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Generalized Henneberg Stable Minimal
Surfaces

David Moya and Joaqúın Pérez

Abstract. We generalize the classical Henneberg minimal surface by giv-
ing an infinite family of complete, finitely branched, non-orientable, stable
minimal surfaces in R

3. These surfaces can be grouped into subfamilies
depending on a positive integer (called the complexity), which essentially
measures the number of branch points. The classical Henneberg surface
H1 is characterized as the unique example in the subfamily of the simplest
complexity m = 1, while for m ≥ 2 multiparameter families are given.
The isometry group of the most symmetric example Hm with a given
complexity m ∈ N is either isomorphic to the dihedral isometry group
D2m+2 (if m is odd) or to Dm+1 × Z2 (if m is even). Furthermore, for m
even Hm is the unique solution to the Björling problem for a hypocycloid
of m + 1 cusps (if m is even), while for m odd the conjugate minimal
surface H∗

m to Hm is the unique solution to the Björling problem for a
hypocycloid of 2m + 2 cusps.

1. Introduction

A celebrated result obtained independently by do Carmo and Peng [1], Fischer-
Colbrie and Schoen [2] and Pogorelov [7] establishes that if M is a complete
orientable stable minimal surface in R

3, then M is a plane. Ros [8] proved that
the same characterization holds without assuming orientability. Nevertheless,
a plethora of complete stable minimal surfaces in R

3 appear if we allow these
stable minimal surfaces to have branch points, with the simplest example being
the classical Henneberg minimal surface [3].

The class of complete, finitely connected and finitely branched minimal
surfaces with finite total curvature (among which stable ones are a particular
case) appears naturally in the following situation: Given ε0 > 0, I ∈ N ∪ {0}
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and H0,K0 ≥ 0, let Λ = Λ(I,H0, ε0,K0) be the set of immersions F : M � X
where X is a complete Riemannian 3-manifold with injectivity radius Inj(X) ≥
ε0 and absolute sectional curvature bounded from above by K0, M is a com-
plete surface, F has constant mean curvature H ∈ [0,H0] and Morse index at
most I. The second fundamental form |AFn

| of a sequence {Fn}n ⊂ Λ may fail
to be uniformly bounded, which leads to lack of compactness of Λ. Neverthe-
less, the interesting ambient geometry of the immersions Fn can be proven to
be well organized locally around at most I points p1,n, . . . , pk,n ∈ Mn (k ≤ I)
where |AFn

| takes on arbitrarily large local maximum values. Around any of
these points pi,n, one can perform a blow-up analysis and find a limit of (a sub-
sequence of) expansions λnFn of the Fn (that is, we view Fn as an immersion
with constant mean curvature Hn/λn in the scaled ambient manifold λnXn

for a sequence {λn}n ⊂ R
+ tending to ∞). This limit is a complete immersed

minimal surface f : Σ � R
3 with finite total curvature, passing through the

origin �0 ∈ R
3. Recall that such an f has finitely many ends, each of which is

a multi-valued graph of finite multiplicity (spinning) s ∈ N, over the exterior
of a disk in the tangent plane at infinite for f at that end. Thus, arbitrarily
small almost perfectly formed copies of large compact portions of f(Σ) can
be reproduced in Fn(Mn) around Fn(pi,n) for n sufficiently large. Complete,
finitely-connected and finitely-branched minimal surfaces with finite total cur-
vature in R

3 appear naturally when considering clustering phenomena in this
framework: It may occur that different blow-up limits of the Fn around pi,n at
different scales λ1,n > λ2,n with λ1,n/λ2,n → ∞ as n → ∞, produce different
limits fj : Σj � R

3, j = 1, 2, with Index(f1) + Index(f2) ≤ I; in this case, all
the geometry of f1(Σ1) collapses around �0 ∈ f2(Σ2), and every end of f1(Σ1)
with multiplicity m ≥ 3 produces a branch point at the origin for f2(Σ2) of
branching order s − 1. For details about this clustering phenomenon and how
to organize these blow-up limits in hierarchies appearing around {pi,n}n, see
the paper [4] by Meeks and the second author.

The main goal of this paper is to generalize the classical Henneberg min-
imal surface H1 to an infinite family of connected, 1-sided, complete, finitely
branched, stable minimal surfaces in R

3. Branch points are unavoidable if we
seek for complete, non-flat stable minimal surfaces by the aforementioned re-
sults [1,2,7,8]; 1-sidedness is also necessary condition for stability (see Propo-
sition 3 below). Our examples can be grouped into subfamilies depending on
the number of branch points (this will be encoded by an integer m ∈ N called
the complexity). The most symmetric examples Hm in each subfamily of com-
plexity m will be studied in depth (Sect. 5.3). Depending on the parity of m,
either Hm or its conjugate minimal surface H∗

m (which does not gives rise to a
1-sided surface, see Sect. 5.4) can be viewed as the unique solution of a Björling
problem for a planar hypocycloid (Sect. 5.7). The isometry group of Hm is iso-
morphic to the dihedral group D2m+2 if m is odd and to the group Dm+1 ×Z2

if m is even (Sect. 5.8). We will also prove that H1 is the only element in the
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subfamily with complexity m = 1 (Theorem 11), while for m ≥ 2, Hm can
be deformed in multiparameter families: Proposition 14 gives an explicit 1-
parameter family of examples with complexity m = 2, interpolating between
H2 and a limit which turns out to be H1 (Sect. 6.2.1), and the subfamily of
examples with complexity m = 2 is a two-dimensional real analytic manifold
around H2 (Sect. 6.2.2).

2. 1-Sided Branched Stable Minimal Surfaces

We start with the Weierstrass data (g, ω) on a Riemann surface Σ, so that
(g, ω) solves the period problem and produces a conformal harmonic map
X : Σ � R

3 given by the classical formula

X = Re
∫

(φ1, φ2, φ3) = Re
∫ (

1
2
(1 − g2)ω,

i

2
(1 + g2)ω, gω

)
. (1)

We will assume that X is an immersion outside of a locally finite set of points
B ⊂ Σ, where X fails to be an immersion (points of B are called branch points
of X). Such an X will be called a branched minimal immersion. The induced
(possible branched) metric is given by

ds2 =
1
4
(1 + |g|2)2|ω|2. (2)

The local structure of X around a branch point in B is well-known, see
e.g. Micallef and White [5, Theorem 1.4] for details. Given p ∈ B, there exists
a conformal coordinate (D, z) for Σ centered at p (here D is the closed unit
disk in the plane), a diffeomorphism u of D and a rotation φ of R3 such that
φ ◦ X ◦ u has the form

z 
→ (zq, x(z)) ∈ C × R ∼ R
3

for z near 0, where q ∈ N, q ≥ 2, x is of class C2, and x(z) = o(|z|q). In this
setting, the branching order of p is defined to be q − 1 ∈ N.

