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ABSTRACT

Natural teeth represent one of the most complex biological structures, since they

consist of at least three layers of different translucent tissues. In this sense, in order

to be able to match all natural teeth, a wide variety of differently shaded materials

is required. In the last decade, the development of biomaterials used in dental

restorations has experienced an important breakthrough. New generations of dental

biomaterials already outperform the mechanical properties of the biological tissues

that are meant to replace, however this variety of shades and materials together with

their complex optical properties, makes it difficult to design layered restorations that

match the perception of the according natural tooth.

The appearance of a material may vary significantly depending on a wide range

of properties such as surface topology, geometry, reflectance, transmittance and angle

from which the material is viewed as well as the illumination parameters (angle

of incident light, diffuse or directed illumination, etc.). In this sense, color and
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appearance are still determining factors that must be well-managed both in clinical

practices and dental industries. Therefore, the research studies in the field of esthetic

dentistry have increased considerably.

In addition to knowing the optical and colorimetric properties of these bioma-

terials and dental structures, it is also interesting to be able to model and predict

them. In the last 20 years, computational intelligence has been an indispensable and

transversal tool in research in all areas of science including dentistry. The devel-

opment of mathematical algorithms that are able to establish, or even predict, the

final chromatic coordinates or reflectance spectra of these materials represents an

important breakthrough with direct application in clinical practice and industry. In

this context, many different predictive techniques such as fuzzy logic, neural net-

works, the Kubelka-Munk theory or linear and non-linear regression approaches have

attempted to solve color prediction of these layered tooth structures and materials in

the dental field. However, it remains an area not fully solved yet.

It is clear that color management in dentistry is not a trivial problem and there is no

simple solution for it. Therefore, the main objective of this PhD Thesis is to measure,

model and predict the colorimetric properties and final appearance of translucent

layered biomaterials with application in dentistry, in order to provide new color

prediction methods that could be applied in both clinical practice and industry, and

that could contribute to the progress of knowledge in the field of esthetic dentistry

and to the development of new dental materials and prosthetic teeth.

To meet this objective, several studies, based on different mathematical techniques,

have been carried out in order to develop and test new color prediction algorithms.

From this point, this PhD Thesis is structured in 7 chapters. First, in Chapter 1, an

extensive state of the art on the different topics related to this PhD Thesis is provided.

Starting with some color basics concepts and their relation to color in dentistry. After
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that, we dug into details on dental restorative materials, ending with an introduction

to color prediction in dentistry and different mathematical concepts, highlighting

principal components analysis (PCA) and linear regression Analysis. In Chapter 2,

both general and specific objectives of this PhD Thesis are drawn.

In Chapters 3 and 4, PCA-based reflectance prediction algorithms are developed

for monolithic and layered (stacked) dental materials, respectively. Chapter 5 presents

a new linear regression-based color prediction algorithm for monolithic and layered

(stacked) dental materials. Afterwards, in Chapter 6, the algorithms previously

proposed for stacked layered samples are tested with more complex stratified layered

samples.

Chapter 7 shows the final conclusions of our studies. Finally, all the references

cited throughout this memory, as well as the scientific production and activities

derived from the studies presented in this PhD Thesis and developed within the

doctoral period, are listed.
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RESUMEN

Los dientes naturales representan una de las estructuras biológicas más complejas,

ya que están formados por al menos tres capas de diferentes tejidos translúcidos. En

este sentido, para poder igualar colorimétricamente los dientes naturales, se requiere

una gran variedad de materiales de diferentes colores. En la última década, el desar-

rollo de los biomateriales utilizados en las restauraciones dentales ha experimentado

un importante avance. Las nuevas generaciones de biomateriales dentales ya superan

las propiedades mecánicas de estos tejidos biológicos a los que pretenden sustituir,

sin embargo la variedad de colores y materiales junto con sus complejas propiedades

ópticas, dificultan el diseño de restauraciones por capas que se ajusten a la percepción

del diente natural correspondiente.

La apariencia de cualquier material puede variar significativamente en función de

una amplia gama de propiedades, como la topología de la superficie, la geometría,

la reflectancia, la transmitancia y el ángulo desde el que se observa el material, así
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como los parámetros de iluminación (ángulo de la luz incidente, iluminación difusa

o dirigida, etc.). En este sentido, el color y la apariencia siguen siendo factores

determinantes que deben ser bien gestionados tanto en las prácticas clínicas como en

la industria odontológica. Por ello, los estudios de investigación en el campo de la

odontología estética han aumentado considerablemente.

Además de conocer las propiedades ópticas y colorimétricas de estos biomateriales

y estructuras dentales, también es interesante poder modelarlas y predecirlas. En

los últimos 20 años, la inteligencia artificial ha sido una herramienta indispensable y

transversal en la investigación en todas las áreas de la ciencia, incluida la odontología.

El desarrollo de algoritmos matemáticos capaces de establecer o incluso predecir las

coordenadas cromáticas o la reflectancia espectral de estos materiales representa un

importante avance con aplicaciones directas en la práctica clínica y en la industria.

En este contexto, diferentes técnicas de predicción como la lógica difusa, las redes

neuronales, la teoría de Kubelka-Munk o las aproximaciones de regresión lineal

y no lineal han intentado resolver el problema de la predicción del color de estas

estructuras y materiales dentales en el ámbito odontológico. Sin embargo, sigue

siendo una cuestión que no está del todo resuelta.

Está claro que la gestión del color en odontología no es un problema trivial y no

existe una solución sencilla para ello. Por lo tanto, el objetivo principal de esta Tesis

Doctoral es medir, modelar y predecir las propiedades colorimétricas y la apariencia

final de biomateriales estratificados translúcidos con aplicación en odontología, con el

fin de proporcionar nuevos métodos de predicción del color que puedan ser aplicados

tanto en la práctica clínica como en la industria, y que puedan contribuir al progreso

del conocimiento en el campo de la odontología estética y al desarrollo de nuevos

materiales dentales y dientes protésicos.

Para cumplir con este objetivo se han realizado varios estudios, basados en difer-
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entes técnicas matemáticas, con el fin de desarrollar y probar nuevos algoritmos de

predicción del color.

A partir de aquí, esta Tesis Doctoral se estructura en 7 capítulos. En primer lugar,

en el Capítulo 1, se ofrece una amplia revisión bibliográfica sobre los diferentes temas

relacionados con esta Tesis Doctoral. Empezando por algunos conceptos básicos

del color y su relación con el color en odontología. Después, profundizamos en los

detalles de los materiales de restauración dental, y terminamos con una introducción a

la predicción del color en odontología y diferentes conceptos matemáticos, destacando

el análisis de componentes principales y el análisis de regresión lineal. En el Capítulo

2, se plantean los objetivos generales y específicos de esta Tesis Doctoral.

En los Capítulos 3 y 4, se desarrollan algoritmos de predicción de reflectancia

basados en ACP para materiales dentales monolíticos y bicapa (apilados), respectiva-

mente. El Capítulo 5 presenta un nuevo algoritmo de predicción del color basado en

la regresión lineal para materiales dentales monolíticos y bicapa (apilados). Después,

en el Capítulo 6, los algoritmos propuestos anteriormente para las muestras bicapa

apiladas se prueban con muestras estratificadas polimerizadas más complejas.

El Capítulo 7 muestra las conclusiones finales de nuestros estudios. Por último,

se enumeran todas las referencias citadas a lo largo de esta memoria, así como la

producción científica y las actividades derivadas de los estudios presentados en esta

Tesis Doctoral y otras actividades desarrolladas durante el periodo de doctorado.
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Section 1.1: Color basics

1.1 Color basics

1.1.1 Color perception

From a physical point of view, the color of an object is associated with the electro-

magnetic radiation of a specific range of wavelengths visible to the human eye (the

visible spectrum) that the object reflects or transmits. The visible light spectrum is the

part of the wider electromagnetic spectrum that spans wavelengths from 380 to 780

nanometers. As mentioned before, these wavelengths mainly determine the colors

that we see [6]. However, it is well established that color is not an intrinsic property

of an object, but a psychophysical phenomenon produced as a consequence of light

interaction with the human visual system [7]. When incident light reaches an object,

part of it can be reflected, part absorbed, part transmitted and, in some cases, part of it

can be scattered. Both reflected and transmitted light can, subsequently, interact with

the human visual system and the resulting stimulation of the retina is recognized as

the object’s color by the brain [8]. Each object reflects, transmits, absorbs and scatters

light differently, and these differences are producing different color stimuli and will

result in different color perceptions. .

The sensitivity of the human eye varies from person to person, often causing

color to appear differently to each individual [9]. This subjectivity often leads to

inconsistencies when evaluating or communicating color.

Therefore, there are three main factors involved in the process of color perception:

a light source, an object and the observer. However, the interaction of light with objects

is not just a simple spectral phenomenon, since the reflectance or transmittance of a

sample is not just a function of wavelength, but also a function of the illumination

and viewing (measuring) geometry, as shown in Figure 1.1.
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Figure 1.1: Schematic representation of the main factors that influence color
perception.

In this sense, in order to produce a reliable color measurement system, all these

factors need to be quantified and standardized. The illumination (light source) can

be characterized by its spectral power distribution (SPD), which is the the relative

intensity of the illumination for each wavelength of the visible spectrum. As described

before, a given object can reflect (or transmit) a certain fraction of the incident light

and this can be characterized by its reflectance (or transmittance) spectrum. If the

object is observed in reflection, i.e. the observer and light source are in the same plane

relative to the sample, then the product of these two terms (disregarding possible
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light attenuation while propagating through the media) will result in the amount

of light reaching the eye, which is characterized by the color matching functions

(CMFs) of the standard observer. Finally, since the viewing geometry also affects the

color perception, it needs to be also standardized, so different standard measuring

geometries have been defined.

Thus in order to measure color, and be able to properly quantify it, it is necessary

to specify each of these main components that affect color perception and color

measuring [10].

First formalization of color science dates from 1931, when the International Com-

mission on Illumination (CIE) recommended a set of standard illuminants for use

in colorimetry, the color matching functions of a standard observer and a system of

standard optical geometries for use in color-measuring instruments and set-ups. A

short description of what they represent, as well as their current state of development,

is given below.

• Standard illuminants

A standard illuminant is a theoretical source of visible light with a given spec-

tral power distribution [9]. Over the years, the CIE has proposed different

illuminants in order to provide the basis for comparing colors. The first to be

introduced were illuminants A, B, and C, which represent average incandescent

light, direct sunlight, and average daylight, respectively. Later, the D series were

introduced (D50, D55, D65 and D75), representing the daylight in various phases.

Illuminant E is the equal-energy radiator and was designed with a constant SPD

inside the visible spectrum. A further series of fluorescent lights, illuminants F,

were also defined. The last to be introduced, was as set of 9 LED illuminants for

different LED types [11]. Currently, the CIE defines two standard illuminants:

CIE Standard Illuminant A and CIE Standard Illuminant D65 [12].
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In almost all applications in dentistry, except for research studies when the

behavior of a material under different illuminants results of certain interest [13]

or for metameric studies [14], the standard illuminant of primary choice is

the CIE D65 Standard Illuminant, since the teeth and, if the case, the dental

restorations, are often visually judged under daylight conditions.

• Standard observer

As mentioned before, variations of the sensitivity of the human eye are present

for different persons, leading to the necessity of establishing a so-called Standard

Observer. The standardization of the observer was done by describing it’s color

matching functions, which define the chromatic response of a given observer to

a light stimuli. Furthermore, due to the distribution of photo-receptors cells in

the human retina (which varies from the fovea -maximum presence of cone-like

cells- to the peripheral retina -maximum presence of rod-like cells), the response

of the human visual system to the color stimuli also depends on the size of

the projected image of the object on the retina, which is determined by the

angle of the observer’s field of view that the object sustains [15]. In order to

eliminate this variable, in a first stage, the CIE defined a color-mapping function,

the so-called CIE 1931 2◦ Standard Observer, to represent an average human’s

chromatic response within a 2◦ arc inside the fovea, because of the belief that our

color-sensing cones were located in a 2-degree arc in the fovea (equivalent to a

1.7 cm diameter circle at 50 cm distance) [16]. However, although the fovea is the

region most sensitive to color, the majority of everyday objects occupy a larger

area of the retina. Therefore, as a recommendation when dealing with bigger

objects (that sustain more than 4◦ field of view), the CIE 1964 10◦ Standard

Observer (equivalent to a 8.8 cm circle diameter at 50 cm distance) was also
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derived [17]. The CIE color matching functions: x(λ), y(λ) and z(λ) and x10(λ),

y10(λ) and z10(λ) are the numerical description of the chromatic response of the

CIE 1931 2◦ and CIE 1964 10◦ Standard Observers, respectively.

In dentistry, when assessing color, the CIE 1931 2◦ Standard Observer is conven-

tionally used, since the size of dental structures observed at a clinically relevant

distance, correlates to the field of view of 2◦ [18, 19].

• Standard measuring geometries

Different illumination/viewing (or illumination/measuring in the case of a

detector) geometries directly affect how light interacts with the sample, there-

fore affecting the amount of light that finally reaches the eyes (or detector, for

color measuring instruments). Many materials will change their colorimetric

properties depending on whether they are illuminated perpendicularly or from

a certain angle and also whether they are illuminated with diffused or colli-

mated light [9]. That is why, when evaluating the colorimetric characteristics of

a material, in addition to the Standard Observer and the Standard Illuminant

used, the measuring geometry must be also specified. Hence, achieving results

that can be easily compared and reproduced implies standardization of the

illuminating/measuring geometry. Accordingly, the CIE has specified several

illuminating and viewing conditions [12, 17] that can be used for standardized

color measurements. To identify which geometry is ideal for evaluating and

controlling the color of a given object, it should be understood how each of

these illuminates and detects its color. For reflectance measurements, the CIE

has defined four standard measuring geometries, which come as two pairs of

optically reversible geometries (i.e. each pair produce the same measurement

results), being indicated as illumination/measuring:
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1. 45◦/normal (or 45◦/0◦) and normal/45◦;

2. Diffuse/normal and normal/diffuse.

The use of the 45◦/0◦ and 0◦/45◦ measurement geometries ensures that all

components of gloss of the sample are excluded from the measurements [20].

Therefore, these geometries are ideal when it is necessary to compare colors

of materials with various levels of gloss, as it is the case for almost all dental

materials. In addition, as light intensity is well known to vary with distance

from the source [21], for any illumination/measuring standard geometry, it is

important to maintain a constant positioning of the specimen surface from the

illuminant and the measuring systems.

1.1.2 CIE color spaces

Over time, various methods have been devised for quantifying color and express

color numerically, thereby making it possible to communicate colors more accurately.

Color spaces are mathematical models describing the way colors can be represented.

The first attempt to standardize the representation of colors, was the Munsell color

system, which introduced a method for expressing colors according to three prop-

erties: hue (basic color), value (lightness) and chroma (color intensity) [22]. In 1931,

the CIE introduced the CIE XYZ color space, which is based on the XYZ tristimulus

values [23]. This was the first color space that defined quantitative links between dis-

tributions of wavelengths in the electromagnetic visible spectrum and physiologically

perceived colors by the human vision.

