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ABSTRACT Student success is essential for improving the higher education system student outcome. One
way to measure student success is by predicting students’ performance based on their prior academic grades.
Concerning the significance of this area, various predictive models are widely developed and applied to
help the institution identify students at risk of failure. However, building a high-accuracy predictive model
is challenging due to the dataset’s imbalanced nature, which caused biased results. Therefore, this study
aims to review the existing research article by providing a state-of-the-art approach for handling imbalanced
classification in higher education, including the best practices of dataset characteristics, methods, and
comparative analysis of the proposed algorithms, focusing on student grade prediction context problems.
The study also presents the most common balancing methods published from 2015 to 2021 and highlights
their impact on resolving imbalanced classification in three approaches: data-level, algorithm-level, and
hybrid-level. The survey results reveal that the data-level approach using SMOTE oversampling is broadly
applied in determining imbalanced problems for student grade prediction. However, the application of hybrid
and feature selection methods supporting the generalization of the predictive model to boost student grade
prediction performance is generally lacking. Other than that, some of the strengths and weaknesses of the
proposed methods are discussed and summarized for the direction of future research. The outcomes of this
review will guide the professionals, practitioners, and academic researchers in dealing with imbalanced
classification, mainly in the higher education field.

INDEX TERMS Imbalanced classification, prediction model, machine learning, student grade prediction,
education, systematic literature review.

I. INTRODUCTION
Student grade prediction is one of the essential areas that
can determine and monitor student performance in higher
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educational institutions (HEI). This area has gained signifi-
cant attention in the education sector over the years as many
studies have been interested and proven the reliability of stu-
dent grade prediction with many help of the existing machine
learning algorithms to enhance student success [1], [2], [3].
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The aim is to facilitate the educational sector to evaluate the
risk of academic failure and provide feedback to improve stu-
dent outcomes for each semester.With early grade prediction,
the development and progress of students can be assessed
more effectively [4], [5]. Other than that, student grade pre-
diction is also one of the common indicators to determine
student performance success [6]. The high accuracy of stu-
dents’ grade performances is beneficial and helps the HEI
identify the students at risk of failure early in academics.
However, as the student dataset becomes more extensive and
complex, the effects of imbalance distribution on the target
class become higher, which results in poor performance on
the predictive model [7]. Therefore, knowing the imbalanced
classification methods is significant for building an effective
predictive model to improve students’ future teaching and
learning performance.

There have been various published reviews regarding pre-
dicting student academic performances and their relevance,
as presented in TABLE 1. Nevertheless, based on the results,
few studies highlight the algorithm involved in boosting
the predictive model accuracy in predicting student perfor-
mances. Most of the existing surveys were focused on the
machine learning methods and summarized the prominent
findings with interesting future directions on student perfor-
mances, but the review of the algorithm resolving the imbal-
anced dataset was not discussed comprehensively enough.
In this paper, the useful methods to resolve the imbalanced
classification to improve the efficiency of the predictive
model will be discussed in more detail in three different
approaches; data-level, algorithm-level, and hybrid-level.

Therefore, this paper thoroughly reviews and summarizes
the most common methods for addressing imbalanced classi-
fication in the education domain, focusing on improving the
performance of student grade prediction. The contributions of
this comprehensive review are summarized and highlighted
as follows:

1. This SLR analyzes and summarizes the imbalanced clas-
sification methods in detail from three different approaches,
data-level, algorithm-level, and hybrid-level, to improve the
accuracy of predictive models.

2. Provide a taxonomy of current imbalanced classification
methods used for predicting student grades to highlight the
most applied algorithms in the education field that will ease
the professionals, practitioners, and academic researchers to
understand the significance of this technique.

3. A comparative study of existing balancing methods with
their classifiers in both aspects (binary and multi-class) and
accuracy scores more comprehensively that can be used for
future educational research.

4. Provide an overview of the existing evaluation per-
formance metrics applied for an imbalanced classification
problem to improve predictivemodel performances in student
grade prediction.

The rest of the paper is organized as follows. Section II
gives background information to this research for the reader’s
basic understanding. Section III describes the review method

and how the SLR was conducted to formulate the selected
articles’ research questions and search strategy. Section IV
provides data extraction and synthesis of SLR results.
Section V discusses the results of the overall findings.
Section VI discusses the future direction of this research, and
finally, the study is summarized and concluded in SectionVII.

