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Resumen

La idea fundamental que guı́a el trabajo presentado en esta tesis es la recolección de
energı́a de las vibraciones estructurales para el desarrollo de sensores autónomos
aplicados a la monitorización continua de estructuras civiles. La demanda en-

ergética de los sistema de monitorización se ha resuelto tı́picamente mediante la insta-
lación de sensores conectados a la red eléctrica, lo cual supone un coste medioambiental y
económico adicional difı́cil de mantener a largo plazo. Además, la ubicación remota de
muchas estructuras hace inviable la conexión al suministro eléctrico. La novedad de esta
propuesta es el autoabastecimiento de los sensores empleando un sistema de captación
de energı́a totalmente limpio que utiliza las vibraciones de las estructuras para generarla.
Esta generación de energı́a se lleva a cabo mediante el mecanimo de conversión de energı́a
piezoeléctrica. A lo largo de los últimos años, se han presentado en la literatura diversos
diseños para los dispositivos de recolección, siendo la viga cantilever con una/dos capas
de material piezoeléctrico (configuraciones unimorfa/bimorfa) la más analizada. Opcional-
mente, se coloca una masa en el extremo libre para modificar la frecuencia de resonancia
hasta un valor deseado (habitualmente la propia frecuencia natural de la estructura huésped)
y/o amplificar el efecto piezoeléctrico.
Esta tesis aborda el estudio de dispositivos piezoeléctricos de captación de energı́a con
un doble enfoque. Por un lado, se plantea la modelización numérica de vigas compuestas
como las que constituyen estos dispositivos. Para ello, se ha desarrollado y validado
una nueva formulación basada en el método Proper Generalized Decomposition para
resolver el problema de vibración forzada en vigas laminadas bidimensionales con capas
piezoeléctricas. Se considera una descripción espacio-frecuencia del problema dinámico
y la separación de variables del dominio espacial. El resultado es una solución 2D en
el dominio de la frecuencia con una complejidad computacional 1D. Por otro lado, más
orientado a la práctica, se analiza la viabilidad de un sistema piezoeléctrico de captación
de energı́a basado en vibraciones aplicado en un puente de una autovı́a sito en Palma del
Rı́o, Córdoba (Spain). Para evaluar la potencia disponible a partir de vibraciones reales se
plantea una nueva formulación semi-analı́tica basada en las vibraciones inducidas por el
tráfico. Se han considerado dos situaciones diferentes de las que se extraen conclusiones
sobre la evaluación de la potencia generada: i) registros de vibraciones con el puente
abierto al tráfico regular, ii) vibraciones ambientales con el puente cerrado al tráfico.
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Abstract

The underlying idea that guides the work presented in this dissertation is the
vibration-based energy harvesting as an enabler for the successful development
of self-powered sensors applied to long-term monitoring of civil structures. The

energy requirement of the monitoring system has typically been solved by the installation
of grid-connected sensors, which is a solution with a fixed additional economic and envi-
ronmental cost difficult to maintain in the long term. In addition, the remote location of
many structures makes mains power supply unfeasible. The novelty of this proposal is
the self-supply of the sensors applying a totally clean energy collection system that uses
the vibrations of the structures to generate energy. This vibration-based energy harvesting
system makes use of devices in which the piezoelectric energy conversion mechanism
takes place. The performance of piezoelectric energy harvesters is strongly dependent on
the excitation source, represented by the vibration of the host structure. Numerous variants
of these devices have been proposed in the literature but the most widely tested consists of
a small cantilever beam with one/two layers of piezoelectric material (unimorph/bimorph
configurations) and optionally a mass attached to the free end to move the resonance
frequency towards some desired point (tuning) and/or amplify the conversion effect.

The study of piezoelectric energy harvesting devices has been approached in this thesis
with a twofold focus. On the one hand, the numerical modelling of composite beams
such as those that constitute piezoelectric energy harvesting devices is addressed. A
new formulation based on the Proper Generalized Decomposition method to solve the
forced vibration problem in bi-dimensional laminated beams with piezoelectric layers is
developed and validated. A harmonic space-frequency description of the dynamic problem
is considered and a variable separation in the spatial domain is introduced. The result is a
2D solution in frequency domain with 1D computational complexity. On the other hand,
more geared to practice, the feasibility of a piezoelectric vibration-based energy harvesting
system for a real highway bridge is studied. A new semi-analytic formulation based on
the measured traffic-induced vibration has been used to evaluate the available power from
real vibrations of a bowstring highway bridge located in Palma del Rı́o, Córdoba (Spain).
Two different situations have been considered from which conclusions on the assessment
of harvested power are drawn: i) operational vibration records with the bridge open to
regular traffic, ii) ambient vibrations with the bridge closed to traffic.
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1 Introduction

Para los proyectos a largo plazo, eso es lo más importante. Una
vez que ajustas tu ritmo, lo demás viene por sı́ solo. Lo que sucede
es que, hasta que el volante de inercia empieza a girar a una
velocidad constante, todo el interés que se ponga en continuar
nunca es suficiente.

Haruki Murakami, 2007

1.1 Scope of the thesis

The central idea around which the research plan of the present thesis focuses is the devel-
opment of self-powered sensors for long-term Structural Health Monitoring (SHM). The
energy requirement of the network has typically been solved by installing grid-connected
systems, which are very expensive and difficult to maintain in the long term. The novelty
of this approach is the self-supply of the sensors through a totally clean energy harvesting
system based on the operational and ambient structural vibrations.

SHM is a reliable and effective maintenance technique. It can be applied to a wide
variety of structural types, from bridges, footbridges, buildings, to dams, wind turbines or
high voltage towers. Nowadays, this type of long-term monitoring is becoming increas-
ingly necessary because structures such as ageing bridges, high-rise buildings or historic
structures compromise the safety of many people. Thus, it is important to monitor their
structural behaviour in order to be able to evaluate in-service performance, design control
systems, detect possible failures early, detect damage caused by environmental agents, etc.

SHM technique involves the extensive use of devices and sensors deployed in the host
structure. These sensors provide information on critical structural properties without
damaging the structure or interrupting its normal use (non-destructive evaluation). This
information is processed with different techniques (statistics, artificial intelligence) to
determine the current state of the monitored structure and thus enabling data-driven
maintenance decision-making. Advances in SHM can arise mainly in three interrelated

1



1.1 Scope of the thesis

Devices
Sensors

Microprocessor
Network

Communication protocol
Power supply

System Identification
and Damage Detection

Data-Driven Decision Making

Figure 1.1 Circular stack diagram of a SHM system.

areas of research: data collection device technology, system identification and damage
detection strategies and data-driven decision making techniques to support maintenance
system (see Figure 1.1). In each of these areas, there are certain approaches that have been
attracting much scientific interest in the last decade. The most relevant research topics are
listed below.

1. On the data-driven decision making techniques to support maintenance systems

Data-driven techniques for infrastructure asset management have matured over the last
decade aiming at optimising maintenance costs so that maintenance can be applied as
needed as opposed to schedule or periodical strategies. Enabled by recent developments in
the Internet of Things (IoT) and Industry 4.0, some researchers have proposed these models
as digital twins of the entire infrastructure network, so that can be treated as expert-systems
with learning capabilities.

a) Digital twins. Since its conceptual definition first published by Michael Grieves [1],
digital twins have evolved in complexity. When applied to structural health manage-
ment, digital twins need to incorporate anticipated predictability of damage and risk
evaluation, self-adaptively to new environmental and operational conditions, and
decision-making capabilities. By predictability, the digital twin of the infrastructure
will be able to foresee the Remaining Useful Life (RUL) of its component structures.

b) Expert systems for decision making. Expert systems have the ability to emulate
the human capacity to make decisions within a specific application domain based on
execution rules and knowledge, which does not necessarily include self-adaptation.
As for self-adaptively, the expert system will have the capacity to modify its be-
haviour in response to changing conditions with little or no human input, hence
increasing efficiency, safety, and availability while minimizing the possibility of
human errors [2].

2



1.1 Scope of the thesis

2. On the development of advanced SHM methodologies

SHM is defined as the process of implementing a structural assessment strategy to perform
a diagnosis of the integrity of structures. The field of SHM encompasses the use of a
wide variety of monitoring technologies, although ambient/operational vibration-based
SHM has received most attention owing to its minimal intrusiveness. These techniques
exploit ambient/operational acceleration records to extract the modal features of a system
through output-only Operational Modal Analysis (OMA) [3]. Several areas of research
are trending these days:

a) Environmental effects and damage detection. The implementation of long-term
automated SHM enables the early detection of damage by tracking anomalies
in time series of identified modal features. Nonetheless, numerous papers have
reported about the striking dependence of modal features on environmental (e.g.
temperature, humidity, wind) and operational conditions (e.g. traffic level). It
follows that environmental effects must be filtered out through statistical pattern
recognition and machine learning techniques [4].

b) Data-driven and reduced order modelling. The increasing reduction in the costs
related to monitoring equipment has promoted the development of SHM systems
acquiring large amounts of monitoring data. This information can be used to
feed a digital twin of the structure, and so relate the appearance of anomalies in
the experimental data to damage in the structure. Nevertheless, such a process
usually requires an elevated number of model evaluations, which results in a huge
computational burden when the numerical model is computationally intensive. In
this regard, the use of inexpensive reduced-order models bypassing the original
offers an efficient solution. Manifold reduced-order models can be found in the
literature such as Deep Neural Networks, Kriging metamodelling [5] or Proper
Generalized Decomposition (PGD) [6].

c) Automated unsupervised classification based on deep learning. Damage identi-
fication is a key factor in the SHM process. The information is contained in temporal
series, for which specific techniques are required to extract damage information
according to pre-defined features. In the last years, there is a great effort in the
scientific community in the development of unsupervised classifiers based on Deep
Learning for continuous SHM [7, 8]. The main drawback of these classifiers is the
dependence on large datasets associated with real damaged structures; typically,
it is required 10 data sets (time-series) per trainable parameter. The amount of
data for real damaged structures with different scenarios is limited. To circumvent
this issue, it is required the generation of artificial data, compatible with the real
structure. In this sense, the use of Generative Adversarial Networks (GANs) and the
OMA-updated optimal Finite Element (FE) models provides optimal frameworks
for Data Augmentation [9, 10]. GAN models are a type of deep neural networks
focused on the generation of realistic data coming from specific featured class. The
application of Transfer Learning techniques, common in Deep Learning models, to
transfer the knowledge of classifiers from one domain to another domain (from one
bridge to other similar bridge) could also be relevant.

3



1.1 Scope of the thesis

3. On the evolution of monitoring technologies to Smart Sensing based on IoT

The traditional SHM sensing system is wire-based. The deployment of cables in the
structure is very time-consuming and expensive, either for installation and maintenance.
Continuous advances in the communication and sensing device technologies have made
the use of Wireless Sensor Networks (WSNs) increasingly important. Additionally, the
irruption of the IoT paradigm has burst the capabilities of this approach in SHM. However,
several challenges must be faced to make these systems work highly capable and properly.
These are the most relevant challenges:

a) Node lifetime. Wireless SHM nodes are designed to be powered by batteries whose
lifetime depends largely on many factors. One of them is the battery capacity: the
larger the battery, the longer the lifetime, which is in contrast to the current trend
of reducing the size of the nodes. The sensors used to collect data consume the
battery power load. Thus, a proper use of the sampling is required to optimize the
use of the current. Another element which causes a fall in the battery capacity is
the computing time taken by processing elements. This is a complex issue as many
facts get involved in the amount of consumed current. A strategy which includes
both two factors is to include a low-power sensor which triggers the execution of
highly efficient mesh of sensing when a certain event is detected [11]. However, the
most significant power consuming element is the communication component. Fog
computing techniques and the communication protocols used play a crucial role.

b) Edge & Fog computing. The proliferation of IoT devices has led to the deployment
of large networks of sensors. However, in order to maximize efficiency, these devices
should be designed with minimum power, processing and memory resources. In or-
der to achieve this goal, IoT sensors usually communicate with low-power protocols
to a gateway (a device with greater resources, usually without energy restrictions),
which then send data to cloud servers. Thus, a multi-layered architecture emerges
in which information processing is not centralized in the cloud but undertaken,
as far as possible, close to the information generators. This modern paradigm of
distributed computing is called fog computing (edge computing when the end nodes
themselves also participate in the processing). In data collection applications, giving
the infrastructure an active role in information processing opens the door to adaptive
models that significantly improve system efficiency. For example, adapting the
intensity and frequency of the sampling process according to the relevance of the
information itself [12]. The local Edge-Computing approach is particularly suitable
for the SHM automated unsupervised classifiers based on GANs. Only valuable
data, required for SHM diagnosis, is transferred to the cloud, which activates other
prognosis health management stages.

c) Power supply. As mentioned above, for a WSN to be autonomous it needs a
battery to provide power to record, process and transmit the data. Long-term SHM
systems require considerable power for their operation, so this leads to continuous
maintenance, consisting of replacing or recharging the batteries. To overcome this
limitation and reduce maintenance costs, a significant research effort has being
carried out to develop a variety of energy harvesting techniques [13, 14].
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The energy harvesting technique and its application to powering WSNs of SHM sys-
tems represents the research topic of this thesis. It involves collecting and storing energy
from non-exploited sources such as solar, wind and kinetic energy. In civil engineering
applications, the latter is one of the most relevant sources, since structures are exposed
to continuous vibrations due to operational (vehicle traffic, pedestrian streams, etc.) and
ambient (mainly wind) conditions. The structural vibration can be used directly to generate
energy by means of three physical conversion mechanisms: piezoelectric, electromagnetic
and electrostatic [15, 16]. Other less used mechanisms are magnetostriction and flexo-
electricity [17]. Piezoelectric is generally considered the most suitable of the conversion
mechanisms, since it is compatible with Microelectromechanical Systems (MEMS), which
represent the current trend for SHM sensor networks.

The piezoelectric effect is a reversible process by which some materials are able to
generate electric charge when subjected to strain and vice versa (direct and inverse piezo-
electric effect). This electromechanical behaviour can be expressed by the following two
coupled constitutive equations:

Ti j = cE
i jkl Skl − eki j Ek (1.1a)

Di = eikl Skl + ε
S
ik Ek (1.1b)

where Ti j is the stress tensor, Skl is the strain tensor, Ek is the electric field tensor and
Di is the electric displacement tensor. The matrices ci jkl , eki j and εik contain the elastic,
piezoelectric, and permittivity constants, respectively, while the superscripts E and S denote
that the constants are evaluated at constant electric field and constant strain, respectively.
Alternative forms of piezoelectric constitutive equations can be also derived [18].

The performance of Piezoelectric Energy Harvesting Devices (PEHDs) is highly depen-
dent on the excitation source represented by the vibration of the host structure. Different
designs of these devices have been proposed and studied in the literature with the aim of
taking advantage of this input signal and converting it into exploitable energy. Among all
of them, the most widely analysed and tested PEHD consists of small cantilever beams,
since, compared to other designs, they have lower resonance frequencies and a relatively
larger strain for a given input excitation [19]. They typically comprise one or two layers of
piezoelectric material (unimorph and bimorph configurations) and may optionally have
a mass attached to the free end to move the resonant frequency towards a desired point
(tuning) and/or amplify the conversion effect [20, 21]. These devices would be embedded
in the host structure which, when vibrating, would induce a dynamic voltage in the layers
of piezoelectric material, resulting in an alternating voltage output through electrodes
placed on these layers. To use this energy to charge a battery, it would be necessary to
have an electronic circuit to do the rectification and conversion to direct current. In the
analysis of such devices, it is a common practice to consider a resistance or impedance to
represent the electrical load.

A state-of-the-art review of the EH technique during the first stage of the research work
led to the elaboration of the mind map shown in Figure 1.2. The diagram shows the main
topics of current development, including: sources and conversion mechanisms, device
architectures and their optimization to maximize the harvested power, equivalent circuit
modelling, advanced electromechanical models and input/output analysis. The last two
topics are the main focus of the three original research papers that make up this thesis.

5



1.1 Scope of the thesis

co
nv

er
si

on
 m

ec
ha

ni
sm

En
er

gy
ha

rv
es

tin
g

to
pi

cs

Ar
ch

ite
ct

ur
es

C
an

til
ev

er
Bi

m
or

ph

U
ni

m
or

ph

W
ith

 ti
p 

m
as

s
Bi

/t
ri

-s
ta

bl
e

de
vi

ce

Sp
ir

al

Ro
ta

tin
g 

or
im

pa
ct

 b
al

l

M
ec

ha
ni

ca
l

tr
an

sm
is

si
on

Pa
tc

he
s

O
pt

im
iz

at
io

n

C
an

til
ev

er
sh

ap
e

Tu
nn

ig
fr

eq
ue

nc
y

Ad
di

ng
 a

 ti
p

m
as

s

M
ov

in
g 

C
G

C
ha

ng
in

g
di

m
en

si
on

s

M
ag

ne
tic

m
et

ho
ds

M
at

er
ia

l
pr

op
er

tie
s

Pi
ez

oe
le

ct
ri

c
pa

ra
m

et
er

s

St
iff

ne
ss

pr
op

er
tie

s 
of

su
bs

tr
at

e

El
ec

tr
om

ec
ha

ni
ca

l
 m

od
el

lin
g

SD
O

F/
M

D
O

F

U
nc

ou
pl

ed
an

al
ys

is

In
-p

ha
se

an
al

ys
is

An
al

yt
ic

al
an

al
ys

is

Be
am

 m
od

el
 (1

D
,2

D
,3

D
)

PG
D

M
ul

tip
hy

si
cs

FE
M

Si
m

pl
ifi

ed
m

od
el

s

St
at

e-
sp

ac
e

m
od

el
s

So
ur

ce
s

Am
bi

en
t

so
ur

ce

Vi
br

at
io

n

Pi
ez

oe
le

ct
ri

c

El
ec

tr
om

ag
ne

tic

El
ec

tr
os

ta
tic

M
ag

ne
to

st
ri

ct
iv

e

H
yb

ri
d 

EH

Fl
ex

oe
le

ct
ri

c

So
la

r

Th
er

m
al

Fl
ui

d:
w

in
d,

hy
dr

o.
..

Ex
te

rn
al

so
ur

ce
M

ec
ha

ni
ca

l

H
um

an

Eq
ui

va
le

nt
  c

ir
cu

it 
m

od
el

lin
g

Va
n 

D
yk

e'
s

m
od

el

M
od

el
 w

ith
tr

an
sf

or
m

er
el

em
en

t

Em
pi

ri
ca

l
pa

ra
lle

l/
se

ri
es

R-
C

 m
od

el

U
nc

ou
pl

ed
cu

rr
en

t
so

ur
ce

 m
od

el

Sp
ec

ia
lly

de
vi

se
d

ci
rc

ui
t m

od
el

El
ec

tr
ic

al
en

er
gy

ex
tr

ac
tio

n
ci

rc
ui

t

St
an

da
rd

ci
rc

ui
t

Id
ea

l O
SE

C
E

ci
rc

ui
t

Se
lf-

po
w

er
ed

O
SE

C
E

ci
rc

ui
t

SS
H

I

Lo
ad

re
si

st
an

ce
 R

L

Ti
m

e
do

m
ai

n/
fr

eq
ue

nc
y

do
m

ai
n 

an
al

ys
is

In
pu

t/
ou

tp
ut

 a
na

ly
si

s
M

ov
in

g 
lo

ad
s

W
hi

te
no

is
e/

am
bi

en
t

ex
ci

ta
tio

n

H
ar

m
on

ic
ex

ci
ta

tio
n

G
en

er
al

 tr
an

si
en

t
ex

ci
ta

tio
n

St
at

io
na

ry

N
on

-
st

at
io

na
ry

Br
oa

db
an

d
ra

nd
om

vi
br

at
io

n

Figure 1.2 Mind map on the energy harvesting technique.
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1.2 Motivation

Regarding the numerical modelling, the main contribution of this research work is the
application of PGD scheme to PEHDs modelling. PGD represents a new generation of
numerical simulation strategies that has proven to be highly suitable in addressing problems
that cannot be solved using direct and traditional numerical techniques. The PGD can be
viewed as an a priori approach to reduced-order modelling. From its early development as
a new family of solvers for some classes of multidimensional partial differential equations
encountered in kinetic theory modelling of complex fluids [22], its applications have been
very varied. It has been successfully applied to multidimensional models, separating
physical space, parametric models defining virtual charts, real simulation, Dynamic Data
Driven Applications Systems, etc [23]. In this case it is used as a strategy to separate the
spatial domain of the problem.

1.2 Motivation

Energy harvesting from ambient vibration sources for use in powering low energy electronic
devices has become the focus of numerous scientific studies over recent decades. The
energy harvesting technique basically consists of capturing and storing energy from non-
exploited external sources. These include environmental sources such as solar, wind and
kinetic energy. This last source is very appealing in civil engineering as structures are
subject to continuous ambient and operational vibration due to the action of traffic, wind,
etc. This vibration can then be used directly to harvest energy to power electronic devices
in the structure’s support systems.

The use of energy harvesting devices is increasingly required, especially in targets
where the use of batteries is either indispensable or desirable. The limited lifetime,
high maintenance costs and the environmentally harmful recycling process of batteries
justify this new paradigm. WSNs used in SHM systems represent one of the promising
applications for many reasons:

• System efficiency: energy that would otherwise be lost is harvested.

• Maintenance cost savings: there is no need to replace or recharge the batteries of
the system nodes.

• Environmental friendliness and safety improvement: the reduction in the manu-
facturing of new batteries containing chemicals and metals that are harmful to the
environment and human health is encouraged.

• Accessibility to remote locations: possibility to monitor underwater, high altitude
or remote structures by enabling real autonomy of the monitoring nodes.

In this field, energy harvesting from a vibrating piezoelectric device was established
as a leading methodology. The piezoelectric energy conversion mechanism is selected
because it offers several advantages, such as:

• High power density for a given input (power output/device volume).

• Output voltage high enough to charge a storage component without the need for
multi-stage post-processing.
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1.4 Original contributions

• No external load or input voltage is required, as the generation is produced by the
material constitutive behaviour.

• Piezoelectric devices can be manufactured at the micro-scale.

Since vibration-based energy harvesting represents a clean power technology that can
be of interest for application in civil engineering structures, the motivation of the present
research work is thus justified.

1.3 Objectives

The scope of the present thesis is the vibration-based energy harvesting as an enabler for
the successful development of self-powered sensors applied to long-term monitoring of
civil structures. Since this is a very ambitious concern, the main objective of this research
is to progress on the numerical modelling of PEHDs, as well as in the actual assessment of
the the available power from operational structural vibration. Particularly, the study will
seek to advance the following specific objectives:

• Application of the model reduction technique called PGD to the numerical analysis
of composite beams with piezoelectric layers such as those that constitute the a
PEHD. Indeed, applying the spatial decomposition of the problem allows obtaining
a 2D solution in frequency domain with 1D computational complexity.

