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Abstract

Development of advanced machine learning models for the fusion of heterogeneous

biological sources in clinical decision support systems for cancer

Cancer is one of the leading causes of death worldwide, just behind cardiovascular diseases.
An early diagnosis is key for the prognosis of the patient, since it allows applying the most
suitable treatment. To do so, multiple screenings are routinely performed on the patient
involving, for instance, the visual examination of histopathological slides, the analysis of the
clinical history, or finding alterations in their gene expression. These examinations, however,
are usually time-consuming, and not always the physicians have the experience to analyze
them. To help them with these tasks, clinical decision support systems have been created in
recent years using the advances in the machine learning field. Machine learning models
are able to automatically learn from these data, and find insights that can help them to
solve a specific task. This is part of the precision medicine field where, using a data-driven
approach, we tailor the diagnosis, treatment, and other clinical outcomes to the specific
characteristics of the patient. Thanks to the advances in this field, more heterogeneous
sources of biological information are being gathered, and they provide diverse features that
can help to accurately diagnose a cancer patient. This allows to create systems that use all
the available information, accurately modelling the patient’s disease. This would be similar
to having a separate diagnosis per data modality from a group of expert clinicians, where
the final diagnosis is based on their analysis of their source of expertise. Unfortunately,
not all these sources are always available, limiting the potential of creating multi-modal
machine learning models.

In this thesis, we explore the improvements that can be obtained by using multi-modal
machine learning models resilient to missing modalities over single-modality ones in
the area of cancer diagnosis. Firstly, we tackled the problem of lung cancer subtyping
diagnosis using two of the most-used biomedical modalities in literature (gene expression
and histopathology images), showing the improvements that can be obtained by fusing
these two modalities in comparison to being independently used. Next, to study the limits
that can be achieved by fusing heterogeneous biological sources, we include three new
modalities to the proposed problem (micro-RNA, DNA Methylation values, and the copy
number variation of the genes). We tested which modalities complemented each other,
and which is the performance that can be obtained by fusing all these modalities in a
classification model. Lastly, we approached the problem of data scarcity in biomedical
multi-modal problems, presenting advance methodologies for biological data generation.
Inspired by the recent advances in multi-modal generative models for natural images, we
focus on generating one modality based on a paired one (RNA-to-image synthesis problem)
for healthy tissues. We showed how the synthetic generated data were similar to the real
samples and the model was able to impute missing modalities.





Resumen

Diseño de modelos avanzados de aprendizaje maquina para la integracion de fuentes

biologicas heterogeneas en sistemas de ayuda al diagnostico del cancer

El cáncer es una de las primeras causas de mortalidad en el mundo, solo por detrás de las
enfermedades cardiovasculares. Poder realizar un diagnóstico temprano es crucial para
mejorar la esperanza de vida del paciente, ya que se le podría proporcionar un tratamiento
más eficaz y adecuado a su estado. Para poder realizar este diagnóstico, múltiples pruebas
médicas se le realizan rutinariamente a un paciente. Entre ellas, se incluye la inspección
visual de imágenes histológicas, el análisis de la historia clínica, o encontrar alteraciones en
la expresión de gen del paciente. Sin embargo, estas pruebas conllevan bastante tiempo,
y no todos los hospitales están equipados con el material necesario para su realización.
Con el fin de ayudar a los médicos en estas tareas de análisis, y gracias a los avances en
el campo del aprendizaje automático, se han ido creado sistemas de apoyo al diagnóstico
en los últimos años. Los algoritmos de aprendizaje máquina son capaces de aprender
automáticamente de estos datos, y encontrar patrones que les ayuden a resolver una tarea
específica. Esto forma parte del área de la medicina de precisión en la que, siguiendo
una metodología basada en datos, se puede ofrecer un diagnóstico más robusto o elegir
un tratamiento más eficaz basado en las características genéticas o del historial médico
del paciente entre otras. Gracias en parte a los avances en este área, cada vez se recogen
más fuentes de información biológica heterogénea, las cuáles proporcionan importante
información biológica que pueden ayudar a la hora de realizar el diagnóstico de un paciente.
Esto abre la posibilidad de crear sistemas que utilicen toda esta información, describiendo
mejor la patología del paciente. Esto es similar a tener en cuenta la opinión de distintos
especialistas a la hora de realizar un diagnóstico, donde cada uno de ellos se basa en
una fuente de datos distinta. Desafortunadamente, no todas las fuentes de información
están siempre disponibles, lo que limita la creación de algoritmos de aprendizaje máquina
multimodales.

En esta tesis, exploramos las mejoras que se pueden obtener haciendo uso de algoritmos de
aprendizaje máquina multimodales en comparación con aquellos que utilizan una única
modalidad. En primer lugar, hacemos uso de los dos tipos de datos más usados en la
literatura (expresión de gen e imágenes histológicas) para el diagnóstico de los distintos
subtipos de cáncer de pulmón, mostrando las mejoras que se pueden obtener haciendo uso de
estas dos modalidades en conjunto en lugar de por separado. A continuación, para estudiar
los límites que se pueden alcanzar integrando fuentes biológicas heterogéneas, añadimos
tres modalidades adicionales (micro-RNA, datos de metilación del ADN, e información de
la variación en el número de copias de los genes) para el mismo problema. Comprobamos
qué modalidades interaccionan mejor con cuáles, y cuál es el límite que se puede alcanzar
al integrar todas estas modalidades en un único modelo de clasificación. Por último,
afrontamos el problema de la escasez de datos en problemas biomédicos multimodales
aportando metodologías avanzadas de generación de datos sintéticos biológicos. Inspirados



por los recientes avances en modelos generativos multimodales para imágenes no biológicas,
nos enfocamos en la generación de una modalidad basándonos en su par (el problema
de la síntesis de imagen histológicas en base a la expresión de gen), para tejidos sanos.
Demostramos como los datos sintéticos generados se asemejan a los datos reales y pueden
servir para la imputación de modalidades faltantes.

xii
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1.1 Introduction

Biology is the study of life. The word "biology" is derived
from the Greek word "bios" (life) and "logos" (study). In gen-
eral, biologists study the structure, function, growth, origin,
evolution, and distribution of living organisms. Specifically,
human biology is an area of research focused on studying
humans through the interactions between many diverse fields
(such as genetics, evolution, physiology, anatomy, epidemi-
ology, or population genetics) [1]. With the recent advances
in information technology, the quantity of human biological
data collected has not stopped increasing. That ranges from
clinical to single-cell expression data, passing through other
omics (more than 25, and the number is growing [2, 3]: ge-
nomics, epigenomics, microbiomics, lipidomics, proteomics,
glycomics, foodomics, transcriptomics, and metabolomics
just to mention a few) allowing to study humans in a multi-
scale way. These advances have especially affected the study
of human diseases, allowing us to model them from different
levels, and increasing the generated knowledge.

Within human diseases, cancer is one of the leading causes
of death worldwide. It accounted for nearly 10 million deaths
in 2020, and it is the second deadliest disease worldwide
just after cardiovascular diseases [4]. An early diagnosis of
the disease is crucial for a good prognosis for the patient,
and therefore, multiple screenings are usually carried out
in clinical practice. These data are becoming increasingly
varied, ranging from patient-level clinical variables (e.g. age,
smoking history) to sequencing the genome of the patient to
find changes in the expression of the biological biomarkers or
digitized cancer tissue slides [5]. This allows to study the dis-
ease in a multi-scale and multi-omic approach, levering the
information from all the available sources [6]. However, man-
ually inspecting the collected data is unfeasible, given their
huge size. Thus, new solutions arise for dealing with these
data, based on high-performance computing (HPC). The
combination of big quantities of data and high-performance
computing offers new possibilities to understand diseases
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such as cancer and steps forward the goal of so-called preci-
sion medicine. Precision medicine, also known as "personal-
ized medicine", focuses on tailoring disease prevention and
treatment taking into account differences in patients’ genes,
environments or lifestyles [7]. The final goal is to target the
right treatments to the right patients at the right time, by
using a data-focused approach.

To do so, researchers are focusing on the use of algorithms that
are able to learn from these data, in order to solve a given task
(e.g. diagnosis support for a specific cancer type). Machine
learning is a field devoted to understanding and building
methods that are able to leverage data to improve perfor-
mance on some set of tasks [8]. The combination of machine
learning algorithms with the biological data collected from
cancer is revolutionizing our understanding of the disease,
showing outstanding results [9]. However, the relationships
and improvements that can be obtained by studying how the
collected data interact and can be integrated are not yet fully
exploited and should be more widely studied. By studying
these relationships, better clinical-decision support systems
(CDSS) can be created, helping physicians during the diag-
nostic process and thus, enhancing the patient prognosis.

Therefore, some basic biological concepts are outlined in this
chapter in order to clarify why cancer data is increasingly
requiring more and more complex computational resources,
and which technologies are being used nowadays. Since
the goal of this thesis is to develop multi-modal machine
learning models for diagnosis and synthetic data generation,
we are just going to describe the biological background
necessary to understand the data used. However, we will
include references to works and books where the knowledge
can be further expanded.

1.2 Biological background

The cell, the DNA, and the genes

To understand the complexity of the cancer disease, it is
necessary to first understand the most basic unit in biol-
ogy, the cell, and its functionality. All living organisms are
formed by cells, ranging from those formed by a unique
cell (unicellular) to trillions of cells (like humans). The cells



1.2 Biological background 5

[10]: Bunz (2008), Principles of can-
cer genetics

contain one of the most crucial parts in biology, the genetic
material, which among much other information, provides
the necessary for cell replication [10]. There exist two types of
cells, depending on how their nuclei are structured: prokary-
otic and eukaryotic. Humans are formed by eukaryotic cells,
which have a more complex structure than prokaryotic cells.
They are formed by multiple compartments (which are called
organelles), each one with a specific function (see Figure
1.1).

Figure 1.1: Structure and organelles of an eukaryotic cell. [10]

The plasma membrane contains the rest of the organelles, and
that serves to separate and protect a cell from its surrounding
environment. Inside the cytoplasm, the rest of the organelles
are contained. The cytoskeleton is inside the cytoplasm, and
provides the cell with its shape, anchors the organelles, and
stimulates the cell movement. The ribosomes are the main
site for protein synthesis and are composed of proteins and
ribonucleic acids. The mitochondria, which is also known as
the "powerhouse of cells", is where the energy is produced.
The Golgi apparatus is where the formation of glycoproteins
and glycolipids occurs. Finally, the nucleus serves as the
"commander" of the cell, giving instructions for the growth,
maturation, division, or death of the cell. It contains the
heredity material in the deoxyribonucleic acid (DNA), which
plays a key role in the cancer disease.

DNA is a polymer that holds the genetic material in almost
all organisms. It contains instructions for how, when, and
where to produce each kind of protein. Proteins are large
biomolecules and macromolecules that comprise one or more
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long chains of amino acid residues, and that perform a
vast array of functions within organisms. The structure of
the DNA was firstly described by the Nobel prize winners
James Watson and Francis Crick [11], an achievement that
would have been impossible without the experimental work
performed by Rosalind Franklin [12]. DNA is composed of
two polynucleotide chains that coil around each other to
form a double helix. The helix is composed of simpler units
called nucleotides [13]. Each nucleotide is formed by one of
four nitrogen-containing nucleobases: cytosine (C), guanine
(G), adenine (A), or thymine (T), a sugar called deoxyribose,
and a phosphate group. These bases are bound together by
a hydrogen bond, the adenine with the thymine and the
cytosine with the guanine. This is what joins the two strands
of the DNA, forming the helix (see Figure 1.2) [14]. The order
in which the bases are placed within the strands is considered
to be the instruction book for building and maintaining an
organism. During DNA replication, each strand serves as a
template to replicate the order of the bases. Thus, in the cell
division process, one strand from the original cell is copied
into the new cell, and the second strand is a newly synthesized
copy. The DNA strands have the opposite orientation: one
strand is in the 5’ to 3’ direction with respect to the carbon
atoms on the sugar (deoxyribose) and the complementary
strand is in the 3’ to 5’ direction (see Figure 1.3) [15].

Figure 1.2: The structure of the DNA double helix. The atoms in the structure are color-coded by element and the
detailed structures of two base pairs are shown in the bottom right. [14]

Within the eukaryotic cells, the DNA is organized into long
structures called chromosomes. The chromosomes have a
complex three-dimensional structure, that plays a key role in



1.2 Biological background 7

Figure 1.3: DNA strands opposite orientation from 5’ to 3’ with respect to the carbons atoms, and the opposite
(form 3’ to 5’) for the other strand. [15]
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transcriptomic regulation. This complex structure is called
chromatin, and it contains the vast majority of the DNA
of an organism its structure is maintained by the coil of
DNA and proteins. When the individual chromosomes are
visible, they form a classic four-arm structure, a pair of sister
chromatids attached to each other at the centromere. This led
the structure to have two short arms (p arms) and two longer
arms (q arms) (see Figure 1.4). In humans, each cell normally
contains 23 pairs of chromosomes [16].

Genes are specific units of heredity that are mapped in
specific regions of the chromosome, and they mostly contain
information for synthesizing specific proteins. Within each
gene, we can differentiate two portions of the sequence, based
on their ability to code specific amino acids of the protein
(exons) or sections with non-coding capabilities (introns) [17].
The length of the genes is not fixed and can vary between
hundreds to more than 2 million base pairs. The majority
of the individuals in a given species share the same genes,
however, there is a small portion of genes (around 1%) that
provide particular heritable characteristics to the individuals
(e.g. in the case of humans this could be the hair color or
the body type). These characteristics are also known as traits.
For learning more about the biological basics of the cell and
DNA, the reader can find more information in [18, 19].
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Figure 1.4: DNA is organized in chromosomes, where two short and two long arms can be differentiated [16].
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The biology of cancer

Once we have understood the fundamental parts of the cell,
DNA, and genes, we can focus on the cancer disease and how it
develops. Cancer is a disease where cells grow uncontrollably,
potentially spreading to other parts of the body. This is due to
the silence of cell death. As aforementioned, human cells grow
and divide to form new cells as the body needs them. When
cells grow old or become damaged, these new cells replace
them. However, sometimes this process does not occur, and
cells that should be replaced keep growing and multiplying.
These abnormal cells may grow into tumors, which are solid
masses of tissue that form when abnormal cells are grouped
together. There are two types of tumors: cancerous and not
cancerous (also known as benign). While benign tumors may
imply some danger based on their location and size, usually
they can be safely removed and they do not grow again nor
invade other parts of the body. On the other hand, cancerous
tumors can spread to nearby tissues and can travel to others
far apart in a process called metastasis, and once removed
they can grow back [20, 21].

Cancerous cells have several differences from normal cells.
Firstly, they grow in the absence of growth signals. They
also ignore the death signaling, which tells cells to stop
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Figure 1.5: In a normal cell division, if a cell is damaged the process of apoptosis (cell death) triggers. With
cancerous cells, this does not occur, and damaged cells keep dividing. [22]

dividing (a process called apoptosis). Cancerous cells are able
to hide from the immune system, which normally eliminates
damaged or abnormal cells. Not only that, but sometimes they
also trick the immune system to help them grow, convincing
the immune system to protect these cancerous cells instead
of eliminating them. Finally, they also accumulate changes
in their chromosome, such as duplications and deletions of
some parts [20, 21].

Cancer is a genetic disease since it is caused by changes that
affect those genes controlling the division and growth of
the cell. These changes can be initiated by different factors,
such as errors during cell division, environmental factors that
affect our genome (such as smoking or pollution), or inherited
traits from our parents. While the immune system usually
eliminates the damaged DNA before it turns cancerous, this
ability deteriorates as we age. Therefore, we have a higher
chance of developing cancer in a later stage of our life.

Cancer is usually developed by genetic changes in three main
types of genes: proto-oncogenes, tumor suppressor genes,
and DNA repair genes. Proto-oncogenes are normal genes
that are involved in normal cell growth. However, if these
genes have been modified in some way or are more active
than normal, they can turn into cancer-causing genes (also
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known as oncogenes), causing the abnormal growth of cells
and their survival when they should be eliminated. Similarly,
tumor suppressor genes are also involved in cell division
and growth. Those cells that present alterations in tumor
suppressor genes divide uncontrollably. Lastly, DNA repair
genes are in charge of repairing damages in the DNA that can
occur during cell division or by other external factors. Those
cells with mutations in these genes tend to present deletions
or insertions in parts of their chromosomes, affecting other
genes. These mutations, or the accumulation of these, can
turn the cell cancerous [20, 21].

Contrary to popular belief, cancer is not a single disease, but
a group of them that share the same root. There are more
than 100 cancer types, which are usually named by the organ
or tissue where they formed. For instance, breast cancers
originated in the breast or lung cancers on the lung. On the
other hand, cancer can also be named based on the type
of cell that formed them, such as the epithelial cell or, for
instance in the case of lung cancer, the squamous cell [21]. To
get a deeper description of the cancer disease, the reader can
go to the following references [23, 24].

Multi-Omics

In 2001 we obtained the first sequence of the human genome
[25], covering 93% of it, marking a milestone in human bi-
ology research. Only recently a complete sequence of the
human genome has been attained [26]. This huge achieve-
ment has been possible thanks to technological advances,
making it possible to measure different aspects of a tissue
or cell biology with high quality. With the modernization of
instrumentation, different aspects of the biology of tissues
or cells have been more accurately measured. Thus, different
scientific fields have been created depending on which as-
pects are being measured, called "omics" [27]. The use of a
multi-omics approach allows us to comprehensively under-
stand the biological subject that is being studied. There are
multiple omics, and with the recent advances in information
technologies more are being developed. Examples include
genomics, transcriptomics, epigenomics, proteomics, and
metabolomics, which study genes, RNA, methylated DNA,
proteins, and metabolites respectively, just to mention a few
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(see Figure 1.8). Here we are going to describe those that have
been involved in the development of this thesis.

Genomics is the field that studies the human genome. To
study it, researchers sequence the base pairs that form the
strands of the DNA. One of the most used technologies is dye
sequencing, firstly developed by Shankar Balasubramanian
and David Klenerman, and now acquired by the company
Illumina. This method is based on reversible dye-terminators
that enable the identification of single nucleotides as they
are washed over DNA strands (see Figure 1.6). Firstly, the
DNA is purified. Then, the DNA is fragmented and adapters
are integrated, which would help with the next steps. The
DNA is loaded onto a flow cell, where the amplification and
sequencing are going to be carried out. The flow cell contains
nanowells that space out fragments and help with overcrowd-
ing. Each one of the nanowells contains oligonucleotides that
can attach to the previously added adapters. Once these
adapters have been attached, the cluster generation phase
begins. A thousand copies of each fragment of DNA are
obtained using the polymerase chain reaction (PCR) method.
Then, primers and modified nucleotides are washed onto
the chip. The particularity of these nucleotides is that they
have a reversible fluorescent blocker, only allowing the DNA
polymerase to add one nucleotide onto the DNA fragment
each time [28]. After each round of synthesis, a picture of the
chip is taken by a camera. Then, using a computer determines
which base has been added based on the wavelength of the
fluorescent tag, and saves it for every spot on the chip. After
that, the remaining molecules are washed away and fluo-
rescent terminal blocking groups are removed. This process
is repeated until the full DNA molecule is sequenced [29].
This process can be fully paralleled, allowing the sequence of
thousands of places throughout the genome using massive
parallel sequencing, also called next-generation sequencing
(NGS) [30]. Having the whole-genome sequence allows us
to study variations (known as mutations) with respect to
a control genome. This can be substitutions, deletions, or
insertions of parts of segments of the genome, and can lead
to the development of diseases. New sequencing technolo-
gies are being introduced every year, with their advantages
and disadvantages. If the reader wants to learn more about
sequencing technologies, they can go to the following works
[31–34].

Transcriptomics is the study of the transcriptome which is un-
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Figure 1.6: The DNA attaches to the flow cell via complementary sequences. The strand bends over and attaches to
a second oligonucleotide forming a bridge. A primer synthesizes the reverse strand. The two strands release and
straighten. Each forms a new bridge (bridge amplification). The result is a cluster of DNA forward and reverses
strand clones. [35]

[36]: Bradshaw et al. (2015), Ency-
clopedia of cell biology

derstood as the complete variety of ribonucleic acids (RNAs)
that are expressed in a cell, tissue, or organism [36]. RNAs
are important macromolecules that are produced, based on
the DNA, by the cellular process of transcription (the process
in which DNA is translated to RNA). All the different types
of transcripts are covered in transcriptomics, such as mes-
senger RNAs (mRNAs), microRNAs (miRNAs), ribosomal
RNAs (rRNAs), or non-coding RNAs (ncRNAs). However,
in humans, the transcriptome of the protein-coding genes
only represents between 1.5 and 2 percent of the genome.
There are two major technologies that allow us to measure the
transcriptome: microarrays and RNA-Seq. Microarrays are
oligonucleotide-based probes, similar to the dry sequencing
for genome data, that hybridize into specific RNA transcripts.
RNA-Seq is more recent and advanced, allowing to directly
sequence RNA transcripts without the need for probes (see
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Figure 1.7: Several steps are involved in a typical RNA-Seq workflow. First, the RNA samples of interest are
isolated. Then, sequencing libraries are generated. A high-throughput sequencer is used to produce hundreds of
millions of short paired-end reads. These reads are aligned against a reference genome of transcriptome and finally,
downstream analysis is carried out for the expression estimation, differential expression, or other applications. [39]
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Figure 1.7). Once we have measured the RNA, we can detect
changes in gene expression, helping to identify biomarkers
for specific diseases. More information about how transcrip-
tomics technologies work and how they can help in fighting
diseases, can be found in these two books [37, 38].

Lastly, epigenomics consists of measuring reversible chemi-
cal modification of the DNA, that produced changes in the
expression of the genes without modifying the original base
sequence. Epigenomics modifications can occur for environ-
mental factors that affect or in the development of disease
states. Environmental factors can be external (such as pollu-
tion) or patient behaviors (such as smoking tobacco) [40, 41].
Biochemically, epigenetic changes that are measured at high
throughput belong to two categories: methylation of DNA
cytosine residues (at Cytosine-Guanine sites (CpGs)) and
multiple kinds of modifications of specific histone proteins in
the chromosomes (histone marks). A CpG site is just a point
of the genome where a cytosine is followed by a guanine in
the 5’->3’ direction of the strand. It controls the expression
of those genes that are close to the CpG site. To test if a CpG
site is methylated, the genome is treated with bisulfite. If it is
methylated, it will stay as a CpG site, otherwise, the cytosine
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Figure 1.8: Different fields inside the multi-omic approach. Genomics studies the genome, transcriptomics studies
the transcriptome, epigenomics studies the measure modification in the DNA, proteomics studies the proteins,
and metabolomics the metabolites.
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will change to a thymine [42]. To deepen the understanding
of epigenomics, the reader can refer to the following book
[43] and, specifically for cancer, the following review [44].

