gauge invariant Littlest Higgs model with T-parity
to cure the issues we found in the LHT at the end of Chapter 3. Compared to the original
model, the global symmetry group is enlarged with an extra [SU(2)×U(1)]2 factor that gets
spontaneously broken to the diagonal [SU(2)×U(1)] by the vev of a new non-linear sigma field
that contains four scalars. This allows us to introduce fermion fields that only transform in this
additional non-linear representation without invoking again incomplete SO(5) multiplets that
would be incompatible with gauge invariance. The gauged subgroup is then contained in
the product of the two [SU(2)×U(1)]2 factors, the one inside SU(5) and the extra one, hence
preserving the number of gauge boson fields.

Once the global and gauged groups were defined we have explored two different options
focusing in the leptonic sector since the extension to the quark sector is straightforward. In a
first attempt, the left-handed components of the mirror-partner leptons and the SM singlet χ
were introduced in a representation that only transforms under the diagonal SU(2)×U(1) of
the external [SU(2)×U(1)]2, coupled to their right-handed counterparts through both the orig-
inal and the new non-linear sigma fields. Then we tried with a model based on the completion
of the SU(5) multiplets with new left-handed fields and the introduction of the additional right-
handed components in a representation of the aforementioned external SU(2)×U(1). The first
proposal, despite of being more economical in terms of fermion fields, had to be discarded be-
cause the global symmetry is explicitly broken in a way that the remaining symmetry is not
enough to protect the Higgs mass from dangerous quadratically divergent contributions, as
we proved by a diagrammatic calculation. It turns out that the quadratic contributions coming
from the seagull diagrams with the T-even χ and the mirror-partner neutrinos do not cancel
among themselves. However, the model with complete SU(5) multiplets, that includes a new
T-odd singlet χ and a T-even doublet of mirror-partner leptons l̃c

+, is viable because it prevents
all scalar fields from quadratic divergences: if the coupling giving masses to the extra fermion
fields is switched off, the usual Yukawa Lagrangian remains SU(5) invariant. In fact the Higgs
mass squared only presents an admissible logarithmic divergences proportional to κ2

l κ̂2
l , in-

volving the product of two different couplings giving masses to the non-standard fermions
hence respecting the collective symmetry breaking philosophy.

Next we have found the mass eigenfields that diagonalize the Lagrangian up to order v2/ f 2

as well as the fermion masses and flavour mixing matrices parametrizing the misalignment of
the different Yukawa couplings (κ, κ̂, λ) in the flavour space of several fermion families. This
NLHT model keeps one of the original sources of lepton flavour violation [54, 57, 102] (the mix-
ing matrix V in eq. (4.90)), eliminates those found in [61, 65] (now W = Z = 1) and introduces
an additional source (Ŵ) related to the new Yukawa coupling κ̂ connecting the original to the
extra fermion sector.

In addition, we have considered the influence of the new fermion fields in LFV Higgs de-
cays. As we showed in § 3.2.1, the contribution of the T-even right-handed singlet χ+ is finite
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by its own and the new model preserves this feature since its left-handed component does not
couple to the Higgs field. The contribution of the remaining fields, including the T-odd singlet
χ , is finite. This is because they enter in the loop through two insertions of their mixing term
with the original fields of the LHT model (see table 4.3), thus reducing the degree of divergence
of the topologies involved in the process.

In a next step, we derived a master formula from the BFM and classify the divergences into
quadratic and logarithmic. Using the master formula we calculate the Coleman-Weinberg po-
tential for the scalar fields generated by integrating out at one loop vector bosons and fermions,
including both heavy quarks and leptons. We have calculated the one-loop contributions to the
masses of the Higgs and the complex triplet of the original LHT model, as well as those of the
new scalars. In our model, the Higgs mass is still not sensitive to quadratic divergences com-
ing from the heavy lepton and heavy quark sectors. On the other hand, the relation between
the Higgs mass and the complex triplet mass remains the same. Besides, the Higgs quartic
coupling generated at leading order from the quadratically divergent terms of the potential
does not receive contributions from the new sector. The masses of the new physical scalars,
the T-odd singlet and real triplet, are found to be proportional to just the logarithm of the cut-
off scale Λ. The reason for this is because, having the same quantum numbers of the original
would-be Goldstone bosons of the LHT to be eaten after the SSB at the scale f , they mix with
them at leading order, hence inheriting part of the symmetry that protects the actual would-be
Goldstone bosons from the NLHT of developing a mass. Parametrically, apart from gauge cou-
plings, the new scalar masses depend on the Yukawa couplings λ1 and λ2, that provide masses
to the top quark and its corresponding T-even and T-odd partners, and the Yukawa couplings
κ and κ̂, giving gauge invariant masses to the rest of non standard heavy fermions (in principle
different for quarks and leptons).

We also employed the BFM to calculate the counterterm for LFV Higgs decays with a T-odd
χ in the LHT integrating out the fermionic singlet and a scalar field. We found that the usual
multiplicative split of the Goldstone fields when they come parametrized in a non-linear sigma
field is not valid in our case since it does not commute with the discrete T-parity symmetry
leading to a T-parity non invariant counterterm. On the other hand, applying a linear split
we obtain a T-parity invariant counterterm. For that purpose we had to introduce the object
ξa
(1) obtained from ξ taking the derivative with respect to the Goldstone fields. The form of

this counterterm and the straightforward extension to the T-even χ case explains why in the
former we obtained a logarithmically divergent contribution to LFV Higgs decays and a finite
contribution to the latter. In the T-odd case we obtain two different dimension six operators
with two Higgs fields, a derivative and two SM leptons whose contributions do not cancel
after applying the equations of motion. On the other hand, in the T-even case one obtains a
similar operator but with the T-odd mirror leptons instead.

To conclude this chapter, we have studied the parameter space of the NLHT and the decay
channels of the new T-odd scalars. As in the original LHT, the top quark Yukawa coupling λ2 is
a function of λ1 given the top quark mass. The condition that the heavier top quark-partner is
below the cutoff scale Λ constrains the value of λ1 to the interval [1.05, 1.71]. The experimental
lower bound on vector-like quark masses above 2 TeV [131, 132] pushes the allowed value of
f ≳ 900 GeV.

Since T-parity is exact, the LTP is stable. To have a viable dark matter candidate, the LTP
must be electrically neutral. The NLHT contains two potential candidates, the singlet η̂ and the
usual heavy photon AH. Although there is enough space to explore the singlet as a light dark
matter component (with Mη̂ ≲ 80 GeV), we have chosen it to be the heavy photon in order to
compare with previous works [103, 156, 157]. The aforementioned lower bound to f implies
that the LTP has MAH ≳ 200 GeV and Mω̂ < Mη̂ . On the other hand, the scalar masses do not
depend on the high energy scale f and thus they must remain light by naturalness arguments.
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Therefore, to be conservative, we impose an upper bound of 1 TeV to the mass of the singlet.
In order to reproduce the current relic density with heavy photons, the presence of co-

annihilators is necessary unless the LTP is lighter than the lower bound set above [156]. To
put vector-like quarks beyond current bounds and at the same time provide a not so heavy
dark matter candidate yielding the right relic abundance, we have adopted a simplified NLHT
model with degenerate and flavour-diagonal couplings κ = κ̂, different for leptons (κl) and
quarks (κq), such that the corresponding heavy masses are mlH =

√
2κl f ≳ MAH and mqH =√

2κq f ≳ 2 TeV, respectively. We also require that only T-odd leptons act as co-annihilators by
taking the scalar masses above the limit Mω̂ > MAH + Mh.

As a consequence of all these constraints, the allowed high energy scale f lies approximately
in the interval f ∈ [2, 3] TeV, the common Yukawa coupling of the heavy quarks gets strongly
correlated to the top Yukawa coupling λ1 and, demanding that all dark matter of the universe
is made of the NLHT heavy photons, the Yukawa coupling for all heavy leptons is fixed to
κl ≈ 0.185. A typical spectrum of this scenario is displayed in fig. 4.10.

Finally we studied the dominant decay channels of the new scalar particles. We found that
ω̂ and η̂ decay mostly into a T-odd mirror lepton and a SM lepton with the proper quantum
numbers. Other channels are negligible because the involve couplings that suffer from sup-
pressions by powers v/ f < 0.12. They decay very fast; the (lighter) triplet ω̂ could live at most
two times longer than the Higgs boson. In any case, these new scalars are heavier than about
600 GeV and would be generated by an electroweak interaction together with another heavy
T-odd particle at the LHC, so not very sizeable production rates are expected.
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Chapter 5

Conclusions

In this Chapter we summarize the main conclusions of the Thesis.

• In Chapter 1 we motivated that, in spite of the success of the SM unveiling the nature of
matter and its interactions, it should be regarded as an effective field theory valid up to
some unknown high energy scale ΛSM. This is because there are still open questions that
it cannot address such as the Hierarchy problem. In the SM the Higgs boson mass squared
is not protected by any symmetry and thus receives quadratically divergent contributions
from arbitrarily high energy scales. As a consequence, quantum corrections pushes the
Higgs mass to ΛSM. Thus, an UV theory that extends the SM with an elementary Higgs
must provide a contribution to the Higgs mass squared of approximate the same size to
compensate for the SM contribution and keep the Higgs light. This is very unnatural,
because the EW scale should be blind to effects of very high energy scales.