• In-depth analysis of the input and output signals of the PEHD. The input signal
is represented by the host structure vibration from which the PEHD generates an
output voltage. The input excitation can be different in nature: a harmonic excitation
due to the action of a repetitive force over time, a transient dynamic load due to a
vehicle passage, a broadband stochastic signal due to an environmental excitation
(wind, etc.). The input/output signal analysis requires the detailed study of two
fundamental aspects: the frequency width of the input signal (broadband) and the
natural vibration frequencies of the host structure. These two aspects limit the
amount of harvested energy since ideally the frequency width of the input signal and
the natural frequencies of the host structure should match those of the harvesting
mechanism, thus providing the highest possible output voltage. The aim would
be to adopt a novel holistic approach to the problem through the statistics of the
voltage of piezoelectric energy harvesters under real measured bridge vibration base
excitation.

1.4 Original contributions

This section lists the papers that constitute the core of this thesis as well as those articles
that are partially related to it.
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1.4 Original contributions

1.4.1 Refereed journal papers

(A) Title: Forced vibration analysis of composite beams based on the variable
separation method

Authors: M Infantes, P Vidal, R Castro-Triguero, L Gallimard, E Garcı́a-Macı́as,
O Polit

Reference: Mechanics of Advanced Materials and Structures, 28(6):618-634, 2020
Date: First published on-line March 23, 2019
DOI: 10.1080/15376494.2019.1578015

(B) Title: Evaluation of optimal sensor placement algorithms for the Struc-
tural Health Monitoring of architectural heritage. Application to the
Monastery of San Jerónimo de Buenavista (Seville, Spain)

Authors: P Pachón, M Infantes, M Cámara, V Compán, E Garcı́a-Macı́as, M I
Friswell, R Castro-Triguero

Reference: Engineering Structures, 202:109843, 2020
Date: First published on-line November 9, 2019
DOI: j.engstruct.2019.109843

(C) Title: A collaborative machine learning-optimization algorithm to improve
the finite element model updating of civil engineering structures

Authors: J Naranjo-Pérez, M Infantes, J F Jiménez-Alonso, A Sáez
Reference: Engineering Structures, 225:111327, 2020
Date: First published on-line September 25, 2020
DOI: j.engstruct.2020.111327

(D) Title: Forced vibration analysis of composite beams with piezoelectric layers
based on the variable separation method

Authors: M Infantes, P Vidal, R Castro-Triguero, L Gallimard, O Polit
Reference: Composite Structures, 273:114248, 2021
Date: First published on-line June 11, 2021
DOI: j.compstruct.2021.114248

(E) Title: A feasibility study on piezoelectric energy harvesting from the opera-
tional vibration of a highway bridge

Authors: M Infantes, R Castro-Triguero, R R Sola-Guirado, D Bullejos, M I
Friswell

Reference: Advances in Structural Engineering, Article in Press
Date: First published on-line September 1, 2022
DOI: 10.1080/15376494.2019.1578015
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1.4.2 International conference papers

(A) Title: Determining the best pareto-solution in a multi-objective approach
for model updating

Authors: M Infantes, J Naranjo-Pérez, A Sáez, J F Jiménez-Alonso
Published in: Towards a Resilient Built Environment Risk and Asset Management,

pp. 523-530
Conference IABSE Symposium: Towards a Resilient Built Environment Risk

and Asset Management, Guimarães (Portugal) 27-29 March 2019

(B) Title: Modeling of smart vibration-based energy harvesters based on the
PGD method

Authors: M Infantes, R Castro-Triguero, P Vidal
Published in: Proceedings of ECCOMAS SMART 2019, pp. 1468-1479
Conference 9th ECCOMAS Thematic Conference on Smart Structures and Ma-

terials, Paris (France) 8-11 July 2019

1.5 Methodology and document outline

This doctoral dissertation has been written as a collection of articles. Following this
methodology, the results of this thesis are presented as a series of research papers that
have been published in different scientific media after a peer-review process. The three
articles that constitute the core of this thesis, previously named as (A), (D) and (E), have
been reprinted in a unified format and represent chapters 2, 3 and 4. Each chapter is briefly
summarised as follows.

Chapter 2 proposes a new strategy based on the PGD method to solve the forced
vibration problem in bi-dimensional layered beams. The approach redefines the problem
by approximating the displacement field as a sum of separated functions of x (beam axis
coordinate), z (thickness coordinate), and ω (load frequency) and proposes an iterative
algorithm that solves three 1D problems at each iteration. Several numerical tests with
different slenderness ratios and boundary conditions are considered to validate the method.
The results in terms of modal parameters and Frequency Response Functions (FRFs) are
analysed and compared with exact elasticity solution and FE simulations with very good
agreements.

Chapter 3 extends the previous formulation to bi-dimensional composite beams with
piezoelectric layers. The approach considers a classical harmonic space-frequency de-
scription of the dynamic problem and redefines it by approximating the displacement and
electric potential fields as a sum of separated functions of the spatial domain. The result is
a 2D solution in frequency domain with 1D computational complexity. Several numerical
tests with wide range of slenderness ratios are considered in order to assess the validity of
the method. Moreover, a study of different combinations of boundary conditions is carried
out. The results in terms of modal parameters and FRFs are analysed and compared with
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exact elasticity solution and FE simulations. Successful results opens up the possibility of
confidently introducing electrical loads into the formulation, to the extension of the PGD
approach to the parametric modelling of bimorph PEHDs.

Chapter 4 moves from the numerical analysis used in the previous two chapters to-
wards a more applied approach. The study focuses on energy harvesting using cantilever
piezoelectric devices excited by operational and ambient bridge vibration. The optimal
design and analysis of energy harvesters is usually performed using the mean and standard
deviation of a response quantity of interest (i.e. voltage) under broadband Gaussian white
noise excitation. In this chapter, a novel holistic approach to the problem is proposed
through the statistics of the voltage of piezoelectric energy harvesters under real measured
bridge vibration base excitation. A new semi-analytic expression of the expected power is
developed. The solution is based on the closed-form of the FRF between the harvester
output voltage and the base excitation, and the experimentally measured spectral density
of the latter. A study on the influence of the electromechanical coupling of the problem
governing equations is first conducted. Then, a sensitivity analysis of the piezoelectric
energy harvester parameters is performed. The critical analysis is developed through a
case study of the measured long-term vibrations of a bowstring-arch highway bridge. Both
operational and ambient vibration records are considered in the feasibility study. The
results show the potential of the semi-analytic expression to evaluate the harvested power
of piezoelectric harvesters under operational structural vibrations. This is a promising
approach to confidently develop future analyses on the power requirements of WSNs for
SHM.

Finally, Chapter 5 summarizes the main contributions and conclusions of this thesis,
as well as ongoing research works and possible future developments.
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2 Forced vibration analysis of composite beams
based on the variable separation method

Title: Forced vibration analysis of composite beams based on the variable separation
method

Authors: M Infantes, P Vidal, R Castro-Triguero, L Gallimard, E Garcı́a-Macı́as, O Polit
Journal: Mechanics of Advanced Materials and Structures
ISSN: 1537-6494
JCR: Impact Factor = 3.517, Q1 (Mechanics 22 / 136)
Details: Volume: 28 (6), pages 618-634. Published online Mach 23, 2019
DOI: 10.1080/15376494.2019.1578015

2.1 Introduction

Considering the increasing applications of composite and sandwich structures in the
industrial field due to their high specific strength and stiffness, it is important to develop
advanced models to design with a good compromise between accuracy and computational
costs. In this regard, accurate knowledge of deflection and stresses is required to take into
account effects of the transverse shear deformation due to the low ratio of transverse shear
modulus to axial modulus. Moreover, the transverse normal effect has to be included into
the formulation for thick structures. In fact, all these aspects can play an important role
on the behaviour of structures in service, in particular on natural frequencies or on the
harmonic behaviour.

According to published research, various theories in mechanics for composite or sand-
wich structures have been developed. They can be classified as: (i) the Equivalent Single
Layer (ESL) approach where the number of unknowns is independent of the number of
layers, but the transverse shear and normal stresses continuity at the interfaces between
layers are often violated. The Classical Laminate Theory (CLT) [24], the First-order
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Shear Deformation Theory (FSDT) [25–30], and higher order theories [31–34] can be
distinguished. Some of these theories also include the transverse normal effect with non-
constant polynomial expressions of the out-of-plane displacement [35]. While most of
these approaches are based on a displacement formulation, mixed formulations are also
carried out in [36, 37] with the Finite Element Method (FEM); (ii) the Layerwise (LW)
approach where the number of Degrees Of Freedom (DOFs) depends on the number of
layers. This theory aims at overcoming the restriction of the ESL concerning the discon-
tinuity of out-of-plane stresses at the interface layers. In recent contributions, various
orders of expansion for the in-plane displacement are chosen: trigonometric [38], linear
[39], and so forth; (iii) Alternative zig-zag approach developed in order to improve the
accuracy of ESL models avoiding the additional computational cost of LW approach.
Based on physical considerations and after some algebraic transformations, the number of
unknowns becomes independent of the number of layers. Global higher-order theories and
the zig-zag theories are asses in [40] to predict the global response of soft-core sandwich
beams. A family of models was employed in [41] and more recently improved in [42, 43]
with different orders of kinematic assumptions, taking into account the transverse normal
strain. Note also the refined approach based on the Sinus model [44–46]. An extended
review work on these models can be found in reference [47].

It should be noted the systematic approach based on the Carrrera’s Unified Formulation
to provide a large amount of 2D models for composite structures based on ESL and/or LW
descriptions of the unknowns [48–50]. The aforementioned works deal with only some
aspects of the broad research activity about models for layered structures and corresponding
FE formulations. An extensive assessment of different approaches has been made in [47, 51–
55]. A survey of developments in the vibration analysis of laminated composite beams is
compiled in [56].

Over the past years, the PGD has shown interesting features in the reduction model
framework [22]. This type of method was introduced by Ladevèze [57] and called radial
approximation in the framework of the LArge Time INcrement (LATIN) method. In this
latter, space coordinates and time variables are separated. It allows to decrease drastically
computational time such as in [58, 59]. It has been also used in the context of separation of
coordinate variables in multi-dimensional partial differential equations [22]. In particular,
it has been applied for composite beams and plates in [60–63] with an in-plane / out-
of-plane coordinate separation. Separated representation can be also applied to deduce
parametric solutions where parameters are considered as problem extra-coordinates, see
e.g. [64]. For a review about the PGD and its fields of application, readers can refer to
[65, 66].

In this work, a model based on the PGD method is built for the forced vibration problem
of laminated and sandwich beams under harmonic excitation. For this purpose, the
displacements are written under the form of separated variable representation, i.e. a sum
of products of unidimensional functions of x and z coordinates, and also the pulsation
of the harmonic load ω . Note that the space and load frequency variable separation has
been already addressed in [67]. Nevertheless, herein also the in-plane / out-of-plane
coordinate separation is included in the formulation as it is well-suited to perform efficient
computations for composite structures in terms of model complexity and computational
cost. Moreover, the deduced explicit solution with respect to the pulsation allows us to
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avoid numerous classical computations for each considered value of the load frequency
within the domain of interest. To achieve that, the approximation of the 2D beam is based
on a quadratic FE approximation for the variation with respect to x and a quadratic LW
description for the variation with respect to z. Using the PGD, each unknown function
of x is classically approximated using one DOF at each node of the mesh while the LW
unknown functions of z are global for the whole beam. Finally, the deduced non-linear
problem implies the resolution of three linear problems alternatively. This process yields
to few unknowns involved in each of these linear problems.

In this paper, the reference problem is firstly recalled in section 2.2. The application
of the PGD is given in the framework of the forced vibration problems with a specific
parametrization in section 3.3. This particular assumption on the displacements yields
a non-linear problem, solved through a classical iterative process. In section 2.4, the FE
discretization is also described. Finally, the algorithm derived in the paper is verified
numerically in section 2.5. For this purpose, a preliminary convergence study is first carried
out. Then, the method is illustrated by numerical tests which have been performed upon
various laminated and sandwich beams. The influence of slenderness ratios and boundary
conditions are addressed. The accuracy of computations is evaluated by comparisons with
an exact 2D elasticity solution, two-dimensional computations using commercial Finite
Element Analysis (FEA) software and also results available in the literature. It is shown
that the method allows us to obtain both the FRF and the shape modes with the associated
eigenfrequencies with very good agreement respect to the reference solutions by using a a
dimensionally reduced model which supposes less computational cost.

2.2 Reference problem description

In the present study, a straight beam of length L with a rectangular uniform cross section
of thickness h and depth b is considered. The beam consists of NC layers assumed to be
orthotropic in the beam axes. The x axis is taken along the longitudinal beam axis whereas
y and z are the two axes of symmetry of the rectangular cross section (see Figure 2.1). The
principal notation used in the formulation of the problem is summarized in the chapter on
Notation in the preamble of this book.

x ≡ 1

z ≡ 3

k = 1

k = 2

...

k = (NC − 1)

k = NC

L

y ≡ 2

z ≡ 3

b

h
2

h
2

Figure 2.1 The laminated beam and coordinate system.

Hereafter, the y coordinate is neglected and the beam is considered in the (x,z) plane,
i.e., in the domain Ω = Ωx×Ωz = [0 ≤ x ≤ L]× [−h/2 ≤ z ≤ h/2]. In classical beam
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theory, the displacement field is assumed to be expressed as

[u] =

[
u1(x,z)

u3(x,z)

]
=


N1

∑
i=0

zivi
1(x)

N3

∑
i=0

zivi
3(x)

 (2.1)

where (vi
1(x),v

i
3(x)) are functions to be sought and N1, N3 are integers. For instance, by

using this expression, models found in the literature can be described as follows

- The classical Timoshenko models with N1 = 1 and N3 = 0,

- ED2 model in Carrera’s Unified Formulation (CUF) [53] with N1 = 2 and N3 = 2.

The problem of a composite beam subjected to an arbitrary dynamic excitation [Fd(t)]
is considered. Stresses can be conveniently written under the following form:

[σ ]> = [σ11 σ33 σ13] or [τ] =

[
σ11 σ13
σ13 σ33

]
(2.2)

The boundary value problem to be solved consists of finding the displacement [u(M,t)]
and stress [σ(M,t)],M ∈Ω such that

[OS]
>[σ ]+ [b] = ρ

∂
2[u]

∂ t2 , on Ω (2.3)

[τ(M,t)][n] = [Fd(t)], ∀M ∈ ∂F Ω (2.4)

[u(M,t)] = [ud(t)], ∀M ∈ ∂uΩ (2.5)

where [ud ] represents the displacement boundary condition, [n] is the normal vector at the
load application point, [Fd(t)] is the prescribed surface load applied on ∂F Ω = ∂F Ωx×
∂F Ωz, [b] is the prescribed body load, ρ is the density of the material and [OS] is the
operator

[OS]
> =


∂

∂x
0

∂

∂ z

0
∂

∂ z
∂

∂x

 (2.6)

The problem can be expressed only in terms of the displacements using the constitutive
relation [σ ] = [C][ε] and the kinematics equations [ε] = [OS][u].

2.2.1 Constitutive relation

The stress-strain law of the k-th layer assumed to be orthotropic is
σ
(k)
11

σ
(k)
33

σ
(k)
13

=


C̄(k)

11 C̄(k)
13 0

C̄(k)
13 C̄(k)

33 0

0 0 C̄(k)
55




ε
(k)
11

ε
(k)
33

γ
(k)
13

 (2.7)
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2.3 Application of the PGD method to forced vibration beam

where C̄(k)
i j are the elastic moduli of the material taking into account the zero transverse

normal stress hypothesis (σ22 = 0) expressed by

C̄(k)
i j =C(k)

i j −C(k)
i2 C(k)

j2 /C(k)
22 , i, j = 1,3 (2.8)

C̄(k)
55 =C(k)

55 (2.9)

where C(k)
i j are the 3D stiffness coefficients.

2.2.2 Variational formulation of the boundary value problem

Regarding the time dependent excitation, it can be expressed as [Fd(t)] = [ fd ] ·g(t), with
|| fd ||= 1. The function g(t) can be formulated as a superposition of weighted harmonic
functions eiωt , being i the imaginary unit and ω the load angular frequency

g(t) =
∫

∞

−∞

G(ω)eiωtdω (2.10)

where G(ω) is the Fourier transform of g(t) and it represents the content of each harmonic
in the excitation. In the following, a single harmonic excitation, [Fd(t)] = [ fd ]e

iωt , is
assumed as a basic problem. The response of a linear solid in absence of body loads and
subjected to a harmonic excitation is presumed to have the same frequency as the applied
load, [u(M,t)] = [u(M)]eiωt , with [u(M)] containing the displacements amplitude. Under
these assumptions, the classical variational principle of a beam subjected to a harmonic
load can be expressed as find [u(M)] ∈U (space of admissible displacement) such that∫

Ω

[ε(δu)]>[σ(u)]dV −
∫

∂F Ω

[δu]>[ fd ]dS = ω
2
∫

Ω

ρ[δu]>[u]dV, ∀ [δu] ∈ δU (2.11)

where [ fd ] is the amplitude of the harmonic load. Note that in Eq. 2.11, damping is not
considered.

2.3 Application of the PGD method to forced vibration beam

The PGD was introduced in [22]. This method is based on an a priori construction of the
solution in separate variables. In the literature, the PGD has been used in order to separate
spatial variables and also to consider problem parameters as extra-coordinates. In this
approach, the PGD is first used to considering both the spatial variable separation and the
introduction of the load frequency as an extra-coordinate in the solution. The following
sections are dedicated to the application of PGD to the previous described problem.

2.3.1 Displacement field hypothesis

The displacement solution is built as[
u1(x,z,ω)

u3(x,z,ω)

]
=

N

∑
i=1

[
ui
]
=

N

∑
i=1

gi(ω)

[
f i
1(z)vi

1(x)

f i
3(z)vi

3(x)

]
(2.12)

where gi(ω), f i
1(z), f

i
3(z),v

i
1(x),v

i
3(x) are functions which must be computed during the

resolution process for each enrichment step i = 1,2,...,n,...,N. Considering this new
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2.3 Application of the PGD method to forced vibration beam

expression of the displacement (Eq. 2.12), Eq. 2.11 can be solved for a given value of
the load frequency ω . Hence, the consideration of the load frequency within an interval
[ωmin,ωmax] involves the resolution of multiple problems for many values of ω . To avoid
these numerous resolutions, a new formulation is proposed as find [u(M,ω)] ∈U such that
∀ [δu] ∈ δU∫

ω

∫
Ω

[ε(δu)]>[σ(u)]dV dω −
∫

ω

∫
∂F Ω

[δu]>[ fd ]dSdω =
∫

ω

∫
Ω

ω
2
ρ[δu]>[u]dV dω (2.13)

2.3.2 The problem to be solved

The relation 2.12 can be written in a more compact form as

[u] =
N

∑
i=1

gi[F i][vi] =
N

∑
i=1

gi[V i][ f i] (2.14)

where

[vi] =

[
vi

1(x)

vi
3(x)

]
, [V i] =

[
vi

1(x) 0

0 vi
3(x)

]
, [ f i] =

[
f i
1(z)

f i
3(z)

]
, [F i] =

[
f i
1(z) 0

0 f i
3(z)

]
(2.15)

In view of the above equations, an iterative procedure must be introduced. Assuming
that the first (n−1) functions have already been computed, the solution for iteration n is

[u] = [ū]+g[V ][ f ] = [ū]+g[F ][v] (2.16)

where [ū] is the displacement solution at iteration (n−1) defined by

[ū] =
n−1

∑
i=1

[ui] =
n−1

∑
i=1

gi[F i][vi] =
n−1

∑
i=1

gi[V i][ f i] (2.17)

Note that for sake of clarity the superscript n is ignored for the current unknowns (g, f ,v).
These functions are computed such that Eq. 2.16 satisfies the weak form in Eq. 2.13. By
ordering the terms and taking into account the constitutive law in the mentioned weak
form∫

ω

∫
Ω

[ε(δu)]>[C][ε(u)]dV dω−
∫

ω

∫
Ω

ω
2[δu]>[u]dV dω =

∫
ω

∫
∂F Ω

[δu]>[ fd ]dSdω (2.18)

where [C] represents the plane stress-reduced stiffness tensor of each layer k as in Eq. 2.7
and δu is the virtual displacement

[δu] = δg[F ][v]+g[V ][δ f ]+g[F ][δv] = δuω +δu f +δuv (2.19)

Introducing (2.19) into Eq. 2.18 the problem is decomposed into three equations, which
are∫

ω

∫
Ω

(
[ε(δuω )]

>[C][ε(ū+gF v)]−ω
2
ρ[δuω ]

>([ū]+g[F ][v])
)

dV dω =∫
ω

∫
∂F Ω

[δuω ]
>[ fd ]dSdω (2.20)
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2.3 Application of the PGD method to forced vibration beam

∫
ω

∫
Ω

(
[ε(δu f )]

>[C][ε(ū+gV f )]−ω
2
ρ[δu f ]

>([ū]+g[V ][ f ])
)

dV dω =∫
ω

∫
∂F Ω

[δu f ]
>[ fd ]dSdω (2.21)

∫
ω

∫
Ω

(
[ε(δuv)]

>[C][ε(ū+gF v)]−ω
2
ρ[δuv]

>([ū]+g[F ][v])
)

dV dω =∫
ω

∫
∂F Ω

[δuv]
>[ fd ]dSdω (2.22)

As these equations define a coupled non-linear problem, a non-linear resolution strategy
must be used. The fixed point method is the simplest one. At the first step, initial functions
g(0) and f (0) are set, and v(0) is computed from Eq. 2.22 with g = g(0) and f = f (0). Then,
at each iteration, the algorithm computes a new solution g(m+1), f (m+1),v(m+1) such that

- Step 1: g(m+1) satisfies Eq. 2.20 for f ,v set to f (m),v(m)

- Step 2: f (m+1) satisfies Eq. 2.21 for g,v set to g(m+1),v(m)

- Step 3: v(m+1) satisfies Eq. 2.22 for g, f set to g(m+1), f (m+1)

The algorithm proceeds iteratively until reaching a fixed point.
2.3.2.1 Variational problem defined on load frequency domain ω

In order to simplify the notation, the functions f (m),v(m), which are assumed to be known,
will be denoted as f̃ ,ṽ (and subsequently F̃ ,Ṽ in matrix form) and the function g(m+1) to
be computed will be denoted as g. The functions ḡi, f̄ i,v̄i are the solutions at the previous
enrichment steps i = 1,2,...,(n−1). The strain in Eq. 2.20 is defined in matrix notation as

[ε(gF̃ ṽ)] = g [Σz( f̃ )] [Ẽv] (2.23)

with

[Σz( f̃ )] =

 0 f̃1 0 0
0 0 f̃ ′3 0
f̃ ′1 0 0 f̃3

 and [Ẽv]
> =

[
ṽ1 ṽ′1 ṽ3 ṽ′3

]
(2.24)

where the prime (′) stands for the classical derivation. Thus, the variational problem
defined on ω from Eq. 2.20 is then

g =

fω ( f̃ ,ṽ)+ω
2 n−1

∑
i=1

ḡi
µ

i
ω ( f̃ ,ṽ,ū)−

n−1
∑

i=1
ḡi

σ
i
ω ( f̃ ,ṽ,ū)

kω ( f̃ ,ṽ)−ω2mω ( f̃ ,ṽ)
, ∀ ω ∈ [ωmin,ωmax] (2.25)

with

kω =
∫

Ω

[Ẽv]
>[Σz( f̃ )]> [C] [Σz( f̃ )] [Ẽv]dV, σ

i
ω =

∫
Ω

[Ẽv]
>[Σz( f̃ )]> [C] [Σz( f̄ i)][Ē i

v ]dV

mω =
∫

Ω

[ṽ]> [F̃ ]>ρ [F̃ ] [ṽ]dV, µ
i
ω =

∫
Ω

[ṽ]> [F̃ ]>ρ [F̄ i] [v̄i]dV

fω =
∫

∂F Ω

[ṽ]> [F̃ ]> [ fd ]dS (2.26)

By using the variational problem expression in Eq. 2.20, the value of g(ω) can be
calculated explicitly for any ω considered in the range [ωmin,ωmax] through the Eq. 2.25.

