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Toward a general and interpretable 
umami taste predictor using 
a multi‑objective machine learning 
approach
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Agorakis Bompotas 4, Ioannis Giannikos 4, Christos Raftopoulos 4, Marta Malavolta 5, 
Gianvito Grasso 3, Seferina Mavroudi 2,6, Athanasios Kalogeras 4, Vanessa Martos 7, 
Daria Amoroso 8, Dario Piga 3, Konstantinos Theofilatos 2 & Marco A. Deriu 1*

The umami taste is one of the five basic taste modalities normally linked to the protein content in 
food. The implementation of fast and cost-effective tools for the prediction of the umami taste of 
a molecule remains extremely interesting to understand the molecular basis of this taste and to 
effectively rationalise the production and consumption of specific foods and ingredients. However, the 
only examples of umami predictors available in the literature rely on the amino acid sequence of the 
analysed peptides, limiting the applicability of the models. In the present study, we developed a novel 
ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound 
starting from its SMILES representation, thus opening up the possibility of potentially using such a 
model on any database through a standard and more general molecular description. Herein, we have 
tested our model on five databases related to foods or natural compounds. The proposed tool will pave 
the way toward the rationalisation of the molecular features underlying the umami taste and toward 
the design of specific peptide-inspired compounds with specific taste properties.

Umami taste is one of the five basic taste modalities and it is typically associated with the protein contents of 
foods. The term “umami” originates from a Japanese word that means “pleasant savoury taste”, “mouthfulness” 
or “delicious”1. Umami has been linked for several years to the taste of Asiatic traditional foods or cheese and 
it was recognized as the fifth basic taste modality—along with sweet, bitter, salty and sour—only in 2002 to 
describe a pleasant or glutamate-like taste2. Since the umami taste is commonly linked to the food protein con-
tent, it represents an interesting taste modality, especially for, but not limited to, food industries: considering 
the laboriousness of traditional experimental techniques, it is pivotal to develop fast, reliable and cost-effective 
methodologies able to predict the taste of food ingredients or general compounds with the ultimate goal of 
identifying and characterizing their chemical profile. Several experimental methods, including MALDI-TOF-MS 
and reversed-phase high-performance liquid chromatography (RP-HPLC) analysis, are widely used to identify 
and characterize peptides with umami sensory properties3,4. However, traditional experimental methods for 
characterizing and profiling from a chemical point of view the umami peptides are expensive, time-consuming, 
and arduous. In this context, the in-silico techniques have been pointed out as elicit methods to screen massive 
databases of compounds and retrieve specific information regarding their activity or properties through the 
employment of machine learning algorithms. Quantitative structure–activity relationships/quantitative struc-
ture–property relationships (QSAR/QSPR) methods aim at determining a relationship between the biological 
activity or the physicochemical property, respectively, and a set of descriptive features (descriptors) linked to 
the molecular structure of the investigated molecules5. In this regard, the guidelines defined by the Organization 
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for Economic Co-operation and Development (OECD) indicate the strategies for the correct development and 
validation of robust QSAR models: (i) a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined domain 
of applicability; (iv) appropriate measures of goodness-of-fit, robustness and predictivity; (v) a mechanistic 
interpretation, if possible6.

Regarding the in-silico prediction of taste based on the molecular structure of compounds, a lot of advance-
ments have been accomplished7. For example, several publications deal with the prediction of the sweet taste8–14, 
the bitter taste15–22, and the bitter/sweet dichotomy23,24. However, as far as the authors know, there are few 
attempts made by the scientific community to predict the umami taste, which are represented by the iUmami-
SCM25 and the UMPred-FRL26 predictors. The iUmami-SCM tool predicts the umami/non-umami taste of 
peptides based on their primary amino acid sequence employing a scoring card method (SCM) in conjunction 
with the propensity scores of amino acids and dipeptides. For its design, this tool is limited to the prediction 
of only peptides, which however represent the candidate par excellence of umami taste. Another effort again 
focused on umami peptide identification is the UMPred-FRL tool, which demonstrates a higher feature discrimi-
native capability to capture the key information about umami peptides and superior performance compared to 
the iUmami-SCM. However, a method for screening databases of general molecules or predicting the taste of 
peptides with small chemical deviation from their original structures is needed to pinpoint the major physio-
chemical properties related to the occurrence of the umami taste and allow the identification of umami-related 
compounds from bigger pools of potential compounds. The present work is therefore based on these premises 
and is devoted to developing an efficient tool to predict the umami/non-umami taste of query molecules based 
on their chemical structure described using the standard SMILES representation and commonly employed 
molecular descriptors. An ensemble dimensionality reduction and classification techniques were used to train 
and test the umami taste prediction model, minimizing the number of physicochemical features used as inputs 
and allowing the identification of the most important features related to the umami taste. The minimization of 
the inputs makes the prediction models simpler, reducing thus the risk of overfitting, and enables the incorpo-
ration of the prediction models in a web interface enlarging the ensemble of possible end-users. The developed 
tool, named VirtuousUmami, paves the way toward the possibility of analyzing different types of compounds 
and rationalising the chemical-physical characteristics at the basis of umami taste perception to design new 
ingredients and molecules with specific taste properties.

