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Abstract

Motivation: ANOVA Simultaneous Component Analysis (ASCA) is a popular method for the analysis of multivariate
data yielded by designed experiments. Meaningful associations between factors/interactions of the experimental
design and measured variables in the dataset are typically identified via significance testing, with permutation tests
being the standard go-to choice. However, in settings with large numbers of variables, like omics (genomics,
transcriptomics, proteomics and metabolomics) experiments, the ‘holistic’ testing approach of ASCA (all variables
considered) often overlooks statistically significant effects encoded by only a few variables (biomarkers).

Results: We hereby propose Variable-selection ASCA (VASCA), a method that generalizes ASCA through variable
selection, augmenting its statistical power without inflating the Type-l error risk. The method is evaluated with
simulations and with a real dataset from a multi-omic clinical experiment. We show that VASCA is more powerful
than both ASCA and the widely adopted false discovery rate controlling procedure; the latter is used as a benchmark
for variable selection based on multiple significance testing. We further illustrate the usefulness of VASCA for
exploratory data analysis in comparison to the popular partial least squares discriminant analysis method and its
sparse counterpart.

Availability and implementation: The code for VASCA is available in the MEDA Toolbox at https://github.com/joseca
machop/MEDA-Toolbox (release v1.3). The simulation results and motivating example can be reproduced using the
repository at https://github.com/josecamachop/VASCA/tree/v1.0.0 (DOI 10.5281/zenodo.7410623).

Contact: josecamacho@ugr.es

Supplementary information: Supplementary data are available at Bioinformatics online.

drug type) significantly influencing the observed variation is Fisher’s
ANalysis of VAriance (ANOVA) (Fisher, 1919). To assess the sig-
nificance of this influence, a given test statistic (e.g. the F-ratio) is
used to compute Fisher’s P-value, which is then compared with a

1 Introduction

Designed experiments control the variation of one or more factors
to assess the effect of such variation on one or more specific

responses (variables) of interest. As an example, imagine that blood
samples are extracted from two cohorts of cancer patients treated
with two distinct drugs and characterized through chromatographic
measures; one may then want to understand if and how the chroma-
tographic profile of these blood specimens changes when altering
the therapeutic strategy (i.e. the type of drug). If a single response is
considered, the classical approach to identify those factors (e.g. the
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certain threshold for statistical significance. For multivariate
responses (the current state of the art in, e.g. omics sciences like gen-
omics, transcriptomics, proteomics or metabolomics), a widely
adopted approach is to conduct multiple (univariate) tests over the
individual variables, in an attempt to identify and select the specific
responses significantly affected by a given experimental factor. A
univariate test statistic (as in ANOVA) and its corresponding
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P-value is therefore obtained for each variable. Statistical signifi-
cance thresholds in such multiple testing are typically adjusted (cor-
rected) in order to identify as many significant variables as possible,
while keeping the number of false positives under control according
to certain criterion; well-known examples are the Bonferroni correc-
tion to control the family-wise error rate (FWER), as well as the
Benjamini-Hochberg (BH) and Benjamini-Yekutieli procedures
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) to
control the false discovery rate (FDR). FDR-controlling procedures
(or simply, FDR methods) are particularly appealing in multivariate
settings with large numbers of variables due to their increased statis-
tical power—they allow to identify more significant associations due
to the less conservative P-value correction compared to, e.g. the
Bonferroni correction. Thus, FDR methods—and particularly the
BH procedure—have been widely used for multiple significance test-
ing in omics data. However, as they are based on univariate tests,
FDR methods do not take into account the possibly complex multi-
variate structure underlying the data at hand. Indeed, the effect of
an experimental factor may often produce inter-related changes in
multiple measured variables (e.g. a linear combination of responses),
rather than simple variations within each individual one of them.
This limits the detection power of the FDR approach.

An alternative strategy to treat multiple responses is to apply
multivariate testing procedures, such as Multivariate ANOVA
(MANOVA) (Warne, 2014). These methods replace multiple uni-
variate tests by a single multivariate one to assess the statistical sig-
nificance of the ANOVA model, including all the variables in the
dataset. This avoids the need for multiple-testing corrections, but
suffer from the effects of statistical noise, particularly when the
number of variables is large, leading to a remarkable lack of discrim-
inatory power. The multivariate test statistic often contains noisy
contributions from a large number of (insignificant) variables, and
factors affecting only a few of them can potentially be overlooked
due to the overall statistical noise.

ANOVA Simultaneous Component Analysis (ASCA)—Smilde
et al. (2005) and Jansen et al. (2005)—is one popular multivariate
extension of ANOVA, widely employed in, e.g. chemistry, biology
and biomedicine (Bevilacqua et al., 2013; De Luca et al., 2016; Du
et al., 2017; Firmani et al., 2020; Nueda et al., 2007; Smilde et al.,
2005). It combines the variance factorization and inference capabil-
ities of ANOVA with the exploratory power of Principal
Component Analysis (PCA). In ASCA, the statistical significance of
factors’ and interactions’ effects is typically estimated by permuta-
tion testing (Anderson and Braak, 2003; Vis et al., 2007): basically,
the data variation induced by such effects is contrasted against an
empirical null-distribution obtained through resampling. Albeit this
strategy shows notable advantages compared to other testing
approaches (Vis et al., 2007), it inherits the limitations of multivari-
ate testing. Indeed, the ‘holistic’ testing approach of ASCA (all varia-
bles considered at the same time) typically fails when trying to find
any statistical significance for factors associated with only a reduced
sub-set of variables.