18



2.3 Application of the PGD method to forced vibration beam

Note that, as can be inferred from Eq. 2.25, there are values of ω for which resonance is
detected. These values ωn are calculated at convergence as

ω
2
n =

kω

mω

(2.27)

This value will be used to estimate the natural frequencies of the beam as it will be
shown in section 2.5 involving the numerical test cases.
2.3.2.2 Variational problem defined on Ωz

The functions g(m+1),v(m), assumed to be known, will be denoted as g̃,ṽ and the function
f (m+1) to be computed will be denoted as f . The strain in Eq. 2.21 is defined in matrix
notation as

[ε(g̃Ṽ f )] = g̃ [Σx(ṽ)] [E f ] (2.28)

with

[Σx(ṽ)] =

 ṽ′1 0 0 0
0 0 0 ṽ′3
0 ṽ1 ṽ′3 0

 and [E f ]
> =

[
f1 f ′1 f3 f ′3

]
(2.29)

Introducing the above expression into Eq. 2.21, the variational problem defined on Ωz is

γω

∫
Ωz

[δE f ]
>[kx(ṽ)] [E f ]dz−αω

∫
Ωz

[δ f ]>[mx(ṽ)] [ f ]dz = βω

∫
∂F Ωz

[δ f ]>[ fx(ṽ)]dz

+
n−1

∑
i=1

α
i
ω

∫
Ωz

[δ f ]>[µ i
x(ṽ,ū)]dz−

n−1

∑
i=1

γ
i
ω

∫
Ωz

[δE f ]
>[σ i

x(ṽ,ū)]dz (2.30)

where the coefficients integrated in the Ωx domain are

[kx] =
∫

Ωx

[Σx(ṽ)]
> [C] [Σx(ṽ)]dx, [σ i

x] =
∫

Ωx

[Σx(ṽ)]
> [C] [Σx(v̄

i)][Ē i
f ]dx

[mx] =
∫

Ωx

[Ṽ ]> ρ [Ṽ ]dx, [µ i
x] =

∫
Ωx

[Ṽ ]> ρ [V̄ i][ f̄ i]dx

[ fx] =
∫

∂F Ωx

[Ṽ ]> [ fd ]dx (2.31)

and the coefficients that only depend on the load frequency are

γω =
∫

ω

g̃2dω ,

αω =
∫

ω

ω
2g̃2dω ,

γ
i
ω =

∫
ω

g̃ ḡi dω,

α
i
ω =

∫
ω

ω
2g̃ ḡi dω,

βω =
∫

ω

g̃dω

(2.32)

In this way, the variational problem defined by Eq. 2.21 is a linear expression that must
be solved in the Ωz domain through Eq. 2.30.
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2.3.2.3 Variational problem defined on Ωx

At this step, the functions g(m+1), f (m+1), which are assumed to be known, will be denoted
as g̃, f̃ and the function v(m+1) to be computed will be denoted as v. The expression of the
strain being [ε(g̃ F̃ v)] = g̃ [Σz( f̃ )] [Ev], the variational problem defined on Ωx becomes

γω

∫
Ωx

[δEv]
>[kz( f̃ )] [Ev]dx−αω

∫
Ωx

[δv]>[mz( f̃ )] [v]dx = βω

∫
∂F Ωx

[δv]>[ fz( f̃ )]dx

+
n−1

∑
i=1

α
i
ω

∫
Ωx

[δv]>[µ i
z( f̃ ,ū)]dx−

n−1

∑
i=1

γ
i
ω

∫
Ωx

[δEv]
>[σ i

z( f̃ ,ū)]dx (2.33)

with

[kz] =
∫

Ωz

[Σz( f̃ )]> [C] [Σz( f̃ )]dz, [σ i
z] =

∫
Ωz

[Σz( f̃ )]> [C] [Σz( f̄ i)][Ē i
v ]dz

[mz] =
∫

Ωz

[F̃ ]> ρ [F̃ ]dz, [µ i
z] =

∫
Ωz

[F̃ ]> ρ [F̄ i][v̄i]dz

[ fz] =
∫

∂F Ωz

[F̃ ]> [ fd ]dz (2.34)

Analogously, the variational problem defined by Eq. 2.22 is a linear expression that
must be solved in the Ωx domain through Eq. 2.33.

2.4 Galerkin discretization

To build the displacement solution, a discrete representation of the functions g, f ,v must
be introduced. A classical FE approximation is used in Ωx and Ωz. The element vector of
DOFs associated with the mesh in Ωx and Ωz are denoted as [qv

e] and [q f
k ], respectively.

The part of the displacement and strain fields that only depends on spatial variables are
determined from the values of [qv

e] and [q f
k ] by

[ve] = [Nx][q
v
e], [E e

v ] = [Bx][q
v
e], [ fk] = [Nz][q

f
k ], [E k

f ] = [Bz][q
f
k ] (2.35)

where the matrices [Nx], [Bx], [Nz] and [Bz] contain the shape functions, their derivatives
and the Jacobian components. The number of DOFs of the problems in Ωx and Ωz are

Ndo fx = 2nx (Nn−1)+1 (2.36)
Ndo fz = 2nz (Nn−1)+1 (2.37)

where nx and nz are the total number of elements in Ωx =
nx⋃

e=1

Ω
e
x and Ωz =

nz⋃
k=1

Ω
k
z domain,

respectively, and Nn is the number of nodes per element (can be different for each domain).
For the load frequency, a uniform discretization of the interval [ωmin,ωmax] is considered.
The trapezoidal rule is used for the approximation of the integrals in αω , γω and βω . The
size of vector g is denoted as nω and it coincides with the DOFs of the problem in the load
frequency domain.
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2.4 Galerkin discretization

2.4.1 Approximation on load frequency domain ω

Taking into account the discretization expressed by Eq. 2.35, for each value of ω j =

ωmin +( j − 1)
ωmax−ωmin

nω −1
, j = 1, . . . ,nω , the variational Eq. 2.25 can be rewritten as

g(ω j) =
fω +ω

2
j Rω,M−Rω,K

kω −ω2
j mω

(2.38)

where

kω =
nx

∑
e=1

∫
Ωe

x

[Ẽ e
v ]
>
[

nz

∑
k=1

∫
Ωk

z

[Σz( f̃k)]
> [Ck] [Σz( f̃k)]dz

]
[Ẽ e

v ]dx (2.39)

mω =
nx

∑
e=1

∫
Ωe

x

[ṽe]
>
[

nz

∑
k=1

∫
Ωk

z

[F̃k]
>

ρ [F̃k]dz

]
[ṽe]dx (2.40)

fω = [ṽep
]> [F̃kp

]> [ fd ], forep andkp the elements where the load is applied (2.41)

Rω,M =
n−1

∑
i=1

ḡi(ω j)µ
i
ω ( f̃k,ṽe,ū) (2.42)

Rω,K =
n−1

∑
i=1

ḡi(ω j)σ
i
ω ( f̃k,ṽe,ū) (2.43)

2.4.2 Finite element approximation on Ωz

The introduction of Eq. 2.35 into the variational Eq. 2.30 leads to the following linear
system (

[K f ]− [M f ]
)
[q f ] = [Ff ]− [R f ] (2.44)

where [q f ] is the vector of the nodal displacements associated with the mesh in Ωz, [K f ] and
[M f ] are the stiffness and mass matrices obtained by assembling the element stiffness and
mass matrices [Kk

f ] and [Mk
f ] respectively, [Ff ] is the load vector obtained by assembling

the element load vectors [Fk
f ] and [R f ] is the equilibrium residual obtained by assembling

the element residual vectors [Rk
f ] whose expressions are

[Kk
f ] = γω

∫
Ωk

z

[Bz]
>
[

nx

∑
e=1

[kx(ṽe)]

]
[Bz]dz (2.45)

[Mk
f ] = αω

∫
Ωk

z

[Nz]
>
[

nx

∑
e=1

[mx(ṽe)]

]
[Nz]dz (2.46)

[Fk
f ] = βω

∫
∂F Ωk

z

[Nz]
>
[

nx

∑
e=1

[ fx(ṽe)]

]
dz (2.47)

[Rk
f ] =

n−1

∑
i=1

γ
i
ω

∫
Ωk

z

[Bz]
>
[

nx

∑
e=1

[σ i
x(ṽe,ū)]

]
dz−

n−1

∑
i=1

α
i
ω

∫
Ωk

z

[Nz]
>
[

nx

∑
e=1

[µ i
x(ṽe,ū)]

]
dz (2.48)
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2.4 Galerkin discretization

2.4.3 Finite element approximation on Ωx

Likewise, the introduction of Eq. 2.35 into the variational Eq. 2.33 leads to the linear
system

([Kv]− [Mv]) [q
v] = [Fv]− [Rv] (2.49)

where [qv] is the vector of the nodal displacements associated with the mesh in Ωx, [Kv] and
[Mv] are the stiffness and mass matrices obtained by assembling the element stiffness and
mass matrices [Ke

v ] and [Me
v ] respectively, [Fv] is the load vector obtained by assembling

the element load vectors [Fe
v ] and [Rv] is the equilibrium residual obtained by assembling

the element residual vectors [Re
v] whose expressions are

[Ke
v ] = γω

∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[kz( f̃k)]

]
[Bx]dx (2.50)

[Me
v ] = αω

∫
Ωe

x

[Nx]
>
[

nz

∑
k=1

[mz( f̃k)]

]
[Nx]dx (2.51)

[Fe
v ] = βω

∫
∂F Ωe

x

[Nx]
>
[

nz

∑
k=1

[ fz( f̃k)]

]
dx (2.52)

[Re
v] =

n−1

∑
i=1

γ
i
ω

∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[σ i
z( f̃k,ū)]

]
dx−

n−1

∑
i=1

α
i
ω

∫
Ωe

x

[Nx]
>
[

nz

∑
k=1

[µ i
z( f̃k,ū)]

]
dx (2.53)

2.4.4 Solution over the number of enrichment steps

Finally, the problem for the whole beam using a discrete PGD framework can be expressed
by the three following equations

g(ω j) =
fω +ω

2
j Rω,M−Rω,K

kω −ω2
j mω

, ∀ j ∈ {1,nω} (2.54)

(
[K f ]− [M f ]

)
[q f ] = [Ff ]− [R f ] (2.55)

([Kv]− [Mv]) [q
v] = [Fv]− [Rv] (2.56)

which are equivalent to Eq. 2.20-2.22. This problem needs to be solved for each enrichment
step i = 1,2,...,n,...,N following a fixed point iteration scheme. At the first step of the fixed
point method, vectors g and q f are initialized and qv is computed using Eq. 2.56. A key
issue for the identification of different vibration modes is the initialization of the former
vector, g. In this development, a different initialization is considered for each enrichment
step n in the following manner

g(0)(ω j) =

{
0 j 6= i
1 j = i

with i = arg min
j
| ω j−Ψ | (2.57)

and Ψ is defined as

Ψ = ωmin +(n−1)ψ with ψ =
ωmax−ωmin

N−1
where N is the total number of enrichment steps and [ωmin,ωmax] is the considered load
frequency range.
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2.5 Numerical results

Regarding the initialization of q f , a unity vector of size nz is set for each enrichment step.
After the computation of the vector qv, the following steps of the fixed point algorithm are
started by solving Eq. 2.54-2.56 successively. The computation is iterated m times until
the following convergence criteria are satisfied simultaneously

|ω(m)
n −ω

(m−1)
n |< εω (2.58)

max

{
‖(q f )(m)− (q f )(m−1)‖2

‖(q f )(m−1)‖2
,
‖(qv)(m)− (qv)(m−1)‖2

‖(qv)(m−1)‖2

}
< ε (2.59)

being ‖�‖2 the Euclidean norm and εω and ε two different user-specified tolerances set to
10−2 and 10−6 in the following.

In this study, it has been noticed that the convergence at each enrichment step is not
assured. It depends heavily on the number of vibration modes that the beam has in the
studied load frequency range. Generally, a number of enrichment steps greater than the
vibration modes present in the interval is needed. This means that some of the steps does not
converge to a vibration mode. However, the information provided by this non-converging
modes is important to reproduce the behaviour of the beam in terms of the anti-resonant
peaks. For the converging modes, about 15 iterations of the fixed point method have been
required, at worst. For the non-converging modes, the maximum number of iterations is
reached, which is set to 25 in this study. At each iteration, one equation with nω unknowns
and two linear systems of dimension Ndo fx and Ndo fz are solved. In a classical layerwise
FE approach, the performance implies nω resolutions with Ndo fx×Ndo fz

2 DOFs.

2.5 Numerical results

This section is dedicated to the analysis of some laminated and sandwich beams in order
to evaluate the proposed approach in sections above. It should be noticed that the PGD
method has been successfully used to solve static problems [62] of composite beams. This
paper focuses on the harmonic analysis in the frequency domain, and the FRFs are first
obtained by using the PGD method. Moreover, the proposed formulation also allows us to
identify the modal parameters, natural frequencies and vibration modes.

Five different numerical test are analysed below. A great variety of boundary conditions
is considered with wide range of slenderness ratios for symmetric, anti-symmetric com-
posite beams and different types of sandwich beams. In the following test, as far as the
spatial discretization is concerned, a classical quadratic FE approximation is considered
for both domains Ωx and Ωz. A Gaussian numerical integration with three points is used
to evaluate the elementary matrices and also to solve the integrals in load frequency do-
main. The results are compared with classical FE solutions and exact elastic solutions or
theories available in open literature. The commercial FEA software ansys is employed
in FE simulations to provide reference solutions. A bi-dimensional approach using the
PLANE182 element with plane stress conditions is used. This element is defined by four
nodes having two DOFs at each node.
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2.5 Numerical results

2.5.1 Convergence study of the PGD algorithm

A convergence study with respect to the number of total enrichment steps is first carried
out. Then, the effect of the mesh size on both spatial coordinates and the load position are
analysed. For this purpose, a simple case of an isotropic beam is considered:
◦ Geometry: isotropic beam with L = 10 m and h = 2 m.
◦ Material properties: E = 70GPa, ν = 0.3 and ρ = 2700kg/m3.
◦ Boundary conditions: simply supported beam and harmonic concentrated load.
◦ Reference solution: A modal analysis with a 2D FE model is performed using ansys.

A refined regular mesh with square elements of side L/100 is considered.
2.5.1.1 Number of total enrichment steps

The convergence study with respect to the number of total enrichment steps N is first
developed. In Table 2.1, the mode shapes are denoted as bend, sh, t/c and th for bending,
shear, extensional and thickness modes, respectively. The natural frequencies are presented
under a dimensionless value computed as ω = ωnLS

√
ρ/E.

Table 2.1 Mode identification for different values of enrichment steps.

Mode PGD ansys
er(%)

N=5 N=10 N=20 N=30 ω ω

bend 0 0 1 1 2.682 2.684 0.1
bend 0 0 1 1 9.336 9.346 0.1
t/c 1 1 1 1 15.684 15.685 0.0

bend 0 1 1 1 17.902 17.930 0.2
bend 1 0 1 1 27.249 27.307 0.2
th 0 1 1 1 31.198 31.203 0.0

bend 1 1 1 1 36.888 36.990 0.3
th 0 0 0 1 46.189 46.212 0.0

bend 0 0 1 1 46.609 46.771 0.3
sh 0 1 1 1 48.710 48.758 0.1

Note: 1 = identified mode; 0 = non-identified mode.

For PGD computations, a mesh of 50 elements on Ωx domain and 10 elements on Ωz
is considered. The frequency search range is set to [40-800] Hz and the resolution to 1
Hz. The harmonic point load is applied at the top of the beam at a distance of L/10 from
the support, and it has vertical and horizontal components with the same amplitude at
each direction. The study confirms that when looking for modes within a relatively wide
frequency range, it is necessary to consider a number of steps greater than the number of
vibration modes within that interval to effectively cover the entire frequency range. In
this case, when twenty steps are considered, the algorithm manages to find nine of the ten
modes present in that frequency range. When the number of steps is increased to thirty, ten
modes are identified. The relative errors (er) made in the value of the natural frequency
are kept below 0.3% .
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2.5.1.2 Spatial domain mesh

The convergence study with regard to the spatial domain mesh is carried out in this section.
In the analysis, the frequency search range is reduced to [40-450] Hz because only the
results for the first four modes are compared. In this case, it is enough to consider N = 10
enrichment steps. The frequency resolution is 1 Hz and a concentrated harmonic load
is applied at the top of the beam at a distance of L/10 from the support, with vertical
and horizontal components, as for the previous section. Table 2.2 shows the relative and
cumulative errors of the first four natural frequencies for different meshes. Errors are
calculated for the finest mesh considered as reference. Parameters Sx and Sz represent
the relative mesh size in beam and thickness axis respectively. It can be inferred from
Table 2.2 that the convergence rate is rather high and a mesh with nx = 20 (Sx = L/20)
and nz = 5 (Sz = h/5) elements is sufficient to obtain converged results.

Table 2.2 Relative and cumulative errors (%) for the first four natural frequencies.

Sx

Sz h h/5 h/10 h/20 Mode

L/10

0.586 0.010 0.009 0.010 1
1.719 0.054 0.051 0.050 2
0.009 0.001 0.001 0.001 3
2.805 0.166 0.160 0.160 4

5.12 0.23 0.22 0.22 cum.

L/20

0.578 0.002 0.001 0.001 1
1.671 0.006 0.003 0.003 2
0.002 0.000 0.000 0.000 3
2.654 0.017 0.011 0.010 4

4.90 0.02 0.02 0.01 cum.

L/50

0.577 0.001 0.000 0.000 1
1.668 0.003 0.000 0.000 2
0.002 0.000 0.000 0.000 3
2.643 0.007 0.001 0.000 4

4.89 0.01 0.00 0.00 cum.

L/100

0.577 0.001 0.001 ref. 1
1.668 0.003 0.000 ref. 2
0.002 0.000 0.000 ref. 3
2.643 0.007 0.000 ref. 4

4.89 0.01 0.00 - cum.

2.5.1.3 Load position

The influence of the position and direction of the load applied is evaluated herein. Hor-
izontal and vertical concentrated harmonic loads are considered separately, as well as
different load application points. The converged PGD spatial mesh is used following Table
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2.2. The frequency range and the number of enrichment steps are the same as in section
2.5.1.2. In Figure 2.2 , a simplified representation of the first five mode shapes of the
isotropic beam are plotted with dashed line. Table 2.3 shows which of these five modes
are identified when changing the direction and position of the load. The results report
that when a vertical load is placed in the centre of the beam (L/2) the modes b and e are
not excited. This is because for these modes the middle section of the beam, where the
load is applied, does not move vertically. Analogously, when a horizontal load is placed in
the middle of the beam, mode c cannot be identified because that section does not move
horizontally. In view of these results, to ensure the identification of all modes, a load with
both vertical and horizontal components should be considered and not located in a node.

a) Symmetric bending mode 1 b) Anti-symmetric bending mode 2

c) Symmetric extensional mode d) Symmetric bending mode 3

e) Anti-symmetric bending mode 4

Legend

Vertical node (uz = 0)
Horizontal node (ux = 0)

Figure 2.2 First five modal shapes of the isotropic beam with S=5.

Table 2.3 Mode identification for different load positions.

Mode Vertical load Horizontal load

L/10 L/4 L/2 L/10 L/4 L/2

a 1 1 1 0 0 0
b 1 1 0 0 0 0
c 0 0 1 1 1 0
d 1 1 1 0 0 0
e 1 0 0 0 0 0

Note: 1 = identified mode; 0 = non-identified mode.

2.5.2 Symmetric and anti-symmetric laminated beam

Herein, two symmetric and anti-symmetric composite cross-ply beams [68] are considered:

◦ Geometry: (0◦/90◦/0◦) with thickness 0.25h/0.5h/0.25h; (0◦/90◦), being the two
layers the same thickness; four length to thickness ratios S = 2,5,10,20.
◦ Material properties: EL = 181GPa, ET = 10.3GPa, νLT = 0.25, νT T = 0.33 and

ρ = 1578kg/m3. Subscripts L and T refer to the fibre and transverse directions.
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2.5 Numerical results

◦ Boundary conditions: simply supported beam with a harmonic concentrated load
placed on the top layer at a distance of L/10 from the first support.

The results are presented in a dimensionless form. The dimenssionless natural frequency
is computed as ω = ωnLS

√
ρ/ET . The numerical values obtained with the PGD method

are compared with exact two-dimensional elasticity solution from [68] and results com-
puted with the commercial FEA software ansys using a very refined mesh. For further
information about the calculation parameters, please refer to the 2.7 section. Table 2.4
presents the values of the first seven natural frequencies for the thin to very thick of both
symmetric and anti-symmetric beams. These results show the excellent agreement with
reference values for all types of modes. The maximum relative error is below 0.86%.

Table 2.4 Dimensionless natural frequencies of the laminated beams.