Composite Higgs models and, in particular, Little Higgs models offer an elegant and well
motivated solution to the Hierarchy problem at the TeV scale. Based on the well known
example of the chiral symmetry of QCD, these models postulate a confining strong inter-
acting sector with a global symmetry G. This gets spontaneously broken by the vacuum
to a subgroup H at the scale f ≈ 1 TeV. The Higgs boson is thus one of the Goldstone
bosons associated to this spontaneous breaking. In addition to the Higgs, new particles
with typical masses of size f arise as a consequence of the enlarged global group.

• In Chapter 2 we introduced the mathematical formalism that allows to realize the Higgs
as the Goldstone boson of the spontaneous breaking of a global symmetry G to a contin-
uous subgroup H: the CCWZ formalism. In the Composite Higgs scenario it is assumed
that the electroweak symmetry group GEW = SU(2)L × U(1)Y is embedded in H. The
Goldstone bosons are massless as far as the global symmetry is exact. But in Nature the
Higgs boson is massive and must take a vev to trigger the spontaneous breaking of the
SM down to the electromagnetic group. To generate a mass and a physical vev for the
Higgs at the one loop-level we further explained the idea of vacuum misalignment: the
global symmetry is broken by gauge and Yukawa interactions and thus the Higgs ceases
to be an exact Goldstone boson becoming a pseudo-Goldstone boson. Its mass is propor-
tional to the sources of breaking of the global symmetry times the cutoff scale Λ ≈ 4π f
and suppressed by a loop factor. As a consequence, in these models the Higgs mass is
typically of size mh ≈ c f with c < 1 and f ≈ 1 TeV to reproduce the observed value
mh ≈ 125 GeV.

However, none of the new heavy resonances with masses proportional to f has been
observed so far. This fact pushes the scale f to the multi-TeV regime increasing the fine-
tuning among the parameters of the theory to ensure c ≪ 1. For that reason, in Little
Higgs models quadratically divergent contributions to the Higgs mass proportional to
the cutoff scale are forbidden which leads us to the notion of collective symmetry break-
ing. Gauge and Yukawa interactions break the global symmetry in such a way that when
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a single gauge or Yukawa coupling is non vanishing there still remains an exact subgroup
of the global symmetry acting non linearly on the Higgs. This ensures the Goldstone na-
ture of the Higgs and a mass term is not generated. However, when all gauge or Yukawa
couplings are non vanishing, all the global symmetries that protect the Higgs are broken.
As a consequence, the Higgs develops a mass that is proportional to the product of all
gauge and Yukawa couplings which is, at most, logarithmically sensitive to the cutoff
scale. This mechanism introduces a plethora of new particles responsible of the cancella-
tion of quadratic divergences. To suppress their contribution to observables that are con-
strained by current precision measurements, a new Z2 symmetry, T-parity, is introduced
under which the SM particles are T-even and most of the new particles are T-odd. As
a result the leading order contributions of these new particles are one-loop suppressed,
relaxing all the constraints.

Finally we built a toy model based on the global product group SU(3)1 × SU(3)2 →
SU(3)V in which all the previous features are implemented. This spontaneous breaking
leads to 8 Goldstone bosons. The gauge group is [SU(2)×U(1)]2 that gets spontaneously
broken to [SU(2)×U(1)]V . However, it turns out that extra U(1) factors are required to
accommodate the hypercharge of all fermions. With this explicit example we showed that
with a global SU(3) global factor protecting the Higgs when a single gauge or Yukawa
coupling is non-vanishing is sufficient. We explicitly checked that the Higgs mass does
not develop a quadratic sensitivity to the cutoff scale as a result of the collective symmetry
breaking mechanism, but just receives logarithmically divergent contributions propor-
tional to the top quark sector Yukawa couplings and gauge couplings. We also showed
that the implementation of T-parity at least doubles the fermion spectrum with respect
to the model without T-parity. In particular, the T-odd partners of the SM fermions, the
so called mirror fermions, need to be heavy. For that purpose, one introduces a com-
plete right-handed SU(3)V multiplet that includes the right-handed components of the
mirror fermions and an extra singlet, that can be either T-even or T-odd. They couple to
the left-handed mirror fermions through a new Yukawa Lagrangian tailored to provide
the mirror fermions with masses of order κ f , respecting the collective symmetry break-
ing. For the singlet, one introduces its left-handed counterparts in an incomplete SU(3)V
multiplet to provide it with a vector-like mass Mχ without coupling to the Higgs. As a
consequence, with respect to the case without T-parity, the Higgs mass squared receives
extra logarithmically divergent contributions proportional to the Yukawa coupling of the
mirror fermions and the mass of the singlet.

• In Chapter 3 we focus on a particular Little Higgs model: the Littlest Higgs model with
T-parity. This is based on the coset SU(5) → SO(5) giving rise to 14 Goldstone bosons:
the Higgs doublet, a complex triplet, a real triplet and a singlet. This is the minimal setup
that implements all the previous requirements using a global simple group. The gauge
group is [SU(2)×U(1)]2 that gets spontaneously broken to SU(2)×U(1), that needs to
be enlarged by two extra U(1) factors to accommodate all the hypercharges. Within this
framework we are particularly interested in the contributions of the new exotic leptons to
flavour changing observables. Among these new leptons, one finds a doublet of mirror
leptons, an extra doublet of mirror-partner leptons and a singlet. Their right-handed
components share a complete SO(5) quintuplet while the left-handed components of the
singlet and the mirror leptons live in different incomplete SO(5) quintuplets. Under T-
parity, the mirror and mirror partner leptons are T-odd while the singlet can be either
T-even or T-odd.

Within this framework we studied lepton flavour violating Higgs decays. First we re-
viewed that, contrary to other previous calculations, the contributions of mirror and
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mirror-partner leptons add up to yield a finite result. Motivated by this result we also
computed the contributions of the lepton singlet to this process. In the T-even scenario,
the singlet mixes with the SM neutrino at order v. On the other hand, the fields that
run in the loops are the SM fields and the singlet. They have the appropriate quan-
tum numbers to generate order 1 contributions to this process. As a consequence, one
has to consistently diagonalize the singlet-neutrino mass matrix up to order v2/ f 2. Af-
ter the diagonalization, the contributions of the neutrino and singlet mass eigenstates
are finite and decouple. In the T-odd scenario, the singlet couples at order v with the
mirror neutrinos. However, since all the fields inside the loop are T-odd, they do not
have the quantum numbers to generate order 1 contributions and a diagonalization of
the corresponding singlet-mirror neutrino mass matrix is not necessary at the order we
work. Finally, the contributions of the T-odd singlet are UV divergent. We found the SM
symmetric operators that contribute to this divergence and it turns out that there is no
available counterterm in the model.

Later on, we studied neutrino mass generation. For that purpose we provided a small
Majorana mass µ to the left-handed component of the singlet. The tree-level integration
of this quasi-Dirac singlet provides neutrino masses of size µv2/M2

χ, with Mχ the Dirac
mass of the singlet, via the inverse seesaw mechanism. Neutrino masses vanish in the
limit of large singlet mass. However, in the T-odd scenario, the one-loop integration of
the singlet provides neutrino masses of size µv2/ f 2 that do not vanish in the limit of large
singlet mass. Finally, in the T-even scenario we also computed the contributions of the
singlet to µ → eγ. Considering that the singlet accounts for all the observed deviation
with respect to the SM prediction together with the non observation of mirror leptons
constrains the region mℓH -mχ providing an upper bound for the mirror lepton masses.
Although flavour conserving, we also studied the contribution of the singlet to the muon
anomalous magnetic moment. This turns out to be small to explain a significant departure
from the SM prediction.

Motivated by the anomalous behaviour of the singlet in the T-odd scenario, we showed
that the LHT is, in general, non gauge invariant. This is because given a transformation of
the gauge group [SU(2)×U(1)]2 ∈ SU(5), the associated SO(5) transformation involves
all the SO(5) generators and not only those of its SU(2)×U(1) subgroup. This has several
consequences. First of all, one has to disregard the T-odd option for the singlet because
the Yukawa Lagrangian that provides masses to the mirror fermions depends on Ω which
does not commute with all the SO(5) generators. Secondly, the SO(5) quintuplets must
be complete because the SO(5) generators mix all their components. Consequently, the
mirror-partner fermions and the singlet cannot be avoided in any case. Finally, for the
same reason, the usual mass terms of the singlet and the mirror-partner fermions are not
compatible with gauge invariance since one cannot isolate a member of a SO(5) quintu-
plet to provide it a mass. Thus a mechanism to provide them a heavy vector-like mass
compatible with gauge invariance is required.

• In Chapter 4, we explicitly built the Lagrangian of a new and gauge invariant LHT
(NLHT) that addresses all the afflictions we encountered in the LHT. For that purpose
the global symmetry group SU(5) is enlarged minimally with an extra [SU(2)×U(1)]2

factor that gets spontaneously broken to the diagonal SU(2)×U(1) by the vev of a new
non linear sigma field with four extra scalars. This allows to introduce fermion fields that
only transform in this additional non linear representation without invoking again SO(5)
multiplets that would need to be completed by gauge invariance. The gauge group is
now contained in the product of the two [SU(2)×U(1)]2, the one inside SU(5) and the
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extra one, still preserving the number of gauge bosons. Under the gauge group the extra
scalar fields decompose into a real triplet and singlet, ω̂ and η̂, respectively.