Digital Pathology

Digital pathology is a sub-field of pathology that is focused
on the organization of digitized tissue slides, thanks to the
use of virtual microscopy. Then, these slides can be viewed,
managed, shared and analyzed on a computer monitor [45].
The most used digital pathology tool nowadays is whole-
slide imaging (WSIs). A WSI scanner is a robotic microscope
that is able to digitize an entire glass slide, stitching high-
resolution individually captured images to generate an even
higher-resolution image of the whole slide. Once the file has
been captured, it can be viewed, magnified, or investigated
through the computer just as you could do with a traditional
microscope [46]. The first WSI scanners were introduced in
the 90s, and they were less advanced than their counterparts
at the time [47]. However, after the introduction to the market
of an accurate, fast, and cost-efficient scanner by Interscope
Technologies [48], they situated WSI as the state-of-the-art for
digitized tissue slides [49]. There are two main approaches for
producing digital images. The majority of the available ma-
chines use a tiling system, where different tiles are obtained
from the original images while others employ line-scanning
systems, capturing the tissue in a linear way [49] [50]. Nowa-
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Figure 1.9: Example of the pyramidal structure of WSI. The different magnifications are stored, from the highest
magnification (40x) to the lowest (1x). [55]
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stain in diagnostic surgical pathol-
ogy”

days, scanners have the ability to produce digitized slides
in the span of minutes (or less) [49]. Different scanners have
different features or capabilities. For instance, the scanning
capacity can vary between 100-200 slides in a single batch,
the objective availability (usually 20x or 40x magnifications),
and the image resolution (0.25-0.5 𝜇𝑚 per pixel). WSIs have
been used for a wide variety of tasks in clinical environments,
including telepathology for primary diagnosis, consulting
other physicians at other hospitals or remotely interpreting
frozen sections [49].

Once the WSIs have been obtained, pathologists examine
them to find features that can help them to perform a diag-
nosis. In order to facilitate this task, and especially for cancer,
tissues are stained with hematoxylin and eosin (H&E) stain.
In this case, the hematoxylin stains cell nuclei in a purplish
blue, and the eosin stains the extracellular matrix and the
cytoplasm in pink, with the structures taking different hues
and shades (see Figure 1.10) [51]. This stain allows physicians
to detect abnormalities in the tissue, that could indicate the
development of cancer. We refer to the following works [52–
54] for a more in-depth review of all the possibilities that
WSIs offer in pathology.
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Figure 1.10: Retina tissue stained with hematoxylin and eosin, where cell nuclei are stained blue-purple and the
extracellular material in pink. [56]
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1.3 Publicly available multi-scale and

multi-omics databases

During this thesis we are going to refer to the concept of multi-
scale/multi-omics as related ones, to also include histopathol-
ogy as one of the main methodologies for cancer identification.
Given the multi-scale nature of cancer data, and biology in
general, great efforts have been made to build multi-omic and
multi-modal databases. One of the most important databases
for cancer research is The Cancer Genome Atlas (TCGA)
project [57]. TCGA contains information from 33 different
cancer types, and they have achieved the goal of providing
easy access to the data, through the GDC platform. Not only
that, but they have harmonized the data, making it easy to
use and analyze. Multiple modalities are available for each
patient (e.g: RNA-Seq, WSIs, miRNA-Seq, DNA Methylation,
Copy Number Variation, Single-Nucleotide-Polymorphisms,
etc.), enabling the study of the disease in a multi-scale way.
Having this variety greatly helps the task of creating multi-
modal CDSS, and also researching the interactions between
different omics. All the information about the project can be
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read in their webpage *.

More databases are being created with the same approach in
mind, gathering all the possible information from the same
patient. The Genotype-Tissue Expression (GTEx) project is
an ongoing effort to build a comprehensive public resource
to study tissue-specific gene expression and regulation [58].
Samples were collected from 54 non-diseased tissue sites
across nearly 1000 individuals, primarily for molecular assays
including WGS, WES, and RNA-Seq. This allows studying
human biology in a non-disease status. More information
and the data can be accessed in the GTEx project webpage
†.

Other databases now include more multi-modal information,
even though it was not the case at the beginning. The Cancer
Imaging Archive (TCIA) is a service which de-identifies and
hosts a large archive of medical images of cancer accessible for
public download [59]. They contain imaging data in multiple
modalities (MRI, CT, digital histopathology, etc.), but now,
they also include other information related to the patient
when available, such as patient outcomes, treatment details,
genomics, and expert analyses. More information and access
to the data can be obtained in their webpage ‡.

1.4 Non-small-cell lung cancer

Along the first half of the research results presented in this
thesis, we focused on one of the deadliest cancer types, lung
cancer. We selected this cancer type based on its importance
and the number of publicly available samples. It is one of
the most frequent cancer types, with a total of 2.2 million
new cancer cases and 1.8 million deaths worldwide in 2020
[4], representing 18.0% of total cancer related deceases. Lung
cancer is characterized by uncontrolled cell growth in tissues
of the lung organ. Most of the cancers that start in the lungs
are carcinomas [60], and two main types can be differentiated
within them: small-cell lung carcinoma (SCLC) representing
around 15 - 20% of lung cancer cases, and non-small-cell
lung carcinoma (NSCLC) representing around 80 - 85%
of lung cancer cases [61] (see Figure 1.11). Within NSCLC,
* https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga

† https://gtexportal.org/home/
‡ https://www.cancerimagingarchive.net/
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two main different subtypes can be differentiated, which
are adenocarcinoma (LUAD) and squamous cell carcinoma
(LUSC). Other minority types are also considered under
the umbrella of NSCLC, such as large-cell-carcinoma and
more poorly differentiated variants [62]. LUAD usually comes
from peripheral lung tissue and it is usually associated with
lifelong nonsmokers [63]. On the other hand, LUSC is closely
correlated with a history of tobacco smoking and tended to
be more often centrally located [64, 65].

Accurately detecting the NSCLC subtype is a crucial task,
given that treatments differ between them and the effect of the
treatment has a direct impact on the patient’s prognosis [62].
The variables that can be associated with prognosis are usu-
ally grouped into different categories: tumor-related, patient-
related, and environmental factors [66]. Tumor-related factors
are the cell type, the primary site of the tumor, or the extension
of the disease. Patient-related are factors sex, comorbidity,
or performance status. Lastly, environmental factors include
the nutrition of the patient or the choice and quality of the
treatment.

The diagnostic process usually begins when the patient
presents suspicious symptoms and signs. These symptoms
can vary, but among them, we can usually find a persistent
cough that does not go away after 2 or 3 weeks (even reaching
the point where the patient is coughing up blood) persistent
tiredness or lack of energy, or persistent breathlessness. Clin-
icians first used image methods, such as CT scans, to locate
the lesion and then they select the appropriate technique to
obtain a biopsy sample to confirm a pathological diagnosis
[67]. This pathological diagnosis can be performed by means
of the aforementioned biological sources. Mainly, a first diag-
nosis can be performed using the tissue slide [68]. However,
distinct mutational subtypes can be found in pathways and
receptors, as we further explore in Chapter 4. The reader can
find more information about lung cancer, its prognosis, and
treatments in the following references [69–72].



1.5 Conclusions 19

Figure 1.11: Different lung cancer subtypes and in which percentage they are found. We have focused on the two
more prevalent ones inside NSCLC, squamous and adenocarcinoma [69].

1.5 Conclusions

In this chapter, we have introduced the main concepts of
biology, specifically, cancer biology. The advances that are
being made in the field of multi-omics thanks to the develop-
ment of cheaper and faster technologies have been explained,
showing the potential for the creation of multi-modal ma-
chine learning models. Then, lung cancer biology has been
briefly explained, given that it is the cancer type this thesis
has focused more on. In the next chapter, we will introduce
the basics of machine learning, along with the techniques that
have been explored during the development of this thesis.
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2.1 Introduction

Machine learning (ML) is a field of artificial intelligence in
which, by using mathematical models, a computer is able to
learn from the available data to solve a given task. Machine
learning uses algorithms to identify patterns within data,
and those patterns are then used to create a data model that
can make predictions [73]. Within ML, we can differentiate
three areas, depending on the nature of the feedback avail-
able to the learning system: supervised, unsupervised or
reinforcement learning [73]. In this thesis, we will focus on
supervised and unsupervised learning, but we will briefly
explain reinforcement learning so the reader has the full
picture. If they want a more detailed explanation, they can
refer to [74].

In supervised learning, we try to model a function, 𝑓 (𝑥),
based on pairs of data samples and their desired outputs
[75]. Usually, these pairs are called training data. Generally
speaking, by an iterative optimization of the objective function
using the training data, the model learns a function, 𝑓 (𝑥),
that can predict the output of a given input. These outputs
can be anything, from categories to real values. Depending
on the type of variable that we want to predict, two groups
of problems can be discerned: classification and regression
problems. In a classification problem, we want to predict a
categorical value, such as cancer type. On the other hand,
in a regression problem, the output is a real value (e.g. life
expectancy in a prognostic prediction problem). Some specific
techniques are applied to each kind of problem, but most
well-known modeling techniques have alternatives that can
be used for either category.

Unsupervised learning, unlike supervised learning, only has
non-categorized data samples and aims to learn the structure
of the data. Typical examples of this include the application
of clustering techniques to find hidden groups based on
characteristics or finding the probability density function
(PDF) in order to be able to sample (or generate) new data
points [75]. Examples of unsupervised learning problems
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in biomedicine are finding groups of patients that respond
similarly to the same treatment, or generating synthetic gene
expression data by estimating the probability density function
of the underlying data.

Finally, reinforcement learning (RL) is an area of machine
learning more closely related to robotics, where software
agents take actions in an environment trying to maximize
some notion of cumulative reward based on the actions [76].
By maximizing that reward, the agent is able to learn which
actions to take with respect to the environment. RL has been
notoriously used to create agents that are able to play video
games, even surpassing humans [77–79].

Below, we are going to introduce the basics of some of the key
machine learning models that have been used in this thesis.
For a more detailed description of the presented techniques,
including all the mathematical background, the reader can
consult the following resources [73, 80, 81]

2.2 Artificial Neural Networks and

Convolutional Neural Networks

Artificial Neural Networks (ANNs) are learning algorithms
based on the functioning of biological neural networks, and
they can be used under any ML paradigm. The most general
type of ANN is the multi-layer perceptron, also known as Feed
Forward Neural Network (FFNN). In this type of network, the
information moves in only one direction, forward, through the
different layers [82]. The basic building blocks of ANNs (and
FFNNs specifically) are the so-called neurons. The neuron
is formed by a weight vector 𝑊 , a unique value named
bias 𝑏, and the activation function. The neuron calculates
the inner product of its inputs and the weight vector plus
the bias and, given this calculus, the activation function
determines whether the neuron will activate or not. Neurons
are grouped in layers, which in the case of FFNNs can be
grouped in three main categories: input, output, and hidden
layers. The input layer is the one receiving the input data. In
the case of an MLP, we will have as many neurons in this
layer as the input data dimension. Then, the input layer can
be followed by one (or multiple) hidden layers. These layers
process the information from a previous layer and calculate
the output (that, subsequently, serves as input for the next
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Figure 2.1: Example architecture of FFNN with four inputs, one hidden layer with three neurons, and one output
[85].
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layer). Finally, we have the output later, which determines
the output of the network. We will have as many neurons as
the dimensionality of the desired output (e.g. one neuron if
we are doing prognosis prediction or the number of classes
in a pancancer classification problem).

For a given problem, neuron weights need to be learned
in order to properly approximate the function that would
classify or predict an input. To accomplish this task, the
backpropagation algorithm [83] was proposed. It uses a
dataset of samples of a problem with known output, and in
an iterative way updates the weights as follows:

𝒘𝑘+1 = 𝒘𝑘 + △𝒘 (2.1)

△𝒘 𝑖 = −𝜂 · 𝜕𝐸
𝜕𝒘

(2.2)

where 𝜂 is the learning rate and 𝜕𝐸
𝜕𝒘 is the gradient of the

error with respect to the weights. The gradient gives how a
function varies with respect to the variable being derived. The
negative sign is used since the error needs to be minimized.
FFNNs were proven to be a universal approximator [84]. A
basic scheme of an FFNN can be observed in Figure 2.1.

Based on the popularity of the multi-layer perceptron, other
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neural network architectures, also with a severe impact in ML,
have been proposed. One example is CNNs, with a strong
impact on Computer Vision thanks to an architecture based
on the convolution operation, which is applied as a matrix
multiplication between a filter and the data. CNNs have been
around for a long time. Although they were first proposed in
1980 [86], it was not until diverse modifications were applied
to the learning algorithms, the quantity of data available
was dramatically increased, and the necessary computing
platforms were developed, that CNNs were revisited. One of
the most important works from this new era of CNNs was
proposed for solving a digit classification problem [87]. Since
then, many studies have been published showing CNNs out-
performing other established techniques (in some cases even
outperforming human capabilities) in multiple computer
vision problems [88], including pattern recognition, image
segmentation, and image generation.

What makes CNNs so special is their refined ability to au-
tomatically extract features from data. Previously, features
needed to be extracted by hand from images for later process-
ing [89]. Due to its complexity, this was considered one of the
toughest tasks in computer vision. To automatically extract
features, the convolution operator is used (which applies a
defined matrix of numbers to the input). At its most basic,
it can easily detect edges, lines, textures, and other simple
patterns in an image. By using different layers together with
an adequate learning algorithm, more complex filters can be
learned. These more complex filters would not only be able
to detect specific complex shapes in images or in the signals
presented, which are more relevant to the problem tackled,
but they would also improve the model performance when
compared with other more traditional methods. In fact, in
CNNs, by applying the convolution operation and through
the backpropagation of the error for the weights update, those
complex filters are learned in a straightforward manner [90].
By grouping the convolutional operation in convolutional
layers, different specific features can be learned within the
same layer. The use of multiple layers would lead to a hierar-
chical structure where the first layers will learn basic features
(e.g. lines or borders) and will pass that information to the
remaining layers in order to detect more complex features
(e.g. cell shapes and tumor heterogeneity).

CNNs are formed by different kinds of layers, the main ones
are the convolutional, the pooling, and the fully connected/-
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Figure 2.2: Example of a general CNN architecture [91].

dense layers. The convolutional layers, as their name implies,
apply the convolution operation to the data spatial domain.
Their main goal is to extract the information available in
the data. Internally they are weight matrices, which are opti-
mized and learned during the training process. Pooling layers
are used as dimensionality reduction techniques, combining
the outputs of multiple neurons into a single one in the next
layer. Usually, they are placed after the activation function,
and they increasingly reduce the amount of information ex-
tracted by the convolutional layers [90]. Finally, a set of fully
connecteddense layers is used where the learned features are
the input and the output is the final task goal.

A general architecture for a CNN can be observed in Figure
2.2. The feature extraction operation is performed by a set
of convolutional filters (in the form of convolutional layers).
Later, those filters are used for predictive tasks, using fully
connected layers.

An important aspect to be considered when using DL tech-
niques is that they normally require large databases of high-
quality images to learn very specific patterns. This requires
much computational time and powerful HPC systems. In
order to avoid these possible drawbacks, transfer learning
(TL) allows the use of a pre-trained network (a DNN that has
been trained on another dataset), which is able to identify
complex patterns in image data, for a certain application. That
network could be partially retrained (fine-tuning) with the
application database (which is usually much smaller) in order
to classify a set of moderately different patterns. This greatly
expands the usability of DL models for specific tasks, by
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learning global image patterns in a sufficiently big database,
but refining them with a smaller, more specific one. Several
networks are commonly used by researchers to approach
computer vision problems using TL, such as GoogLeNet
Inception v3 [92], ResNet [93] in its various forms (Resnet-18,
Resnet-34, Resnet-50, Resnet-101 and Resnet-152) or VGG net
[94]. Details and examples of this general technique can be
reviewed in several published papers [95–97].

2.3 Generative Adversarial Networks

Generative adversarial networks (GANs) are an ANN frame-
work based on a game theory scenario where two players
(the generator network and the discriminator network) play
against each other, firstly introduced by Goodfellow et al.
[98]. The generator network produces samples based on what
it learns from the training data, while the discriminator net-
work tries to distinguish between samples drawn directly
from training data and those produced by the generator. The
discriminator emits a probability for that sample being drawn
from training data or produced by the generator. Therefore,
the discriminator’s goal is to correctly classify samples as
real or fake. At the same time, the generator tries to fool the
classifier into believing its samples are real, learning from
the data presented. At convergence, the generator’s samples
are indistinguishable from real data, and the discriminator
outputs everything as real data. A diagram of a GAN can be
observed in Figure 2.3. To optimize the parameters of both
networks, different loss functions have been proposed in the
literature. The first one, proposed in the original paper, is
the Min-Max loss function. Both networks (generator and
discriminator) are using the same loss, but the discrimina-
tor is trying to minimize the loss and the generator tries to
maximize it. The loss is depicted below:

𝔼𝑥[log(𝐷(𝑥))] + 𝔼𝑧[1 − 𝐷(𝐺(𝑧))] (2.3)

where 𝐷(𝑥) is the probability outputted by the discriminator
of that a real sample is real,𝐺(𝑧) is the generator output when
input the noise 𝑧 and𝐷(𝐺(𝑧)) is the discriminator probability
for a fake sample being real. This formula is derived from the
cross-entropy loss function.
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Figure 2.3: Diagram of a generative adversarial network [85].
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However, this loss can produce a model collapse (the genera-
tor only produces one kind of sample) and it leads to unstable
training. Therefore, new loss functions were presented in
the literature, such as the Wasserstein loss by Arjovsky et
al. [99], also adding to it the gradient penalty proposed by
Gulrajani et al. [100]. In this case, the discriminator (or critic,
as called in the paper) does not classify between real and
synthetic samples, but for each sample, it outputs a num-
ber. The discriminator training just tries to make the output
bigger for real samples and smaller for synthetic samples.
This simplifies the loss function of both networks, where the
discriminator tries to maximize the difference between its
output on real instances and its output on synthetic instances
as follows:

𝐿𝐷 = 𝔼�̃�∼ℙ𝑔 [𝐷(�̃�)]−𝔼𝑥∼ℙ𝑟 [𝐷(𝑥)]+𝜆𝔼�̂�∼ℙ�̂� [(∥∇�̂�𝐷(�̂�)∥2−1)2]
(2.4)

and the generator tries to maximize the discriminator’s output
for its fake instances as follows:

𝐿𝐺 = 𝔼�̃�∼ℙ𝑔 [𝐷(𝐺(�̃�))] (2.5)
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GANs can be extended to any kind of algorithm since they are
a framework to train models in an adversarial way. However,
for problems where images are used as inputs, CNNs are
normally used. One of the first models to outperform other
methodologies for image generation was the Deep Convolu-
tional GAN architecture (DCGAN) presented by Radford et al.
[101]. In recent years, more complex architectures have been
presented, making use of different techniques that improve
and overcome the GANs shortcomings, such as BigGAN
[102] or StyleGAN [103]. Given these results in natural im-
ages, GANs have been applied to a variety of biomedical
problems with great results (e.g. for magnetic resonance
images [104], or histopathology images [105]).

2.4 Autoencoders and Variational

Autoencoders

Autoencoders [90] are another framework based on ANN
for the compression of information. Similarly to GANs, they
are formed by two different networks named "encoder" and
"decoder". The encoder receives input and, via several hidden
layers, reduces the original dimension to what is called
a "bottleneck" layer. Then, the decoder uses as input this
smaller representation and reconstructs it to the original input
dimension. The network is trained with a mean-squared-error
(MSE) loss, where the output of the decoder is expected to
be as close as possible to the original input. The idea behind
autoencoders is that we can learn a latent representation on
this lower-dimensional representation that can be later used
for downstream tasks, reducing the dimensionality of the
original input. A scheme of an autoencoder can be observed
in Figure 2.4.

Variational Autoencoders (VAEs) are a generalization of au-
toencoders that allow for better modeling of the latent space,
with the aim of giving the model generative capabilities. They
were firstly proposed by Kingma et al. and showed their gen-
erative capabilities on natural images [106]. In VAEs we still
have the same structure as in autoencoders. They are formed
by two networks, the encoder and the decoder. However, the
encoder does not encode the input as a single point with the
latent dimensionality, but it encodes it as a distribution over
the latent space. Then, for reconstructing the input we sample
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Figure 2.4: Diagram of an autoencoder, formed by an encoder and a decoder. Usually, the loss used to train an
autoencoder is the mean squared error of the input (𝑥) and the reconstruction (�̂� = 𝑑(𝑒(𝑥)).

from that distribution and forward it through the decoder.
The assumption of the VAE is that the distribution of the data
𝑥, 𝑃(𝑥) is related to the distribution of the latent variable 𝑧,
𝑃(𝑧). Learning this distribution allows us to generate samples
that, likely, will come from the distribution of the data. The
loss function of the VAE, which is the negative log-likelihood
with a regularizer, is as follows:

𝐿𝑖(𝜃, 𝜙) = −𝔼𝑧∼𝑞𝜃(𝑧 |𝑥𝑖 )[log 𝑝𝜙(𝑥𝑖 |𝑧)] +𝕂𝕃(𝑞𝜃(𝑧 |𝑥𝑖)∥𝑝(𝑧))
(2.6)

where the first term is the reconstruction loss and the second
term is the Kullback-Leibler (KL) divergence between the
encoder distribution 𝑞𝜃(𝑧 |𝑥) and 𝑝(𝑧) which is defined as the
standard normal distribution 𝑝(𝑧) = 𝑁(0, 1).

A follow-up architecture, 𝛽VAE, was later proposed with
the aim of regularizing the latent space a bit more. A new
parameter 𝛽, is introduced, that allows controlling the effect
of the KL divergence as follows:

𝐿𝑖(𝜃, 𝜙) = −𝔼𝑧∼𝑞𝜃(𝑧 |𝑥𝑖 )[log 𝑝𝜙(𝑥𝑖 |𝑧)]+𝛽×𝕂𝕃(𝑞𝜃(𝑧 |𝑥𝑖)∥𝑝(𝑧))
(2.7)

If 𝛽 = 1, we have the standard loss of the VAE. If 𝛽 = 0, we
would only focus on the reconstruction loss, approximating
the model to a normal auto-encoder. For the rest of the values,
we are regularizing the effect of the KL divergence on the
training of the model, making the latent space smoother
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Figure 2.5: Diagram of an 𝛽VAE, formed by an encoder and a decoder. The loss combination of the reconstruction
loss between the input and the output and the Kullback-Leibler (KL) divergence.
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and more disentangled [107]. A diagram of a 𝛽VAE can be
observed in Figure 2.5.