S
Symmetric lay-up Anti-symmetric lay-up

Mode Exact [68] ansys PGD er(%) Mode ansys PGD er(%)

2

bend - 3.447 3.447 0.0 bend 3.206 3.205 0.0
sh - 7.007 7.007 0.0 bend 7.406 7.404 0.0
bend - 7.689 7.686 0.0 sh 7.762 7.761 0.0
th - 10.788 10.786 0.0 th 8.818 8.817 0.0
bend - 12.015 12.009 0.1 bend 10.987 10.982 0.0
th - 12.808 12.803 0.0 th 12.835 12.833 0.0
th - 14.966 14.963 0.0 th 13.465 13.462 0.0

5

bend 6.806 6.808 6.806 0.0 bend 4.782 4.779 0.0
bend 16.515 16.524 16.514 0.1 bend 14.653 14.638 0.1
bend 26.688 26.718 26.688 0.1 bend 25.496 25.461 0.1
bend 37.255 37.323 37.256 0.2 th 35.396 35.382 0.0
t/c - 43.672 43.649 0.1 bend 36.181 36.119 0.2
sh - 43.807 43.793 0.0 bend 46.367 46.273 0.2
bend 48.035 48.155 48.037 0.2 sh 48.536 48.505 0.0

10

bend 9.343 9.347 9.343 0.0 bend 5.297 5.293 0.1
bend 27.224 27.249 27.223 0.1 bend 19.150 19.117 0.2
bend 46.416 46.485 46.417 0.1 bend 37.855 37.755 0.3
bend 66.058 66.195 66.056 0.2 bend 58.759 58.553 0.4
bend 86.169 86.420 86.168 0.3 bend 80.478 80.134 0.4
t/c - 93.776 93.738 0.0 t/c 88.435 88.395 0.0
bend 106.75 107.166 106.750 0.4 bend 102.350 101.842 0.5

20

bend 10.64 10.649 10.640 0.1 bend 5.465 5.453 0.2
bend 37.374 37.439 37.373 0.2 bend 21.234 21.171 0.3
bend 71.744 71.939 71.743 0.3 bend 45.708 45.517 0.4
bend 108.89 109.293 108.895 0.4 bend 76.903 76.473 0.6
bend 147.04 147.712 147.039 0.5 bend 112.951 112.486 0.4
bend 185.68 186.712 185.681 0.6 bend 152.336 151.031 0.9
t/c - 190.553 190.491 0.0 t/c 187.926 187.863 0.0
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2.5 Numerical results

Figures 2.4 and 2.3 represent the first six vibration modes for the very thick beams. The
PGD algorithm is able to detect not only bending modes, but also shear and thickness
modes with complex displacement distribution along either the beam axis or the thickness.

Mode 1, ω = 3.45 Mode 2, ω = 7.01

Mode 3, ω = 7.69 Mode 4, ω = 10.79

Mode 5, ω = 12.01 Mode 6, ω = 12.80

Figure 2.3 PGD solution for the symmetric laminated beam (0◦/90◦/0◦) with S = 2.
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Mode 1, ω = 3.21 Mode 2, ω = 7.40

Mode 3, ω = 7.76 Mode 4, ω = 8.82

Mode 5, ω = 10.98 Mode 6, ω = 12.83

Figure 2.4 PGD solution for the anti-symmetric laminated beam (0◦/90◦) with S = 2.

The main goal of this research is to solve the dynamic problem of a forced vibration
beam subjected to a general harmonic excitation of frequency ω (Eq. 2.13). Damping
is not considered in the formulation and the displacements are theoretically infinite for
loads with a frequency equal to the resonance frequencies of the structure. The frequency
response of a system can be represented in terms of displacement, velocity or acceleration
considering different graphical representation: real and imaginary parts again frequency,
Bode diagrams or Nyquist plot. Herein, the bode representation of displacement-force
relationship, so-called receptance, is considered. In Figure 2.5 the FRF of vertical and
horizontal displacements at the load application point are plotted for the symmetric lami-
nated beam with S = 5. The first seven natural frequencies that appear in Table 2.4 can be
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2.5 Numerical results

distinguished in this graphical representation.
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Figure 2.5 FRF at loading point for the symmetric beam (0◦/90◦/0◦) with S = 5.

In Figure 2.6, a detail of the horizontal displacement FRF (Figure 2.5a) in the range of
ω = [43−45] show that both extensional mode (ω = 43.649) and shear mode (ω = 43.793)
have been identified despite having very similar natural frequency values.
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Figure 2.6 Detail of the FRF for the symmetric beam (0◦/90◦/0◦) with S = 5.

Using the linear scale in magnitude-frequency graphs lead to lose detail of the response.
Bode plots of the receptance amplitude in dB is depicted in the following. The value of
the receptance α in dB is defined as α(dB) = 20log10(α/αre f ) where αre f is a reference
value, assumed as unity in this study. Figure 2.7 shows the good agreement between the
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amplitude of horizontal and vertical displacements at middle point of the beam calculated
through a harmonic analysis in ansys and using the proposed PGD formulation. The
most important difference between this representation and the previous one is that the
anti-resonance peaks can be detected. This particular feature can be used to evaluate the
validity of the computed FRF using the PGD method.
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a) horizontal displacement
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b) vertical displacement

Figure 2.7 FRF at bottom midpoint for the symmetric beam (0◦/90◦/0◦) with S = 5.

2.5.3 Three-layer sandwich beam

In order to evaluate the PGD algorithm for solving problems in composite beams with
layers of very different characteristics, the present test consists of a three-layer sandwich
beam composed of two graphite-epoxy faces and a soft core [68]:

◦ Geometry: 0.1h/0.8h/0.1h and four length to thickness ratios S = 2,5,10,20.
◦ Material properties:

Face: E1 f = 131.1GPa, E2 f =E3 f = 6.9GPa, G12 f = 3.588GPa,G13 f = 3.088GPa,
G23 f = 2.3322GPa, ν12 f = ν13 f = 0.32, ν23 f = 0.49 and ρ f = 1000kg/m3.
Core: E1c = 0.2208MPa, E2c = 0.2001MPa, E3c = 2760MPa, G12c = 16.56MPa,
G13c = 545.1MPa, G23c = 455.4MPa, ν12c = 0.99, ν13c = ν23c = 0.00003 and
ρc = 70kg/m3.
◦ Boundary conditions: simply supported beam with a harmonic concentrated load

placed on the top layer at a distance of L/10 from the beam start.
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2.5 Numerical results

The dimensionless natural frequency is computed as ω = ωnLS
√
(ρ f /E2 f ), where sub-

script f refers to the face material properties. The results are compared with exact 2D
elasticity solution from [68] and results computed with ansys. The parameters used
for the FE model and for the PGD simulation are provided in the section 2.7. Table 2.5
presents the values of the first seven natural frequencies for the thin to very thick three-layer
sandwich beam. It can be noticed that the natural frequencies given by the PGD method
are in excellent agreement with the reference elasticity solution in [68] for all types of
modes, including thickness modes. Errors with respect to the ansys solution remain
below 0.5 % for thin to thick beams (S = 20,10,5) and only go up to 1% for the very
thick case (S = 2). Note that the refined sinus model [69], denoted with SinRef-7p, which
includes the transverse normal deformation and the zig-zag effect, fails to predict the
thickness mode with accuracy. As in the present formulation, the use of LW approach is
required. Figure 2.8 represents the first three thickness modes for the very thick beam. As
it can be observed, even non-symmetrical modes (cf. mode 4) can be obtained with PGD
formulation.

Mode 4, ω = 11.63 Mode 5, ω = 11.66

Mode 7, ω = 12.16

Figure 2.8 PGD solution of thickness modes for the sandwich beam with S = 2.
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Table 2.5 Dimensionless natural frequencies of the three layer sandwich beam.

S Mode Exact 2D [68] ansys PGD er(%) SinRef-7p er(%)

2

bend - 3.519 3.521 0.0 3.53 0.2
sh - 5.340 5.340 0.0 5.34 0.1

bend - 7.531 7.562 0.4 7.60 0.2
th - 11.599 11.627 0.2 11.07 4.0
th - 11.663 11.664 0.0 9.40 19.0

bend - 11.823 11.954 1.1 11.97 0.2
th - 12.036 12.161 1.0 15.00 24.0

5

bend 7.8227 7.817 7.815 0.0 7.83 0.1
bend 17.274 17.253 17.247 0.0 17.31 0.1
bend 26.903 26.854 26.847 0.0 26.97 0.2
sh - 33.377 33.372 0.0 33.37 0.1

bend 36.937 36.838 36.844 0.0 37.06 0.1
bend 47.397 47.223 47.265 0.1 47.58 0.1
bend 58.221 57.944 58.052 0.2 - -

10

bend 12.237 12.235 12.230 0.0 12.26 0.1
bend 31.291 31.281 31.260 0.1 31.33 0.1
bend 50.218 50.205 50.154 0.1 50.31 0.1
bend 68.096 69.088 68.990 0.1 69.26 0.1
bend 88.18 88.190 88.021 0.2 88.51 0.1
bend 107.61 107.660 107.389 0.3 108.25 0.2
t/c - 120.032 120.018 0.0 121.11 0.9

20

bend 15.382 15.389 15.379 0.1 15.41 0.2
bend 48.948 48.989 48.922 0.1 49.04 0.1
bend 86.902 87.010 86.833 0.2 87.07 0.1
bend 125.16 125.374 125.042 0.3 - -
bend 163.12 163.479 162.941 0.3 163.69 0.1
bend 200.87 201.423 200.618 0.4 201.94 0.1
bend - 239.387 238.243 0.5 - -

Figures 2.9 and 2.10 represent the FRF of vertical and horizontal displacements sepa-
rately, at the load application point and at the bottom midpoint of the beam, respectively.
In these figures, only the response of the beam with a slenderness ratio of S=10 is rep-
resented. In this case, the first six natural frequencies correspond to six bending modes,
as it is remarked in Table 2.5. The differences between these two below figures are quite
remarkable. In Figure 2.9, almost all natural frequencies can be identified in both vertical
and horizontal displacement, but it is not the same in Figure 2.10. This is due to the fact
that the vibration nodes of various bending modes are located at the central point of the
beam. Regarding symmetrical vibration bending modes (odd modes), they do not have
horizontal displacement but vertical displacement at bottom midpoint of the beam as it
can be observed in Figure 2.10b. Conversely, for the anti-symmetric bending modes (even
modes) the opposite occurs, cf. Figure 2.10a. The PGD results are in good concordance
with ansys solution.
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a) horizontal displacement
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b) vertical displacement

Figure 2.9 FRF at loading point for the three-layer sandwich beam with S = 10.

0 20 40 60 80 100 120 140
−260

−240

−220

−200

−180

−160

−140

Dimensionless frequency Ω

Re
ce

pt
an

ce
m

ag
ni

tu
de

(d
B

re
.

1
m

/N
))

ANSYS
PGD

a) horizontal displacement
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Figure 2.10 FRF at bottom midpoint for the three-layer sandwich beam with S = 10.

34



2.5 Numerical results

2.5.4 Unsymmetric sandwich beam

The aim of this section is to compare the results of the PGD method with other theories in
the literature. A sandwich beam analysed in the reference [40] is chosen as a test. This is
a sandwich beam composed of two laminated faces with a isotropic core between them.
Each face is composed of two layers with a stacking sequence of 0◦/90◦/core/0◦/90◦.

◦ Geometry: Five layers of thickness 0.5h f /0.5h f /hc/0.5h f /0.5h f with hc/h f = 10
and two length to thickness ratios S = 4,10.

◦ Material properties:
Face laminated: E1 f = 131.1GPa, E2 f =E3 f = 10.34GPa, G12 f =G23 f = 6.895GPa,
G13 f = 6.205GPa, ν12 f = ν13 f = 0.22, ν23 f = 0.49 and ρ f = 1627kg/m3.

Core: Ec = 6.89MPa, Gc = 3.45MPa,νc = 0 and ρc = 97kg/m3.

◦ Boundary conditions: simply supported beam with a vertical harmonic load placed
on the top layer at a distance of L/10 from the beam start.

Table 2.6 presents the values of the first four bending frequencies for the thick and
semi-thick unsymmetric sandwich beam. The frequencies are displayed in dimensionless
form as in section 2.5.3. The results obtained with the PGD method are compared with
those obtained applying three models reported from [40, 69] denoted as: i) GLHT, global-
local-higher order theory [70]; ii) ZZT, zig-zag theory with continuous transverse shear
stress at interfaces [41] and iii) SinRef-7p, refined sinus model satisfying the continuity
of transverse shear stress at interfaces with seven independent generalized displacements
[69]. A 2D FE model of the unsymmetric sandwich beam has also been developed and
used as reference for the comparison (see ansys and PGD calculation parameters detailed
in 2.7). It can be noticed that the natural frequencies obtained with the PGD method are
in excellent agreement with the reference solution for both thick and semi-thick beams.
The error rate is less than 0.12%. This example highlights the limitations of high-order
ESL models for such structures, especially for the thick case. In contrast, the present LW
approach based on the variable separation is well-adapted.

Table 2.6 Dimensionless natural frequencies of the unsymmetric sandwich beam.

S Mode ansys PGD SinRef-7p GLHT ZZT

ω ω er(%) ω er(%) ω er(%) ω er(%)

4

bend 1 0.614 0.614 0.1 0.645 5.0 0.638 4.0 0.616 0.3
bend 2 1.762 1.763 0.1 1.819 3.2 1.800 2.2 1.772 0.6
bend 3 3.569 3.572 0.1 3.674 2.9 3.631 1.7 3.621 1.5
bend 4 5.795 5.802 0.1 6.223 7.3 6.133 5.8 6.186 6.8

10

bend 1 1.282 1.283 0.1 1.361 6.1 1.347 5.0 1.282 0.0
bend 2 2.868 2.870 0.1 3.026 5.5 2.994 4.4 2.875 0.2
bend 3 4.951 4.954 0.1 5.183 4.6 5.126 3.5 4.971 0.4
bend 4 7.649 7.653 0.0 7.961 4.0 7.861 2.7 7.686 0.4
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2.5.5 Influence of boundary conditions

Lastly, to validate the PGD algorithm for different boundary conditions, a symmetric
laminated composite beam with a stacking sequence 0◦/90◦/0◦ is analysed:

◦ Geometry: Three layers of equal thickness and a length to thickness ratio S = 5.

◦ Material properties: EL/ET = 40, GLT = 0.2 ·ET , GT T = 0.5 ·ET , νLT = 0.25,
νT T = 0.33 and ρ = 1kg/m3.

◦ Boundary conditions: beam with a harmonic concentrated load placed on the top
layer at a distance of L/10 from the beam start and six different support cases:
free/free (FF), clamped/clamped (CC), simply support/free (SF), clamped/simply
support (CS), simply support/simply support (SS) and clamped/free (CF).

The PGD solution is compared with the results of SinRef-7p model from [69] and with
those calculated in [71] using theories named as: i) PSDBT, parabolic shear deformation
beam theory and ii) HSDBT, hyperbolic shear deformation beam theory, with continu-
ous/discontinuous inter-laminar stresses (cs/ds). As in the previous section, a FE model
of the symmetric laminated beam with the different boundary conditions is analyzed. A
unity value of parameter ET is set for the analysis. The rest of the parameters of the FE
model and those referring to the resolution using the PGD method can be found in section
2.7. Table 2.7 shows the fundamental dimensionless natural frequencies.

Table 2.7 Fundamental dimensionless frequencies for different boundary conditions.

FF CC SF CS SS CF

ansys ω 19.097 10.757 13.465 9.825 9.200 4.153

PGD ω 19.225 10.816 13.875 10.056 9.199 4.218
er(%) 0.7 0.6 3.0 2.4 0.0 1.6

SinRef-7p ω 19.123 11.100 13.472 10.000 9.201 4.189
er(%) 0.1 3.2 0.1 1.8 0.0 0.9

PSDBTcs
ω 18.976 11.446 13.206 10.032 8.968 4.158
er(%) 0.6 6.4 1.9 2.1 2.5 0.1

HSDBTcs
ω 18.955 11.427 13.195 10.021 8.964 4.157
er(%) 0.7 6.2 2.0 2.0 2.6 0.1

PSDBTds
ω 19.391 11.637 13.538 10.236 9.207 4.233
er(%) 1.5 8.2 0.5 4.2 0.1 1.9

HSDBTds
ω 19.401 11.625 13.538 10.229 9.207 4.232
er(%) 1.6 8.1 0.5 4.1 0.1 1.9

Minimum error 0.1 0.6 0.1 1.8 0.0 0.1
Model SinRef-7p PGD SinRef-7p SinRef-7p PGD HSDBTcs

As a general remark, the highest frequencies occur for the free/free boundary condition
and the lowest values is obtained for the cantilever beam. For the models with continuous

36



2.6 Conclusions

inter-laminar stresses (SinRef-7p included), the frequencies for the PGD model are always
higher than those of the two other models, except for the CC condition. Concerning the
models with discontinuous inter-laminar stresses, the PGD results are always lower than
the two other discontinuous models, except for the SF condition. The differences between
PGD solution and those obtained with the models remain always low. With respect to the
ansys solution for a very refined mesh of 3375 elements, the PGD method solution is the
best fit for SS and CC cases. For the other cases, PGD errors do not exceed 3%.

2.6 Conclusions

This paper investigates a new methodology based on the PGD method to solve the forced vi-
bration problem in bi-dimensional laminated beams. A classical harmonic space-frequency
description of the dynamic problem is considered and a variable separation in the spa-
tial domain is introduced. For both spatial coordinates x (beam axis coordinate) and z
(thickness coordinate), a classical 3-node FE is used in the discretization while a linear in-
terpolation is introduced for the load frequency ω . The derived iterative algorithm implies
the computation of three 1D functions at each iteration where the total cost depends on the
number of enrichment steps N used to represent the solution. Specifically the proposed
process requires, for each enrichment step, a small number of iterations m of the fixed point
method which involves the resolution of one equation with nω unknowns and two linear
systems of Ndo fx and Ndo fz DOFs respectively. In a classical layerwise FE approach,
the calculation implies nω resolutions with Ndo fx×Ndo fz

2 DOFs. The advantages of the
proposed algorithm become relevant when the number of numerical layers and the number
of elements in axis direction increases.

The new approach has been used to solve numerical tests, including composite and
sandwich beam configurations with a great variety of slenderness ratios and boundary
conditions. Results show a good agreement with exact elasticity solutions, higher-order
theories and FE models. This study has showed the capability of the method to build all
kinds of mode shapes, including complex thickness modes with non-uniform displacement
distribution along x and z axis. This is possible owing to the actual LW approach.
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2.7 Notes on chapter: numerical test parameters

Table 2.8 PGD calculation parameters.

Numerical test L S nx nz fmin fmax ∆ f N
(m) (per layer) (Hz) (Hz) (Hz)

Isotropic beam
N analysis 10 5 50 10 40 800 1 -
Spatial mesh analysis 10 5 - - 40 450 1 10
Load position analysis 10 5 50 10 40 450 1 10

Symmetric laminated
composite beam

1 2 100 [4,8,4] 600 4200 1 30
1 5 100 [4,8,4] 500 5000 1 30
1 10 100 [4,8,4] 300 4500 1 30
1 20 100 [2,4,2] 100 4000 1 30

Anti-symmetric laminated
composite beam

1 2 100 [8,8] 600 3000 1 50
1 5 100 [8,8] 300 4000 1 50
1 10 100 [8,8] 200 4200 1 30
1 20 100 [4,4] 100 4000 1 30

Three layer sandwich beam

1 2 100 [1,2,1] 500 5000 1 30
1 5 100 [1,2,1] 500 5000 1 30
1 10 100 [1,2,1] 450 5500 1 30
1 20 100 [1,2,1] 250 5500 1 40

Unsymmetric sandwich beam 1 4 100 [1,1,5,1,1] 50 600 1 30
1 10 100 [1,1,5,1,1] 40 350 1 30

Boundary condition analysis
FF 1 5 100 [2,2,2] 0.01 1 0.01 10
CC 1 5 100 [2,2,2] 0.01 0.5 0.01 10
SF 1 5 100 [2,2,2] 0.01 0.5 0.01 5
CS 1 5 100 [2,2,2] 0.01 0.5 0.01 5
SS 1 5 100 [2,2,2] 0.01 0.5 0.01 10
CF 1 5 100 [2,2,2] 0.01 0.3 0.01 10

Note: the load frequency range in the PGD performance is [ωmin,ωmax], with ωmin = 2π fmin and ωmax = 2π fmax.
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Table 2.9 Parameters of the finite element models using ansys.

Numerical test L (m) S Relative element
size

Number of
elements

Isotropic beam 10 5 L/100 2000

Symmetric laminated
composite beam

1 2 L/125 8000
1 5 L/125 3375
1 10 L/125 1875
1 20 L/125 1000

Anti-symmetric laminated
composite beam

1 2 L/125 8000
1 5 L/125 3250
1 10 L/125 1750
1 20 L/125 1000

Three layer sandwich beam

1 2 L/125 8000
1 5 L/125 3250
1 10 L/125 1750
1 20 L/125 875

Unsymmetric sandwich beam 1 4 L/384 36864
1 10 L/720 51840

Boundary condition analysis 1 5 L/125 3375
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3.1 Introduction

Recently, it should be noted an increasing interest towards high-performance structures in-
volving multifunctionality capabilites, as it has been pointed out in [72]. Not only structural
but also non-structural functions represent the key issue in the develepment of such smart
structural components. Electrical and thermal conductivity, sensing and actuation, energy
harvesting and storage, self-healing, electromagnetic interference shielding, recyclability
or biodegradability are some of the most promising multifunctionality capabilities [73].
An overview on the topics of smart structures can be found in [74, 75]. As they will be
involved in the present work, piezoelectric materials permit to convert mechanical and
electrical energy at frequency ranges. Among others, SHM, active vibration damping,
rapid shape adaptation or energy harvesting [76] are only some feasible applications of
such smart piezoelectric components. Due to the complex manufacturing of such struc-
tural devices, a reliable numerical analysis tool is necessary to capture all the relevant
phenomena that guide the design process. Some examples of recent numerical studies
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regarding the electro-mechanical analysis of piezoelectric energy harvesters are shown
in [77–79]. Furthermore, if optimization processes and runtime control algorithms are
addressed, the numerical simulation tool should be as robust and efficient as possible.

Various mathematical models developed for structures containing piezoelectric sensors
and actuators can be classified into two broad categories including induced strain models
and coupled electromechanical models. An overview on the modelling of piezoelectric
structures is given in [75, 80–83]. On the one hand, the induced strain models use approx-
imate theories in order to incorporate external forces associated with the piezoelectric
actuators. The electric potential is neglected as a state variable in the formulation; therefore
these models cannot capture the coupled mechanical and electrical responses and are only
limited to predict the actuator behavior of piezoelectric materials ([84–87]). On the other
hand, the coupled electromechanical models provide a more consistent representation
of both the sensor and actuator responses of piezoelectric materials, incorporating both
the displacements and the electric potentials as the state variables in the formulation.
Piezoelectric three-dimensional (3D) finite elements have been early proposed in [88–90].
However, the cost of 3D analysis becomes prohibitive when piezoelectric layers are thin
compared to the structure size.

In order to overcome these restrictions, several theories for laminated structures includ-
ing piezoelectric elements have been developed in the literature. A LW description is
commonly used for the piezoelectric part (see [91]), therefore, the discussion concerns only
the mechanical approach. The following classification is associated with the dependence
on the number of mechanical DOFs with respect to the number of layers:

• The ESL approach: the number of unknowns is independent of the number of
layers, but continuity of transverse shear and normal stresses is often violated at
layer interfaces. This approach is called ”hybrid” or ”mixed” in the literature. We
can distinguish CLT, FSDT [92–94] and higher-order theories. In the latter, the
third-order shear deformation theory has been carried out in [95–98]. Other types
of functions can be also considered as in [99] (exponential function). See also a
refined Reissner-Mindlin approach taking into account the stretching effect [83].