Results
Dimensionality reduction.  As described in the “Methods” section, the statistical analysis to reduce the 
number of employed molecular descriptors was performed on the training set with the limma eBayes method27. 
Moreover, the correction of p-values for multiple testing to get q-values was applied using the Benjamini–Hoch-
berg FDR adjustment method28. Setting the q-value threshold to 0.05, we identified 324 statistically significant 
differentiated features. This analysis is shown in Fig. 1 in a volcano plot representation with the log2 of the Fold 
Change (log2FC) on the x-axis and the negative value of the logarithm of the p- or q-values on the y-axis. The 
log2FC was calculated for each feature by applying the log base 2 to the ratio between the average value of the 
feature for the umami class and the average of the non-umami class. P-values (Fig. 1a) and q-values (Fig. 1b) 
less than or equal to 0.05 denoted statistically significant differences between umami and non-umami samples, 
whereas positive log2FC values denote upregulated features, i..e features with higher values in umami than non-
umami compounds, and negative log2FC values indicate downregulated features. In this view, the most informa-
tive features in the volcano plots are located at the top and far from the zero value of the x-axis. The detailed 
list of the prioritized molecular descriptors is available in the GitHub repository (https://​github.​com/​loren​zopal​
lante/​Virtu​ousUm​ami) within the “data” folder (“umami_prioritized_list_of_descriptors.csv”).

Figure 1.   Volcano plots of the statistical analysis of the descriptors on the umami versus non-umami samples 
for the training set (a) with the standard limma eBayes method using p-values and (b) with correction of 
p-values using the Benjamini–Hochberg FDR adjustment method to calculate q-values. Only the 5 most 
upregulated and 5 most downregulated features are labelled for the sake of clarity.

https://github.com/lorenzopallante/VirtuousUmami
https://github.com/lorenzopallante/VirtuousUmami
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Model performance.  We developed 5 different SVM models with a specific number of selected features 
and support vectors (see also Table 1). After accessing the performance of the single SVM models (Table S2), we 
developed 10 ensemble models (EMs) by taking all the possible combinations between the SVM models (1 and 
2; 1 and 3; 2 and 4; etc..) and evaluated the relative performance (Table S3). The EM3–5, i.e. the ensemble model 
created combining SVM models 3 and 5, achieved the best performance and was selected as the final model. A 
summary of the model performance for the EM3-5 is reported in Table 1 and the relative ROC curves are repre-
sented in Fig. 2.

Feature importance.  The selected features on which the predictions rely are 12 and include ATSC1m, 
Xch_6d, Mi, SaaCH, SMR_VSA1, JGI1, FilterItLogS, JGT10, AATSC0m, AATSC0v, Mp, fragCpx. The selected 
features are summarized in Table 2 also reporting the level of importance evaluated with the calculation of the 
SHAP values29. The distributions of the 12 features for the umami and non-umami samples are represented in 
Figs. S1 and S2.