2.5 Support Vector Machines

KMs and more specifically Support Vector Machines (SVMs)
[108, 109], are an important family of learning algorithms.
They gained popularity in the mid-1990s, and since then they
have been applied to multiple problems in a variety of areas
with remarkable results [110–112].

In linear SVM classification, we are looking to find the max-
imum margin separating hyperplane where samples from
different categories can be divided. The learning process
automatically identifies which training samples (called sup-
port vectors) can define that hyperplane to have the wider
possible gap. New samples are then mapped and predicted
for each category, depending on which side of the gap they
fall on. However, not all problems are linearly separable.
Therefore, to loosen some of the constraints, slack variables
were introduced [73]. That is, certain points will be allowed
to be within the margin. We want to minimize the number of
points within the margin and, subsequently, their penetration
in the margin needs to be as small as possible. To this end,
slack variables are introduced 𝜉𝑖 , for each training data point
𝑖. Slack variables affect the optimization problem in two ways.
First, they measure how much the constraint of each training
data point can be violated. Second, by adding the slack vari-
ables to the energy function we are aiming to simultaneously
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minimize their magnitude. Another important parameter
that we need to take into account is the cost function, 𝐶. The
smaller this value, the stronger the regularization will be. A
small 𝐶 value will try to maximize the margin, being more
tolerant of misclassification. Contrary, if we select a large
𝐶 value, the SVM will pursue outliers more aggressively,
obtaining a smaller margin but at the cost of possibly overfit-
ting the training data [73]. Therefore, the final optimization
problem can be expressed as:

min
𝑤,𝑏,𝜉

1
2
∥ 𝑤 ∥2 +𝐶

𝑚∑
𝑖=1

𝜉𝑖 (2.8)

subject to 𝑦𝑖(𝑤 · 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1 . . . 𝑚

The success of KMs, and SVMs in particular, has been related
to their effectiveness in performing a non-linear classification
using what is called the kernel trick, implicitly mapping
their inputs into high-dimensional feature spaces. The kernel
trick internally operates the inner product in that so-called
dual space. In practice, the kernel function can be seen as
a similarity measure between samples, so that when a new
sample arrives, it is applied to the incoming sample with
respect to the support vectors in order to select the final class
of the sample. An example of how the decision margin would
be defined can be observed in Figure 2.6

Although on its basis SVM is a binary classifier, some mod-
ifications can be applied to make it a multi-class classifier.
The main strategy it is called One-Against-One (OVO). In the
OVO classification, 𝐾(𝐾 − 1)/2 binary classifiers are trained.
At prediction time, a voting scheme is applied: all 𝐾(𝐾 − 1)/2
classifiers are applied to a new sample, and the majority class
predicted is assigned [73].

Even though DL methods have eclipsed SVMs for high-
dimensional problems, they are still very competitive in
medium-complexity problems, sometimes even outperform-
ing DL techniques.
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Figure 2.6: Diagram of an SVM. The decision boundary is marked by the two groups of support vectors in each
class. Depending on where the new point falls, it will be classified as one or another class. Examples of slack
variables can be observed within the margin and in the margin, depending on their value [73].

[113]: Daemen et al. (2009),
“A kernel-based integration of
genome-wide data for clinical de-
cision support”
[114]: Gevaert et al. (2006), “Pre-
dicting the prognosis of breast can-
cer by integrating clinical and mi-
croarray data with Bayesian net-
works”
[115]: Cheerla et al. (2019), “Deep
learning with multimodal repre-
sentation for pancancer prognosis
prediction”
[116]: Huang et al. (2020), “Fusion
of medical imaging and electronic
health records using deep learn-
ing: a systematic review and im-
plementation guidelines”
[117]: Verma et al. (2014), “Multi-
modal fusion framework: A mul-
tiresolution approach for emo-
tion classification and recognition
from physiological signals”

2.6 Information fusion in machine

learning

Information fusion has been a topic of interest in ML in the
last decades given the immense amount of heterogeneous
information that is being gathered in problems from all areas.
The main premise of these methodologies is that the fusion
of the information provided by different sources can achieve
better results than those obtained by independent classifiers.
Three different approaches can be distinguished depending
on when the fusion takes place: late, early, and intermediate
fusion [113–116].

In the late fusion independent classifiers, one for each source
of information, is trained over the available training data.
Then, the outputs produced by these classifiers are fused
in order to provide a final prediction, for instance using a
weighted sum of the probabilities or by using a majority-
voting scheme [117]. By doing so, the mistakes performed by
some classifiers can be compensated by others, improving the
final classification. In addition, using a late fusion strategy
allows dealing with missing information, which is a very
typical setting in biomedical problems.

In the early fusion, the features are fused before training
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the classification model [118]. This fusion can be performed
through different operations, such as concatenation or sum-
mation, being the concatenation the most common one. One
drawback of this approach is that it does not allow dealing
with missing information in a simple way. The features of a
missing modality can be set to zero, simulating the lack of
information, but this can affect the training of the model.

Finally, in the intermediate fusion, the features are fused in
a mid-point during the training of the classification model
[115, 119]. Given these requirements, this type of fusion is
more related to ANN. Thus, we would have an ANN for
each data modality at the beginning, that would work as
feature extractors for our data types. Then, the feature vectors
obtained by forwarding these modalities are concatenated
or averaged and fed to a final ANN that would perform
the classification. All the ANNs involved in the architecture
are trained at the same time, therefore, the classification
and the feature extraction processes are linked together and
optimized simultaneously.

Each of these approaches has its strengths and drawbacks.
Late fusion allows having a more fine-grained control of the
effect of each modality. Each modality can be, for instance,
weighted for the final decision of the classifier. In addition,
it can effectively deal with missing information. However,
the performance of a late fusion strategy heavily relies on
having strong independent classification models, and the
gains obtained can be less impressive. In the early fusion, we
only have one classification model, reducing the computa-
tional overhead. However, dealing with missing information
is not trivial, which is an important factor in bioinformatics
problems. Lastly, the intermediate fusion approach has risen
in recent years as a powerful technique given the success of
ANNs. ANNs have impressive feature extraction capabilities
[120], which can boost the performance of the classification
model. In addition, having an end-to-end training pipeline is
desirable to avoid complexity. However, ANNs are known for
being data-hungry, and bioinformatics problems have only a
few hundred samples, limiting the use of these models. In
Figure 2.7, a schematic representation of the three different
options for information fusion is depicted.

Since a state-of-the-art review of these techniques is very
problem-related, we have included it in each specific Chapter
for the problem addressed (Chapters 4, 5, and 6).
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Figure 2.7: Panel A: Late fusion methodology. Two independent classifiers are trained on each data modality
and their outputs are fused. Panel B: Early fusion methodology. Feature vectors for each modality are fused and
a model is trained with this new representation. Panel C: Intermediate fusion methodology. The ANN feature
extractor obtains a feature vector from each modality, and they are fused and input to the classification ANN. The
ANNs in the architecture are trained simultaneously.
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2.7 High-performance computing and

accelerators in machine learning

High-performance computing (HPC) refers to the ability to
perform computationally intensive operations across shared
resources to achieve results in less time and at a lower cost
compared to traditional computing [121]. The platform can
vary, from desktop power stations to clusters of computational
nodes with thousands of central processing units (CPUs).
Nevertheless, the goals are the same no matter the platform:
less training time, lower cost, and higher data scalability.
With the increasing complexity of ML models (mainly those
architectures used in deep learning problems) and the huge
quantities of data that are being collected and stored now,
new computing platforms have been required to reach the
full potential of these techniques. For instance, CNNs (and
more complex ANNs) are unfeasible to train on normal CPUs.
Given their size and the number of matrix multiplications that
they need to perform, other computing platforms are more
adequate, like graphic processing units (GPUs) or tensor
processing units (TPUs). GPUs and TPUs allow for efficient
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parallelization of the matrix multiplications involved in both
convolutional layers and fully connected layers. This allows
processing more than one image at a time and also enables
data scalability to huge datasets. During the development of
this thesis, we used two different HPC platforms with two
different implemented systems. They were used depending
on the availability and the necessary requirements of the
different experiments. The first one is owned by the CASIP
group (ATCBIOSIMUL), from the University of Granada and
the Department of Architecture and Computer Technology.
The second one is part of Stanford University (Sherlock).

ATCBIOSIMUL is a computation cluster formed by one front-
end node and four computation nodes, designed for different
tasks. The node we used for the experiments is formed by 32
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz, and 128 GB of
RAM memory. Using the CPUs, the different traditional ML
algorithms presented in Chapters 4 and 5 were trained. The
computation node is equipped with two NVIDIA GeForce
TRX 2080 GPUs, with 8GB of VRAM, and they were used
for the training of the CNN models presented in Chapters 4
and 5. In order to increase the number of images that could
be used as input (given the small VRAM size), we decided
to use the data parallel paradigm provided in the Pytorch
python package [122]. With this strategy, the ANN model is
replicated across multiple devices (in our case two GPUs),
and the input data is evenly split between them. Once the
forward pass has been performed, the metrics are averaged
in one of the devices. For instance, if we are using a batch size
of 4 images, two will go to GPU:0 and the other two to GPU:1,
and the final loss will be computed in GPU:0. A graphical
example of this strategy is presented in Figure 2.8.

The second HPC platform used during the development of
this thesis is the Sherlock cluster owned by Stanford Uni-
versity [123], and it was used to carry out the experiments
presented in Chapter 6. Sherlock is a shared computing clus-
ter available for use by all Stanford Faculty members and
their research teams, for sponsored or departmental faculty
research staff. All research teams on Sherlock have access
to a base set of managed computing resources, GPU-based
servers, and a multi-petabyte, high-performance parallel file
system for short-term storage. Sherlock features over 1,400
compute nodes, 45,000+ CPU cores, and 600+ GPUs, for
a total computing power of more than 3.9 Petaflops. The
cluster currently extends across 2 Infiniband fabrics (EDR,
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Table 2.1: Characteristics of the public Sherlock GPU nodes. The number of nodes, the number and type of CPUs,
the amount of RAM, the computer networking communication adapter used, and the number and type of GPUs
are presented [126].

Nº nodes Nº CPUs RAM Computer
Networking Nº GPUs

1 20x Intel E5-2640v4 256 GB RAM EDR IB 4x Tesla P100 PCIe
1 20x Intel E5-2640v4 256 GB RAM EDR IB 4x Tesla P40
3 20x Intel E5-2640v4 256 GB RAM EDR IB 4x Tesla V100_SXM2
1 24x Intel 5118 191 GB RAM EDR IB 4x Tesla V100_SXM2
2 24x Intel 5118 191 GB RAM EDR IB 4x Tesla V100 PCIe
16 32x AMD 7502P 256 GB RAM HDR IB 4x Geforce RTX_2080Ti
2 32x AMD 7502P 256 GB RAM HDR IB 4x Tesla V100S PCIe

HDR). A 5.3 PB parallel, distributed filesystem, delivering
over 200 GB/s of I/O bandwidth is available. For this thesis,
mainly GPUs nodes have been used, and the characteristics
are described in Table 2.1. Given the size of the cluster and
the number of users (more than 6,200 users), a Slurm work-
load manager is implemented [124]. Slurm is an open-source,
fault-tolerant, and highly scalable cluster management and
job scheduling system for large and small Linux clusters. As
a cluster workload manager, Slurm has three key functions:
allocation, managing, and contention. First, it allocates ex-
clusive and/or non-exclusive access to resources (compute
nodes) to users for a certain period of time so they can per-
form work. Second, it provides a framework for starting,
executing, and monitoring work (normally a parallel job) on
the set of allocated nodes. Finally, it arbitrates contention for
resources by managing a queue of pending work. A diagram
of the Slurm components is presented in Figure 2.9. Slurm
consists of a 𝑠𝑙𝑢𝑟𝑚𝑑 daemon running on each computing
node and a central 𝑠𝑙𝑢𝑟𝑚𝑐𝑡𝑙𝑑 daemon running on a man-
agement node (as depicted in Figure 2.9. A typical workflow
could be: a user prepares a bash script indicating the different
requirements for their job (time, number of CPUs, number
and type of GPUs, etc). The job is sent to the job queue (using
sbatch, managed by the deamons. Then, once the resources
are available, the job is put out of the queue and run in one
(or more) computing node/s. Once the job has finished, or
the job time has expired, the resources are freed and another
job from the queue is allocated. This allows multiple users to
use the same resources without a single one monopolizing
them. In the Sherlock cluster, a maximum of 48 hours is set
for the public computation nodes.
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Figure 2.8: Schematic representation of the DataParallel function with four GPUs. The data is distributed across the
devices and the model weights are copied to each one of them. The grouping is performed in the first GPU [125].
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Figure 2.9: Different components that form the Slurm Workload Manager. There are commands that the clients
can execute to interact with the system, and daemons that control the correct managment in the computation
nodes [124].
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2.8 Conclusions

In this chapter we have briefly described the main concepts
in the machine learning terminology, and the most popular
techniques that have been used in recent years for cancer clas-
sification and synthetic data generation. In addition, we have
outlined the different possibilities available for information
fusion, specifically in the context of multi-modal classification.
Finally, we have described the high-performance computing
platforms and frameworks that have been used along this
thesis. Next, we are going to describe the different works
that formed this thesis. First, we have explored the multi-
modal classification of NSCLC in Chapters 4 and 5, using
multi-scale and multi-omics modalities. Then, in Chapter 6
we focused on the problem of multi-modal synthetic data
generation, where we approached the task of RNA-to-image
synthesis presenting a novel methodology for healthy image
generation.
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After the introduction of the main concepts involved in this
thesis, we are going to proceed with the research context in
which this thesis was developed and the intended objectives
that have been accomplished.

3.1 Research context & Motivation

As introduced in Chapters 1 and 2, the availability of multi-
modal and multi-scale cancer data is rapidly increasing,
allowing to use ML models for the creation of CDSS. In
recent years, one of the research focus of our group was
the development of intelligent ML models using and fusing
heterogeneous transcriptomic data, showing the potential
of these models for biomarker signature identification for
cancer characterization and diagnosis support. Thanks to
the collective effort of gathering multi-modal cancer data,
new databases were available, allowing the exploration of
information fusion for the disease and its study from a multi-
scale perspective. Given the available literature at the time, we
saw that there was a gap in our understanding on how these
different modalities could be fused for a cancer diagnosis
problem. Specifically in two of the most widely used in the
current design of CDSS, such as transcriptomics data (RNA-
Seq) and histopathological images (WSI). Nevertheless, there
were some constraints involved. Biological data is, by default,
scarce. Screening patients is very expensive, and not all tests
are usually performed to a patient. Thus, the developed
models needed to be resilient to missing modalities, and able
to handle them. We decided to tackle the problem of lung
cancer subtyping, given its importance (see Chapter 1) and
the amount and balance of data available for the different
modalities in the biggest multi-modal cancer database (see
Chapter 2). Previous works in the literature had presented
ML models for this problem, however, no multi-modal ML
model was available, and no study had been perform on how
different modalities interacted when using an information
fusion methodology. Therefore, in the first part of this thesis,
we focused on creating a ML fusion methodology for the lung
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cancer subtyping problem. Firstly, we approached it by using
these two most well-known modalities: RNA-Seq and WSI.
We decided to do so based on the prior experience the research
group had with transcriptomics data, and also based on the
relations between them that have been proven in literature.
Once we obtained a powerful late fusion methodology, which
could handle missing modalities, we concluded to firstly
published those results to show how these two modalities
could be used for this specific problem (Chapter 4). Next,
given the importance and the need of studying the reach of the
interaction among all the available omics, specially in relation
to the cancer disease and the characterization of different
pathological states, the study was extended to include some
of those modalities available in TCGA database that could
improve the performance of the fusion model. Thus, we
included three new modalities (miRNA-Seq, CNV and DNA-
Methylation) and studied how they interacted and which
modalities worked best together. We also presented a more
advanced late fusion approach, that used gradient descent
to optimize the classification methodology. The results were
also published in a second work (Chapter 5).

With these two works, we showed how multi-modal and
multi-scale ML models can improve the performance of single-
modality ML models. However, as aforementioned, not all
modalities are always available. Sometimes the hospitals do
not have the required equipment, or the staff is nor properly
trained to perform specific tests, limiting the creation of CDSS.
Synthetic data generation can help with the data scarcity
problem, where data is synthetically generated with the aim
to look as close to the real data as possible. However, by
using only a single modality we are missing the information
that other available modalities can have on the target one.
Multi-modal synthetic data arise as a potential solution to
this, where one modality is used to generate a synthetic
paired one. Previous approaches had tried to predict the
gene expression from the WSI image, but not the other way
around. Therefore, and inspired by the recent advances in
natural text-to-image synthesis, we focused on the problem
of RNA-to-image synthesis, where the RNA-Seq profile of
the patient is used to generate a synthetic WSI tile (Chapter
6). We decided to use GANs as the generative model, based
on their long trajectory of successes, and infused them with
the RNA-Seq profile of the patient to generate brain and lung
healthy tissue, given the lower complexity in comparison to
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cancerous tissue. Synthetic data can be generated and used as
pretraining for ML models, and then fine-tuned with the real
data. In addition, it can serve for imputing missing modalities
in already available datasets. There are thousands of RNA-
Seq samples in the Genome Express Omnibus (GEO) for
which the paired WSI is not available. By using our presented
models, a corresponding synthetic set of WSI tiles can be
generated using the RNA-Seq profile of the patient, allowing
the training of ML models in CDSS for cancer.

3.2 Objectives

Based on the aforementioned motivation based on the re-
search literature of multi-modal ML CDSS for cancer, the
objectives tackled in this thesis are the following:

1. Develop new ML methodologies for the fusion of

heterogeneous biomedical data for cancer problems:

new ML models should be developed for multi-modal
and multi-scale cancer modalities, using the state-of-
the-art preprocessing, analysis and data processing
steps for each data modality used. Besides, specific
attention has to be given to the study and development
of novel ML fusion methodologies for the multi-omics
problems approached. Two specific problems will be
tackled:

a) Study the data fusion possibilities of the two most
independently used modalities in CDSS in cancer
research such as WSI and RNA-Seq, specifically
for NSCLC.

b) Study the limits of adding more heterogeneous
biomedical data sources, including miRNA-Seq,
DNA Methylation and CNV data modalities, also
for NSCLC.

2. Develop new ML methodologies for the generation

of multi-modal biomedical synthetic data to fight

data scarcity: develop a multi-modal synthetic data
generator using ML methodologies, able to generate
one modality based on a paired one.The proposed
methodology should be evaluated both in-silico and
against expert pathologists.

Secondary objectives were also tackled during the develop-
ment of this thesis:
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1. Analyze the robustness of the proposed methodolo-

gies under missing or incomplete information: the
proposed ML methodologies for the fusion of biological
information must be robust against missing modalities.
They need to provide a prediction even when some
modalities are missing.

2. Obtain a robust and reliable set of cancer biomarkers

for the different data modalities used: state-of-the-art
preprocessing techniques should be used to obtain a
set of biomarkers, adjusting them to each modality. Spe-
cial attention will be provided to achieve biologically
relevant genes from the RNA-Seq dataset for NSCLC
classification. The obtained biomarker set used for the
classification purposes must be robust and reliable.

3. Optimize of the proposed methodology using high-

performance computing architectures: adequate high-
performance computing platforms (such as clusters of
GPUs) must be used for the training of the different
modalities, according to the different requirements that
these present.
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Abstract

Adenocarcinoma and squamous cell carcinoma are the most
important subtypes of non-small-cell lung cancer (also known
as lung carcinoma), the most common lung cancer type.
Their distinction is crucial in order to provide an accurate
treatment to the patient and thus enhance their prognosis.
Multiple screenings are normally carried out to detect the
disease, including visual evaluation of histology slides by an
expert or the analysis of the gene expression of the patient
to find cancer-driven genes. However, given the limited time
available to clinicians, the creation of clinical decision support
systems that can automatically extract diagnostic information
from these biological sources has rapidly increased (e.g. from
histology imaging, next-generation sequencing technologies
data, clinical information, etc.). These systems usually are
fed a single data modality, leaving out the multi-scale and
multi-omic nature of cancer data. Besides, by fusing the
information provided, we can mimic the interaction between
doctors in a hospital when they provide a final diagnosis. In
this work, we present a late fusion classification model using
whole-slide images and RNA-Seq data for the diagnosis of
non-small-cell lung cancer, classifying among its two most
common subtypes and control patients, i.e. adenocarcinoma,
squamous cell carcinoma, and control patients. The late
fusion model improves the performance of independent
classifiers, reducing the diagnosis error rate up to a 64% over
the whole-slide-imaging classifier and a 24% over the isolate
RNA-Seq classifier, and obtaining a mean F1-Score of 95.19%
and a mean AUC of 0.991. The obtained results highlight that
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the fusion of information can improve the performance of
single-modality classifiers by using the interaction between
the biological data in cancer and alike diseases, where a
multi-modality and multi-scale nature exists.

4.1 Introduction

Appropriate identification of the NSCLC lung cancer subtype
is critical in the diagnostic process since therapies differ for
LUAD and LUSC [127] (see Chapter 1). Therefore, finding
accurate and robust biomarkers in different types of patients’
biomedical information is crucial to accelerate this process. Ex-
perts use several methods for lung cancer type classification,
such as Computer Tomography screening, WSIs, the identi-
fication of biomarkers in next-generation sequencing (NGS)
data (e.g. gene expression analysis using RNA-Seq), or the use
of clinical information from the patient. The manual analysis
of these sources of information can be a time-consuming and
exhausting task. Thus, in recent years the automatic analysis
of each of the aforementioned data types has been explored
[128–132]. However, the majority of the proposed models are
single-modality classifiers, limiting the potential that can be
obtained by fusing the data sources. This is especially inter-
esting in the case of cancer, where biological data sources
have a strong relation between them. For instance, mutations
can be found in the genome, showing effects of the tumor
microenvironment and visually modifying the tissue [133–
135]. Therefore, by not having all modalities available, we are
losing a part of the picture that can lead to early detection of
the disease.