In the fermion sector to provide a mass to the T-odd mirror-partner fermions and the
T-even singlet, we proposed to complete the left-handed SU(5) multiplets and introduce
the additional right-handed components in a representation that only transforms under
the external SU(2) × U(1). As a consequence, our model includes T-even and T-odd
singlets and doublets of mirror-partner fermions in the lepton and quark sectors. This
construction prevents all the scalar fields from quadratic divergences coming from the
heavy fermion sector. In fact the Higgs mass squared only presents an admissible loga-
rithmic divergence proportional to κ2κ̂2 involving the Yukawa couplings giving masses to
the non-standard fermions (in principle different for quarks and leptons). We also found
the fermion masses and flavour mixing matrices parametrizing the misalignment of the
Yukawa couplings (κ, κ̂ and λ) in the flavour space of several fermion families. This new
version of the LHT keeps one of the original sources of lepton flavour violation [54, 57,
102] (the mixing matrix V in eqs. (3.115) and (3.116)), eliminates those found in [61, 65]
(now W = Z = 1) and introduces an additional source (Ŵ) related to the new Yukawa
coupling κ̂ connecting the original to the extra fermion sector. We also considered the con-
tributions of the new fermion fields in LFV Higgs decays that turn to be finite by power
counting.

Later we applied the background field method (BFM) to calculate the Coleman-Weinberg
potential for the scalar fields and also the counterterm for LFV Higgs decays in the LHT
with a T-odd singlet. In our model, the Higgs mass is not sensitive to quadratic diver-
gences. Parametrically it depends on the gauge couplings g and g′, the top quark sec-
tor Yukawa couplings λ1 and λ2 and the Yukawa couplings κ and κ̂. The mass of the
complex triplet and the Higgs quartic coupling are insensitive to the new heavy fermion
sector, depending on λ1 and g, g′. They come from the quadratic divergent part of the
Coleman-Weinberg potential and thus the triplet is naturally heavier than the Higgs, with
a mass of order f . On the other hand, the masses of the new scalar fields are found to be
proportional to just the logarithm of the cutoff. This is because the new scalar fields and
the would-be Goldstone bosons share the same quantum numbers, hence inheriting part
of their symmetry. Consequently their masses are proportional to the Higgs mass and
naturally light, depending on the same parameters as the Higgs mass.

With respect to the counterterm for LFV Higgs decays in the LHT in the T-odd singlet
scenario, we found that the usual multiplicative split of the Goldstone bosons when they
come parametrized in a non linear sigma field is not compatible with T-parity. Hence we
were forced to apply a linear split also for the scalar fields introducing the parametric
derivative of the field ξ, ξa

(1), with respect to the Goldstone fields. From the counterterm
we reproduced the result we found in Chapter 3 for the operators that contribute to the
UV divergence. We extended the same methodology to also study the T-even singlet case.
We found that the counterterm contains similar operators to those of the T-odd case but
with the mirror leptons instead of the SM leptons. This justifies why in the T-even case
the contributions of the singlet are finite on their own.

In the last part we studied whether the new model is viable. First, by self-consistency of
the model, we impose that no mass exceeds the cutoff scale. Later, to simplify the flavour
structure of the model, we further assume mass degenerate heavy leptons and heavy
quarks with masses proportional to just two parameters: κl and κq. Finally, applying
current lower bounds on vector-like quarks, mq > 2 TeV, and imposing that the usual
heavy photon with the heavy T-odd leptons as co-annihilators reproduces the current
dark matter relic density, we find that f gets constrained within the interval between
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2 and 3 TeV, the Yukawa coupling of heavy leptons gets fixed to κl ≈ 0.185 and the
Yukawa coupling of heavy quarks κq becomes greatly correlated to the top quark Yukawa
couplings λ1, λ2. The particle spectrum is then bounded from below and above, with the
heavy photon at about 0.5 TeV (the lightest T-odd state), not far from the heavy leptons,
the new scalars below 1 TeV, the usual complex scalar triplet close to the heavy weak
bosons at about 1.5 to 2.5 TeV, and the heavy quarks and top quark partners between 2
and 5 TeV.

Finally we studied the dominant decay channels of the new scalar particles. We found
that ω̂ and η̂ decay mostly into a T-odd mirror lepton and a SM lepton with the proper
quantum numbers. They decay very fast; the (lighter) triplet ω̂ could live at most two
times longer than the Higgs boson. In any case, these new scalars are heavier than about
600 GeV and would be generated by and electroweak interaction together with another
heavy T-odd particle at the LHC, so not very sizeable production rates are expected.
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Capítulo 6

Conclusiones

En este capítulo recopilamos las principales conclusiones de esta Tesis.

• En el Capítulo 1 motivamos que, a pesar del éxito del Modelo Estándar (ME) desvelando
la naturaleza de la materia y sus interacciones, éste debe ser entendido como una teo-
ría efectiva que es sólo válida hasta una desconocida y alta escala de energía ΛSM. Esto
es debido a que aún existen cuestiones que no puede explicar, como el Problema de las
jerarquías. En el ME la masa al cuadrado del Higgs no está protegida por ninguna sime-
tría y por ello recibe contribuciones cuadráticamente divergentes a su masa de escalas
de energía arbitrariamente altas. Como consecuencia, las correcciones cuánticas tienden
a impulsar la masa del Higgs hacia ΛSM. Esto implica que una teoría ultravioleta que ex-
tienda al ME con un Higgs elemental debe producir contribuciones a la masa al cuadrado
del Higgs de aproximadamente la misma magnitud para compensar la contribución del
ME y mantener al Higgs ligero. Esto es muy antinatural, porque la escala electrodébil
debería ser insensible a lo que ocurra a muy altas escalas de energía.

Los modelos de Higgs compuesto, y en particular los modelos de “Little Higgs”, ofrecen
una solución elegante y bien motivada al problema de las Jerarquías a la escala del TeV.
Basados en el conocido ejemplo de la Cromodinámica Cuántica quiral, en estos modelos
se postula la existencia de un sector fuertemente interactuante con una simetría global
G. Ésta es rota espontáneamente por el vacío a un subgrupo H a la escala f ≈ 1 TeV. El
bosón de Higgs es uno de los bosones de Goldstone asociados a esta ruptura espontánea.
Además del Higgs, aparecen nuevas partículas de masa f como consecuencia del grupo
de simetrías extendido.

• En el Capítulo 2 se introduce el formalismo matemático que permite realizar al bosón
de Higgs como el bosón de Goldstone asociado a la ruptura espontánea de una simetría
global G a uno de sus continuos subgrupos H: el formalismo de CCWZ. En el escenario
de un Higgs compuesto se asume que el grupo de simetrías electrodébil GEW = SU(2)L×
U(1)Y está embebido en H. Los bosones de Goldstone no tiene masa mientras la simetría
global sea exacta. Pero en la Naturaleza el bosón de Higgs es masivo y debe tomar un
vev para producir la ruptura espontánea del ME al electromagnetismo. Para generar una
masa y un vev físico para el Higgs a un loop explicamos la idea del desalineamiento del
vacío: la simetría global es rota por las interacciones gauge y de Yukawa haciendo que el
Higgs deje de ser un bosón de Goldstone exacto para convertirse en un pseudo bosón de
Goldstone. Su masa es proporcional a las fuentes de ruptura de la simetría global y a la
escala de cutoff Λ ≈ 4π f y está suprimida por un factor de loop. Como consecuencia, en
estos modelos la masa del Higgs tiene un tamaño típico de mh ≈ c f con c < 1 y f ≈ 1 TeV
para reproducir el valor observado de mh ≈ 125 GeV.

Sin embargo, ninguna de las nuevas resonancias con masas proporcionales a f han sido
observadas aún. Este hecho impulsa la escala f al régimen del multi-TeV, incrementando
el ajuste fino entre los parámetros de la teoría para asegurar que c≪ 1. Por esta razón, en
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los modelos de “Little Higgs” las contribuciones cuadráticamente divergentes proporcio-
nales al cutoff a la masa del Higgs están prohibidas. Esto nos lleva a la noción de ruptura
colectiva de la simetría. Las interacciones gauge y de Yukawa rompen la simetría glo-
bal de tal manera que cuando sólo un acoplamiento gauge o Yukawa es distinto de cero
existe un subgrupo de la simetría global exacto que actúa no linealmente sobre el Higgs.
Esto asegura el carácter de bosón de Goldstone del Higgs y no se genera un término de
masas. Sin embargo, cuando todos los acoplamientos gauge o Yukawa son distintos de
cero, todas las simetrías globales que protegen al Higgs están rotas. Como consecuencia,
el Higgs desarrolla una masa proporcional al producto de todos los acoplamientos gauge
y Yukawa que es, a lo sumo, logarítmicamente sensible al cutoff. Este mecanismo intro-
duce una plétora de nuevas partículas que son las responsables de la cancelación de las
divergencias cuadráticamente divergentes. Para suprimir la contribución de estas nuevas
partículas a observables que están constreñidos por las actuales medidas de precisión, se
introduce una nueva simetría discreta, la T-paridad, ante la cual las partículas del ME son
pares y muchas de las nuevas partículas son impares. Como resultado las contribuciones
de estas partículas están suprimidas por un factor de loop, relajando todas las restriccio-
nes.