Let us assume that X produces a 1-sided branched minimal surface; this
means that there exists an anti-holomorphic involution without fixed points
I : Σ → Σ such that I ◦ φj = φj for j = 1, 2, 3. This is equivalent to

− 1/g = g ◦ I, I∗ω = −g2ω. (3)

In particular, I must preserve the set B. Σ/〈I〉 is a non-orientable differentiable
surface endowed with a conformal class of metrics, and the harmonic map X

induces another harmonic map X̂ : Σ/〈I〉 � R
3 such that X̂ ◦ π = X, where

π : Σ → Σ/〈I〉 is the natural projection (X̂ is a branched minimal immersion).
Reciprocally, every 1-sided conformal harmonic map can be constructed in this
way.
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Remark 1. In the particular case that the compactification of Σ is C, we can
assume that I(z) = −1/z and write ω = f dz globally. In this setting, the
above equations give

− 1/g(z) = g(−1/z), f ◦ I = −z2g2f. (4)

Definition 2. Given a 1-sided conformal harmonic map X̂ : Σ/〈I〉 � R
3, we

denote by Δ, |A|2 the Laplacian and squared norm of the second fundamental
form of X̂. The index of X̂ is defined as the number of negative eigenvalues of
the elliptic, self-adjoint operator L = Δ + |A|2 (Jacobi operator of X) defined
over the space of compactly supported smooth functions φ : Σ → R such that
φ ◦ I = −φ. X̂ is said to be stable if its index is zero.

In the case X̂ is finitely branched, the eigenvalues and eigenfunctions of
the Jacobi operator of X are well defined via a variational approach, since the
codimension of the singularity set B is two (see [9]), and stability also makes
sense.

The next result is proven by Meeks and the second author in [4].

Proposition 3. Let X : Σ � R
3 be complete, non-flat, finitely branched mini-

mal immersion with branch locus B ⊂ Σ. Then:
1. [4, Proposition 3] If X is stable, then Σ is non-orientable and X(B)

contains more than 1 point.
2. [4, Remark 3.6] Suppose that Σ is non-orientable, X has finite total cur-

vature and its extended unoriented Gauss map G : P2 = S
2/{±1} → P

2

is a diffeomorphism. Then, X is stable.

3. The Björling Problem

We next recall the basics of the classical Björling problem, to be used later.
Let γ : I ⊂ R → R

3 be an analytic regular curve and η an analytic vector field
along γ such that 〈γ(t), η(t)〉 = 0 and ‖η(t)‖ = 1 for all t ∈ I. The classical
result due to E.G. Björling asserts that the following parametrization generates
a minimal surface S which contains γ and has η as unit normal vector along
γ:

X(u, v) = Re
(

γ̃(w) − i

∫ w

w0

η̃(w) × γ̃′(w) dw

)
,

where γ̃, η̃ are analytic extensions of the corresponding γ, η and w = u + iv is
defined in a simply connected domain Ω ⊂ C with I ⊂ Ω. In particular, the
surface S is locally unique around γ with this data (it is called the solution to
the Björling problem with data γ, η).

In what follows, we will consider different Björling problems for analytic
planar curves γ ⊂ {z = 0} that fail to be regular at finitely many points. The
above construction can be applied to each of the regular arcs of these curves
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after removing the zeros of γ′. In all our applications, η will be taken as the
(unit) normal vector field to γ as a planar curve.

4. The Classical Henneberg Surface

The classical Henneberg minimal surface H1 is the 1-sided, complete, stable
minimal surface in R

3 given by the Weierstrass data:

g(z) = z, ω = z−4(z ± i)(z ± 1)dz = z−4(z4 − 1)dz, z ∈ C − {0,∞}.

(5)

H1 has two branch points1 at [1] = {1,−1}, [i] = {i,−i} ∈ P
2 = C/〈A〉, where

A(z) = −1/z is the antipodal map. By Proposition 3, H1 is stable.
H1 can be conformally parameterized (up to translations) by eq. (1).

After translating X so that X(eiπ/4) = �0, the branch points of H1 are mapped
by X to (0, 0,±1) and a parametrization of H1 in polar coordinates z = reiθ

is given by

X(reiθ) =

⎛
⎜⎜⎝

cos θ
2 (r − 1

r ) − cos(3θ)
6 (r3 − 1

r3 )

− sin θ
2 (r − 1

r ) − sin(3θ)
6 (r3 − 1

r3 )
cos(2θ)

2 (r2 + 1
r2 )

⎞
⎟⎟⎠ . (6)

Since X(eiθ) = (0, 0, cos(2θ)), then X maps the unit circle into the vertical
segment {(0, 0, t)| t ∈ [−1, 1]}. In this way, θ ∈ [0, 2π] 
→ X(eiθ) bounces
between the two branch points of H1 (observe that the complement of this
closed segment in the x3-axis is not contained in H1), see Fig. 1.

4.1. Isometries of H1

It is straightforward to check that
1. The antipodal map A : C → C (in polar coordinates (r, θ) 
→ (1/r, π +θ))

leaves the surface invariant. This is the deck transformation, which is
orientation reversing.

2. The map z 
→ −z (in polar coordinates (r, θ) 
→ (r, π + θ)) induces the
rotation by angle π about the axis x3 on the surface.

3. The inversion of the z-plane with respect to the unit circle, z 
→ 1/z, (in
polar coordinates (r, θ) 
→ (1/r, θ)) is the composition of A with z 
→ −z,
and thus, it also induces a rotation of angle π about the x3-axis on the
surface.

4. The conjugation map z 
→ z (in polar coordinates (r, θ) 
→ (r,−θ)) in-
duces the reflection of X about the plane (x1, x3).

5. The reflection about the imaginary axis (in polar coordinates (r, θ) 
→
(r, π − θ)) induces the reflection of X about the plane (x2, x3).

1Branch points of H1 all have order 1 (locally the surface winds twice around the branch
point); this follows from direct computation, or from Proposition 21 in White’ s ”Lectures
on minimal surfaces theory”.
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Figure 1. The Henneberg surface H1. After a translation,
the branch points of H1 are contained in the x3-axis. H1 con-
tains two horizontal, orthogonal lines that bisect the x1- and
x2-axis. Left: Intersection of H1 with a ball of radius 8. Right:
top view of H1

6. X maps the half-line {re−iπ/4 | r ∈ (0,∞)} (respectively {reiπ/4 |
r ∈ (0,∞)}) injectively into l1 = Span(1, 1, 0) (respectively l2 = Span
(1,−1, 0)). Thus, the rotations R1, R2 of angle π about l1, l2 are isome-
tries of X (R1 is induced by z 
→ −iz and R2 by z 
→ iz).

7. The map z 
→ iz (in polar coordinates (r, θ) 
→ (r, θ + π/2)) induces the
rotation of angle π/2 about the x3-axis composed by a reflection in the
(x1, x2)-plane.

Together with the identity map, the above isometries form a subgroup of
the isometry group Iso(H1) of H1, isomorphic to the dihedral group D4.

Lemma 4. These are all the (intrinsic) isometries of H1.

Proof. This is a direct consequence of the fact that every intrinsic isometry φ
of H1 produces a conformal diffeomorphism of C\{0} into itself that preserves
the set of branch points of H1. In particular φ is of one of the aforementioned
eight cases. �

4.2. Associated Family and the Conjugate Surface H∗
1

The flux vector of H1 around the origin in C vanishes (in other words, the
Weierstrass form Φ = (φ1, φ2, φ3) associated to H1 is exact). This implies that
all associated surfaces {H̃1(ϕ) | ϕ ∈ [0, 2π)} to the orientable cover H̃1 = H̃1(0)
of H1 are well-defined as surfaces in R

3 (the branched minimal immersion
H̃1(ϕ) has Weierstrass data gϕ = g, ωϕ = eiϕω and it is isometric to H̃1, in
particular it has the same branch locus as H̃1).
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Figure 2. The astroid γ4 (red) and the four rays obtained
by intersecting H∗

1 with the (x1, x2)-plane (blue) (Color figure
online)

None of the surfaces H̃1(ϕ) except for ϕ = 0 descends to the non-
orientable quotient P

2\{[0]}, because the second equation in (3) is not pre-
served if we exchange ω by eiϕω, ϕ ∈ (0, 2π). In particular, none of these
associated surfaces are congruent to H1.