In this article, we propose a generalization of ASCA by introduc-
ing a new method for variable selection, termed Variable-selection
ASCA (VASCA). The main idea is to incorporate variable selection
in the multivariate permutation testing procedure of ASCA to ro-
bustly assess the statistical significance of the experimental model.
The proposed testing procedure attains improved detection power
without compromising the Type-I error risk, while still being able to
fully capture the inherent multivariate nature of the investigated
data. The enhanced statistical power brought by variable selection
leads to improved ASCA modeling; for a given effect (factor/inter-
action), VASCA identifies significant associations with reduced sub-
sets of variables, filtering out those not accounting for the effect it-
self, and narrowing down the subsequent ASCA analysis to a limited
amount of meaningful responses.

VASCA is here assessed with simulations and with a real dataset
from a multi-omic clinical experiment, and compared to ASCA and
the BH (FDR) method in terms of statistical power, and to partial
least squares discriminant analysis (PLS-DA) and its sparse counter-
part (sPLS-DA) in terms of exploratory power. We also include a

comparison with an early approach for variable selection in ASCA,
the ASCA-genes method by Nueda ez al. (2007).

2 ANOVA Simultaneous Component Analysis

The most established ASCA pipeline, consistent with that of
ANOVA, is based on several steps: (i) factorization of the data
according to the factors/interactions of the experimental design
under study; (ii) significance testing (based on permutation tests) for
factors/interactions; (iii) visualization of significant factors’/interac-
tions’ effects using Principal Component Analysis (PCA) to under-
stand separability among levels and, optionally, post hoc testing of
levels using confidence intervals. The interested reader can find an
example of all these data analysis steps in the Supplementary
Material. The code for reproducing this example is included in the
aforementioned online repository. A detailed description of the
ASCA modeling framework is provided next.

2.1 Factorization of the data

Let X be an N x M data matrix with N the number of conducted tri-
als and M the number of responses or variables recorded in a series
of designed experiments. For the sake of simplicity and without loss
of generality, we will consider the case of a design encompassing
two fixed factors. The data in X can be decomposed as

X =1m" + A+B +AB +E, (1)

where 1 is a vector of ones of suitable length (N x 1), m (M x 1)
denotes a vector containing the mean values of all the M measured
variables, while A and B represent the factor matrices, AB the inter-
action matrix and E the residual matrix, all of size N x M. The idea
behind this decomposition is to partition the variation in the dataset
X, according to the different factors/interactions of the design. In
this article, we use the technique referred to as ASCA+ (Thiel et al.,
2017) to account for mild unbalancedness in the data. Basically, the
decomposition is derived as the least squares solution of a regression
problem, where X is regressed onto a coding matrix C as:

X =CO+E=10,+CsO®4s +CpOp + C1p304p +E, (2)

where C = [1,Cy4, Cp, C4p] is built from the design matrix using the
sum coding or deviation coding approach (Thiel et al., 2017).
Namely:

* 1 isa vector of ones of suitable length;

* for a generic factor Z, the corresponding vector/matrix Cz has
dimensions N x (Lz — 1), with L the number of levels of the
tested factor. If the nth observation in X was collected at one of
the first Lz — 1 levels of Z, then Cz contains a one in the nth row
of its Lz — 1th column. The rows of Cz corresponding to the
observations in X recorded at the last level of Z, instead, carry —
1 in all their entries. The remaining elements of Cz equal 0;

* for a given interaction ZY, the matrix Czy has size N x (Lz -
Ly) and results from the pair-wise multiplication of the columns
of C associated to the factors Z and Y.

Take for instance the following example, where we assess a re-
sponse of a system at three different levels of temperature and two
levels of pH. Thus, we have two factors, with three and two levels,
respectively, in the design matrix F, where we also include two repli-
cates per testing condition. The corresponding coding matrix C
when considering the factors and their interaction contains five col-
umns: two for the first factor, where 30°C is coded with minus ones,
one for the second factor and two for the interaction, computed by
multiplying each column of the first factor by the single column of
the second factor:
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10°C 4.0 1 0 | 1 | 1 0
10°C 4.0 1 0 | 1 | 1 0
20°C 4.0 0 1 | 1 ] 0o 1
20°C 4.0 0o 1 | 1 ] 0o 1
30°C 4.0 1 -1 | 1 | -1 -1
E_|30°C 40 e I S I
~|10°C 6.0 |1 0 | -1 -1 0
10°C 6.0 1 0 | -1 ] -1 0
20°C 6.0 0 1 | -1 ] 0 -1
20°C 6.0 0 1 | -1 ] 0 -1
30°C 6.0 1 -1 | -1 | 1 1
30°C 6.0 1 -1 ] -1 | 1 1

3)

Thus, in Eq. (2), Ca, Cp and Cyp represent the coding for factors
A and B and their interaction AB, respectively, and
O = [0,,,04,05,043], is composed of the coefficients of the factor-
ization estimated by least squares:

o= (Cc'o'c'x. (4)

This solution minimizes the variance in the residual matrix E,
which is obtained as

E=X-Co. &)

2.2 Statistical significance testing
Just like in ANOVA, for inference after the data decomposition of
X, we test the statistical significance of the individual factors and
interactions. Thus, we can determine which of them have a signifi-
cant impact on the multivariate responses in X. A widely used ap-
proach for ASCA inference is permutation testing.