• The LW approach: the number of DOFs depends on the number of layers. This
theory aims at overcoming the ESL shortcoming of allowing discontinuity of out-
of-plane stresses on the interface layers. See for instance [100, 101] for beams,
[102–106] for plates, and [107] for shells. Note that an extensive assessment has
been provided by Saravanos and Heyligher [81].

In this framework, refined models have been developed in order to improve the accuracy
of ESL models while avoiding the computational burden of the LW approach. Starting from
a refined layerwise description, some physical considerations can be introduced. Then,
after some algebraic transformations, the number of unknowns becomes independent of the
number of layers. This type of approach has been carried out in [108]. The resulting model
can be classified as a zig-zag one (see the historical review of [47]). In the framework
of electromechanical problems, Oh and Cho [109] have extended the third order zig-zag
model. Note also the works of Kapuria for beams [110, 111] and plates [112].

Finally, the so-called advanced models based on the Principle of Virtual Displacements
(PVD), the Reissner Mixed Variational Theorem (RMVT) and CUF must be referred here.
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Different types of interlaminar continuity can be considered: transverse shear/normal
stresses and/or transverse electric displacement. For the works related to multilayered
piezoelectric structures, readers can refer to [113, 114] for plates and [82] for shells.

A promising alternative approach to reduce the computational cost in the field of
the reduced-order modelling is based on the separation of variables [22]. It has been
proposed in [115] with a Navier-type solution for the modelling of composite plates
with a in-plane/out-of-plane coordinates separation. Such variable separations have been
successfully applied to composite structures in static case [60, 63]. The forced vibration
problem of composite beams subjected to harmonic excitation has also been considered
previously by the authors of this study by using the PGD framework [116]. In the latter
reference, the displacements are written under the form of separated variable representation,
i.e. a sum of products of unidimensional functions of x and z coordinates. The load
frequency ω was introduced into the formulation as another problem variable, in order to
achieve a more robust formulation. The aim of the present paper is to extend the previously
developed method to laminated and sandwich beams with piezoelectric layers. Therefore, a
multi-field analysis of advanced composite structures is addressed, especially dedicated to
the consideration of electro-mechanical coupling. Analogously, herein both displacements
and electric potential are written under the form of a sum of products of x functions,
z functions and load frequency functions. The deduced explicit solution allows us to
avoid numerous classical computations for each discretized value of the load frequency
in the study domain. To achieve that, the approximation of the 2D beam is based on a
quadratic FE approximation for the variation with respect to x and a quadratic layerwise
description for the variation with respect to z. The electric unknowns are interpolated
with a second-order expansion. Using the PGD, each unknown function of x is classically
approximated using one DOF at the node of the mesh while the LW unknown functions
of z are global for the whole beam. Finally, the deduced non-linear problem implies the
resolution of three 1D linear problems alternatively. This process yields to few unknowns
involved in each of these linear problems.

The manuscript is organized as follows. First, the electro-mechanical formulation is
recalled. Then, the particular assumption on the displacements and the electric potential is
introduced. It leads to a non-linear problem to be solved. An iterative process based on a
classical fixed point strategy allows us to obtain the coupling solution. In this process, three
1D linear problems described in the present work, have to be solved. The FE discretization
is also given. Numerical evaluations are subsequently presented. A convergence study
of the proposed algorithm is first conducted. Several numerical tests with wide range of
slenderness ratios under various boundary conditions are considered in order to assess the
validity of the method. The results in terms of modal parameters and FRFs are compared
with exact elasticity solution and FE simulations from a commercial FEA software.

3.2 Reference problem description

In the present study, a composite beam of length L and thickness h is considered. The
beam consists of NC layers assumed to be orthotropic in the beam axes. In addition, some
of the layers are assumed to present a piezoelectric behavior. The beam is considered in the
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3.2 Reference problem description

(x,z) plane, i.e., in the domain Ω = Ωx×Ωz = [0≤ x≤ L]× [−h/2≤ z≤ h/2]. The x axis
is taken along the longitudinal beam axis whereas the z axis is taken along the thickness
direction. The reader can refer to Figure 3.1, where the coloured areas represent layers of
piezoelectric material. The main notation used throughout the present formulation is also
given in the chapter on Notation in the preamble of this document.

k = 1
k = 2

...

k = (NC−1)
k = NC

x

z

L

h

Figure 3.1 The laminated beam with piezoelectric layers and coordinate system.

The governing equations of the piezoelectric problem are given by

∇ · [σ ]+ [b] = ρ
∂

2[u]
∂ t2 (3.1a)

∇ · [D]−q = 0 (3.1b)

where [σ ] is the stress, [u],[D] are the mechanical and electric displacement respectively,
[b] is the body load, q is free electric volume charge and ρ refers to the material the density.
The two-dimensional formulation of the piezoelectric problem can be reduced to

∂σ11
∂x

+
∂σ13

∂ z
= ρ

∂
2u1

∂ t2 ,
∂σ13
∂x

+
∂σ33

∂ z
= ρ

∂
2u3

∂ t2 ,
∂D1
∂x

+
∂D3
∂ z

= 0 (3.2)

where body load and free electric volume charge have been neglected for simplification
purposes.

3.2.1 Constitutive relation

The constitutive equations with piezoelectric coupling for a layer k read

[σ ] = [C̄k][ε]− [ēk]
>[E] (3.3a)

[D] = [ēk][ε]+ [ε̄k][E] (3.3b)

where [ε] = [ε11 ε33 γ13]
> is the strain and [E] = [E1 E3]

> is the electric field for the 2D
formulation. Assuming plane stress in the xy-plane and also vanishing out of plane electric
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displacement, the reduced constitutive matrices can be computed for each layer k by

[C̄k] =


C(k)

11 C(k)
13 0

C(k)
13 C(k)

33 0

0 0 C(k)
55

−


C(k)
12 0 C(k)

16

C(k)
23 0 C(k)

36

0 C(k)
45 0




C(k)
22 0 C(k)

26

0 C(k)
44 0

C(k)
26 0 C(k)

66


−1

C(k)
12 C(k)

23 0

0 0 C(k)
45

C(k)
16 C(k)

36 0

 (3.4)

[ēk] =

 0 0 e(k)15

e(k)31 e(k)33 0

−[ 0 0 0

e(k)32 0 0

]
C(k)

22 0 C(k)
26

0 C(k)
44 0

C(k)
26 0 C(k)

66


−1

C(k)
12 C(k)

23 0

0 0 C(k)
45

C(k)
16 C(k)

36 0

 (3.5)

[ε̄k] =

 ε
(k)
11 0

0 ε
(k)
33

+[ 0 0 0

e(k)32 0 0

]
C(k)

22 0 C(k)
26

0 C(k)
44 0

C(k)
26 0 C(k)

66


−1

0 e(k)32

0 0

0 0

 (3.6)

being C(k)
i j the stiffness coefficients, e(k)i j the piezoelectric constants and ε

(k)
i j the permittivity

coefficients for the 3D problem.

3.2.2 New variational formulation

For a single harmonic mechanical excitation [Fd ] = [ fd ] ·eiωt applied in ∂F Ω, the response
of a linear solid in absence of body loads and free electric volume charge is presumed to
have the same frequency as the applied load

[u(t)] = [u] · eiωt , φ(t) = φ · eiωt (3.7)

with [u] and φ containing the displacements and electric potential amplitudes. For a set of
the load frequency within an interval [ωmin,ωmax] a new robust variational formulation
is proposed herein. The problem is defined as finding ([u(ω)],φ(ω)) ∈U×Φ (space of
admissible generalized displacement) such that ∀([δu], δφ) ∈ δU×δΦ∫

ω

∫
Ω

[ε(δu)]>[σ ]dV dω−
∫

ω

∫
∂F Ω

[δu]>[ fd ]dSdω =
∫

ω

∫
Ω

ω
2
ρ[δu]>[u]dV dω (3.8a)∫

ω

∫
Ω

[E(δφ)]>[D]dV dω = 0 (3.8b)

Using kinematic relations, [ε] = 1/2{∇[u]+∇[u]>}, and Maxwell’s law to derive the
electric field vector from the electric potential,[E] =−∇φ , the piezoelectric problem can
be reformulated only in terms of the generalized displacements ([u], φ ). To complete
the boundary value problem, a prescribed displacement [u] = [ud ] and electric potential
φ = φd are imposed on ∂uΩ and ∂φ Ω respectively.
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3.3 Separated representation

In the approach carried out in this study, the unknowns of the problem, i.e., the displace-
ments [u] and the electric potential φ are built under the following separated form as

[u] =
N

∑
i=1

gi(ω) [ f i(z)]◦ [vi(x)] , φ =
N

∑
i=1

gi
φ (ω) f i

φ (z)vi
φ (x) (3.9)

where ‘◦’ denotes the Hadamard product. The unknown functions (gi,gi
φ ) are defined in

[ωmin,ωmax], ([ f i], f i
φ ) in Ωz and ([vi],vi

φ ) in Ωx. This separated representation is also used
to express the virtual displacement δu and the virtual electric potential δφ used as test
functions in Eq. 3.8

[δu] = [δuω ]+ [δu f ]+ [δuv] = δg [ f ]◦ [v]+g · [v]◦ [δ f ]+g · [ f ]◦ [δv],

δφ = δφω +δφ f +δφv = δgφ fφ vφ +gφ δ fφ vφ +gφ fφ δvφ (3.10)

The resolution process is therefore an iterative procedure where the unknown functions
must be computed for each enrichment step i = 1,2,...,n,...,N. The solution for iteration n
can be expressed by

[u] = [ū]+g[V ][ f ] = [ū]+g[F ][v] , φ = φ̄ +gφ fφ vφ (3.11)

where ([ū], φ̄) are the displacement and potential solution obtained at iteration (n−1)

[ū] =
n−1

∑
i=1

[ui] =
n−1

∑
i=1

gi[F i][vi] =
n−1

∑
i=1

gi[V i][ f i] , φ̄ =
n−1

∑
i=1

φ
i =

n−1

∑
i=1

gi
φ f i

φ vi
φ (3.12)

and

[vi] =

[
vi

1(x)

vi
3(x)

]
, [V i] =

[
vi

1(x) 0

0 vi
3(x)

]
, [ f i] =

[
f i
1(z)

f i
3(z)

]
, [F i] =

[
f i
1(z) 0

0 f i
3(z)

]
(3.13)

Introducing this separated representation in the piezoelectric formulation expressed by
Eq. 3.8, the problem is decomposed into three pair coupled equations given below∫

ω

∫
Ω

(
[ε(δuω )]

>[C][ε(ū+gF v)]− [ε(δuω )]
>[e]>[E(φ̄ +gφ fφ vφ )]

)
dV dω

−
∫

ω

∫
Ω

ω
2
ρ[δuω ]

>[ū+gF v]dV dω =
∫

ω

∫
∂F Ω

[δuω ]
>[ fd ]dSdω (3.14a)

∫
ω

∫
Ω

(
[E(δφω )]

>[e][ε(ū+gF v)]+ [E(δφω )]
>[ε][E(φ̄ +gφ fφ vφ )]

)
dV dω = 0 (3.14b)

∫
ω

∫
Ω

(
[ε(δu f )]

>[C][ε(ū+gV f )]− [ε(δu f )]
>[e]>[E(φ̄ +gφ fφ vφ )]

)
dV dω

−
∫

ω

∫
Ω

ω
2
ρ[δu f ]

>[ū+gV f ]dV dω =
∫

ω

∫
∂F Ω

[δu f ]
>[ fd ]dSdω (3.15a)
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∫
ω

∫
Ω

(
[E(δφ f )]

>[e][ε(ū+gV f )]+ [E(δφ f )]
>[ε][E(φ̄ +gφ fφ vφ )]

)
dV dω = 0 (3.15b)

∫
ω

∫
Ω

(
[ε(δuv)]

>[C][ε(ū+gF v)]− [ε(δuv)]
>[e]>[E(φ̄ +gφ fφ vφ )]

)
dV dω

−
∫

ω

∫
Ω

ω
2
ρ[δuv]

>[ū+gF v]dV dω =
∫

ω

∫
∂F Ω

[δuv]
>[ fd ]dSdω (3.16a)∫

ω

∫
Ω

(
[E(δφv)]

>[e][ε(ū+gF v)]+ [E(δφv)]
>[ε][E(φ̄ +gφ fφ vφ )]

)
dV dω = 0 (3.16b)

These three pairs coupled equations define a non-linear problem. To solve it, an iterative
procedure is followed. The fixed point loop is iterated m times until reaching a fixed
solution for each enrichment step n which composes the final solution. This resolution
strategy is explained in Algorithm 1.

Algorithm 1 Fixed point loop applied to the piezoelectric problem.
for n = 1 to N do

Initialize (g,gφ )
0,([ f ], fφ )

(0) and compute ([v],vφ )
(0) from Eq. 3.16

for m = 1 to mmax do
Step 1: knowing ([v],vφ )

(m−1),([ f ], fφ )
(m−1), compute (g,gφ )

(m) from Eq. 3.14
Step 2: knowing ([v],vφ )

(m−1),(g,gφ )
(m), compute ([ f ], fφ )

(m) from Eq. 3.15
Step 3: knowing ([ f ], fφ )

(m),(g,gφ )
(m), compute ([v],vφ )

(m) from Eq. 3.16
Check for convergence (break)

end for
Set gn = g(m),[ f n] = [ f ](m),[vn] = [v](m) and gn

φ = g(m)
φ

, f n
φ = f (m)

φ
,vn

φ = v(m)
φ

Set [un] = [un−1]+gn [V n] [ f n] and φ
n = φ

n−1 +gn
φ f n

φ vn
φ

end for

3.3.1 Step 1: Problem on load frequency domain

In order to simplify the notation, the functions ([ f ], fφ )
(m−1),([v],vφ )

(m−1), which are
assumed to be known, will be denoted as f̃ , f̃φ , ṽ, ṽφ (and subsequently F̃ ,Ṽ in matrix
form) and the functions g(m),g(m)

φ
to be computed will be denoted as g,gφ . The strain and

electric fields are defined in matrix notation as

[ε(gF̃ ṽ)] = g [Σz( f̃ )] [Ẽv] , [E(gφ f̃φ ṽφ )] = gφ [Σ
φ

z ( f̃φ )] [Ẽvφ
], (3.17)

with

[Σz( f̃ )] =

 0 f̃1 0 0
0 0 f̃ ′3 0
f̃ ′1 0 0 f̃3

 , [Ẽv] =


ṽ1

ṽ′1
ṽ3

ṽ′3

 , [Σφ

z ( f̃φ )] =−
[

0 f̃φ
f̃ ′φ 0

]
, [Ẽvφ

] =

[
ṽφ

ṽ′φ

]
(3.18)
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where the prime (′) stands for the classical derivation. Introducing the above expression
into Eq. 3.14, the variational problem defined on load frequency domain read∫

ω

δgkvv
ω gdω−

∫
ω

δgkvφ

ω gφ dω−
∫

ω

δgω
2mω gdω =

∫
ω

δg fω dω +
n−1

∑
i=1

[∫
ω

δgω
2
µ

i
ω ḡi dω−

∫
ω

δgσ
vvi

ω ḡi dω +
∫

ω

δgσ
vφ

i

ω ḡi
φ dω

]
(3.19a)

−
∫

ω

δgφ kφv
ω gdω−

∫
ω

δgφ kφφ

ω gφ dω =
n−1

∑
i=1

[∫
ω

δgφ σ
φvi

ω ḡi dω +
∫

ω

δgφ σ
φφ

i

ω ḡi
φ dω

]
(3.19b)

where the functions with the superscript “i” are referred to the solution at the previous
enrichment steps i = 1,2,...,(n−1). The coefficients integrated in the spatial domain Ω

are

kvv
ω =

∫
Ω

[Ẽv]
>[Σ̃z]

>[C][Σ̃z][Ẽv]dV, kvφ

ω =
∫

Ω

[Ẽv]
>[Σ̃z]

>[e]>[Σ̃φ

z ][Ẽvφ
]dV,

kφv
ω =

∫
Ω

[Ẽvφ
]>[Σ̃φ

z ]
>[e][Σ̃z][Ẽv]dV, kφφ

ω =
∫

Ω

[Ẽvφ
]>[Σ̃φ

z ]
>[ε][Σ̃φ

z ][Ẽvφ
]dV,

σ
vvi

ω =
∫

Ω

[Ẽv]
>[Σ̃z]

>[C][Σ̄i
z][Ē

i
v ]dV, σ

vφ
i

ω =
∫

Ω

[Ẽv]
>[Σ̃z]

>[e]>[Σ̄φ i

z ][Ē i
vφ
]dV,

σ
φvi

ω =
∫

Ω

[Ẽvφ
]>[Σ̃φ

z ]
>[e][Σ̄i

z][Ē
i
v ]dV, σ

φφ
i

ω =
∫

Ω

[Ẽvφ
]>[Σ̃φ

z ]
>[ε][Σ̄φ i

z ][Ē i
vφ
]dV,

mω =
∫

Ω

[ṽ]>[F̃ ]>ρ [F̃ ][ṽ]dV, µ
i
ω =

∫
Ω

[ṽ]>[F̃ ]>ρ [F̄ i][v̄i]dV,

fω =
∫

∂F Ω

[ṽ]>[F̃ ]>[ fd ]dS (3.20)

Note that for any particular value of the pulsation ω , it is easy to notice that the Eq. 3.19
results in (

kvv
ω −ω

2mω

)
g− kvφ

ω gφ = fω +
n−1

∑
i=1

[...] (3.21a)

−kφv
ω g− kφφ

ω gφ =
n−1

∑
i=1

[...] (3.21b)

These two equations can be combined in order to find an explicit expression for g such
that [

kφφ

ω

(
kvv

ω −ω
2mω

)
+ kφv

ω kvφ

ω

]
g = fω +

n−1

∑
i=1

[...] (3.22)

from which we can derive the value of the natural frequencies, ωn, for which the resonance
is detected

ω
2
n =

kvv
ω +(kvφ

ω )2/kφφ

ω

mω

(3.23)
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3.3 Separated representation

3.3.2 Step 2: Problem on Ωz

At this step, the functions (g,gφ )
(m),([v],vφ )

(m−1), assumed to be known, will be denoted
as g̃, g̃φ , ṽ, ṽφ and the functions ([ f ], fφ )

(m) to be computed will be denoted as f , fφ . The
strain and electric field are defined in matrix notation as

[ε(g̃Ṽ f )] = g̃ [Σx(ṽ)] [E f ], [E(g̃φ ṽφ fφ )] = g̃φ [Σ
φ

x (ṽφ )] [E fφ
] (3.24)

with

[Σx(ṽ)] =

 ṽ′1 0 0 0
0 0 0 ṽ3
0 ṽ1 ṽ′3 0

 , [E f ] =


f1
f ′1
f3
f ′3

 , [Σφ

x (ṽφ )] =

[−ṽ′φ 0
0 −ṽφ

]
, [E fφ

] =

[
fφ
f ′φ

]
(3.25)

Introducing the above expression into Eq. 3.15, the variational problem defined on Ωz is

γω

∫
Ωz

[δE f ]
>[k f f

x ][E f ]dz−θω

∫
Ωz

[δE f ]
>[k f φ

x ][E fφ
]dz−αω

∫
Ωz

[δ f ]>[mx][ f ]dz =

βω

∫
∂F Ωz

[δ f ]>[ fx]dz+
n−1

∑
i=1

[
α

i
ω

∫
Ωz

[δ f ]>[µ i
x][ f̄ i]dz

−γ
i
ω

∫
Ωz

[δE f ]
>[σ f f i

x ][Ē i
f ]dz+θ

gφ i

ω

∫
Ωz

[δE f ]
>[σ f φ i

x ][Ē i
fφ
]dz
]

(3.26a)

−θω

∫
Ωz

[δE fφ
]>[kφ f

x ][E f ]dz−ηω

∫
Ωz

[δE fφ
]>[kφφ

x ][E fφ
]dz =

n−1

∑
i=1

[
θ

φgi

ω

∫
Ωz

[δE fφ
]>[σφ f i

x ][Ē i
f ]dz+η

i
ω

∫
Ωz

[δE fφ
]>[σφφ i

x ][Ē i
fφ
]dz
]

(3.26b)

where the coefficients integrated in the Ωx domain are

[k f f
x ] =

∫
Ωx

[Σ̃x]
>[C][Σ̃x]dx, [k f φ

x ] =
∫

Ωx

[Σ̃x]
>[e]>[Σ̃φ

x ]dx,

[kφ f
x ] =

∫
Ωx

[Σ̃φ

x ]
>[e][Σ̃x]dx, [kφφ

x ] =
∫

Ωx

[Σ̃φ

x ]
>[ε][Σ̃φ

x ]dx,

[σ f f i

x ] =
∫

Ωx

[Σ̃x]
>[C][Σ̄i

x]dx, [σ f φ i

x ] =
∫

Ωx

[Σ̃x]
>[e]>[Σ̄φ i

x ]dx,

[σφ f i

x ] =
∫

Ωx

[Σ̃φ

x ]
>[e][Σ̄i

x]dx, [σφφ i

x ] =
∫

Ωx

[Σ̃φ

x ]
>[ε][Σ̄φ i

x ]dx,

[mx] =
∫

Ωx

[Ṽ ]>ρ [Ṽ ]dx, [µ i
x] =

∫
Ωx

[Ṽ ]>ρ [V̄ i]dx,

[ fx] =
∫

∂F Ωx

[Ṽ ]>[ fd ]dx (3.27)

and the coefficients integrated in the load frequency domain are
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3.3 Separated representation

γω =
∫

ω

g̃2 dω,

γ
i
ω =

∫
ω

g̃ ḡi dω,

αω =
∫

ω

ω
2g̃2 dω,

θω =
∫

ω

g̃g̃φ dω,

θ
gφ i

ω =
∫

ω

g̃ ḡi
φ dω,

α
i
ω =

∫
ω

ω
2g̃ ḡi dω,

ηω =
∫

ω

g̃2
φ dω,

θ
φgi

ω =
∫

ω

g̃φ ḡi dω,

βω =
∫

ω

g̃dω

η
i
ω =

∫
ω

g̃φ ḡi
φ dω,

(3.28)

3.3.3 Step 3: Problem on Ωx

At this step, the functions (g,gφ )
(m),([ f ], fφ )

(m), which are assumed to be known, will be
denoted as g̃, g̃φ , f̃ , f̃φ and the functions ([v],vφ )

(m) to be computed will be denoted as
v,vφ . The expression of the strain and electric field are

[ε(g̃ F̃ v)] = g̃ [Σz( f̃ )] [Ev], [E(g̃φ f̃φ vφ )] = g̃φ [Σ
φ

z ( f̃φ )] [Evφ
] (3.29)

Introducing the above expression into Eq. 3.16, the variational problem defined on Ωx
read