The conjugate surface H∗
1 := H̃1(π/2) is symmetric by reflection in the

(x1, x2)-plane. The intersection between H∗
1 and {z = 0} consists of the astroid

γ4 parameterized by

t 
→ γ4(t) =

⎛
⎜⎝

− sin(θ) + sin(3θ)
3

− cos(θ) − cos(3θ)
3

0

⎞
⎟⎠ ,

together with four rays starting at the cusps of the astroid in the direction of
their position vectors, see Fig. 2.

In particular, H∗
1 is the solution of the Björling problem for the curve γ4

and the choice of unit normal field the normal vector to γ4 as a planar curve,
see also Remark 8 below.

5. Generalized Henneberg Surfaces

We will next search for a 1-sided, complete, stable minimal surface in X : Σ �
R

3 with Σ = C\E , E finite and g(z) = z. Hence, I(z) = −1/z, X̂ = X/〈I〉 : Σ/
〈I〉 � R

3 is stable and (4) writes

f(−1/z) = −z4f(z). (7)
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5.1. General form for f

We take a general rational function

f(z) =
c

zm+3

∏M
j=1(z − aj)∏N
j=1(z − bj)

, (8)

where c, aj , bj ∈ C
∗, m ∈ N, M,N ∈ N ∪ {0} are to be determined.

Remark 5. 1. Hennerberg’s surface H1 has f(z) = z−4(z4 −1), hence c = 1,
m = 1, N = 0, M = 4, {aj} = {±1,±i}.

2. The zeros of the induced the metric (2) (branch points of the surface)
occur precisely at the points aj ; the ends occur at 0,∞ and at the points
bj (in particular, both families {aj}j , {bj}j must then come in pairs of
antipodal points, see also (12) below).

3. A consequence of the last observation is that when the above rotations
in R

3 of our surfaces (provided that the Weierstrass data close periods)
are not allowed unless the axis of rotation is vertical.

Imposing (7) to (8) we get

c(−1)m−1+M−Nz3+m−M+N

∏M
j=1(1 + ajz)∏N
j=1(1 + bjz)

= f(−1/z) = −z4f(z)

= − c

zm−1

∏M
j=1(z − aj)∏N
j=1(z − bj)

,

thus

c(−1)m+M−Nz2+2m−M+N
M∏

j=1

(1 + ajz)
N∏

j=1

(z − bj) = c
M∏

j=1

(z − aj)
N∏

j=1

(1 − bjz),

(9)

from where we deduce that

2 + 2m − M + N = 0, (10)

in particular M − N is even. Substituting z = 0 in (9) we get

c(−1)m
N∏

j=1

bj = c

M∏
j=1

aj . (11)

Using (11), we can rewrite (9) as an equality between monic polynomials in
z:

M∏
j=1

(
1
aj

+ z

) N∏
j=1

(z − bj) =
M∏

j=1

(z − aj)
N∏

j=1

(
1
bj

+ z

)
,
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from where we deduce that

{a1, . . . , aM} = {−1/a1, . . . ,−1/aM}, {b1, . . . , bN} = {−1/b1, . . . ,−1/bN}.

(12)

that is, M,N are even, the aj (resp. bj) are given by M/2 (resp. N/2) pairs
of antipodal points in C

∗. Now (10) and (11) give respectively:

1 + m − M̃ + Ñ = 0, (13)

−c

N/2∏
j=1

bj

bj

= c

M/2∏
j=1

aj

aj
. (14)

5.2. Solving the Period Problem in the One-Ended Case: Complexity

From (3) and (8) we see that the points where ds2 can blow up are z =
0, b1, . . . , bN and its antipodal points. In order to keep the computations simple,
we will assume there are no bj ’s, i.e. N = 0 (or equivalently M/2 = m + 1),
which reduces the period problem to imposing

∫
γ

g2ω =
∫

γ

ω, Re
∫

γ

gω = 0,

where γ = {|z| = 1}, or equivalently,

Res0(g2f) = −Res0(f), ImRes0(gf) = 0. (15)

We can simplify (8) to

f(z) =
c

zm+3

m+1∏
j=1

(z − aj)
(

z +
1
aj

)
, (16)

which satisfies (7) (this is the condition to descend to the quotient as a 1-sided
surface, provided that the period problem (15) is solved) if and only if (14)
holds, which in this case reduces to

− c

c
=

m+1∏
j=1

aj

aj
. (17)

We call

P (z) :=
m+1∏
j=1

(z − aj)
(

z +
1
aj

)
=

2m+2∑
h=0

Ahzh. (18)
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Thus,

Res0(f) = cRes0

(
2m+2∑
h=0

Ahzh−m−3

)
= cAm+2,

Res0(g2f) = cRes0

(
2m+2∑
h=0

Ahzh−m−1

)
= cAm,

Res0(gf) = cRes0

(
2m+2∑
h=0

Ahzh−m−2

)
= cAm+1.

Thus, (15) reduces to

cAm = −cAm+2, Im(cAm+1) = 0. (19)

Remark 6. We can assume |c| = 1 due to the fact that multiplying the Weier-
strass form by a positive number just multiplies the resulting surface by a
homothety. Similarly, exchanging c by −c doesn’t change the period problem.

We also write aj = |aj |eiθj , θj ∈ R. Thus,

−aj +
1
aj

=
(

−|aj | +
1

|aj |
)

eiθj ,
aj

aj
= e2iθj ,

and so,

P (z) =
m+1∏
j=1

(
z2 +

(
−|aj | +

1
|aj |

)
eiθj z − e2iθj

)
(20)

Definition 7. Given m ∈ N, a list (c, a1, . . . , am+1) ∈ S
1 × (C∗)m+1 solving

the equations (17),(19) will be called a solution of the period problem with
complexity m. Note that geometrically, a1, . . . , am+1 are the Gaussian images
of the branch points of the resulting surface.

5.3. The Case When the aj are the (2m + 2)-Roots of Unity

For each complexity m, there is a most symmetric configuration that gives
rise to a solution of the period problem for that complexity, which we describe
next.

Take the aj as the solutions of the equation a2m+2 = 1 (i.e. |aj | = 1 and
θj = π

m+1 (j − 1), j = 1, . . . , m + 1). Observe that

m+1∏
j=1

aj

aj
=

m+1∏
j=1

e2iθj = e2i
∑m+1

j=1 θj = e
2πi

m+1

∑m+1
j=1 (j−1) = e

2πi
m+1

m(m+1)
2 = eiπm,

hence the validity of (17) is equivalent in this case to

c = ±im−1. (21)
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As for equation (19), note that (20) can be written as

P (z) =
m+1∏
j=1

(
z2 − e2iθj

)
= z2m+2 − 1,

and thus Am = 0 (because m > 0), Am+2 = 0 (because m + 2 < 2m + 2) and
Am+1 = 0. In particular, (19) is trivially satisfied for each value of c ∈ C

∗.
Therefore, the Weierstrass data

g(z) = z, ω = im−1z−m−3(z2m+2 − 1)dz, z ∈ C
∗, (22)

give rise to a 1-sided, complete, stable minimal surface Hm. For m = 1 we
recover the classical Henneberg’s surface. Therefore we can view Hm as a
natural generalization of the Henneberg surface, from which the title of the
paper is derived.