II. IMBALANCED CLASSIFICATION IN STUDENT GRADE
PREDICTION
Data-driven in education is a new trend accelerated by global
changes lately. The knowledge and insightful information
gained from this area provide many advantages that can
improve HEI decision-making. To achieve this, educational
datasets are collected from various online databases and
platforms such as Course Management and Learning Man-
agement Systems (LMS) or known as Moodle, Massive
Open Online Courses (MOOC), Open Course Ware (OCW),
Open Educational Resources (OER), and social media sites
such as Twitter, Facebook, YouTube and Personal Learning
Environments (PLE) [10].

Student grade prediction uses machine learning to predict
the final score to improve student academic performance by
the end of the semester [11]. The aim is to help educators
determine the potential students at risk of low results and
help them overcome their learning difficulties. Hence, iden-
tifying the relevant factors, including student background,
academic information, environmental factors, test scores, and
Grade Point Average (GPA) or Cumulative Grade Point Aver-
age (CGPA), are significant in predicting student perfor-
mance [6]. However, when a tremendous amount of data is
collected and analyzed without being classified in a balanced
way, it becomes a significant problem for predicting students’
grades.

During the training phases of student grade prediction,
imbalanced classification appears when there is an unequal
distribution of instances within the target class in the training
dataset [12], [13]. Most datasets involve binary classifica-
tion consisting of two target outputs: the ‘‘pass’’ class as
the majority and the ‘‘fail’’ class as a minority. In contrast,
some of it comprises more than two different classes, known
as multi-class classification. When one class significantly
outnumbers the class of the other, the training model usu-
ally spends more time processing on the majority classes
than the minority ones, which could be less informative.
Consequently, it usually leads classifiers to become biased
and produce high erroneous. Due to this, many empirical
studies are interested in exploring variousmethods to enhance
student grade prediction performance [14], [15], [16], [17].
However, the methods and algorithms used in dealing with
various class-imbalanced distributions to predict student
grades are not being highlighted and are not comprehensive
enough.

Several approaches have been proposed to handle class
imbalance to improve the prediction model’s performance.
These approaches can be categorized into three levels of
solutions:
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TABLE 1. Comparative analysis of the related existing review article.

1. Data-level or pre-processing approach:This solution
is more straightforward, feasible, and easy to imple-
ment. The aim is to rebalance the class distribution
by either increasing the instances of a minority class
or decreasing the instances of a majority class with a
sampling method [18], [19]. The data-level approaches
include three sampling methods: oversampling, under-
sampling, and hybrid.

2. Algorithm-level approach: These solutions try not to
change the training dataset but to balance the class
distribution by modifying the classifier learning [20].

3. Hybrid-level approach: These incorporate data and
algorithm-based approaches based on ensemble learn-
ing to balance the dataset [21].

III. SYSTEMATIC REVIEW PROTOCOL
A systematic review is a review of evidence on a for-
mulated question using a systematic method to summarize

research related to a comprehensive study plan [22]. This
systematic review was conducted to review and identify cur-
rent data pre-processing techniques for imbalanced classi-
fication problems and find the best solution for machine
learning classifiers in student grade prediction. This study
applied Kitchenham guidelines [23] to perform the system-
atic review. The review protocol consists of four phases:
formulate research questions, search strategy and selection
articles, synthesis and results, and report. Each phase in the
review protocol is shown in FIGURE 1.

A. FORMULATING RESEARCH QUESTION (RQ)
There are three RQs have been formulated to explain the exact
idea of this SLR, as indicated in TABLE 2. This subsection
presents the RQ to address the relevant areas in this study.
The aim is to provide an understanding of imbalanced classi-
fication methods and discuss how these methods can have a
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FIGURE 1. Implementation of review protocol.

significant impact in the context of improving student grade
prediction performance.

TABLE 2. List of research questions and motivation of related studies.

B. SEARCH STRATEGY AND SELECTION ARTICLES
This systematic literature review was performed based on
the articles extracted from academic journals and conference
proceedings from five online citation databases: Scopus,Web
of Science, IEEE Explore, ScienceDirect, and SpringerLink.
According to the RQs, we formulate the main keywords
to search the literature consisting of three terms: (‘‘stu-
dent grade prediction’’), (‘‘student grade prediction’’) AND
(‘‘imbalanced classification’’), (‘‘student grade prediction’’)
AND (‘‘data pre-processing’’). To narrow the search results,
we limited our search to those published in peer-reviewed

journals and articles from 2015 to 2021 and selected the
subject areas that focus on the computer science field based
on the relevant title.

FIGURE 2. Selection process based on PRISMA flow diagram.