Using information fusion methodologies that integrate the
predictions of systems using biological information may
enhance the diagnosis of a patient. Information fusion has
been a topic of interest in ML research in late years based
on the growth of multi-modal data. The fusion of biological
data has been mainly explored in literature for prognosis
prediction, obtaining good results [115, 136–142]. Since not
all sources of information are always available, having an
integration model for the classification would also allow
predicting the lung cancer type even when only one source
of information is available. A model of these characteristics
would fall into the design of decision-making support systems
that are applied to precision medicine [143], as the immediate



4.2 Related work 51

future of bioinformatics and medicine. To the best of our
knowledge, the integration of gene expression data and
biomedical imaging to provide a classification model for
LUAD, LUSC, and control patients has not been proposed in
the literature.

The aim of this work is to present a classification model using
a late fusion methodology for the task of LUAD, LUSC, and
control patients classification by fusing the probabilities ob-
tained by two classifiers. One classifier uses as input RNA-Seq
data and the other one WSI. In this Section, an introduction
to the problem has been outlined. In Section 4.2, an overview
of the related works in the area of ML applied to lung cancer
will be reported. In the Section 4.3, the methodology and data
used for this work will be presented. In the Section 4.4, results
obtained for the proposed experiments will be shown and
discussed. Finally, in Section 4.5 conclusions will be drawn
and future work will be outlined.

4.2 Related work

Lung cancer gene expression classification

Over the last few years, the potential of ML models using NGS
data for cancer classification has been shown. Specifically,
several works can be found in literature for lung cancer type
classification using gene expression data.

Since LUAD is the most frequent lung cancer type, many
works have been published for LUAD and control classifi-
cation. Smolander et al. presented a deep learning model
using gene expression from coding RNA, and non-coding
RNA [144]. They obtained a classification accuracy of 95.97%
using coding RNA. Similarly, Fan et al. using Support Vector
Machines (SVMs) and a signature of 12 genes reached an
accuracy of 91% [145]. Zhao et al. combined the information
from ncRNAs, miRNAs and mRNAs for the classification,
using SVMs. Finally, they selected 44 genes and they reached
a classification accuracy of 95.3% [146] .

For lung cancer subtypes classification, Gonzales et al. studied
differentially expression genes (DEGs) between SCLC, LUAD,
LUSC and Large Cell Lung Carcinoma. Then, different feature
selectors and predictive models were used in order to compare
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their classification performance [147]. Authors reached an
accuracy of 88.23% using k-NN and the Random Forest
feature selector.

Lung cancer histology imaging classification

In recent years, the use of deep learning models for histology
imaging classification has been taken into consideration based
on the outstanding results that these models have reached
in computer vision tasks and in health informatics [88, 148].
Deep learning models require huge quantities of data in
order to properly learn features from an image. Therefore,
the most popular approach for histology image classification
has been to perform a segmentation of regions of interest of
each slide (or placing a label for the whole slide). Then tiles
can be extracted and labeled by experts from the image for a
posterior training. Thus, a huge increment in the available
dataset is obtained.

Based on the aforementioned methodology, different works
have been published for lung cancer classification. Coudray
et al. used a deep learning model using transfer learning
for LUAD, LUSC and control classification and mutation
prediction, reaching a 0.978 score of Area Under the Curve
(AUC) [131]. Tiles were extracted and were used to perform
the training and the classification. Similarly, Kanavati et al.
presented a deep learning model using transfer learning for
lung carcinoma classification, reaching a score of 0.988 AUC
for a binary classification problem [149]. Authors used labeled
images by experts for their work. Graham et al. presented a
two steps methodology for LUAD, LUSC and normal classi-
fication using a deep learning model trained on image tiles
and then extracting summary statistics from them for the
final classification, obtaining an accuracy value of 81% [150].
Likewise, Yi et al. trained and compared the performance of
several CNNs with different structures in classifying image
tiles as malignant vs. non-malignant, obtaining an AUC score
of 0.9119 [151].

Yu et al. combined traditional thresholding and image pro-
cessing techniques for slides images with machine-learning
methods, achieving an AUC of 0.85 in distinguishing normal
from tumor, and 0.75 in distinguishing LUAD from LUSC
[152]. Khosravi et al. used deep learning for the classification
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of breast, bladder and lung tumors, achieving an AUC of 0.83
in classification of lung tumor types on tumor slides [153].

Fusion of omics and histology data

When it comes to the integration of information from different
omics data and histology imaging, different approaches have
been proposed in the recent literature, mainly for prognosis
prediction.

Lee et al. presented a multi-modal longitudinal data integra-
tion framework based on deep learning to predict Alzheimer
disease progression [138]. In this case, MRI scans, genomics
information and cognitive assessments were used as inputs.
In order to obtain the feature representation, a recurrent
neural network with gated recurrent units [139] was used.
Then, features were concatenated and a final prediction was
performed.

Another methodology that has recently been presented in
literature with remarkable results is obtaining a feature vec-
tor for each type of data and then performing a plain con-
catenation of those features vectors or applying attention
mechanism before the concatenation for model training. Lai
et al. developed a deep neural network (DNN) combining het-
erogeneous data sources of gene expression and clinical data
to accurately predict the overall survival of NSCLC patients
[140]. The combination of 15 biomarkers along with clinical
data were used to develop an integrative DNN via bimodal
learning to predict the 5-year survival status of NSCLC pa-
tients with high accuracy. The combination outperform the
results obtained for each type of data separately. Silva et al.
presented an end-to-end multi-modal Deep Learning method,
named MultiSurv, for automatic patient risk prediction for a
large group of 33 cancer types [141]. They compared fusing
different sources of information by using attention weights,
and used a feed-forward neural network for predicting. Chen
et al. presented an integrated framework for fusing histology
and genomics features for survival outcome prediction [142].
The authors used WSIs, mutations information, Copy Num-
ber Variation (CNV) information and mRNAseq. Different
features were obtained and fed to an attention mechanism,
that was later used for survival prediction and grading. The
results presented by the authors shown that the use of the



54 4 Non-small-cell lung cancer multi-modal classification using RNA-Seq and WSI

fusion outperform the results obtained by using each type of
data separately.

Finally, several works have been published where features
used for classification have been obtained using autoencoders
[82]. Cheerla et al. presented a deep learning model with
multi-modal representation for pancancer prognosis predic-
tion [115]. The survival prediction of patients for 20 different
cancer types was performed using as information clinical
data, mRNA expression data, miRNA expression data and
WSIs. Feature vectors were obtained and then combined for
prognosis prediction. They obtain outstanding results, spe-
cially in those cancer types where not many samples were
available. Simidjievski et al. investigated several autoencoder
architectures to integrate a variety of patient data such as gene
expression, copy number alterations and clinical data, show-
ing the usefulness of this approach for different breast-cancer
analysis tasks [136]. Following with the use of autoencoder
architectures for information integration, Ma et al. proposed
a Multi-view Factorization AutoEncoder (MAE) which not
only encodes gene expression, miRNA expression, protein ex-
pression, DNA Methylation and clinical information but also
includes domain knowledge such as molecular integration
networks for bladder urothelial carcinoma and brain lower
grade glioma classification [137].

4.3 Methods

Data acquisition

In this work, we have used two different types of biological
data: RNA-Seq and WSIs. The data were gathered from The
Cancer Genome Atlas (TCGA) program [57], located in the
GDC portal [154].

The TCGA contains information from 33 different cancer
types, and they have achieved the goal of providing easy
access to the data. In addition, GDC have performed an
harmonization of all the available samples in the program.
Moreover, various data types are available for each sample
(e.g. gene expression, copy number variation, histology imag-
ing, etc.). In GDC, each patient has a Patient ID that identifies
them, and each screening performed on the same biological
sample from a patient has a defined Case ID. Therefore, for
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each Case ID we can have different biological information
(WSI, RNA-Seq or both). Those Case IDs used in this work
are available in this Github repository *. Table 4.1 shows the
Case IDs availability per class and considered data type.

Table 4.1: Number of samples per class for each data type.

WSI RNA-Seq Both
LUAD 495 457 442
Healthy 419 44 41
LUSC 506 479 467
Total 1420 980 950

WSIs data needs to be preprocessed prior to any analysis.
The preprocessing of WSIs relied on the Python package
openslide [155], that efficiently read and parse these type of
images.

For the case of gene expression, RNA-Seq from Illumina
HTSeq data is used in TCGA. In the specific case of GDC data,
it harmonizes RNA-Seq data by aligning raw RNA reads
to the GRCh38 reference genome building and calculating
gene expression levels with standardized protocols [156]. The
KnowSeq R-Bioc package was used in order to obtain the
values of the DEGs [157].

Models were implemented in Python with the Pytorch [122]
and Scikit-Learn [158] packages. Deep Learning model train-
ing was performed using a NVIDIA𝑇𝑀 RTX 2080 Super
GPU.

In order to avoid a result bias due to a reduced test set and
the data imbalance, the whole dataset was divided using a
10-Fold Cross-Validation (10-Fold CV), in order to obtain a
more thorough assessment of the proposed methodology. In
each iteration of the 10-Fold CV process, the training set was
used to train the models, and also for hyperparameter tuning,
while a final assessment of models performance was done in
the test set. The hyperparameter tuning strategy used differs
for each data type and will be later explained in each model
section; concretely, a single traditional training-validation
subdivision was used for the WSI model, and grid search CV
was used for the RNA-Seq model.

All the splits were performed both in a patient-wise way
and in a stratified way. With a patient-wise splitting we are

* https://github.com/pacocp/NSCLC-multimodal-classification
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Table 4.2: Number of tiles per class.

# Tiles
LUAD 100,841
Healthy 62,715
LUSC 92,584
Total 256,140

ensuring that, even if a patient has more than one case, they
could only belong to one of the splits, being this training
or validation. Imposing this restriction prevents any kind
of information leakage during training. On the other hand,
through stratified splitting the proportion of classes in each
fold is maintained.

WSI preprocessing

WSIs, also known as virtual microscopy, refers to scanning
a complete microscope slide and creating a single high-
resolution digital file. With it, different resolutions of the
same image can be obtained and an extraction of tiles can be
performed. The generated file has SVS format, and several
preprocessing steps need to be taken in order to work with
this type of files. Firstly, SVS images are read with an specific
factor of magnification. In this work, a factor of 20x was
chosen in order to obtain an adequate resolution (leaving
images with an approximate resolution of 10,000x10,000).
Once images were obtained, we converted them from SVS to
PNG format in order to facilitate further manipulations.

We took non-overlapping tiles of 512x512 omitting those
tiles where most of it was white background. To test this
condition, we computed the mean value for each channel.
If in all three channels the value was greater than 220, the
tile was discarded, otherwise it was selected as proposed in
literature by Coudray et al. [131]. This methodology allows to
multiply the number of images available to train the model,
since we are using all the tiles that can be extracted from
each one of the images instead of only using the whole image.
This enables the deep learning models to more easily learn
relevant features for the classification task. The number of
tiles per class is depicted in Table 4.2.
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RNA-Seq data preprocessing

In order to analyze the HTSeq-Counts data provided, we used
the KnowSeq R-Bioc package [157]. This package provides
a pipeline to obtain DEGs based on the HTSeq-Counts files
and then performs a machine learning assessment of the
selected DEGs. KnowSeq relies on limma [159], which is the
state-of-the-art for finding differential expressions. However,
limma is usually employed to biclass problems, where two
classes need to be compared. Thus, additional tasks need
to be perform to achieve DEGs when there are more than
two classes. In order to deal with this problem, Castillo et
al. presented the coverage (𝐶𝑂𝑉) parameter, which uses
limma to a perform binary comparisons of the 𝑁 presented
classes and finally select a set of genes that are differentially
expressed in 𝐶𝑂𝑉 binary comparisons [112].

Therefore, we used the DEGsExtraction function from the
KnowSeq package over the training set for obtaining the
DEGs matrix. As parameters, a 𝐿𝑜𝑔2 Fold Chain (𝐿𝐹𝐶) value
of 2, a 𝑝-value of 0.05 and a 𝐶𝑂𝑉 value of 2 were set. Once we
obtained the DEGs matrix, we used the minimun Redundancy
Maximum Relevance (mRMR) algorithm to obtain a ranking
of the genes [160]. The mRMR algorithm uses information
theory for obtaining a ranking of features which are highly
correlated with the classes but with a minimum redundancy
between them. mRMR algorithm has been previously used
in literature as feature selector for gene expression [112, 161–
163].

Database organization

To facilitate the handling of data, we created a local database
structure that organizes the data per patient and sample. Since
the system is oriented toward helping doctors to predict can-
cer diseases, the database needs to be easily scalable and
accessible. This means that it needs to be human-readable, as
well as to have a standardized structure. The last part is essen-
tial, since it allows for more data to be added to the database,
and it facilitates the task of creating the different classifiers.
Therefore, this work presents a database structure that fits
these requirements. In Figure 4.1, a simplified representation
of the database for a single patient can be observed.
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Figure 4.1: Schematic diagram of the database organization for a given patient. Any other type of biological
information can be added to the database. Simply, a new folder with the new biological information needs to be
added to the given Case ID folder of the patient.

The database follows the structure "patient → case → data
type". The root of the database contains multiple directories
inside, where each of which is associated with a single patient.
There is no directory that contains data from two different
patients, nor two directories that contain information about
a single patient. Inside each patient directory, there are many
more directories, each one corresponding to a case. All the
information of a case is stored in the corresponding case
directory. Once again, inside the case directory, there are other
directories, each corresponding to a specific data type such
as gene expression data or histology images, and where other
types of information can be easily added. All the directories
that correspond to the same data type need to maintain
the same naming convention among the different cases and
patients for scalability. Given the case that a certain data type
does not exist for a particular case directory, its corresponding
data type directory won’t exist. This is especially relevant
since it implies that the model needs to behave well even in
the absence of specific information.

Per-tile model and per-slide classification

For the per-tile classification we used a CNN, given that they
have proven to be the state-of-the-art in computer vision
problems, using a transfer learning approach. CNNs have
been widely used in literature for WSIs classification with
great results, as described in subsection 4.2. In addition, given
the size of the tile dataset, using other classical machine learn-
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ing models might not be computationally feasible. Transfer
learning allows to use the filters that have been learned in
another problem domain with sufficient data, and adjust the
weights of the network to another given problem. Different
architectures were tested such as VGG-16 [164] or Efficient-
net [165]. Finally, the Resnet-18 architecture [166] was used
with pre-trained weights on Imagenet [167], and tiles were
normalized with the mean and standard deviation from it.
The classification layer of the architecture was adapted to the
set of classes, but preserving the same structure. Only the
last residual module of the architecture was fine-tuned, the
rest of the weights of the network were frozen. As it is usual
for deep learning models, in each split a 10% of the training
data was used as validation set for the network optimization
and hyperparameter tuning.

For the CNN training 25 epochs were used, monitoring the
accuracy on the validation subset with the early stopping
methodology and saving the best weights for later use. As
a loss function, the cross entropy loss function was selected.
As the optimizer, Adam was chosen with a learning rate
(LR) value of 1𝑒−5, betas equal to (0.9, 0.999) and epsilon
equal to 1𝑒−8. Since the Resnet-18 is being fine-tuned, a small
LR needs to be used or the pre-trained weights will change
more than desired. These hyperparameters were chosen by
manually tuning them during the experimentation, and based
on results in the validation set.

Once we have obtained a per-tile model, we now need to
define how to classify a slide. In this work, we used a majority
voting approach, similar to the methodology presented by
Coudray et al. [131]. Having all tiles from the image classified
using the per-tile model, the most predicted class among
all the tiles is used as the final prediction. Variations using
different thresholds (instead of simple majority voting) to
choose the final prediction were inspected. Nevertheless, in
our case, the aforementioned methodology provided the best
performance. The training time of the model was around 14
hours using the ATCBIOSIMUL cluster presented in Chapter
2.

RNA-Seq classification model

For the RNA-Seq feature extraction, we carried out the pre-
processing steps explained in subsection 4. Selecting how
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many genes to perform the classification with is of utter im-
portance since usually, clinicians are looking for the smallest
gene signature that led to good classification performance.
This decision is important due to the necessity of providing
a small gene signature that can facilitate its use in a standard
clinical laboratory, for instance in a PCR-based diagnosis
assay [168–170]. We used three different sets of genes (3, 6,
and 10) in order to compare the performance of the fusion
model when using comparatively small, medium, and large
size of gene signatures.

It is important to note, that the simulations performed under
the 10-Fold CV assessment, it implies using different training
datasets for the gene signatures extraction. This could lead
to small variations in the signatures obtained [171] since we
are using a different group of samples as a training set each
time. The final gene signature proposed was the one formed
by those genes that are best ranked by the mRMR algorithm
in the rest of the gene signatures.

We tested different classification techniques for the RNA-
Seq classification task such as K-Nearest Neighbors, SVMs,
or Random Forest. Finally, SVMs were selected, since they
outperformed the rest of the models in the validation set and
they have proven to be really successful in mid-size problems.
In addition, it has been used in the gene expression literature
for cancer classification with good results [112, 161, 162].
A grid search CV was used over the training set in each
split for the parameters optimization, using the Gaussian
Radial Basis Function kernel as it has proven to offer a good
asymptotic behavior [172]. The search range of values for
both 𝐶 and 𝛾 was: [2−7 , 2−5 , 2−2 , 2, 24 , 27]. Moreover, features
were normalized between −1 and 1. The training time of
the model was around 30 minutes using the ATCBIOSIMUL
cluster presented in Chapter 2.

Probability Fusion

As it has been reported in the Section 4.1, among the different
approaches proposed in the literature for data fusion, this
work uses a late fusion methodology. We also performed
experiments using early fusion approaches, in which ob-
tained features from both RNA-Seq and WSIs data types
were concatenated and fed to a classifier performing the
final prediction. Under this last scheme, the straightforward
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features extracted for each data type (gene expression on
one side, and accumulation -average sum- of the features ex-
tracted from the CNN for the different tiles of an image) were
observed to decrease the performance of the fusion classifica-
tion model. This decrease in the performance in comparison
to the late fusion model may be due to the difference between
the dimensionality of the features obtained from each data
type since a feature vector of size 512 is obtained in the case
of the WSI and a feature vector of size between 3 and 10
genes is obtained in the case of RNA-Seq. Even after applying
a number of approaches to reduce the feature dimension-
ality, such as PCA or max pooling operation on the CNN
features, results were not surpassing the late fusion scheme
next explained.

There exist two options when applying a late fusion approach:
to combine the predictions or to combine the probabilities
returned by each classifier. These two approaches rely on the
classification models used. The first option, i.e. integrating
the predictions, would require weighting the classifiers, since
only two data types are used. The second, the fusion of
the probabilities, allows including more information for the
classification (i.e. the probabilities assigned by each classifier
to each class). So this last option was selected in the expectancy
of a more powerful information fusion.

The probabilities for each classifier were obtained as follows.
For the RNA-Seq model, the probabilities are returned by the
SVM by using the methodology proposed by Wu et. al. [173],
which uses a pairwise coupling method that is included in
the Scikit-Learn library [158]. With this methodology, we
are able to obtain three probabilities, one per class, which
model the belongingness of a sample to each class, and where
the sum of the probabilities is equal to one. On the other
hand, for the WSI we need to compute them. In the per-slide
classification, we have the number of tiles predicted per class,
therefore, we compute the probability per class for each slide
as the number of tiles predicted for a class divided by the
total number of tiles in the slide (see Eq. 4.1).

𝑃
𝐶𝑁𝑁 (𝑥, 𝑐𝑖) =

#𝑇𝑖𝑙𝑒𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑥,𝑐𝑖 )
#𝑆𝑙𝑖𝑑𝑒𝑇𝑖𝑙𝑒𝑠

(4.1)

where 𝑥 is the sample to be predicted and 𝑐𝑖 is the given
class: LUAD, Healthy, or LUSC. Using this methodology
we are able to obtain three probabilities (one for each class)
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representing how likely is for that slide to belong to each
one of the classes, depending on the predictions provided by
CNN. In addition, and given that the number of predicted
tiles per class is divided by the total number of tiles, the sum
of the obtained probabilities is equal to one.

Once we have obtained the probabilities for each classifier
and class, we need to fuse them to make a final prediction. In
this work, we propose a weighted sum of the two probabilities
by using two weight parameters: 𝛼1 and 𝛼2 (see Eq. 4.4). They
will control the trade-off between the probabilities returned
by the two models: 𝛼1 for the WSI CNN classifier (𝑃𝐶𝑁𝑁 ) and
𝛼2 for the RNA-Seq SVM classifier (𝑃𝑆𝑉𝑀 ). This will allow
both classifiers to support each other’s predictions: in case
one of the classifiers is providing a borderline wrong decision,
the other one could balance it to the right side.

Some approaches have been proposed in the literature to
weight the probabilities obtained from classifiers using dif-
ferent modalities. Dong et al. proposed to give a weight to
each classifier based on the performance of each model [174].
Similarly, Meng et al. proposed to compute the weight based
on the accuracy of each model applying a normalization be-
tween the maximum and the minimum accuracy [175]. Trong
et al. proposed to normalize the accuracy only based on the
maximum accuracy achieved in order to obtain a weight [176].
Other approaches have been taken, such that proposed by
Depeursinge et al. where the probabilities returned by two
SVMs were multiplied and the maximum was chosen for the
prediction [177].

In this work, the weight for each classifier is computed
based on their mean performance in ten different stratified
resampling sets obtained from the training set. Resampling
is a methodology that consists of taking a random subset of
samples from a given set, usually a percentage of it, and has
shown to be useful for robust statistic estimation [178]. In this
work, a 90% of the training set was randomly chosen for each
resampling in a stratified way, i.e. maintaining the percentage
of each class in each set. Due to the imbalance of the dataset,
the F1-Score metric was chosen as the performance measure.
Thus, firstly the mean of the F1-Score metric is obtained across
the ten different resamplings of the training set as follows:

𝐹1𝑀 =

∑10
𝑖=1 𝐹1𝑀𝑖

10
(4.2)
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where 𝐹1𝑀 is the mean F1-Score of a model 𝑀 (i.e., 𝐶𝑁𝑁 or
𝑆𝑉𝑀) across all the resampling sets and 𝐹1𝑀𝑖

is the F1-Score
metric obtained by the model 𝑀 in the 𝑖th resampling set.

Then, after computing the mean of the F1-Score for each
model across the 10 different resampling sets, the final weight
for each classifier is computed as follows:

𝛼1 =
𝐹1𝐶𝑁𝑁

𝐹1𝐶𝑁𝑁 + 𝐹1𝑆𝑉𝑀
𝛼2 =

𝐹1𝑆𝑉𝑀
𝐹1𝐶𝑁𝑁 + 𝐹1𝑆𝑉𝑀

(4.3)

where 𝐹1𝐶𝑁𝑁 and 𝐹1𝑆𝑉𝑀 are the mean F1-Score obtained by
each model across the resampling sets, and it is satisfied that
𝛼1 + 𝛼2 = 1.