Finalmente construimos un “toy model” basado en el grupo global producto SU(3)1 ×
SU(3)2 → SU(3)V en el que se implementan todas las propiedades ya mencionadas. Esta
ruptura espontánea produce 8 bosones de Goldstone. El grupo gauge es [SU(2)×U(1)]2

que se rompe espontáneamente a [SU(2)×U(1)]V . Sin embargo, se necesitan factores
U(1) extra para acomodar las hipercargas de todos los fermiones. Con este ejemplo ex-
plícito mostramos que es suficiente que un factor global SU(3) proteja al Higgs cuando
sólamente un acoplamiento gauge o Yukawa es distinto de cero. Hemos comprobado ex-
plícitamente que la masa del Higgs no desarrolla una sensibilidad cuadrática al cutoff
como resultado de la ruptura colectiva de la simetría sino que sólamente recibe contri-
buciones logarítmicamente divergentes proporcionales a los acoplamientos Yukawa del
sector del quark top y a los acoplamientos gauge. También hemos mostrado que la im-
plementación de la T-paridad al menos dobla el espectro de fermiones con respecto al
modelo sin T-paridad. En particular, los compañeros impares de los fermiones del ME,
los “mirror fermions”, deben ser pesados. Por ello se introduce un multiplete completo
de SU(3)V de quiralidad derecha que incluye las componentes derecha de los “mirror
fermions” y un singlete extra, que puede ser tanto par como impar bajo T-paridad. Estos
se acoplan a los “mirror fermions” de quiralidad izquierda a través de un nuevo Lagran-
giano de Yukawa que se construye para dotar de una masa κ f a los “mirror fermions”,
respetando la ruptura colectiva de la simetría. Para dotar de una masa Mχ al singlete,
sin nuevos acoplamientos con el Higgs, se introducen sus componentes de quiralidad iz-
quierda en un multiplete incompleto de SU(3)V . Como consecuencia, con respecto al caso
sin T-paridad, la masa al cuadrado del Higgs recibe nuevas contribuciones logarítmica-
mente divergentes proporcionales al acoplamiento de Yukawa de los “mirror fermions”
y a la masa del singlete.

• En el Capítulo 3 nos centramos en un modelo de “Little Higgs” concreto: el modelo de
“Littlest Higgs” con T-paridad (LHT). Éste está basado en el coset SU(5) → SO(5) dando
lugar a 14 bosones de Goldstone: el doblete de Higgs, un triplete complejo, un triple-
te real y un singlete. Ésta es la forma mínima de implementar todos los requerimientos
mencionados anteriormente usando un grupo global de simetría simple. El grupo gauge
es [SU(2)×U(1)]2 que es roto espontáneamente a SU(2) × U(1). El grupo gauge debe
ser extendido con dos grupos U(1) extra para acomodar todas las hipercargas. En este
marco teórico estamos particularmente interesados en las contribuciones de los leptones
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exóticos a observables con cambio de sabor. Entre estos nuevos leptones podemos en-
contrar un doblete de “mirror leptons”, un doblete extra de “mirror partner fermions”
y un singlete. Sus componentes de quiralidad derecha comparten un multiplete comple-
to de SO(5) mientras que las componentes de quiralidad izquierda del singlete y de los
“mirror-partner leptons” viven en diferentes multipletes incompletos de SO(5). Bajo T-
paridad, los ‘mirror leptons” y los “mirror-partner leptons” son impares mientras que el
singlete puede ser tanto par como impar.

En este marco teórico hemos estudiado decaimientos del Higgs con violación de sabor
leptónico. Primero hemos probado revisado que, contrariamente a otros cálculos previos,
las contribuciones de los “mirror leptons” y “mirror-partner leptons” se suman para dar
un resultado finito. Motivados por este resultado, hemos calculado las contribuciones del
singlete fermiónico a este proceso. En el escenario de un singlete par, éste se mezcla a
orden v con el neutrino del ME. Por otro lado, los campos que recorren el loop son los
campos del ME y el singlete. Estos campos tienen los números cuánticos apropiados para
generar contribuciones orden 1 a este proceso. Como consecuencia, hay que diagonalizar
consistentemente la matriz de masas singlete-neutrino hasta orden v2/ f 2. Tras la diago-
nalización, las contribuciones de los autoestados de masa del neutrino y del singlete son
finitas y desacoplan. En el escenario de un singlete impar, éste se acopla a orden v con
los “mirror neutrinos”. Sin embargo, como todos los campos en el loop son impares bajo
T-paridad, estos no tienen los números cuánticos para generar contribuciones orden 1 y
la diagonalización de la matriz de masas no es necesaria al orden en que trabajamos. Fi-
nalmente, las contribuciones del singlete impar son divergentes en el ultravioleta. Hemos
obtenido los operadores simétricos bajo el ME que contribuyen a esta divergencia y no
hay disponible un contratérmino en el modelo.

También hemos estudiado un mecanismo para dotar de masa a los neutrinos. Para ello
hemos introducido una pequeña masa de Majorana µ a las componentes de quiralidad
izquierda del singlete. La integración a nivel árbol de este “quasi-Dirac singlet” propor-
ciona una masa a los neutrinos de magnitud µv2/M2

χ, con Mχ la masa de Dirac del sin-
glete, vía el mecanismo de “inverse seesaw”. Las masas de los neutrinos se anulan en el
límite en el que el singlete es pesado. Sin embargo, en el caso en que el singlete es impar
bajo T-paridad, su integración a un loop proporciona una masa a los neutrinos de tamaño
µv2/ f 2 que no se anula en el límite en que el singlete es pesado. Finalmente, en el escena-
rio en el que el singlete es par también hemos calculado las contribuciones de este singlete
a µ→ eγ. Considerando que el singlete da cuenta de toda la desviación con respecto a la
predicción del ME junto con la no observación de los “mirror leptons” restringe la región
mℓH -mχ dando una cota superior a las masas de los “mirror leptons”. Aún conservando
el sabor, también hemos estudiado las contribuciones del singlete al momento magnético
anómalo del muón. Éstas son pequeñas como para explicar una desviación significativa
con respecto a la predicción del ME.

Motivados por el comportamiento anómalo del singlete en el escenario en que éste es im-
par bajo T-paridad, hemos probado que el LHT, en general, no es invariante gauge. Esto
es porque dada una transformación del grupo gauge [SU(2)×U(1)]2 ∈ SU(5), la trans-
formación de SO(5) asociada involucra a todos los generadores de SO(5) y no solamente
aquellos de su subgrupo SU(2) × U(1). Esto tiene importantes consecuencias. Primero,
hay que descartar la opción impar para el singlete porque el Lagrangiano de Yukawa que
da masa a los “mirror fermions” depende de Ω que no conmuta con todos los generado-
res de SO(5). Segundo, los quintupletes de SO(5) tienen que estar completos porque los
generadores de SO(5) mezclan todas sus componentes. Consecuentemente, los “mirror-
partner fermions” y el singlete deben estar incluidos en cualquier caso. Finalmente, por la
misma razón, el término de masas usual del singlete y de los “mirror-partner fermions”



134 Capítulo 6. Conclusiones

no es compatible con la simetría gauge ya que no se puede aislar un miembro de un quin-
tuplete de SO(5) para dotarle de masa. Como consecuencia, se requiere un mecanismo
para proveerlos de una masa “vector-like” compatible con la invariancia gauge.

• En el Capítulo 4 construimos explícitamente el Lagrangiano de un nuevo “Littlest Higgs
model” invariante gauge (NLHT) que cura las patologías que encontramos en el LHT.
Para ello el grupo de simetría global SU(5) es extendido mínimamente con un factor extra
[SU(2)×U(1)]2 que es espontáneamente roto a su subgrupo diagonal SU(2)×U(1) por
el vev de un nueva campo sigma no lineal con cuatro escalares extra. Esto permite intro-
ducir campos fermiónicos que solamente transformen en esta representación adicional no
lineal sin usar de nuevo multipletes de SO(5) que deben estar completos por invariancia
gauge. El grupo gauge está ahora contenido en el producto de los dos [SU(2)×U(1)]2, el
que está en SU(5) y el factor externo, preservando el número de bosones de gauge. An-
te el grupo gauge los nuevos campos escalares se descomponen en un triplete real y un
singlete, ω̂ and η̂, respectivamente.

En el sector fermiónico, para dotar de masa a los “mirror-partner fermions” y al single-
te, proponemos completar los multipletes de quiralidad izquierda de SU(5) e introducir
las componentes de quiralidad derecha adicionales en una representación que solamente
transforma bajo el SU(2) × U(1) externo. Como consecuencia, nuestro modelo incluye
dos singletes y dos dobletes de “mirror-partner fermions”, siendo uno de ellos par y el
otro impar, tanto en el sector de quarks como de leptones. Esta construcción previene a
todos los campos escalares de recibir correcciones cuadráticamente divergentes prove-
nientes del sector de fermiones pesados. De hecho la masa del Higgs al cuadrado sólo
presenta una divergencia logarítmica admisible proporcional a κ2κ̂2 que involucra a los
acoplamientos de Yukawa que dan masa a los fermiones no estándar (en principio dife-
rentes para quark y leptones). También hemos encontrado las matrices de masa de los
fermiones y las matrices de mezcla de sabor que parametrizan el desalineamiento de los
acoplamientos Yukawa (κ, κ̂ y λ) en el espacio de sabor de varias familias de fermiones.
Esta nueva versión del LHT mantiene una de las fuentes originales de violación de sabor
leptónico [54, 57, 102] (la matriz de mixing V en las ecs. (3.115) y (3.116)), elimina las en-
contradas en [61, 65] (ahora W = Z = 1) e introduce una fuente adicional (Ŵ) relacionada
con el nuevo acoplamiento de Yukawa κ̂ conectando el sector de fermiones originales con
el nuevo sector. También hemos discutido las contribuciones de los nuevos fermiones a
desintegraciones del Higgs con cambio de sabor leptónico que resultan ser finitas.