The search strategy of this review is based on PRISMA [24]
flow diagram as shown in FIGURE 2. The process of arti-
cle selection was conducted using the previously mentioned
search keywords. Initially, the prospective articles through
automated search generated 722 records based on the five
selected databases. Next, all duplicated articles found dur-
ing the automatic selection were removed using Mendeley
software, ending up with 323 records. Then, the search was
filtered by reading the article’s title and abstract compre-
hensively through a detailed inclusion and exclusion criteria.
After screening through this process, the articles were then
classified based on QA criteria to remove all irrelevant arti-
cles, ending upwith 43 remaining articles for in-depth review.

1) INCLUSION AND EXCLUSION CRITERIA
Specific criteria were set for inclusion and exclusion to
determine the relevance of this study’s selected journals and
articles. This ensures that the selection criteria are reliable and
correctly classified based on the defined RQs. The detailed
criteria for this review are presented in TABLE 3.

2) QUALITY ASSESSMENT
Quality assessment (QA) is another criterion that we con-
sidered in this SLR to ensure that the selected articles are
conducted based on specific quality measurements [23], [24].
These criteria were used to investigate the suitability of each
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TABLE 3. Inclusion and exclusion criteria.

article selected for this SLR. For each QA, there were only
three optional answers of whether the paper under review
answered the QAs completely (‘‘Yes’’), partly (‘‘Partly’’) or
not at all (‘‘No’’) abbreviated as ‘‘Y’’, ‘N’’ and ‘‘P’’ respec-
tively. The five QA criteria carried out in this SLR is shown
in TABLE 4.

TABLE 4. List of quality assessment criteria.

IV. DATA EXTRACTION AND SYNTHESIS
As mentioned in the previous section, this systematic review
selected the publication between 2015 and 2021 from five
different databases. A total of 43 articles fulfilled all the inclu-
sion and QA used in this SLR. These selected articles were
conducted and filtered according to the RQs to be the most
relevant that focused on the solution of imbalanced classi-
fication and high dimensionality in student grade prediction.
In contrast, some other articles only applied conventional data
pre-processing for their study findings. FIGURE 3 indicates
the trend of selected primary studies published over seven
years. Out of 43 articles, the highest number of surveyed
studies with 12 articles (27.9%) were published in 2021,
followed by 10 articles (23.3%) were released in the year

FIGURE 3. Publishing trends for imbalanced classification in higher
education.

2020, 9 articles (20.9%) in the year 2019, and 3 articles
(7.0%) were in the year between 2015 to 2018 respectively.

The number of systematic reviews shows that an increasing
trend in student grade prediction has gained prominence since
2019 among researchers. Moreover, based on our observa-
tion, the application of methods related to imbalanced clas-
sification problem has gained interest among researchers to
improve the predictive model performance in the education
field. As listed in TABLE 5, we exploited five research
databases to find the relevant articles. Among this, 25 articles
(58.1%) were published in journals and 18 articles (41.9%)
in conferences proceedings.

TABLE 5. Source of digital library.

The number of articles from different available databases,
including IEEE Explore (30.2%), SpringerLink and Science
Direct (23.3%), Scopus (18.6%), and Web of Science (4.6%)
is shown in FIGURE 4. The details of each selected article
are referred to in TABLE 6 based on year, publication title,
number of citations, publication type, publication name, and
rankings based on impact factor (IF). Meanwhile, FIGURE 5
visualizes the bibliometric analysis of the citation and pub-
lication using VOSviewer. The node size indicates the fre-
quency of occurrence, whereas the curve between the nodes
represents their co-occurrence in the same publication.

V. RESULTS AND DISCUSSION
This section presents and discusses the findings by answer-
ing the RQs formulated into three subsections; (1) a sum-
mary of state-of-the-art approaches and methods in handling
imbalanced classification; (2) discusses the proposed meth-
ods, algorithms, and datasets which significantly affect the
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TABLE 6. List of selected studies for the SLR cont.
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TABLE 6. (Continued.) List of selected studies for the SLR cont.

FIGURE 4. Number of articles based on publication database.

performance of student grade prediction and; (3) explore
the various evaluation metrics that are used to measure the
performance of student grade prediction.