Permutation testing in the context of ASCA can be performed by
randomly shuffling the rows of X in Equation (4), yielding a new set
of regression coefficients:

o = (C'c)'c'x, (6)

where * stands for permuted. Then, the permuted factorized data for
any factor/interaction Z is re-computed as Z* = Cz®7, and the error
as E* = X" — CO®". Analogously, one can permute the rows or val-
ues in C instead of those in X (Camacho et al., 2022).

Permutation tests are carried out by comparing a given statistic,
computed after the ASCA factorization, with the corresponding stat-
istic computed from hundreds or more permutations. The P-value is
obtained as (Throughout the article, we assume that the higher the
statistic the more significant the effect of the factor/interaction.)

S >Sk=1,... K}+1
b {8, } )

K+1 ’

where S refers to the statistic computed from the factorized data ma-
trix, S} is the statistic corresponding to the kth random permutation,
#{cond} refers to the number of times condition cond is met, and K
is the total number of permutations. Thus, the P-value yields an em-
pirical estimate of the probability of obtaining a result as (or more)
extreme as the observed one when the null hypothesis holds.

There are several choices for the ASCA test statistic—see
Camacho et al. (2022) for a recent review on the permutation ap-
proach and the relevance of the chosen statistic. The (Type-I) sum-
of-squares of the factor/interaction matrix HZH,Z: was proposed as
the original ASCA statistic (Vis et al., 2007). Motivated by the data
visualization aspect of ASCA, which typically uses the first two
Principal Components (PCs), Zwanenburg et al. (2011) proposed
testing the sum-of-squares of the first two PCs of the factor/inter-
action matrix. This is also used by Thiel et al. (2017). More recent
variants of ASCA (Marini et al., 2015; Martin and Govaerts, 2020)
employ the F-ratio, computed as the ratio of the mean sum-of-
squares of the factor/interaction and the suitable next order factor/
interaction (often the residuals)—see Anderson and Braak (2003)
for a detailed discussion of the orders of factors and interactions in

complex designs. Finally, in ASCA extensions for unbalanced data
(Martin and Govaerts, 2020; Thiel et al., 2017), the utilization of
the Type-III sum-of-squares is proposed for testing purposes; this is
computed from the difference between the residuals in the reduced
and full models (see references above for more detail).

2.3 Visualization and post hoc tests

Significance testing in ANOVA/ASCA reveals the statistical signifi-
cance of factors’ and interactions’ effects, but not the specific levels
(or combination of levels) that are actually associated to significant
differences in the responses. To identify significant differences across
levels, post hoc tests (carried out using PCA in the context of ASCA)
are typically employed.

Several visualization methods have been proposed that combine
the ANOVA-like decomposition in Equation (2) with subspace visu-
alization, in particular with PCA. Among these, ASCA and
ANOVA-PCA (APCA) are closely related (Thiel ez al., 2017;
Zwanenburg et al., 2011) and both share the same approach for fac-
torization and inference (significance testing), prior to visualization.
For visualization and post hoc testing, APCA performs PCA on each
significant factor/interaction matrix plus the unexplained variance:
Z + E. ASCA, however, carries out PCA on Z, and then displays the
projection of Z + E onto the resulting loadings in what is known as
a scores plot. As a consequence, for each factor/interaction, we can
compute as many PCs as the corresponding degrees of freedom. In
both APCA and ASCA, the score-plot is used for the visualization
and possible significance testing (Liland et al., 2018) of the differen-
ces among levels.

3 VASCA

VASCA is based on breaking down the single test statistic computed
in ASCA (all variables considered), i.e. S in Eq. (7), into variable-
wise statistics 8" for v € {1, .., M}. This approach can be generalized
to any test statistic based on sums-of-squares (see Section 2.2),
which can be computed for each variable independently. Since the F-
ratio is also based on (mean) sums-of-squares, the computation of
variable-wise F-ratios is also possible.

VASCA starts by sorting out the measured variables in decreas-
ing order of §”. Then, it sequentially assesses the statistical signifi-
cance of the data matrix composed of the ensemble of the first m
variables in this ordering, with 7 ranging from 1 to M. The null-
hypothesis is rejected for the largest significant data matrix, (Notice
that this does not mean that all variables in this matrix are statistic-
ally significant, but that their multivariate combination is. We will
illustrate this difference with simulated examples.) In this regard,
variable selection in VASCA resembles the step-up BH procedure
(Benjamini and Hochberg, 1995) and generalizes ASCA, since it
includes the significance assessment for the entire dataset with M
variables. For this reason, VASCA is at least as powerful as ASCA.
Moreover, both ASCA and VASCA generalize ANOVA, since
(V)ASCA applied to an individual response variable boils down to
an ANOVA based on permutation testing, thus, robust to deviations
from the normal distribution (Anderson and Braak, 2003).