5.4. Associated Family and the Conjugate Surface H∗
m

Since Am = Am+1 = Am+2 = 0, the flux vector of Hm around the origin in C

vanishes and the Weierstrass form Φ = (φ1, φ2, φ3) associated to Hm is exact.
Thus all associated surfaces {H̃m(ϕ) | ϕ ∈ [0, 2π)} to the orientable cover
H̃m = H̃m(0) of Hm are well-defined. As in the case m = 1 (see Sect. 4.2),
none of these associated surfaces descends to the 1-sided quotient, except for
±Hm. Let H∗

m := H̃m(π/2) be the conjugate surface to Hm.
The behavior of Hm is very different depending on the parity of m. A

naive justification of this dependence on the parity of m comes from the fact
that the coefficient for ω changes from ±1 for m odd to ±i for m even. A more
geometric interpretation of this dependence will be given next.

5.5. The Case m Odd

If m ∈ N is odd, (22) gives ω = z−m−3(z2m+2 − 1)dz. Although Hm has
m+1 branch points in Σ = P

2\{[0]} (the classes of the (2m+2)-roots of unity
under the antipodal map), they are mapped into just two different points in
R

3: after translating the surface in R
3 so that X(ei π

2(m+1) ) = �0 (we are using
the notation in (1)), the branch points of Hm are mapped to (0, 0,±1) and a
parameterization of Hm in polar coordinates is (compare with (6))

X(reiθ) =

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎜⎜⎝

cos(mθ)
2m (rm − 1

rm ) − cos((m+2)θ)
2(m+2) (rm+2 − 1

rm+2 )

− sin(mθ)
2m (rm − 1

rm ) − sin((m+2)θ)
2(m+2) (rm+2 − 1

rm+2 )
cos((m+1)θ)

m+1 (rm+1 + 1
rm+1 )

⎞
⎟⎟⎠ .

(23)

X maps the unit circle into the vertical segment {(0, 0, t)| t ∈ [−1, 1]}. θ ∈
[0, 2π] 
→ X(eiθ) bounces between the two branch points of Hm, and the
complement of this closed segment in the x3-axis is not contained in Hm.
Hm ∩ {x3 = 0} consists of an equiangular system of m + 1 straight lines
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Figure 3. Left: H2. Right: H3

passing through the origin (the images by X of the straight lines of arguments
θ = π/2+kπ

m+1 , k = 0, . . . , m in polar coordinates), see Fig. 3 right for H3.

5.6. The Case m Even

If m is even (and non-zero), (22) produces ω = i z−m−3(z2m+2 − 1)dz. In this
case, a parametrization of Hm in polar coordinates is

X(reiθ) =

⎛
⎝x1

x2

x3

⎞
⎠ =

⎛
⎜⎜⎝

− sin(mθ)
2m

(
rm + 1

rm

)
+ sin((m+2)θ)

2(m+2)

(
rm+2 + 1

rm+2

)
− cos(mθ)

2m

(
rm + 1

rm

) − cos((m+2)θ)
2(m+2)

(
rm+2 + 1

rm+2

)
sin((m+1)θ)

m+1 ( 1
rm+1 − rm+1)

⎞
⎟⎟⎠ .

(24)

X maps the unit circle {r = 1} into a certain hypocycloid contained in the
plane {x3 = 0}, as we will explain next.

A hypocycloid of inner radius r > 0 and outer radius R > r is the planar
curve traced by a point on a circumference of radius r which is rolling along
the interior of another circumference (which is fixed) of radius R. It can be
parametrized by α(t) = (x(t), y(t)), t ∈ R, where

x(t) = −(R − r) sin t + r sin

(
R − r

r
t

)
, y(t) = −(R − r) cos t − r cos

(
R − r

r
t

)
.

Using (24), we deduce that the image by X of the unit circle S
1 ⊂ C has

the following parametrization:

θ ∈ [0, 2π) 
→ X(eiθ) =

⎛
⎜⎝

− sin(mθ)
m + sin((m+2)θ)

m+2

− cos(mθ)
m − cos(m+2)θ

m+2

0

⎞
⎟⎠ . (25)
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Figure 4. The intersection of Hm (with m > 0 even) with
{x3 = 0} consists of a hypocycloid with m+1 cusps (in red) to-
gether with half-lines {tp | t ≥ 1} that start from each of these
cusp points p. Left: H2 ∩ {x3 = 0}, where the branch points
have coordinates (0,− 3

4 , 0), (− 3
√
3

8 , 3
8 , 0), ( 3

√
3

8 , 3
8 , 0). Center:

H4 ∩ {x3 = 0}, Right: H6 ∩ {x3 = 0} (Color figure online)

From (25) we deduce that, up to the reparametrization t = mθ, X(S1) is
the hypocycloid of inner radius r = 1

m+2 and outer radius R = 2m+2
m(m+2) ,

which has exactly m + 1 cusps. These cusp points are the images by X of the
m + 1 branch points of Hm. In particular, Hm is the unique minimal surface
obtained as solution of the Björling problem for the hypocycloid of m+1 cusps
(this number of cusps is any odd positive integer, at least three), inner radius
r = 1

m+2 and outer radius R = 2m+2
m(m+2) , when we take as normal vector field η

(see Sect. 3 for the notation) the normal vector to the hypocycloid as a planar
curve.

We depict this planar curve in the simplest cases m = 2, 4, 6 in Fig. 4 in
red.

5.7. Revisiting the Case m Odd: H∗
m as a Solution of a Björling Problem for

a Hypocycloid

Using the Weierstrass formula (1), it can be easily seen that the conjugate
surface H∗

m of Hm with odd m can be parameterized in polar coordinates
z = reiθ by X∗(reiθ) given by the same formula as the right-hand-side of (24).
X∗(S1) parameterizes a hypocycloid γ2m+2 with inner radius r = 1

m+2 and
outer radius R = 2m+2

m(m+2) . Since

R

r
=

2m + 2
m

,
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we deduce that γ2m+2 has 2m + 2 cusps.2 Observe that 2m + 2 is a positive
multiple of 4 because m is odd; and conversely, every positive multiple of 4 can
be written as 2m+2 for a unique m ∈ N odd. This tells us that for any m ∈ N

odd, H∗
m is the unique solution to the Björling problem for the hypocycloid

γ2m+2, when we take as normal vector field η the normal vector to γ2m+2 as
a planar curve.

Remark 8. 1. In the particular case of a hypocycloid of 4 cusps (called as-
troid), we recover the conjugate surface H∗

1 of the classical Henneberg
surface. This result was described by Odehnal [6], who also studied the
Björling problem for an hypocycloid γ3 of three cusps from the viewpoint
of algebraic surfaces.