A. SUMMARY STATE-OF-THE-ART FOR IMBALANCED
CLASSIFICATION METHOD
Most prevailingmethods to address imbalanced classification
problems in education, mainly in the student grade prediction
domain, are broadly discussed in three approaches: data,
algorithm, and hybrid based. In the student grade prediction
domain, we found that 17 articles from 43 primary studies
selected data-level based on sampling methods more often

to reduce the imbalanced classification, whereas 14 articles
considered feature selection to solve the high dimensionality,
which helps address imbalanced classification. Meanwhile,
the remaining papers use other methods, such as algorithms
and hybrid approaches to enhance student grade prediction
performance. In answering RQ1, the taxonomy of several
methods and algorithms proposed by previous researchers for
improving student grade prediction performance is summa-
rized in FIGURE 6.

1) DATA-LEVEL OR DATA PRE-PROCESSING APPROACH
Data-level, known as data pre-processing, is one of the
most commonly used approaches to address imbalanced
problems at the training set level. Three methods utilized
under these approaches are oversampling, undersampling and
hybrid sampling. Though much research has been devoted
to investigating the strength and weaknesses of different
selection approaches in the education domain, choosing the
most appropriate methods for a given task is often difficult.
From the literature, oversampling [30], [54], [55], [56], [63],
[65], [66] methods have been the most preferable so far due to
their effectiveness in dealing with a high proportion of class
imbalance compared to undersampling [38], [39].

a: OVERSAMPLING
A method that increases the size of minority class
instances by generating new instances to obtain balanced
classes. SMOTE is one of the most popular and classic
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FIGURE 5. Bibliometric analysis of the citation and publications between 2015 to 2021.

FIGURE 6. Taxonomy of methods proposed in the literature to address imbalanced classification in student grade prediction domain.

oversampling algorithms. Chawla et al. [67] introduced
an oversampling SMOTE algorithm that uses interpolation
methods to increase the size of the minority class. It oversam-
ples the minority class by generating ‘‘synthetic’’ instances
rather than oversampling by replacement. Based on the
similar principle of SMOTE, [35] compared many over-
sampling in 463,956 student data records using SMOTE,
SVMSMOTE and ADASYN to solve imbalance class for
predicting students’ performance. Utari et al. [42] developed
a high-performance model to predict student dropout using
2492 datasets with balancing methods using SMOTE and RF
algorithms. Meanwhile, Bouchard et al. [45] used SMOTE

on a high dimensional imbalance dataset with feature selec-
tion to improve student grade prediction. Tanha et al. [21]
presented another oversampling algorithm SMOTEBoost to
analyze the performance of binary and multi-class imbal-
anced problems. This algorithm introduces SMOTE in each
iteration, boosting learning more minority class instances.
However, it takes the highest computational time to process
large datasets.

b: UNDERSAMPLING
Amethod that reduces the size of the majority class instances
by eliminating the cases from the training dataset. RUS [39]
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is an example of a naïve version and the most straightfor-
ward undersampling algorithm. It simply removes a ran-
dom portion of samples in the majority class to make all
classes equally represented. However, randomly discarding
the samples may delete some potentially useful information
from the majority class instances, reducing the prediction
performance [68]. Therefore, to overcome this problem,
some researchers have proposed heuristic undersampling
algorithms such as ENN [69] and Tomek-Links [70] that
effectively avoid the blindness of RUS. Some advancedmeth-
ods that combine both oversampling and undersampling,
known as hybrid sampling, are proposed to achieve reliable
results.

c: HYBRID SAMPLING
This method aims to increase the number of minority sam-
ples and reduce the number of majority samples to mitigate
the sample imbalance. A study [17] used SMOTETL com-
bined SMOTE and TL algorithms to overcome the imbal-
ance problem in predicting student performance. Meanwhile,
Pristyanto et al [71] proposed a data hybrid solution using
a combination of SMOTE and OSS to handle the distri-
bution of imbalanced classes in predicting student success.
The algorithm used SMOTE to reduce the risk of data
duplication, whereas OSS overcame the loss of information
and misclassification problem in the majority classes. Has-
san et al. [39] proposed an algorithm combining SMOTE
and undersampling ENN known as SMOTEENN, which can
overcome the multi-class imbalanced problem. The experi-
mental results show that SMOTEENN consistently produce
high results with ensembles classifiers to improve students’
performance.

2) ALGORITHM-LEVEL APPROACH
Unlike the data-level approach, algorithm-level is a dedi-
cated algorithm that directly learns the imbalanced distribu-
tion from different datasets based on cost-sensitive methods
and ensemble learning [20]. Instead of creating balanced
data distributions using different sampling strategies, cost-
sensitive learning overcomes the imbalanced learning prob-
lem by using different cost matrices that describe the costs
for misclassifying any particular data class [72]. It generally
learns the imbalance distribution from the classes in the
datasets by modifying the decision threshold when assigning
the minority class. The improved algorithm has a significant
effect on maximizing the classification accuracy of imbal-
anced datasets [29].