Let us define:

®,, =  argmax SY (8)
V1t {1, MY v=0y 0,

as the sub-set of m variables ®,, = {v1,...,v,,} that maximizes the
sum statistic Y.y, S”. We refer to $* as the corresponding multi-
variate statistic for this sub-set, i.e. the statistic computed from the
whole data (sub)matrix rather than from individual variables.
Testing for significance in VASCA requires careful consideration
of the permutations across the selected variables. This is key to pro-
vide a meaningful null-distribution and to guarantee the statistical
power of the approach. Rather than using multiple-testing correc-
tions like in the BH procedure, we embed the variable-selection
mechanism within the permutation testing. Within each permutation
k we reorder the variables in decreasing order of the permuted,
variable-wise statistic (S”),. For a given number of variables 2, the
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aforementioned sub-set of variables after the permutation is recom-

_____ vty (8> 50 that (@) will
most likely contain different variables from those in ®,,. Then, we
recompute the corresponding statistic (S®);. The set of statistics
(8%»); for different permutations k (and sub-sets of m variables)
characterizes the null-distribution of the VASCA testing strategy
and is employed to compute the following P-value for statistical
significance:

(S > Sk =1, K} +1
b = K+l

)

This means that in any given sub-set of 7 variables, significance
is assessed by contrasting the true S® with the permuted (S®);,
where the specific 7 variables may not be the same. For some statis-
tics, this may require some form of normalization. For example, if
we use ||Z||% as the test statistic, a variable with higher variance in
the raw data may likely show higher ||Z||%. However, for a sound
comparison within the context of permutation testing, we need all
variables to exhibit similar expected test statistic values under the
null hypothesis. For this reason, in this article, when we use ||Z||? as
the test statistic, we auto-scale (normalize to 0 mean and unit vari-
ance) the data. The F-ratio (whose utilization will be more frequent
in this work) does not need such normalization, since it is normal-
ized by definition.

Given that we select the maximum m for which significance is
found, i.e. max(m) with p,, below the significance threshold, and
due to the multivariate nature of VASCA, (sub)matrices called sig-
nificant may indeed include some non-significant variables. This is
due to the filtering nature of multivariate models and may be seen as
a disadvantage over univariate tests such as BH (FDR). However,
from the set of m selected variables, a subsequent analysis based on
PCA can help distinguishing variables that are truly relevant from
those that are not. We can also employ a bootstrapping procedure
to identify PCA loadings (variables) with values significantly differ-
ent from 0. Thus, all variables corresponding to non-significant
loadings can be discarded a posteriori.

3.1 Connection with the ASCA-genes method

The closest approach to VASCA reported in literature is the ASCA-
genes method by Nueda et al. (2007). ASCA-genes identifies rele-
vant variables with permutation testing, but with two main differen-
ces with respect to VASCA:

* First, ASCA-genes is based on the evaluation of two indices bor-
rowed from the Multivariate Statistical Process Control (MSPC)
domain (Ferrer, 2007): model leverage and squared prediction
error (SPE)—see Nueda et al. (2007) for details on their mathem-
atical definition and practical interpretation. Briefly speaking,
most relevant variables are expected to show a high leverage and
a low SPE. Variables with high SPE and leverage are considered
as poorly modeled but still potentially interesting. High SPE and
low leverage variables are deemed as odd. Variables exhibiting
low leverage and low SPE are regarded as not relevant. In order
to compute leverage and SPE, though, ASCA-genes require fac-
tors/interactions with at least two degrees of freedom, i.e. factors
with at least three levels or interactions involving at least a factor
with three levels. Conversely, VASCA computes a single statistic
from any matrix resulting from the ANOVA factorization of X,
which simplifies interpretation and it is more flexible (i.e. it can
be applied to factors/interactions with only one degree of
freedom).

* Second, and most importantly, ASCA-genes is based on a regular
permutation approach, while VASCA is grounded on the reor-
dering of the variables within each permutation. This is key to
avoid false positives.

4 Evaluation in simulation examples

We devised four simulated experiments in order to compare VASCA
with ASCA and ASCA-genes, and the BH procedure to control the
FDR, simply referred to as FDR from now on. For simplicity and for
the sake of clarity, in the first three examples we simulate a single
factor with two levels, where each level includes 20 subjects (thus, a
total of 40) for which 400 variables are collected. This choice is
motivated by the nature of typical omics experiments (Tenorio-
Jiménez et al., 2019). In the first and the last examples, we consider
a two factor/multi-level problem, in which ASCA-genes can be
applied thanks to the increased number of degrees of freedom.

To simulate the background in the multivariate data X, we use
the SimuleMV tool (Camacho, 2017) available together with ASCA
and VASCA in the MEDA Toolbox at https://github.com/josecama
chop/MEDA-Toolbox. SimuleMV allows to simulate a dataset with
a certain level of correlation. The inputs to SimuleMV are the size of
the data matrix (number of rows and columns) and a level of correl-
ation between 0 (absence) and 10 (maximum correlation). In our
simulations, we chose Levels 7 and 8. Each simulated experiment is
repeated 1000 times and average and standard deviation results are
presented for the P-values, along with Type I and Type II error
rates.

For comparison purposes, FDR was implemented from the (em-
pirical) probability distribution obtained through permutation test-
ing, and corrected P-values were computed through the BH
procedure. In all cases, the permutations used the same seed for the
random generation engine in the four methods, ASCA, FDR, ASCA-
genes and VASCA. Each P-value in any of the methods is computed
with 1000 permutations.

4.1 Example 1: Non-significant relationship

The first example illustrates the case where the data matrix X and
the class coding C for the factor are unrelated. We generate X with
the SimuleMV tool. The design matrix F is obtained in two steps:
first, we draw 40 observations /; from a normal distribution with
zero mean and standard deviation one; second, we assign each of the
40 rows of X to one of the classes depending on the sign of the corre-
sponding observation /;. Finally, we construct C from F using devi-
ation coding (as discussed in Section 2.1). In summary:

X — SimuleMV (40,400,7)
F « sign(r), withr ~ N(0,1)
C — dev_cod(F)

We repeat this data generation procedure 1000 times. Given the
independent generation of X and C, we expect no statistical signifi-
cance to be found in the analysis by any of the methods. Results
obtained using the F-ratio as test statistic are shown in
Supplementary Figure S5 (similar results were obtained using the
sum-of-squares as test statistic). Supplementary Figure S5 depicts
the ordered P-values obtained for FDR and VASCA, and the single
P-value (for the complete matrix X) for ASCA. Average results are
shown with the corresponding lines and the shadowed areas repre-
sent standard deviations. Typically considered thresholds for statis-
tical significance at 0.05 and 0.01 are also included as control limits.
Note that vertical axes are in logarithmic scale.