2. We have described the minimal surfaces obtained as the solution of a
Björling problem over a hypocycloid if the number of its cusps is ei-
ther any given odd number or a multiple of four. The case that remains
is when the hypocycloid has 4k + 2 cusps, k ∈ N. The corresponding
solution to this Björling problem can be also explicitly described by the
parametrization (24), now with a parameter m ∈ Q. Namely, if we choose
m to be of the form m = 1

2k , k ∈ N, inner radius r = 1
m+2 and outer

radius R = 2m+2
m(m+2) , then

R

r
=

2m + 2
m

= 4k + 2,

which ensures that the complete branched minimal surface H 1
2k

= X(C\
{0,∞}) (here X is given by (24)) is symmetric by reflection in the
(x1, x2)-plane), and X(S1) is a hypocycloid with 4k + 2 cusps. H 1

2k
does

not descend to a 1-sided quotient.

5.8. Isometries of Hm

As expected, the isometry group of Hm depends on whether m is even or odd.

Suppose firstly that m is odd. In this case, (23) gives:
(O1) The reflection of the z-plane about the imaginary axis, reiθ 
→ rei(π−θ),

produces via X the reflectional symmetry about the (x2, x3)-plane in Hm.
(O2) The rotation reiθ 
→ rei(θ+π+ π

m+1 ) of angle π + π
m+1 about the origin in

the z-plane, gives that Hm is symmetric under the rotation of angle π
m+1

about the x3-axis composed by a reflection in the (x1, x2)-plane.
(O1), (O2) generate a subgroup of the extrinsic isometry group Iso(Hm) of
Hm, isomorphic to the dihedral group D2m+2.

2For a hypocycloid of inner radius r > 0 and outer radius R > r, the quotient R/r expresses
the number of times that the inner circumference rolls along the outer circumference until
it completes a loop. If R/r is a rational number and a/b is the irreducible fraction of R/r,
then b ·a/b = a counts the number of times that the inner circumference rolls until the point
that generates the hypocycloid reaches its initial position. This number a coincides with the
number of cusps.
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Now assume that m is even. Using (24), we obtain:

(E1) The reflection reiθ 
→ rei(π−θ) of the z-plane about the imaginary axis
produces via X the reflectional symmetry about the (x2, x3)-plane in Hm

(this is a common feature of both the odd and even cases).
(E2) The rotation reiθ 
→ rei(θ+ 2π

m+1 ) of angle 2π
m+1 about the origin in the

z-plane, gives that Hm is symmetric under the rotation of angle 2π
m+1 .

(E3) The antipodal map reiθ 
→ rei(θ+π) in the z-plane, produces a reflectional
symmetry of Hm with respect to the (x1, x2)-plane.

(E1), (E2), (E3) generate a subgroup of Iso(Hm) isomorphic to the group
Dm+1 × Z2.

Repeating the argument in the proof of Lemma 4, we now deduce the
following.

Lemma 9. Regardless of the parity of m, these are all the (intrinsic) isometries
of Hm.

6. Moduli Spaces of Examples with a Given Complexity

Our next goal is to analyze the structure of the family of solutions of the period
problem with a given complexity in the sense of Definition 7. For m = 1,
we will obtain uniqueness of the Henneberg surface H1. This uniqueness is a
special feature of the case m = 1, since continuous families of examples for
complexities m ≥ 2 can be produced.

We define the function R : (0,∞) → (0,∞), R(r) = r − 1
r .

6.1. Solutions with Complexity m = 1
Since m = 1, solving the period problem (19) descending to the 1-sided quo-
tient reduces to solving

cA1 = −cA3, Im(cA2) = 0, −c

c
=

a1

a1

a2

a2
. (26)

Suppose that a list (c, a1, a2) ∈ S
1 × (C∗)2 is a solution of the 1-sided period

problem, with associated branched minimal immersion X. Recall that g(z) = z
is its Gauss map. The list that gives rise to H1 (Henneberg) is (±1, 1, i).

Remark 10. Since rotations of our surfaces are not allowed unless the rotation
axis is vertical (see Remark 5) we can assume a1 ∈ R

+ from now on, although
we cannot assume a1 = 1.

Write a1, a2 in polar coordinates as a1 = r1, a2 = r2e
iθ2 , r1, r2 > 0,

θ2 ∈ [0, 2π). (18) can be written as

P (z) = z4 − [
R(r1) + R(r2)eiθ2

]
z3 − [

1 + e2iθ2 − R(r1)R(r2)eiθ2
]
z2

+
[
R(r1)e2iθ2 + R(r2)eiθ2

]
z + e2iθ2 ,
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hence

A1 = R(r1)e2iθ2 + R(r2)eiθ2 , (27)

A2 = − [
1 + e2iθ2 − R(r1)R(r2)eiθ2

]
, (28)

A3 = − [
R(r1) + R(r2)eiθ2

]
. (29)

Writing c = eiβ , we have

cA1 + cA3 = R(r1)
[
e−i(β+2θ2) − eiβ

]
+ R(r2)

[
e−i(β+θ2) − ei(β+θ2)

]

= R(r1)e−iθ2

[
e−i(β+θ2) − ei(β+θ2)

]
− 2R(r2) sinh(i(β + θ2))

= −2e−iθ2R(r1) sinh(i(β + θ2)) − 2iR(r2) sin(β + θ2)

= −2i
[
R(r1)e−iθ2 + R(r2)

]
sin(β + θ2), (30)

cA2 = −eiβ
(
1 + e2iθ2

)
+ R(r1)R(r2)ei(β+θ2)

= −ei(β+θ2)
(
e−iθ2 + eiθ2

)
+ R(r1)R(r2)ei(β+θ2)

= − [2 cosh(iθ2) − R(r1)R(r2)] ei(β+θ2)

= − [2 cos θ2 − R(r1)R(r2)] ei(β+θ2). (31)

A list (c, a1, a2) solves the period problem if and only if the right-hand-side
of (30) vanishes and the right-hand-side of (31) is real.

The third equation in (26) reduces to

e2i(β+θ2) = −1. (32)

Theorem 11. The Henneberg surface H1 is the only surface with m = 1 that
solves the period problem and descends to a 1-sided quotient.

Proof. By the above arguments, the right-hand-side of (30) vanishes, the right-
hand-side of (31) is real and (32) holds.

(32) implies that sin(β + θ2) = ±1. Since the right-hand-side of (30)
vanishes, we have

R(r1)e−iθ2 + R(r2) = 0. (33)

We have two possibilities:
• r1 = 1. Thus (33) implies r2 = 1. From, (32) we have β+θ2 ≡ π/2 mod π

and from (31) we have cos θ2 = 0, thus θ2 = π/2 or θ2 = 3π/2. This gives
the lists (1, 1, i), (−1, 1, i), (1, 1,−i) and (−1, 1,−i). All of them give raise
to the Henneberg surface.

• r1 �= 1. This implies e−iθ2 = −R(r2)
R(r1)

, which is real. Hence e−iθ2 = ±1.
As the function r 
→ R(r) is injective, this implies r1 = r2 and θ2 = π or
r2 = 1/r1 and θ2 = 0. Since the right-hand-side of (31) is real and (32)
holds, 2 cos θ2 − R(r1)R(r2) = 0. But in both cases 2 cos θ2 − R(r1)R(r2)
does not vanish. Hence this possibility cannot occur.