3) HYBRID APPROACH
Other works use hybrid approaches combining both data-
level and algorithm-level approaches to optimize the pre-
diction models. Mubarak et al. [29] proposed a custom loss
function that introduces different weights for different classes
into a new hyper-model CONV-LSTM, so that it selects
significant features. It captures temporal dependencies auto-
matically to optimize the prediction results. The proposed

architecture combined the CNN and LSTM deep neural net-
work, which creates complex non-linear features from the
interaction of thousands of attributes, and were trained by
updating the weights through forward and back propaga-
tion to achieve optimal parameters. Then, applying the cost-
sensitive to the loss function minimizes the misclassification
cost of the imbalanced class, thus increasing the performance
of dropout prediction. In another study, Deepika et al. [73]
proposed a combination of Optimal feature selectionmethods
using GWO, SMOTE and RF Classifier. They adopted the
GWO optimization method to select the optimal parameter
for the RF classifier. In contrast, SMOTE solved the imbal-
anced data in the datasets chosen to enhance the efficiency of
student performance prediction.

Few previous works explore the DNN model to improve
the class imbalance problem. Nabil et al. [30] compared
the efficiency of DNN with SMOTE, ADASYN, ROS
and SMOTEENN using 4266 students’ previous academic
achievement records. When the DNN is implemented to
class imbalance dataset, it helps generalization. It enables
the network to correctly discover hidden patterns and extract
insightful knowledge, thus achieving better and more reliable
results. Similarly, Aslam et al. [74] proposed SMOTE into
DNN based on a dense model using eight hidden layers
to overcome the imbalance problem. TABLE 7 summarizes
all approaches, balancing methods and algorithms regard-
ing their strengths and weaknesses in handling imbalanced
classification, especially for the student grade prediction
domain.

B. IMPACT OF BALANCING METHOD ON STUDENT
GRADE PREDICTION PERFORMANCE
The characteristic of an imbalanced dataset has caused the
problem of low accuracy for the minority class in classifi-
cation, which can produce biased results. Due to this, many
methods and algorithms have been proposed to solve imbal-
anced classification among many researchers. To answer
RQ2, several datasets are commonly used, considering the
actual and online data, which give the most significant impact
for each study experiment. TABLE 8 summarizes the detailed
dataset characteristics with a comparative analysis of the
balancing method and algorithm to improve student grade
prediction performance.

Utari et al. [42] proposed SMOTE to predict student
dropout using 2406 imbalanced datasets. The proposed tech-
nique outperformed the accuracy performance of the RF
classifier up to 93.4% from 92.3%. Similarly, Gull et al. [41]
have applied SMOTE using 250 imbalanced datasets for
the multi-class imbalanced problem to predict final student
grades early. The proposed techniques show high perfor-
mance for the LDAwith 90.7% accuracy by generating a bal-
anced number of minority class samples. However, SMOTE
always leads to overfitting risk when generating and com-
paring six different algorithms, such as ROS, ADASYN,
and duplicating new synthetic instances, which become less
effective.
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TABLE 7. Summary of strengths and weaknesses on different approaches for handling imbalanced classification.

Some researchers applied RUS, NearMiss, SMOTEENN,
and SMOTETL [39] to overcome this problem to improve

the imbalanced classification. A study in [52] proposed
four algorithms based on oversampling and undersampling
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TABLE 8. Summary of dataset characteristics, balancing methods, algorithm and limitation in related work.
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FIGURE 7. Frequency of balancing algorithms based on sampling applied in student grade prediction.

techniques to minimize the effects of imbalanced problems
in predicting essay grading. The distribution of each class is
based on a stratified sampling approach so that the training
dataset is maintained in the same ratios. It was observed
that SMOTE and ADASYN were not effectively performed
as ROS and RUS due to unusual patterns found in the
spatial distribution of feature vectors extracted from textual
data. On the other hand, [30] analyzed sampling methods
using SMOTE, ROS, and ADASYN and hybrid sampling
SMOTEENN algorithms to handle the highly binary imbal-
anced dataset. The studies used 4266 records of anonymized
students with 12 features to predict students’ grades based on
previous course results. The imbalanced class distributions
show that 91.16% and 8.84% were labeled as pass and fail,
respectively.