γω

∫
Ωx

[δEv]
>[kvv

z ] [Ev]dx−θω

∫
Ωx

[δEv]
>[kvφ

z ] [Evφ
]dx−αω

∫
Ωx

[δv]>[mz] [v]dx =

βω

∫
∂F Ωx

[δv]>[ fz]dx+
n−1

∑
i=1

[
α

i
ω

∫
Ωx

[δv]>[µ i
z][v̄

i]dx

−γ
i
ω

∫
Ωx

[δEv]
>[σ vvi

z ][Ē i
v ]dx+θ

gφ i

ω

∫
Ωx

[δEv]
>[σ vφ i

z ][Ē i
vφ
]dx
]

(3.30a)

−θω

∫
Ωx

[δEvφ
]>[kφv

z ] [Ev]dx−ηω

∫
Ωx

[δEvφ
]>[kφφ

z ] [Evφ
]dx =

n−1

∑
i=1

[
θ

φgi

ω

∫
Ωx

[δEvφ
]>[σφvi

z ][Ē i
v ]dx+η

i
ω

∫
Ωx

[δEvφ
]>[σφφ i

z ][Ē i
vφ
]dx
]

(3.30b)

where the coefficients integrated in the Ωz domain are

[kvv
z ] =

∫
Ωz

[Σ̃z]
>[C][Σ̃z]dz, [kvφ

z ] =
∫

Ωz

[Σ̃z]
>[e]>[Σ̃φ

z ]dz,

[kφv
z ] =

∫
Ωz

[Σ̃φ

z ]
>[e][Σ̃z]dz, [kφφ

z ] =
∫

Ωz

[Σ̃φ

z ]
>[ε][Σ̃φ

z ]dz,

[σ vvi

z ] =
∫

Ωz

[Σ̃z]
>[C][Σ̄i

z]dz, [σ vφ i

z ] =
∫

Ωz

[Σ̃z]
>[e]>[Σ̄φ i

z ]dz,

[σφvi

z ] =
∫

Ωz

[Σ̃φ

z ]
>[e][Σ̄i

z]dz, [σφφ i

z ] =
∫

Ωz

[Σ̃φ

z ]
>[ε][Σ̄φ i

z ]dz,

[mz] =
∫

Ωz

[F̃ ]>ρ [F̃ ]dz, [µ i
z] =

∫
Ωz

[F̃ ]>ρ [F̄ i]dz,

[ fz] =
∫

∂F Ωz

[F̃ ]>[ fd ]dz (3.31)

and the ones integrated in the load frequency domain are expressed by Eq. 3.28.
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3.4 Finite element discretization

3.4 Finite element discretization

To numerically compute the solution, a discrete representation of the unknown functions
is addressed. For the load frequency domain, a uniform discretization of the interval
[ωmin,ωmax] is set up. The elementary vectors of DOFs associated with the mesh in ω are
[qg

h],[q
gφ

h ]. On the other hand, a classical FE approximation is used in domains Ωx and Ωz.
The elementary vectors of DOFs associated with the mesh in Ωx and Ωz are [qv

e],[q
vφ

e ] and
[q f

k ],[q
fφ
k ] respectively. Under these assumptions, unknown functions and derived fields

are approximated as follows

[ve] = [Nx][q
v
e], [E e

v ] = [Bx][q
v
e], [vφe

] = [Nφx][q
vφ

e ], [Ee
vφ
] = [Bφx][q

vφ

e ]

[ fk] = [Nz][q
f
k ], [E k

f ] = [Bz][q
f
k ], [ fφk

] = [Nφz][q
fφ

k ], [Ek
fφ
] = [Bφz][q

fφ

k ]

[gh] = [Nω ][q
g
h], [gφh

] = [Nφω ][q
gφ

h ] (3.32)

where the matrices [Nx],[Nφx],[Bx] and [Bφx] contain the shape functions and their deriva-
tives for the problem on Ωx and analogously for the other domains. The total number of

elements in [ωmin,ωmax] =
nω⋃

h=1

ω
h, Ωx =

nx⋃
e=1

Ω
e
x and Ωz =

nz⋃
k=1

Ω
k
z domains are denoted as

nω , nx and nz, respectively. Note that the interpolation can be different for each domain
and also for the mechanical and electric unknowns separately. The introduction of the
discretization in Eq. 3.30 lead to the electro-mechanical linear system on Ωx domain([

[Kvv] −[Kvvφ
]

−[Kvvφ
]> −[Kvφ vφ

]

]
−
[
[Mv] [0̄]

[0̄] [0̄]

]) [qv]

[qvφ ]

=

[
[Fv]+ [R f ]

[Rvφ
]

]
(3.33)

where

- [qv],[qvφ ] are the vector of DOFs associated with the mesh in Ωx for the mechanical
and electric unknowns respectively.

- [Kvv],[Kvvφ
],[Kvφ vφ

] are the stiffness, electro-mechanical and dielectric matrices
obtained by assembling the elementary matrices [Ke

vv],[K
e
vvφ

],[Ke
vφ vφ

], respectively

[Ke
vv(g̃, f̃ )] =

[
nω

∑
h=1

γω (g̃h)

]∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[kvv
z ( f̃k)]

]
[Bx]dx (3.34)

[Ke
vvφ

(g̃,g̃φ , f̃ , f̃φ )] =

[
nω

∑
h=1

θω (g̃h,g̃φh
)

]∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[kvφ

z ( f̃k, f̃φk
)]

]
[Bφx]dx (3.35)

[Ke
vφ vφ

(g̃φ , f̃φ )] =

[
nω

∑
h=1

ηω (g̃φh
)

]∫
Ωe

x

[Bφx]
>
[

nz

∑
k=1

[kφφ

z ( f̃φk
)]

]
[Bφx]dx (3.36)

- [Mv] is the mass matrix obtained by assembling the elementary mass matrices [Me
v ]

[Me
v (g̃, f̃ )] =

[
nω

∑
h=1

αω (g̃h)

]∫
Ωe

x

[Nx]
>
[

nz

∑
k=1

[mz( f̃k)]

]
[Nx]dx (3.37)
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3.4 Finite element discretization

- [Fv] is the load vector obtained by assembling the elementary load vectors [Fe
v ]

[Fe
v (g̃, f̃ )] =

[
nω

∑
h=1

βω (g̃h)

]∫
∂F Ωe

x

[Nx]
>
[

nz

∑
k=1

[ fz( f̃k)]

]
dx (3.38)

- [Rv],[Rvφ
] are the equilibrium residuals, obtained by assembling the elementary

residual vectors [Re
v],[R

e
vφ
]

[Re
v(g̃, f̃ ,ū,φ̄)] =

n−1

∑
i=1

{[
nω

∑
h=1

α
i
ω (g̃h,ḡ

i
h)

]∫
Ωe

x

[Nx]
>
[

nz

∑
k=1

[µ i
z( f̃k, f̄

i
k)]

]
[v̄i]dx

−
[

nω

∑
h=1

γ
i
ω (g̃h,ḡ

i
h)

]∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[σ vvi

z ( f̃k, f̄
i
k)]

]
[Ē i

v ]dx

+

[
nω

∑
h=1

θ
gφ i

ω (g̃h,ḡ
i
φh
)

]∫
Ωe

x

[Bx]
>
[

nz

∑
k=1

[σ vφ i

z ( f̃k, f̄
i
φk
)]

]
[Ē i

vφ
]dx

}
(3.39)

[Re
vφ
(g̃φ , f̃φ ,ū,φ̄)] =

n−1

∑
i=1

{[
nω

∑
h=1

θ
φgi

ω (g̃φh
,ḡi

h)

]∫
Ωe

x

[Bφx]
>
[

nz

∑
k=1

[σφvi

z ( f̃φk
, f̄ i

k)]

]
[Ē i

v ]dx

+

[
nω

∑
h=1

η
i
ω (g̃φh

,ḡi
φh
)

]∫
Ωe

x

[Bφx]
>
[

nz

∑
k=1

[σφφ i

z ( f̃φk
, f̄ i

φk
)]

]
[Ē i

vφ
]dx

}
(3.40)

Analogously, the introduction of the discretization in the Eq. 3.26 and 3.19 lead to the
next electro-mechanical linear systems on Ωz and ω domains respectively([

[K f f ] −[K f fφ
]

−[K f fφ
]> −[K fφ fφ

]

]
−
[
[M f ] [0̄]

[0̄] [0̄]

])[
[q f ]

[q fφ ]

]
=

[
[Ff ]+ [R f ]

[R fφ
]

]
(3.41)

([
[Kgg] −[Kggφ

]

−[Kggφ
]> −[Kgφ gφ

]

]
−
[
[Mg] [0̄]

[0̄] [0̄]

])[
[qg]
[qgφ ]

]
=

[
[Fg]+ [Rg]

[Rgφ
]

]
(3.42)

where the components have a similar formulation and interpretation to that already pre-
sented for the problem on Ωx domain. The separated representation and reduction in the
DOFs to which the PGD leads is depicted in the diagram of Figure 3.2. The classical
FE approach implies nω resolutions of a 2D problem with nx×nz elements, obtaining a
problem of (nω ×nx×nz) size. On the contrary, the new strategy considering the PGD
methodology involves N iterations of three 1D problems of nω , nx and nz elements, with a
total problem size of N× (nω +nx +nz).
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. . .

sin(ω2t)

sin(ω1t)
(x,z,ω)

a) FE approach.

∑

x

⊗

z

⊗

ω

b) PGD approach.

Figure 3.2 New PGD formulation versus classical 2D layerwise FE approach.

3.5 Numerical tests

This section is dedicated to the dynamic analysis of some piezoelectric composite beams
in order to evaluate the proposed methodology. It should be mentioned that the PGD
method has been successfully used to the harmonic analysis of composite beams [116]
but also to solve static problems of piezoelectric plates [117]. This paper aims to extend
the PGD formulation to the harmonic analysis of piezoelectric composite beams in the
frequency domain. The FRFs are obtained for the first time by using the PGD method
for the piezoelectric problem. In addition, the proposed formulation allows us to identify
the modal parameters, natural frequencies and vibration modes, for both short circuit and
open circuit conditions. In the following numerical test cases, the proposed approach will
be evaluated by first addressing the eigenfrequencies and eigenmodes and subsequently
the FRF.

In these tests, as far as the spatial discretization is concerned, a classical quadratic
FE approximation is considered for both domains Ωx and Ωz. A Gaussian numerical
integration with three points is used to evaluate the elementary matrices and also to
compute the integrals in the load frequency domain. The results are compared with
classical FE solutions and exact elastic solutions or models available in the literature.
The FEA software ansys is also employed to provide reference solutions, considering
a bi-dimensional approach using the PLANE223 element for piezoelectric layers. This
element has eight nodes with up to five DOFs per node. For the non-piezoelectric layers,
the higher order (quadratic) element PLANE183 is considered.

3.5.1 Convergence study of the proposed algorithm

The aim of the present section is to assess the performance of the proposed method to
model coupling piezoelectric problems. In addition, a convergence study to evaluate the
effect of the mesh size on spatial coordinates is addressed. For this purpose, a piezoelec-
tric monomorph beam studied by Fernandes [118] is considered (see Figure 3.3a). The
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3.5 Numerical tests

monomorph beam is analysed assuming cylindrical bending (plane strain), for which the
strains and the electric displacement in the y direction are considered to be negligible
and therefore the columns and vectors in the 3D constitutive matrices associated to the
negligible variables can be directly ignore. Different length to thickness ratios are tested
for both close and open circuit electrical boundary conditions considering different spatial
meshes. The monomorph is made of PZT-4 piezoelectric transversely isotropic ceramic.
The characteristics of the test are described as follows:

◦ Geometry: h = 1mm and three length to thickness ratios S = L/h = 5,10,50.

◦ Material properties:
{C11,C33,C44,C12,C13}= {139,115,25.6,77.8,74.3}GPa,
{e15,e31,e33}= {12.7, −5.2,15.1}C/m2,
{ ε11, ε33}= {13.06,15.51}×10−9 F/m, ρ = 7550kg/m3.

◦ Boundary conditions: the beam is simply supported at its ends: u3 = 0 ∀z (through
the whole thickness). Two sets of electric boundary conditions are considered:

- Close circuit or short circuit condition (SC), with the potential forced to remain
zero (grounded) at top and bottom surfaces of the monomorph beam.

- Open circuit condition (OC), where the electric potential remains free every-
where.

In order to evaluate the convergence of the proposed methodology, a study with regard
to the mesh size is carried out. The problem is evaluated by considering different meshes,
with a number of nz elements along the thickness. In the longitudinal domain, the size of
the elements is the same as in the thickness direction for each analysis. The numerical
values of the natural frequencies obtained with the PGD method by means of the Eq. 3.23
are compared with results computed with the commercial FEA software ansys using a
very refined mesh obtained after a convergence study and the two-dimensional model
solutions from [118].

Table 3.1 presents the analysis of the first three bending natural frequencies for the very
thick to very thin beams for both open and close circuit conditions. The values of the
natural frequencies computed with ansys are taken as reference to calculate the relative
errors of the solution obtained with the proposed algorithm. It can be inferred that the
convergence rate is rather high. In most cases it is only necessary to consider two numerical
layers to obtain a value with a relative error below 1%. The PGD results show an excellent
agreement with reference values, even closer to those obtained by the Fernandes 2D model
which considers a larger mesh with no spatial separation.
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3.5 Numerical tests

Table 3.1 Convergence study for the first natural frequencies of the monomorph beam.

SC frequency error (%) OC frequency error (%)

S nz f1 f2 f3 cum. f1 f2 f3 cum.

5 2 0.07 0.23 0.48 0.79 1.56 0.08 0.27 1.92
4 0.03 0.07 0.10 0.20 0.21 0.06 0.03 0.30
6 0.03 0.06 0.08 0.16 0.01 0.06 0.03 0.11
8 0.03 0.05 0.07 0.16 0.01 0.06 0.05 0.13

10 0.03 0.05 0.07 0.15 0.02 0.07 0.03 0.12

2D model [118] 0.48 1.07 1.23 2.77 0.28 0.76 1.10 2.15
ansys, Hz 63910.9 219460 416755 - 64191.7 221862 422847 -

10 2 0.02 0.06 0.13 0.21 0.01 0.04 0.10 0.15
4 0.01 0.02 0.03 0.05 0.00 0.01 0.01 0.01
6 0.01 0.01 0.03 0.05 0.05 0.01 0.01 0.07
8 0.00 0.02 0.03 0.05 0.00 0.01 0.01 0.02

2D model [118] 0.12 0.37 0.64 1.13 0.08 0.27 0.51 0.87
ansys, Hz 16797.2 63843.1 133694 - 16823.8 64185.4 134967 -

50 1 0.01 0.03 0.07 0.11 0.01 0.03 0.07 0.11
2 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

2D model [118] 0.01 0.03 0.05 0.09 0.01 0.02 0.04 0.08
ansys, Hz 684.116 2730.13 6119.17 - 684.169 2730.95 6123.36 -

PZT-4

P

•
PZT-5

a) monomorph beam

0◦

90◦

0◦
•

PZT-5

0.225h0.225h

0.45h

0.225h
0.1h

b) laminated beam

face

core

face
•

PZT-5

0.1h

0.7h

0.1h
0.1h

0.7h

c) sandwich beam

Figure 3.3 Beam tests configuration.
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3.5.2 Laminated beam

In this section, a symmetric composite cross-ply beam with a piezoelectric layer bonded
to its top analyzed in references [111, 119] is considered. The beam is depicted in Figure
3.3b. The aim of this analysis is to assess the performance of the proposed method to
model piezoelectric laminated beams with different length to thickness ratios, for both
open and close circuit conditions. The characteristics of the tests are described as follows:

◦ Geometry: lamination scheme [pz/0◦/90◦/0◦] with 0.1h/0.225h/0.45h/0.225h
of relative thickness, where pz indicates the piezoelectric layer. Four length to
thickness ratios from thick to very thin beams with S = 5,10,20,100.
◦ Material properties: The substrate of the beam is made of graphite-epoxy with

the following properties,where subscripts L and T refer to the fiber and transverse
direction respectively:
{EL,ET ,GLT ,GT T}= {181,10.3,7.17,2.87}GPa,
{νLT ,νT T}= {0.28,0.33},ρ = 1578kg/m3.

The piezoelectric layer is made of PZT-5A transversely isotropic ceramic:
{E1,E3,G23}= {61.0,53.2,21.1}GPa, {ν12,ν13}= {0.35,0.38},ρ = 7600kg/m3,

{d31,d33,d15}= {−171,374,584}×10−12 m/V,
{ε11, ε33}= {1.53,1.50}×10−8 F/m.

◦ Boundary conditions: the beam is simply supported at its ends. Two sets of electric
boundary conditions are considered for the inner surfaces:

- Open circuit condition (OC), where the electric potential remains free, excepted
on the inner surface of the piezoelectric layer where it is forced to be zero.

- Close circuit or short circuit condition (SC), with the potential forced to remain
zero (grounded) at the outer and inner surfaces of the piezoelectric layer.

The results of the natural frequencies are presented under a dimensionless value com-
puted as ω = ωnLS

√
(ρ0/Y0), with ρ0 = 1578kg/m3 and Y0 = 10.3GPa corresponding

to the graphite-epoxy substrate. The vibration mode type is denoted as bend, sh and t/c
for bending, shear and extensional modes, respectively. The numerical values obtained
with the PGD method are compared with results computed with the Coupled Refined
Layerwise Theory (CRLT) presented in [119], consisting of a coupled refined global-local
FE model for which all the kinematic and stress continuity conditions are satisfied at
the layer interfaces in the presence of non-zero in plane electric field component. Exact
three-dimensional elasticity solution shown in [119], which has been derived from the
study by Heyliger and Brooks in 1995 [120], is taken as a reference. Table 3.2 presents
the values of the dimensionless natural frequencies for the thick to very thin beams, for
the open circuit electrical condition. The first six bending frequencies as well as the
extensional and shear modes are compared with the exact three-dimensional elasticity
solution. These results show the excellent agreement with reference values for all types
of modes. The maximum relative error is 0.6 %, although most of them are below 10−4

expressed in times one.

55



3.5 Numerical tests

Table 3.2 OC dimensionless natural frequencies of laminated beam.

S Mode type Exact 3D Present Error (%) CRLT [119] CRLT error (%)

5 bend 5.534 5.535 0.0 5.659 2.3
bend 13.625 13.609 0.1 13.973 2.6
bend 22.058 21.929 0.6 22.698 2.9
bend 30.709 30.712 0.0 32.096 4.5
bend 39.392 39.311 0.2 42.291 7.4
bend 47.990 48.122 0.3 53.263 11.0
t/c 37.203 37.219 0.0 38.091 2.4
sh - 37.337 - 37.634 -
sh 58.447 58.450 0.0 61.708 5.6

10 bend 7.443 7.470 0.4 7.525 1.1
bend 22.137 22.138 0.0 22.637 2.3
bend 38.128 38.129 0.0 39.108 2.6
bend 54.502 54.481 0.0 55.896 2.6
bend 71.214 71.225 0.0 73.072 2.6
bend 88.232 88.237 0.0 90.807 2.9
t/c 78.293 78.266 0.0 78.846 0.7
sh - 149.389 - 150.533 -
sh 177.107 176.418 0.4 178.656 0.9

20 bend 8.370 8.372 0.0 8.400 0.4
bend 29.770 29.770 0.0 30.103 1.1
bend 57.829 57.802 0.0 58.874 1.8
bend 88.550 88.551 0.0 90.553 2.3
bend 120.290 120.181 0.1 123.292 2.5
bend 152.514 152.569 0.0 156.456 2.6
t/c 159.334 159.341 0.0 159.641 0.2
sh - 595.256 - 602.129 -
sh 627.418 627.449 0.0 631.793 0.7

100 bend 8.754 8.755 0.0 8.755 0.0
bend 34.812 34.802 0.0 34.834 0.1
bend 77.578 77.579 0.0 77.688 0.1
bend 136.121 136.094 0.0 136.459 0.2
bend 209.246 209.247 0.0 210.048 0.4
bend 295.585 295.693 0.0 297.194 0.5
t/c 801.586 801.587 0.0 801.651 0.0
sh 14965.634 15057.896 0.6 15083.435 0.8

The values of the dimensionless natural frequencies for the short circuit condition are
shown in Table 3.3. The first six bending frequencies as well as the extensional and shear
modes are compared with the exact 3D elasticity solution. The maximum relative error is
also 0.6 %, but in general these errors are higher than those obtained for the open circuit
condition. In any case, the results show a very good fit with respect to the reference values
and mainly improve those obtained with the CRLT, especially for the thick case.
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Table 3.3 SC dimensionless natural frequencies of laminated beam.

S Mode type Exact 3D Present Error (%) CRLT [119] CRLT error (%)

5 bend 5.517 5.536 0.3 5.643 2.3
bend 13.589 13.599 0.1 13.943 2.6
bend 22.002 21.914 0.4 22.645 2.9
bend 30.635 30.712 0.3 32.010 4.5
bend 39.307 39.311 0.0 42.164 7.3
bend 47.901 48.023 0.3 53.095 10.8
t/c 37.034 37.211 0.5 37.923 2.4
sh - 37.338 - 37.633 -
sh 58.404 58.452 0.1 61.681 5.6

10 bend 7.412 7.443 0.4 7.496 1.1
bend 22.066 22.138 0.3 22.572 2.3
bend 38.020 38.129 0.3 39.015 2.6
bend 54.355 54.480 0.2 55.772 2.6
bend 71.027 71.225 0.3 72.908 2.6
bend 88.006 87.992 0.0 90.593 2.9
t/c 78.031 78.183 0.2 78.585 0.7
sh - 149.612 - 150.533 -
sh 177.022 177.617 0.3 178.585 0.9

20 bend 8.331 8.372 0.5 8.361 0.4
bend 29.648 29.771 0.4 29.982 1.1
bend 57.620 57.802 0.3 58.676 1.8
bend 88.264 88.551 0.3 90.290 2.3
bend 119.930 120.181 0.2 122.973 2.5
bend 152.080 152.778 0.5 156.083 2.6
t/c 158.870 159.351 0.3 159.178 0.2
sh - 595.256 - 602.128 -
sh 627.313 627.449 0.0 631.696 0.7

100 bend 8.711 8.754 0.5 8.712 0.0
bend 34.640 34.784 0.4 34.664 0.1
bend 77.202 77.579 0.5 77.313 0.1
bend 135.474 136.114 0.5 135.813 0.2
bend 208.269 209.252 0.5 209.074 0.4
bend 294.235 295.598 0.5 295.849 0.5
t/c 799.373 801.587 0.3 799.438 0.0
sh 14965.520 14882.606 0.6 15083.327 0.8

Figure 3.4 represents the first ten vibration modes for the thick beam considering short
circuit condition. The PGD algorithm is able to detect not only bending modes, but also
extensional, shear and thickness modes with complex displacement distribution along
either the beam axis or the thickness.
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Mode 1, ω = 5.54 Mode 2, ω = 13.60

Mode 3, ω = 21.91 Mode 4, ω = 30.71

Mode 5, ω = 37.21 Mode 6, ω = 37.34

Mode 7, ω = 39.31 Mode 8, ω = 48.02

Mode 9, ω = 58.45 Mode 10, ω = 60.43

Figure 3.4 SC PGD solution for the laminated beam (pz/0◦/90◦/0◦) with S = 5.

