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We used a diffusion Monte Carlo technique to describe the properties of fully heavy compact
arrangements (no dibaryon molecules) including six quarks and no antiquarks within the framework of
a constituent quark model. Only arrangements whose wavefunctions were eigenvectors of L2 with
eigenvalue l ¼ 0were taken into account, what means that we only considered the subset of all the possible
color-spin combinations that make the total wavefunctions antisymmetric with respect to the interchange of
any two quarks of the same type. In all cases, the masses of the six-quark arrangements are larger than the
ones corresponding to the sum of any of the two baryons we can split them into, but smaller than the ones for
a set of six isolated quarks, i.e., all them are bound systems. The analysis of their structure indicates that all
the hexaquarks considered in this work are compact objects, except the cccbbb, that appears to be a loose
association of two baryons for all the possible spin values.
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I. INTRODUCTION

Even though any six-quark combination can be called an
hexaquark, one can think of at least two types of arrange-
ments that can bear that name: a compact six-quark cluster
and a loosely bound dibaryon [1–3]. The only dibaryons
experimentally produced so far are the deuteron [4],
together with the well-established d�ð2380Þ resonance
[5–9]. While the first one appears to be an association
of two baryons, there is no consensus about the structure of
the second [3]. In any case, the majority of the searches and
the theoretical investigations were made in the flavored or
strange sectors [2]. However, there are some recent works
that tackle the problem of partially heavy (see Ref. [10]
and references therein) and fully heavy [11–16] dibaryons.
This last case is specially challenging since there is no
experimental data on fully heavy baryons, even though the
X(6900) state has been proposed to be an ensemble of two
c and two c̄ quarks [17].
What all the previous theoretical investigations about

hexaquarks have in common is that almost every one of

them deals with an association of two baryons or three
diquarks. In this work, we transcend that approximation
and deal with color-spin functions that are not subject to
that limitation, using the constituent quark model to
describe compact structures made up of six heavy quarks.
The underlying assumption behind that model is that any
arrangement of quarks can be described by a Hamiltonian
of the type [1]:

H ¼
XNq

i¼1

�
mi þ

p⃗2
i

2mi

�
þ
XNq

i<j

VðrijÞ; ð1Þ

where Nq is the number of quarks, that in this work will be
fixed to six, and mi and p⃗i are the mass and momentum of
the i quark. The two-body potential, VðrijÞ, depends only
on the distance between quarks, rij, and can be written as
the sum of one-gluon exchange and confinement contri-
butions. The first of those can be expressed as:

VOGEðrijÞ¼
1

4
αsðλ⃗i · λ⃗jÞ

�
1

rij
−

2π

3mimj
δð3ÞðrijÞðσ⃗i · σ⃗jÞ

�
; ð2Þ

and includes both Coulomb and hyperfine terms. Here,
λ⃗ and σ⃗ are the Gell-Mann and Pauli matrices, respectively,
and account for the color and spin degrees of freedom of
the constituent particles. The notorious difficulty of deal-
ing numerically with the Dirac delta function was over-
come in the standard fashion, i.e., by replacing it with a
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smeared out function [18–20]. The contribution of multi-
gluon exchanges is introduced effectively by a linear
confining potential proportional to the distance between
quarks [1]. This means:

VCONðr⃗ijÞ ¼ ðbrij þ ΔÞðλ⃗i · λ⃗jÞ: ð3Þ

In principle, this description can be applied to any
ensemble of quarks and/or antiquarks, even though given
the nonrelativistic nature of the Hamiltonian in Eq. (1), one
expects it to afford a more reasonable description when the
cluster contains one or more heavy (c and b) quarks.
Even though the form of the potential terms is more or

less standard within the framework of the quark model, the
parameters that define them can vary. In this work, and to
be coherent in our comparisons with previous results in
heavy baryons [20], we used the so-called AL1 potential
proposed by Silvestre-Brac and Semay in Refs. [18,19],
works from which all the necessary parameters were
obtained. The properties of the hadrons computed with
this potential were found to be in good agreement with
experimental data, when available [20].