Among the 12 selected features, the most frequent descriptor class represents internal autocorrelation prop-
erties (ATSC1m, AATSC0m, AATSC0v), calculated by the so-called Autocorrelation of a Topological Structure 
(ATS), which describes how a property is distributed along with the topological structure. In particular, the 
autocorrelation descriptors were computed using the Moreau-Broto autocorrelation weighted by mass (ATSC1m 
and AATSC0m) or Van der Waals volume (AATSC0v). Interestingly, the three autocorrelation properties were 
also retrieved among the first eight prioritized features from the initial univariate filtering. The Xch-6d descrip-
tor belongs to the Chi descriptors family, which are topological indexes based on the molecular connectivity 
approach30. Molecular connectivity methods quantify molecular structures based on the topological and elec-
tronic characters of the atoms in the molecule. The molecule is represented by the hydrogen-suppressed graph 
(molecular skeleton) and the key feature in the quantitation of the graph is the characterization of the atom in the 
molecular skeleton. The molecular graph may be decomposed into fragments called subgraphs, such as a skeletal 
bond, a pair of adjacent bonds, etc., that determine the possibility of defining different orders of the indexes: thus, 
the order of the Chi index is the number of edges in the corresponding subgraph. Mi and Mp are instead the mean 
of constitutional properties, i.e. the ionization potential and the polarizability, respectively. SaaCH descriptor 
is an Electropological State (Estate) index31, which is a combination of electronic, topological and valance state 

Table 1.   Summary of model performance using the ensemble model EM3-5 obtained from the combination of 
SVM models 3 and 5. For the training set and the tenfold cross-validation mean values and standard deviations 
are presented. The test set comprises the 90 left-out samples not used for training.

ACC​ Spec Sens F1 F2 AUC​

Training 99.79% ± 0.01 99.59% ± 0.02 100% ± 0.009 99.79% ± 0.01 99.92% ± 0.01 1 ± 0.007

tenfold CV 95.86% ± 1.89 96.70% ± 2.91 95.07% ± 1.06 95.73% ± 1.81 95.28% ± 0.88 0.96 ± 0.02

Test 87.64% 91.80% 78.57% 79.31% 80.99% 0.85

Figure 2.   Receiver operating characteristic curve of the umami versus non-umami classification.
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information. In particular, this descriptor is calculated for specific atoms types: in this case, SaaCH stands for 
the sum of E-state indices for the CH in an aromatic ring. The SMR_VSA1 descriptor is a MOE type descriptor 
that uses a combination of the Wildman-Crippen Molar Refractivity (MR)32, which is a measure of the total 
polarizability of a mole of a substance, and the Van der Waals surface area contribution. Two other descriptors, 
namely JGI1 and JGT10, deal instead with the compounds’ topological charge considered at the first and 10th 
orders, respectively. FilterItLogS descriptor is derived from a program designed for filtering out molecules with 
unwanted properties. The program is packaged with several pre-programmed molecular properties that can be 
used for filtering, including (i) physicochemical parameters, such as logP, topological polar surface area criteria, 
number of hydrogen bond acceptors and donors, and Lipinski’s rule-of-five; (ii) graph-based properties, including 
ring-based parameters and rotatable bond criteria; (iii) selection criteria through smarts patterns; (iv) Similarity 
criteria; (v) three-dimensional distances between user-definable fragments (https://​github.​com/​silic​os-​it/​filter-​it). 
Finally, the fragCpx descriptor is a fragment complexity descriptor which is calculated as:

where A is the number of atoms, B is the number of bonds, and H is the number of heteroatoms33.
Hierarchical clustering of the selected features allows grouping of the 12 features in three subgroups, i.e. (i) 

AATSC0v, ATSC1m, Mp, (ii) fragCpx, SMR_VSA1, AATSC0m, SaaCH, Xch-6d, (iii) JGI1, JGT10, Mi, Filter-
ItLogS (see also Fig. S3).

To represent the dataset’s chemical space and underline the role of the feature importance analysis in sim-
plifying the discrimination between the umami and non-umami, we used the tSNE dimensionality reduction 
technique34 on the starting dataset taking into account all descriptors and only the best 12 above-mentioned 
features (Fig. 3).

Applicability domain (AD).  To effectively define the applicability domain (AD) of the model, we evaluated 
the average similarity scores of both training and test sets compared to the training sets fingerprints, as described 
in the “Methods” section. The analysis reported in Fig. 4 allowed us to establish a correct average similarity 
threshold (i.e. 0.4) to effectively determine if a query compound falls inside or outside the AD based on the 
average similarities of the employed dataset. In particular, if the average similarity score of a query compound is 
below the imposed threshold, then the query compound is considered outside the AD; otherwise, the compound 
is considered within the AD.

External datasets.  The external datasets, i.e. FlavorDB, FooDB, NPAtlas, PhenolExplorer and PhytoHub, 
were processed as reported in the “Methods” section. Results are summarised in the following.

1.	 FlavorDB After removing 380 compounds with issues from the ChEMBL structure pipeline, we got 2599 
compounds. Checking the AD of the umami model, we pointed out that only 0.92% (24/2599) of the Fla-
vorDB molecules are inside the umami AD. Our model predicted 9 of the 24 compounds (36%) as umami.