The CIE X, Y, Z tristimulus values are calculated using the CIE Standard Observer

CMFs, x(λ), y(λ) and z(λ), a selected CIE Standard Illuminant SPD, I(λ), and the

spectral reflectance or transmittance of the sample, S(λ), as follows:
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X = k

∫ 780

380

S(λ)I(λ)x̄(λ)d(λ) (1.1.1)

Y = k

∫ 780

380

S(λ)I(λ)ȳ(λ)d(λ) (1.1.2)

Z = k

∫ 780

380

S(λ)I(λ)z̄(λ)d(λ) (1.1.3)

where the k constant for non-self luminous objects is calculated as:

k =
100∫ 780

380
I(λ)ȳ(λ)d(λ)

(1.1.4)

The color of any stimulus can be represented by these tristimulus values. Since the

human retina is fitted with three different types of cone photo-receptor cells (sensitive

to color), with different response to incoming visible light wavelengths [8], a full

representation of all visible colors translates into a three-dimensional figure. However,

the concept of color can be divided into two parts: brightness and chromaticity.

Therefore, the CIE xyY color space was developed in order to be able to separate

these two properties and use only two components (x and y) to encode the color’s

chromaticity and keep the Y value from the XYZ tristimulus values to encode the

color’s brightness or value [23]. This transformation of the tristimulus values to

obtain the chromaticity coordinates xyz, allowed to establish a two-dimensional

representation of color, the so-called chromaticity diagrams. Although this space is

very suitable for describing color stimuli, it has the disadvantage that equal distances

on the xy chromaticity diagram do not correspond to equal perceived color differences

and, therefore, there are different perceptibility color thresholds depending on the

area of the xy diagram (MacAdam ellipses) [24]. After several attempts to improve the

diagram with the purpose to convert these ellipses into circles, no ideal transformation
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was found.

To overcome this limitation, the CIE proposed the three-dimensional CIELAB and

CIELUV color spaces, which replaced the two-dimensional chromaticity diagrams.

These three dimensions correlate with the perceived brightness, chroma and hue for

a given color stimulus, which is achieved by incorporating features to account for

chromatic adaptation and nonlinear visual responses. The main aim in the devel-

opment of these spaces was to provide standard practices for the measurement of

color differences, which cannot be done in CIE XYZ and CIE xyY color spaces [20].

Apparently, there is no clear advantage of one over the other, however, over the years,

the CIELAB color space has been more widely implemented in color applications

than the CIELUV color space. In the specific case of dentistry, the CIELAB color space

is almost exclusively used in dental color studies or color research [1, 21, 25–27].

1.1.2.1 CIE1976 L*a*b* color space

The CIE1976 L*a*b* color space (also known as CIELAB) expresses color as three

values: L*, a* and b*, denominated chromaticity coordinates. This space was intended

as a perceptually uniform space, where a given numerical change corresponds to a

similar perceived change in color [17]. These CIE L*, a* and b* coordinates can be

computed from the XYZ tristimulus values and for a reference white (Xn,Yn,Zn) as

shown in the following equations:

L∗ = 116 f

(
Y

Yn

)
− 16 (1.1.5)

a∗ = 500

(
f

(
X

Xn

)
−

(
Y

Yn

))
(1.1.6)

b∗ = 200

(
f

(
Y

Yn

)
−
(

Z

Zn

))
(1.1.7)
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f(t) =


3
√
t if t > δ3

t
3δ2

+ 4
29

otherwise
where δ =

6

29
(1.1.8)

The CIE-L* chromaticity coordinate correlates to perceived lightness value, it

ranges from 0 (black) to 100 (white). The CIE-a* and CIE-b* chromaticity coordinates

are relative to the green–red and blue–yellow opponent colors, respectively, with

negative values for green and blue and positive values for red and yellow. Values

of 0 for CIE-a* and CIE-b* coordinates correspond with achromatic colors (black,

gray, white) and as their values increase (or decrease), the saturation of the color

increases. The range of these two coordinates is unbounded, and will be defined by

the properties of the material, rather than the equations themselves. These CIE-L*a*b*

coordinates are combined as cartesian coordinates in a three-dimensional color space

as shown in Figure 1.2.

In some applications, representing color according to the perceived attributes of

lightness, chroma and hue is of more practical interest [10]. In this case, the CIELAB

color space is represented by cylindrical coordinates. In this color space, L* indicates

lightness and it has the same interpretation as in the classical representation of the

CIE-L*a*b* color space, C* relates to chroma, which is 0 at the center and increases

according to the distance from the center; and h◦ relates to hue angle, is expressed

in degrees, ranges from 0º to 360º and starts at CIE a* positive axis (Figure 1.2). The

chroma and hue angle are computed from the a* and b* coordinates as indicated

below:

C∗ =
√
a∗2 + b∗2 (1.1.9)

h◦ = arctan
a∗

b∗
(1.1.10)
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Figure 1.2: Schematic representation of the CIELAB color space (Reprinted
from www.xrite.com).

1.1.3 CIE color difference equations

In the CIE L*a*b* color space, the color difference between two object color stimuli

of the same size and shape, viewed in identical white to middle-gray surroundings,

by an observer photopically adapted to a field of chromaticity not too different from

that of average daylight, is quantified as the distance between the points representing

their color in the color space [1]. These color differences can be expressed in terms of

CIELAB color units as a single numerical value, ∆E, and this approach set the basis

for the first total color difference formula introduced by the CIE in 1976, defined as

the Euclidean distance between two points in the CIELAB color space, ∆E∗
ab:

∆E∗
ab =

√
(L∗

1 − L∗
2)

2 + (a∗1 − a∗2)
2 + (b∗1 − c∗2)

2 (1.1.11)
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Although the CIELAB color space was designed aiming for perceptually uniform

color differences throughout the whole space, this goal was not strictly achieved.

As a consequence, soon after its implementation, the CIELAB ∆E∗
ab color difference

formula was reported to present inhomogeneities [9, 28]. These perceptual non-

uniformities pushed the CIE towards refining their definition over the years. After

a long series of developments improving the CIELAB original total color difference

formula, such as the CMC(l:c) [29], BFD(l:c) [30] and CIE94 [31] formulas, finally the

CIEDE2000 total color difference formula was proposed [32]. This new metric clearly

outperforms the before mentioned ones, and became the CIE recommendation for

total color-difference computation in 2004 [17].

The CIEDE2000 color difference formula (∆E00), corrects the non-uniformity

of the CIELAB color space for small color differences under reference conditions.

Improvements in the color difference calculation were accounted by correcting for the

effects of luminance, hue and chroma dependence, and chroma-hue interaction on the

perceived color difference. Also, the scaling along the a* axis was modified to correct

for the non-uniformity observed with gray colors [32]. After all these modifications,

the resulting formula was defined as:

∆E00 =

[(
∆L′

KLSL

)2

+
(

∆C′

KCSC

)2

+
(

∆H′

KHSH

)2

+RT

(
∆C′

KCSC

)(
∆H′

KHSH

)] 1
2

(1.1.12)

where ∆L′, ∆C ′ and ∆H ′ are the differences in luminance, chroma and hue for the

two samples being compared. RT is the rotation function, which is defined as the

interaction between chroma and hue in the blue region. The weighting functions SL,

SC and SH adjust the total color difference for variation in the location of the color

difference pair in L′, a′, b′ coordinates. Finally, the parametric factors KL, KS , KH

are correction terms according to the experimental conditions of observation. Under
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reference conditions, all these three parametric factors are set to 1.

The CIEDE2000 formula may not be the final word with respect to a color differ-

ence formula for small color differences for industry. However, at the present time

the formula represents the most advanced development in this field and the best that

can be achieved at this point.

1.2 Color in dentistry

In the last decades, esthetics has gained tremendous significance in dentistry.

When performing a dental restoration, the reproduction of natural appearance of

teeth represents nowadays a major concern, being appropriate tooth color determi-

nation one if its essential components [33]. Therefore, to guarantee the success of

a dental restoration, this has to mimic not only the mechanical properties, but also

the optical and esthetic properties of the dental tissues being replaced. In this sense,

an exhaustive study of light interaction with these tissues is required to understand

color in dental structures and, therefore, being able to develop appropriate dental

restorative materials that could be used to replace them.

1.2.1 Color of dental structures

The permanent dentition consists of 32 teeth, which are divided into incisors,

canines, premolars and molars. Each of them can be divided into two main parts,

the root, which anchors the tooth to the alveolar bone, and the crown, which is the

part that emerges from the maxillary bone, and the one of major concern in esthetic

dentistry [34]. Teeth crowns consist of at least three layers of different materials:
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• Pulp

Dental pulp is composed of 25% organic matter and 75% water. It comprise the

innermost layer of a tooth, and is a unique, specialized organ of the human body

that serves four functions: formative, nutritive, sensory, and reparative [35]. It

is composed of a central pulp chamber, which contains the large mass; pulp

horns, and radicular canals [36]. Because of the continuous deposition of the

dentine, the pulp chamber becomes smaller with age [37].

• Dentine

Dentine is the middle layer of the tooth (between the enamel and the pulp), and

makes up the bulk of the tooth’s structure. It is made up of 70-72% inorganic

materials (mainly hydroxyapatite and some non-crystalline amorphous calcium

phosphate), 20% organic materials, and 8-10% water [38]. Dentine consists of

microscopic channels, called dentinal tubules, which radiate outward through

the dentine, from the pulp to the enamel border [39]. The different microanatom-

ical structures and the tubular architecture, combined with the macroscopic

anatomy of the dentine, produce a selective reflection/absorption of light. This

effect may be responsible for the opacity of the primary dentine [40]. As the

dental pulp ages, it reduces its size, leaving secondary dentine in its place and

the surrounding dentine becomes harder and less permeable. At the same time,

the chroma of the dentine becomes more saturated and opaque, and in general

the brightness of the whole tooth decreases [41]. The color of dentine is typically

a pale yellow. This yellow hue is generally what is seen penetrating through the

enamel.

• Enamel

Enamel is the hardest tissue in the human body. It is formed of 95% minerals
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and 5% water and organic matter [42]. The primary mineral is hydroxyapatite,

which is a crystalline calcium phosphate. In humans, enamel varies in thickness

over the surface of the tooth, often thickest at the cusp (up to 2.5 mm) and

thinner at its border with the cementum at the cementoenamel junction [43].

Enamel color varies from light yellow to grayish (bluish) white. Enamel is highly

translucent and its translucency variations may be attributable to variations in

the degree of calcification and homogeneity of the enamel [44].

It is largely accepted that the final color of a tooth is mainly determined by the scat-

tering of the light within the internal tooth structures described above [25]. As with

any other translucent sample, when light reaches a tooth surface, different phenom-

ena associated with the interaction of light-tooth may occur: specular reflection at the

tooth surface, diffuse reflectance, direct transmission through the tooth, absorption

and scattering of light within the different tooth structures [1] (Figure 1.3).

Figure 1.3: Schematic representation of the five phenomena (regular
transmission, specular reflection, diffuse reflection, absorption and scattering)

that may occur in the interaction of incident radiation and tooth [1].
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However, not only these phenomena affect the appearance of dental structures.

There are several other factors such as the translucency, opacity, surface gloss, surface

roughness and fluorescence that may influence. Among them, translucency and

opacity are the most important, since they modulate the quantity and quality of light

interaction with the tooth. In this regard, due to the higher translucency of enamel

layer, dentine shade will strongly affect the overall chromatic appearance of the tooth.

It was also highlighted that yellowish teeth normally have a thin, translucent enamel

through which the main color of the dentine is visible, while grayish teeth often

have a more opaque, less translucent enamel [45, 46]. Also, it has to be considered

that the thickness of the different dental layers is not uniform throughout the dental

structure, but vary with respect to different areas of the tooth [47,48]. These variations

create a color change (gradient) along the different axes of the dental structures. For

example, the dentine layer is thicker in the cervical area of the tooth, and significantly

contributes to the tooth color in that specific region, while for the incisal area the

dentine layer is thinner, and the enamel layer is thicker, therefore influencing the light

transmission behavior in that region, and thus its color [49]. A very good example

of all these factors can be observed in Figure 1.4, where the transillumination of

natural teeth can be observed showing the major features of both dentine and enamel.

Dentine gives the tooth its color, the perception of which is modulated by the enamel,

a semitranslucent and highly opalescent tissue [2].

Figure 1.4: Transillumination of natural teeth (Reprinted form [2])
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Different studies have shown an existing relationship between thickness, color

and the optical properties of dental structures [50–53]. Moreover, tooth color is also

affected by other factors such as as tooth type, gender, age, and ethnicity, as has

been reported in many studies [54], in which the range and distribution of tooth

color has been fully investigated. In general, the maxillary anterior teeth are slightly

more yellowish than mandibular anterior teeth, and the maxillary central incisors

have higher value than the lateral incisors and canines [55, 56]. Also, teeth color shift

with age was also reported, as they become darker and yellowish over the course

of time [57]. While some studies have shown no differences in teeth color related

to gender, other studies reported that females exhibit lighter and less yellowish

incisors [55, 58–61]. Studies investigating the relationship of skin color to tooth shade

are contradictory. Most studies show no relationship, but some reported an inverse

relationship where people with medium-dark skin tones were more likely to have

higher value (lighter) teeth color than people with lighter skin tones, regardless of

their age or gender [62].

So far, it is clear the fundamental role of color in the dental field. That is why many

studies attempted to establish a reference chromatic space for dentistry, as a sub-space

of the CIELAB color space. Ideally, this dental color space has to include the color of all

natural dental structures as well as the color of all dental restorative materials [54, 57].

A study carried out to better understand the VITA 3D-Master shade system, concluded

that the average values of the CIE L*, a*, b*, C∗ and h◦ chromaticity coordinates that

more precisely define the dental color space were: L* = 62 - 78; a* = 1 - 6; b* = 12 - 31;

C∗ = 12 - 33 and h◦ = 78 - 86 [3]. More recently, another study established the color

limits of the same set of samples, with slightly different outcome: L* = 51.5 - 85.5;

a* = -1.5 - 12.6 and b* = 12.0 - 43.3 [63]. Another study, that compared the limits of

the VITA 3D-Master shade system with a database of nine hundred and thirty-
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three maxillary central incisors [64], established a dental color space defined by the

following chromatic coordinates: L* = 65.1 - 83.2; a* = 1.7 – 8.9 and b* = 12.3 - 29.3,

respectively.

It is clear that, for the moment, there is no wide agreement on the exact values of

the chromaticity coordinates that set the boundaries of the dental color space, so slight

variations from this coordinates are normally accepted. However, all aforementioned

studies agree that the various tooth colors mainly differ in their lightness, and that

is why the tooth color space is vertical to lightness axis and expands similar to a

"banana" [3]. The lighter teeth are in the upper area and the darker ones in the lower

area. The more chromatic tooth colors are situated at the outer curve of the "banana"

which is further away from the achromatic central axis, as shown in Figure 1.5:

Figure 1.5: Schematic representation of the dental space within the CIELAB
color space. (Reprinted from [3]).
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1.2.2 Color measurement in dentistry

Considering the high clinical relevance of a precise tooth color determination,

systems that aim for an objective and reproducible tooth color assessment are continu-

ously being developed [65]. Yet, measuring color of dental structures is a challenging

task, mostly because of the inherent characteristics of the human teeth, such as curved

small surfaces, layered structure with complex optical properties and translucency,

among others [66].

The current standard in dental practice remains the visual method using shade

guide systems [65,67,68]. This method relies on the visual comparison of the elements

of a shade guide (the shade tabs) with the dental structures to be color matched.