3.5.3 Sandwich beam

To evaluate the PGD algorithm for solving coupled piezoelectric problems in beams with
layers of very different properties, this test consists of a sandwich beam composed of two
graphite-epoxy faces and a soft core with a PZT-5A layer bonded to its top as shown in
Figure 3.3c. Additionally, the proposed formulation is validated to solve problems under
different boundary conditions. This comprehensive test is also analysed in [111, 119]:

◦ Geometry: Thickness of the piezoelectric layer and face sheets are 0.1h while
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3.5 Numerical tests

thickness of the core is assumed to be 0.7h. Three length to thickness ratios are
analysed: S = 5,10,20.

◦ Material properties: The face sheets are made of graphite-epoxy with the following
properties
{EL,ET ,GLT ,GT T}= {131.1,6.9,3.588,2.3322}GPa,
{νLT ,νT T}= {0.32,0.49}, ρ = 1000kg/m3.

The material properties of the soft core are:
{E1,E2,E3,G12,G13,G23}= {0.2208,0.2001,2760,16.56,545.1,455.4}MPa,
{ν12,ν13,ν23}= {0.99,0.00003,0.00003}, ρ = 70kg/m3.

◦ Boundary conditions: Three different support cases are considered; simply support,
cantilever and clamped, under open circuit electrical boundary conditions.

In Tables 3.4, 3.5 and 3.6, the natural frequencies are also presented under a dimension-
less value computed as ω =ωnLS

√
(ρ0/Y0), with ρ0 = 1000kg/m3 and Y0 = 6.9GPa. The

numerical values obtained with the PGD method are compared with results of the coupled
refined theory in [119] and the results computed with the commercial FEA software ansys
using a very refined mesh, except for the simply support case for which the exact 3D
solution is also provided in the previous reference. It should be mentioned here that for
the cantilever and the clamped beam tests it is required to build simutaneously 2-tuple in
order to achieve accurate results as in [121]. Further information on this technique can be
also found in [122, 123].

Table 3.4 OC dimensionless natural frequencies of simply support sandwich beam.

S Mode type Exact 3D Present Error (%) CRLT [119] CRLT error (%)

5 bend 3.974 3.974 0.01 4.258 7.1
bend 8.962 8.963 0.01 9.153 2.1
bend 14.344 14.353 0.07 13.291 7.3

10 bend 6.221 6.221 0.00 6.538 5.1
bend 15.895 15.892 0.02 17.035 7.2
bend 25.729 25.728 0.00 27.173 5.6
bend 35.847 35.853 0.02 36.694 2.4
bend 46.384 46.407 0.05 45.541 1.8
bend 57.375 57.409 0.06 53.633 6.5
sh 62.168 62.167 0.00 62.535 0.6

20 bend 7.866 7.877 0.14 8.026 2.0
bend 24.883 24.880 0.01 26.154 5.1
bend 44.087 44.084 0.01 47.082 6.8
bend 63.581 63.574 0.01 68.148 7.2
bend 83.159 83.155 0.00 88.739 6.7
bend 102.916 102.918 0.00 108.747 5.7
sh 131.774 131.776 0.00 132.315 0.4
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3.5 Numerical tests

Table 3.5 OC dimensionless natural frequencies of cantilever sandwich beam.

S Mode type ansys Present Error (%) CRLT [119] CRLT error (%)

5 bend 1.880 1.885 0.3 1.989 5.8
bend 6.144 6.181 0.6 6.433 4.7
bend 11.618 11.732 1.0 11.436 1.6
t-c 15.400 15.416 0.1 - -

bend 17.448 17.666 1.2 14.847 14.9

10 bend 2.592 2.595 0.1 2.670 3.0
bend 9.987 10.019 0.3 10.624 6.4
bend 20.393 20.467 0.4 21.656 6.2
bend 30.165 30.524 1.2 31.289 3.7
t-c 33.327 33.401 0.2 - -

bend 41.120 41.665 1.3 41.404 0.7
bend 51.841 52.277 0.8 50.064 3.4

20 bend 2.967 2.968 0.0 2.997 1.0
bend 14.661 14.678 0.1 15.299 4.3
bend 32.959 33.018 0.2 34.951 6.0
bend 52.321 52.450 0.2 55.911 6.9
t-c 67.506 67.551 0.1 - -

bend 72.436 72.354 0.1 77.303 6.7
bend 92.277 92.315 0.0 98.001 6.2

Table 3.6 OC dimensionless natural frequencies of clamped sandwich beam.

S Mode type ansys Present Error (%) CRLT [119] CRLT error (%)

5 bend 4.849 4.858 0.2 5.152 6.3
bend 9.995 10.087 0.9 10.055 0.7
bend 15.700 15.748 0.3 14.332 8.6

10 bend 8.520 8.485 0.4 9.122 7.8
bend 17.477 17.427 0.3 18.561 7.0
bend 27.636 27.642 0.0 28.797 5.0
bend 38.124 38.052 0.2 38.517 1.8
bend 49.090 48.891 0.4 47.602 2.3
bend 60.368 60.262 0.2 55.820 6.8

20 bend 13.534 13.452 0.6 14.181 5.6
bend 29.351 29.215 0.5 31.228 7.1
bend 47.751 47.550 0.4 50.990 7.5
bend 67.019 66.753 0.4 71.473 7.3
bend 86.793 86.452 0.4 91.982 6.6
bend 106.895 106.617 0.3 112.103 5.5
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3.5 Numerical tests

Figure 3.5 is designed to show the potential of the new robust variational formulation to
find the solution for a set of the load frequency within an interval [ωmin,ωmax]. In the graph,
the FRF of the electromechanical problem is plotted. It shows the agreement between
the amplitude of the displacements and the voltage response calculated both through a
harmonic analysis in ansys and using the PGD formulation.
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Figure 3.5 FRF at the top at x = L/3 for the clamped sandwich beam with S = 10.

The former semi-logarithmic representation allow us to detect the anti-resonance peaks.
This particular feature can be used to evaluate the validity of the computed FRF using
the PGD method. In particular, Figure 3.5 represents the FRF of vertical and horizontal
displacements and voltage separately, for the clamped sandwich beam under a vertical
harmonic point load placed at x = L/2. Only the response at the top at x = L/3 of the beam
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with a slenderness ratio of S = 10 is represented. In this case, there are six bending modes
in the frequency range under consideration, as it is remarked in Table 3.6. Nevertheless,
only the symmetrical vibration bending modes (odd modes) can be distinguished in this
graphical representation. This is due to the fact that the vibration nodes of the anti-
symmetric bending modes (even modes) are located at the central line of the beam where
the load is applied. As a general remark, the highest frequencies occur for the clamped
beam and the lowest values are obtained for the cantilever beam (clamped/free case). The
natural frequencies obtained with the PGD method are almost always lower than those of
the couple refined layerwise model with continuous inter-laminar stresses (CRLT) and the
differences with the reference values remain always low. The maximum relative error is
1.3 % and the average relative error does not exceed 0.3 % for the three cases of boundary
conditions considered. This is especially remarkable for the simply supported beam, for
which the result of the PGD model achieves a really high accuracy compared to the exact
three-dimensional elastic solution. In this case, the average error obtained with the PGD
methodology is 0.02% while that achieved by the CRLT model is almost 5%.

3.6 Conclusions

The main goal of this paper is to extend the PGD formulation to multi-field analysis in
solid mechanics for the forced vibration problems. A new formulation based on the PGD
method applied to bidimensional piezoelectric laminated beams is developed. A harmonic
space-frequency description of the dynamic problem is first considered and a variable
separation in the spatial domain is introduced. For both spatial coordinates x (beam axis
coordinate) and z (thickness coordinate), a classical 3-node FE is used in the discretization.
In addition, the load frequency is also introduced as a problem variable. The derived
iterative methodology implies the computation of three 1D problems for each enrichment
step used to represent the solution. The fixed-point method is employed to obtain the
results for each of the N enrichment steps. The advantages of the proposed algorithm
become relevant when the number of numerical layers increases and greater precision is
required. In these cases the number of DOFs in the classical formulation of the problem
grows exponentially and the separation of variables becomes a very useful tool to reduce
the order and limit the computational cost. Here, the potential of the PGD formulation has
been demonstrated by the accuracy of its results.

The proposed formulation has been validated through several numerical tests, including
different composite and sandwich beam configurations with a great variety of slenderness
ratios and boundary conditions. The current study show the potential of the approach to
evaluate all kinds of mode shapes, including complex thickness modes with non-uniform
displacement distribution along x and z axis. This is achieved by the LW approach. In
addition, the method has been proved to be successful in detecting even small variations
in natural frequencies derived from different electrical boundary conditions, such as short
circuit and open circuit conditions. This opens up the possibility of confidently introducing
electrical loads into the formulation, by adding an equivalent capacitance matrix to the
dielectric matrix as in reference [124]. This would lead to the extension of the PGD
approach to the parametric modelling of bimorph PEHDs.
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4.1 Introduction

Energy harvesting from ambient vibration sources for use in powering low energy electronic
devices has become the focus of numerous scientific studies over recent decades, from
the earliest approaches [125] to the latest challenges consideration [126]. The use of
energy harvesting devices is increasingly required, especially in targets where the use of
batteries is either indispensable or desirable. The limited lifetime, high maintenance costs
and the environmentally harmful recycling process of batteries justify this new paradigm.
WSNs used in SHM systems represent one of the promising applications [13, 14]. Poulin
et al. [127] conducted a comparative study of electromagnetic and piezoelectric energy
harvesting mechanisms from low-frequency vibration systems to power portable devices.
In this field, energy harvesting from a vibrating piezoelectric device was established as
a leading methodology [128, 129]. Almost all of the published results that focus on the
piezoelectric effect as the transduction method propose resonance-based devices, mainly
cantilever beams. Many of the early references proposed methods to optimise the system
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parameters in order to maximise the harvested energy [130–132]. The reader is referred to
recent articles for comprehensive details and latest trends [133, 134]. Cai and Zhu [135]
presented a review focusing on simultaneous vibration control and energy harvesting, a
challenging topic in structural dynamics.

One of the key concerns in the design of a piezoelectric harvester is to ensure that it
matches the ambient excitation from which it is intended to harvest energy. Ambient
vibration is usually classified into two categories: i) narrow band excitations, ii) broadband
excitations. The former are modelled deterministically while the latter are usually analysed
as random processes. Vibration-based energy harvesting from deterministic excitations
have been the focus of many research works over the last two decades [136]. One of the main
references on this subject is the book by Erturk and Inman [19]. Although some reflections
on the random nature of ambient excitation had appeared earlier [137], Lefeuvre et al. [138]
were probably the first to consider random vibration in the energy harvesting framework.
Most of the early studies on energy harvesting from random vibrations considered Gaussian
broadband excitation of harvesters [139–141]. However, references dealing with non-
stationary vibrations can also be found in the literature [142, 143], as well as proposals
on how to analyse the results of the harvested power from random vibrations, usually
performed using the mean and standard deviation of the output voltage. Adhikari et al.
[144] proposed an alternative approach based on the statistics of the peak voltage to analyse
energy harvesters under random excitation. Another particular application involving the
energy harvesting from the vibration of suspension bridge cables was considered by Shen
et al. [145]. The above authors address the modelling of a device with simultaneous
vibration control and energy harvesting functions [146].

A particular case of random excitation for energy harvesting would be the vibration of a
host structure. In this context, vibration energy harvesting from bridge vehicle interaction
has received considerable attention [147, 148]. Many references consider the harvested
energy from vibration in beams generated by single moving loads [76, 149, 150], multi-
moving loads [151] or even more complex models for moving vehicles [152, 153]. Among
the few experimental studies on energy harvesting from bridge vibration, worth mentioning
are the works by Peigney and Siegert [154] and by Kaur et al. [155]. In the latter, the
application of direct piezoelectric conversion to harvest energy from both ambient structural
vibrations and wind flow are addressed. Cahill et al. [156] experimentally studied energy
harvesting from train-induced vibration and its application in SHM. Romero et al. [157]
used an approach based on modal decomposition for this problem. Demartino et al. [158]
presented a feasibility study of energy harvesting from pedestrian-induced vibrations on
footbridges.

The novelty of this work lies in the use of real measured traffic-induced vibration
response of structures as excitation in the power generation estimation of a well-established
piezoelectric energy harvester model. This is the main breakthrough as the optimal design
and analysis of energy harvesters is usually performed considering broadband Gaussian
white noise or even ideal harmonic excitations. This paper develops new approaches for
the design and feasibility study of piezoelectric vibration energy harvesters based on the
experimentally measured spectral density of bridge acceleration. Therefore, the excitation
of the system is not assumed to be a broadband Gaussian white noise but a real vibration of
a host structure. A new semi-analytic formulation of the expected power is proposed after
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introducing the well-known Single Degree Of Freedom (SDOF) electromechanical model
of the harvester. After this theoretical background, an experimental study of a bowstring
highway bridge located in Córdoba (Spain) is presented. A complete study of the expected
power for both operational and ambient vibration cases is addressed. These two situations
correspond to the bridge open to regular traffic and the bridge closed to traffic, respectively.
Finally, a parametric sensitivity study is carried out in order to optimise the mass of the
harvester according to the base excitation due to the bridge acceleration.

4.2 Equivalent electro-mechanical model

A complete general description of the piezoelectric vibration-based energy harvesting
system is shown in Figure 4.1. The harvesting from the bridge vibration is performed
by the piezoelectric conversion mechanism, mathematically described by the material’s
constitutive equations. A power-management circuit is used to convert the AC voltage
across the piezoelectric device to a usable DC voltage across a storage capacitor (or battery).
The sensor node is represented by a DC load, hereafter referred to as RL.

Piezo

Power Management Circuit

Rectifier
DC-DC

Converter

Control

Regulator

Energy 

Storage
Bridge

Vibration

Sensor

Node

Figure 4.1 General electronic circuit for piezoelectric energy harvesting systems.

For a beam configuration of the PEHD with a proof mass at the tip end, a SDOF model is
widely employed in the literature. This model is depicted in Figure 4.2, where x represents
the tip displacement and xb is the random base excitation.

Proof Mass

Base

Piezo-ceramicEnergy harvesting

electrical circuit

Figure 4.2 Schematic diagram of the piezoelectric energy harvester.
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Although the model developed in this paper is for a piezoelectric harvester, Arroyo
et al. [159] showed that both piezoelectric and electromagnetic harvesters give equivalent
equations for a harvester active in a single mode. The choice of physical mechanism for
a given application will depend on many issues, such as the power required, maximum
additional mass, size limits, and the frequency spectrum of the excitation. However, the
equivalence of the harvester models means that the conclusions reached in this paper for a
piezoelectric harvester will also apply to an electromagnetic harvester.

4.2.1 PEHD time domain equations

The coupled electromechanical behaviour of the PEHD may be expressed by the linear
ordinary differential equations

mẍ(t)+ c ẋ(t)+ k x(t)−θ v(t) = fb(t) (4.1a)
i(t) =−θ ẋ(t)−Cp v̇(t) (4.1b)

Eq. 4.1a is the Newton’s equation of motion for a SDOF system, where m, c, k are
the equivalent mass, damping and stiffness of the harvester. The mechanical force is
modelled as proportional to the voltage across the piezoceramic, v(t). Eq. 4.1b describes
the electrical circuit, where the current i(t) arises from the mechanical strain through
the electromechanical coupling or force factor, θ , and the blocking capacitance of the
piezoelectric insert, Cp. The reader is referred to the book by Erturk and Inman [19] for a
comprehensive analysis of this and other equivalent electromechanical harvesters models.
In this work the bridge vibration is used as the base excitation, and hence

fb(t) =−mẍb(t) (4.2)

According to Kirchhoff’s current law for the case of a load resistance (RL), the voltage
is expressed as v(t) = RL i(t) and the electromechanical equations can be rewritten as

ẍ(t)+
c
m

ẋ(t)+
k
m

x(t)− θ

m
v(t) =−ẍb(t) (4.3a)

θ

Cp
ẋ(t)+ v̇(t)+

1
CpRL

v(t) = 0 (4.3b)

Note that, for an external electrical load close to short circuit conditions (very low
external load impedance), the problem can be considered as very close to being electrome-
chanically uncoupled (i.e., having negligible force factor θ ) and the problem is greatly
simplified. Some authors propose to approach the problem using correction factors to
improve the predictions of the uncoupled system [150]. These two coupled equations can
be expressed in the state-space form as

dz1(t)
dt

= A1 z1(t)+B1 ẍb(t) (4.4)

where the state-vector and the corresponding coefficient matrices are, respectively

z1(t) =

 x(t)
ẋ(t)
v(t)

 (4.5)
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A1 =



0 1 0

− k
m
− c

m
θ

m

0 − θ

Cp
− 1

Cp RL

 ,B1 =


0

−1

0

 (4.6)

Eq. 4.4 can be solved with suitable initial conditions and the elements of the state-vector
can be obtained. The aim of this paper is to analyse the problem when the forcing function
is a random process; particularly the actual vibration of a highway bridge, both under
normal operation and environmental excitation.

4.2.2 PEHD frequency domain equations

The response variables of the problem and the base excitation may also be considered in
the frequency domain

x(t) = X(ω)eiωt , v(t) =V (ω)eiωt , fb(t) = Fb(ω)eiωt (4.7)

where X(ω), V (ω) and Fb(ω) are the Fourier transforms of x(t), v(t) and fb(t), respec-
tively. Note that the base excitation fb(t) is usually measured experimentally in terms of
acceleration (g units). For this reason, it is convenient to express the equations using time
or frequency domain acceleration form

Fb(ω) =−mẌb(ω) (4.8)

Defining the natural frequency of the harvester, ωn =
√

k/m, and the damping factor,
ζ = c/2mωn, the coupled electromechanical problem defined by Eq. 4.3a and 4.3b can
be expressed in the frequency domain as(

ω
2
n +2iωζ ωn−ω

2
)

X(ω)− θ

m
V (ω) =−Ẍb (4.9a)

iωθ

Cp
X(ω)+

(
iω +

1
CpRL

)
V (ω) = 0 (4.9b)

The solution is

 X(ω)

V (ω)

=
1

∆1


iω +

1
CpRL

θ

m

−iωθ

Cp
ω

2
n +2iωζ ωn−ω

2


−Ẍb

0

 (4.10)
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The determinant ∆1 is defined as

∆1 =−αiω3− (2αζ +1)ωnω
2 +(α +κ

2
α +2ζ )ω2

n iω +ω
3
n (4.11)

where the non-dimensional electromechanical coupling coefficient κ , and the time constant
of the first-order electrical system are defined as

κ
2 =

θ
2

kCp
and α = ωn Cp RL (4.12)

Hence, given an acceleration input of the bridge, ẍb(t), and transforming to the frequency
domain Ẍb(ω), the harvester tip displacement, X(ω), and voltage output, V (ω), can be
straightforwardly obtained in the frequency domain as

X(ω) =− (iωα +ωn)

∆1
Ẍb(ω) (4.13)

V (ω) =
iωαθ

Cp ∆1
Ẍb(ω) (4.14)

The frequency response function H(ω) is defined as the transfer function evaluated
along the frequency axis, and represents the relation between the output and input of a linear
system. For the problem concerned, Hx ẍb

(ω) represents the frequency response function
between the harvester tip displacement and the base excitation (in terms of acceleration),
and, Hv ẍb

(ω) the frequency response function between the output voltage and the base
excitation, which can be expressed as

Hx ẍb
(ω) =

X(ω)

Ẍb(ω)
=− iαω +ωn

∆1
(4.15)

Hvẍb
(ω) =

V (ω)

Ẍb(ω)
=

iωαθ

Cp ∆1
(4.16)

Hence, the relation between output voltage and harvester tip displacement in the fre-
quency domain is given by the frequency response function Hvx(ω) and defined as

Hvx(ω) =
V (ω)

X(ω)
· Ẍb(ω)

Ẍb(ω)
=

Hvẍb
(ω)

Hxẍb
(ω)

=
−iωαθ

Cp(iαω +ωn)
(4.17)

This expression may also be obtained directly from Eq. 4.9b.

4.3 Energy harvesting conversion for traffic-induced excitation

The total energy from the harvester due to base acceleration excitation can be estimated as

E =
∫

∞

0

v2(t)
RL

dt (4.18)

where v(t) is the voltage across the load resistor, RL. Since the interest lies in the amount
of energy consumed per unit time, the harvested power is considered, given by

P(t) =
v2(t)
RL

(4.19)
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Power is in general a non-Gaussian random process. To understand the efficiency and
long-term reliability of an energy harvester, it is necessary to quantify statistically the
harvester power. In this paper, the focus is particularly on the expected harvested power
given by

E[P] = E

[
v2(t)
RL

]
=

E[v2(t)]
RL

(4.20)

As seen in the previous section, for a linear energy harvesting system, the voltage output
in the frequency domain can be expressed in the form

V (ω) = Hvẍb
(ω) Ẍb(ω) (4.21)

It can be shown that the spectral density of the voltage, SV (ω), is related to the spectral
density of the base acceleration SẌb

(ω) by

SV (ω) = Hvẍb
H∗vẍb

SẌb
(ω) =

∣∣Hvẍb
(ω)
∣∣2 SẌb

(ω) (4.22)

where (∗) denotes the complex conjugate. Thus, in the steady-state (large t), it is obtained

σ
2
v = E[v(t)2] =

∫
∞

−∞

SV (ω)dω =
∫

∞

−∞

∣∣Hvẍb
(ω)
∣∣2 SẌb

(ω)dω (4.23)

For a base excitation represented by a Gaussian white noise, the expression for the
expected power is [139]

E[P] =
πακ

2S0
(2ζ α2 +α)κ2 +4ζ 2 α +(2α2 +2)ζ

(4.24)

since the forcing function has constant spectral density S fb(ω) = S0. The base acceleration,
ẍb(t), cannot be assumed to be a Gaussian white noise, so that its spectral density SẌb

(ω)
is not constant with respect to frequency. However, ẍb(t) can be measured from bridge
vibrations with experimental tests under operational conditions. In order to have a proper
frequency resolution, the experimental tests should be sampled with a high frequency (e.g.
fs = 211 = 2048Hz). If Nyquist’s theorem is considered, the integral in Eq. 4.23 can be
approximated by

σ
2
v ≈ 2

∫
π fs

0

∣∣Hvẍb
(ω)
∣∣2 SẌb

(ω)dω = 2In (4.25)

where SẌb
(ω) is known (i.e. experimentally measured) and is represented by a discrete

scalar value for every sampled frequency. Using the expression of the frequency response
function indicated by Eq. 4.16, the previous integral is now defined as

In =
∫

π fs

0

∣∣Hv ẍb
(ω)
∣∣2 SẌb

(ω)dω =

(
αθ

Cp

)2 ∫
π fs

0

ω
2 SẌb

(ω)

∆1(ω)∆∗1(ω)
dω (4.26)

The above integral cannot be solved analytically since SẌb
(ω) is a discrete random

function evaluated from experimental tests on the bridge. The harvested power can be
evaluated in a discrete form by using numerical integration (e.g. trapezoid rule) as

E[P]≈ 2
RL

(
αθ

Cp

)2 [π fs]

∑
j=0

ω
2
j

∆1(ω j)∆
∗
1(ω j)

SẌb
(ω j)∆ω (4.27)
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4.4 Experimental study on Palma del Río bridge

A panoramic view of the highway bridge used as the case study is shown in Figure 4.3. It
is located in Palma del Rı́o (Córdoba, Spain), over the Guadalquivir river. The bridge was
opened to traffic in 2008. It is a bowstring arch, 130 m long simply supported span. It was
designed as a steel-composite solution consisting of two inclined steel bowstring arches
and a composite deck. The inclination of the arches is 68.8 degrees and it has a parabolic
profile with a maximum rise of 25 m. The elements of the steel arches are manufactured
with tubular sections 900×50 mm. The arches are tied by a Network pattern of cables
of 45 mm of diameter, made of steel Y1860. The concrete slab is 16 m width and 0.25 m
thickness, connected to the arches by steel traversal braces. These braces have a variable
cross section defined by double T profiles, following a circular curve of 60 m of radius for
the lower flanges, and a linear variation in the rest. They have a maximum web of 1.25 m
in the center and they are located every 5 m. For further details the reader can consult the
reference by Garcı́a-Macı́as et al. [160].