2.	 FooDB Among the 70 k chemicals included in the dataset, we preserved 69,309 molecules after removing 
missing SMILES, duplicate compounds, and molecules with structure errors according to RDKit import 
functionality and high issues based on the ChEMBL Structure Pipeline. Only 1.09% (757/69,309) of these 
molecules fall inside the AD of the model. 48% of these molecules (366/757) were then predicted as umami.

3.	 Natural product atlas After running the ChEMBL structure pipeline, we preserved 32,491 compounds. 1.52% 
(495/32,491) of the molecules are inside the AD of the model and 17.3% of these molecules (86/495) were 
then predicted as umami.

(1)fragCpx =

∣

∣B
2
− A

2
+ A

∣

∣+
H

100

Table 2.   Features selected according to the best model. SHAP values represent the contribution of each feature 
to the prediction. The greater the value, the higher the contribution.

ID Name Module class Description SHAP importance

1 ATSC1m Autocorrelation Centered moreau-broto autocorrelation of lag 1 weighted by mass 0.1090

2 AATSC0m Autocorrelation Averaged and centered moreau-broto autocorrelation of lag 0 weighted 
by mass 0.0821

3 AATSC0v Autocorrelation Averaged and centered moreau-broto autocorrelation of lag 0 weighted 
by vdw volume 0.0416

4 JGI1 TopologicalCharge 1-ordered mean topological charge 0.0331

5 JGT10 TopologicalCharge 10-ordered global topological charge 0.0323

6 SMR_VSA1 MoeType MOE MR VSA Descriptor 1 (− inf < x < 1.29) 0.0296

7 Mi Constitutional Mean of constitutional weighted by ionization potential 0.0264

8 FilterItLogS LogS Filter-it™ LogS 0.0176

9 Mp Constitutional Mean of constitutional weighted by polarizability 0.0174

10 SaaCH Estate Sum of aaCH 0.0170

11 Xch-6d Chi 6-ordered Chi chain weighted by sigma electrons 0.0122

12 fragCpx FragmentComplexity Fragment complexity 0.0083

https://github.com/silicos-it/filter-it
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4.	 PhenolExplorer We first removed 3 compounds with issues according to the ChEMBL structure pipeline, 
obtaining 489 compounds. According to the AD, only 0.61% (3/489) of the PhenolExplorer molecules are 
inside the AD of the model. None of these molecules was predicted as umami.

5.	 PhytoHub From the original dataset of 2110 compounds, we removed compounds with missing SMILES (294) 
or high issue scores from the ChEMBL structure pipeline (70), resulting in a database of 1746 molecules. 
Only a small percentage, i.e. 1.03% (18/1746), of the PhytoHub molecules are inside the applicability domain 
of the umami model. Just one molecule among the 18 compounds (5.5%) was predicted as umami.

Predicted umami compounds for each of the external DBs are available in the GitHub repository (https://​
github.​com/​loren​zopal​lante/​Virtu​ousUm​ami) within the “data” folder.

Virtuous umami platform.  The developed umami predictor was embedded into a web-based interface, 
namely the Virtuous Umami platform (http://​195.​251.​58.​251:​19009/#/​virtu​ous-​umami). This is a graphical, 
user-friendly interface for running analyses for chemical compounds expressed in various notations, including 

Figure 3.   A tSNE applied to the umami and non-umami samples for the whole dataset taking into account 
(a) all molecular descriptors (1613 features) and (b) the best 12 selected descriptors derived from the feature 
selection process. The selected feature subset (b) results in a remarkably better ability in discriminating between 
umami and non-umami compounds.