Luego hemos aplicado el “background field method” (BFM) para calcular el potencial de
Coleman-Weinberg para los campos escalares así como el contratérmino para decaimien-
tos del Higgs con violación de sabor con un singlete impar. En nuestro modelo, la masa
del Higgs no es sensible a divergencias cuadráticas. Paramétricamente ésta depende de
los acoplamientos gauge g and g′, de los acoplamientos de Yukawa del sector del quark
top λ1 y λ2 y de los acoplamientos de Yukawa κ y κ̂. La masa del triplete complejo y el aco-
plamiento cuártico del Higgs son insensibles al nuevo sector de fermiones, dependiendo
de λ1 y g, g′. Ambos parámetros provienen de la parte cuadráticamente divergente del
potencial de Coleman-Weinberg por lo que el triplete es naturalmente más pesado que el
Higgs, con una masa de orden f . Por otro lado, las masas de los nuevos campos escalares
son proporcionales al logaritmo de la escala Λ. Esto es porque los nuevos campos escala-
res y los “would-be Goldstone bosons” comparten los mismos números cuánticos y por
ello heredan parte de su simetría. Consecuentemente sus masas son proporcionales a la
masa del Higgs y son naturalmente ligeros, dependiendo de los mismos parámetros que
la masa del Higgs.
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Con respecto al contratérmino para decaimientos del Higgs a leptones de distinto sabor
en el caso del singlete impar, encontramos que la expansión multiplicativa para los boso-
nes de Goldstone que usualmente se lleva a cabo cuando estos vienen parametrizados en
un campo sigma no lineal no es compatible con la T-paridad. Esto nos fuerza a usar una
expansión aditiva también para los campos escalares para lo cual tuvimos que introducir
la derivada paramétrica del campo ξ, ξa

(1), con respecto a los campos de Goldstone. Del
contratérmino hemos reproducido el resultado que encontramos en el Capítulo 3 para
los operadores que contribuyen a la divergencia ultravioleta. También extendimos esta
misma metodología par estudiar el caso en que el singlete es par. En este caso el con-
tratérmino contiene operadores similares al caso impar pero con los “mirror leptons” en
lugar de con los leptones del ME. Esto justifica porqué en el caso del singlete par sus
contribuciones son finitas.

En la última parte hemos estudiado si el nuevo modelo es viable. Primero, por la pro-
pia autoconsistencia del modelo, imponemos que ninguna masa pueda exceder el cutoff.
Después, para simplificar la estructura de sabor del modelo, también asumimos masas
degeneradas para leptones y quarks pesados siendo éstas propocionales a sólo dos pa-
rámetros: κl y κq. Finalmente, aplicando las actuales cotas inferiores a la masa de los
“vector-like quarks” , mq > 2 TeV, e imponiendo que el fotón pesado junto con los lep-
tones pesados impares actuando como co-aniquiladores reproduce la actual densidad de
materia oscura, restringimos f al intervalo entre 2 y 3 TeV, fijamos el acoplamiento de
Yukawa de los leptones pesados κl ≈ 0,185 y el acoplamiento de Yukawa de los quarks
pesados κq se correlaciona con los acoplamientos de Yukawa del sector del quark top λ1,
λ2. El espectro de partículas está acotado tanto superior como inferiormente con un fotón
pesado de aproximadamente 0.5 TeV (el estado impar más ligero), no muy lejos de los
leptones pesados, los nuevos campos escalares por debajo de 1 TeV, el triplete complejo
con una masa muy próxima a los bosones de gauge pesados con masas entre 1.5 y 2.5 TeV,
y los quarks pesados y los compañeros del quark top con masas comprendidas entre 2 y
5 TeV.

Finalmente estudiamos los principales canales de desintegración de las nuevas partículas
escalares. Hemos visto que ω̂ y η̂ decaen en un “mirror lepton” impar y un leptón del ME
con los números cuánticos apropiados. Estos escalares decaen muy rápido; el triplete (el
más ligero) ω̂ podría vivir a lo sumo dos veces más que el bosón de Higgs. En cualquier
caso, estos nuevos escalares tienen unas masas por encima de unos 600 GeV y serían
generados por una interacción electrodébil junto con otra partícula pesada e impar en el
LHC, por lo que no se espera que den lugar a señales apreciables.
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Appendix A

SU(5) generators

SU(5) is the group of unitary 5× 5 matrices with unit determinant. As a consequence, its
generators are hermitian and traceless.

A.1. Unbroken SO(5) generators

The 10 generators of the unbroken SO(5) preserve the vacuum Σ0 satisfying

TaΣ0 + Σ0TaT = 0. (A.1)

Our chosen basis is given by

T1 =


1√
2

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 − 1√

2
0

0 0 0 0 0

 , T2 =


0 1

2 0 0 0
1
2 0 0 0 0
0 0 0 0 0
0 0 0 0 − 1

2
0 0 0 − 1

2 0

 , T3 =


0 i

2 0 0 0
− i

2 0 0 0 0
0 0 0 0 0
0 0 0 0 i

2
0 0 0 − i

2 0

 ,

T4 =


0 0 1

2 0 0
0 0 0 0 0
1
2 0 0 − 1

2 0
0 0 − 1

2 0 0
0 0 0 0 0

 , T5 =


0 0 i

2 0 0
0 0 0 0 0
− i

2 0 0 − i
2 0

0 0 i
2 0 0

0 0 0 0 0

 , T6 =


0 0 0 0 1

2
0 0 0 − 1

2 0
0 0 0 0 0
0 − 1

2 0 0 0
1
2 0 0 0 0

 ,

T7 =


0 0 0 0 i

2
0 0 0 − i

2 0
0 0 0 0 0
0 i

2 0 0 0
− i

2 0 0 0 0

 , T8 =


0 0 0 0 0
0 1√

2
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 − 1√

2
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
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0 0 1

2 0 0
0 1
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2

0 0 0 0 0
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2 0 0
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T10 =


0 0 0 0 0
0 0 − i

2 0 0
0 i

2 0 0 i
2

0 0 0 0 0
0 0 − i

2 0 0

 . (A.2)

A.2. Rest of SU(5) generators

The 14 SU(5) broken generators are orthogonal to the previous ones satisfying

XaΣ− Σ0XaT = 0. (A.3)
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They take the form

X1 =



1√
6

0 0 0 0
0 0 0 0 0

0 0 −
√

2
3 0 0
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0
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. (A.4)

A.3. Building SU(3) subalgebras

SU(5) contains two different SU(3) factors laying in the upper-left and lower-right corners
of the SU(5) matrices. We can build explicitly their corresponding algebras through linear com-
binations of broken and unbroken generators.

A.3.1. Upper-left SU(3)

We can embed the SU(3) generators (Gell-Mann matrices) in the upper-left corner of SU(3)
through the following linear combinations

λ1
1 = T2 + X2 =


0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , λ2
1 = −T3 − X3 =


0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (A.5)
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λ3
1 =

1√
2

T1 − 1√
2

T8 +
1√
6

X1 +

√
5
6

X14 =


1 0 0 0 0
0 −1 0 0 0
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 , (A.6)

λ4
1 = T4 + X4 =


0 0 1 0 0
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
0 0 −i 0 0
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0 0 0 0 0
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 , (A.7)

λ6
1 = T9 + X10 =


0 0 0 0 0
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0 1 0 0 0
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0 0 0 0 0

 , (A.8)
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1√
2

T1 +
1√
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5
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 . (A.9)

A.3.2. Lower-right SU(3)

The SU(3) generators can be embedded in the lower right-corner of SU(5) through the fol-
lowing linear combinations

λ1
2 = −T4 + X4 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0

 , λ2
2 = −T5 + X5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 i 0
0 0 −i 0 0
0 0 0 0 0

 , (A.10)
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3
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 ,

(A.11)

λ5
2 = −T10 − X11 =


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0 0 0 0 −i
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 , λ6
2 = −T2 + X2 =


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 , (A.12)

λ7
2 = −T3 + X3 =


0 0 0 0 0
0 0 0 0 0
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0 0 0 i 0

 , (A.13)
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λ8
2 = − 1√

2
T1 +

√
2T8 − 1√

6
X1 +

√
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3

X14 =


0 0 0 0 0
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0 0 1 0 0
0 0 0 1 0
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 . (A.14)

A.3.3. Associated SO(5) transformations

Once we have built the generators of the different SU(3) factors contained in SU(5), one may
wonder about the corresponding SO(5) transformations provided by the CCWZ formalism.

Remember that, given an infinitesimal SU(5) transformation

V ≈ 1+ iαaXa + iβbTb, (A.15)

the part of the infinitesimal SO(5) transformation independent of the Goldstone fields is thus
given by

U ≈ 1+ iβbTb + ... (A.16)

As a consequence, the same SO(5) generators used to construct the different SU(3) subalgebras
appear in the transformation U, that is, the set T1, T2, T3, T4, T5, T8, T9, T10. However, this set
does not form a subalgebra of SO(5) as one can check by taking the following commutator,[

T4, T10
]
=

i
2
(
T2 + T6) , (A.17)

where T6 is not included in the previous set.
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Appendix B

Higgs mass dependence on the Yukawa
couplings in the LHT

In Chapter 4 we introduced the NLHT. In this framework we obtained the explicit expres-
sion for the Higgs mass parameter µ2 using the BFM. It reads

µ2 =
f 2

16π2 log Λ2
(

6g4 +
2
5

g′4 − 3λ2
1λ2

2 + 12Tκ

)
. (B.1)

The first two terms are the gauge boson contributions, the third term comes from the top sector
that includes the top quark and its corresponding T-even and T-odd partners, and the last
term proportional to Tκ ≡ tr(κlκ

†
l κ̂l κ̂

†
l ) + 3tr(κqκ†

q κ̂qκ̂†
q) is the contribution of the rest of heavy

fermions with masses proportional to the Yukawa couplings κl , κ̂l , κq and κ̂q. The gauge boson
and top sector contributions to the Higgs mass parameter are well known [93, 98]. On the
other hand, contributions proportional to the κ couplings are not discussed in the literature.1

Thus one may wonder whether the µ2 dependence on these Yukawa couplings is an exclusive
feature of the new model or, on the contrary, it was also present in the LHT. If so we would like
to understand under which assumptions this contribution can be avoided.