�
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6.2. Solutions with Complexity m = 2
Suppose that a list (c = eiβ , a1 = r1, a2 = r2e

iθ2 , a3 = r3e
iθ3) ∈ S

1 ×
R

+ × (C∗)2 is a solution of the period problem with 1-sided quotient and
associated branched minimal immersion X. The list that gives rise to H2 is
(±i, 1, eiπ/3, e2iπ/3).

Solving the period problem with 1-sided quotient is equivalent to solving

cA2 = −cA4, Im(cA3) = 0, −c

c
=

a2

a2

a3

a3
(34)

The third equation in (34) reduces to

e2i(β+θ2+θ3) = −1. (35)

(18) can be written as

P (z) = z6 + A5z
5 + A4z

4 + A3z
3 + A2z

2 + A1z + A0,

where

A2 = e2i(θ2+θ3) + e2iθ2 + e2iθ3 − R(r1)R(r2)ei(θ2+2θ3) − R(r1)R(r3)ei(2θ2+θ3)

−R(r2)R(r3)ei(θ2+θ3), (36)
A3 = 2

[
R(r2) cos θ3 + R(r3) cos θ2 + R(r1) cos(θ2 − θ3)

−1
2
R(r1)R(r2)R(r3)

]
ei(θ2+θ3), (37)

A4 = −(1 + e2iθ2 + e2iθ3) + R(r1)R(r2)eiθ2

+R(r1)R(r3)eiθ3 + R(r2)R(r3)ei(θ2+θ3). (38)

Thus,

cA2 + cA4 = 2e−i[β+2(θ2+θ3)]F, (39)
cA3 = ±2iG (40)

where

F = e2iθ3 + [2 cos θ2 − R(r1)R(r2)] eiθ2 − R(r3)
[
R(r1) + R(r2)eiθ2

]
eiθ3 ,

(41)
G = R(r2) cos θ3 + R(r3) cos θ2 + R(r1) cos(θ2 − θ3) − 1

2R(r1)R(r2)R(r3).
(42)

Remark 12. (I) From (42) we deduce that G is real, hence the condition
Im(cA3) = 0 only holds if and only if G = 0. We deduce that a list
(c, a1, a2, a3) solves the 1-sided period problem if and only if (35) holds
and F = G = 0.

(II) The expression (41) is symmetric in (r2, θ2), (r3, θ3). This can be deduced
from the symmetry of A2, A4, or directly checked by using the equality

e2iθ = 2 cos θeiθ − 1, θ ∈ R, (43)
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which transforms (41) into

F = (1 + e2iθ2 + e2iθ3) − R(r1)
3∑

j=2

R(rj)eiθj − R(r2)R(r3)ei(θ2+θ3). (44)

Lemma 13. If F = 0, then the coefficient of R(r1) in (44) is non-zero.

Proof. Suppose R(r2)eiθ2+R(r3)eiθ3 = 0. This leads to one of the following two
possibilities: (a) eiθ2 = eiθ3 and R(r2) = −R(r3) or else (b) eiθ2 = −eiθ3 and
R(r2) = R(r3). (a) implies r3 = 1/r2 and thus, (44) gives F = 1+e2iθ2( 1

r2
2
+r22).

(b) implies r2 = r3 and (44) gives the same expression for F . In any case, we
deduce from F = 0 that e2iθ2 is real negative, hence r2

2
r4
2+1

= −e2iθ2 = 1. This is
impossible, since the function x > 0 
→ x

1+x2 has a unique maximum at x = 1
with value 1/2. �

The next result describes a one-parameter family of non-trivial examples
of complexity m = 2 different from H2.

Proposition 14. Suppose that a list (c, a1, a2, a3) solves the 1-sided period prob-
lem. Then:

1. If r1 = 1, and at least one of r2 or r3 equals one, then (c, a1, a2, a3) =
(±i, 1, eiπ/3, e2iπ/3) and the example is H2.

2. If θ2 + θ3 = 0 (mod π), then r2 = r3 or r2 = 1/r3 and (r1, r2) are given
by the following functions of θ2 ∈ (π

4 , π
3 ] ∪ [2π

3 , 3π
4 ) :

R(r1(θ2)) =
1

8
√

2

√
f(θ2) − 3

cos θ2 cos(2θ2)
[f(θ2) + 3 + 4 cos(2θ2)], (45)

R(r2(θ2)) = −
√

f(θ2) − 3√
2

, (46)

or else (r1, r2) are given by the opposite expressions for both R(r1(θ2)), R
(r2(θ2)), which exchange (r1, r2) by ( 1

r1
, 1

r2
). Here, f is the function

f(θ2) =
√

1 − 8 cos(2θ2) − 8 cos(4θ2). (47)

Proof. If r1 = 1, and at least one of r2 or r3 equals one, then (44) gives
1 + e2iθ2 + e2iθ3 = 0 and (42) gives R(r2) cos θ3 + R(r3) cos θ2 = 0. Since at
least one of r2 or r3 equals one, then at least one of R2 or R3 equals zero. In
fact, both R2 = R3 = 0 (because otherwise we get cos θ2 = 0 or cos θ3 = 0,
which prevents 1 + e2iθ2 + e2iθ3 from cancelling), and thus, r2 = r3 = 1. In
this setting, 1 + e2iθ2 + e2iθ3 = 0 leads to (c, a1, a2, a3) = (±i, 1, eiπ/3, e2iπ/3),
which proves item 1.

Now assume θ2 + θ3 = 0. Then (44),(42) give respectively

1 + 2 cos(2θ2) − R(r2)R(r3) = R(r1)[R(r2)eiθ2 + R(r3)e−iθ2 ],
(48)

(R(r2) + R(r3)) cos θ2 + R(r1) cos(2θ2) =
1
2
R(r1)R(r2)R(r3). (49)
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Observe that R(r1) cannot vanish by Lemma 13 (another reason is that oth-
erwise, (49) gives cos θ2 = 0, and (48) gives −1 − R(r2)R(r3) = 0 which is
absurd). From (48) we deduce that R(r2)eiθ2 +R(r3)e−iθ2 is real. This implies
that [R(r2) − R(r3)] sin θ2 = 0. We claim that sin θ2 �= 0; otherwise θ2 ≡ 0
(mod π) and (48),(49) give the system

3 − R(r2)R(r3) = ±R(r1)[R(r2) + R(r3)],

R(r1) ± (R(r2) + R(r3)) =
1
2
R(r1)R(r2)R(r3),

(with the same choice for signs), which can be easily seen not to have solutions.
Thus, sin θ2 �= 0 hence R(r2) = R(r3) and r2 = r3. In this setting,

(48),(49) reduce to

1 + 2 cos(2θ2) − R(r2)2 = 2R(r1)R(r2) cos θ2, (50)

2R(r2) cos θ2 + R(r1) cos(2θ2) =
1
2
R(r1)R(r2)2. (51)

If we assume θ2 + θ3 = π, then (44),(42) give respectively

1 + 2 cos(2θ2) + R(r2)R(r3) = R(r1)[R(r2)eiθ2 − R(r3)e−iθ2 ],
(52)

(−R(r2) + R(r3)) cos θ2 − R(r1) cos(2θ2) =
1
2
R(r1)R(r2)R(r3). (53)

Again, R(r1) can not vanish due to Lemma 13. From (52) we deduce that
R(r2)eiθ2 − R(r3)e−iθ2 is real. This implies that [R(r2) + R(r3)] sin θ2 = 0. We
claim that sin θ2 �= 0; otherwise θ2 ≡ 0 (mod π) and (52),(53) give the system

3 + R(r2)R(r3) = ±R(r1)[R(r2) − R(r3)],

−R(r1) ± (−R(r2) + R(r3)) =
1
2
R(r1)R(r2)R(r3),

(with the same choice for signs), which again has no solutions. Thus, sin θ2 �= 0
hence R(r2) = −R(r3) and r2 = 1/r3. In this setting, (48),(49) reduce again
to (50) and (51).