II. METHOD

Once we have defined the Hamiltonian that describes the
system, we have to solve the corresponding Schrödinger
equation in order to obtain the properties of the hexaquarks.
To do so, we chose a diffusion Monte Carlo (DMC)
algorithm [21–24]. This is a stochastic technique that
allows us to obtain an upper bound for the energies of
the ground state of an arrangement of fermions (as quarks
are) within the statistical uncertainties of any Monte Carlo
scheme. The only drawback of the method is that an initial
approximation to the real many-body wavefunction of the
set of quarks, the so-called trial function has to be provided.
This function has to contain all the information known
a priori about the system. Since every quark has, besides its
position, associated a value of spin and color, we chose the
simple expression [20]:

Ψðr1; r2;…; r6; s1; s2;…; s6; c1; c2;…; c6Þ
¼ Φðr1; r2;…; r6Þ
½χsðs1; s2;…; s6Þ ⊗ χcðc1; c2;…; c6Þ�; ð4Þ

where ri, si, and ci stand for the position, spin, and color or
quark i. We defined Φ as:

Φðr1; r2;…; r6Þ ¼
YNq

i¼1

expð−aijrijÞ; ð5Þ

i.e., as a product of the ground state solutions of
Schrödinger equations including only a Coulombic term
for as many independent pair of quarks as we have in the

hexaquark. In that spirit, aij is chosen to take care of the
cusp conditions, i.e., to avoid the divergence of the
derivatives of the trial function when rij → 0. Φ is also
an eigenvalue of the total angular momentum of the
hexaquark, L2, with eigenvalue l ¼ 0. No other alternatives
to the form of the radial part of the trial function were
considered in this work. χs and χc are linear combinations of
functions including a value for the spin and color for every
quark. This can be done in a step-by-step procedure similar
to that used in Ref. [15], by using the Clebsch-Gordan
coefficients of the corresponding color and spin groups.
However, this is extremely cumbersome, and eventually it
will become impossible to apply for progressively larger
ensembles of quarks. In this work, we propose an alternative
that can be easily automated and is, in principle, scalable for
any size of the system. Obviously, it is also completely
equivalent to the standard approach.
First, we started by calculating the eigenvectors of the

color and spin operators, defined as:

F2 ¼
0
@XNq

i¼1

λi
2

1
A

2

ð6Þ

and

S2 ¼
0
@XNq

i¼1

σi
2

1
A

2

: ð7Þ

The color space spans all possible color combinations from
jrrrrrri to jggggggi, while each spin vector is made up of
all the possible sets of six spin values. Obviously, in the
case of F2, we keep only the five wavefunctions with
eigenvalue equal to zero [25–28], i.e., the ones that are
colorless. The number of spin functions are 5 for S ¼ 0,
27 for S ¼ 1, 25 for S ¼ 2, and 7 for S ¼ 3. Once we have
those eigenvectors, we can construct the color-spin func-
tions as χs ⊗ χc products. However, to describe adequately
a system of quarks, and given that Eq. (5) is symmetric with
respect to the exchange of any two quarks, the necessary
antisymmetry of the total wavefunction has to be included
in the χs ⊗ χc product., i.e., we have to produce a linear
combination of the spin-color functions antisymmetric with
respect to the interchange of any identical quarks. To do so,
we apply the antisymmetry operator

A ¼ 1

N

XN
α¼1

ð−1ÞPPα ð8Þ

to that color-spin set of functions. Here, N is the number of
possible permutations of the quarks indexes, P is the order
of the permutation, and Pα represents the matrices that
define those permutations. For instance, if we have six
identical quarks, N ¼ 6! ¼ 720. Once constructed the
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matrix derived from the operator in Eq. (8), we have to
check if we can find any eigenvector with eigenvalue equal
to one. If this is not possible, then a six-quark arrangement
with a radial part given by Eq. (5) does not exist. On the
other hand, when one or several of those functions fulfill
the antisymmetry requirements, we use those combinations
as input in the DMC algorithm in the way described
in Ref. [20].