One may naively think that, since in the LHT there were no κ̂l , κ̂q Yukawa couplings, turning
them to zero in the NLHT one would obtain the LHT result for µ2. However this is not the case
because the LHT is not recovered in the limit of vanishing κ̂l , κ̂q Yukawa couplings as one can
read from table B.1. In the LHT the SU(5) left-handed multiplets are not completed and the
SU(2) singlet χ and the doublet of mirror-partner fermions, when included, receive masses that
are independent of any κ coupling. This breaks explicitly the SU(5) global symmetry and thus
a contribution to the Higgs mass is not forbidden.2 Besides, there are two different actions
of T-parity on the singlet. On the other hand one can justify why in the NLHT turning these
Yukawa couplings to zero gives a vanishing contribution. This is due to the restoration of the
global SU(5) symmetry in the heavy fermion sector due to the complete SU(5) multiplets that
ensures a vanishing contribution to the Higgs mass as a consequence of the collective symmetry
breaking mechanism.

To study the possible contributions proportional to the κ Yukawa couplings in the LHT we
will focus just on leptons. The quarks could be worked out in the same fashion up to color
factors. We will discuss which fields can contribute to the Higgs mass parameter and show the
explicit calculations. All the information about the different fields and Yukawa Lagrangian of
the heavy lepton sector is gathered in table B.1.

First of all, as we discussed in Chapter 3, in principle all the leptons in the SO(5) quin-
tuplet ΨR are required to cancel the quadratically divergent contributions to the Higgs mass.
This is because, given an SU(3) transformation of the upper-left or lower-right corner of the

1In the Littlest Higgs model without T-parity [87] the Higgs mass parameter has no dependence on κ simply
because there are no mirror fermions and thus no Lκ Lagrangian.

2It also breaks gauge invariance, as shown in § 3.3.
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LHT NLHT

Global group
G = SU(5)

↓
H = SO(5)

G = SU(5)× [SU(2)×U(1)]2

↓
H = SO(5)× [SU(2)×U(1)]

Scalar fields ξ ξ

– ξ̂

Fermions

Ψ1 =

 −iσ2l1L
0
02

 ∈ 5∗

Ψ2 =

 02
0

−iσ2l2L

 ∈ 5

ΨR =

 −iσ2(l̃c)R
i(χ±)R
−iσ2lHR

 ∈ 5

ΨL =

 −iσ2(l̃c)L
0
02

 ∈ 5

Ψχ
L =

 02
i(χ±)L

02

 ∈ 5

–

Ψ1 =

 −iσ2l1L
iχ1L
−iσ2 l̃c

1L

 ∈ 5∗

Ψ2 =

 −iσ2 l̃c
2L

iχ2L
−iσ2l2L

 ∈ 5

ΨR =

 −iσ2(l̃c)R
i(χ+)R
−iσ2lHR

 ∈ 5

–

–

Ψ̂R =

 −iσ2(l̃c
+)R

i(χ )R
02

 ∈ 2 1
2
⊕ 10

Yukawa
Lagrangian

La)
YH

= −κ f
(

Ψ2ξ + Ψ2Σ0ξ†
)

ΨR

−M(l̃c)L(l̃
c)R−Mχ(χ+)L(χ+)R + h.c.

Lb)
YH

= −κ f
(

Ψ2ξ + Ψ2Σ0Ωξ†Ω
)

ΨR

−M(l̃c)L(l̃
c)R −Mχ(χ )L(χ )R + h.c.

LYH = −κ f
(
Ψ2ξ + Ψ1Σ0ξ†)ΨR + h.c.

– LŶH
= −κ̂ f

(
Ψ2ξ̂ −Ψ1Σ0ξ̂†

)
Ψ̂R + h.c.

TABLE B.1: Comparison between the LHT and NLHT heavy fermion sector. A
dash means that the corresponding fields are absent in one model with respect
to the other. In gray color we indicate the fields that are optional in the LHT. 5,
5∗ are the fundamental and antifundamental SU(5) representations while 5 is the

fundamental SO(5) representation.
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Fields cL cR

hνHχ 0 κ√
2

hhνHνH
κ

2
√

2 f
κ

2
√

2 f

TABLE B.2: Feynman rules needed to compute the contribution of the heavy lep-
tons to the Higgs mass parameter in the LHT with a T-even SU(2) singlet.

SU(5) matrices, the associated SO(5) transformation acting on the right-handed quintuplet ΨR
involves SO(5) generators (see Appendix A) that mix the right-handed mirror leptons lHR and
the mirror-partner leptons with the SU(2) singlet χ±. With a complete SO(5) multiplet, the
term Ψ2ξΨR is invariant under the upper-left SU(3). For the second term, one has to distin-
guish between the different T-parity realizations. In option a) the singlet χ+ is T-even and the
term Ψ1Σ0ξ†ΨR is invariant under the lower-right SU(3). On the contrary, in option b) the sin-
glet χ is T-odd and the term Ψ1Σ0Ωξ†ΩΨR is not invariant under the lower-right SU(3) but
the unitarity of Ω is enough to avoid a quadratically divergent contribution to the Higgs mass
squared from this term. Thus a complete right-handed SO(5) quintuplet ensures the absence
of quadratically divergent contributions to the Higgs mass. However, not all these fermions
couple to the Higgs in the appropriate way to generate a mass.

The mirror leptons lH always contribute to the Higss mass parameter. The left-handed mir-
ror leptons live in a combination of Ψ1 and Ψ2 that couple to their right-handed counterparts
in the SO(5) quintuplet ΨR through the field ξ. As a consequence, and independently of the
action of T-parity, La)

YH
and Lb)

YH
generate the operator (lHLH̃)(H̃†lHR) with H̃ = −iσ2H∗. Thus

only the neutral mirror leptons can contribute.
On the other hand, the mirror-partner leptons l̃c do not couple to the Higgs in the same fash-

ion. Even though the right-handed mirror-partner and mirror leptons share an SO(5) multiplet,
they are embedded with opposite hypercharges and the left-handed mirror-partner leptons do
not live in a combination of the SU(5) multiplets but in an isolate SO(5) representation. Hence
their contribution to the Higgs mass can only arise via mixing with the left-handed mirror lep-
tons in the SU(5) multiplets. The only invariant operator that can arise from La)

YH
or Lb)

YH
is

thus (lHLH̃)(H̃T l̃c
R) that cannot contribute to the Higgs mass parameter in the SM symmetric

phase. Consequently, the mirror-partner fermions, even necessary for other purposes, do not
participate in the cancellation of divergences of the Higgs mass.

For the contributions of the SU(2) singlet χ± one has to distinguish between the differ-
ent T-parity definitions. Similarly to the mirror-partner leptons, the right-handed singlet also
shares the SO(5) multiplet with the right-handed mirror leptons while its left-handed coun-
terpart lives in an isolate SO(5) multiplet. Thus the only possible contribution to the Higgs
mass would come from the mixing with a left-handed field living in a SU(5) representation.
Choosing the T-even realization La)

YH
provides lLH̃(χ+)R while choosing the T-odd realization

gives the operator lHLH̃(χ )R. Both operators contribute to the Higgs mass parameter as we
will show in the next two sections with an explicit calculation. Consequently, the singlet can-
not be avoided in the aim of preserving a consistent Little Higgs model without quadratically
divergent contributions to the Higgs mass.

Let us evaluate the quadratic and logarithmic contributions to the Higgs mass coming from
mirror leptons and the singlet to elucidate if the latter can also be avoided.
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h h

(χ )

νH

(a)

h h

νH

(b)

FIGURE B.1: One-loop Feynman diagrams contributing to the quadratic and log-
arithmic divergences of the Higgs self-energy from the fermion sector in the LHT

with a T-odd SU(2) singlet.

B.1. T-odd case

Let us begin with the T-odd scenario since the T-even casecan be read from this as we
will justify below. The Feynman rules we need come from the operators (lHLH̃)(H̃†lHR) and
lHLH̃(χ )R. For one family these are collected in table B.2. The Feynman diagrams that con-
tribute to the Higgs mass parameter are depicted in fig. B.1. In general they generate quadratic
an logarithmic divergent contributions that read

δµ2
a =

1
4π2

[
−κ2

2
Λ2 +

κ2

2
(

M2
χ + m2

ℓH

)
log Λ2

]
=

1
4π2

[
−κ2

2
Λ2 +

κ2

2
(

M2
χ + 2κ2 f 2) log Λ2

]
,

(B.2)

δµ2
b =

1
4π2

(
κ2

2
Λ2 −m3

ℓH

κ

2
√

2 f
log Λ2

)
=

1
4π2

(
κ2

2
Λ2 − κ4 f 2 log Λ2

)
, (B.3)

where in the second step of eqs. (B.2) and (B.3) we used that the mass of the mirror leptons is
mℓH =

√
2κ f . The quadratically divergent contributions to the Higgs mass cancel because the

singlet is included in the right-handed SO(5) multiplet and the divergence is independent of
the mass of the particles running in the loop.

The logarithmically divergent contributions, after using the relation mℓH =
√

2κ f in eq. (B.2),
do not vanish but there survives a term of size

δµ2 =
1

8π2 κ2M2
χ log Λ2, (B.4)

that cannot be avoided unless χ is massless.