The dental practitioner chooses the best match from the available shade tabs, in a

highly subjective color matching task. There are several dental shade guides available

(such as Ivoclar Vivadent Chromascop, Dentsply Esthet-X, Blue Line, etc.). However,

the most widespread systems for visual tooth colour determination are the VITA

Classical (VITA Zahnfabrik, Bad Säckingen, Germany) and the VITA 3D-MASTER

(VITA Zahnfabrik, Bad Säckingen, Germany) shade guides (Figures 1.6a and 1.6b).

The VITA Classical shade guide system includes 16 shade tabs, and it has been the

most popular dental shade matching system for many years. It consists of one-step

shade matching by direct comparison between tooth and one of the A–D shade tabs.

However, it presents some drawbacks, such as the empirical arrangement of shades

and the uneven coverage of the available shades of the natural tooth color space, as

shown in Figure 1.6d, where it can be seen that there is a better shade coverage for

the central area of the tooth color space than for darker and lighter regions. This

distribution of shade tabs complicates the visual shade matching and, therefore, might

result in poor matches between natural tooth and the selected shade tab.
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(a) VITA classical A1-D4®
(b) VITA Toothguide

3D-MASTER®
(c) VITA Linearguide

3D-MASTER

(d) VITA Classical shade distribution. (e) VITA 3D-Master shade distribution.

Figure 1.6: Chromatic distribution of the VITA shade tabs. Lightness (L*)
goes from darker (bottom) to brighter (top) shades. Hue (h◦) goes from more

yellow (left) to more red (right), and chroma (C*) goes from paler to more
intensive shades. (Reprinted from Vita-Zahnfabrik and [4]).

Intending to overcome this adversity, the VITA 3D-MASTER shade guide system

was developed. This is a shade guide system that includes 26 shade tabs and three
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additional bleached shades. The main difference to VITA Classical is that the shade

tabs are systematically arranged, to uniformly cover the dental chromatic color space

(Figure 1.6e). In this system, tooth color is determined in three steps, corresponding

to the three parameters of the three-dimensional CIE L*C*h◦ colour space: value,

chroma and hue, and thus enables more accurate measurement [67]. However, the

three-step shade matching procedure has been reported to be a more time consuming

process [69]. To handle this issue, the VITA Linearguide 3D-Master (Figure 1.6c),

which includes the same 29 shades from the 3D-Master system but in a linear design,

was finally introduced.

Bearing in mind the numerous weaknesses of subjective tooth colour determina-

tion, which might be affected by a large variety of parameters, such as variability

among different shade guides [70], the background [71] and surrounding area [72],

lightning conditions [73], gender [74] or experience of the observer [75], instrumental

shade matching was introduced in dentistry as an attempt to reduce the subjectivity

of visual shade matching.

Colorimeters, spectrophotometers and digital imaging systems are the most popu-

lar instruments for objective color measurements in dentistry [68]. The colorimeter

ShadeVision (X-Rite, Grandville, MI); the spectrophotometers Vita Easyshade (VITA

Zahnfabrik, Bad Säckingen, Germany) and Shade-X (X-Rite, Grandville, MI); and the

imaging systems SpectroShade Micro II (MHT, Niederhasli, Switzerland) and Crystal-

Eye (Olympus,Tokyo, Japan), are currently among the most popular commercially

available instruments for objective measurements of color in dentistry [1, 68].

All these aforementioned instruments have their pros and cons. Colorimeters

show good measurement repeatability but they are exposed to systematic errors

caused by edge-loss effects from sample surface. Digital imaging systems represent

the most basic approach to electronic shade taking, and still require a certain de-
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gree of subjective shade selection with the human eye [76]. In this regard, due to

their ability to measure the amount of light reflected throughout the visible spectral

range, spectrophotometers can provide more systematic and precise measurements

than colorimeters or digital imaging methods [77–80]. The recent incorporation of

spectroradiometers for color measurements in dental research provided accurate and

highly repeatable non-contact measurements. Spectroradiometers are recognized

as the gold standard devices for objective accurate color measurements and have

been widely used in many research studies for the evaluation of the colorimetric and

optical properties of dental materials [13, 26, 81–84]. One of the main advantages of

these devices is that they measure complete spectral data, which provides information

on the consistency of the material and can detect potential problems of metamerism,

allowing to calculate colorimetric data for the actual spectral power distribution of

each source expected to illuminate the specimen [85]. However, their main constraint

in the dental field is their impracticality in clinical scenarios. This adds up to other

limitations, shared with other clinical commercial devices, such as single spot or

large integrated area of measurement. So far in dentistry, spectroradiometric color

measurements are used exclusively for research purposes [26].

In addition, it must be taken into account that instrumental color measurements of

the same specimen do not necessarily produce identical results, even if repeated at the

same site and using the same instrument [86, 87]. Differences may be caused by the

quality of the instrument, operator ability, specimen handling and specimen condition,

accidental or unknown causes [86–90]. In order to create a standardized protocol

and quality control tool for color measurements in dentistry, a multi-center study

was coordinated by the Houston Center for Biomaterials and Biomimetics (HCBB)

at the University of Texas School of Dentistry, and it involved the University of

Granada Faculty of Sciences, Vita Zahnfabrik and the Ohio State University College of
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Dentistry [26]. The main purpose of this study was to propose a method of reflectance

measurement harmonization for translucent dental specimens of clinically relevant

thickness. The guidelines derived from this research have been indeed implemented

for the development of the studies that will be later presented in this Thesis.

It is clear that, benefits and limitations exist among different shade determination

methods, and the clinician must consider how the technology relates to his/hers

expectations and needs. Therefore, whenever possible, instrumental and visual

color matching methods should be used jointly for dental color assessment, as they

complement each other and can lead towards better esthetic outcome.

1.2.3 Color difference thresholds in dentistry

To achieve the desired esthetic result in dental restorations, dental materials must

efficiently match and reproduce the color appearance of natural teeth and other soft

tissues. However, exact match of color is still a very rare event [91] and, thus, the

quality of color match between a dental restoration and an adjacent natural tooth

correlates, to large extent, with the magnitude and direction of the color difference

between the above mentioned structures.

Since visual judgment is still the most frequent method for color evaluation in

dentistry, a knowledge of the perceptual limits (visual thresholds) for color assessment

is of vital importance in clinical dentistry and dental research. These thresholds can

serve as a quality control tool and as a guide for the selection of dental materials, the

evaluation of the clinical outcome and subsequent standardization [27, 92].

This limits can be only defined with psychophysical experimentation, which

allows to correlate results of the observer evaluations with the instrument measure-

ments. When assessing color difference thresholds, there are two relevant thresholds

that have to be considered: perceptibility threshold (PT) and acceptability threshold
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(AT). The perceptibility threshold relates to the smallest perceptible color difference, a

just-noticeable difference (JND), that can be detected by an average human observer.

In this context, the 50:50% perceptibility threshold refers to a situation in which 50%

of the observers would notice a color difference between two objects while the other

50% notice no difference. Similarly, 50:50% acceptability threshold refers to a color dif-

ference that is considered acceptable for 50% of observers, meaning that the other 50%

of observers would not consider the color difference as acceptable, which in a clinical

situation, implies that the dental restoration requires color correction [93, 94]. The

color differences between these two thresholds is the so-called industry tolerance. The

interest on this tolerance range is clear, since maintaining the industrial production

below the limits of the visual threshold would result very costly and time consuming,

but there is still the need of maintaining the differences under an admissible limit.

As the standard for color research in dentistry, most studies trying to define color

difference thresholds in this field used the CIELAB color space and its associated color

difference formulas. Over the years, different color difference formulas have been

used [31, 95], mostly ∆E∗
ab formula. However, recent studies have reported that the

new CIEDE2000, ∆E00, color difference formula provides a better fit than the CIELAB

formula in the evaluation of visual tolerances [92, 96–98]. A variety of visual color

threshold values have been reported in numerous studies related to teeth, gingiva

and dental materials [27]. The first study that reported ∆E00-based PT and AT for

dentistry was published in 2010 [97]. They used the Takagi–Sugeno–Kang (TSK)

fuzzy approximation, previously used in [99–101], and concluded that CIEDE2000

formula provided indeed a better fit than CIELAB formula for the evaluation of color

difference thresholds of dental ceramics, and therefore recommended its use in dental

research and in vivo instrumental color analysis. They also showed a significant

difference between PT and AT for dental ceramics and validated that the TSK Fuzzy
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Approximation is a reliable alternative approach for the color threshold calculation

procedure.

Few years later, within the context of a multicenter study in which 7 research sites

participated [92], the 50:50% PT and 50:50% AT values for dentistry under simulated

clinical settings where determined. Visual color comparisons were performed at each

site by a total of 25 observers, divided into five groups: dentists, dental students,

dental auxiliaries, dental technicians, and laypersons. According to the results of

this study, the overall CIELAB 50:50% PT and 50:50% AT were ∆E∗
ab = 1.2 and

∆E∗
ab = 2.7, respectively, while corresponding values computed with the CIEDE2000

color difference formula (∆E00) were PT00 = 0.8 and AT00 = 1.8. These results

were included as reference values within ISO/TR 28642:2016 [94] and can be applied

to all issues related to quality of tooth color matching in dentistry, such as color

compatibility between dental materials and human tissues [102], color compatibility

among dental materials [103], color stability during fabrication and at placement [104],

coverage error evaluation of dental shade guides [105], color stability after aging [106],

among many other applications.

Additionally, CIEDE2000 acceptability thresholds for individual axis of lightness

(∆L′), chroma (∆C ′), and hue (∆H ′) were also reported [107] as 50:50% AT00 of 2.92,

2.52 and 1.90, respectively.

Therefore, as the current standard for color evaluation in dentistry and recom-

mended by the ISO [94], together with other error metrics that will be later described,

the CIEDE2000 color difference formula and its corresponding AT00 and TP00, will be

used as performance descriptors of the studies that will be further presented in this

Thesis.
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1.3 Dental restorative materials

When, in a clinical scenario, a dentist has to restore fully or partially a tooth, the

success of the restoration depends not only on the ability to accurately interpret the

characteristics of the natural dental structure to be restored or the skill and knowledge

of the clinician, but also on the quality and properties of the restorative material used.

There is currently a wide variety of dental restorative materials, including cement

bases, amalgams, primers, bonding agents, liners, resin-based composites, hybrid

ionomers, cast metals, metal-ceramics, ceramics, and denture polymers [108]. In this

section, dental ceramics and resin-based composites will be introduced in detail, since

they are the materials that will be used later in the Thesis.

Dental restorative materials can be divided into two categories: On one hand,

direct restorative materials which are fabricated to be placed directly on the teeth

structure, whereas indirect restorative materials are commonly used as prosthesis

and are fabricated outside the oral environment [109]. To date, the ideal restorative

material with favorable properties such as biocompatibility, long-term durability,

high mechanical strength, appropriate fracture toughness, and tooth-like color and

translucency has not been achieved. However, knowing the characteristics, properties

and limitations of each restorative material helps chooseing the best material for each

specific application in restorative dentistry.

1.3.1 Dental Ceramics

The development of new generation ceramics has been always a challenging

issue in the dental field, requiring an extensive study on ceramic composition, mi-

crostructure, crystalline phase content, mechanical properties and biocompatibility.
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Continuously, various types of ceramics and fabrication methods have been devel-

oped to satisfy the demands of dentists and patients in restorative dentistry, and

dental ceramics have been widely used for dental applications due to their great

clinical, physical, optical, and mechanical properties.

Over the years, there have been several attempts to manufacture suitable dental

ceramics for use in restorative dentistry [110], from the introduction of traditional

feldspathic porcelains to the development of modern ceramics with outstanding

strength, toughness, and esthetics.

Originally, metal-ceramic materials, obtained by veneering feldspathic porcelains

over metal substructures, were used. However, the use of these metal structures

negatively impacts on the opacity of the restorative dental ceramic [111]. Therefore,

as an answer to the increasing demand for restorations with better optical properties,

metal-free materials (also known as all-ceramic) were developed. All-ceramic dental

restorations present a high color match to the natural human teeth and outstanding

mechanical properties, due to their large amount of crystalline phase (35–99 vol.%).

The crystalline phase of the all-ceramics materials can be lithium disilicate glass-

ceramics, alumina/zirconia, and zirconia. Alumina-reinforced leucite-based ceramic

was the first product of all-ceramic restorations. Glass-infiltrated ceramics including

VITA In-ceram Alumina, Spinell, and Zirconia (Vita Zahnfabrik, Bad Sächingen, Ger-

many), which presented higher strength and better optical properties than feldspathic

porcelains, were introduced afterward [109].

All-ceramic crowns offer increased potential for success in mimicking the ap-

pearance of natural teeth, especially when high degree of translucency is desired.

After many attempts, modern glass-ceramics were developed in the 1990s, by intro-

ducing heat-pressed ceramics with easier fabrication procedures and better overall

optical and mechanical properties. Leucite-reinforced (IPS Empress®; Ivoclar, Schaan,
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Liechtenstein) and lithium disilicate-reinforced (IPS Empress® II, IPS e.max®; Ivoclar,

Schaan, Liechtenstein) glass-ceramics are some examples [109].

1.3.1.1 Lithium-Disilicate Glass-Ceramics

Lithium-Disilicate Glass-Ceramics (LDGC) are fabricated using a combination of

lost-wax and heat-pressed techniques by adding lithium oxide to the aluminosilicate

glass. These are based on the system of Li2O : 2SiO2. Although LDGC are widely

used with great success, the are still some remaining disadvantages. In this sense, the

use of polycrystalline-reinforced zirconia-containing lithium-silicate ceramics (ZLS)

was of great help [112].

ZLS is based on lithium-silicate glass with 10 wt% zirconia added as a nucleation

agent. The microstructure of this kind of glass ceramics contains fine and round-

shaped lithium metasilicate (Li2SiO3) crystals, rod-like lithium disilicate (Li2Si2O5)

crystals, and zirconia-containing glass matrix [112].

VITA Suprinity (Vita Zahnfabrik, Bad Sächingen, Germany) and CELTRA Duo

(Dentisply-Sirona, Bensheim, Germany) are examples of these glass-ceramics applied

in restorative dentistry. The main advantage of these materials is their effectiveness

for the production of dental restorations, since, due to their improved composition,

they can be already offered in their fully crystallized state or requiring a very short

crystallization cycle, by the manufacturers.

However, there are still some common clinical complications associated with the

use of all-ceramic restorations, mostly related to the fracture of the veneering porcelain

or the substructure. Therefore, the success of the use of these materials depends, to

a large extent, on the procedures utilized to prevent crack propagation as well as

the capability of clinicians to properly select the materials, cements, procedures and

thickness ratio [113–115].
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1.3.2 Dental resin composites

Dental resin composites represent one of the many successes of modern biomate-

rials, due to their biocompatibility, esthetics, antibacterial, and nontoxic characteris-

tics [116]. Although they still face some clinical drawbacks, such as lower durability

than the ceramic-based materials, polymerization shrinkage, tooth sensitivity after

application, marginal staining or secondary caries [117], the possibility of direct ap-

plication (in-situ curing) has made them the most commonly used biomaterials for

direct dental restorations.

1.3.2.1 Chemical composition of dental composites

Chemistry of a biomaterial is of critical importance since it provides information

regarding its composition, the nature of its surface behavior, its potential for degrada-

tion in-vivo and so on, which are aspects that have an impact on the durability and

lifetime of the material.

A dental composite includes a resin matrix, inorganic fillers, coupling agents and

initiator-accelerator system [109].