The system (50),(51) has two equations and three unknowns r1, r2, θ2.
Next we describe its solutions. Consider the function f given by (47). Then,

f(π − θ2) = f(θ2), for each θ2, f(θ2,0) = 0 = f(π − θ2,0),

where θ2,0 = 1
2 cot−1

(
9√

32
√
10+95

)
∼ 0.499841, and the domain of f is

[θ2,0, π − θ2,0] + πZ. The set {θ2 ∈ [θ2,0, π − θ2,0] | f(θ2) ≥ 3} equals A :=
[π
4 , π

3 ] ∪ [2π
3 , 3π

4 ].
The unique solution (r1, r2) to the system (50),(51) as a function of θ2 is

given by (45), (46) and the opposite expressions for both R(r1(θ2)), R(r2(θ2)),
which exchange (r1, r2) by ( 1

r1
, 1

r2
). �
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6.2.1. The One-Parameter Family of Examples in Item 2 of Proposition 14.
Observe that the map θ2 ∈ (π

4 , π
3 ] 
→ π − θ2 ∈ [ 2π

3 , 3π
4 ) is a diffeomorphism.

Using the notation in item 2 of Proposition 14, for each θ2 ∈ (π
4 , π

3 ], we have

R(r1(π − θ2)) = −R(r1(θ2)), R(r2(π − θ2))) = R(r2(θ2)). (54)

Each of these lists with θ2 ∈ (π
4 , π

3 ]∪[2π
3 , 3π

4 ) solves the 1-sided period problem,
hence it defines a non-orientable, branched minimal surface H(θ2). Further-
more, (54) implies that

r1(π − θ2) =
1

r1(θ2)
, r2(π − θ2) = r2(θ2). (55)

We claim the surfaces H(θ2) and H(π − θ2) are congruent. To see this, note
that the set of points {aj ,−1/aj j = 1, 2, 3} that defines f through (16) and
generates the surface H(θ2), is:{

r1,
−1
r1

, r2e
iθ2 ,

1
r2

ei(π+θ2), r2e
−iθ2 ,

1
r2

ei(π−θ2)

}
. (56)

The analogous set of points for the surface H(π − θ2) is given through (55):{
1
r1

,−r1,−r2e
−iθ2 ,

1
r2

e−iθ2 ,−r2e
−iθ2 ,

1
r2

eiθ2

}
,

which is up to sign the set described in (56). Therefore, the function f defined
by equation (16) and the corresponding function f̃ defined by the same formula
for the surface H(π − θ2) are related by f̃(−z) = −f(z), for each z ∈ C. Using
that ω = f dz and ω̃ = f̃ dz define, via the Weierstrass representation (1),
related branched minimal immersions X = (x1, x2, x3) for H(θ2) and X̃ =
(x̃1, x̃2, x̃3) for H(π − θ2), we get that H(θ2) and H(π − θ2) are congruent.

In the sequel, we will reduce our study to the family {H(θ2) | θ2 ∈ (π
4 , π

3 ]}.
From (45), (46) we have

lim
θ2→π/3−

R(r1(θ2)) = lim
θ2→π/3−

R(r2(θ2)) = 0,

which implies that

lim
θ2→π/3−

H(θ2) = H2.

We next identify the limit (after rescaling) of the surfaces H(θ2) as θ2 →
π/4+. We first observe that

lim
θ2→π/4+

R(r1(θ2)) = −∞, lim
θ2→π/4+

R(r2(θ2)) = 0. (57)

This implies that the branch point a1 = a1(θ2) is tending to zero, hence the
limit of H(θ2) when θ2 → π/4+ (if it exists) cannot be an example with
complexity m = 2. Intuitively, it is clear than the complexity cannot increase
when taking limits (even with different scales), hence by Theorem 11 it is
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natural to think that the limit of suitable re-scalings of H(θ2) when θ2 → π/4+

be H1. We next formalize this idea.
Another consequence of (57) is that the list (c, a1, a2, a3) = (i, r1(θ2), r2

(θ2)eiθ2 , r2(θ2)e−iθ2) converges as θ2 → π/4+ to (c, a1, a2, a3) = (i, 0, eiπ/4,
e−iπ/4). After applying to H(θ2) a homothety of ratio r1(θ2) > 0 (which
shrinks to zero), the Weierstrass data of the shrunk surface r1(θ2)H(θ2) is
(g(z) = z, r1(θ2)f(z)), where f(z) is given by (16). For z ∈ C\{0} fixed,

lim
θ2→π/4+

r1(θ2)f(z)
(16)
= lim

θ2→π/4+
r1(θ2)

i

z5

3∏
j=1

(z − aj)

(
z +

1

aj

)

= i
z5

(
z − eiπ/4

) (
z + eiπ/4

) (
z − e−iπ/4

) (
z + e−iπ/4

)
lim

θ2→π/4+
(z − r1(θ2)) (r1(θ2)z + 1)

= i
z4

(
z − eiπ/4

) (
z + eiπ/4

) (
z − e−iπ/4

) (
z + e−iπ/4

)
:= f̂(z).

Plugging the Weierstrass data (g(z) = zf̂ dz) into (1), we obtain a parametriza-
tion of the limit surface of r1(θ2)H(θ2) as θ2 → π/4+ in polar coordinates
z = reiθ:

X̂(reiθ) =

⎛
⎜⎜⎝

− sin θ
2 (r − 1

r ) + sin(3θ)
6 (r3 − 1

r3 )

− cos θ
2 (r − 1

r ) − cos(3θ)
6 (r3 − 1

r3 )

− cos θ sin θ(r2 + 1
r2 )

⎞
⎟⎟⎠ . (58)

We claim that this parametrization generates the Henneberg surface H1. To
see this, observe that if we first perform the change of variables θ = θ̃ + π/4
and then rotate the surface an angle of −π

4 around the x3-axis, we get

⎛
⎜⎝

cos
(

π
4

)
sin

(
π
4

)
0

− sin
(

π
4

)
cos

(
π
4

)
0

0 0 1

⎞
⎟⎠ · X̂(rei(θ̃+π

4 )) = −

⎛
⎜⎜⎝

cos θ̃
2 (r − 1

r ) − cos(3θ̃)
6 (r3 − 1

r3 )

− sin θ̃
2 (r − 1

r ) − sin(3θ̃)
6 (r3 − 1

r3 )
cos(2θ̃)

2 (r2 + 1
r2 )

⎞
⎟⎟⎠ ,

which is, up to a sign, the parametrization given in (6) for H1 (see Fig. 5 for
images of the surface H(θ2) for three different values of θ2 ∈ (π

4 , π
3 ]).