III. RESULTS

Once we have defined the radial and color-spin functions
corresponding to each of the systems we are interested in,
we can apply the DMC technique to obtain their masses in
the same way described in previous literature [20]. This is
basically a recipe that uses a combination of a standard
DMC method and weighs the results by a Green-function
projection that depends on the color-spin part of the
Hamiltonian [20,24]. However, a single weight algorithm
based on the Green-function Monte Carlo for nuclei
described in Ref. [29] can also be used, providing exactly
the same results. This DMC method allows us to calculate
not only the masses but the structure of the hexaquarks via
the radial distribution function, ρðrijÞ, that gives us an idea
of how probable it is for a pair of quarks to be at a given
distance, rij, from each other [20,30]. This is possible since
the DMC calculations take into account in full the corre-
lations between particles.
The masses of all the possible all-heavy hexaquarks

made up of six quarks and no antiquarks obtained by DMC
are given in Table I. We include also the masses of all the
possible pairs of baryons compatible with the composition
of the hexaquarks. A couple of things are immediately
apparent. First, and given that the bare masses of the c and
b quarks are 1836 and 5227 MeV [19,20], respectively, all
the hexaquarks have a smaller mass than those of their
constituents, i.e., all the hexaquarks are bound systems.
However, a glimpse at the second part of Table I indicates
that their masses are also larger than the ones for any couple
of baryons they can be divided into. This means that any
hexaquark is unstable with respect to its splitting into two
baryons.
As indicated above, the DMC technique is able to give us

an idea about the distribution of the particles inside the
different hexaquarks via the radial distribution functions.
Those will be displayed in Figs. 1–4. Figure 1 represents
the case in which all the quarks are of the same type. This
means that we only can have pair distributions correspond-
ing to cc and bb pairs for the cccccc and bbbbbb systems,
respectively. In principle, we have fifteen of such pairs, and
the results represented are normalized averages of those
fifteen functions. In that figure we also show, for compari-
son, the same radial distributions but for the corresponding
baryons, taken from Ref. [20]. What we can see is that we
have compact objects with a single maximum in the cc or
bb squared distance, maximum that is larger than in the

case of the corresponding baryons. We see also that the
position of those maxima depends on the mass of the
quarks involved, being larger for the least massive (cc) pair.
Compact objects with a single maximum in the cc, cb,

and bb radial distribution functions are also the cccccb and
bbbbbc hexaquarks, whose radial distribution functions are
given in Fig. 2. In addition, and as in the previous
arrangements, we see that the maxima in the r2ρðrÞ
distributions are inversely proportional to the pair involved.

TABLE I. Masses of the hexaquarks considered in this work in
MeV. The error bars are �2 MeV in all cases. Also included are
the masses of all the possible combinations of baryons the
hexaquarks can split into. Some of those masses were taken
from Ref. [20] while the remaining ones were calculated in this
work.

Hexaquark 0þ 1þ 2þ 3þ

cccccc 9904
bbbbbb 29114
cccccb 13141 13122
bbbbbc 25955 25913
ccccbb 16280 16296 16279
bbbbcc 22689 22703 22683
cccbbb 19216 19221 19197 19193

Dibaryons 1=2þ þ 1=2þ 3=2þ þ 1=2þ 3=2þ þ 3=2þ

cccþ ccc 9596a

bbbþ bbb 28796a

cccþ ccb 12816a 12844
bbbþ cbb 25613a 25645
cccþ bbb 19197a

cccþ cbb 16013a 16045
ccbþ ccb 16036a 16064 16092
bbbþ ccb 22416a 22444
cbbþ cbb 22430a 22462 22494