The resin-based oligomer matrix is most commonly composed of bisfenol-A-

glicidil-metacrilato (bis-GMA) and urethane dimethacrylate (UDMA). As these mono-

mers are strongly viscous, it is essential to blend them with other monomers having

lower molecular weights in order to facilitate blending and manipulation of the com-

posite, such hydroxyethylmethacrylate (HEMA) or triethylene glycol dimethacrylate

(TEGDMA), among others [118].

In order to enhance the hardness, wear resistance and translucency of the com-

posite, as well as to reduce the curing shrinkage and thermal expansion coeffi-

cient [111, 119], fillers are added in the structure of the resin matrix. Some examples
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of filler particles used in dental composites are quartz, aluminum silicate, lithium

aluminum silicate, ytterbium fluoride, and barium, strontium, zirconium and zinc

glasses.

The coupling agent is a bonding agent, which is applied on the surface of filler

particles to enhance their chemical bond to the matrix [109]. The coupling agent sys-

tem usually consists of organic silane such as 3-methacryloxypropyltrimethoxysilane

and 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) [120].

Finally, in order to obtain a hardened structure the initiator-accelerator system is

used to polymerize and cross-link the polymeric matrix when external energy (light

or heat) is applied.

1.3.2.2 Classification of dental composites

Dental composites can be classified according to different aspects such as their

composition, performance characteristics, elastic modulus, surface roughness and

compressing strength, among others [121–123]. There are two mainly used classifica-

tions of dental composites: based on the particle size of reinforcing fillers and based

on their curing modes.

• Filler particle size:

According to their filler particle size, composites can be classified into: macro-

filled, microfilled, hybrids and nanofilled composites [117].

Conventional dental composites, also known as macrofilled composites, con-

tained large particles (10–50 µm) with spherical or irregular shapes. These were

mechanically strong and difficult to polish, however they presented low wear

resistance [124, 125]. They were also almost opaque and difficult to retain a fa-

vorable color match. Due to the large filler particles in their structure, achieving
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smooth surfaces was rather impossible [125].

Later, amorphous spherical silica of approximately (0.01 µm and 0.1 µm) and

resin fillers inserted in a polymeric matrix (5 µm to 50 µm) were incorporated to

formulate microfill composites [109]. These were more esthetically pleasing but,

due to the low filler contents, their strength was rather poor and therefore they

were more vulnerable to fractures and prone to lose their anatomical shape due

to wear.

To attempt for long-term esthetics and improved mechanical properties, the par-

ticle size of conventional composites (macrofilled and microfilled) was reduced

to produce the so-called hybrid composites, composed of microfine particles

(0.01–0.1 µm) accompanied with fine particles (0.1–10 µm) and submicron par-

ticles (0.4–1.0 µm). Compared to macrofilled and microfilled, these type of

resin-based composites present lower shrinkage, improved polishing perfor-

mance and better esthetics [126], and they are produced in a variety of different

shades with tailored opacity and translucency [127]. Therefore, they can be

considered among the best materials for posterior restorations.

Finally, with the advent of nanotechnology, nanofilled composites (with parti-

cles ranging between 1–100 nm) were introduced. Most of the nanocomposites

are composed of conventional particles accompanied with nanofillers, therefore

they can be called hybrid nanocomposites. They present higher polishabil-

ity and better optical properties than other types of composites. However,

nanofilled and nanohybrid composites do not present any significant benefit

over microhybrids regarding surface condition, marginal quality and wear or

fatigue resistance [128]. Thus, it is up to the clinical dentist to choose between

the proposed restorative materials for each particular case.
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• Curing modes:

Polymerization efficiency affects several properties of composites such as degree

of conversion, degree of cross-linking, mechanical properties, shrinkage stress,

curing depth, trapped free radicals, and biocompatibility [109]. In this regard,

dental composites used for direct restorations can be divided into chemically

activated (self-cured), photochemically activated (light-cured) or dual-cured

composites [129].

Chemical-cured composites polymerization is initiated by an oxidation-reduction

initiator system when a base and a catalyst paste are mixed together at room

temperature. The catalyst paste contains benzoyl peroxide initiator, while the

base paste contains tertiary amine such as N, N-dimethyl-p-toluidine. When

the two parts are mixed, the radicals formed by the reaction of the initiator and

the amine are able to react with the monomers that would become polymerized

later [130].

Among the disadvantages of this type of composites it can be highlighted

that pore formation is inevitable during the mixing process, which makes the

structure weaker, and also that they need to be quickly manipulated after the

mixing process, as there is still a lack of control of the working time of the mixed

pastes. Therefore, these self-cure composites are mostly used as resin-based

luting cements or core materials, rather than direct restorations [129].

In order to overcome these drawbacks of chemically activated composites, light-

cured resins contain photosensitizer and amine initiator, which initiate free

radicals using a light source without the need of a mixing process. The first

product of this type were UV-activated composites. However, these resin-based

composites have been replaced by safer visible blue light-activated compos-
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ites [131]. These contain CQ/amine complex initiation which provides superior

curing depth and controllable working time. These composites present several

benefits, such as low porosity, good strength, low staining, improved color sta-

bility, controlled working time by exposure to light and availability of multiple

shades [109]. Noteworthy, these resins still present some drawbacks, such as

limitations of expensive lamps, dependence of curing on light intensity, light

angle, and curing depth thickness of up to 2 mm, forcing them to be applied

in small thickness increments at a time, which results in more time-consuming

clinical processes [117].

In this regard, the development of dual-cured resins has allowed the curing

process of composites to be completed and to have increased curing depth by

combining the advantages of light and chemical curing systems.

Most of the advances discussed herein remain in the research stage and there is

much potential for further improvement. Therefore, it is clear that, research in the

field of dental composites continues to propose and achieve significant advances in

resin formulation, filler loading and modification, as well as curing methodologies

and mechanisms.

1.4 Color prediction in dentistry

The importance of color in esthetic dentistry has become evident over the last

decades. To meet this increasing demand, dental material manufacturers have in-

troduced a wide variety of materials and shades, that has to match the appearance

(optical properties and color) of the natural structures that they are meant to re-
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place. Therefore, an adequate knowledge of the optical and colorimetric properties

of these materials is of great interest, since it leads to a better esthetic result [132].

This requirement is difficult to fulfil as, from the optical point of view, these natural

tissues are very complex, presenting very characteristic chromatic properties and

translucency [133]. Yet, color matching of restorations is a very difficult step for most

clinicians, and accurate shade determination is still a challenge.

In this regard, the use of artificial intelligence and color prediction methods can

have an impact on the dental profession and also complement the development of

digital technologies and tools [134].

Given this demand for esthetics, a specific treatment such as teeth bleaching is

becoming increasingly popular among patients and dentists, as it is a relatively non-

invasive method of whitening and lightening the teeth. The effectiveness of a tooth-

bleaching treatment was usually judged by visual inspections and comparisons with

shades guides. Therefore, different authors implemented fuzzy logic approaches [101]

and multivariate linear regression models [135], which can be applied in clinical

scenarios to predict the color change after bleaching.

In addition, in order to provide scientific information on shade selection for

toothless patients, some authors implemented color prediction models based on some

characteristics of the dentate subjects, such as age, gender and the color of the other

craniofacial structures [59, 60]. They studied both linear and non-linear regression

approaches and concluded that linear regression models were the most suitable for

the prediction the CIE-L*a*b* color coordinates of the central incisors.

The Kubelka-Munk theory (K-M), which has been mainly used to determine the

optical properties of non-homogeneous media [136, 137], was also proven to be valid

for reflectance prediction of dental samples. This theory is able to provide simple

mathematical expressions to determine the optical parameters from reflection and
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diffuse transmission measurements of a sample. Already in early 1980s, some authors

successfully predicted the color of different dental composites using this theory. More

recently, different authors have proven this theory to be valid for reflectance, and

therefore color prediction of single [138,139] and layered dental resin composites [138].

Furthermore, a recent study [140], confirmed the possibility of using a combination

of Genetic Algorithms and Neural Networks for computational color matching in

dental restorations, while other authors were able to predict reflectance data of

experimental dental resin composites with added pigments by using a multiple

nonlinear regression model [141].

Over the years, many mathematical techniques have been developed to reconstruct

spectral reflectance data in different color research areas [142–146]. Among all of

them, linear regression and principal component analysis (PCA) are worth to be

highlighted for their simplicity and versatility [147–149].

It is clear that, color prediction in dentistry is a growing research area [134].

However, the prediction of the reflectance spectrum as well as the color coordinates

of monolithic and layered dental materials as a function of their thickness is still an

unsolved problem. These type of predictions have the potential to provide essential

information of the final appearance of a dental restoration, which can be of vital

importance to reduce the trial-and-error of manufacturing processes and to improve

the esthetic outcome of a dental restoration.

1.4.1 Regression analysis

Regression problems are frequent in machine learning, and regression analysis

is a commonly used technique to solve them. Regression attempts to determine the

relationship between one dependent variable and a series of other variables. Regres-

sion analysis includes several variations, such as linear, multiple linear, which are the
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most common, and non-linear, which is far more complicated, and is commonly used

for data sets in which the dependent and independent variables show a nonlinear

relationship [150].

Linear regression models:

The most well-known regression modelling technique is linear regression, which

assumes a linear connection between a dependent variable and a single or a set

of independent variables. The linear regression model is so-called simple (SLR)

when only one independent variable is used, or complex, when several independent

variables are used. The mathematical representation of a multiple linear regression

(MLR) model is:

y = β0 + β1x1 + ...+ βmxm + ϵ (1.4.1)

which determines the best-fit hyperplane that passes through all the data points with

the smallest possible distance between the fit and each data point.

Polynomial regression [151, 152] is a type of MLR that allows for higher-order

regression models of the relationship between independent and dependent variables.

Although polynomial regression fits a nonlinear model to the data, as a statistical

estimation problem it is linear, in the sense that the regression function is linear in the

unknown parameters that are estimated from the data. In case of considering hth de-

gree polynomial and a single independent variable, the mathematical representation

(now being be a curve rather than a straight line) would be:

y = β0 + β1x+ β2x
2 + ...+ βhx

h + ϵ (1.4.2)

where h is the polynomial degree [150].

To optimize a polynomial regression model, a simple data set can be used, con-

sisting of n points (xi, yi), with i = 1, . . . , n, where xi is an independent variable and
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yi is a dependent variable. The model function can be defined as f(x, β), being β a

vector holding m parameters, β = (β1, β2, ..., βm). The goal is to find the parameters βj

so that the model function best fit the data [150]:

β̂ = (XTX)−1XTY (1.4.3)

The fit of a model to a data point is measured by its residual, defined as the

difference between the observed value of the dependent variable and the value

predicted by the model:

ri = yi − f(xi, β) (1.4.4)

The least-squares method finds the optimal parameter values by minimizing the

sum of squared residuals, S:

S =
n∑

i=1

r2i (1.4.5)

Linear regression models have been widely used for color prediction in dentistry.

Some authors, attempted to predict teeth color with respect to age and gender [60].

This technique has also been used to evaluate the role of enamel thickness and predict

refractive index on human tooth color [153], while other authors implemented a MLR

method to predict the CIE-L*a*b* values of dental ceramics with different pigment

concentrations [154], and evaluated its performance versus the Kubelka-Munk theory

approach [155]. These are just a few examples of the huge amount of studies that

implemented regression modeling in dental research.
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1.4.2 Principal Components Analysis basis

Principal component analysis is a mathematical algorithm that reduces the dimen-

sionality of the data while retaining most of the variation in the data set [147–149]. It

accomplishes this reduction by identifying directions, called principal components,

along which the variation in the data is maximal. By using a few components, each

sample can be represented by relatively few numbers instead of by values for thou-

sands of variables [147]. In other words, any sample can be represented as a linear

combination of a few principal components and weighting coefficients.

PCA Algorithm:

Although understanding the details underlying PCA requires knowledge of linear

algebra [147–149], the basics can be explained with simple geometrical interpretations

of the data. The steps involving the PCA Algorithm are:

1. Data standardization.

The first step is to normalize the data so that each variable contributes equally to

the analysis. This is done by subtracting the respective means from the numbers

in the respective column:

xi
s =

xi − µx

σx

(1.4.6)

2. Calculate covariance matrix of the data set.

Covariance measures how two features vary with each other. For a given data

set with n samples, the covariance ,σjk, between two feature vectors xj and xk

can be calculated using the following equation:

σjk =
1

n− 1

i=1∑
n

(xi
j − µj)(x

i
k − µk) (1.4.7)
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Therefore for a standardized data set, covariance matrix can be computed as:

C =
XTX

n− 1
(1.4.8)

were X is the data set and XT is the transpose.

3. Compute Eigenvectors and corresponding Eigenvalues.

In linear algebra, an eigenvector is a nonzero vector that changes at most by

a scalar factor when a linear transformation is applied to it. It represents the

principal components (the directions of maximum variance) of the covariance

matrix. The eigenvalues are their corresponding magnitude. In this sense,

the eigenvector that has the largest corresponding eigenvalue represents the

direction of maximum variance.

For a given covariance matrix, C, an eigenvector, v⃗ satisfies the following

condition:

Cv⃗ = λv⃗ ⇒ (C − λI)v⃗ = 0 (1.4.9)

where λ is the eigenvalue associated with eigenvector v⃗ of C, and I is the identity

matrix.

4. Extract the principal components with the highest eigenvalues.

To do so, the eigenvectors are sorted with respect to their decreasing order of

eigenvalues. After choosing the more representative principal components, the

new matrix of vectors is created and is known as feature vector matrix, Z.

5. Compute protection matrix.

Finally, the projection matrix, which contains the transformed data of the origi-

nal data set, can be computed by simply multiplying the feature vector matrix
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with the data set matrix, as shown in:

W = ZX (1.4.10)

Many applications beyond dimensional reduction, classification and clustering

have taken advantage of the global representations of this decomposition. Applica-

tions, including patterns recognition and filtering [156], estimating missing data [157]

or associating genes and expression patterns with activities [158], are some examples.

In dentistry, PCA was used to find appropriate axes for dental color evalua-

tion by analyzing spectral data itself, rather than conventional 3-dimensional color

spaces [159]. However, it may be further exploited, as it is a powerful tool for the char-

acterization of multidimensional data, especially spectral data, whose reads present

a high colinearity among the near wavelenghts. PCA operation as an approxima-

tor allows to manage spectral data by handling a few principal components, which

consequently reduces the amount of data needed, with disposable information loss.

The use of a reduced number of principal components acts further as a regulariza-

tion technique to avoid noise and overfitting [160]. These advantages may be thus

harnessed for spectral estimation in dentistry.
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This PhD Thesis is intended to contribute to the progress of knowledge in the field

of esthetic dentistry and development of dental materials. Over the last decades, the

area of esthetic dentistry has been improving exponentially. To meet the increasing

demand for esthetics, dental material manufacturers are continuously introducing

new dental materials that mimic the mechanical, optical and colorimetric properties

of the natural dental tissues that they will replace. These tissues are very complex,

presenting very specific optical and colorimetric properties. Moreover, since dental

structures consist of several layers of different materials (pulp, dentine and enamel),

dental restorations must be also reproduced through layering of different materials

and shades, which makes the shade matching process even more complicated.

Accurate color determination of dental materials is a complex procedure that

must be well managed both in clinical practice, to guarantee the success of a dental

restoration, as well as in industry, to improve the development of new dental materials.