https://github.com/lorenzopallante/VirtuousUmami
https://github.com/lorenzopallante/VirtuousUmami
http://195.251.58.251:19009/#/virtuous-umami
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SMILES, FASTA format, InChI, SMARTS or PubChem compound name. If the PubChem name is provided 
by the user, the algorithm queries the database for the requested compound retrieving the relative canonical 
SMILES to run the umami prediction model. The platform is built using open-source programming solutions 
and is divided into two main components, i.e. the front-end and the back-end. The front-end is the part of the 
application that is visible to the users and runs on their devices. It provides them with the option to type com-
pounds directly to an input field or to upload a text file containing each compound in a different line. After the 
analysis takes place, the results are presented in a tabular form that reports the query compound SMILES, its 2D 
molecular representation, the verification of the domain of applicability (True/False), the result of the umami 
prediction (Yes/No) and two buttons allowing the user to download the databases collecting all the calculated 
Mordred molecular descriptors or the best 12 on which the prediction relies. For developing the front-end, the 
Ionic framework was selected because it offers a wide variety of UI components that can be used to create user-
friendly applications suitable both for browsers and mobile devices. The second main component, the backend, 
consists of a web service that runs on the cloud and is implemented using the lightweight yet powerful Flask 
micro-framework. It is responsible for receiving the input sent by the front-end, running the Virtuous Umami 
Analyser and returning the results to the front-end. To enable the aforementioned exchange of information, it 
provides a RESTful API that accepts and transmits data in the form of JavaScript Object Notation (JSON).

Discussion
Machine Learning methods have proven to play a key role in the development of prediction tools and digital 
support systems in a variety of application areas, including nutrition and agri-food research35–42. In this context, 
here, we developed a novel machine-learning-driven umami taste predictor, named VirtuousUmami, to identify 
umami/non-umami compounds based on the SMILES representation. The classification model was generated 
with the hybrid combination of heuristic optimization and nonlinear machine learning classification methods, 
allowing both an unbiased and an optimized selection of the classification method and its parameters.

Starting from the UMP442 database25, which collects 442 peptides, we used the Mordred molecular descrip-
tors to obtain the features: the Mordred library is open source and demonstrated high computational efficiency 
and stability43. Moreover, we decided to only compute 2D molecular descriptors to avoid the impact of compound 
optimization and parameters related to the three-dimensional properties of molecules. The exhaustive list of 
the employed Mordred descriptors is available at https://​mordr​ed-​descr​iptor.​github.​io/​docum​entat​ion/​master/​
descr​iptors.​html. The 2D Mordred descriptors provide information on compounds, such as basic information 
about molecules (molecular weight, number of individual types of atoms, types of bonds, degree of hybridization, 
spectral diameter, detour index, number of hydrogen donors and acceptors, molecular distance edge between 
different types of atoms, polarizability of atoms and bonds, and topological polar surface) and other features 
derived from symbolic representations (Zagreb index, adjacency matrix descriptors, Moreau–Mroto descriptors, 
Moran coefficients, Geary coefficients, and descriptors describing the Burden matrix and Barysz matrix)44. It is 
worth mentioning that other previous works successfully obtained good results in the field of taste prediction 
using only 2D molecular descriptors9,24: this represents a great step forward since 2D molecular descriptors 
are less expensive from a computational point of view and not affected by variations in the three-dimensional 
molecular structures.

Since the number of molecular descriptors (1613) was extremely higher than the number of compounds in the 
dataset (442), the limma eBayes statistical analysis was employed to reduce the total number of descriptors to 324, 
boosting the performance of the subsequent refined model. The best performance obtained from an ensemble of 
models in terms of accuracy (ACC), specificity (Spec), and sensitivity (Sens) scores are in good agreement with 
the state of the art25,26. In this context, to provide a comparison with previously developed umami prediction 
tools, iUmami-SCM25 and UMPred-FRL26 were assessed with the VirtuousUmami test set (Table S4). Comparing 

Figure 4.   Histograms of average similarity scores of training and test sets. The average similarity score is 
derived by averaging the Tanimoto similarity score between the five most similar compounds in the training 
set. The light grey histogram represents the distribution of the average similarity scores for all the compounds 
composing the training set, whereas the dark grey histogram the distribution for the test set. The lower limit of 
the above-mentioned distributions allows for determining the similarity threshold of the applicability domain.

https://mordred-descriptor.github.io/documentation/master/descriptors.html
https://mordred-descriptor.github.io/documentation/master/descriptors.html
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the evaluated metrics, the three algorithms showed overall similar performance, in terms of accuracy (ACC), 
specificity (Spec), sensitivity (Sens), F1 and F2 scores with all values roughly in the range of 80%-90%. Moreover, 
one of the major novelties of VirtuousUmami relies on its generalizability and applicability. In greater detail, its 
ability to process several types of molecular structure notations, including SMILES, FASTA, InChI, SMARTS 
or PubChem name allows screening for any type of compound, thus opening up the possibility to screen a wide 
range of molecular databases for detecting umami compounds. In this context, we employed the VirtuousUmami 
predictor on five different external databases related to food or natural compounds, i.e. FlavorDB, FoodDB, 
Natural Product Atlas, PhenolExplorer and PhytoHub, highlighting compounds with umami character. Another 
important advantage of the proposed model relies on its explainability.