These 𝛼1 and 𝛼2 are then used for the fusion model in order
to weight the probability returned by each classifier. Thus,
the probability for a sample 𝑥 belonging to a class 𝑐𝑖 will be
calculated using the following equation:

𝑃
𝐹𝑢𝑠𝑖𝑜𝑛 (𝑥, 𝑐𝑖) = 𝛼1 ∗ 𝑃

𝐶𝑁𝑁 (𝑥, 𝑐𝑖) + 𝛼2 ∗ 𝑃
𝑆𝑉𝑀 (𝑥, 𝑐𝑖) (4.4)

With this automatic methodology, we are getting a weight
value for the classification that allows fusing the classifiers’
probabilities based on how well they performed on the train-
ing set. Given that we are using a 10-Fold CV for evaluating
the methodology, different 𝛼 values might be obtained for
each split, since different training sets are being used. It is
important to note that this fusion methodology allows us
to effectively deal with missing information. If one of the
data types is missing, then only the probabilities of the other
classifier will be taken into account, without the need to
average them. The pipeline for estimating the probability of
a given sample belonging to the class is depicted in Figure
4.2
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Figure 4.2: Pipeline for sample prediction. (i) Both the WSI and the RNA-Seq data for that case ID are obtained. (ii)
Non-overlapping 512x512 tiles are extracted for the WSI, filtering the background. For RNA-Seq, we took the set of
DEGs selected by the mRMR ranking. (iii) For the WSI, the probabilities are obtained by averaging the number
of tiles predicted per class and the total number of them. For RNA-Seq data, the probabilities are returned by
the SVM. (iv) We fuse the probabilities by averaging the ones obtained by each classifier per class, and the final
prediction is the class with the higher probability.
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4.4 Results and Discussion

Classification performance of the models

The presented results are for those cases where both sources
of information are available (see Table 4.1), allowing a fair
comparison of the improvement that can be obtained under
the information fusion approach. Models were trained on all
the available data in each training set, and a global assessment
is presented using a 10-Fold CV approach on the whole
dataset. All results are presented for the CNN per-slide
classification using WSI as input data, the SVM using RNA-
Seq data, and the fusion model. We computed the accuracy,
F1-Score, confusion matrices, ROC curve, and Area Under
the Curve (AUC) for each set and split.

Table 4.4 shows the accuracy, F1-Score, and AUC for the
WSI classifier, the RNA-Seq classifier, and the fusion model.
Results are averaged for the ten executions and the standard
deviation obtained is also shown.

With respect to the RNA-Seq classifier, three different set
configurations were tested: 3, 6, and 10 genes. A comparison
of using different sets of genes for the fusion and RNA-Seq
model can be observed in Figure 4.3. The RNA-Seq model
obtains good results across the splits for the three configu-
rations, with relevant improvement observed when using
6 genes over 3. However, a very similar performance is ob-
served when using 10 genes (94.05% of F1-Score, and 94.12%
of accuracy) in comparison with 6 (93.67% of F1-Score, and
93.70% of accuracy), even with a higher standard deviation
when using 10 genes. This enables to choose a gene expres-
sion model with 6 genes without significantly affecting the
performance in comparison to using a larger gene set, which
facilitates its utilization in a standard clinical laboratory [168,
169]. For the AUC metric, the model also achieves impressive
results with both sizes, reaching 0.987 and 0.990 respectively.
These results are comparable to those obtained for a binary
classification problem (LUAD vs Healthy) where authors
reached an accuracy of 95.97% and 91% (see subsection 4.2
).

In relation to the WSI data classification, Table 4.4 shows
that this model presents a lower classification performance in
comparison to the RNA-Seq and fusion model, achieving an
F1-score of 83.39% and an accuracy of 86.03%. For the AUC
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metric, the results are similar or even improve in some cases
those obtained in literature (see subsection 4.2), achieving
0.947 in the validation set across the splits.

The fusion model was optimized using the methodology
proposed in the subsection 4, choosing an optimized value
of 𝛼1 and 𝛼2 for each split. It must be noted that the range of
the 𝛼 values obtained in each configuration was very similar
across the splits, with 𝛼1 ranging from [0.49 − 0.52] and 𝛼2
ranging from [0.48 − 0.51]. The fusion model outperforms
the RNA-Seq and WSI models for all metrics (see Table 4.4).
Also, no matter the number of selected genes, the fusion
model always outperforms the gene expression model (see
Figure 4.3). The configuration of the fusion model using 3
genes is slightly outperformed by the RNA-Seq model using
6 genes. This is due to the lower performance of the RNA-Seq
model configuration when using 3 genes. However, the fusion
model still achieves a better performance in comparison to
the WSI and the RNA-Seq configuration using 3 genes (see
Table 4.4). Taking the configuration with 6 genes, the fusion
model achieves a mean F1-Score of 95.19%, a mean AUC
of 0.991, and a mean accuracy of 95.18%. For that model,
Figures 4.5 and 4.6 show the confusion matrices and the ROC
curves for the whole dataset. For the fusion model, similar
results are obtained when using 6 and 10 genes, which allows
using the model with a smaller gene signature. Given the
low number of healthy samples where both data types are
available (see Table 4.1), it is interesting to note that the
mean F1-Score achieved is high, which means that these are
being correctly classified on the whole dataset. The standard
deviation of the metrics across the splits decreases with the
fusion model, showing that it allows a more stable behavior
than the separate SVM and CNN models. The results obtained
in the classification problem are also comparable to those
obtained in literature, reaching those accuracies obtained in
a binary classification problem when using RNA-Seq data
(95.97 % [144], 91% [145], 95.3% [146]) and the AUC obtained
when using WSIs as input for the multi-class classification
(AUC 0.978 [131]) and for the binary classification (AUC 0.988
[149]).

In order to visualize the performance of each model per class,
we plotted the ROC curves for the whole dataset (see Figure
4.6), for the fusion model with 6 genes. Confusion matrix
was also extracted for the whole dataset (see Figure 4.5). As
it can be observed, the fusion of probabilities obtains a better
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Figure 4.3: Performance of the fusion or RNA-Seq model in terms of F1-Score depending on the number of selected
genes. The fusion model always outperforms the RNA-seq model.

performance for the three classes over the CNN and the SVM
models. In addition, the fusion model reduces the number of
missclassified samples from 133 and 60 to 46, for the CNN
and the SVM respectively, over the whole dataset when using
6 genes (see Table 4.5). This represents an improvement of
the error rate of ≈ 65% over the CNN, and ≈ 24% over the
RNA-Seq model.

Based on the results we have obtained, the fusion model
is correctly classifying samples that one of the models was
wrongly predicting (see Figure 4.5 and Table 4.5). We ana-
lyzed the models predictions for the whole dataset to assess
the cases in which both classifiers were providing different
outcomes. An example can be observed in Figure 4.4.

Finally, in order to provide a biologically relevant single gene
signature for clinical use, the use of a single gene signature
was inspected. As the final unique gene signature, we selected
the one from the ten obtained in the 10-Fold CV process whose
genes appeared in the first positions of the mRMR ranking for
the rest of the splits. The 6-genes signature is formed by the fol-
lowing genes: SLC2A1,NTRK2,TOX3,NXPH4,TFAP2A,KRT13.
The correlation of these genes with lung cancer was veri-
fied in the Open Targets platform [179], whose association
scores with cancer, lung cancer, NSCLC, LUAD and LUSC,
are shown in Table 4.3. Its performance was evaluated over
the 10-CV, achieving a mean F1-Score, AUC and accuracy of
94.35%, 0.985 and 94.32% respectively for the isolate RNA-
Seq SVM model, and 95.31%, 0.991 and 95.29% for the fusion
model. In addition, a biological relevance analysis of these
DEGs can be found in Section 4.4.
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Figure 4.4: Example of the correct classification of a specific sample ID combining the probabilities. In the example
shown, RNA-Seq classifier is providing a certain level of uncertainty between LUAD and LUSC classes, and due to
the clear confidence of the CNN model for the LUSC class, the outcome of the fusion model provides the right
diagnosis.

Table 4.3: Final Association Scores for the DEGs selected by mRMR. These scores have been obtained using the
Open Targets platform [179]

mRMR Genes Cancer Lung Cancer NSCLC LUAD LUSC
SLC2A1 0.53 0.27 0.30 0.08 -
NTRK2 1.0 0.30 0.30 0.06 0.04
TOX3 1.0 0.11 0.09 0.07 -

NXPH4 - - 0.14 - -
TFAP2A 1.0 0.68 0.70 0.67 -
KRT13 0.80 0.03 0.10 - 0.01

Table 4.4: Mean accuracy, F1-Score, AUC and standard deviation (in parenthesis) across the 10-Fold CV validation
splits for each data type.

F1-Score.(%) AUC Acc.(%)

WSI 83.39 (8.19) 0.947 (0.023) 86.03 (3.40)
RNA-Seq 3 90.57 (3.66) 0.978 (0.009) 90.67 (3.73)
RNA-Seq 6 93.67 (1.76) 0.987 (0.007) 93.70 (1.87)
RNA-Seq 10 94.05 (2.51) 0.990 (0.005) 94.12 (2.56)

Fusion 3 93.20 (3.18) 0.986 (0.005) 93.20 (3.17)
Fusion 6 95.19 (1.64) 0.991 (0.004) 95.18 (1.64)
Fusion 10 95.18 (1.61) 0.991 (0.005) 95.17 (1.62)
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Table 4.5: Correct and erroneous predictions across the 950 samples when using 3, 6 and 10 genes

WSI RNA-Seq 3 Fusion 3

Correct 817 861 885
Misclassified 133 89 65

WSI RNA-Seq 6 Fusion 6

Correct 817 890 904
Misclassified 133 60 46

WSI RNA-Seq 10 Fusion 10

Correct 817 894 904
Misclassified 133 56 46

Figure 4.5: Confusion matrices obtained for the validation set in the 10-Fold CV by, (a) the CNN using WSI, (b)
SVM using RNA-Seq data using 6 genes, (c) the fusion model using 6 genes. The accuracy and the f1-score is
displayed under each confusion matrix.

Biological relevance of DEGs

The six DEGs found in our study are involved in different
biological processes, usually associated with tumor develop-
ment and cancer progression. Glucose metabolism can be
found among these altered functions. Since cancer cells are
highly proliferative, hypoxia often occurs when tumor cells
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Figure 4.6: ROC curves obtained for the validation set in the 10-Fold CV for the CNN using WSI, SVM using
RNA-Seq data using 6 genes, the fusion model using 6 genes for (a) LUAD, (b) Healthy and (c) LUSC classes. The
Area Under the Curve for each classifier is displayed in the legend.

outstrip their vasculature. As a consequence, cancer cells
show enhanced glycolysis as a means for energy production;
this phenomenon is known as ‘Warburg effect’ [180, 181].
SLC2A1, also called GLUT1, codes for a glucose transporter
that facilitates glucose transport across the plasma membrane
[182]. SLC2A1 overexpression was found in a series of solid tu-
mors, including lung cancer [183]. More specifically, SLC2A1
overexpression has been reported in bronchial brushing sam-
ples of NSCLC patients, and SLC2A1 expression in NSCLC
tissues was higher than in adjacent tissues [182]. In addition,
SLC2A1 overexpression has been linked to a poor prognosis
in different cancer types, including NSCLC [184].

Some of the regulated genes encode for structural proteins,
suggesting that cell architecture is also altered in NSCLC,
which is related to loss of cell adhesion, invasiveness, mi-
gration, and metastasis. KRT13 gene encodes for keratin
(keratin-13), an intermediate filament protein expressed by
epithelial cells in a cell-specific and differentiation-dependent
manner [185]. It seems that enhanced KRT13 expression in
squamous-cell carcinomas could disturb the functions of
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cytoskeleton-cell junction desmosome and hemidesmosome
protein complexes, consequently affecting cell adhesion and
cell architecture, and indirectly affecting tumor behavior, neu-
roendocrine phenotypes, epithelial–mesenchymal transition
(EMT) and stemness [186].

Modulation of genes that participate in signaling pathways
such as NTRK2 and NXPH4 was also detected in our study.
NTRK2 is a member of the neurotrophic tyrosine kinase
genes that encode for one of the Trk family proteins, TkrB.
The NTRK family plays a role differentiation and matura-
tion of the central and peripheral nervous system through
activation of the PI3K-AKT and MAPK signaling pathways.
However, NTRK gene fusions are found in solid tumors as
oncogenic fusions responsible for growth and proliferation
of cancer cells [187, 188]. Several studies have indicated that
TkrB overexpression is oncogenic in several malignant tu-
mors, including lung cancer. It might also be correlated with
lymph node metastasis, vascular invasion and poor survival.
Interestingly, Ozono et al. suggested that the binding of TkrB
to one of its ligands, BDNF, promotes proliferating migra-
tory and invasive phenotypes and cellular plasticity in LUSC
[189], as previously reported for LUAD [190]. In contrast,
although NXPH4 up-regulation has been suggested in LUSC,
its contribution to the disease remains unknown [191].

Furthermore, several of the DEGs were transcription factors,
such as TFAP2A and TOX3. TFAP2A codes for the AP-2𝛼
transcription factor and many studies have been described it
is markedly up-regulated, both in LUSC and LUAD tissues,
compared with normal lung tissues. It seems correlated with
poor prognosis, particularly among smokers [192], and it
has been implicated in cancer proliferation, invasion, angio-
genesis and EMT. Previous studies reported that TFAP2A
promotes EMT by regulating TGF-𝛽 signaling in cancer cells
and regulates tumor growth via hypoxia inducible factor-1a
(HIF-1a) signaling in nasopharyngeal carcinoma and NSCLC
[193]. For the TOX3 gene, the protein produced contains an
HGM-box, indicating that it may be involved in bending and
unwinding of DNA and alteration of chromatin structure.
Although its function remains unclear, it may be involved in
various DNA-dependent processes [194]. TOX is a novel gene
family that serves a pivotal function in human immunity.
Recently, deregulated expression of TOX family members
has been reported in a wide range of human cancer types.
Notably, TOX3 expression has been reported to be signifi-
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cantly increased in LUAD, compared with other pathological
subtypes of lung cancer. Survival analysis demonstrated that
elevated TOX3 expression is significantly associated with
improved progression-free and overall survival in patients
with LUAD [195].

4.5 Conclusions

Promising results are obtained with each source of infor-
mation, showing their potential to find cancer biomarkers.
However, the proposed late fusion approach outperforms the
results obtained by each classification model using RNA-Seq
and WSIs in an isolated manner. It also reaches a more stable
classification performance as observed in the experiments.
This fusion model not only allows us to fuse the predictions
from each classifier but also enables a prediction when some
of the information is missing. The methodology used can
also be universally applied to any kind of problem with
heterogeneous data that presents missing information and
the modularity of the system makes it easily scalable, so new
classifiers for different types of data can be integrated with
little effort.

The presented methodology represents an advancement in
the creation of decision-making support systems that are
applied to precision medicine, which can be used in a real-
life scenario. With the integration of different sources of
information, a more robust and complete prediction can be
performed, similar to those situations in a hospital where
different screenings are performed in order to diagnose a
patient. Quick detection of any type of cancer in its early
stage is crucial to improve the survival of the patient. Hence,
accurate and fast methodologies, such as the one presented,
can enhance the treatment of the patient.

In future work, we would like to test the proposed method-
ologies on other cancer types or diseases, in order to evaluate
their general applicability. In addition, we would like to in-
clude more heterogeneous biological sources and domain
knowledge, extending the flexibility of the model in face of
real scenarios with different screenings performed, in the ex-
pectancy of an increase in the liability of the global diagnosis
support system.
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Abstract

Machine learning techniques have provided a new framework
for cancer diagnosis. By leveraging the information in the
patient’s data, a quicker and more accurate diagnosis can be
provided. However, in most cases the cancer classification
problem has been treated as a single-modality problem, not
exploring the multi-scale and multi-omics nature of cancer
data for the classification. In this work, we study the fusion
of five multi-scale and multi-omics modalities (RNA-Seq,
miRNA-Seq, Whole Slide Imaging, Copy Number Variation,
and DNA-Methylation) by using a late fusion for non-small-
cell lung cancer subtype prediction. We train independent
classification models and explore the gains that are obtained
by fusing their outputs incrementally, proposing a novel
late fusion method based on stochastic gradient descent.
The final classification model, using all modalities, obtains
an F1-Score of 96.81 ± 1.07, an AUC of 0.993 ± 0.004 and
an AUPRC of 0.980 ± 0.016, improving those results that
each independent model obtains and those presented in
the literature for this problem. In addition, the model is
robust to missing modalities, making it more suitable to
deploy on a real-world scenario. These obtained results show
that leveraging the multi-scale and multi-omic nature of
cancer data can enhance the performance of single-modality
clinical decision support systems in personalized medicine,
consequently improving the diagnosis of the patient.
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5.1 Introduction

With the advances in computational methods, CDSS have
been created for cancer detection using biological sources,
achieving great results. Among the data sources used in
literature we can find, for instance, WSI [131], gene expression
data [112], CNV analysis [197], miRNA expression data [198]
or DNA Methylation (metDNA) values [199]. By using these
modalities independently, an accurate diagnosis can be per-
formed. However, in their inner nature, they provide different
biological information which may complement or regulate
the information provided by the others. For instance, studies
have shown that miRNAs regulate specific genes related to
the proliferation of NSCLC [200, 201] or methylation and
mutations patterns have been predicted using WSI [131, 202].
Therefore, exploring if the fusion of them can provide a more
robust diagnosis using computational methods is of great
interest for improving the prognosis of the patient.

In this work, we aimed to analyze the fusion of five het-
erogeneous modalities (WSIs, RNA-Seq, miRNA-Seq, CNV
and metDNA) using a late fusion approach for the LUAD vs
LUSC vs Control classification problem. We evaluated the
improvements that can be obtained by fusing information
and the modalities that are crucial to differentiate between the
subtypes. In addition, a new late fusion optimization method-
ology is proposed for this problem, where the weights for
the weighted sum of the probabilities are obtained by us-
ing a gradient descent approach that takes into account the
performance of the fusion model in the classification.

5.2 Related work

Over the last few years, the potential of ML models using
biological data for the diagnosis and prognosis of cancer
patients has been shown. Specifically, all the aforementioned
biological sources have been used for the creation of CDSS in
lung cancer-related problems.

The use of gene expression data for lung cancer type classifica-
tion has been explored in literature in recent years, especially
for LUAD given that it is the most frequent NSCLC type.
Smolander et al. reached a 95.97% of accuracy in the LUAD
vs Control problem using coding RNA and employing a deep
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learning model [144]. Likewise, Fan et al. approached the
same problem but using Support Vector Machines (SVM)
with a 12 genes signature, obtaining an accuracy of 91%
[145]. In addition, some works have been presented for the
multiclass classification of lung cancer subtypes. Gonzales
et al. presented a model for the classification of Small Cell
Cung Cancer (SCLC), LUAD, LUSC, and Large Cell Lung
Carcinoma (LCLC) by finding Differentially Expressed Genes
(DEGs) and using them as input [147]. By employing RF as
the feature selector and k-NN as the classification algorithm
they obtained an accuracy value of 88.23%. Castillo-Secilla et.
al. reached an accuracy of 95.7% using the Random Forest
algorithm in the NSCLC subtypes classification task [203].
For the case of miRNA-Seq analysis, some works have been
presented in the literature for lung cancer classification. Ye
et al. presented a 10 miRNA signature for LUSC vs Control
classification, reaching an F1-Score of 99.4% [198]. Yang et
al. presented a miRNA signature for pathological grading in
LUAD [204], reaching an accuracy of 66.19%. Also, miRNA
has shown its potential for pan-cancer prognosis and treat-
ment recommendation, including LUSC [119]. CNV data has
also been used in literature for lung cancer classification.
Qiu et al. presented a CNV signature for LUAD, LUSC and
control classification formed by thirty-three genes reaching
an accuracy of 84% in the validation set [197]. metDNA data
has been used in literature for LUAD vs Control classification,
reaching an accuracy of 95.57% by Shen et al. [205]. Also,
the relation of DNA methylation-driven genes with LUSC
and LUAD classes was studied by Gevaert et at. finding the
clusters of methylation-driven genes that provided clinical
implications [206]. Cai et al. test different feature selection
algorithms in combination with different ML algorithms for
the task of LUAD vs LUSC vs SCLC classification, reaching
an accuracy of 86.54% on the task by using a panel of 16 CpGs
sites [199].

Deep Learning (DL) has shown great potential for computer
vision tasks, and therefore, its use combined with WSI has
been explored in literature for NSCLC subtypes classification.
Coudray et al. presented a Convolutional Neural Network
(CNN) using tiles extracted from WSI for LUAD vs LUSC
vs Control classification and mutation prediction, finally
reaching an Area Under the Curve (AUC) score of 0.978
in the classification task [131]. By using manually labeled
images by experts, Kanavati et al. presented a CNN model
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using transfer learning for the lung carcinoma vs control
problem and obtained an AUC score of 0.988 [149]. Finally,
other approaches have been presented where deep learning
has been combined with more traditional statistics. Graham
et al. used tiles extracted from the images and summary
statistics to perform the classification between LUAD, control,
and LUSC, reaching an accuracy value of 81% [150].

The fusion of the aforementioned sources has been explored
in literature for various lung cancer problems, such as prog-
nosis, grading prediction, or analyzing the relation between
them. A Deep Neural Network (DNN) was developed by Lai
et al. that combined gene expression and clinical data for
prognosis prediction in NSCLC patients [140]. More novel
techniques, such as autoencoders, have been explored in
literature for the generation of a feature representation for
a later fusion. Cheerla et al. used a deep learning-based
model using miRNA, RNA-Seq, clinical, and WSI data for
a pan-cancer prognosis prediction problem [115]. Similarly,
Lee et al. used an autoencoder for the obtention of a feature
representation using mRNA, miRNA, CNV, and metDNA
for prognosis prediction [207]. For the problem of grading
prediction, Long et al. proposed to use a late fusion method-
ology along with a gcForest model for predicting the stage of
LUAD by fusion RNA-Seq, metDNA and CNV [174]. Authors
reached an F1-Score of 88.9% on the task. Finally, in previous
work, we showed that the fusion of WSI with RNA-Seq data
improved the results obtained by each independent source
for the LUAD vs LUSC vs Control problem [208].