Since the reflectance spectrum of any object is independent of illumination and

viewing conditions, this is one of the best ways to describe its color. In this sense,

known the reflectance spectrum of any kind of dental material of different thickness,

or, even more interesting, being able to predict it, can provide essential information

on its final appearance after application.

Nevertheless, there are specific situations where the access to reflectance measure-

ment is not straightforward, as is the case of many clinical scenarios, where most of

the devices currently available for dental color measurement and shade matching

provide exclusively colorimetric values. Therefore, any proposed predictive method

should account for these specificities and incorporate them in its development.

Over the years, many mathematical techniques have been developed to reconstruct

spectral reflectance data in different color research areas, among which outstanding

the linear regression and principal component analysis, due to their simplicity and
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versatility. In the specific field of dentistry, color prediction is a fast growing research

area. In this context, it is of great interest to have appropriate models and methods

that can predict the reflectance spectrum as well as the chromatic coordinates of both

monolithic and layered dental biomaterials, with direct applications in industry and

clinical practice. These type of predictions have the potential to provide essential

information of the final appearance of a dental restoration, which can be of vital

importance to reduce the trial-and-error of manufacturing processes and to improve

the esthetic outcome of a dental restoration.

Taking into account all the above mentioned, the following objectives were estab-

lished for the present PhD Thesis:

1.1 Main objective

The main objective of the research presented in this PhD Thesis is to measure,

model and predict the reflectance and colorimetric properties of a large variety

of monolithic and layered (stacked -monolithic samples placed one on top of the

other - and stratified - manufactured and polymerized layered samples) translucent

biomaterials with direct application in dentistry.

1.2 Specific objectives

1. To develop PCA-based predictive algorithms that enable satisfactory estimation

of the reflectance spectrum and color coordinates of flat monolithic samples

of translucent dental materials (dental ceramics and resin composites) with

different shades and thicknesses.

54



Section 1.2: Specific objectives

2. To develop PCA-based predictive algorithms that enable satisfactory estimation

of the reflectance spectrum and color coordinates of stacked layered samples of

dental resin composites with different shades and thicknesses and to optimize

the training set - test set selection strategy.

3. To develop linear regression algorithms that enable satisfactory estimation of

CIE-L*a*b* chromaticity coordinates of monolithic and stacked layered samples

of dental resin composites with different shades and thicknesses and under

different illuminants.

4. To evaluate and validate the use of the PCA-based reflectance prediction al-

gorithm and linear regression-based CIE-L*a*b* chromaticity coordinates pre-

diction algorithm in the case of stratified layered dental resin composites with

different shades and thicknesses.
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Con esta tesis doctoral se pretende contribuir al avance del conocimiento en el

campo de la odontología estética y el desarrollo de materiales dentales. En las úl-

timas décadas, el área de la estética dental ha ido mejorando exponencialmente.

Por eso, para satisfacer la creciente demanda de estética, los fabricantes de mate-

riales dentales continúan introduciendo nuevos materiales dentales que imitan las

propiedades mecánicas, ópticas y colorimétricas de los tejidos dentales naturales a

los que van a sustituir. Estos tejidos son muy complejos y presentan propiedades

ópticas y colorimétricas muy específicas. Además, dado que las estructuras dentales

están formadas por varias capas de diferentes tejidos (pulpa, dentina y esmalte), las

restauraciones dentales deben reproducirse también mediante la estratificación de

diferentes materiales y tonos, lo que complica aún más el proceso de determinación

del color.

La determinación precisa del color de los materiales dentales es un procedimiento

complejo que debe ser bien gestionado tanto en la práctica clínica, para garantizar el

éxito de una restauración dental, como en la industria, para mejorar el desarrollo de

nuevos materiales dentales. Dado que la reflectancia espectral de cualquier objeto es

independiente de la iluminación y de las condiciones de observación, es una de las

mejores formas de describir su color. En este sentido, conocer la reflectancia espectral

de cualquier tipo de material dental de diferente espesor o, lo que es más interesante,

poder predecirla, puede proporcionar información esencial sobre su apariencia final

tras su aplicación.

No obstante, existen situaciones específicas en las que obtener medidas de re-

flectancia no es sencillo, como ocurre en muchos escenarios clínicos, ya que la may-

oría de los dispositivos disponibles actualmente para la medición del color dental

proporcionan exclusivamente valores colorimétricos. Por lo tanto, cualquier método

predictivo que se proponga debe tener en cuenta estas particularidades e incorporar-
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las en su desarrollo.

A lo largo de los años, se han desarrollado muchas técnicas matemáticas para

reconstruir la reflectancia espectral en diferentes áreas de investigación del color, entre

las que destacan la regresión lineal y el análisis de componentes principales (ACP),

debido a su simplicidad y versatilidad. En el campo específico de la odontología, la

predicción del color es un área de investigación en pleno crecimiento. En este contexto,

es de gran interés disponer de modelos y métodos adecuados que puedan predecir

la reflectancia espectral así como las coordenadas cromáticas de los biomateriales

dentales, tanto monolíticos como por capas, con aplicaciones directas en la industria

y en la práctica clínica. Este tipo de predicciones tienen el potencial de proporcionar

información esencial sobre el aspecto final de una restauración dental, lo que puede

ser de vital importancia para reducir el proceso de ensayo-error a nivel de fabricación

y mejorar el resultado estético de una restauración dental.

Teniendo en cuenta todo lo anterior, se establecieron los siguientes objetivos para

la presente Tesis Doctoral:

2.1 Objetivo principal

El objetivo principal de la investigación presentada en esta Tesis Doctoral es

medir, modelar y predecir la reflectancia y las propiedades colorimétricas de una gran

variedad de biomateriales translúcidos monolíticos y con capas (apilados -apilamiento

de muestras monolíticas- y estratificados -muestras fabricadas y polimerizadas como

bicapa) con aplicación directa en odontología.
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2.2 Objetivos específicos

1. Desarrollar algoritmos predictivos basados en ACP que permitan estimar satis-

factoriamente la reflectancia espectral y las coordenadas de color de muestras

monolíticas planas de materiales dentales translúcidos (cerámicas y resinas de

composite) con diferentes colores y espesores.

2. Desarrollar algoritmos de predicción basados en ACP que permitan estimar

satisfactoriamente la reflectancia espectral y las coordenadas de color de mues-

tras bicapa apiladas de resinas de composite de diferentes colores y espesores, y

optimizar la estrategia de selección de los conjuntos de entrenamiento y test.

3. Desarrollar algoritmos de regresión lineal que permitan estimar satisfactoria-

mente las coordenadas de cromaticidad CIE-L*a*b* de muestras monolíticas y

bicapa apiladas de resinas de composite de diferentes colores y espesores y bajo

diferentes iluminantes.

4. Evaluar y validar el uso del algoritmo de predicción de reflectancia basado

en ACP y el algoritmo de predicción de coordenadas CIE-L*a*b* basado en

regresión lineal en el caso de resinas de composite bicapa estratificadas con

diferentes colores y espesores.
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Section 3.1: Introduction

In this Chapter, a PCA-based prediction algorithm is developed and proposed for

reflectance and color prediction of different shades of monolithic dental ceramics and

dental resin composite with clinically relevant different thickness.

It extends the study published as:

M. Tejada-Casado, R. Ghinea, M. M. Perez, H. Lübbe, I. Pop-Ciutrila, J. Ruiz-

López, and L. Herrera, “Reflectance and color prediction of dental material monolithic

samples with varying thickness,” Dental Materials, vol. 38, no. 4, pp. 622–631, 2022.

3.1 Introduction

As previously mentioned in the first Chapter of this Thesis, accurate shade deter-

mination is a key aspect of aesthetically successful restorations and a challenge to

both dentists and dental technicians. Therefore, an adequate knowledge of the optical

properties of the restorative materials used is of great interest, since it would lead

to a better overall aesthetic result. However, full comprehension of these properties

might be difficult to achieve as, from the optical point of view, these tissues are very

complex, presenting very characteristic chromatic and translucency properties [133].

Since the reflectance spectrum is independent of illumination and observer, it

is one of the best ways to describe the color of any object. Therefore, knowing

the reflectance spectrum of dental materials with a given thickness, or, even more

interesting, being able to predict it, has the potential to provide essential information

on the final appearance of a dental restoration. This can be of vital importance to

reduce the trial-and-error of manufacturing processes and to improve the aesthetic

outcome of a dental restoration, resulting in increased patient satisfaction.
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In the past few years, different methods were used in dentistry for reflectance

prediction of dental samples, such as the Kubelka-Munk theory [138, 139], genetic

algorithms and neural networks [140] or multiple nonlinear regression models [141].

Although principal component analysis was originally a statistical technique used

for reducing the dimensionality of data sets while minimizing information loss, in

many different disciplines it has been adapted for other purposes [145, 149]. PCA

operation as an approximator allows to manage spectral data by handling a few

principal components and it is a powerful tool for the characterization of multidimen-

sional data, especially spectral data, whose reads present a high colinearity among the

nearby wavelengths. These advantages may be thus harnessed for spectral estimation

in dentistry.

There are some studies that highlight an existing relationship between thickness

and the color and optical properties of dental materials [45, 46, 50–53, 161]. However,

the prediction of the reflectance spectrum and color coordinates of a dental material

as a function of its thickness is still an unsolved problem.

Therefore, the main objective of the research presented in this Chapter is to predict

the measured reflectance and color coordinates of different types of flat dental samples

(both dental ceramics and resin composites) with varying thickness.

The following research hypotheses were tested in this study:

1. The reflectance spectrum within the visible range of dental samples can be

satisfactory predicted as a function of thickness.

2. The color of dental material samples with varying thicknesses can be predicted

within clinically acceptable color difference limits.

3. Performance of PCA-based models for reflectance estimation is material depen-

dent.
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3.2 Materials and method

3.2.1 Specimen preparation

Dental ceramic samples - VITA SUPRINITY® PC (VS-PC) (Vita Zahnfabrik, Bad

Säckingen, Germany) - and dental resin-based composite (DRC) samples - VITAPAN

DENTINE (VD) (Vita Zahnfabrik, Bad Säckingen, Germany) - with different shades

were used in this study (Table 3.1).

Table 3.1: Evaluated materials with corresponding class, composition,
selected shades and thickness.

Material Classification Composition Shades Thicknesses (mm)

VITA Suprinity
(VS-PC)

ZrO2 lithium
silicate glass

ceramic

SiO2 (56-64wt%), Li2O (15-21wt%),
ZrO2 (8-12wt%), P2O5 (3-8wt%),
K2O (1-4wt%), Al2O3 (1-4wt%),
CeO2 (0-4wt%), La2O3P (0.1wt%)

and pigments (0-6wt%)

A1, A2, A3, A3.5,
B2,

D2, D2

0.6 ± 1.0
0.9 ± 1.0*
1.2 ± 1.0*
1.5 ± 1.0*
2.0 ± 1.0

VITAPAN Dentine
(VD)

Microfiller Reinforced
Polymer Matrix

(MRP composite)

PMMA (84-86%), SiO2 (14-15%)
and Pigments (< 1%)

A1, A2, A3, A3.5,
B2,

D2, D2

0.5 ± 1.0
1.0 ± 1.0*
1.5 ± 1.0*
2.0 ± 1.0*
2.5 ± 1.0

* refers to the samples being used to test the algorithm.

The machinable VS-PC (14mm x 12mm x 18mm) ingots (Figure 3.1a) were sec-

tioned with a diamond disk at low speed in a precision cutting machine (Isomet 1000,

Buehler, Lake Bluff, IL, USA) (Figure 3.1b), sliced to the desired thickness in their

precrystallized state and consequently submitted to the crystallization process, as

indicated by the manufacturer in a Programat EP 3000 furnace (Ivoclar Vivadent,

Schaan, Liechtenstein). Next, the specimens were polished with wet silicon carbide

paper of increasing grit number (400-, 600-, 800-, and 1200-grit) until the desired thick-

nesses were achieved: 0.6 mm, 0.9 mm, 1.2 mm, 1.5 mm and 2 mm with a tolerance

of ±0.1 mm (Table 3.1). For each shade and thickness three samples were prepared

(Figure 3.1c).
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(a) (b) (c)

Figure 3.1: Fabrication process of VS-PC specimens. a) Precrystallized VS-PC
block (Reproduced from www.vita-zahnfabrik.com). b) Isomet disc used for

sectioning the blocks (Reproduced from [5]). c) Specimens after
crystallization and polishing.

The fabrication of the VD samples was carried out at Vita Zahnfabrik facilities.

These were based on the same organic masses that are used for the production of

prosthesis teeth. These masses consist of an organic monomeric matrix, a microbead

filling material, organic additives and inorganic pigments. First, the components were

added and homogenized in fabrication-sized mixers and kneaders until a homoge-

neous mass of dough-like constitution and viscosity was achieved. Since the exposure

of these masses to ambient temperature would drastically increase the polymerization

speed of the monomeric organic matrix material, all masses were transferred to and

stored in conventional deep-freezers to prevent their continuous polymerization.

Prior to their use, they were taken out of the deep-freezers and exposed to ambient

temperatures for a few minutes. The fabrication of the pellets started with slices of the

produced masses, which were previously calendered in conventional twin-roll calen-

ders to sheets of specific thicknesses. Then, a specific amount of material from these

sheets was inserted into a 1.5 cm diameter metal molds and subsequently exposed to

a combined heat-and-pressure treatment in a conventional transfer press to complete
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the polymerization of the masses. There they were heated at 180 C◦ for 3 minutes.

Next, the molds were cooled to 60 C◦ before the samples were extracted. All samples

were ground on a JUNG surface grinder machine (United Grinding, Miamisburg,

OH, USA) to the following specific thicknesses: 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and

2.5 mm, with a tolerance of ±0.1 mm. All samples were polished with 9µm diamond

paste by the same trained operator. For each shade and thickness one sample was

prepared (Figure 3.2).

Figure 3.2: Finished VD specimens after polymerization and polishing.

All specimens were cleaned from debris with distilled water in an ultrasonic bath

(Elmasonic S30H, Elma Schmidbauer, Singen, Germany) for 10 minutes, and dried

with gauze and compressed air.

3.2.2 Spectral reflectance and color coordinates

A spectroradiometer (SpectraScan PR 670, Photo Research, Syracuse, NY, USA), a

fiber-coupled Xe-Arc light source (66485-300, Newport Corporation, Irvine, CA, USA)

and a Spectrally Calibrated Reflectance Standard (SRS-3, Photo Research, Syracuse,

NY, USA), were used to measure the spectral reflectance spectrum of the samples in

the 380 nm – 780 nm range. The samples were measured over a black standardized

background (Ceramic color standards CCSII, Lucideon, Staffordshire, UK; L∗ = 23.3;

a∗ = −0.3; b∗ = −1.0) inside a completely dark room. The spectroradiometer was

placed 40 cm away from the samples, in a set-up corresponding to CIE 45◦/0◦ illu-

minating/measuring geometry (Figure 3.3). Three short-term repeated reflectance
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measurements were performed without replacement, and the results were averaged.

Spectral reflectance values were converted into CIELAB color coordinates using the

CIE 2◦ Standard Observer and the CIE D65 Standard Illuminant.

Figure 3.3: Schematic representation of the measurement set-up used to
measure spectral reflectance of the samples.

3.2.3 Computational method

Reflectance spectrum R(λ) prediction as a function of sample thickness was per-

formed using a PCA-based algorithm.