Generally, after the sampling techniques,model classifiers’
performance improves and achieves better results with a
balanced dataset. However, ROS produced consistent results
for all classifiers, including DNN, DT, LR, SVC, KNN,
RF and GB. Intayoad et al. [75] employed three combina-
tions of SMOTE, including Borderline SMOTE1, Borderline
SMOTE2, and SVMSMOTE, to enhance the accuracy of the
minority class samples using two educational datasets. Their
results revealed that the proposed algorithms improve the
precision, recall, and F1-score of minority class for KNN
and NB compared to DT classifiers. However, SMOTE is
not influenced by the imbalance ratio to affect classification
performance.

On the other hand, we also considered methods to address
the issues of noise in data, including outliers and bias
for the imbalanced dataset. Jishan et al. [63] applied the

discretization technique using optimal equal-width bin-
ning and SMOTE to predict students’ final grades with
181 instances. Results demonstrate high accuracy for NN and
NB classifiers with 75% compared to 61% after the proposed
algorithms were performed.

FIGURE 7 shows the percentages for various balancing
algorithms frequently used in the student grade prediction
domain. In total, there are fourteen (14) sampling methods
have been extracted from this SLR. It is observed that most
practices have used SMOTE oversampling (37.0%), then
followed by ADASYN (13.0%) and ROS (10.9%). Mean-
while, RUS undersampling and hybrid sampling, SMOTEEN
shared an almost equivalent distribution with 6.5%, followed
by SMOTETL, SVMSMOTE and BorderlineSMOTE con-
tributed with the same percentage of 4.3%. However, from
the findings, we found very few researchers explored meth-
ods from different undersampling algorithms (NearMiss,
Tomek-Links, ENN, NCR, and Spread Subsampling) and
K-means SMOTE oversampling with only 2.2%. These find-
ings indicate a valuable research gap that other researchers
can further explore for the important contribution to the
performance of predictive models in the future educational
domain.

Another important issue that may adversely affect an
imbalanced class distribution is the high data dimensional-
ity. Lim et al. [51] investigated the effectiveness of feature
selection using the Wrapper approach to reduce the number
of 32 features for the imbalanced datasets. The results were
validated using four popular classification algorithms: DT,
NB, NBT, and LibSVM. The results found that using relevant
features to assist C4.5 produced better prediction accuracy
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FIGURE 8. Comparison of best accuracy using various algorithms for handling imbalanced classification based on selected studies.

than others. Besides, selecting the relevant features helps
to upgrade the generalization abilities of the classifiers and
reduce computational time and resources. Hussain et al. [46]
proposed a feature selection algorithm based on a stream-
ing model using the Alpha-investing method to predict stu-
dents’ difficulties in the learning session. Other than that,
Saifudin et al. [44] identified that using a forward selection
algorithm for feature selection reduces the computational
complexity of the imbalanced dataset and improves the NB
model’s accuracy.

In contrast, Khan et al. [48] proposed a correlation-based
filter approach to reduce the number of overlapping fea-
tures and overfit the training dataset to improve the accuracy
performance in student grade prediction. Besides the sam-
pling method, Pristyanto et al. [71] proposed hybrid sampling
known as SMOTE + OSS that combined SMOTE and OSS
methods using 105 instances to improve the prediction perfor-
mance on the binary imbalanced problem. In their study, the
instances of minority classes were generated randomly based
on k-nearest neighbors using SMOTE to reduce the risk of
duplication. In contrast, the majority of class instances were
selected using OSS to remove noise and borderline samples.
The results concluded that SMOTE + OSS is more effective
with a high average g-mean increase of up to 96.5% using
SVM compared to KNN (89.4%) and NB 85.4%) classifiers.
Other methods in [73] proposed a hybrid model based on
the GWO algorithm, SMOTE oversampling and RF classifier
to improve student academic performance. Their experiment

showed that the proposed model could solve the imbal-
ance problem in the selected datasets with high accuracy.
Meanwhile, Mubarak et al. [29] noticed that imbalanced
classes could cause poor performance results on dropout
prediction models. Therefore, the author proposed a novel
cost loss function algorithm to address the imbalanced prob-
lem with CONV-LSTM using deep learning to optimize the
student dropout prediction. The proposed model also applied
automatic feature extraction to extract the important features
of raw clickstream data obtained from MOOC, showing bet-
ter results than thosewho appliedmanual feature engineering.
FIGURE 8 shows the best accuracy percentage using vari-
ous algorithms proposed from previous studies for handling
imbalanced classification to improve student grade predic-
tion. The related articles are summarized in TABLE 9.