As detailed, previous research has focused on the use of single
modalities for the classification, obtaining great results with
both molecular and imaging approaches. However, fewer
works have been presented in literature performing a fusion
of the information provided by these modalities, missing the
opportunity to improve the classification performance and
the knowledge acquisition from multiple biological sources.
We propose to use the multi-modal information to enhance
the classification performance for the sub-type identification,
by leveraging the performance of independent classifiers and
exploring the improvements that each source provides. A
summary of the different works commented on for NSCLC
classification problems is presented in Table 5.1.
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Table 5.1: Summary of the works in literature for different NSCLC classification problems. SVM: Support Vector
Machine; DNN: Deep Neural Network; RF: Random Forest; CNN: Convolutional Neural Network; k-NN: k-Nearest
Neighbour; Acc.: Accuracy; AUC: Area Under the Curve

Modalities Problem Model Metrics Results
Smolander et al. [144] RNA-Seq LUAD vs Control DNN Acc. 95.97%

Fan et al. [145] RNA-Seq LUAD vs Control SVM Acc. 91%
Gonzales et al. [147] Microarray SCLC vs LUAD vs LUSC vs LCLC k-NN Acc. 91%

Castillo-Secilla et al. [203] RNA-Seq LUAD vs Control vs LUSC RF Acc. 95.7%
Ye et al. [198] miRNA-Seq LUSC vs Control SVM F1-Score 99.4%

Qiu et al. [197] CNV LUAD vs Control vs LUSC EN-PLS-NB Acc. 84%
Shen et al. [205] metDNA LUAD vs Control RF Acc. 95.57%
Cai et al. [199] metDNA LUAD vs LUSC vs SCLC Ensemble Acc. 86.54%

Coudray et al. [131] WSI LUAD vs Control vs LUSC CNN AUC 0.978
Kanavati et al. [149] WSI Lung Carcinoma vs Control CNN AUC 0.988
Graham et al. [150] WSI LUAD vs Control vs LUSC CNN Acc. 81%

5.3 Material and Methods

Data acquisition and pre-processing

In this work, we have considered four molecular modalities
and one imaging modality: RNA-Seq, WSIs, miRNA-Seq,
Copy Number Variation and DNA Methylation Quantifica-
tion. The data was collected from The Cancer Genome Atlas
(TCGA) program [57], which is easily accessible from the
GDC portal [154].

Biological and clinical information from 33 different cancer
types is contained in TCGA and harmonization of all the
samples has been performed by GDC. In most cases for
each sample, various modalities are available (e.g. histology
imaging, copy number variation, miRNA expression, gene
expression, methylation beta values, etc.). Those Case IDs
used in this work are available in a Github repository *.
Table 5.2 shows the number of samples used per class and
considered data modality.

Table 5.2: Number of samples per class for each data modality.

WSI RNA-Seq miRNA CNV metDNA
LUAD 495 457 413 465 431
Control 419 44 71 919 71
LUSC 506 479 420 472 381
Total 1420 980 904 1856 883

To obtain unbiased results, a 10-Fold Cross Validation (10-
Fold CV) training-test process was carried out in a stratified

* https://github.com/pacocp/multiomic-fusion-NSCLC
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Figure 5.1: Prediction pipeline for a given sample with multiple modalities. If missing information is present, the
probabilities for that modality are zero. (i) Multi-scale and multi-omic data available for each sample is obtained.
(ii) For the imaging modality, non-overlapping tissue tiles of 512x512 are obtained. For the molecular modalities,
the features are obtained with the aforementioned preprocessing methodology (see Material and Methods section).
(iii) Probabilities are computed for each modality and class. In the molecular modalities, the probabilities are
returned by the machine learning model. For the imaging modality, the probabilities are obtained based on the
number of tiles predicted per class divided by the total number of tiles. (iv) The late fusion model is applied using
the previously obtained weights via gradient optimization, and the final prediction is obtained.
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Table 5.3: Number of tiles obtained from the WSI per class.

# Tiles
LUAD 100,841
Control 62,715
LUSC 92,584
Total 256,140

and patient-wise way over the whole dataset was performed.
By doing it in a stratified way we are ensuring that we are
maintaining the same proportion of classes across the splits,
while in a patient-wise way we ensure that the samples
from a given patient can only belong to one of the splits
in each iteration, being it training or test. By doing so we
are preventing any kind of information leakage between the
splits. During each iteration, the training set was used for
training the models, performing the biomarker identification,
and for tuning the range of hyperparameters selected for
the models, and once they were selected a final performance
assessment was done on the test set. Different strategies were
used for the hyperparameter selection depending on the data
modality, which will be explained later in the manuscript.

WSI preprocessing

The python package openslide was used for the preprocessing
of the obtained WSIs. We selected a magnification factor of
20x to obtain images with a sufficient resolution for the tile
selection process (this magnification factor leaves images with
a resolution of ≈ 10,000 x 10,000 pixels). For the tile selection
process, we obtained 512x512 non-overlapping tiles of the
whole image omitting those were there was a significant
amount of background. To test this condition, we computed
the mean value for the three color channels and if for the
three channels the mean was greater than 220 we discarded
that tile, as proposed by other authors in literature [131].
Otherwise, it was selected for further training. In Table 5.3
the final distribution of tiles per class can be observed.

Omic data preprocessing

To preprocess the RNA-Seq data, the KnowSeq R-Bioc pack-
age [203] was used to obtain the DEGs. The DEGsExtraction
was used over 60, 383 genes from the training set in each split,
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similarly to other works that have been presented in literature
[112, 161, 209]. As parameters, a 𝐿𝑜𝑔2 Fold Chain (𝐿𝐹𝐶) value
of 2, a 𝑝-value of 0.05, and a 𝐶𝑂𝑉 value of 2, were set. For
the case of miRNA there is no need to apply a reduction of
the number of features since TCGA provides information for
1881 miRNAs.

For metDNA and CNV values, the SciPy ecosystem’s pack-
ages were used for the analysis and pre-processing [210].
TCGA contains information from 60.683 genes for CNV data,
and 485, 577 known CpG sites for metDNA. Both sources
contained missing values that were deleted, finally leaving
with 46, 585 genes and 365, 093 CpG sites for the rest of pre-
processing steps. In order to reduce the number of features,
and to investigate the global difference in CNV and metDNA
patterns among the three different groups (LUAD, LUSC,
and Control), a two-tailed t-test was employed (𝑝 ≤ 0.001),
also using Bonferroni correction as a way to control for the
family-wise error rate, as presented by Qui et al. [197]. Those
genes and CpG sites that were significantly different in a
number of the three two-tailed t-test comparisons (all of them
for CNV and two out of the three for metDNA), and for which
the difference of the mean was greater or equal to a given
threshold (0.1 for CNV and 0.4 for metDNA), were selected
in each split.

After performing the aforementioned pre-processing steps,
the minimum Redundancy Maximum Relevance (mRMR)
algorithm was used over the molecular data for obtaining the
most important biomarkers in each modality, by obtaining the
mRMR ranking [160]. Taking into account on every iteration
we are using a different training split, which could lead to
small variations in the biomarkers obtained each time.

Models selection and training

The Resnet-18 architecture was used for WSIs [166], using
the pre-trained weights on Imagenet as the starting point
[167] and normalizing the tiles using the mean and standard
deviation from Imagenet. The last layer was adapted to the
set of classes, and only this layer and the last residual block
were trained (this last one was fine-tuned). For the selection
of hyperparameters, a randomly selected 10% of each training
set was used as validation in each split. The network was
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trained during 25 epochs using an early-stopping methodol-
ogy where the accuracy in the validation set was monitored,
saving the best weights for later use. Adam was used as the
optimizer with the following hyperparameters: learning rate
value of 1𝑒−5, betas equal to (0.9, 0.999) and epsilon equal
to 1𝑒−8, which were selected based on experimentation and
results on the hyperparameter validation set. Once the per-
tile model was obtained, for classifying a whole slide we
followed a majority voting approach, similar to the one pre-
sented by Coudray et al. [131], where the final label was the
most predicted class among all slide tiles. The training time
of the model was around 14 hours using the ATCBIOSIUL
cluster presented in Chapter 2.

For the rest of the molecular sources, different classification
algorithms were tested, such as SVMS, k-Nearest Neighbors,
or XGBoost. Finally, SVMs were chosen, since they obtained
the best results in the training sets when performing the
hyperparameter tuning and they have successfully used in
literature for cancer classification with good results [112, 161,
162, 198, 204]. For tuning the SVMs hyperparameters a grid
search CV was used over each training set. The only fixed
parameter was the kernel, and we chose the Gaussian Radial
Basis Function kernel based on the asymptotic behavior it
has [172]. The search range of values for both 𝐶 and 𝛾 was:
[2−7 , 2−5 , 2−2 , 2, 24 , 27], and the features used were normal-
ized between −1 and 1. The training time of the models was
between 20-30 minutes using the ATCBIOSIMUL cluster
presented in Chapter 2.

For implementing the classification models, the Python pack-
ages Pytorch [122] and Scikit-Learn [158] were used. In addi-
tion, the training of the Resnet-18 architecture was performed
in an NVIDIA𝑇𝑀 RTX 2080 Super Graphics-Processing-Unit
(GPU).

Probability fusion via weight-sum optimization

There exist two possibilities when applying a late fusion
strategy: either to fuse the predictions [211] or the probabilities
[177] returned by the classification models. The predictions
can be fused by applying a voting scheme, where the most
voted class among the different models is the one selected for
the fusion model. On the other hand, with the probabilities,
a more fine-grained fusion can be performed, since we have a
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probability percentage for each class. We chose this last option
expecting a better performance based on previous results we
have obtained on this problem when fusing RNA-Seq and
WSI [208].

The approach for obtaining the probabilities differs between
molecular and imaging modalities. For the molecular modal-
ities, the probability for each class is obtained by using the
methodology proposed by Wu et al. [173], based on a coupling
method implemented in the SVM classifier that can be found
in the Scikit-Learn python library [158]. For the imaging data,
WSIs in this case, we need to manually compute them. Taking
into account that we have the predictions for every tile in a
given slide, the probabilities are computed as the number of
tiles predicted for each class divided by the total number of
tiles in the slide (see Eq. 5.1).

𝑃
𝐶𝑁𝑁 (𝑥, 𝑐𝑖) =

#𝑇𝑖𝑙𝑒𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑥, 𝑐𝑖)
#𝑆𝑙𝑖𝑑𝑒𝑇𝑖𝑙𝑒𝑠(𝑥) (5.1)

where 𝑥 is the sample to be predicted and 𝑐𝑖 is the given class:
LUAD, Control, or LUSC.

Different approaches have been proposed in the literature
to obtain the weights when there are different models and
modalities. For instance, Dong et al. have proposed to com-
pute the weights based on the performance of the classifiers
without any normalization [174], while Meng et al. and Trong
et al. have proposed to normalize the weights obtained based
on the performance of the maximum accuracy or the max-
imum and the minimum accuracy respectively [175, 176].
Other approaches have consisted of simply multiplying the
probabilities and the maximum was chosen for the prediction,
by Depeursinge et al. [177]. In addition, we have previously
proposed to compute the weights using stratified resampling
sets using the performance of each model [208].

One drawback of the aforementioned approaches is that they
are only taking into account the overall performance of the
models. However, a classifier can be really good at discern-
ing one or various classes but have low overall performance
in comparison to the rest of the classifiers. In addition, the
weights are computed only once and based on their indi-
vidual performance, without taking into account how they
performed in the classification task when they are fused.
In this work, the probabilities from each model and class
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serve as input to an Artificial Neural Network (ANN), and
the weights of the ANN are optimized using a stochastic
gradient descent approach. By doing so, we can obtain a
weight based on the performance of each classifier for each
one of the classes, and where the weights change based on the
performance of the fusion model in the classification task.

For the optimization of the weights, an ANN formed by a
single linear layer was used in our study. The linear layer has
3x5 weights, which could be represented as the following
matrix:


𝑤1,1 𝑤1,2 𝑤1,3 𝑤1,4 𝑤1,5
𝑤2,1 𝑤2,2 𝑤2,3 𝑤2,4 𝑤2,5
𝑤3,1 𝑤3,2 𝑤3,3 𝑤3,4 𝑤3,5

 (5.2)

where each row corresponds to a class (LUAD, Control, and
LUSC respectively) and each column to a data modality (WSI,
RNA-Seq, miRNA-Seq, CNV, and metDNA respectively).
These weights are randomly initialized but fulfilling the
condition that the row needs to sum up to one. After each
backward pass, a softmax function is applied to the weights
in order to maintain this condition.

Then, these weights are used to perform a weighted sum
of the probabilities of each class (see Eq. 5.3), and the final
predicted class is the one with the highest probability:

𝑃
𝑐𝑖
𝐹𝑢𝑠𝑖𝑜𝑛

= 𝑃
𝑐𝑖
𝑊𝑆𝐼

∗ 𝑤𝑖 ,1 + 𝑃𝑐𝑖𝑅𝑁𝐴 ∗ 𝑤𝑖 ,2+
𝑃
𝑐𝑖
𝑚𝑖𝑅𝑁𝐴

∗ 𝑤𝑖 ,3 + 𝑃𝑐𝑖𝐶𝑁𝑉 ∗ 𝑤𝑖 ,4 + 𝑃𝑐𝑖𝐷𝑁𝐴 ∗ 𝑤𝑖 ,5
(5.3)

where 𝑐𝑖 is the class (LUAD, Control or LUSC) and 𝑖 is the
index of the class in the weights matrix (see Eq. 5.2).

Once we have obtained the fused probabilities, the Cross-
Entropy Loss is used as the loss function in order to optimize
the weights for the classification task. By doing so, the opti-
mization allows obtaining the combination of weights that
maximizes the performance in the classification task. The
Adam optimizer [212] is used for the optimization once the
loss has been computed. A validation set of 10% was selected
from each training set, in order to evaluate the performance
of the fusion model during the optimization of the weights
for 5 epochs.
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This methodology allows us to easily deal with missing in-
formation, which is crucial when working with biological
information given the high cost of performing all the screen-
ings on a patient. If one of the data modalities is missing,
its probability for each class will be zero and it would not
affect the fusion (see Eq. 5.3). In Figure 5.1, an example of the
prediction pipeline can be observed.

5.4 Results and Discussion

Performance of each data modality

For the late fusion strategy, we need to train independent
models using each data modality. In the case of the molecular
data, the number of features for each modality was selected
based on having the lower number of features that provided
the best performance for each independent model, by using
the validation splits inside each training split in the 10-Fold
CV process. Finally, 6 genes were selected for RNA-Seq, 9
miRNA for miRNA-Seq, 12 genes for CNV, and 6 CpGs sites
for metDNA data.

The results that are obtained when using each source of
information separately can be observed in Table 5.8, using
all their available samples for the three classes classification
problem (see Table 5.2). For the independent models, the
higher results for the classification are obtained when using
RNA-Seq and metDNA, followed by miRNA-Seq (see Table
5.8). These results are in accordance with previous studies in
NSCLC. Qiu et. al. obtained an accuracy of 84% for CNV data
[197]. Similarly, the results obtained by Cai et. al. (an accuracy
of 86.54%) using metDNA are improved by those we have
obtained [199]. For the case of WSI, the presented results are
very similar to those obtained by Coudray et. al., an AUC of
0.978, and Graham et. al., an accuracy of 81% [131, 150]. For
RNA-Seq, Castillo-Secilla et. al. reached an accuracy of 94.7%
using SVMs, which is similar to our obtained performance
[203].
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Performance of late fusion with different

number of sources

Once the models were trained, we tested the different improve-
ments that can be obtained when adding new information,
comparing the fusion of the sources in groups of two, three,
four, and five. By doing so we are able to see how sources
complement each other in terms of classification performance,
and when it improves or worsens it. These results can be
observed in Table 5.8. For the late fusion models, we used
those samples that the data modalities in use have in common.
The number of samples per class are provided in Tables 5.4,
5.5, and 5.6. The confusion matrices for the discussed fusion
models are provided in Figure 5.2.

When fusing two sources, the highest performance in terms of
classification metrics is obtained for the fusion of WSI-RNA-
Seq, RNA-Seq-miRNA, and RNA-metDNA. Given that RNA-
Seq, miRNA-Seq, and metDNA were the ones that achieved
the highest performance independently, it is expected that
their fusion provides an increase in the metrics. However,
the fusion of WSI and RNA-Seq achieves great results in the
classification, even though WSI is not among the sources
with the best independent metrics. Therefore, WSI must be
improving some of the RNA-Seq predictions, that might be on
the wrong side of the prediction border of the probabilities.

Then, we moved to use three sources for the late fusion model.
By adding miRNA data to the WSI-RNA-Seq fusion model the
results obtained improved (from 94.69±1.80 to 95.69±1.76 in
terms of F1-Score). The same happens when we include CNV
or metDNA in the RNA-Seq-miRNA fusion model. RNA-Seq
seems to be the most important source since it is included
in those fusion models with high performance. In addition,
the fusion of RNA-miRNA with other sources improves the
classification over using RNA-Seq independently or with
other sources.

Finally, we carried out experiments to observe if there is an
improvement in the classification performance when using
four or five sources. In this case, the only fusion that improves
results over the fusion of three sources, in terms of the F1-Score
and very similar results in the accuracy metric, is when we
fuse all the biological sources. However, the improvement is
really small and the standard deviation increases (95.69±1.76
for WSI-RNA-Seq-miRNA and 95.82±2.05 for the fusion of all
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Table 5.4: Number of samples in common per class when we integrate two sources of information. WSI stands for
Whole-Slide-Imaging, CNV stands for Copy Number Variation and metDNA for DNA Methylation.

Fusion LUAD Control LUSC
WSI-RNA 442 41 467

WSI-miRNA 402 68 405
WSI-CNV 451 251 457

WSI-metDNA 415 71 356
RNA-miRNA 391 18 400

RNA-CNV 433 23 448
RNA-metDNA 398 14 348
miRNA-CNV 385 20 397

miRNA-metDNA 367 9 334
CNV-metDNA 441 52 361

Table 5.5: Number of samples in common per class when we integrate three sources of information. WSI stands
for Whole-Slide-Imaging, CNV stands for Copy Number Variation and metDNA for DNA Methylation.

Fusion LUAD Control LUSC
WSI-RNA-miRNA 381 15 389

WSI-RNA-CNV 419 23 437
WSI-RNA-metDNA 383 14 336
WSI-miRNA-CNV 376 20 383

WSI-miRNA-metDNA 356 9 319
WSI-CNV-metDNA 397 52 346
RNA-miRNA-CNV 369 5 377

RNA-miRNA-metDNA 346 4 314
RNA-CNV-metDNA 383 10 337

miRNA-CNV-metDNA 349 2 324

sources). For the rest of the fusion cases, the results obtained
are similar to the highest reached when using three sources
of information (see Table 5.8). Therefore, performing more
screenings on the patient if you already have the biological
sources that provided the best performance when using three
sources is not necessary for an accurate diagnosis in this
case.

Performance of the fusion models with missing

information

Dealing with missing information is crucial when working
with biological sources, given the high cost of some of the
screenings. Therefore, we evaluated the effectiveness of the
fusion model when some of the modalities are missing. In
order to do so, for each fusion model the metrics were com-
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Figure 5.2: Confusion matrices obtained for different fusion models in the samples that the modalities have in
common. WSI stands for Whole-Slide-Imaging, CNV stands for Copy Number Variation and DNA for DNA
Methylation.
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Table 5.6: Number of samples in common per class when we integrate four and five sources of information. WSI
stands for Whole-Slide-Imaging, CNV stands for Copy Number Variation and metDNA for DNA Methylation.

Fusion LUAD Control LUSC
WSI-RNA-miRNA-CNV 360 5 367

WSI-RNA-miRNA-metDNA 336 4 303
WSI-RNA-CNV-metDNA 369 10 326

RNA-miRNA-CNV-metDNA 333 1 304
WSI-RNA-miRNA-CNV-metDNA 324 1 294

Table 5.7: Ranges for the weights obtained for the five sources fusion and class in the 10 Fold-CV. The range
presents the minimum and maximum values obtained with the optimization across the splits. WSI stands for
Whole-Slide-Imaging, CNV stands for Copy Number Variation and metDNA for DNA Methylation.

Fusion LUAD Control LUSC

WSI-RNA-miRNA-CNV-metDNA

WSI [0.20, 0.33] [0.21, 0.30] [0.20, 0.28]

RNA [0.17, 0.30] [0.11, 0.16] [0.17, 0.22]

miRNA [0.15, 0.20] [0.14, 0.20] [0.17, 0.21]

CNV [0.16, 0.21] [0.27, 0.34] [0.17, 0.24]

metDNA [0.16, 0.21] [0.11, 0.17] [0.14, 0.22]

puted on all the samples available for the fused modalities,
without restricting to those that the modalities have in com-
mon. In Figure 5.6, the F1-Score is presented for each fusion
case predicting on all the samples that each modality has re-
spectively (see Table 5.2). In addition, the confusion matrices
for all the fusion models are presented in Figures 5.7, 5.8, 5.9,
and 5.3.

Except for miRNA-Seq samples, the fusion that achieves the
best performance is when fusing the five sources. However,
the improvement is small in comparison with using four
sources, so not having all of them does not excessively af-
fect the classification performance. Fusing only CNV with
metDNA, RNA-Seq or miRNA-Seq worsens the performance
in comparison to the usage of them independently, which
could be due to the imbalance of the classes (Table 5.2).
The combination of metDNA and WSI also performs poorly,
maybe due to the fact that it has been shown in the literature
that WSI reflects information about the methylation patterns
of human tumors [202], and therefore, they might not be
complementing each other. However, in most cases includ-
ing additional information improves the results that can be
obtained by each independent source.
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Table 5.8: Results obtained in the 10-Fold CV by every single modality and multi-modal fusion of the modalities in
their common samples (see Tables 5.4, 5.5, and 5.6). For the case of four and five modalities fusion, AUC is omitted
given the low number of control samples.