We can see that VASCA and ASCA generally converge in this ex-
ample, and that all methods yield P-values well above the control
limits, illustrating their robustness against Type-I errors. QQ-plots
for ASCA and VASCA (Supplementary Fig. S6) show that the P-val-
ues are uniformly distributed under the null-hypothesis, as expected,
while the empirical false positive rate (FPR) (Table 1) is very close to
the significance level of 0.01 for both ASCA and VASCA and is al-
most identical regardless of the chosen test statistic. The FDR, how-
ever, attains an FPR much lower than the significance level, as a
result of the BH correction procedure—which aims to control the
FDR at the significance level, and results in too conservative correc-
tions in terms of the FPR in this case. Similar results are obtained for
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Table 1. Example 1: Type-l error measured as false positive rate
(FPR) for FDR, ASCA and VASCA using the sum-of-squares (SSQ)
and the F-ratio as test statistics for a significance level of 0.01

Table 2. Example 1b: Type-l error measured as false positive rate
(FPR) for FDR, ASCA, VASCA and ASCA-genes using the F-ratio as
test statistics for a significance level of 0.01

Method FPR (SSQ) FPR (F-ratio)

Method FPR (factor 1) FPR (factor 2)

FDR 9.3x107° 9.3x107°
ASCA 0.01 0.01
VASCA 0.0108 0.0108

X drawn at random from a multinormal distribution, rather than
using the SimuleMV tool (These results can be found in the software
repository.).

A major strength of ANOVA, also inherited by ASCA, VASCA
or the FDR, is the possibility to analyze complex experimental
designs with several factors and interactions. In a second experiment
we simulate datasets with two factors, of four and three levels, re-
spectively, according to a balanced full-factorial design with four
replicates. This design provides a total number of 4 x 3 x 4 =48
experiments (rows). X is simulated as in the previous example, inde-
pendently from the factors, so that no significant association is
expected. With this example, we can compare VASCA to ASCA-
genes in terms of Type-I error. The simulation follows (We implicit-
ly assume that C is built from F using deviation coding.):

X — SimuleMV(40,400,7)
F — FullFactorial(4,3,4)

The empirical FPR is presented in Table 2. We see that ASCA-
genes is slightly over optimistic in comparison to VASCA.

From this simulation, we can conclude that when the responses
in X and the factors in C are independent, we obtain a uniform dis-
tribution of the P-values in ASCA and VASCA which conveniently
adjusts the Type-I error to the significance level.

4.2 Example 2: Significant one-to-one relationships

We start by generating F like in the first example. We then simulate
X with the SimuleMYV tool except for the first three variables that
are drawn from a normal distribution with zero mean and unit
standard deviation. We thus make these three variables independent
from the rest and no spurious correlation is induced with the other
variables in X. Then, we modify these three variables so that a sig-
nificant bias is induced between observations from the two classes.

F « sign(r), with r ~ N(0,1)
X,'<—I','+5'C, Withl‘,‘NN(O,l); 121,23
X; < SimuleMV(40,397,7); j=4,...,400

We repeat this data generation procedure 1000 times. The simu-
lation is designed to generate a one-to-one relationship between
each of the three variables and the simulated factor in C. We expect
both the FDR method and VASCA to identify these relationships,
but because they are only present in 3 out of the 400 variables, we
expect ASCA to overlook it.

Results are presented in Figure 1. As expected, FDR and VASCA
systematically identify the one-to-one relationships (P-value <
0.001 for the first variables), while ASCA identifies the factor as
non-significant, well above the control limits. Again, we can see that
VASCA exactly matches ASCA for the complete set of 400 variables,
since the former generalizes the latter. This example illustrates the
variable selection capability of VASCA as a clear advantage over
ASCA.

The zoomed image in Figure 1 reflects that VASCA identifies
models up to 6-10 variables as significant (P-value < 0.001 for 6
variables, P-value < 0.01 for 10). Contrarily, FDR accurately identi-
fies only three variables as truly significant. The outcome of VASCA
is a consequence of the filtering nature of multivariate models, i.e.
models with 6/10 variables are called significant, even when only 3
of these variables are truly associated with the factor. Significance