aReference [20].
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FIG. 1. Radial distribution functions for the cc and bb quark
pairs in the cccccc and bbbbbb hexaquarks for S ¼ 0 (symbols).
Also shown for comparison the same functions for the ccc and
bbb baryons in their ground states taken from Ref. [20] (lines).
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This means smaller for the bb distribution and larger for
the cc pair, with the cb case in between. This fact can be
seen also for the ccccbb and bbbbcc six-quark clusters,
shown in Fig. 3. There, we display only the results for
S ¼ 0, since the remaining cases are qualitatively similar.
The only difference between them is their relative sizes,
that can be measured via their mean squared radii [19,20].
For the ccccbb clusters, those radii are 0.073 (S ¼ 0)
and 0.081 fm2 (S ¼ 1 and S ¼ 2) with an error bar of
�0.002 fm2 in all cases. The corresponding values for the
bbbbcc hexaquark are 0.050 (S ¼ 0) and 0.054 fm2

(S ¼ 1 and S ¼ 2), with the same error bars as in the
previous case. For the sake of comparison, the mean
squared radii for the cccccc and bbbbbb arrangements
are 0.131 and 0.037� 0.002 fm2, respectively, and for
the cccccb and bbbbbc sets, 0.101 and 0.044� 0.002 fm2

for S ¼ 0 and 0.104 and 0.045� 0.002 fm2 for S ¼ 1.

Obviously, the larger the number of c quarks involved, the
bigger the hexaquark.
The remaining hexaquark cccbbb is qualitatively differ-

ent from all of the other ones. This can be seen in its
structure, displayed in Fig. 4 for S ¼ 0. The other cases are
qualitatively similar and not displayed by simplicity.
There, we represent the radial distribution functions for
the hexaquark (symbols) together with the ones corre-
sponding to the ccc and bbb bayrons. Two things are
immediately apparent: even though the total spread of the
functions is similar to those of the previously shown
clusters, the position of the maxima is changed with
respect to them. Instead of having cc > cb > bb, the
order is bb > cc > cb. In addition, the cc and bb
distributions are nearly identical to those corresponding
to the baryons displayed (lines). This strongly suggests
that we have two independent baryons close to each other
and not a compact hexaquark. This interpretation is
supported by the fact that in none of the other hexaquaks
the mass is so close to those of the baryons they can be split
into, detailed in Table I.

IV. CONCLUSIONS

In this work we have described all six heavy quark
ensembles using trial functions whose only constraint was
their antisymmetry with respect to the exchange of any two
identical fermions. In particular, no grouping in sets of
baryons or diquarks was considered. The antisymmetry in
the color-spin part of the wavefunction was introduced by
using a direct diagonalization of the antisymmetry operator,
instead of building up the functions via Clebsh-Gordan
coefficients. In addition, the use of a DMC technique made
it easier to tackle the full six-particle problem since, in
contraposition to other algorithms such as the Gaussian
expansion method [31], DMC was designed to deal with
many-body problems [21]. Not only that, but DMC gives us
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FIG. 2. Radial distribution functions for the cc, cb, and bb
quark pairs in the cccccb (symbols) and bbbbbc (lines)
hexaquarks.
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the cccbbb S ¼ 0 hexaquark (symbols) and the ccc and bbb
baryons (lines).
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information about the structure of the hexaquarks via the
radial distribution functions and mean square radii. Those
radial distribution functions, depicted in Figs. 1–4, allow us
to say that all the hexaquarks considered here are compact
structures, except the cccbbb one, that appears to be a
juxtaposition of cccþ bbb. However, the values of the
masses shown in Table I, also indicate that the compact
bags are metastable with respect to their splitting in any of
the two baryons compatible with their composition. Those
mass differences are in the range 200–300 MeV in all cases
except for the cccbbb hexaquark, very close to the cccþ
bbb value. This suggests that hexaquark does not exist as a
compact structure, not even a metastable one, since even
the a priori compact structure derived from the eigenvalues

of F2 and S2 is split into two well-defined baryons. This is
the same conclusion obtained in Ref. [14].
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