C. EVALUATION PERFORMANCE METRICS USED
In order to ensure that the model proposed is suitable for
handling imbalanced classification problems, this subsection
identifies the most often used performance metrics which
respond to RQ3. As depicted in FIGURE 9, fourteen (14)
frequently used metrics for evaluating the performance of
classifiers based on accuracy, f1-measure, precision, recall,
AUC, ROC, RMSE, False Positive Rate (FPR), True Positive
Rate (TPR), Specificity, Kappa, MAE, incorrectly classified
and correctly classified were proposed.

From the findings, 72.2% of the selected articles most
considered accuracy, f1-measure, precision, and recall with
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TABLE 9. Comparison of accuracy with methods and algorithms proposed for addressing imbalanced classification.

the rates of 23% (29/126), 16.7% (21/126), 16.7% (21/126)
and 15.9% (20/126) respectively to evaluate the imbalanced
classification performance in student grade prediction. Accu-
racy is the most intuitive performance measure defined as the
ratio of the total number of correctly calculated predictions.
In contrast, precision is the ratio of the correctly predicted
positive to the total number of correctly predicted positive
cases. Recall, also known as sensitivity, is the ratio of cor-
rectly classified cases to the total number of all actual class
cases. Meanwhile, the f-measure or f1-score is the weighted

average of precision and recall, which are considered a good
indicator of the relationship between them. Usually, most
previous researchers found the f-measure score is more valu-
able than accuracy for imbalanced classifications because it
considers both false positives and false negatives rates. For
example, studies in [30], [33], [48], and [63] have compared
the score of accuracy, f1-measure, precision, and recall to
evaluate the effectiveness of the predicted models. On the
other hand, only 27.8% of articles reflect their performance
evaluation based on the remain parameters. This includes
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FIGURE 9. Parameter of the performance metric.

AUC at 7.9% (10/126), ROC at 5.6% (7/126), and FPR at
3.2% (4/126), whereas TPR, Kappa, and RMSE contributed
the same distribution at 2.4% (3/126). Apart from them, the
correctly and incorrectly classified MAE was one of the least
used metrics in the student grade prediction, with a score
of 0.8% (1/126). The RMSE and MAE are metrics used to
measure the regression model error.

Studies from [4] and [11] used the RMSE and MAE
to evaluate the matrix factorization techniques for predict-
ing students’ grades. Meanwhile, [45] applied accuracy,
f1-measure, Kappa, and ROC to evaluate different classifiers
using 270 features with imbalanced classes to predict stu-
dents’ final grades. Kappa is another metric that compares the
observed and expected accuracy, which is a good measure for
handling multi-class imbalanced problems. A higher Kappa
score closer to score 1 indicates a more accurate prediction
model. Hence, the diversity of different performance metrics
shows a significant impact in evaluating the model’s capa-
bilities from different perspectives when handling binary and
multi-class imbalanced problems. TABLE10 lists the specific
articles that have utilized the performance metrics for this
studies.

VI. FUTURE DIRECTIONS OF STUDENT GRADE
PREDICTION
This study presents an overview of imbalanced classifica-
tion methods used in student grade prediction focusing on
two aspects; (a) appropriate solutions to build high-accuracy
prediction models; (b) appropriate algorithms and metrics
to appraise the performance of imbalanced datasets. Based

on this review, there are some limitations, and underex-
plored methods have been shown in resolving the imbal-
anced datasets to build high-accuracy prediction models.
Some aspects that are found to be potential and require fur-
ther discussion for the future direction in this field are as
follows:

A. SAMPLING BASED WITH FEATURE SELECTION
METHOD FOR HIGH DIMENSIONAL IMBALANCED
DATASET
Dealingwith imbalanced classification on a high-dimensional
dataset is very difficult to train and will negatively impact
the performance of the predictive results. It is of utmost
importance to overcome the high dimensionality of the data
because it can produce the probability of data becoming
sparse and highly imbalanced leading to inaccurate results.
In this study, SMOTE is less effective for high-dimensional
imbalanced dataset. Adopting feature selection can reduce the
biased of minority classes to improve the predictive result.
Therefore, building comprehensive data pre-processing is
required by considering a hybrid feature selection method
that can be integrated with different sampling methods to
solve the problem of imbalanced classification effectively.