FDR 2.3x107* 1.4x107*
ASCA 0.017 0.007
VASCA 0.015 0.008
ASCA-genes 0.024 0.025

100 E——————————
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Fig. 1. Example 2: One-to-one relationships between three variables in X and C.
Comparison of P-values computed with FDR, ASCA and VASCA (without and with
bootstrapping). For each method, average P-values from 1000 simulations are
shown together with a shaded area corresponding to one standard deviation. For
the FDR, we represent the P-values in increasing order from left to right (from the
most to the least significant variable), corrected following the procedure of BH.
Whenever a corrected P-value exceeds 1, a value of 1 is used instead. For ASCA, a
single P-value is shown, corresponding to the P-value for the dataset with 400 varia-
bles averaged over the 1000 simulations. For VASCA, the P-value at each number
of variables m represents the significance of the dataset including the most signifi-
cant m variables. The inset represents a detail for the first (most significant) 10 varia-
bles. Control limits of statistical significance (x=0.05 and «=0.01) are also
represented

results are however refined in the subsequent analysis step of
VASCA. To see this, let us proceed with the workflow of VASCA,
by visualizing the factorized data with PCA in Supplementary Figure
S7. The scores, shown in panel A, clearly distinguish the two classes,
confirming the significance of the model (The example encompasses
a factor of two levels which makes the factorized matrix in ASCA of
rank one, and only one PC can be extracted.). The loadings in panel
B show that three variables are by far the most relevant of the six
under study (shown by the magnitude of the loadings). The boot-
strapping intervals indicate that only those three variables are statis-
tically significant (loadings significantly different from 0). We
applied the same bootstrap approach to the 1000 repetitions in the
simulation, to depict a curve of significance for VASCA + boot-
strapping in Figure 1, showing the same accuracy as the FDR
method at a P-value threshold of 0.01. In Supplementary Table S1
we show the percentage of simulations where at least 1, 2 and 3 of
the significant variables were found to be statistically significant
along with the FPR. The results are satisfactory for the three com-
pared methods, although VASCA shows an increase in the FPR if we
compute it including all variables in significant matrices. If we apply
bootstrapping along with VASCA, we reduce the FPR to a reason-
able (but still slightly overoptimistic) level.

Finally, we wanted to check what would happen if we repeat the
same simulation scheme of the example, but with a much smaller
bias in the three variables, so that the variance that reflects the
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connection between them and the factor is 10 times smaller than in
the previous case. For this purpose, we recompute significant
responses as:

X; —1;+0.5-C, withr; ~A(0,1); i=1,2,3

and repeat the simulation. The results are shown in Supplementary
Figure S8 and Supplementary Table S2. We can see that VASCA
(with and without bootstrapping) outperforms the FDR in terms of
statistical power. Even without bootstrapping, VASCA adequately
controls the FPR (the FPR inflation issue encountered in the previ-
ous example uniquely arises when only some variables in X are
clearly significant). Therefore, VASCA does not identify fake iso-
lated biomarkers, but in a set of discovered biomarkers, it may in-
clude a subset of not truly significant ones (and we may still detect
this through visualization or bootstrapping). The resulting benefit is
an increased statistical power, which in this case is the result of
VASCA taking advantage of the underlying correlation among the
three variables associated to the factor.

4.3 Example 3: Multivariate relationship

In this example, we generate again X with the SimuleMV tool except
for three variables that are drawn from a normal distribution with
mean zero and standard deviation one. We thus make these three
variables independent from the rest and no spurious correlation is
created between C and X. F is obtained in two steps: we first obtain
40 values I; by summing the three normal variables in X; then, we as-
sign each of the 40 rows of X to one of the design levels depending
on the sign of the corresponding sum. With this approach, we have
created an additive multivariate relationship between the three vari-
ables in X and C. Therefore, unlike the previous example, we need
to consider the combination of the three variables to properly differ-
entiate the aforementioned levels. Additive multivariate relation-
ships are consistent with the interpretation of biomarkers in
networks of pathways, where correlations are identified as paths
that jointly contribute to a response/reaction.

X; ~N(0,1); i=1,2,3
X «— SimuleMV(40,397,7); j=4,...,400
F — sign(X; + X5 + X3)

Results are presented in Figure 2 and Supplementary Table S3.
The results show the increased power of VASCA over the FDR in a
similar way as in the previous example. Again, VASCA without
bootstrapping adequately controls the FPR. ASCA once again over-
looks the relationship. This example illustrates the benefits brought
by the multivariate nature of VASCA which, as opposed to the FDR
method, is able to identify multivariate additive relationships among
variables.

4.4 Example 4: Multivariate relationship in two factors

and interaction with several levels

In this last experiment we simulate datasets with two significant fac-
tors, of four and three levels, respectively, once again according to a
balanced full-factorial design with four replicates. As in the previous
example, a significant multivariate relationship exists between each
of the factors and three variables.

F «— FullFactorial(4,3,4)
vill)) ~N(0,1); L, =1,2,3,4 i=123
vi(h) ~N(0,1); L=1,2,3 i=1,2,3
Xi(h, L) — SimuleMV(4,3,8) + 0.5v;(l1) + 0.5vi(h); i=1,2,3
X — SimuleMV(40,397,7); j=4,...,400
Results are presented in Supplementary Figure S9 and Table 3.
We see that VASCA (with and without bootstrapping) outperforms

the FDR and ASCA-genes in terms of statistical power. Like in
Section 4.3, even without bootstrapping, VASCA adequately

10° |
107!
)
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=
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10 o VASCA
L VASCA + bootstrapping
a=0.05
5 10|~ «=0.01
1035 ‘ ‘ ‘ ‘
0 100 200 300 400

Variables in selected order

Fig. 2. Multivariate relationship between three variables in X and C. Comparison of
P-values computed with FDR, ASCA and VASCA (without and with bootstrap-
ping). For each method, average P-values from 1000 simulations are shown together
with a shaded area corresponding to one standard deviation. For the FDR, we repre-
sent the P-values in increasing order from left to right (from the most to the least sig-
nificant variable), corrected following the procedure of BH. Whenever a corrected
P-value exceeds 1, a value of 1 is used instead. For ASCA, a single P-value is shown,
corresponding to the P-value for the dataset with 400 variables averaged over the
1000 simulations. For VASCA, the P-value at each number of variables 7 represents
the significance of the dataset including the most significant 72 variables. The inset
represents a detail for the first (most significant) 10 variables. Control limits of stat-
istical significance (o = 0.05 and & = 0.01) are also represented