6.2.2. Around H2 the Space of Examples with Complexity m = 2 is Two-
Dimensional. Item 2 of Proposition 14 defines a non-compact family of non-
orientable, branched minimal surfaces {H(θ2) | θ2 ∈ (π

4 , π
3 ]} inside the moduli

space of examples with complexity m = 2. Apparently, the space of solutions
for this complexity has real dimension 2 (the variables are r1, r2, r3, θ2, θ3,
F = 0 is a complex condition and G = 0 is a real condition). We can ensure
this at least around H2 via the implicit function theorem (this is consistent
with item 2 of Proposition 14, since it imposes the extra condition θ2 + θ3 = 0
mod π), as we will show next.

Consider the (smooth) period map given by

P : (R+)3 × R
2 −→ R

3 ≡ C × R

((r1, r2), (r3, θ2, θ3)) 
−→ (F (r1, r2, r3, θ2, θ3), G(r1, r2, r3, θ2, θ3)),
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Figure 5. Surfaces generated by the previous lists
(c, a1, a2, a3) = (i, r1(θ2), r2(θ2)eiθ2 , r2(θ2)e−iθ2) with θ2 = 1
(left), θ2 = 0.83 (center), θ2 = 0.7854 (right). The limit of
r1(θ2)H(θ2) as θ2 → π/4+ ∼ 0.785398 is the Henneberg sur-
face H1

where F,G are given by (44), (42) respectively. Given (r1, r2) ∈ (R+)2, let
P r1,r2 : R+ ×R

2 → R
3 be the restriction of P to {(r1, r2)} ×R

+ ×R
2. Then,

d(P r1,r2)(r3,θ2,θ3) ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Re(F )
∂r3

∂Re(F )
∂θ2

∂Re(F )
∂θ3

∂Im(F )
∂r3

∂Im(F )
∂θ2

∂Im(F )
∂θ3

∂G

∂r3

∂G

∂θ2

∂G

∂θ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

Recall that the list associated to H2 is (r1, r2, r3, θ2, θ3) = (1, 1, 1, π/3, 2π/3).
Imposing this choice of parameters and computing the determinant of (59) we
get

d(P 1,1)(1,π/3,2π/3) = 2
√

3 �= 0.

Thus, the implicit function theorem gives an open neighborhood U ⊂ (R+)2

of (r1, r2) = (1, 1), an open set W ⊂ (R+)3 × R
2 with (r1, r2, r3, θ2, θ3) =

(1, 1, 1, π/3, 2π/3) ∈ W and a smooth map ϕ : U → R
3 such that all the solu-

tions (r1, r2, r3, θ2, θ3) around (1, 1, 1, π/3, 2π/3) of the equation P (r1, r2, r3,
θ2, θ3) = 0 are of the form (r3, θ2, θ3) = ϕ(r1, r2). By Remark 12(I), the list

(c = eiβ(r1,r2), r1, r2e
iθ2 , r3e

iθ3)

with β = β(r1, r2) given by (35) solves the 1-sided period problem and so,
it defines a 1-sided branched minimal surface. This produces a 2-parameter
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deformation of the surface H2 in the moduli space of examples with m = 2
around H2, which in turn describes the whole moduli space around H2.

Remark 15. A nice consequence of the classical Leibniz formula for the deriva-
tive of a product is a recursive law that gives the coefficients of the polynomial
P (z) defined by (18) in terms of the coefficients of the related polynomial for
one complexity less. To obtain this recursive law, we first adapt the notation
to the complexity:

Pm+1(z) :=
m+1∏
j=1

(z − aj)
(

z +
1
aj

)
=

2m+2∑
h=0

Am+1,hzh. (60)

(19) can now be written

cAm+1,m = −cAm+1,m+2, Im(cAm+1,m+1) = 0. (61)

We want to find expressions for the above coefficients Am+1,m, Am+1,m+2,
Am+1,m+1, depending only on coefficients of the type Am,h (i.e., for one com-
plexity less). Writing aj = rje

iθj in polar coordinates, observe that

Pm+1(z) := Pm(z)Qm+1(z), where Qm+1(z) = (z − rm+1e
iθm+1)

(
z +

eiθm+1

rm+1

)
.

Hence for h ∈ {m,m + 1,m + 2},

Am+1,h =
1
h!

P
(h)
m+1(0) =

1
h!

(PmQm+1)(h)(0) =
1
h!

h∑
k=0

(
h

k

)
P (k)

m (0)Q(h−k)
m+1 (0),

where in the last equality we have used Leibniz formula. Since Qm+1 is a
polynomial of degree two, its derivatives of order three or more vanish. Hence
we can reduce the last sum to terms where the index k satisfies h− k ≤ 2, i.e.,
k ∈ {h − 2, h − 1, h} and thus,

Am+1,h =
1

h!

[( h
h−2

)
P (h−2)

m (0)Q′′
m+1(0) +

( h
h−1

)
P (h−1)

m (0)Q′
m+1(0) +

(h
h

)
P (h)

m (0)Qm+1(0)
]

=
1

h!

[
h!

(h−2)!2P (h−2)
m (0) · 2 − h P (h−1)

m (0)R(rm+1)e
iθm+1 − P (h)

m (0)e2iθm+1

]

=
[

1
(h−2)!P

(h−2)
m (0) − 1

(h−1)!P
(h−1)
m (0)R(rm+1)e

iθm+1 − 1
h!P

(h)
m (0)e2iθm+1

]

= Am,h−2 − Am,h−1R(rm+1)e
iθm+1 − Am,he

2iθm+1 , (62)

which is the desired recurrence law. (62) can be used to find solutions to (61) for
complexity m = 3 besides the most symmetric example H3, but the equations
are complicated and we will not give them here.
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Department of Geometry and Topology and Institute of Mathematics (IMAG)
University of Granada
Granada
Spain
e-mail: dmoya@ugr.es;

jperez@ugr.es

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Generalized Henneberg Stable Minimal Surfaces Page 25 of 25    53 

Received: July 5, 2022.

Accepted: December 23, 2022.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.


	Generalized Henneberg Stable Minimal Surfaces
	Abstract
	1. Introduction
	2. 1-Sided Branched Stable Minimal Surfaces
	3. The Björling Problem
	4. The Classical Henneberg Surface
	4.1. Isometries of H1
	4.2. Associated Family and the Conjugate Surface H1*

	5. Generalized Henneberg Surfaces
	5.1. General form for f
	5.2. Solving the Period Problem in the One-Ended Case: Complexity
	5.3. The Case When the aj are the (2m+2)-Roots of Unity
	5.4. Associated Family and the Conjugate Surface Hm*
	5.5. The Case m Odd
	5.6. The Case m Even
	5.7. Revisiting the Case m Odd: Hm* as a Solution of a Björling Problem for a Hypocycloid
	5.8. Isometries of Hm

	6. Moduli Spaces of Examples with a Given Complexity
	6.1. Solutions with Complexity m=1
	6.2. Solutions with Complexity m=2
	6.2.1. The One-Parameter Family of Examples in Item 2 of Proposition 14
	6.2.2. Around H2 the Space of Examples with Complexity m=2 is Two-Dimensional


	References