The usage of general molecular descriptors from the Mordred library and the employment of dimensional-
ity reduction algorithms, such as statistical significance analysis and the SHAP feature importance, allowed the 
definition of a reduced number of interpretable features on which the model relies: in this case, the best model 
was able to achieve the above classification scores with only 12 features. Figure 3 graphically remarks on the 
importance of the feature selection procedure: the selected feature subset (Fig. 3b) can discriminate remarkably 
better between umami and non-umami taste if compared to the tSNE analysis taking into account all the descrip-
tors (Fig. 3a). Despite the remarkable reduction in the number of features, it still remains complex to intuitively 
highlight the chemical and physical properties of umami/non-umami compounds related to the 12 most impor-
tant features. In this sense, it will be very important in future studies to be able to use simpler descriptors in 
order to improve the explainability of the model. The definition of a small subset of important molecular features 
profoundly differentiates the approach proposed by previously developed methods, such as iUmami-SCM25 and 
the UMPred-FRL26, which based their predictive models only on the peptide sequences. While the possibility of 
optimising a predictive model on the peptide sequence alone is a great advantage in terms of model simplifica-
tion, it also makes it very complicated to pinpoint the chemical-physical characteristics underlying molecules’ 
properties and thus explain the model prediction coming from the machine learning black box.

Moreover, following the guidelines defined by the Organization for Economic Co-operation and Develop-
ment (OECD)6, we also developed an applicability domain (AD) to provide information regarding the reliability 
of the prediction. From this analysis, we pointed out that the distribution of the average similarities of training 
and test sets are similar in shape, denoting that the dataset is homogeneous and correctly repartitioned between 
training and test sets (Fig. 4). The distribution of the average similarity scores towards elevated values suggests 
a high similarity among the compounds composing the dataset and, therefore, a quite narrow chemical space of 
the umami database. In this context, the development of an applicability score ensures reliable predictions for 
compounds within the above-mentioned domain. The above-mentioned limited spectrum is a direct consequence 
of the limited number of umami/non-umami compounds available from previous literature and composing our 
training dataset. In particular, the limited number of positive samples in the dataset (only 28 umami compounds 
in the test set and 112 in the training set) limits the accessible chemical space of the umami samples in the train-
ing phase and the subsequent prediction ability of the model on the positive class, causing differences in the 
sensitivity scores in the test (78.6%) and training (roughly 95.1%) sets. In this case, the model sensitivity was 
particularly affected by the considerably few positive samples in the test set. The reduced number of compounds 
in the employed dataset, i.e. UMP442, is an important limitation of the present as well as previously developed 
umami predictors: likely, a larger size of the umami dataset will result in higher performance. Nevertheless, it 
is worth mentioning that the VirtuousUmami sensitivity (78.6%) is in the agreement or higher than the ones of 
UMPred-FRL2 (78.6%) and iUmami-SCM1 (71.4%) respectively, when tested against the VirutousUmami test 
set (see also Table S4). In conclusion, future extensions in available experimental data concerning umami/non-
umami compounds will be pivotal to enlarging the investigated chemical space and the applicability of ML-driven 
methodologies, such as VirtuousUmami.

Finally, the development of a user-friendly web interface (http://​195.​251.​58.​251:​19009/#/​virtu​ous-​umami) 
stems from the idea of making the umami prediction model usable even for users not experienced or familiar 
with the use of technical python codes (also available in the GitHub repository at https://​github.​com/​loren​zopal​
lante/​Virtu​ousUm​ami).

In summary, VirtuousUmami will be a powerful tool to fastly screen any compound database for the discov-
ery of a wide range of candidate compounds with potential umami sensory properties. In a broader view, it is 
worth mentioning that the method developed within this work is fully generalizable to the prediction of other 
taste sensations since it is based on the SMILES format, a standard description and widely used by the scientific 
community: the present tool, therefore, lays the foundations for the creation of a general tool for the prediction 
of the five basic tastes.