In order to develop and assess the predictive models, samples were divided in

different training and testing groups, using a single thicknesses at a time as test. That

is, if the reflectance spectra of one of the dental samples was to be predicted, only the

samples corresponding to the same material and shade but with different thickness

were included as training data for the development of the predictive model. This

separation into training and testing groups was repeated for all thicknesses of each
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shade, so that all samples were part of each training-test groups, but only belonged

to either training or test each time. A diagram of this division is shown in Figure 3.4.

Figure 3.4: Schematic representation of samples being included in the
training (orange) and testing (gray) sets.

The fundamentals of this predictive technique are described hereunder.

Given a reflectance training set (noted as X), any reflectance spectrum R(λ) can

be represented as a linear combination of a few spectral functions ai(λ), being those

the eigenvectors of XXT , as shown in equation 3.2.1:

R(λ) = α1a1(λ) + α2a2(λ) + ...+ αnan(λ) (3.2.1)

where αi are the weighting coefficients, which correspond to the inner products of the

original reflectance spectrum, R(λ), and their respective eigenvectors according to:

αi =
∑

R(λ)ai(λ) (3.2.2)

After extracting the eigenvectors from XXT , the resultant matrix is sorted by coef-

ficient value in descending order, establishing a priority ranking for the eigenvectors

as a function of the amount of data that they are able to cover. Finally, we can choose
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as many principal components as we want to reconstruct our data.

For a given dataset of N -samples and a certain number of M -PCs in the model,

the weights are generated as shown in 3.2.2, obtaining:

W =



α(PC11) α(PC12) · · · α(PC1N)

α(PC21) α(PC22) · · · ...
...

... . . . ...

α(PCM1) · · · · · · α(PCMN)


M×N

(3.2.3)

Since the coefficients that would correspond to a certain thickness can be computed

by linear-regression approaches, the reflectance of the new sample can be estimated

by multiplying those computed coefficients with their corresponding eigenvectors, as

shown in equation 3.2.1.

In order to find the best PC-number and polynomial-degree combination to be

used in the proposed algorithm, different tests were carried out including from 1

PC to 4 PC, and polynomial degrees of 1st, 2nd and 3rd order, for the modelling of

the coefficient values according to the thicknesses of the samples. From the current

database, it was found that 3 PC and second degree polynomial regression were the

hyperparameters providing the best performance. More details are discussed in the

next section.

Once these curves are determined, the coefficients corresponding to any different

desired thickness can be extracted. An example of how these weighting coefficients

are obtained is shown in Figure 3.5.

3.2.4 Performance metrics

In order to evaluate the matching quality between estimated and measured re-

flectances, different performance metrics have been used. These performance metrics
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were divided into two analysis groups: spectral curve analysis and color difference

analysis.

3.2.4.1 Spectral Curves Differences

The degree of similarity between the estimated and measured spectral reflectances

was assessed using two spectral metrics: the Root Mean Square Error (RMSE) and the

Goodness-of-fit coefficient (GFC) [162].

RMSE focuses on the absolute differences between two spectral signals and, thus,

it is not independent of scale factors. A perfect match between two spectral signals

is described by RMSE = 0, while higher values of RMSE correspond to increasing

disagreement between the two analyzed spectral curves. RMSE is calculated as

shown in equation 3.2.4:

RMSE =

√√√√ 1

n

780∑
j=380

(Rm(λj)−Re(λj))2 (3.2.4)

where Rm(λj) and Re(λj) are the measured and estimated spectral curves respectively

at each wavelength.

GFC corresponds to the cosine of the angle formed by the two samples compared

in the high-dimensional vector space of spectral signals. This metric is independent

of scale factors. Values of GFC ≥ 0.999 and GFC ≥ 0.9999 correspond to good and

excellent spectral matches, respectively [162]. It is calculated as shown in equation

3.2.5:

GFC =
|
∑780

j=380Rm(λj) ·Re(λj)|
|
∑780

j=380[Rm(λj)]2|
1
2 ·

∑780
j=380[Re(λj)]2|

1
2

(3.2.5)

where Rm(λj) and Re(λj) are the measured and estimated spectral curves being

compared at each corresponding wavelength.
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Finally, the correlation coefficient R2 was computed for every pair of measured

and estimated reflectance values. R2 varies between 0 and 1, with higher values

corresponding to a better match between the analyzed spectral curves (for a perfect

fit, R2 = 1).

3.2.4.2 Evaluation of color differences

Total color differences between CIE L*a*b* values corresponding to measured and

predicted spectral curves were computed using the CIEDE2000(1:1:1) total color dif-

ference formula (Eq. 3.2.6), since it is the current recommendation of the International

Commission on Illumination (CIE) [12] for color difference computation, and has

shown to provide a better fit with human perception [95].

∆E00 =

[(
∆L′

KLSL

)2

+
(

∆C′

KCSC

)2

+
(

∆H′

KHSH

)2

+RT

(
∆C′

KCSC

)(
∆H′

KHSH

)] 1
2

(3.2.6)

∆E00 values were benchmarked according to the 50:50% perceptibility (PT00),

∆E00 = 0.8, and acceptability (AT00) thresholds, ∆E00 = 1.8, for dentistry, as reported

in literature [27, 92] and recommended by the ISO/TR 28642:2016 [94].

3.3 Results and discussion

All the samples used in this study were translucent at clinically relevant thick-

nesses, therefore a black background was used in order to simulate the darkness in

the oral cavity.

A spectroradiometer was used to measure all the specimens, since it is considered

the gold standard device for the evaluation of the colorimetric and optical properties

of dental materials [4,161,163–167], which ensures the precision of our measurements
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when compared with other commercial dental devices used in clinical scenarios and

other studies, such as colorimeters, spectrometers and spectrophotometers [67,68,140].

Complementary, for the evaluation of the color differences, the CIEDE2000 formula

was used since it is widely implemented in dental color research [13, 53, 137] and it

has proven to fit more accurately with visual perception [95].

To the best of our knowledge, there are no available studies that implement

PCA-based algorithm for spectral reconstruction and color matching in dentistry.

However, there is available research that use, for this specific application, algorithms

based on other approaches, such as Kubelka-Munk theory, a combination of Genetics

Algorithms with Neural Networks or regression approaches [138, 140, 141]. The

novelty of our method is related with the evaluation of the results, as we used both

spectral and colorimetric metrics. This metrics have been thoroughly researched and

applied in other studies in the dental field [13, 92, 95, 137], and allowed comparisons

of results with standard (specific) color difference thresholds for dentistry, which

enables precise analysis of the performance of our algorithm. Additionally, the use of

a shade-specific (adaptive selected training samples) database of different material

reflectances to derive the PCA basics, represents a key advantage of this method,

since with just a 4-samples training set it allows reconstruction of complete reflectance

spectra by estimating the corresponding weighting coefficients of a certain thickness.

As mentioned before, PCA models with 2 to 4 principal components, as well as first

to third order degree polynomial regressions were tested for coefficient prediction of

the samples used in this study. Statistics of ∆E00 color differences between measured

and predicted CIE-L*a*b* values (including all specimens and both materials used in

the study) for different polynomial degrees and when different numbers of principal

components were used to estimate the weighting coefficients, are presented in Table

3.2.
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Table 3.2: Statistics of ∆E00 color differences between measured and
predicted CIE-L*a*b* values, including all specimens and both materials used
in the study, for different polynomial degrees and when different numbers of

principal components are used to estimate the weighting coefficients.

Polynomial Degree ∆E00 1 PC 2 PC 3 PC 4 PC

1st

Max 7.89 5.98 5.97 5.97
Mean 3.07 1.96 1.95 1.95

SD 1.80 1.28 1.28 1.28
<AT% 28.57 51.43 51.43 51.43
<PT% 5.71 20.00 20.00 20.00

2nd

Max 6.20 5.96 5.90 6.25
Mean 2.79 1.62 1.61 1.63

SD 1.80 1.24 1.25 1.27
<AT% 35.71 70.00 70.00 70.00
<PT% 15.71 31.43 31.43 32.85

3rd

Max 16.30 17.76 17.64 16.88
Mean 3.70 3.18 3.11 3.07

SD 3.49 4.40 4.39 4.34
<AT% 27.14 57.14 60.00 60.00
<PT% 14.29 28.57 30.00 30.00

Regarding the polynomial degree, there is no doubt that second degree polynomial

regression proved to be the best choice in terms of prediction capability. This can be

explained by the curve-like shape of the data, so that using 1st degree polynomial

regressions was insufficient to find the fit-line (Figure 3.5a), while using 3rd degree

polynomial regressions led to an over-fit of the data points (Figure 3.5c). Therefore,

the use of 2nd degree polynomial regressions was the optimal approach to find the

best-fit-curve to these data points, as can be observed in Figure 3.5b. Nonetheless,

when it comes to the number of PC used to reconstruct the data, the analysis is more

complicated. It is clear that using only 1 PC was insufficient to obtain optimal results,

since the percentage of samples below PT00 and AT00 were very low. However, when

analysing the results obtained when 2, 3 and 4 PCs were used, similar percentages of

samples below PT00 and AT00 were registered for the three of them. The decision of

using 3 PC was based on the total maximum and mean values, which were slightly
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better when 3 PC were used, considering also that, computationally speaking, the

difference between using 2 or 3 PC did not decrease the algorithm efficiency in a

significant way.

Therefore, the predictive PCA algorithm used in this study correspond to 3 princi-

pal components with second degree polynomial regression for coefficient modelling.

(a) Best-fit-line obtained using 1st degree polynomial.

(b) Best-fit-curve obtained using 2nd degree polynomial.

(c) Best-fit-curve obtained using 3rd degree polynomial.

Figure 3.5: Examples of different degrees best-fit-polynomials for 4 Principal
Components for weighting coefficients (blue) and estimated coefficient (red)
of a 2.0 mm thickness sample when the other four samples are used to train

the model.

77



Chapter 3: PCA-based algorithm for reflectance prediction of monolithic dental materials

The results of ∆E00, RMSE and GFC metrics between measured and estimated

reflectances for all the specimens tested in this study, are presented in Table 3.3, where

the values for each sample of a certain thickness corresponds to the estimations when

the other four samples of the same shade are used as the training set in the algorithm.

Table 3.3: ∆E00, RMSE and GFC metrics between measured and estimated
reflectances.

Suprinity Translucent VITAPAN Dentine
Thickness ∆E00 RMSE GFC Thickness ∆E00 RMSE GFC

A1

1.94 2.86 0.0503 0.9999 2.44 2.93 0.0572 0.9999
1.44 0.87 0.0168 0.9999 1.95 1.01 0.0203 0.9999
1.15 0.80 0.0163 0.9999 1.47 0.46 0.0036 0.9999
0.89 0.54 0.0037 0.9999 0.97 1.23 0.0193 0.9999
0.53 2.21 0.0173 0.9996 0.54 3.68 0.0493 0.9999

A2

1.95 1.05 0.0135 0.9996 2.43 1.29 0.0171 0.9998
1.45 0.31 0.0059 0.9999 1.93 0.45 0.0046 0.9999
1.14 0.66 0.0138 0.9999 1.43 0.52 0.0064 0.9999
0.83 0.78 0.0120 0.9998 0.93 0.79 0.0115 0.9999
0.56 1.39 0.0178 0.9995 0.56 1.75 0.0218 0.9999

A3

1.94 5.90 0.0683 0.9922 2.40 2.01 0.0295 0.9999
1.45 1.34 0.0150 0.9995 1.91 0.55 0.0073 0.9999
1.14 0.45 0.0051 0.9999 1.42 0.63 0.0094 0.9999
0.88 1.61 0.0201 0.9994 0.91 1.38 0.0193 0.9999
0.58 4.30 0.0471 0.9956 0.56 3.15 0.0366 0.9998

A3.5

1.95 4.77 0.0683 0.9971 2.43 2.81 0.0395 0.9999
1.45 1.04 0.0139 0.9998 1.93 0.83 0.0122 0.9999
1.15 0.27 0.0042 0.9999 1.44 0.14 0.0015 0.9999
0.90 1.59 0.0201 0.9996 0.94 1.21 0.0159 0.9999
0.61 3.86 0.0456 0.9974 0.60 2.89 0.0331 0.9999

B2

1.95 4.15 0.0662 0.9985 2.40 1.54 0.0261 0.9999
1.47 0.73 0.0129 0.9999 1.90 0.52 0.0090 0.9999
1.17 1.05 0.0070 0.9998 1.41 0.16 0.0024 0.9999
0.85 1.70 0.0221 0.9996 0.90 0.55 0.0074 0.9999
0.62 2.96 0.0412 0.9991 0.55 1.55 0.0177 0.9998

C2

1.94 2.65 0.0227 0.9991 2.45 3.03 0.0450 0.9998
1.45 0.51 0.0045 0.9999 1.93 0.93 0.0148 0.9999
1.13 0.56 0.0040 0.9999 1.44 0.11 0.0020 0.9999
0.89 1.12 0.0091 0.9998 0.93 1.12 0.0145 0.9999
0.59 2.28 0.0195 0.9995 0.56 2.95 0.0332 0.9999

D2

1.96 3.16 0.0552 0.9989 2.43 2.87 0.0492 0.9999
1.44 1.04 0.0189 0.9999 1.93 0.95 0.0171 0.9999
1.17 1.28 0.0229 0.9999 1.41 0.30 0.0023 0.9999
0.91 0.73 0.0083 0.9999 0.94 1.21 0.0172 0.9999
0.61 1.28 0.0096 0.9995 0.56 3.32 0.0407 0.9999
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The means and standard deviations of the performance metrics (∆E00, RMSE

and GFC), as well as the percentage of samples below AT00 and PT00 values for both

materials, all shades and all predicted thicknesses, are presented in Table 3.4.

Table 3.4: Statistics of error metrics for the extrapolation approach (70
specimens considered for prediction).

Samples Variable Mean SD < AT00(%) < PT00(%)

VS-PC
(n = 35)

RMSE 0.0229 0.0229
GFC 0.9992 0.0015
∆L* 1.43 1.22
∆a* 0.24 0.29
∆b* 1.63 1.81
∆E00 1.77 1.41 68.57 28.57

VD
(n = 35)

RMSE 0.0205 0.0154
GFC 1.0000 0.00001
∆L* 1.68 1.29
∆a* 0.19 0.17
∆b* 0.48 0.40
∆E00 1.45 1.07 71.42 34.28

VS-PC and VD
(n = 70)

RMSE 0.0217 0.0174
GFC 0.9996 0.0011
∆L* 1.56 1.26
∆a* 0.22 0.24
∆b* 1.05 1.43
∆E00 1.61 1.26 70.00 31.42

The spectral error metrics values (RMSE = 0, 02; GFC > 0, 999) denote an

excellent fit between predicted and measured spectral reflectances. In terms of color

agreement between measured and predicted reflectance, overall mean total color

difference was lower or equal to the corresponding acceptability thresholds in all

cases (overall ∆E00 = 1.61, VS-PC ∆E00 = 1.77 and VD ∆E00 = 1.45). Slightly better

values were registered for the DRC material, although for both materials all the

performance metrics between predicted and measured values showed very good

agreement. Moreover, the color differences between predicted and measured color

were not noticeable to an average human observer (lower than PT00) in approximately

one third of all cases (< PT00% = 31.42%). Again, the number of predicted-measured

pairs that exhibited color differences lower than the corresponding AT00 or PT00 is
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slightly higher for VD than for VS-PC material.