B.2. T-even case

The T-even singlet scenario can be studied analogously to the T-odd case. The Feynman
rules we need come from the operators (lHLH̃)(H̃†lHR) and lLH̃(χ+)R. For one family these
are collected in table B.3. In this case the Feynman diagrams that contribute are depicted in
fig. B.2 and generate divergent contributions of size

δµ2
a =

1
4π2

(
−κ2

2
Λ2 +

κ2

2
M2

χ log Λ2
)

, (B.5)

δµ2
b =

1
4π2

(
κ2

2
Λ2 − κ4 f 2 log Λ2

)
. (B.6)
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Fields cL cR

hνχ+ 0 − κ√
2

hhνHνH
κ

2
√

2 f
κ

2
√

2 f

TABLE B.3: Feynman rules needed to compute the contribution of the heavy lep-
tons to the Higgs mass parameter in the LHT with a T-even SU(2) singlet.

h h

νH

(a)

h h

(χ+)R

νL

(b)

FIGURE B.2: One-loop Feynman diagrams contributing to the quadratic and log-
arithmic divergences of the Higgs self-energy from the fermion sector in the LHT

with a T-even SU(2) singlet.

Notice that the contribution of the mirror leptons δµ2
b is the same as in the T-odd case since

the different implementation of T-parity does not affect the couplings of the mirror leptons to
the Higgs as one can realize by comparing tables B.2 and B.3. On the other hand, the singlet
coupling to the Higgs has opposite sign with respect to the T-odd case but the coupling enters
squared in the first diagram of figs. B.1 and B.2. Thus the contribution of the T-even singlet
can also be read from the T-odd case just by setting mℓH = 0, because the SM neutrinos are
massless.

As in the T-odd case the quadratically divergent contributions to the Higgs mass parameter
are independent of the mass of the particle running in the loop. They cancel due to the presence
of the singlet in the SO(5) right-handed multiplet.

On the other hand, the logarithmically divergent contributions are, in general, non vanish-
ing,

δµ2 =
1

8π2 κ2
[

M2
χ −

(√
2κ f

)2
]

log Λ2, (B.7)

unless the mass of the singlet is exactly Mχ =
√

2κ f . This is the condition that allows to neglect
a contribution proportional to κ4 and κ2M2

χ to the Higgs mass parameter in the LHT with a
T-even singlet χ+.

B.3. Appendix summary

In this Appendix we have explored the dependence of the Higgs mass parameter on the
Yukawa couplings κl and κq responsible for providing masses to the the heavy fermions (except
for the top partners) within the LHT scenario. This is motivated by the explicit dependence of
the Higgs mass on Tκ in the NLHT in eq. (B.1).

Focusing on leptons, the Lagrangian responsible for providing masses to the mirror leptons
is La)

YH
or Lb)

YH
depending on whether the SU(2) singlet inside the SO(5) right-handed quintuplet
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is chosen to be T-even or T-odd, respectively. As far as the SO(5) quintuplets are completed,
both Lagrangians are compatible with the absence of quadratically divergent contributions to
the Higgs mass. This is because given a global transformation of the different SU(3) factors
inside SU(5), the corresponding SO(5) transformation mixes the mirror and mirror-partner lep-
tons with the singlet and hence all of them must be included. However, not all the fields
participate in the quadratic divergences. Independently of the T-parity definition, the mirror
leptons contribute through the operator (lHLH̃)(H̃†lHR) and thus only the neutral mirror lep-
tons couple to the Higgs. The singlet contributes through lLH̃(χ+)R or lHLH̃(χ )R in the T-even
and T-odd scenario, respectively. On the other hand, the mirror-partner fermions, even though
being necessary for other purposes, do not participate in the cancellation of divergences of the
Higgs mass parameter. This is because mirror and mirror-partner leptons have opposite hy-
pecharges and the left-handed mirror-partner leptons do not live in the SU(5) multiplets. As a
consequence the only operator that can arise is (lHLH̃)(H̃T(l̃c)R) that cannot contribute to the
Higgs mass.

The quadratically divergent contributions to the Higgs mass cancel as far as the the singlet
is included in the SO(5) right-handed multiplet, independently of its mass and of the chosen
action of T-parity. Thus, by consistency of the model, the singlet cannot be avoided in any
case. However, the logarithmically divergent contributions only cancel in the T-even case if the
singlet and mirror leptons share the same mass Mχ =

√
2κ f while in the T-odd scenario there

survives a term∼ κ2M2
χ. Consequently, the T-even scenario is the only that can accommodate a

Higgs mass that is independent of the Yukawa couplings κ and of the mass of the SU(2) singlet.
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Appendix C

A more economical top quark sector in
the NLHT

C.1. Simplification of the quark sector

In Chapter 4 we built the different Yukawa Lagrangians needed to provide masses for all
quarks in the model while preserving gauge invariance. First of all one introduces the com-
pleted left-handed SU(5) quintuplets

Ψq
1 =

 −iσ2q1L
iχq

1L
−iσ2q̃c

1L

 , Ψq
2 =

 −iσ2q̃c
2L

iχq
2L

−iσ2q2L

 (C.1)

with transformation properties under the global group and T-parity,

Ψq
2

Gg−→ VgΨq
2, Ψq

1
Gg−→ V∗g Ψq

1, Ψq
2

T−→ ΩΣ0Ψq
1. (C.2)

They couple to the fields in the SO(5) and [SU(2)×U(1)]′′ quintuplets

Ψq
R =

 −iσ2(q̃c)R
i
(
χ

q
+

)
R

−iσ2qHR

 , Ψ̂q
R =

 −iσ2(q̃c
+)R

i (χq)R
02

 (C.3)

with transformation properties

Ψq
R

Gg−→ UgΨq
R, Ψ̂q

R
Gg−→ ÛgΨ̂q

R, Ψq
R

T−→ ΩΨq
R, Ψ̂q

R
T−→ −ΩΨ̂q

R (C.4)

through the Yukawa Lagrangians

Lq
YH

= −κq f
(

Ψq
2ξ + Ψq

1Σ0ξ†
)

Ψq
R + h.c., (C.5)

Lq
ŶH

= −κ̂q f
(

Ψq
2ξ̂ −Ψq

1Σ0ξ̂†
)

Ψ̂q
R + h.c.. (C.6)

On the other hand, for the top quark one implements the collective symmetry breaking mech-
anism in order to avoid quadratically divergent contributions to the Higgs mass parameter
proportional to the top Yukawa coupling. For that purpose, inspired by the LHT, for the third
family of quarks one introduces the incomplete SU(5) multiplets

Qt
1 =

 −iσ2T1L
iT1L
02

 , Qt
2 =

 02
iT2L
−iσ2T2L

 , (C.7)
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where T1L and T2L are the left-handed components of the top quark partners that are responsi-
ble for the cancellation of the top quark quadratic divergence to the Higgs mass. Their trans-
formation properties under the gauge group and T-parity read

Qt
1

Gg−→ V∗g Qt
1, Qt

2
Gg−→ VgQt

2, Qt
2

T−→ ΩΣ0Qt
1. (C.8)

Adding the right-handed field tR and the right-handed counterparts of the top partners T1R, T2R
one builds the Yukawa Lagrangian that provides the top couplings to the Higgs and masses for
the top quark partners

Lt
Y =− i

λ1 f
4

ϵijkϵxy

[(
Qt

1

)
i
ΣjxΣky +

(
Qt

2Σ0Ω
)

i
Σ̃jxΣ̃ky

]
tR

− λ2 f√
2

(
T1LX̂T1R + T2LX̂∗T2R

)
+ h.c., (C.9)

where {i, j, k} = 1, 2, 3 and {x, y} = 4, 5.
However, one may notice that the left-handed multiplets Ψq

1, Qt
1 and Ψq

2, Qt
2 have the same

transformation properties under the gauge group and T-parity. In particular, we might identify
the top partners T1L → χ1L and T2L → χ2L. Hence, we can eliminate Qt

1,2 and plug the third
family of Ψq

1 and Ψq
2 in the Yukawa Lagrangian (C.9). Since the T-even combination of χ1L

and χ2L couples to (χ+)R through (C.5) and gets a mass proportional to κq while the T-odd
combination couples to (χ )R through (C.6) acquiring a mass proportional to κ̂q (see § 4.1.4),
the Yukawa coupling λ2 responsible for providing masses to the top partners can be set to zero.
One may think that in this case, the mirror partner quarks would also couple to tR. However,
this is not the case because the indices of Ψq

1, Σ0Ψ2 are contracted with ϵijk with {i, j, k} = 1, 2, 3
and thus the mirror partner quarks, living in the last two components of Ψq

1, Σ0Ψ2, do not
receive new couplings from (C.9).

C.2. Top and top partner masses

This simplification in the quark sector affects to the mass of the top quark and its corre-
sponding partners. For the sake of simplicity let us consider a diagonal κq coupling in flavour
space. After defining the T-even and T-odd eigenstates (see § 4.1.4), the T-even fields mass
matrix reads

−Lt,κq,κ̂q ⊃
(
tL,
(
χ

q
+

)
L

) ( λ1v√
2

0
λ1 f√

2

√
2
(
κq
)

33 f

)(
tR(

χ
q
+

)
R

)
+ h.c.. (C.10)

At leading order this matrix can be diagonalized by a redefinition of the right-handed fields
that can be read from eq. (3.86) by the substitution λ2 → 2(κq)33(

tR(
χ

q
+

)
R

)
→
(

cR sR
−sR cR

)(
tR(

χ
q
+

)
R

)
, cR =

2
(
κq
)

33√
λ2

1 + 4
(
κq
)2

33

, sR =
λ1√

λ2
1 + 4

(
κq
)2

33

.