WSI RNA-Seq miRNA CNV metDNA Acc. (std) F1-Score (std) AUC (std) AUPRC (std)

X 88.56 (2.34) 88.57 (2.36) 0.965 (0.003) 0.940 (0.014)

X 93.16 (1.87) 93.17 (1.82) 0.987 (0.007) 0.973 (0.028)

X 92.31 (2.69) 92.34 (2.65) 0.976 (0.013) 0.961 (0.023)

X 88.36 (1.34) 88.36 (1.34) 0.954 (0.009) 0.879 (0.025)

X 93.21 (1.84) 93.19 (1.87) 0.972 (0.016) 0.957 (0.030)

X X 94.65 (1.80) 94.69 (1.80) 0.991 (0.004) 0.979 (0.032)

X X 92.59 (2.57) 92.60 (2.56) 0.987 (0.006) 0.982 (0.009)

X X 90.26 (1.98) 90.20 (1.92) 0.974 (0.010) 0.962 (0.016)

X X 92.79 (1.77) 92.80 (1.78) 0.983 (0.009) 0.979 (0.012)

X X 94.55 (1.83) 94.74 (1.70) 0.988 (0.007) 0.980 (0.017)

X X 91.81 (2.34) 92.12 (2.36) 0.978 (0.006) 0.953 (0.050)

X X 94.33 (1.81) 94.33 (1.79) 0.991 (0.007) 0.989 (0.009)

X X 91.00 (1.97) 91.36 (1.82) 0.973 (0.009) 0.944 (0.048)

X X 93.84 (2.88) 93.85 (2.88) 0.979 (0.015) 0.980 (0.015)

X X 90.15 (3.09) 90.28 (3.04) 0.968 (0.010) 0.947 (0.033)

X X X 95.55 (1.78) 95.69 (1.76) 0.985 (0.008) 0.990 (0.005)

X X X 93.99 (1.47) 94.00 (1.41) 0.982 (0.022) 0.974 (0.041)

X X X 94.70 (2.11) 94.73 (2.10) 0.987 (0.010) 0.990 (0.007)

X X X 93.84 (2.05) 93.97 (2.03) 0.974 (0.030) 0.977 (0.016)

X X X 94.23 (2.55) 94.23 (2.54) 0.975 (0.022) 0.986 (0.008)

X X X 93.50 (2.98) 93.52 (2.97) 0.981 (0.009) 0.978 (0.012)

X X X 94.79 (1.76) 95.10 (1.72) 0.938 (0.059) 0.963 (0.050)

X X X 95.05 (2.05) 95.10 (2.01) 0.967 (0.027) 0.989 (0.009)

X X X 94.11 (1.76) 94.20 (1.74) 0.977 (0.012) 0.981 (0.010)

X X X 94.11 (2.92) 94.36 (2.70) 0.975 (0.005) 0.966 (0.023)

X X X X 95.22 (2.13) 95.47 (2.01) - 0.987 (0.007)

X X X X 95.53 (2.09) 95.62 (2.04) - 0.989 (0.007)

X X X X 95.22 (2.10) 95.30 (2.05) - 0.986 (0.009)

X X X X 94.71 (2.29) 94.9 (2.20) - 0.978 (0.013)

X X X X 94.86 (2.19) 95.14 (2.06) - 0.981 (0.010)

X X X X X 95.53 (2.20) 95.82 (2.05) - 0.983 (0.012)
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The final results obtained when fusing all the data sources
is an F1-Score of 96.82 ± 1.07, an accuracy of 96.81 ± 1.07, an
AUC of 0.993 ± 0.004, and an AUPRC of 0.980 ± 0.016. These
results improved those aforementioned discussed and also
reduced the standard deviation obtained across the splits.
The receiver operating characteristic (ROC) curves (Figure
5.4 for the AUPRC metric and Figure 5.5 for the AUC metric)
obtained show the performance of each individual modality
and the fusion model over all the available samples for each
one (all the samples in the case of the fusion model). The
fusion model outperforms each modality for the three classes,
showing the potential of using all the information. In addition,
the fusion model reduces the number of misclassified samples
for all sources, representing a reduction of the diagnosis error
rate up to≈ 8.6% in the best case and≈ 1.6% in the worst case
(see Table 5.9). The confusion matrix obtained over the whole
dataset is presented in Figure 5.3 along with the weights
obtained for each modality in the fusion (see Table 5.7).

Figure 5.3: Confusion matrix for the fusion model using all modalities on all the available samples, without
restricting to those that the modalities have in common. WSI stands for Whole-Slide-Imaging, CNV stands for
Copy Number Variation and metDNA for DNA Methylation.

Comparison with previous work

The majority of the works presented in the literature for
NSCLC subtypes and control classification have focused
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Figure 5.4: ROC curves for the fusion and individual models over all available samples for each modality showing
the AUPRC metric. Figure 5.4 (a) ROC Curve for LUAD class. Figure 5.4 (b) ROC Curve for Control class. Figure
5.4 (c) ROC Curve for LUSC class.

Figure 5.5: ROC curves for the fusion and individual models over all available samples for each modality showing
the AUC metric. Figure 5.5 (a) ROC Curve for LUAD class. Figure 5.5 (b) ROC Curve for Control class. Figure 5.5
(c) ROC Curve for LUSC class.

on using a single data modality and mainly on a bi-class
classification problem, and in some cases, a single train-
test split was performed instead of a more robust k-Fold
CV validation. Our fusion model outperforms or reaches the
same results obtained by those works where a LUAD vs LUSC
vs Control classification has been presented, and a summary
is presented in Table 5.10. The fusion of information improves
the results that Qiu et. al. obtained for CNV data (an accuracy
of 84%) [197]. Similarly, the results obtained by Cai et. al.
using metDNA are also improved (they obtained an accuracy
of 86.54%) while reducing the number of CpG sites signature
[199] and similar results are obtained compared to those
presented by Castillo-Secilla et. al. using RNA-Seq (accuracy
of 95.7%) [203]. For the case of WSI, the fusion also improved
the results presented in the literature by Coudray et. al. [131]
(an AUC of 0.978) reaching an AUC of 0.991. In the case of
multi-omics fusion, we have not found works presenting
methods for the NSCLC subtypes and control classification.
However, in other NSCLC-related problems, the fusion of
information has presented an enhancement in performance.
Cheerla et. al. [115] showed that by fusing clinical, miRNA and
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Figure 5.6: F1-Score obtained by each fusion model on the available samples for each modality, without restricting
to those in common between the different modalities (see Table 5.2 check the number of samples per class). On the
left Y-axis, the sources used in the integration are shown, while on the right Y-axis the F1-Score obtained by each
integration can be observed. They are ordered from the highest F1-Score to the lowest. metDNA stands for DNA
Methylation and CNV for Copy Number Variation.
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Table 5.9: Correct and misclassified samples over the whole dataset for each data type and the fusion model using
all modalities. RNA, CNV, and metDNA stand for RNA-Seq, Copy Number Variation, and DNA Methylation
respectively.

WSI RNA miRNA CNV metDNA

Correct 1232 913 834 1636 821

Misclassified 159 67 70 220 62

Fusion

Correct 1328 929 857 1796 838

Misclassified 63 51 47 60 45
Absolute difference in

misclassified error rate (#samples (%))

96 (6.5%) 16 (1.6%) 23 (2.6%) 160 (8.6%) 17 (2%)
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Figure 5.7: Confusion matrix for the two-sources fusion models using all modalities on all the available samples,
without restricting to those that the modalities have in common. WSI stands for Whole-Slide-Imaging, CNV stands
for Copy Number Variation and metDNA for DNA Methylation.
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Table 5.10: Comparison of our fusion results with the available literature for LUAD vs Control vs LUSC. The results
of the fusion model are on those available samples for the studied modality. Unfortunately, a direct comparison of
fusion methods cannot be done given the lack of literature for this specific problem. The best results for each case
are highlighted in bold.

Modality Metric Score

Qui et al.[197] CNV Acc. 84%

Ours CNV Acc. 96.93%

Cai et al.[199] metDNA Acc. 86.54%

Ours metDNA Acc. 95.01%

Cai et al.[199] metDNA F1-Score 74.55%

Ours metDNA F1-Score 95.01%

Castillo-Secilla et al.[203] RNA-Seq Acc. 95.7%

Ours RNA-Seq Acc. 95%

Castillo-Secilla et al.[203] RNA-Seq F1-Score 95.4%

Ours RNA-Seq F1-Score 95.02%

Coudray et al.[131] WSI AUC 0.978

Ours WSI AUC 0.991

Graham et al.[150] WSI Acc. 81%

Ours WSI Acc. 95.70%

WSI data the performance was improved in LUAD prognosis
prediction. Similarly, Lee et al. [207] improved the prognosis
prediction by fusing the information of four sources (RNA-
Seq, miRNA, CNV and metDNA) over each independent
one. This same behavior is observed in our case for these
sources.

When it comes to the relations between data modalities, our
results highlight previously reported patterns. It has been
presented in the literature that WSI can be used to predict
mutation patterns or gene expression levels [131, 213], so
the information provided may be completed with the one
presented in RNA-Seq data. Similarly, when fusing three
data modalities it was shown that including miRNA-Seq to
the RNA-Seq-WSI fusion model improved the classification
performance. miRNAs regulate specific genes related to the
proliferation of NSCLC [200, 201], and therefore, might be
complementing the information provided by RNA-Seq and
WSI.
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Figure 5.8: Confusion matrix for the three-sources fusion models using all modalities on all the available samples,
without restricting to those that the modalities have in common. WSI stands for Whole-Slide-Imaging, CNV stands
for Copy Number Variation and metDNA for DNA Methylation.
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Figure 5.9: Confusion matrix for the four-sources fusion models using all modalities on all the available samples,
without restricting to those that the modalities have in common. WSI stands for Whole-Slide-Imaging, CNV stands
for Copy Number Variation and metDNA for DNA Methylation.
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5.5 Conclusions

In this paper, we demonstrate the usefulness of fusing het-
erogeneous sources of biological information for NSCLC
subtypes and control classification. In addition, we have pro-
posed a new optimization methodology for weighting the
classifiers in a late fusion strategy, effectively dealing with
missing information and reaching good performance in the
classification.

The fusion of the information outperforms the use of each
independent source for the classification. Independently,
RNA-Seq and metDNA achieve the highest performance in
the classification. When performing the fusion, RNA-Seq
is crucial for the classification problem and the addition
of miRNA-Seq in combination with another data modality
improves the obtained results. The best results are obtained
when fusing the five sources of information reaching an
F1-Score of 96.82 ± 1.07 when classifying all the available
samples from all sources. However, there is not a huge in-
crease in comparison with using three or four sources. The
obtained results also highlight other reported patterns in
the literature between data modalities that should be further
studied. In addition, the methodology effectively deals with
missing information, which is mandatory given that not all
screenings are always performed on a patient. The presented
methodology can be used in any diagnosing problem where
heterogeneous sources of information are available, and it can
be extended to any number of data sources. In future work,
we would like to test the generalization capabilities of the
proposed methodology for the classification of other cancer
types or in other diagnosis-related problems and evaluate if
the relations found between the different modalities apply to
these other problems.
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Abstract

The study of how the different omics can affect a given tissue
can unveil important mechanism in cancer biology, allowing
a more in depth interpretation of tissue slides by pathologists
or help to create better and more accurate CDSS. However,
the number of samples available in multi-modal settings
hugely limits this type of research. Generating synthetic
samples of the different modalities arise as a solution to
the scarcity problem, both to impute missing modalities or
to increase the size of the dataset to create more powerful
CDSS. Nevertheless, the majority of the approaches proposed
in the literature focus on generating a single modality, not
leveraging the information provided by others. Inspired by
the recent advances in the text-to-image field, we proposed a
solution for the RNA-to-image synthesis problem. We treat
RNA-Seq data as the text and use it to generate corresponding
WSI tiles. We proposed a novel approach using generative
adversarial networks for generating healthy tissues. By doing
so, we propose a solution to the scarcity problem, with a
model that can be used to augment the data available in
publicly available datasets, to impute modalities in non-
multi-modal datasets available (where only the RNA-Seq
data is present) or study the existing relation and effects of
paired modalities on one another.

6.1 Introduction

Biomedical data has become increasingly multi-modal, which
has allowed us to better capture the complexity of biological
processes. In the multi-modal setting, several technologies
can be used to obtain data from the same patient, providing
a richer representation of their biological status and disease
state. Currently, in clinical practice, demographic, clinical,
molecular, and imaging data may be routinely collected on
patients, making these data available for advancing the goals
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of precision medicine [7, 214]. For example, DNA and RNA-
sequencing are now widely used for the characterization
of cancer patients [215, 216]. Somatic mutation and gene
expression profiles can be used to improve diagnosis, define
disease subtypes, and determine the treatment regimen for
cancer patients [131, 217]. Similarly, pathology WSI data are
now more commonly available for secondary use. Specifically,
digitization of hematoxylin & eosin (H&E) stained tissue sec-
tions from patients has become a key data source for training
novel deep learning models. In the clinical setting, WSI is
the cornerstone for a variety of tasks, such as primary diag-
nosis and treatment recommendations including the use of
immunohistochemistry [133]. Specifically for oncology, mor-
phological and texture changes can be observed in digitized
tissue, reflecting the tumor microenvironment [133–135].

In particular, the relationship between genomic features and
WSI image features has recently been demonstrated, with
several studies showing that these two modalities are comple-
mentary. For example, genomic mutations, gene expression
profiles, and methylation patterns have been predicted from
WSI data using deep learning models [131, 202, 213]. Moreover,
studies have shown that the integration of both modalities
leads to an improvement in the performance of machine
learning models for diagnostic and prognostic tasks in cancer
[115, 131, 196, 218]. However, both modalities are not always
available, due to financial or logistical constraints. Thus, op-
portunities for training models that require multi-modal data
are missed, slowing down progress in advancing precision
medicine [219, 220].

The scarcity of multi-modal data is a concerning problem in
the machine learning community, especially in the context
of recent successes for non-medical applications where huge
amounts of data are available [77, 221]. To deal with this
issue, a class of models in deep learning, generative models,
have huge potential, by imputing data samples that are indis-
tinguishable from real data, and as such creating synthetic
data. Within generative models, GANs, VAEs, and more re-
cently diffusion models have been widely used for multiple
data generation tasks, obtaining exceptional performances in
previous studies [222–224].

For non-medical applications, multi-modal data generation
has gained interest in recent years thanks to the availability of
large multi-modal data e.g. paired text and image data. Unsu-
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pervised learning methods such as GANs, transformers [225]
and diffusion models [226] have been developed to leverage
the relationship between these two modalities, enabling the
generation of images based on their text description [224,
227–229], or showing image understanding and description
capabilities [230]. The relation between these two modalities
is similar to the relation between WSI images and genomic
data since they are describing the same phenomenon from
two different perspectives. As aforementioned, thanks to
public multi-modal biomedical datasets such as The Cancer
Genome Atlas (TCGA) [57] or the Genotype-Tissue Expres-
sion project (GTEx) [58], in-depth analyses can be carried
out between these modalities, allowing to study diseases or
biological processes based on their interactions.

However, these new methodologies rely on the use of deep
neural networks for the analysis, which is widely known
for being data hungry. Unfortunately, both modalities are
not always available in public datasets. For example, the
Genome Express Omnibus (GEO) database [231] has numer-
ous RNA-Seq datasets available, but few datasets have the
corresponding WSI images. Similarly, most medical centers
have large archives of clinical slides, but not yet the means to
generate matched gene expression data. New multi-modal
datasets are being created to deal with these issues [232], yet
the problem still occurs for most clinical data sets. While the
multi-modal generation of data has been explored for natural
images (text-to-image) [224, 227, 229, 233], the relation be-
tween WSI and gene expression needs yet to be explored for
multi-modal synthetic data generation. Researchers usually
focus on generating or imputing single modalities, without
leveraging the information provided from other data types.
However, by using both images and gene expression, the
quality of the generated data can be significantly improved.

In this work, based on the success of text-to-image models in
natural images, we questioned if we could provide a solution
for the task of RNA-to-image synthesis. First, we are going
to generate healthy tissue tiles from two different tissues,
lung, and brain cortex, using traditional GANs (see Figure
6.1 B). Then, we present a novel approach for RNA-to-Image
synthesis by infusing a GAN architecture with the gene
expression profile of the patient to generate synthetic tiles
(see Figure 6.1 C).
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Figure 6.1: Model architecture for gene expression, WSI, and combined data using VAE and GANs. Panel A: 𝛽VAE
architecture for the generation of synthetic gene expression data. The model uses as input the expression of 19, 198
genes. Both the encoder and the decoder are formed by two linear layers of 6, 000 and 4, 096 respectively. The
latent 𝜇 and 𝜎 vectors have a feature size of 2, 048. Panel B: GAN architecture for generating tiles by sampling from
a random normal distribution. The architecture chosen was a Deep Convolutional GAN (DCGAN) [101], using
as input a feature vector of size 2, 048. The final size of the tiles generated is 256 × 256, the same as the size of
the real tiles. Panel C: RNA-GAN architecture where the latent representation of the gene expression is used for
generating tiles. The gene expression profile of the patient is used in the 𝛽VAE architecture to obtain the latent
representation. Then a feature vector is sampled from a squeezed random normal distribution (values ranging
between [−0.3, 0.3]) and added to the latent representation. A DCGAN is trained to use this vector as input and
generate a 256 × 256. The discriminator receives synthetic and real samples of that size.
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6.2 Related work

While the RNA-to-image synthesis task has not been ap-
proached in the literature, several studies have focused on the
generation of single-modality synthetic data for both RNA
gene expression and WSI data. For example, the generation
of gene expression data has been mainly used in the context
of data imputation and has been researched by leveraging
the latent space of VAEs. Qiu et al. showed that 𝑏𝑒𝑡𝑎VAEs,
a special case of VAEs, can impute RNA-Seq data [234].
Similarly, Way et al. proposed a VAE trained on pancancer
TCGA data, that is able to encode tissue characteristics in the
latent space and also leverages biological signals [235]. Also,
Vinas et al. presented a model that could generate synthetic
gene expression profiles that closely resemble real profiles
and capture biological information [236]. The generation of
high-quality WSI tiles has also been researched in recent years
given the success of GANs in generating natural images [102,
103]. For example, Quiros et al. showed that GANs are able
to capture morphological characteristics of cancer tissues,
placing similar tissue tiles closer in the latent space, while
generating high-quality tiles [105, 237].

6.3 Material and Methods

Data

The Genotype-Tissue Expression (GTEx) project was used to
obtained the pared WSI and RNA-Seq. We collected the RNA-
Seq and WSIs from brain cortex, lung, pancreas, stomach and
liver tissues from the GTex database. There were a total of
246 samples of brain cortex tissue, 562 samples of lung tissue,
328 samples of pancreas tissue, 356 of stomach tissue, and
226 samples of liver tissue. To validate the generalization
capabilities in generating tiles from the gene expression of
other cohorts, the GEO series 120795 was used [238].

RNA-Seq data preprocessing

Gene expression data from the GTEx project contains a total
of 56, 201 genes. This number would require huge computa-
tional capabilities, and it difficults the training of the machine
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learning models. Therefore, we reduced the feature dimen-
sion and obtained the expression of 19, 198 protein-coding
genes for further experiments. The data was log-transformed,
and the z-score normalization was applied to the gene ex-
pression using the training set data, in order to not include
the validation or the test set information on the normaliza-
tion process. In the generalization experiments, the gene
expression from lung and brain cortex tissue of the GEO
series 120795 was used. However, not all the previously se-
lected protein-coding genes were among those sequenced
in this dataset. Therefore, for those missing in this external
cohort, we initialized them as zero for the generation of the
tiles. Data were normalized using the mean and standard
deviation from the training set of the GTEx data and log
transformed.

WSI data preprocessing

WSIs were acquired in SVS format and downsampled to 20×
magnification (0.5𝜇𝑚 px-1). The size of WSIs is usually over
10𝑘 × 10𝑘 pixels, and therefore, they cannot be directly used
to train machine learning models to generate synthetic data.
Instead, tiles of a certain dimension were taken from the tissue,
and these are used to train the models, which is consistent
with related work in state-of-the-art WSI processing [131, 239,
240]. In our work, we took non-overlapping tiles of 256 × 256
pixels. Firstly, a mask of the tissue in the higher resolution of
the SVS file was obtained using the Otsu threshold method
[241]. Tiles containing more than 60% of the background
and with low contrast were discarded. A maximum of 4, 000
tiles were taken from each slide. For the preprocessing of
the images we relied on the python package openslide [155],
which allows us to efficiently work with WSI images. The
tiles were saved in an LMDB database using as an index
the number of the tile. This approach enables us to reduce
the number of generated files, and structure of the tiles in
an organized way for a faster reading while training. Tiles
containing pen marks or other artifacts were filtered during
the reading phase.
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beta-VAE for encoding RNA-Seq and generate

synthetic samples

To reduce the dimensionality of the RNA-Seq data, we de-
cided to use a 𝛽-VAE architecture. For the RNA-to-image
synthesis of healthy samples, we empirically determined to
use two hidden layers of 6, 000 and 4, 096 neurons each for
both the encoder and the decoder, and a size of 2, 048 for the
latent dimension. Given that we were going to use the latent
representation for the generation of the tiles, we followed
the same dimensionality as the output of the convolutional
layers of state-of-the-art convolutional neural networks [166].
We used batch norm between the layers and the LeakyReLU
as the activation function. A 𝛽 = 0.005 was used in the loss
function. We used the Adam optimizer for the training with
a learning rate equal to 5 × 10−5, along with a warm-up and
a cosine learning rate scheduler. We trained the model for
250 epochs with early stopping based on the validation set
loss, and a batch size of 128. A schema of the architecture is
presented in Figure 6.1 A. We divided the dataset in 60-20-20
% training, validation and test stratified splits. We trained
two different models, one for brain cortex and lung tissue
data, and the other with all the tissues described in previ-
ous subsections (lung, brain cortex, stomach, pancreas, and
liver).

GAN and RNA-GAN for the generation of

healthy synthetic samples

For the generation of synthetic samples, we propose two
architectures in order to compare the advantage of using
the RNA-Seq profile of the patient for the generation of the
tiles.

Firstly, we used a normal GAN (described in Chapter 2).
Specifically, we trained two Deep Convolutional GANs [101],
one per tissue, by sampling from a normal random distribu-
tion (scheme depicted in Figure 6.1 B). We sample a different
number of tiles per image for the training of the network,
finally selecting 600 tiles per image because the quality of the
image and the artifacts were highly improved by augmenting
the number of tiles. We used the Adam optimizer for both the
generator and the discriminator, with a learning rate equal to
1× 10−3 for the generator, a learning rate equal to 4× 10−3 for
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the discriminator, and betas values (0.5, 0.999) in both cases.
Data augmentation such as random vertical and horizontal
flips were used during training. The brain tissue GAN was
trained during 39 epochs while the lung tissue GAN was
trained during 91 epochs. For the training of the GANs, the
Python package Torchgan was used [242].