Table 3. Example 4: multivariate relationship between 3 variables
in X and C for a design with 2 factors of 4 and 3 levels, respectively

Method 1 variable 2 variables 3 variables FPR
FDR 0.849 0.517 0.157 1.6x107*
FDR 0.832 0.446 0.088 2.0x107*
ASCA-genes 0.613 0.201 0.024 0.022
ASCA-genes 0.778 0.382 0.072 0.020
VASCA 0.903 0.798 0.511 0.014
VASCA 0.895 0.759 0.412 0.017
VASCA + bootstrap 0.888 0.761 0.39 0.008
VASCA + bootstrap 0.886 0.687 0.237 0.007

Note: Proportion of simulations where at least 1, 2 and 3 of the truly sig-
nificant variables (as predefined in the experiment) were found statistically
significant by the different methods, and Type-I Error measured as false posi-
tive rate (FPR). Comparison of FDR, VASCA (without and with bootstrap-
ping) and ASCA-genes for a significance level of 0.01.

controls the FPR. ASCA-genes shows an excess in the Type I error
(FPR) but for a reduced power.

For further comparison, we illustrate the result obtained by the
ASCA-genes method by Nueda et al. (2007) in one repetition of the
simulation—note that previous results showing P-values and Type-I
and Type-II errors are averaged over 1000 repetitions. Results
obtained with ASCA-genes in the 2-factor (4 and 3 levels) example
of the present section can be found in Supplementary Figure S10.
Two of the significant variables (marked in dark color) for Factor 1
show high leverage. The other significant variable is found in the
SPE. For factor 2, however, there are several non-significant varia-
bles that exceed the leverage control limit, which should be regarded
as false positives. In this specific example, VASCA detected two sig-
nificant variables for Factor 1 (the third presented a P-value close to
0.05) and none for Factor 2, FDR could only detect one significant
variable for Factor 1, and VASCA + bootstrap none. We can see
that VASCA and ASCA-genes yield similar results, with VASCA
being more general (i.e. it can be applied to rank-one factor/
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interaction matrices) and with a better compromise between Type I
and Type I error risk.

5 Results on real data

The BIOASMA dataset (Gomez-Llorente et al., 2020) comprises
clinical, biochemical, anthropometrical parameters, inflammatory
biomarkers, metagenomic and metabolomic data for 46 children (12
girls and 34 boys, aged 4-13 years) with an allergic asthma diag-
nosed based on the Spanish Guidelines for Asthma Management
(GEMA criteria 4.4)—(Moral et al., 2016). The children were also
classified into normal-weight (7 =13), overweight (n=8) and obese
(n=25) according to the age and sex-specific thresholds proposed
by Cole et al. (2000). Biochemical data were obtained by routine
methods. Inflammatory biomarkers were determined by ELISA and
by XMAP Luminex technology. Metabolomic data were obtained
by one-dimensional proton nuclear magnetic resonance (1D 'H-
NMR) spectra of blood plasma samples. Short chain fatty acids
were determined by Gas Chromatography-Mass Spectrometry.
Metagenomic data were obtained by 16sRNA barcoding sequencing
and the Amplicon sequence variants (ASVs) were normalized by the
rarefaction method (Gotelli and Colwell, 2001). Deriving potential
biomarkers from this dataset represents a real challenge (Gomez-
Llorente et al., 2020), given the low sample size and the complexity
of the experimental design: two potential conflicting factors (asthma
severity and weight classification/status) with three levels each are
taken into account and the individuals distribution is significantly
unbalanced.

5.1 Factor-wise models

The statistical results obtained from the original analysis of the data-
set (Gomez-Llorente et al., 2020) are based on PLS-DA (Barker and
Rayens, 2003) and its sparse variant sPLS-DA (Lé Cao et al., 2008).
sPLS-DA considers variable selection during model calibration with
the idea of discarding non-informative variables. Neither PLS-DA
nor sPLS-DA models were statistically significant to distinguish the
three classes of weight status or the three classes of asthma severity.
However, for individual sPLS-DA models for both factors it was
possible to find statistically significant differences between one of
the classes versus the rest. In particular, a sSPLS-DA model with 12
variables was found statistically significant to distinguish the persist-
ent asthma class from the rest (occasional and frequent asthma)
with an Area Under the Receiver Operating Characteristics curve
(AUROC) of 0.66 +0.08 (P-value < 0.05) in double cross-
validation (Szymanska ez al., 2012), and a sPLS-DA model with
three variables was found statistically significant to distinguish the
normo-weight class from the rest (overweight and obese) with an
AUROC of 0.75 +0.09 (P-value < 0.05). The PLS-DA version of
the first model (asthma severity) with only selected variables is pre-
sented in Supplementary Figure S11, where the scores show a clear
separation between persistent asthma and the rest. The model for
weight status is discussed in the Supplementary Material.