Methods
Data curation.  For an effective comparison with previous literature dealing with umami taste predictors, the 
UMP442 database, also used for iUmami-SCM25 and UMPred-FRL26 predictors, was employed. The UMP442 
dataset is freely accessible from GitHub https://​github.​com/​Shoom​buato​ng/​Datas​et-​Code/​tree/​master/​iUmami) 
and collects 442 peptides (140 umami and 302 non-umami): umami molecules are gathered from previous 
literature1,45–49 and the BIOPEP-UWM database50, whereas non-umami peptides are the bitter peptides from 
the positive set of the BTP640 database51 (see also Table S5). The peptides were gathered using their amino acid 
sequences and then converted into their SMILES representation using the RDKit package (http://​www.​rdkit.​
org). Then, they were processed with the ChEMBL Structure Pipeline52 (https://​github.​com/​chembl/​ChEMBL_​
Struc​ture_​Pipel​ine) to highlight possible issues in the retrieved molecular structure and to standardise the 
SMILES representation for the entire dataset. The latter protocol runs a molecule checker on the compound 

http://195.251.58.251:19009/#/virtuous-umami
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structure, standardizes chemical structures and generates the parent molecule representation based on a set of 
predefined rules.

Among 442 umami (140) and non-umami (302) peptides available in the UMP442 dataset, 352 ligands were 
used for training. The remaining 90 peptides were used for external testing to examine the generalization prop-
erties of the trained models. Of the 352 training samples, 240 were non-umami samples, and 112 were umami 
samples. Because there is an imbalance in the total number of samples of the two classes, we oversampled the 
umami class, creating synthetic data to boost the umami class. These synthetic data were created by selecting 
random samples from the umami class and duplicating them, a method of random oversampling for the minor-
ity class. The resulting training dataset had 240 non-umami samples and 240 umami samples. Of the 90 testing 
samples, 62 were non-umami samples, and 28 were umami samples. The summary of the final dataset is also 
reported in Table S6.

Molecular descriptors and dimensionality reduction.  The calculation of the features for each one 
of the molecules was achieved using 1613 2D Mordred descriptors. The dataset was preprocessed to be used as 
input to the machine learning model. In particular, features with a high percentage of missing values (> 30%) 
were filtered, while the remaining missing values were imputed using the kNN-impute method with k = 2053. 
Then, data were arithmetically normalized to the interval of [0–1]. Given the huge number of total features, i.e. 
1613, compared to the size of the training dataset, an initial univariate filtering approach was deployed. The sta-
tistical analysis was performed on the umami vs non-umami peptides of the training set with the limma eBayes 
method27, and correction of p-values for multiple testing was performed using the Benjamini–Hochberg FDR 
adjustment method28 to calculate q-values. For both p- and q- values a threshold of 0.05 was applied. We used 
also four different feature selection methods, i.e. the Wilcoxon Rank Sum Test54, kBest, JMIM55 and MRMR56, 
to further reduce the dimensionality of the training dataset. These methods were iteratively tested using an in-
house evolutionary optimization algorithm (50 individuals and 100 generations) which identified the best com-
bination of feature selection techniques among the above-mentioned alternatives. The results of these methods 
are used at every generation of the evolutionary algorithm for every individual to reduce the features in the train-
ing process. In this way, we are confident that at each run we select the most important features for our problem.

Data preprocessing, statistical analysis and the generation of additional plots, such as ROC curves and bean 
plots, were performed using the InSyBio Biomarkers Tool (see also the reference Manual for further details at 
https://​www.​insyb​io.​com/​bioma​rkers.​html).

Model construction and performance evaluation.  The classification models were generated with the 
hybrid combination of heuristic optimization and nonlinear machine learning classification methods incor-
porated in the InSyBio Biomarkers tool (https://​www.​insyb​io.​com/​bioma​rkers.​html). Specifically, we used an 
ensemble dimensionality reduction technique employing a heuristic multi-objective Pareto-based evolutionary 
optimization algorithm57 to (a) identify the optimal feature subset to be used as input to the classifiers, (b) select 
the most appropriate classifier among Support Vector Machines (SVM) and Random Forests and (c) select the 
optimal parameters for the classifier, namely C and gamma of SVM and number of trees for Random Forests. 
This approach allows both an unbiased and an optimized selection of the classification method and its param-
eters. The multi-objective Pareto-based approach was deployed to handle the multiple objectives of maximiza-
tion of predictive performance, minimization of selected features and simplicity of the classification model, 
revealing all the non-dominated solutions of the above-stated optimization goals. The weights used for the goals 
were Selected Features Number Minimization 5, Accuracy (ACC) 10, F1 score 5, F2 score 1, Precision (PRC) 1, 
Recall (REC) 10, ROC-AUC (AUC) 1, Number of SVs or Trees Minimization 1, which enable better handling 
of the imbalanced nature of our classification problem. The outcomes are multiple models performing equally 
well (namely, the Pareto set of optimal solutions) on the user-defined goals. After having defined the best mod-
els in terms of performance metrics, we developed ensemble models (EMs) to further improve the prediction 
performance. In greater detail, an ensemble model is built by combining two different single models: the final 
prediction probabilities of the ensemble model for the positive and negative classes is the average of the predic-
tion probabilities coming from the two combined models. The final predicted class is therefore the one with the 
highest probability score.