It is important to note that under the presented experimentation context, different

modelling behaviours can be expected when dealing with the reflectance estimation

of samples with thicknesses outside of the range of available training samples (ex-

trapolation approach, i.e. test theoretical thicknesses of 0.5 mm and 2.5 mm), than

with thicknesses to be predicted within the range of available samples (interpolation

approach, i.e., theoretical thicknesses of 1 mm, 1.5 mm and 2 mm). Thus, it is also

interesting to assess and compare the prediction capability of the proposed models

when prediction of extreme values is avoided, i.e. if we limit the prediction scheme

to interpolation (values, which are adequately represented by the data included in

the training set). Table 3.5 shows the means and standard deviations of measures

of disagreement and percentage of samples below AT00 and PT00 values for both

materials when the interpolation approach is used.

Table 3.5: Statistics of error metrics for the interpolation approach (42
specimens considered for prediction).

Samples Variable Mean SD < AT00(%) < PT00(%)

VS-PC
(n = 21)

RMSE 0.0123 0.0065
GFC 0.9999 0.0002
∆L* 0.77 0.43
∆a* 0.13 0.12
∆b* 0.73 0.67
∆E00 0.91 0.42 100 47.61

VD
(n = 21)

RMSE 0.0104 0.0064
GFC 1.0000 0.00001
∆L* 0.81 0.43
∆a* 0.11 0.12
∆b* 0.29 0.67
∆E00 0.72 0.39 100 57.14

VS-PC and VD
(n = 42)

RMSE 0.0114 0.0064
GFC 0.9999 0.0001
∆L* 0.79 0.48
∆a* 0.12 0.11
∆b* 0.52 0.54
∆E00 0.81 0.41 100 52.38

80



Section 3.3: Results and discussion

All performance metrics predictors of quality of fit exhibit considerable better

values (RMSE = 0.01; GFC > 0.999) when interpolation approach is considered to

evaluate the results, since, without exception, color differences between predicted

and measured values decreased when extreme test theoretical thicknesses of 0.5 mm

and 2.5 mm are excluded for the computation of the error metrics. In this scenario, the

overall total color difference was equal to the corresponding perceptibility threshold

for dentistry (∆E00 = 0.81). Slightly higher values were found for VS-PC ceramic

material (∆E00 = 0.91) while color was predicted more efficiently in case of the VD

resin composite (∆E00 = 0.72). These results suggest that the PCA-based algorithm is

able to predict the final color of a sample within the limits of perceptibility, when only

reflectance spectra of intermediate thicknesses are predicted (interpolation approach).

Furthermore, the difference between the predicted and measured color of the samples

was always lower than the acceptability threshold, while in roughly 5 out of 10 cases

(52.38%) the color difference was not noticeable to an average human observer. When

comparing the 2 studied materials, there was a slight increase in PT00% and AT00%

for VD compared to VS-PC samples (57.14% vs 47.61%), suggesting again that this

type of prediction algorithm performed slightly better for the DRC material.

Figure 3.6 shows the measured and estimated spectral reflectances for both studied

materials and all shades for the samples with intermediate thicknesses (0.9mm, 1.2mm,

1.5mm for VS-PC and 1.0mm, 1.5mm, 2.0mm for VD), and the bivariate plots of

measured against estimated spectral reflectance. High correlation values of R2 = 0.987

and R2 = 0.993 were globally obtained for VS-PC and VD, respectively.

Based on the results of this study, the first research hypothesis was accepted, since

satisfactory spectral estimation was achieved using the predictive method proposed.

As reported by other authors [168], a RMSE of around 2% and a GFC ≥ 0.9999 result

in a very good spectral reconstruction, which is the case for both RMSE and GFC
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values found in this study (Tables 3.3 and 3.5). According to our results, differences

between predicted and measured reflectance spectra are mostly in intensity (scale)

rather than in the shape of the curve, as can be seen in Figure 3.6.

(a) Suprinity Translucent

(b) VITAPAN dentine

Figure 3.6: Measured (solid line) and estimated (dotted line) reflectances
curves and bivariate plots, showing the perfect match (red line) and the

measured versus estimated reflectances for all the specimens and shades.
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The GFC index is independent of scale factors. In consequence, two samples dif-

fering only in scale but not in shape would result in a GFC of 1 (perfect match). These

results are in agreement with the absolute differences found for L*a*b* chromatic

differences, since a variation in the spectral reflectance value of the specimen (scale)

leads to a variation in lightness (L*), while a change in its spectral reflectance behavior

(shape) would result in a variation in its chromaticity (a* and b* coordinates) [12, 169]

(Table 3.5).

As it can be observed in Tables 3.3 and 3.4, ∆E00 values corresponding to extrapo-

lation approach (that is, when minimum and maximum thicknesses available are also

predicted) are higher, compared to those corresponding to predictive models which

do not perform color prediction of data outside the training data set (interpolation

approach). These results were somehow expected, as the predictive power of any

model diminishes when marginal data points are being predicted. Nevertheless, for a

training set that includes both thicker and thinner samples, the excellent correlation

(Figure 3.6) between the predicted and measured reflectances ensures that, overall

and independently of the dental material analyzed (ceramic or resin composite), the

PCA-based algorithm will always provide predicted reflectance curves that exhibit a

color difference lower than the acceptability threshold (Tables 3.5) [92]. Under these

conditions, we can state that the second research hypothesis of this study was also

accepted.

Finally, the results of this study indicate that PCA-based prediction algorithms

perform better for DRC specimens (VD) than for ceramic samples (VS-PC) (Tables 3.4

and 3.5). Therefore, the third research hypothesis was also accepted, as performance of

the PCA-based algorithm for reflectance estimation is material-dependent. However,

it has to be considered that VD samples were prepared under laboratory conditions

and following rigorous manufacturing procedures, while the ceramic samples were
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prepared under clinical laboratory conditions in a dental technician office, and that for

the later ones, mean values of three different samples, instead of only one sample were

used for the computation. This differences in manufacturing procedures and number

of tested specimens might have had an impact on the robustness and reproducibility

of the individual features of the prepared specimens, which could partially explain

the differences found.

It is noteworthy that the samples were prepared using different procedures and

with different clinically relevant thicknesses, which proves that the performance of

the method does not depend on the preparation of the samples or thicknesses used.

Thus, it can be considered that the performance of the algorithm proposed is likewise

independent of the thickness and the samples preparation procedure.

In addition, it should be considered that there were still some sources of non-

modelable errors, such as those derived from the measuring device itself or the

reproducibility of the experimental method, that were not completely known and that

probably affected the performance of the proposed algorithm to some extent. One

would expect that using more PCs as well as a higher degree polynomials would lead

to improved results (less "noise" in the data), but this did not happen. This suggests

that, the previously mentioned errors (linked to the experimental device and the

measuring instrument) limited the predictive capacity of the mathematical models

and made it very difficult to further improve the obtained results. Nevertheless, the

low variability in the obtained results confirms that the method proposed for the

reconstruction of the reflectance spectra can be used to find an optimum color match

of samples with varying thicknesses.

In future studies, a broader range of single and multi-layered materials (as the

ones proposed in the following Chapters of this PhD Thesis) and shades should be

analyzed in order to better understand the extent of the predictive capacity of the
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proposed PCA-based models.
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REFLECTANCE AND COLOR

PREDICTION OF LAYERED DENTAL

RESIN COMPOSITES WITH VARYING

THICKNESS





Section 4.1: Introduction

In this Chapter a new PCA-based prediction algorithm is proposed for reflectance

and color prediction of stacked layered dental resin composite of different materials

and shades with varying clinically relevant thickness.

It extends the study published as:

M. Tejada-Casado, R. Ghinea, M. Pérez, J. Cardona, A. Ionescu, H. Lübbe, and L.

Herrera, “Color prediction of layered dental resin composites with varying thickness,”

Dental Materials, vol. 38, no. 8, pp. 1261–1270, 2022.

4.1 Introduction

Natural teeth consist of at least three layers of different materials —the translucent

enamel on the outer surface, the yellowish dentine below the enamel and the reddish

pulp at heart of the teeth. This is the reason why, in a clinical scenario, when perform-

ing direct restorations with resin composites, the optical properties and appearance of

the natural teeth are reproduced through layering of appropriate enamel and dentine

composite shades [2]. Due to the higher translucency of enamel layer, dentine shade

will strongly affect the overall chromatic appearance of the restoration. However, this

effect can be modulated by enamel layer thickness, which will play a significant role

in the final appearance of the restoration [47, 48]. The relationship between thickness,

color and the optical properties of a dental material was already highlighted in several

studies [45, 46, 50–53]. Parallel to this, it has to be considered that the thicknesses of

the different layers are not uniform across the dental structure, but vary with respect

to the location in the tooth. Therefore, to adequately mimic the natural color and

appearance of a tooth, a highly esthetic direct dental restoration usually is a merge
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of the layering of several restorative materials with different optical properties and

thicknesses [170].

An object’s color depends largely on its reflectance spectrum. Therefore, being

able to estimate reflectance and final color of layered samples of dental restorative

materials would be of great interest not only for manufacturers of dental materials,

but also for dentists and dental technicians.

Color prediction in dentistry is a growing research area [134] and many methods

have been implemented for spectral estimation of dental materials [101, 138–141].

However, predicting color of layered dental restorative materials has not been fully

investigated yet.

Among all the mathematical techniques that have been implemented to recon-

struct spectral reflectance data in different color research areas [142–146], PCA is

worth to be highlighted for its simplicity and versatility [145, 149]. To the best of

our knowledge, PCA has never been used for spectral estimation of layered dental

materials. Therefore, the main objective of this study is to develop and assess the

accuracy of a PCA-based predictive algorithm for reflectance reconstruction and color

estimation of layered dental resin-based composites with varying thicknesses.

The following research hypotheses were tested in this study:

1. The reflectance spectrum of layered dental samples can be predicted with satis-

factory results using a PCA-based algorithm.

2. PCA-based models performance depends on the number of samples that consti-

tute the training set.

3. The use of different types or shades of DRC do not affect the performance of the

predictive algorithm.
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4.2 Materials and method

4.2.1 Specimen preparation

Disk-shaped DRC samples of 15 mm diameter corresponding to three different

dentine types —VITAPAN Excell (VE), VITAPAN Dentine (VD) and VITA Physio-

dens (VP) (Vita Zahnfabrik, Bad Säckingen, Germany)— and one enamel —VITA

Enamel (EN) (Vita Zahnfabrik, Bad Säckingen, Germany)—, with different shades

and thicknesses, were used in this study (Table 4.1).

In order to evaluate the performance of the predictive model as a function of

DRC type, VE, VD and VP samples of the same shade (A2) were prepared. Whereas

to test the performance of the predictive model as a function of dentine shade, VE

samples corresponding to two light shades (which for presentation purposes will be

named S1 and S2), two intermediate shades (named S3 and S4) and one dark shade

(named S5), were prepared. According to manufacturer recommendations, for each

dentine composite a specific enamel shade should be used, therefore, samples of three

different enamel (EN) shades were fabricated - EN1, EN2 and EN3 (Table 4.1).

Table 4.1: Used dental resin-based composites with corresponding selected
shades, composition and thickness.

Composite Shades Chemical composition Thicknesses (mm)

VITAPAN Excell (VE) A2, S1, S2, S3, S4, S5 PMMA (84-86%) ,
SiO2 (14-15%)

and Pigments (< 1%)

0.7 ± 0.1; 1.0 ± 0.1;
1.5 ± 0.1; 2.0 ± 0.1
and 2.5 ± 0.1

VITAPAN Dentine (VD) A2
VITA Physiodens (VP) A2

VITA Enamel (EN) EN1, EN2, EN3

Monolithic dentine and enamel pellets were produced by polymerization of dental

masses under combined heat-and-pressure treatment according to manufacturer’s

specifications, as was previously described in Chapter 3 Section 3.2.1 (Figure 4.1).
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All monolithic specimens were ground to the following specific thicknesses 0.7 mm,

1.0 mm, 1.5 mm, 2.0 mm and 2.5 mm, with a tolerance of ±0.1 mm. All samples were

polished with 9µm diamond paste by the same trained operator, and cleaned from

debris in an ultrasonic bath.

(a)

(b)

Figure 4.1: Monolithic specimens used for the fabrication of the layered
samples. a) Denine samples of 5 different thicknesses. b) Enamel samples of 5

different thicknesses.

The stacked bilayer specimens were obtained by pressure bonding each dentine

layer with its corresponding enamel. This was possible due to the quality of the

samples used in the study. These were fabricated under very precise manufacturing

processes and, therefore, resulted in samples with a completely flat surface that

allowed for a perfect coupling between the two layers (Figure 4.2) . By combining all

thicknesses (n=5) of the first layer (dentine) with all thicknesses (n=5) of the second

layer (enamel), a total of 25 possible stacked layered samples of different enamel-

dentine combinations for each DRC system were obtained. In total, 8 different DRC

systems have been used in this study, each with 25 enamel-dentine combinations as

specified before : VE-A2+EN1, VD-A2+EN3, VP-A2+EN3, VE-S1+EN1, VE-S2+EN1,

VE-S3+EN2, VE-S4+EN2 and VE-S5+EN2.

For performance assessment of the predictive model as a function of DRC type,
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the following systems were considered: VE-A2+EN1, VD-A2+EN3 and VP-A2+EN3.

Lastly, to assess the performance of the predictive model as a function of dentine

shade, 5 DRC systems were considered: VE-S1+EN1, VE-S2+EN1, VE-S3+EN2, VE-

S4+EN2 and VE-S5+EN2 (VE samples corresponding to different shades were com-

bined with their corresponding enamel shade).

(a) (b) (c)

Figure 4.2: Dentine and enamel monolithic pellets coupling for the fabrication
of DRC stacked layered system, viewed from different perspectives.

The 25 dentine-enamel combinations corresponding to each DRC system were

subsequently divided into a training and a testing set of samples. Thus, for each

combination, two different approaches were tested: 1. a 5-samples training set

and 2. a 9-samples training set. For each approach, reflectances corresponding to

samples included in the training set were used to build the PCA-based predictive

models, while the reflectances of the samples included in the testing set were used for

performance evaluation of the proposed predictive models.

In order to fully encompass the sampling space, and as recommended by dental

material manufacturing experts, the layered samples included in each training set

were heuristically selected. Different arrangements of training and testing sets were

tested for each approach. Figures 4.3 and 4.4 show the different configurations for

the 5-samples and 9-samples training sets, respectively. For each configuration, all

stacked layered samples not included in the training set were automatically assigned

to the corresponding testing set.
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(a) X-shaped training set (b) Diamond-shaped training set

Figure 4.3: Different arrangements of samples being included in the training
(orange) and testing (gray) sets for the 5-samples approach.

(a) Diamond-shaped training set (b) X-shaped training set

(c) Eye-shaped training set (d) Box-shaped training set

Figure 4.4: Different arrangements of samples being included in the training
(orange) and testing (gray) sets for the 9-samples approach.
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4.2.2 Spectral reflectance and color coordinates

The spectral reflectance spectrum of all layered samples was measured as previ-

ously described in section 3.2.2. Three repeated reflectance measurements without

replacement were performed for each specimen, and the results were averaged. Spec-

tral reflectance values were converted into CIELAB color coordinates using the CIE

2◦ Standard Observer and the CIE D65 Standard Illuminant.