4.4.1 Test setup

The bridge consists of two traffic lanes and two pedestrian sidewalks on each side of
the deck. These sidewalks were used to place the accelerometers to measure the bridge
vibrations without disrupting the traffic flow. Twelve measurements were taken on working
days under two different situations: with open traffic (operational vibration) and with
closed traffic with vehicles outside the bridge (ambient vibration). Figure 4.4 shows the
points where the measurements were taken and some details of these measurements are
given in Table 4.1.

Figure 4.3 A panoramic view of the Palma del Rı́o bridge.
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•4 •3 •2 •1

← Posadas Palma del Rı́o→

left sidewalk

← traffic lane

traffic lane →

right sidewalk

16.25 m 32.5 m 48.75 m 65 m

Figure 4.4 Acceleration measurement points on the bridge deck.

Table 4.1 Details of vibration measurements on the Palma del Rı́o bridge.

Date (2020) Point Record (min) Traffic status Temp. (◦C)

setup 1 17 Jul. 1 5 open 21.5
setup 2 17 Jul. 1 5 close 22.5
setup 3 17 Jul. 1 5 open 23.6
setup 4 17 Jul. 1 5 open 30.2
setup 5 17 Jul. 1 5 open 32.4
setup 6 17 Jul. 2 5 open 33.5
setup 7 17 Jul. 3 5 open 34.2
setup 8 17 Jul. 4 5 open 35
setup 9 17 Jul. 4 5 close 36
setup 10 16 Oct. 1 30 open 11
setup 11 16 Oct. 1 5 close 13
setup 12 16 Oct. 1 30 open 15

A LMS SCADAS Mobile signal recorder was used to acquire the signal. The sensor
used was a piezoelectric uniaxial accelerometer with very high sensitivity (10 V/g) from
PCB Piezotronics, 393B31 model. The first four minutes of setups 10 and 11 are shown
in Figures 4.5a and 4.5b respectively, to illustrate the measured data. In addition, Figure
4.5c shows the acceleration Acceleration Power Spectral Density (ASD) of setups 10 and
11. In setup 10 the traffic flow was continuous with both cars and other large vehicles,
and a maximum acceleration of 7.25 m/s2 was recorded. In contrast, with the bridge
closed to traffic the acceleration level was reduced to a maximum of 1.55 m/s2. Some
other statistical data of the measurements are given in Table 4.2. For operational vibration
measurements, the average Root Mean Square (RMS) value is around 0.34 m/s2, with a
standard deviation of 0.11 m/s2, while for ambient vibration measurements the average
drops to 0.04 m/s2, with standard deviation 0.01 m/s2. For both cases the coefficient of
variation (CV) is around 30%.
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a) operational condition b) ambient condition

c) ASD

Figure 4.5 Vibration records of the Palma del Rı́o bridge (setups 10 and 11).

Table 4.2 General statistics of vibration measurements on the Palma del Rı́o bridge.

Max. Min. Amplitude RMS value

setup 1 2.4121 -2.4314 4.8435 0.1809
setup 2 0.1981 -0.1984 0.3965 0.0361
setup 3 2.6573 -3.0713 5.7286 0.1933
setup 4 3.1743 -3.1743 6.3487 0.3213
setup 5 3.6959 -3.5234 7.2193 0.3583
setup 6 6.1278 -6.2508 12.3786 0.3865
setup 7 6.9412 -5.7739 12.7151 0.2854
setup 8 8.8632 -8.9458 17.8090 0.5153
setup 9 0.1315 -0.1450 0.2766 0.0264
setup 10 6.9344 -7.2492 14.1836 0.4142
setup 11 1.5501 -1.3878 2.9379 0.0470
setup 12 5.9749 -7.2448 13.2197 0.3958
Note: values are given in m/s2.

72



4.4 Experimental study on Palma del Río bridge

4.4.2 Energy harvesting conversion for traffic-induced excitation

The aim of this paper is to developed a feasibility study on piezoelectric energy harvesting
from the operational vibration of real structures. For this purpose, a cantilever piezoelectric
harvester subject to a forcing function represented by the real vibration measured at the
Palma del Rı́o bridge is evaluated. For this study, a SDOF piezoelectric harvester with the
parameters indicated in Table 4.3 is considered. This model has previously been used in
other similar studies in the literature [144, 161]. The frequency response function between
the base excitation and the output voltage of the device is given in Figure 4.6.

Table 4.3 Parameters of the SDOF piezoelectric harvester for the case study.

Parameter Value Unit

m 9.12×10−3 kg
c 0.218 N s/m
k 4.1×103 N/m
θ −4.57×10−3 N/V

Cp 43×10−9 F
ωn 670.49 rad
fn 106.71 Hz

Ropt,th 34.685 kΩ

ζ 0.0178 -
κ

2 0.1185 -
α 1.0000 -

Figure 4.6 FRF between output voltage and base excitation for the SDOF harvester.
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First, the coupling effect on energy harvesting is analysed. Figure 4.7 represents a
short sample of the voltage signals from operational vibrations, where the differences
between the output computed using the coupled and uncoupled system of equations are
manifest. For general comparative purposes only, the mean power obtained with both
coupled and uncoupled systems is compared below. The expression used to evaluate the
mean power is P̄ = (|v(t)|2/N)/Ropt,th, with N the number of samples of the discrete
voltage signal v(t) obtained with both the coupled and uncoupled approaches. Under
operational vibrations represented by the 30-minute record of the setup 10, the computed
mean power is 23.56 nW considering the coupled electromechanical system and 68.44 nW
for the uncoupled equations. This represents an unrealistic increase in the harvested power
of more than 290.5%. Under ambient vibrations represented by the 5-minute measurement
of the setup 11, the mean power from coupled equations is 0.11 nW while the uncoupled
equations give a value of 0.40 nW. This means an overestimation of around 363.6%.

In the light of these results, some conclusions can be drawn about the piezoelectric
coupling effect. The coupling causes the voltage from the PZT to generate a force that
opposes the harvester motion, which reduces the harvester response and hence the power
harvested. It can be stated that although the uncoupled equations are numerically efficient
because of their lower computational cost, they do not represent a good approximation
of the energy harvesting mechanism. Hence these results confirm that the fully coupled
equations should always be used, as highlighted by Erturk and Inman [162].

Figure 4.7 Coupled/uncoupled output voltage from the operational record (setup 10).

Figures 4.8a and 4.8b represent the first four minutes of the output voltage of the
harvester subjected to operational and ambient real vibration of the Palma del Rı́o bridge.
Consistently with the vibration level recorded in each of the two differentiated situations
(with the bridge open and closed to traffic) the voltage output from operational vibration
is about ten times larger. Figure 4.8c shows the Power Spectral Density (PSD) of the
output voltage for measurements 10 and 11. These functions have a similar trend to that
of the ASD (Figure 4.5c), but additionally they present a peak around 100 Hz related to
the natural frequency of the harvester.
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a) operational condition b) ambient condition

c) output voltage PSD

Figure 4.8 Output voltage from the vibration records (setups 10 and 11).

The new semi-analytic approach of the expected power developed in the previous section
is applied to evaluate the the available power from the real vibration measurement of the
highway bridge. The maximum expected power has been calculated using Eq. 4.27 for
different values of the load resistance RL. The values obtained for both the operational
and ambient vibration situations have been analysed and plotted in Figure 4.9. The
expected power computed from the vibration for the bridge open to regular traffic is of
the order of tens of nanowatts of magnitude. The maximum expected power obtained
is E[P] = 23.87 nW for a load resistance of RL,opt = 28.8kΩ. In the case of ambient
vibration, the energy harvested is two orders of magnitude smaller (×10−1 nW) and the
maximum expected power is E[P] = 0.116nW for a load resistance of RL,opt = 22.1kΩ. It
is worth noting that the optimum load resistances obtained from this experimental analysis
for the cases of operational and ambient vibrations differ by 20 to 40% respectively
from the theoretical value represented by Ropt,th = 1/(Cp ·ωn) = 34.7kΩ. However, it
should be noted that this theoretical optimum assumes a purely resistive load and a single
frequency resonant harvester response. The reported expected power values are considered
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representative because they have been obtained with a semi-analytical approach using the
spectral values of real long-term acceleration measurements (up to 30 minutes in the case
of operational vibration).

Figure 4.9 Power versus load resistance from the vibration records (setups 10 and 11).

4.5 Sensitivity analysis

Lefeuvre et al. [138] have already pointed out that the effective transmission of surrounding
vibrations to the piezoelectric material depends on matching the resonance frequency
of the harvester and the environmental frequencies. In this section, a sensitivity study
on the effect of the harvester parameters on the expected power is described using the
semi-analytic approach developed. This analysis represents an impedance optimisation
strategy that has already been addressed by other authors in the literature. For instance,
the study presented by Liao and Liang [163] considered different coupling effects or the
analysis by Cai and Zhu [164] focussed on electromagnetic energy harvesters. The natural
undamped frequency of the harvester is defined by only two parameters: the mass m and
the stiffness k. Hence, if the stiffness k is fixed, the proof mass m could be optimized.

Figure 4.10 shows, for a set of reasonable mass values m of the piezo harvester, the
values of the maximum expected power for different values of load resistance RL. In
this analysis, k is kept constant (with the value indicated in Table 4.3), m varies between
[1-500] g and RL is considered within a range of [1-100] kΩ for each mass value. The most
remarkable consequence of increasing the mass value is that the expected power increases
by an order of magnitude. A mass of about 250 g would provide more than a hundred µW
of power. For this particular case, the expected power curve shows a maximum at around
m = 300 g of mass for most values of RL. A similar value of expected power would not be
obtained until the mass is increased by 50%. This behaviour is, as expected, determined
by the nature of the excitation.
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Figure 4.10 Effect of the harvester mass on the expected power (setup 12).

Figure 4.11 shows a clear correlation between the expected power curve and the spectral
density of the acceleration recorded on the Palma del Rı́o bridge for regular traffic situation.
In particular the optimised mass ensures the harvester resonance occurs at a frequency
where the bridge response is high.

4.6 Conclusions

The main goal of this paper is to study the feasibility of deploying a piezoelectric energy
harvesting system on a real highway bridge. The novelty lies in the use of real measured
traffic-induced vibration response as excitation in the power generation estimation. A
new semi-analytic formulation based on real bridge vibration measurements is developed.
Therefore, broadband white Gaussian noise excitation is no longer considered. The com-
putation of the expected power is based on the closed-form transfer function between
base excitation and harvester output voltage and on the experimentally measured spec-
tral density of the bridge acceleration. The new approach has been used to evaluate the
available power from real vibration of a bowstring highway bridge located in Palma del
Rı́o, Córdoba (Spain). Two different situations have been considered in the assessment
of the harvested power: i) operational vibration records with the bridge open to regular
traffic, ii) ambient vibrations with the bridge closed to traffic. The numerical results show
that the energy harvested from ambient vibration is two orders of magnitude smaller than
that obtained from operational vibration. Consequently, it could be stated that the level of
traffic could condition the viability of a piezoelectric energy harvesting system. In addition,
a parametric sensitivity study has been used to optimise the harvester mass according to
the excitation and considerably increase the expected power (from nW to µW).

This feasibility study is one of the first to present expected power values calculated from
the operational vibration of a real structure. This new approach enables a more realistic
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study of the application of energy harvesting technique to the power requirements of WSNs
and other low-power electronic devices used in SHM. The results show the potential of the
semi-analytic approach to evaluate the expected power of piezoelectric energy harvesters
subjected to a highway bridge excitation. This also opens up the possibility to confidently
extend the approach to different base excitation mechanisms, such as the vibrations of
railway bridges or footbridges.
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Figure 4.11 Expected power for different harvester natural frequencies versus the acceler-
ation power spectrum (setup 12).
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Y ya está todo listo para la siguiente foto:
la familia, los de siempre, mis queridı́simos locos,

en resumen todas y todos los que hicisteis que valiera la pena
saltar a esta piscina sin saber si estaba llena.

Mikel Izal, 2021

The core idea of the research plan developed by this thesis work is the long-term SHM
through the use of self-supplied sensors. The energy requirement of the monitoring system
has typically been solved by the installation of grid-connected sensors, which is a solution
with a fixed additional economic and environmental cost that is difficult to maintain in the
long term. In addition, the remote location of many of the structures makes mains power
supply unfeasible. The novelty of this proposal is the self-supply of the sensors applying a
totally clean energy collection system that uses the vibrations of the structures to generate
energy. This vibration-based energy harvesting system makes use of devices in which the
piezoelectric energy conversion mechanism takes place.

The performance of a PEHD is strongly dependent on the excitation source, represented
by the vibration of the host structure. Numerous variants of these devices have been
proposed and studied in the literature. Among these proposals, the most widely studied
and tested consists of a small cantilever beam. Compared to other designs, it has lower
resonance frequency and a relatively larger deformation for a given input excitation. They
usually consist of one or two layers of piezoelectric material (unimorph and bimorph
configurations) and optionally a mass is attached to the free end to move the resonance
frequency towards some desired point (tuning) and/or amplify the conversion effect. These
devices would be embedded in the host structure which, when vibrating, would induce a
dynamic voltage in the layers of piezoelectric material, resulting in an alternating voltage
output through electrodes placed on these layers. To use this energy to charge a battery, it
would be necessary to include an electronic circuit for rectification and conversion to direct
current. In the analysis of such devices, it is common practice to consider a resistance or
impedance to represent the electrical charge.
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The study of the vibration-based energy harvesting has been approached in this thesis
with a twofold focus. On the one hand, the first two articles that make up this research
work focus on the numerical modelling and analysis of composite beams such as those
that constitute PEHDs. On the other hand, the third article of the compendium has a more
practical focus. It studies the feasibility of a piezoelectric vibration-based energy harvesting
system for a real highway bridge. The findings of each of these studies are presented
in detail in the chapters of the individual articles. However,the main developments and
conclusions are outlined below.

5.1 Conclusions

Overall, the main contributions of this thesis include:

• The development of a new methodology based on the PGD method to solve the
forced vibration problem in bi-dimensional laminated beams. A harmonic space-
frequency description of the dynamic problem is first considered and a variable
separation in the spatial domain is introduced. For both spatial coordinates x (beam
axis coordinate) and z (thickness coordinate), a classical 3-node FE is used in the
discretization. In addition, the load frequency is also introduced as a problem
variable. The derived iterative methodology implies the computation of three 1D
problems for each enrichment step used to represent the solution. The fixed-point
method is employed to obtain the results for each of the N enrichment steps.

• The extension of the PGD formulation to multi-field analysis in solid mechanics. A
new formulation based on the PGD method to solve the forced vibration problem in
bi-dimensional laminated beams with piezoelectric layers is developed and validated.
This would lead to the extension of the PGD approach to the parametric modelling
of bimorph PEHDs.

• The adoption of a new semi-analytic approach based on the use of real measured
traffic-induced vibration response as excitation in the power generation estimation.
The computation of the expected power is proposed to be based on: i) the closed-
form transfer function between base excitation and harvester output voltage, and, ii)
the experimentally measured spectral density of the bridge acceleration. Therefore,
broadband white Gaussian noise excitation is no longer considered as the base
excitation.

On the basis of the research results reached in this thesis, the following conclusions can be
remarked. On the new model analysis based on a separated representation:

• The proposed formulation has been validated through several numerical tests, in-
cluding different composite and sandwich beam configurations with a great variety
of slenderness ratios and boundary conditions.

• Results show a good agreement with exact elasticity solutions, higher-order theories
and FE models.
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• This study has showed the capability of the method to build all kinds of mode shapes,
including complex thickness modes with non-uniform displacement distribution
along x and z axis.

• The method has been proved to be successful in detecting even small variations in
natural frequencies derived from different electrical boundary conditions, such as
short circuit and open circuit conditions.

• The advantages of the proposed algorithm become relevant when the number of
numerical layers increases and greater precision is required. In these cases the
number of DOFs in the classical formulation of the problem grows exponentially
and the separation of variables becomes a very useful tool to reduce the order and
limit the computational cost. Here, the potential of the PGD formulation has been
demonstrated by the accuracy of its results.

The main conclusions on the feasibility study of vibration energy harvesting from a
highway bridge:

• The new approach has been used to evaluate the available power from real vibration
of a bowstring highway bridge located in Palma del Rı́o, Córdoba (Spain).

• Two different situations have been considered in the assessment of the harvested
power: i) operational vibration records with the bridge open to regular traffic, ii)
ambient vibrations with the bridge closed to traffic. The numerical results show that
the energy harvested from ambient vibration is two orders of magnitude smaller
than that obtained from operational vibration. Consequently, it could be stated that
the level of traffic could condition the viability of a piezoelectric energy harvesting
system.

• A parametric sensitivity study has been used to optimise the harvester mass according
to the excitation and considerably increase the expected power (from nW to µW).

• This new approach enables a more realistic study of the application of energy
harvesting technique to the power requirements of WSNs and other low-power
electronic devices used in SHM. Broadband white Gaussian noise excitation is no
longer considered as the base excitation since the computation of the expected power
is proposed to be based on the experimentally measured bridge acceleration.

• The results show the potential of the semi-analytic approach to evaluate the expected
power of piezoelectric energy harvesters subjected to a highway bridge excitation.
This also opens up the possibility to confidently extend the approach to different
base excitation mechanisms, such as the vibrations of railway bridges or footbridges.

On the whole, it can be concluded that the proposed objectives at the beginning of this
thesis, as previously indicated in Section 1.3, have been successfully accomplished.
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5.2 Ongoing and future research areas

In the light of the experience built-up over the development of this thesis, several lines for
new and challenging research niches have been identified. Firstly, regarding the PGD-based
modelling of the problem:

• The extension of the PGD approach to the parametric modelling of bimorph PEHDs
could easily be addressed. The proposed method has been proved to be successful
in detecting even small variations in natural frequencies derived from different
electrical boundary conditions, such as short circuit and open circuit conditions.
This opens up the possibility of confidently introducing electrical loads into the
formulation, by adding an equivalent capacitance matrix to the dielectric matrix as
in reference [124].

• The consideration of the system response to non-harmonic loads has not been
addressed. An initial idea could be combining modal and harmonic analysis for
defining a hybrid integration scheme as in [67, 165].

On the other hand, a more experimental approach could certainly extend the cutting
edge of energy harvesting from structural vibrations.

• The analysis of the voltage output of PEHDs placed on real bridges would be of
considerable value. This would allow a real quantification of the available energy,
including possible system losses. This deployment would allow statistical analysis
of the particularities associated with different types of structures. Energy collec-
tion systems for road bridges, railway bridges or footbridges could be optimised
accordingly.

• Tackling the problem in footbridges would additionally entail the need to balance
two conflicting strategies: vibration control and vibration energy harvesting. The
increasingly slender and daring designs of the footbridges have led to significant
episodes of dynamic resonance problems and have extensively developed the field
of vibration control devices. Therefore, the dual-function device concept in such
civil structures should be faced in order to be successful. When a vibration-based
harvester is integrated with a vibration control methodology, a fundamental question
arises as to whether or not these two objectives are consistent with each other.
According to Cai and Zhu [164], when these objectives are conflicting, a trade-off
between the optimizations is required, whereas when these objectives are consistent,
the problem may be simplified as a single-objective optimization. In this line, an
experimental campaign has been initiated in recent months on an ultra-lightweight
footbridge placed in the Department of Continuum Mechanics and Structures of
Universidad Politécnica de Madrid, from which we hope to obtain results in the
short term.

• One of the key aspects of long-term monitoring is the location of the data acquisition
nodes. Since the energy harvesting device will be placed inside the node, it will
be necessary to combine the optimal sensor placement technique (OSP) for the
correct modal identification of the structure [166] with an optimal location strategy
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to maximise the harvested energy. Matching these two objectives can certainly be
challenging. In the case of the optimal harvesting placement, the goal would be
to ensure that the battery charge level is maintained in order to ensure the power
supply of the node. Considering the stochastic nature of the host structure vibration,
the probabilistic study of the excitation becomes necessary to this end.

Finally, the actual use of PEHDs for SHM is certainly the most challenging application.
There are still many open issues that need to be addressed in line with optimising the
resource consumption of the monitoring system’s sensors. This is one of the specific
objectives that will be pursued in the context of two R&D&I projects launched last years:

• BRIDGEXT : Life-extension of Ageing Bridges: Towards a Long-term Sustainable
Structural Health Monitoring (PID2020-116644RB-I00, Ministerio de Ciencia e
Innovación of Spain)

• SMART-BRIDGES: Smart Structural Health Monitoring for High-speed Railway
Bridges (PLEC2021-007798, FEDER NextGenerationEU recovery plan)

The objectives of these projects are quite ambitious and multidisciplinary in approach.
They involve important advances on: i) the development of advanced SHM methodologies,
in the case of SMART-BRIDGES focusing on high-speed railway ageing bridges; ii)
the evolution of monitoring technologies to the concept of Smart Sensors for long-term
SHM; iii) the energy autonomy of the long-term monitoring system; iv) the prognosis of
structural response based on data-driven decision. The application of the life extension
via smart self-powered continuous monitoring and data-driven decision methodologies
would open up new opportunities for infrastructure management and maintenance, greatly
improving their safety and resilience to critical events caused by natural ageing or climate
change. Energy autonomy is a key point of the system and is intended to be solved by
vibration-based energy harvesting techniques, which would take the research works of this
thesis to a higher technology readiness level.
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