We analyze the asthma severity in Figure 3 following the same
approach as in the simulated data, i.e. we compare the ordered P-
values obtained for FDR and VASCA, and the single P-value for
ASCA. Control limits highlighting significance for a P-value < 0.05
and a P-value < 0.01 are also shown, and the vertical axes are in
logarithmic scale. Supplementary Figure S12 illustrates the results
when we consider the three classes (occasional, frequent and persist-
ent asthma), and Figure 3 when we consider persistent asthma ver-
sus the rest. In both situations, ASCA is in agreement with PLS-DA
showing no statistical significance. VASCA is in agreement with
sPLS-DA and significance is only found for a sub-set of variables
when two classes (persistent asthma versus the rest) are considered.
The FDR method fails to find statistical significance, arguably as a
consequence of not directly accounting for the multivariate nature
of the investigated data.

—— FDR

——ASCA
VASCA
«=0.05

—— a=0.01

1072
0 50 100 150 200 250

Variables in selected order

Fig. 3. Comparison of P-values computed with FDR, ASCA and VASCA for the
BIOASMA dataset (persistent asthma versus the rest). For the FDR, we represent
the P-values in increasing order from left to right (from the most to the least signifi-
cant variable), corrected following the procedure of BH. Whenever a corrected P-
value exceeds 1, a value of 1 is used instead. For ASCA, a single P-value is shown,
corresponding to the P-value for the complete dataset with 287 variables. For
VASCA, the P-value at each number of variables 72 represents the significance of the
dataset including the most significant 7 variables. The inset represents a detail for
the first (most significant) 10 variables. Control limits of statistical significance
(o =0.05 and o = 0.01) are also represented

Figure 4 shows the scores and loadings for the single component
in the VASCA model, which should be compared to the correspond-
ing sPLS-DA biplots in Supplementary Figure S11. In the VASCA
model, all variables present loadings which are significantly different
to 0 (P-value < 0.05). Looking at the scores, both sPLS-DA and
VASCA show similar separation ability, but VASCA selects only
half of the analyzed variables, those in the left part of
Supplementary Figure S11.

To provide a numerical assessment of the variable selection by
sPLS-DA and VASCA, we compute the AUROC of the reduced PLS-
DA models constructed on the variables selected by each method.
Note that these AUROC values are expected to be overoptimistic,
since they are computed from the same data used for variable selec-
tion. Yet, they are useful to compare the ability of both methods
(sPLS-DA and VASCA) to find potentially interesting biomarkers.
We obtain 0.99 = 0.01 for sPLS-DA with 12 selected variables and
0.93 = 0.02 for VASCA with 6 selected variables. We also checked
the significance of the 12 variables selected by sPLS-DA using
ASCA+bootstrapping in Supplementary Figure S13. We can see that
only the loadings of the 6 variables originally identified by VASCA
are indeed significantly different from 0. Thus, while it might be
beneficial from the multivariate perspective to include the entire set
of 12 variables, VASCA seems to yield a more accurate selection for
the reduction of the complexity of the problem at hand.

The same analysis with the weight factor (normo-weight, over-
weight and obese) can be found in the Supplementary Material (see
Supplementary Figs S14 and S15). In this case, ASCA does not find
any significant model (just like PLS-DA) while both FDR and
VASCA find a single significant variable. We obtain 0.73 = 0.02 for
PLS-DA with the three variables selected by sPLS-DA (Gomez-
Llorente et al., 2020) and 0.74 = 0.01 for PLS-DA with the individ-
ual variable selected by VASCA/FDR. We finally checked the signifi-
cance of the three variables selected by sPLS-DA using
ASCA-+bootstrapping in Supplementary Figure S16. In this case,
only two of these variables (including the one originally identified
by VASCA) are found to exhibit loadings significantly different
from 0.

The previous analysis illustrates that both VASCA and sPLS-DA
represent very interesting approaches for the Bioinformatics
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Fig. 4. VASCA (six variables) scores (a) and loadings (b) plots for the BIOASMA
dataset (persistent asthma versus the rest)

community, and that, beyond its inference and variable selection
capabilities, VASCA can be a competitive exploratory tool for, e.g.
biomarker identification.

5.2 Multi-factor models

In this section, we consider simultaneously the two factors of the
BIOASMA dataset in a single analysis round. Supplementary Figure
$17 shows the comparison of the P-values returned by ASCA, FDR
and VASCA for two levels in each factor: persistent asthma versus
the rest (occasional and frequent asthma) and normo-weight versus
the rest (overweight and obese). No statistically significant results
were obtained accounting simultaneously for the three levels in any
of the factors. For two factors and two levels (one class versus the
rest), only VASCA found statistically significant results, and with
the single multi-factor model we obtain the same findings of the pre-
vious factor-wise analyses. sSPLS-DA also failed in finding statistical-
ly significant results. An advantage of VASCA over (s)PLS-DA is its
flexibility to handle uncorrelated factors in a single model, simplify-
ing the analysis of complex experimental designs.

6 Conclusion

In this article, we presented VASCA, an extension of ANOVA
Simultaneous Component Analysis (ASCA) that improves the statis-
tical inference of multivariate models through variable selection.

VASCA is inspired by the popular BH step-up procedure. Its benefits
are two-fold: first, by taking on the idea of variable selection from
FDR-controlling procedures, it attains substantially improved dis-
crimination (detection) power over conventional ASCA; and second,
based on multivariate inference (similar to ASCA), it is able to
model/capture and visualize inherent multivariate relationships
within the experimental data. Our results showed that VASCA can
outperform both the BH (FDR-controlling) procedure and ASCA in
terms of statistical power, and that it represents a competitive ex-
ploratory approach in comparison to widely used techniques such as
PLS-DA and its sparse counterpart.
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