(C.11)

Thus the physical mass of the SM top quark and its T-even top partner is given by

mt =
1√
2

λ1
(
κq
)

33√
λ2

1 + 4
(
κq
)2

33

, (C.12)
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Mχ
q
+
=

√
λ2

1 + 4
(
κq
)2

33
2

f . (C.13)

As a consequence, the relation between the couplings λ1 and
(
κq
)

33 is

1
λ2

1
+

1

4
(
κq
)2

33

=

(
v√
2mt

)2

. (C.14)

On the other hand, the T-odd top partner does not mix with tR due to T-parity and its mass
comes exclusively from Lq

ŶH
. At leading order

Mχq =
√

2κ̂ f . (C.15)

C.3. Physical scalar masses and Higgs potential

At this point, one may wonder whether this simplification in terms of fermion fields has
also effects on the scalar field masses, in particular on the Higgs mass. For that purpose let us
apply once again the BFM to these Yukawa Lagrangians. Performing the substitutions

Ψq
1 = AΨ̃q

1, Ψq
2 = AΨ̃q

2, Ψq
R = AΨ̃q

R, Ψ̂q
R = B ˜̂Ψq

R, (C.16)

where

A =

 −iσ2 0 0
0 I 0
0 0 −iσ2

 , B =

 −iσ2 0 0
0 I 0
0 0 02×2

 . (C.17)

Collecting the left-handed and right-handed quantum fields in vectors

vT
L =

(
ψ

qT
2 , ψ

qT
1 , •, •, •

)
,

vT
R =

(
•, •, ψ

qT
R , ψ̂

qT
R , tTR

)
, (C.18)

we can compute the matrix rq in eq. (4.104) needed to obtain the quadratic and logarithmic
contributions to the scalar potential in eqs. (4.147) and (4.148),

L(2,q)
YH ,ŶH ,t

= −vLrqvR + h.c. (C.19)

with

rq =


0 0 (r2R)

α
mnβ

(
r2R̂

) α

mnβ
(r2t)

α
mβ

0 0 (r1R)
α

mnβ

(
r1R̂

) α

mnβ
(r1t)

α
mβ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 (C.20)

where the greek indices are the SU(3) color indices and lq = r†
q . The components of the matrix

rq are defined as

(r2R)
α

mnβ = κq f
(
A†ξA

)
mn

δα
β, (C.21)
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(
r2R̂

) α

mnβ
= κ̂q f

(
A† ξ̂B

)
mn

δα
β, (C.22)

(r2t)
α

mβ =
i
4

λ1 f
(
A†Σ0Ω

)
mi

ϵijkϵxyΣ̃jxΣ̃kyδα
β, (C.23)

(r1R)
α

mnβ = κq f
(
A†Σ0ξ†A

)
mn

δα
β, (C.24)(

r1R̂

) α

mnβ
= −κ̂q f

(
A†Σ0ξ̂†B

)
mn

δα
β, (C.25)

(r1t)
α

mβ =
i
4

λ1 fA†
miϵijkϵxyΣjxΣkyδα

β. (C.26)

Thus, using the expression for the quadratic divergences in eq. (4.147) one obtains

VΛ2

L=1 = − 3Λ2

128π2 λ2
1 f 2ϵijkϵij′k′ϵxyϵx′y′

(
ΣjxΣkyΣ†

j′x′Σ
†
k′y′ + Σ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′

)
, (C.27)

containing the usual contribution to the triplet Φ mass and to the Higgs quartic coupling in
eqs. (4.193) and (4.194), respectively,

VΛ2

L=1 ⊃
3λ2

1
4π2 Λ2tr

(
Φ†Φ

)
+

3λ2
1

16π2
Λ2

f 2

(
H†H

)2
, (C.28)

obtained in Chapter 4.
On the other hand, from eq. (4.148) the logarithmically divergent contributions read

V log Λ2

L=1,q =
3

16π2 log Λ2
[ 1

162 λ4
1 f 4
(

ϵijkϵij′k′ϵxyϵx′y′Σ†
jxΣ†

kyΣj′x′Σk′y′ + ϵijkϵij′k′ϵxyϵx′y′ Σ̃†
jxΣ̃†

kyΣ̃j′x′ Σ̃k′y′
)2

+
1
8

(
κqκ†

q

)
33

λ2
1 f 4ϵijkϵij′k′ϵxyϵx′y′

(
Σ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′ + ΣjxΣkyΣ†

j′x′Σ
†
k′y′

)
+

1
8

(
κqκ†

q

)
33

λ2
1 f 4ϵijkϵi′ j′k′ϵxyϵx′y′

(
(ΩΣ0Σ)ii′ ΣjxΣkyΣ̃†

j′x′ Σ̃
†
k′y′ + h.c.

)
+

1
8

(
κ̂qκ̂†

q

)
33

λ2
1 f 4ϵijkϵi′ j′k′ϵxyϵx′y′

×
(
(ξ̂Σ0)biΣ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′(Σ0ξ̂†)i′b + (ξ̂Σ0Ω)irΣ̃jxΣ̃kyΣ̃†

j′x′ Σ̃
†
k′y′(ΩΣ0ξ̂)i′b

)
− 1

8

(
κ̂qκ̂†

q

)
33

λ2
1 f 4ϵijkϵi′ j′k′ϵxyϵx′y′

(
(ξ̂Σ0)biΣjxΣkyΣ̃†

j′x′ Σ̃
†
k′y′(ΩΣ0ξ̂)i′b + h.c.

)
− 2tr

(
κqκ†

q κ̂qκ̂†
q f 4
) 3

∑
a=1

5

∑
b=1

(
Σ̂†

abΣba + Σ†
abΣ̂ba

) ]
, (C.29)

where we find

V log Λ2

L=1,q ⊃ −
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. (C.30)

The first term gives a negative contribution to the Higgs mass squared parameter µ2 that substi-
tutes that proportional to λ2

1λ2
2 in eqs. (4.198) and (B.1). The second term is a new contribution

to the mass of the singlet η̂, while the third term is the usual contribution coming from the κ
Yukawa couplings. Thus, after adding the contribution coming from leptons and gauge bosons
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evaluated in Chapter 4, the parameters of the Higgs potential read

µ2 =
f 2

16π2 log Λ2
(
−6λ2

1(κκ†)33 + 6g4 +
2
5

g′4 + 12Tκ

)
, (C.31)

λ =
1

16π2
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f 2

(
g2 + g′2 + 3λ2

1
)

. (C.32)

Minimizing the Higgs potential provides the expression for the Higgs mass and vev in terms
of µ2 and λ, M2

h = −2µ2 and v =
√
−µ2/λ. In terms of the Higgs mass and vev the rest of the

scalar field masses are given by

M2
Φ =2

f 2

v2 M2
h (C.33)

M2
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h
g4 + Tκ

6λ2
1(κκ†)33 − 6g4 − 2
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, (C.34)

M2
η̂ =
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10

M2
h

2Tκ + 9λ2
1(κκ†)33

6λ2
1(κκ†)33 − 6g4 − 2

5 g′4 − 12Tκ

. (C.35)

The relation between the masses of the real triplet ω̂ and singlet η̂ is

M2
η̂ =

9
10

2Tκ + 9λ2
1(κκ†)33

g4 + Tκ
M2

ω̂. (C.36)
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Appendix D

NLHT Feynrules/FeynArts/FormCalc
model file

The NLHT presented in Chapter 4 has been implemented in FeynRules [160] in the SM
symmetric phase. However, the diagonalization of the mass matrix of the neutral leptons and
the up-type quarks in table 4.3 at order v2/ f 2 is still a work in progress. Nevertheless, to
crosscheck some of the results we showed in Chapter 4 one can neglect mixing terms between
fermions.

Once the Feynman rules are generated, we used FeynArts [164] and FormCalc [165] to com-
pute at one loop the masses of the light pseudo-Goldstone bosons that arise from the logarith-
mic part of the Coleman-Weinberg potential: the Higgs h, the real triplet ω̂ and the singlet η̂.
The mass of the complex triplet Φ cannot be evaluated directly using FormCalc. This is be-
cause FormCalc works with the dimensional regularization scheme that allows to parametrize
only the logarithmic divergences through the identification log Λ2 ↔ 2/ϵ with ϵ = 4− d while
the mass of the complex triplet comes from the quadratically divergent part of the Coleman-
Weinberg potential.

The Feynman diagrams that contribute to the scalar masses and the corresponding results
are depicted in figs. D.1, D.2, D.3 and D.4. To compare with our previous results in Chapter 4
one has to take into account the notation by FeynRules and FormCalc for couplings and energy
scales. These are shown in table D.1.

NLHT FeynRules & FormCalc
g g2
g′ g1
λ1 c1
λ2 c2
κl kappal
κq kappaq
κ̂l kappalhat
κ̂q kappaqhat
f fH
v vev

TABLE D.1: Comparison between the notation used in this Thesis and the Feyn-
Rules/FormCalc notation.
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FIGURE D.1: One-loop Feynman diagrams that contribute to the Higgs mass pa-
rameter µ2 and result.
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FIGURE D.2: One-loop Feynman diagrams that contribute to the charged compo-
nents of the real triplet ω̂ mass and result.
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FIGURE D.3: One-loop Feynman diagrams that contribute to the neutral compo-
nent of the real triplet ω̂ mass and result.
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FIGURE D.4: One-loop Feynman diagrams that contribute to the singlet η̂ mass
and result.
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