B. HYBRID-LEVEL APPROACH FOR IMBALANCED
MULTI-CLASS CLASSIFICATION
Selecting appropriate hybrid methods and basic classifiers
can increase the effectiveness of these algorithms, which
can contribute to a better quality of educational data. Refer-
ring to FIGURE 8, we noticed that the performance of
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TABLE 10. Articles related to performance metrics parameter used.

the hybrid approach achieved the highest accuracy in han-
dling the imbalanced classification problem for student grade
prediction. Furthermore, some methods discussed and pro-
posed dealing with the binary imbalanced dataset cases,
but the research on the hybrid approach of multi-class
classification is still lacking. In future work, it is recom-
mended to highlight the practice of using another aspect
of hybrid approaches to resolving the multi-class prob-
lem in this domain to boost the accuracy of the predictive
model.

C. IMPROVED ACCURACY OF IMBALANCED DATASET
USING ENSEMBLE METHOD
The ensemble method is designed to increase the accuracy by
not changing the base classifier to make a decision output of a
single class. Based on the observation, we revealed that most
of the studies used common traditional classifiers such as DT,
SVM, kNN, NB, RF, etc., and only a few have investigated
the potential of ensemble algorithms using ensemble algo-
rithms such as Bagging, Stacking, and Boosting method for
improving the performance of student grade prediction. It is
more appropriate to highlight the performance of ensemble
algorithms when dealing with imbalanced classes than the
mere use of a primary classifier in predicting the student’s
grade prediction.

VII. CONCLUSION
This paper presents the survey of approaches and methods
used to address the imbalanced class problem in the student

grade prediction domain, including the state-of-the-art meth-
ods, solutions, impacts of the methods, and future directions
for solving imbalanced classification problems. Overall, this
review achieved its objectives of enhancing student grade
prediction performance by highlighting the impact of imbal-
anced classification as the key solution to improve student
grade prediction. Various approaches and methods proposed
to overcome the difficulties found in imbalanced student
grade prediction can be grouped into sampling methods, fea-
ture selection, cost-sensitive learning, and hybrid approaches.
Nevertheless, this approach has its limitations. Still, it has
many aspects that need to be improved regarding the diver-
sity of methods used, although some have shown exemplary
performance in handling imbalanced classes. Hence, it can
provide new advances in developing a more efficient model
focus for improving data quality, especially in the education
domain. We will expand our investigation for future plans by
considering the new techniques and methods in other related
data-driven issues.

APPENDIX
Acronym Full Form
ADASYN Adaptive Synthetic Sampling.
AUC Area Under the Receiver Operat-

ing.
CGAN Characteristics Curve.
CNN Conditional Generative Adversar-

ial Networks.
CONV-LSTM Convolutional Neural Networks

and Long Short-Term Memory.
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ANN Artificial Neural Network.
DT Decision Tree.
EDM Educational Data Mining.
ENN Extended Nearest Neighbor.
FMARR Fuzzy Mean Aggregation Reason-

ing Rule.
FPC GA/LGA Fuzzy Pattern Classifier Genetic

Algorithm.
FPC OWA Fuzzy Pattern Classifier Ordered-

Weighted Averaging.
GB Gradient Boosting.
GWO Grey Wolf Optimization.
HELA Hybrid Ensemble Learning Algo-

rithm.
KNN K- Nearest Neighbor.
LA Learning Analytics.
LDA Linear Discrimination Analysis.
LibSVM Library for Support Vector

Machine.
LR Logistic Regression.
LSTM Long Short-Term Memory.
MFPC AIWA/OWA Modified Fuzzy Pattern Classi-

fier Andnessdirected Importance
Weighting Averaging.

NB Naïve Bayes.
NBT Naïve Bayes Tree.
NN Neural Network.
NCR Neighbor Cleaning Rule.
OULAD Open University Learning Analyt-

ics Dataset.
OSS One Sided Selection.
PT Pattern Trees.
PTTD Top-Down Pattern Trees.
RF Random Forest.
ROC Receiver Operating Characteristics

Curve.
ROS Random Oversampling.
RUS Random Undersampling.
SFS Streaming Feature Selection.
SC-GAN Sequential-Conditional Generative

Adversarial Networks.
SMOTE Synthetic Minority Oversampling

Technique.

SMOTEENN Synthetic Minority Oversampling
Technique + Extended Nearest
Neighbor.

SMOTETL Synthetic Minority Oversampling
Technique + Tomek-Links.

SVC Support Vector Classifier.
SVMSMOTE Support Vector Machine +

Synthetic Minority. Oversampling
Technique.

TL
UCI University of California.
WVC Weighted Voting Classifier
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