Secondly, we present a novel architecture, called RNA-GAN
for RNA-to-image synthesis (see Figure 6.1 C). We combined
the pretrained 𝛽VAE with the DCGAN architecture, using
the encoding in the latent space as the input for training
the generator. To generate different tiles from the same gene
expression profile, we sample a noise vector from a nar-
rowed random normal distribution (values ranging between
[−0.3, 0.3]) and add it to the latent encoding. Therefore, the
input to the generator would be:

�̃� = 𝑞𝜃(𝑧 |𝑥) + 𝑁(0, 1) (6.1)

We trained two DCGANs, one per tissue, and the pipeline
is depicted in Figure 6.1 C). We finally selected 600 tiles per
image to train the generator. We used the Adam optimizer
for both the generator and the discriminator, with a learning
rate equal to 1 × 10−3 for the generator, a learning rate equal
to 4 × 10−3 for the discriminator and betas values (0.5, 0.999)
in both cases. Data augmentations such as random vertical
and horizontal flips were used during training. The brain
tissue GAN was trained during 24 epochs while the lung
tissue GAN was trained during 11 epochs. For the training of
the GANs, the Python package Torchgan was used [242].

To validate the generalization capabilities of the trained
model, the GEO series 120795 was used. It contains gene
expression profiles from healthy tissues, where we took the
expression of lung and brain cortex tissues. For obtaining
machine learning performance metrics, one hundred images
were generated per tissue and obtain from real data. Then,
a Resnet-18 was trained in the real data from scratch using
10 epochs and early stopping based on a 20% of data as
validation set. A learning rate value of 3𝑒−5 and AdamW
optimizer were used. Finally, the model was tested on the
GEO synthetically generated data, and accuracy, F1-Score
and AUC was computed.

To evaluate the quality of the synthetic tiles, we presented
a form to expert pathologists. The pathologists were not
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informed that some presented tiles were synthetic, to omit
any kind of biases in the evaluation. Instead, we informed the
pathologists that these tiles were going to be used to create
machine learning classifiers, and we wanted to evaluate
their quality for this task. Three questions were asked to the
experts:

1. Is the tile from brain cortex or lung tissue?
2. Quality of the morphological structures: Being 1 very

bad and 5 very good, how would you rate the morpho-
logical features present in the tile for an assessment of
the tissue?

3. Do you find artifacts in the image? (e.g. image aberra-
tions) (Yes/No)

The training time of the GAN model was around 12 days
for the lung tissue and 8 days for the brain tissue using
the Sherlock cluster presented in Chapter 2. The training
time of the RNA-GAN model take around 48 hours for the
brain tissue and 58 hours for the lung tissue using the same
cluster. The models were trained using mainly NVIDIA V100
GPUs.

6.4 Results and Discussion

A 𝛽-VAE model discriminates between tissues

and can generate synthetic multi-tissue

expression profiles

As a first step, we aimed to create an accurate, distinguishable
latent representation of healthy multi-tissue gene expression
using a 𝛽-VAE architecture (Figure 6.1 A). The 𝛽-VAE model
was able to accurately reconstruct the gene expression by
forwarding the latent representation through the decoder and
obtaining a mean absolute error percentage of 39% (RMSE
of 0.631) on the test set for multiple tissues (Figure 6.2 C).
To verify that the latent representation learnt by the 𝛽VAE
accurately maps to the different tissues, the UMAP algorithm
[243] was used to visualize the real gene expression data as
well as reconstructions of latent representations on the test
set. For lung and brain samples, two separated clusters can
be distinguished, showing how the model is characterizing
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the two tissues in the latent space (Figure 6.2 A, "Real" versus
"Reconstruction").

To further validate the learned latent space, we tested what
happens when interpolating data in it. By interpolating in
the latent space, we should be able to "transform" a randomly
drawn sample to a gene expression profile that looks like it
originated from one of the tissues (i.e. synthetic gene expres-
sion generation). To do so, we need to calculate the cluster
centroid vector over the real data latent representations of
the desired tissue and add this centroid vector to randomly
drawn samples from the 𝛽VAE latent distribution. This pro-
cedure allows us to generate synthetic gene expression data
that look like real brain or lung gene expression data. When
projecting these synthetic samples in the UMAP space, they
indeed fall in the same clusters as the original data (Figure
6.2 A, "Generated" versus "Real").

We can also perform other operations in the latent space. For
example, we should be able to "shift" the gene expression
from one tissue into what it would look like if it originated
from another tissue. In this case, we need to add the difference
vectors between the cluster centroids of the respective tissues
to the latent representation of a given sample gene expression.
For example, we can shift a real brain gene expression profile
to a lung gene expression profile and vice versa. Visualizing
these new samples in the UMAP space verifies that these
operations can indeed be successfully performed (Figure 6.2
B). Next, the representation capabilities of the 𝛽VAE can also
be extended to multiple tissues, showing a diverse represen-
tation with well-differentiated clusters, and maintaining the
generative capabilities across the multiple tissues (Figure 6.2
C).

GANs generate quality synthetic WSI tiles

preserving real data distribution differences

Next, we developed a traditional GAN model to generate
synthetic WSI tiles for brain cortex and lung tissue. The model
was able to generate good quality images, preserving the
morphological structures, and showing little artifacts (Figure
6.3 A). In some tiles, checkerboard artifacts are noticeable,
which is a known problem in GANs [244].
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Figure 6.2: UMAP visualization of 𝛽-VAE embedding of multi-tissue expression profiles. Panel A: UMAP
visualization of the real and reconstructed gene expression profiles of lung and brain cortex healthy tissue.
Generated gene expression profiles, by sampling from the latent space and interpolating to the respective tissue,
is also plotted showing the generative capabilities of the model. Panel B: Shifting real gene expression profiles
between the two tissues. The latent representation of all the available samples is obtained, and the difference
vectors between the clusters centroids are computed. Panel C: UMAP visualization of real gene expression profiles
of multiple tissues and generated one from brain cortex tissue.

Despite the artifacts, the main cell types can be observed in
the tiles, such as epithelial, connective, and muscle tissue.
In addition, there is a clear distinction between the tiles
generated for the brain cortex and the lung, preserving the
characteristics of the corresponding real tiles. Specifically, the
brain cortex tissue is grouped in a set of layers that form a
homogeneous and continuous layer (the outer plexiform layer,
outer granular layer, outer pyramidal cell, inner granular layer,
inner pyramidal layer, and polymorphous layer) [245]. These
characteristics can be observed in the synthetic brain tiles,
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i.e. they appear more homogeneous and contain less white
spaces in comparison to the synthetic lung tissue tiles. The
synthetic lung tissue tiles also present the characteristics
of real tiles, showing the terminal bronchioles, respiratory
bronchioles, alveolar ducts, and alveolar sacs in some cases.

To test if the generated tiles have the same distribution as the
real ones, the feature vector outputted from one of the last
convolutional layer of an Inception V3 network pretrained
on Imagenet was obtained for the 600 generated tiles. Then,
these feature vectors were projected and visualized using the
UMAP algorithm, showing a similar distribution between
the tissues for both real (Figure 6.3 B) and synthetic samples
(Figure 6.3 C).

Figure 6.3: A GAN generates realistic lung and brain cortex tiles. Panel A: Tiles generated by the GAN model for
brain tissue on the top and for lung tissue on the bottom. Panel B: UMAP representation of the real patients in the
lung and brain cortex dataset. Panel C: UMAP representation of generated tiles using the GAN model. 600 tiles are
generated per patient, and then used to compute the feature vectors and the UMAP visualization.

Using latent gene expression profiles as input on

GANs improves synthetic H&E tiles quality and

reduces training time

Next, we used latent gene expression profiles as input instead
of random normal distribution for a GAN model generating
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WSI tiles. The gene expression was first forwarded through
the pretrained 𝛽VAE to reduce the dimensionality and en-
code it in the latent space. Then, that representation plus a
narrowed random normal distribution sampled noise was
used as input to the generator, which outputs the synthetic
tile (Figure 6.1 C). This model shows that synthetic tiles can
be generated with fewer artifacts and better quality of the
morphological structures (Figure 6.4 A). To demonstrate that
the gene expression latent representation provides actual in-
formation to generate the tiles, we sampled only from a scaled
random normal distribution (values between [−0.3, 0.3]) to
train the model. This model was not able to produce quality
samples of each tissue (Figure 6.4 C).

We also obtained the feature vector from one of the last
convolutional layers of the Inception V3 architecture, to
observe if the distribution of the synthetic tiles was similar
to that one from real patients. The differences between the
tissues were preserved as well as the tissue inner-cluster
distribution (Figure 6.4 B).

To test the generalization capabilities of the trained models,
we also used as input external brain cortex and lung tissue
RNA-Seq data. The model was able to successfully generate
tissue samples with characteristics similar to those obtained
with the training data (Figure 6.4 D). We then tested whether
a model trained on real data can distinguish the synthetic
generated tiles from this GEO cohort. This model reached an
accuracy of 80.5%, a F1-Score of 79.7%, and an AUC of 0.805,
showing that a model trained on real tiles can accurately
classify the synthetic tiles. Finally, we observed that the RNA
expression-infused GAN model needed fewer training epochs
in comparison to the regular GAN model (Figure 6.5).

Expert evaluation of synthetic tiles

Next, we asked a panel off five board-certified anatomic
pathologists with different subspecialty expertise to rate the
quality of brain cortex and lung cortex tiles. These pathol-
ogists were not informed about the presence of synthetic
data in the examples. The pathologist’s evaluation of the mor-
phological structures resulted in a mean score of 3.55 ± 0.95
for real brain, 2.88 ± 0.62 for GAN brain and 2.94 ± 0.64 for
RNA-GAN brain (the scores range between 1 and 5). For
the lung tissue, the mean score for the real samples was
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Figure 6.4: A gene expression infused GAN improves-tile quality. Panel A: tiles generated using the RNA-GAN
model for lung and brain cortex healthy tissue. Panel B: UMAP visualization of the patients by generating tiles
using their gene expression. The model preserves the distribution differences between the two tissues. Panel C:
generated tiles of the model trained using only random gaussian data on a small range ([−0.3, 0.3]) do not generate
high-quality tiles, showing that the gene expression distribution is essential for synthetic tile generation. Panel D:
brain cortex and lung tissue tiles generated using an external data set (GSE120795), showing the generalization
capabilities of the model.

2.26± 1.14, 1± 0.55 for the GAN lung, and 1.73± 0.79 for the
RNA-GAN lung. Significant differences were found in the
pathologists evaluation between the GAN and RNA-GAN
lung synthetic tiles scores (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.025), and no sig-
nificant differences between the real and RNA-GAN lung
tiles scores (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.052). A bigger mean evaluation
score difference was found between real and GAN tiles than
between real and RNA-GAN tiles, showing that the quality of
RNA-GAN synthetic tiles is closer to real tiles (Figure 6.6 A).
In addition, the mean difference in the evaluation between
GAN and RNA-GAN tiles was bigger than zero, showing
the preference of pathologists for the RNA-GAN tiles (Figure



6.5 Conclusions 113

A

Epoch 24/39 Epoch 11/91


Epoch 24/24 Epoch 11/11


GAN Brain GAN Lung

RNA-GAN Brain RNA-GAN LungRNA-GAN Lung

B

Figure 6.5: A gene expression profile-infused GAN converges faster: brain cortex and lung tissue tiles generated at
the same epoch during training for the model with and without gene expression profiles. The visualized epoch is
the last epoch of training for the models using RNA-Seq data. Panel A: brain cortex generation at training epoch 24
for GAN and RNA-GAN models, with similar performance and quality between the generated tiles, however, less
diversity is obtained when not using gene expression profiles. Panel B: lung tissue generation at training epoch
11 for both the GAN and RNA-GAN models. A comparison of both models show noticeable differences in the
quality of the generated tiles. The model using gene expression profiles outputs better morphological features, less
artifacts, and has a higher overall quality.

6.6 B). Pathologists detected the tissue of origin of the tiles
with a 100% ± 0.0 accuracy for both real and RNA-GAN tiles
and with a 74.98% ± 20.40 accuracy for the GAN tiles. In
addition, pathologists reported significantly fewer artifacts
in RNA-GAN images (56% in comparison to 70% for GAN
images).
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A B

Figure 6.6: Expert evaluation of synthetic slides. Panel A: difference in morphological structure quality of synthetic
(generated by GAN and RNA-GAN) and real tissues based on the pathologists evaluation. The difference between
real tiles and generated tiles was bigger for GAN than for RNA-GAN. Panel B: Difference in morphological
structure quality between the synthetic generated tiles by the GAN and RNA-GAN based on the pathologists
evaluation. Pathologists evaluated better those tiles generated using RNA-GAN in comparison to only GAN.

[229]: Saharia et al. (2022), “Pho-
torealistic Text-to-Image Diffusion
Models with Deep Language Un-
derstanding”

6.5 Conclusions

In this work, we have presented a novel methodology for
the RNA-to-image task. We trained a 𝛽VAE to reduce the
dimensionality of the gene expression data, and obtain a
representative latent space. 𝛽VAE are able to obtain a latent
representation that encodes the characteristics of different
healthy tissues (see Figure 6.2 A). Not only that but the
generative capabilities of the model are also tested to ensure
that the latent space is representative of the gene expression
differences(see Figure 6.2 C).

Firstly, we showed how GANs can generate more realistic
synthetic tiles when they are infused with the latent gene
expression representation, successfully generating healthy
lung and brain cortex tissue. In addition, the training time was
highly reduced, needing 88% fewer epochs for the RNA-GAN
model to generate realistic tiles. This shows how important it
is to include information from other modalities, helping to
guide the generation process. We showed how our trained
model had generalization capabilities, using RNA-Seq data
from out of the distribution and generating synthetic WSI
tiles. However, GANs have two major drawbacks for the RNA-
to-image task. Their training is unstable and prone to model
collapse, leading to loss of diversity in the generated samples
[100, 246, 247]. Recently presented models, such as diffusion
models, can arise as a solution to these problems [229], and
their use is something that we would like to explore.
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RNA-to-image synthesis can be utterly important for data
imputation and data augmentation, and to study the relations
between these two modalities. It has been shown that the
performance of DNNs increases with the number of samples,
and our generated synthetic samples can be used for pre-
training purposes. Aside from their practical utility in data
augmentation, models such as the RNA-GAN, which utilize
latent representations of an entire RNA-Seq profile, might
allow for the identification of novel morphologic features
associated with clinically relevant molecular biological states
that are currently unrecognized by the human eye.

In future work, we will experiment with different architec-
tures to improve sample quality, such as recently presented
diffusion models and apply them in a multi-cancer setting to
study the capabilities of these models for the RNA-to-Image
synthesis task [229].
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This chapter aims to summarize the outcomes of this the-
sis, highlighting the most relevant achievements. It further
outlines some lines of work that will be pursued next.

7.1 Final conclusions

In this thesis, we have focused on developing multi-modal
ML models for developing advanced CDSS in the context of
precision medicine for cancer disease. The goals of the thesis
(see 3) were accomplish and described in Chapters 4, 5, and
6.

Firstly, we studied how to integrate the information provided
by two complementary modalities, WSI, and gene expression
for the NSCLC subtype classification problem (see Chapter
4). They describe the same phenomenon (NSCLC subtypes)
from two different perspectives and at two different scales.
We used the state-of-the-art classification and preprocess-
ing pipelines at the time of the development to create two
classification models, and fused the information in a late
fusion scheme. These were CNNs for the case of imaging
data and SVM+feature selection for genomic data. By fusing
the probabilities provided by two classifiers, the fusion model
outperformed the single-modality classifiers, showing the
capabilities of multi-modal classification models. We also
showed how the selected genes had biological relevance, and
how they were associated with NSCLC subtypes, validat-
ing previous results showing how the use of computational
methods such as mRMR can give an insight into the changes
in the gene expression of different diseases or states [112, 161,
203].

Encouraged by these results, we focused on increasing the
modalities used for the classification (see Chapter 5). Cancer
can be described at multiple levels, and the different screen-
ings can reflect that. We incorporated three new modalities,
DNA Methylation, miRNA-Seq, and Copy Number Variation.
Our goal was to study how these modalities play together
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for this specific problem, which ones improve the classifica-
tion performance and how they affect the predictions made
by the other modalities. To do so, we created a different
fusion model for all possible groupings of the modalities
(having two-modality, three-modality, four-modality, and five-
modality classifiers). Previously, fusion models that fused the
probabilities from different classifiers only used the perfor-
mance of each classifier to assign a weight to each modality
[174–177, 208]. However, by doing so we are not taking into
account how well the information provided by the classifiers
mixes together. Therefore, we presented a novel scheme to
optimize the weights assigned to the different modalities and
classes using stochastic gradient descent. Thus, we are also
considering how important is that modality with respect to
the rest of the fusion. Our final presented model (using all
modalities) was capable to deal with missing information
and outperform each isolated classifier. In addition, it im-
proved or equals the performance of single-modality models
presented in the literature for the same problem.

One main problem during the development of this thesis was
the lack of data. Biological data is scarce, and usually very ex-
pensive. Not all modalities are always obtained and that limits
the potential of training multi-modal models. Therefore, in
Chapter 6, we presented a solution for the RNA-to-image
synthesis tasks. Gene expression and DNA Methylation pre-
diction from WSI have already been proposed in literature
[202, 213], but not the other way around. Therefore, we de-
cided to proposed a new approach for this task. We used
GANs infused with the gene expression profiles (so-called
RNA-GAN) to generate two different types of healthy tissue.
The generated tiles were preferred by pathologists and as-
signed a better score than synthetic tiles generated with a
normal GAN. In addition, the RNA-GAN model converged
much faster than the normal GAN model, saving training
time.

These three works expand the knowledge of multi-modal
classification systems that are able to enhance CDSS in the
area of cancer. We showed how multi-modal classification
models are more robust than single-modality classifiers, and
therefore, they can improve the performance of a diagnosis.
Also, we showed how multi-modal generative models can be
used as a tool to fight data scarcity and to input modalities
that are missing, increasing the size of the datasets and,
subsequently, improving the model performance. Next, we
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are going to describe the future lines of work that are going
to be pursued, as well as current challenges that need to be
faced.

7.2 Future work

Artificial intelligence is revolutionizing the way we interact
and understand biology. New advances are presented at an
unprecedented pace, showing the usefulness of these tech-
niques. Alphafold [248], for instance, has impacted protein
structure prediction massively, allowing biologists to iterate
much faster on their experiments. The potential of ML models
in science has just started, serving as a tool for discovery.
However, these methods are incredibly data-hungry, and the
computational requirements that are demanded can only
be fulfilled by a handful of organizations. Nevertheless, the
impact that these methods are going to have in the next years,
specifically for precision medicine, is going to surpass all
our expectations. Data is going to become widely available
and increasingly multi-modal, therefore, new methods and
studies are necessary.

This thesis has presented how multi-modal classifiers im-
prove the performance of ML models over using a single
modality. This shows a new way of creating CDSS, using all
the data available from the patient to have a better understand-
ing of the phenomena we are modeling. New technologies
are emerging, such as spatial transcriptomics, that allow us to
obtain a spatial representation of the gene expression across
the tissue [249, 250]. Right now the granularity is at multiple
cells at the same time (usually between 5 and 10) but we are
reaching the level of having a single-cell granularity. This
would create tons of possibilities since we will be able to map
how the tumor is spreading across the tissue. We would like
to apply the generative models presented in this thesis to this
type of data, given that we will have a real correspondence
between gene expression and tile. Also, to improve the capa-
bilities of the generative models presented in this thesis, we
would like to explore the use of recently presented diffusion
models for the generation of multi-cancer tiles [226, 229, 233],
in order to overcome some of the limitations of GANs.

WSI analysis is also rapidly evolving, and new methods
are being used. Graph Neural Networks (GNNs) are rising
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[251]: Zeng et al. (2022), “Spatial
transcriptomics prediction from
histology jointly through Trans-
former and graph neural net-
works”
[252]: Zhou et al. (2019), “Cgc-net:
Cell graph convolutional network
for grading of colorectal cancer
histology images”
[253]: Lee et al. (2022), “Deriva-
tion of prognostic contextual
histopathological features from
whole-slide images of tumours via
graph deep learning”
[254]: Dosovitskiy et al. (2020),
“An image is worth 16x16 words:
Transformers for image recogni-
tion at scale”
[225]: Vaswani et al. (2017), “Atten-
tion is all you need”
[255]: Raghu et al. (2021), “Do vi-
sion transformers see like convo-
lutional neural networks?”
[256]: Ghaffari Laleh et al. (2022),
“Adversarial attacks and adversar-
ial robustness in computational
pathology”
[257]: Chen et al. (2022), “Scal-
ing Vision Transformers to Gi-
gapixel Images via Hierarchical
Self-Supervised Learning”
[258]: Quiros et al. (2022), “Self-
supervised learning unveils mor-
phological clusters behind lung
cancer types and prognosis”

as a new way of representing the information encoded in
the slide. As presented in this thesis, WSIs are too big to
be processed at once. However, we can build a graph that
encodes the spatial and visual features and learn from them.
GNNs are successfully being used in a variety of tasks, such
as spatial transcriptomics prediction (in combination with a
Transformer) [251], grading colorectal cancer [252], or how
they can provide interpretable contextual features of clear cell
renal cell carcinoma [253]. Vision Transformers (ViT) [254], an
extension of the successful transformer architecture adapted
to images [225], have also been proposed as a solution to
the spatial representation of the WSI. ViT incorporates more
global information than traditional CNNs at lower layers,
leading to quantitatively different features [255]. In addition,
it has been shown that they are more robust to adversarial
attacks, which is desired when dealing with patient data [256].
These improvements, along with the patching methodology
that is intrinsic to ViT, have made them really interesting
for processing WSI. Recently Chen et al. have proposed a
way to scale ViT to WSIs, by grouping the features obtained
at different scales [257], showing that ViT paired with a
self-supervised methodology, can learn relevant biological
features. We would like to explore how this model can be
adapted in multi-modal settings, and if they provide more
information and increased performance in CDSS.

Self-supervised learning offers a new way of learning impor-
tant features without having to obtain more data. Quiros et al.
presented how using self-supervised learning on lung can-
cer data could unveil morphological characteristics related
to subtypes and prognosis [258]. However, self-supervised
learning in multi-modal biomedical data has not been fully
explored yet. We would like to explore the possibilities of
obtaining aligned representations of different modalities in a
self-supervised way, reducing the necessity of huge quantities
of data to learn a downstream task.

Finally, we would like to incorporate more modalities into our
generative models. By doing so, a richer representation can
be obtained and finer control of the morphological features
that appear in the tissue may be achieved.
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