A population of 50 individuals was used for the evolutionary algorithm and a maximum number of 100 
generations was used as the termination criterion. To deal with the stochastic nature of the proposed algorithm, 
five different runs were conducted and the results presented are the average performance of these runs. Conver-
gence of the algorithm (average performance less than 5% different to best performing individual) was noted 
after 30 generations for each independent run demonstrating that the maximum number of generations used 
was adequate for this problem. Additional parameters of the evolutionary algorithm were set to their default 
values as suggested by the InSyBio Biomarkers tool user manual (arithmetic crossover probability: 0, mutation 
probability: 0.01, two-point crossover probability: 0.9). Stratified tenfold cross-validation was used to train and 
test the prediction models. To deal with the class-imbalanced nature of our data, in each cross-validation itera-
tion, we applied random oversampling of the minority class in the 9 folds which were used to train the models. 
Further details on the implementation of the trained models and a summary of the performance metrics used 
are available in the Supplementary Information.

Applicability domain.  In the present work, following the guidelines defined by the Organization for Eco-
nomic Co-operation and Development (OECD)6, we developed an applicability domain (AD) to provide infor-
mation regarding the reliability of the prediction. We used an average-similarity approach already employed 
in previous recent literature in the taste prediction field11,17. More in detail, the AD was built as follows: (i) the 

https://www.insybio.com/biomarkers.html
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Morgan Fingerprints (1024 bits, radius 2) were calculated using RDKit for all the compounds in the training set; 
(ii) a similarity score was then evaluated between each molecule in the training and test sets and the previously-
defined fingerprints using the Tanimoto similarity index from RDKit; (iii) then the average similarity score was 
computed by averaging the similarity scores of the 5 most similar couple of compounds. The distribution of the 
average similarity scores for the training and test sets was used to identify a similarity threshold to discriminate 
between query compounds inside or outside the domain of applicability of the developed model. The AD check 
is performed every time before running the model to assess the reliability of the prediction and the output of the 
AD control is given to the user.

External datasets.  Several external datasets have been considered for testing the usability of the developed 
umami predictor. In particular, we chose some databases related to foods or natural products:

1.	 FooDB (https://​foodb.​ca/) is the world’s largest and most comprehensive resource on food constituents, 
chemistry and biology (more than 70 k compounds).

2.	 FlavorDB (https://​cosyl​ab.​iiitd.​edu.​in/​flavo​rdb/) comprises 25,595 flavour molecules. For the present work, 
we considered only 2939 molecules related to natural ingredients.

3.	 PhenolExplorer (http://​phenol-​explo​rer.​eu) collects a comprehensive database of polyphenols contained in 
foods. We considered only compounds having composition data (SMILES), i.e. 489 compounds.

4.	 Natural Product Atlas (https://​www.​npatl​as.​org/) includes microbially-derived natural products published 
in peer-reviewed primary scientific literature. We downloaded 32,552 natural compounds.

5.	 PhytoHub (https://​phyto​hub.​eu/) is a freely available electronic database containing detailed information 
about dietary phytochemicals and their human and animal metabolites. We downloaded 2110 compounds.

Each database was first checked for missing SMILES or data, standardised with the ChEMBL Structure Pipe-
line and, finally, the Mordred descriptors were calculated as done for the starting umami/non-umami dataset. 
Before running the model prediction, each dataset was screened to access the portion inside the model applica-
bility domain and the prediction was then performed only in the above-mentioned portion.

Data availability
The established prediction model, together with supplementary data, is publicly released at https://​github.​com/​
loren​zopal​lante/​Virtu​ousUm​ami and implemented into a user-friendly web interface (http://​195.​251.​58.​251:​
19009/#/​virtu​ous-​umami).
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