4.2.3 Computational method

The prediction of the spectral reflectance, R(λ), for unknown samples was per-

formed using a set of known stacked layered samples reflectances and a PCA-based

algorithm [149], similar to the one described in Chapter 3 Section 3.2.3, but adapted

to stacked layered samples.

Again, for a given reflectance dataset with n samples (noted as X), any known

spectrum R(λ) can be represented as the linear combination of the eigenvectors of the

correlation matrix XXT , as shown in equations 3.2.1 and 3.2.2:

Thus, having a training-set of n-samples and using M -PCs that cover more data

for the model, the weights that correspond to each sample in X are generated as

shown in equation 3.2.2, obtaining the weighting coefficient matrix, W (3.2.3).

As described in the previous chapter, these weights will be used to estimate the

weights of the unknown layered samples. Since the current samples are layered, the

weights will be now represented in a 3D space as a function of thickness of the first

layer (dentine), thickness of the second layer (enamel) and their value, as shown in

figure 4.5. Then, for each principal component, the coefficient of a layered sample

of defined dentine and enamel thicknesses is estimated by finding its position in the

best-fit-surface.
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(a) 5-samples training set (X-shaped)

(b) 9-samples training set (diamond-shaped)

Figure 4.5: Best-fit-surfaces for the weighting coefficients (blue) obtained
with a training set of 5-samples (a) and a training set of 9-samples (b), and the

estimated coefficient (red) for each principal component.

According to best performance achieved in preliminary tests, X-shaped arrange-

ment, first degree polynomial surface fit and 3 principal components were used for

the 5-samples training set approach. Similarly, diamond-shaped arrangement, second

degree polynomial surface fit and 3 principal components were used for the 9-samples

training set approach. More details are discussed in the next section. Therefore, the

reflectance of the new sample can be estimated by multiplying those coefficients (red

points in Figure 4.5) with their corresponding eigenvectors, as shown in equation

3.2.1.

96



Section 4.2: Materials and method

4.2.4 Performance metrics

As previously described in Chapter 3 Section 3.2.4, the performance metrics used

to evaluate the matching quality between predicted and measured reflectances have

been divided into two analysis groups: spectral curve similarity analysis and color

difference analysis.

4.2.4.1 Evaluation of Spectral Curves Similarity

Two spectral metrics have been used to evaluate the degree of similarity between

the predicted and measured spectral reflectances: the Root Mean Square Error (RMSE)

and the Goodness-of-fit coefficient (GFC) [162, 168], computed as shown in Equations

3.2.4 and 3.2.5, respectively.

RMSE evaluates the absolute differences between two spectral signals. This metric

is not independent of scale factors. For a perfect match, RMSE = 0, while higher

values of RMSE correspond to increasing disagreement between the two analyzed

spectral curves.

GFC is independent of scale factors, thus, it focuses on the shape of the curves

being compared. A perfect match is described by GFC = 1. Values of GFC ≥ 0.9999

and GFC ≥ 0.999 correspond to excellent and very good spectral matches, respec-

tively [162].

4.2.4.2 Evaluation of color differences

Total color differences between the CIE-L*a*b* values corresponding to measured

and predicted spectral reflectance curves were computed using the CIEDE2000(1:1:1)

[95] total color difference formula (Eq. 3.2.6),

∆E00 values were evaluated according to the corresponding 50:50% perceptibility
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(PT00) and acceptability (AT00) thresholds for color difference in dentistry, as described

in available literature [27,92] and recommended by the ISO/TR 28642:2016 [94] (PT00:

∆E00 = 0.8; AT00: ∆E00 = 1.8).

4.3 Results and discussion

Two different configurations —5-samples and 9-samples training sets— were used

to build the PCA-based predictive models proposed in this study. Different arrange-

ments and polynomial degrees have been tested for each training set configuration.

The general statistics of ∆E00 color differences between measured and predicted

CIE-L*a*b* values (including the 8 DRC dentine-enamel systems used in the study)

for the different polynomial degrees and for the different training set arrangements

presented in Figures 4.3 and 4.4, are included in tables 4.2 and 4.3, respectively.

Table 4.2: Statistics of total ∆E00 color differences between measured and
predicted CIE-L*a*b* values for the different 5-samples training set

arrangements and polynomial degrees tested in the predictive methods,
including the 8 DRC dentine-enamel systems used in the study.

Train Set Arrangement X Diamond
Polynomial Degree 1st 2nd 1st 2nd

Max 3.16 114.86 5.54 135.83
Mean 0.99 7.62 1.14 19.79

SD 0.37 6.74 0.65 17.21
< AT00% 96.25 37.50 90.00 23.75
< PT00% 32.50 11.25 29.63 17.50

Table 4.3: Statistics of total ∆E00 color differences between measured and
predicted CIE-L*a*b* values for the different 9-samples training set

arrangements and polynomial degrees tested in the predictive methods,
including the 8 DRC dentine-enamel systems used in the study.

Train Set Arrangement Diamond X Eye Box
Polynomial Degree 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Max 4.49 2.06 3.33 3.54 2.94 3.24 2.64 2.31
Mean 1.06 0.50 0.97 1.04 0.93 0.75 0.93 0.52

SD 0.64 0.30 0.40 0.41 0.41 0.36 0.36 0.26
< AT00% 89.84 99.22 95.31 89.06 95.31 93.75 96.88 99.22
< PT00% 40.63 84.38 41.41 38.28 48.44 66.41 37.50 83.44
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As can be seen from the results presented above, although satisfactory results

were obtained for most of the configurations, slightly better values were obtained for

the X-shaped and diamond-shaped arrangements for the 5-samples and 9-samples

training sets, respectively. Therefore, these were the configurations used for the

spectral reconstruction of the stacked layered samples used in this study. In addition,

given the number of samples included in each training set, optimal results were found

when first degree polynomial surface fit was used for the 5-samples training set and

second degree polynomial surface fit was used for the 9-samples training set. For

both approaches, 3 principal components were used in the model.

For each dentine-enamel system, 25 layered samples have been obtained by com-

bining all monolithic specimens, of 5 different thicknesses (ranging from 0.7 mm - to

2.5 mm) of both layers. In order to simulate clinical situations, all the shades used in

the experiment were translucent at clinically relevant thickness values [171] and a

standard black background was used in order to simulate the oral cavity.

A spectroradiometer was used to measure the reflectance spectrum of all the

specimens, since it is considered the gold standard device for reflectance measure-

ments and, hence, the evaluation of the optical and colorimetric properties of dental

materials [4, 163–167].

As mentioned before, many studies confirmed that the spectral reflectance of

different dental materials can be reconstructed based on different approaches [101,

138–141]. However, these usually do not consider a wide variety of thicknesses. To

the best of our knowledge, there are no studies that adapted PCA-based algorithms

for their use in spectral reconstruction of layered samples in dentistry. Another

advantage of our study is that a very wide range of dentine-enamel combinations of

clinically relevant thicknesses were used to create the layered samples, which helped

us understand how the method would perform in a real scenario. Additionally, in
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order to more precisely analyze the performance of the proposed algorithm, and

following a similar procedure to the study presented in the previous chapter, not only

color difference metrics (∆E00) but also spectral metrics (RMSE and GFC) [162] were

implemented for the evaluation of the proposed spectral reconstruction method.

When assessing the performance of the predictive model as a function of DRC type,

measured and predicted reflectances of VE-A2+EN1, VD-A2+EN3 and VP-A2+EN3

systems have been compared. Tables 4.4, 4.5, 4.6 and 4.7 show the ∆E00 color dif-

ferences and spectral metrics between measured and predicted spectral reflectance

curves, for both training set arrangements used in this study. The means and standard

deviations, as well as the percentage of samples below AT00 and PT00, are presented

in Table 4.8.

For the 5-samples training set, the spectral error metrics values (RMSE < 0.015;

GFC > 0.999) denote a very good fit between predicted and measured spectral re-

flectances for all DRC. Slightly better values were obtained for the 9-samples training

set (RMSE < 0.0098; GFC > 0.9999), which denotes an excellent fit.

Regarding color matching between measured and predicted reflectances, for the

5-samples training set approach, mean color differences of ∆E00 = 0.93, ∆E00 = 1.05

and ∆E00 = 1.38, were obtained for the three types of DRC (VE, VD and VP, respec-

tively). Again, as was the case for the spectral metrics, better values were obtained for

the 9-samples training set approach. For VE and VD, the mean color differences were

∆E00 = 0.49 and ∆E00 = 0.46, for VE and VD, respectively. Prediction metrics for VP,

resulted in slightly higher values for color matching, with a mean color difference of

∆E00 = 0.85 (Table 4.8).
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Table 4.4: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for the test stacked layered samples of different materials

when a training set of 5-samples is used in the model.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE A2-EN1 VD A2-EN3 VP A2-EN3

2.5 + 2.0 1.15 1.54 2.20
2.5 + 1.5 1.50 1.56 1.89
2.5 + 1.0 0.83 0.39 0.50
2.0 + 2.5 0.18 0.40 0.73
2.0 + 2.0 0.65 0.42 0.82
2.0 + 1.5 1.41 0.82 0.97
2.0 + 1.0 0.83 1.02 1.27
2.0 + 0.7 1.54 1.92 1.78
1.5 + 2.5 0.72 1.05 1.20
1.5 + 2.0 0.41 0.53 1.12
1.5 + 1.0 0.77 1.00 2.29
1.5 + 0.7 1.34 1.77 3.16
1.0 + 2.5 1.01 1.43 0.71
1.0 + 2.0 0.65 0.86 0.61
1.0 + 1.5 1.08 0.94 1.32
1.0 + 1.0 0.70 1.19 1.55
1.0 + 0.7 0.55 1.01 1.48
0.7 + 2.0 1.11 0.54 0.38
0.7 + 1.5 1.06 1.11 1.27
0.7 + 1.0 1.20 1.54 2.31

Table 4.5: RMSE and GFC metrics between measured and predicted spectral
reflectance curves for test stacked layered samples of different materials

when a training set of 5-samples is used in the model.

DRC Dentine-Enamel Systems
Test Thickness VE A2-EN3 VD A2-EN1 VP A2-EN3
D(mm)+E(mm) RMSE GFC RMSE GFC RMSE GFC

2.5 + 2.0 0.00800 0.99992 0.01104 0.99984 0.02318 0.99974
2.5 + 1.5 0.01279 0.99982 0.00860 0.99981 0.01240 0.99975
2.5 + 1.0 0.01183 0.99995 0.00558 0.99997 0.00553 0.99995
2.0 + 2.5 0.00194 0.99999 0.00492 0.99998 0.01337 1.00000
2.0 + 2.0 0.01285 0.99999 0.00465 0.99999 0.00496 0.99994
2.0 + 1.5 0.02640 0.99995 0.01310 0.99997 0.01070 0.99994
2.0 + 1.0 0.01713 0.99999 0.01603 0.99998 0.02130 0.99999
2.0 + 0.7 0.01301 0.99974 0.01587 0.99967 0.01488 0.99977
1.5 + 2.5 0.00532 0.99994 0.01375 0.99993 0.01195 0.99975
1.5 + 2.0 0.00733 0.99999 0.00992 1.00000 0.01875 0.99992
1.5 + 1.0 0.01485 1.00000 0.01564 1.00000 0.03203 0.99986
1.5 + 0.7 0.00862 0.99981 0.01546 0.99976 0.03487 0.99940
1.0 + 2.5 0.00797 0.99988 0.01469 0.99977 0.00509 0.99993
1.0 + 2.0 0.00972 0.99998 0.01411 0.99998 0.00638 0.99995
1.0 + 1.5 0.01897 0.99998 0.01604 0.99999 0.01055 0.99970
1.0 + 1.0 0.01032 0.99998 0.01945 1.00000 0.00918 0.99963
1.0 + 0.7 0.00446 0.99998 0.00607 0.99989 0.01287 0.99981
0.7 + 2.0 0.02154 0.99999 0.00861 0.99998 0.00493 0.99996
0.7 + 1.5 0.01213 0.99988 0.00750 0.99980 0.00974 0.99956
0.7 + 1.0 0.00742 0.99983 0.01148 0.99971 0.01958 0.99908
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Table 4.6: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for the test stacked layered samples of different materials

when a training set of 9-samples is used in the model.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE A2-EN1 VD A2-EN3 VP A2-EN3

2.5 + 2.5 0.80 0.57 1.26
2.5 + 2.0 0.85 0.37 0.69
2.5 + 1.0 0.46 0.37 0.78
2.5 + 0.7 0.23 0.24 0.98
2.0 + 2.5 0.21 0.41 0.41
2.0 + 1.5 0.46 0.23 0.44
2.0 + 0.7 0.45 0.40 1.02
1.5 + 2.0 0.48 0.31 0.55
1.5 + 1.0 0.19 0.35 0.76
1.0 + 2.5 0.58 0.27 0.99
1.0 + 1.5 0.18 0.15 0.66
1.0 + 0.7 0.34 0.59 2.06
0.7 + 2.5 0.53 0.16 0.37
0.7 + 2.0 0.83 0.26 0.71
0.7 + 1.0 0.45 1.03 0.46
0.7 + 0.7 0.85 1.69 1.46

Table 4.7: RMSE and GFC metrics between measured and predicted spectral
reflectance curves for the test stacked layered samples of different materials

when a training set of 9-samples is used in the model.

DRC Dentine-Enamel Systems
Test Thickness VE A2-EN3 VD A2-EN1 VP A2-EN3
D(mm)+E(mm) RMSE GFC RMSE GFC RMSE GFC

2.5 + 2.5 0.00657 0.99991 0.00528 0.99996 0.01794 0.99996
2.5 + 2.0 0.01009 0.99994 0.00243 0.99999 0.00571 0.99996
2.5 + 1.0 0.00586 0.99997 0.00375 0.99999 0.00674 0.99997
2.5 + 0.7 0.00219 0.99999 0.00243 0.99999 0.01629 0.99999
2.0 + 2.5 0.00432 1.00000 0.00759 0.99998 0.00284 0.99999
2.0 + 1.5 0.00701 0.99999 0.00213 0.99999 0.00461 0.99999
2.0 + 0.7 0.00342 0.99999 0.00474 0.99996 0.01932 0.99998
1.5 + 2.0 0.00978 0.99999 0.00492 1.00000 0.00582 0.99995
1.5 + 1.0 0.00125 1.00000 0.00292 0.99999 0.00784 0.99996
1.0 + 2.5 0.00792 0.99999 0.00322 0.99997 0.00991 0.99981
1.0 + 1.5 0.00347 1.00000 0.00254 1.00000 0.00660 0.99993
1.0 + 0.7 0.00252 0.99999 0.00929 0.99996 0.02102 0.99975
0.7 + 2.5 0.00639 0.99999 0.00448 0.99997 0.00438 0.99997
0.7 + 2.0 0.01525 0.99998 0.00226 0.99999 0.00715 0.99992
0.7 + 1.0 0.00388 0.99999 0.01251 0.99996 0.00378 0.99995
0.7 + 0.7 0.01328 0.99999 0.02225 0.99998 0.01543 0.99994
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Table 4.8: Statistics of error metrics for the test stacked layered samples of
shade A2 of different materials.

5-samples training set 9-samples training set

Layers Variable Mean SD < AT00(%) <PT(%) Mean SD < AT00(%) < PT00(%)

RMSE 0.01163 0.00597 0.00645 0.00401
GFC 0.99993 0.00008 0.99998 0.00002
∆L* 0.66 0.44 0.42 0.31
∆a* 0.06 0.06 0.14 0.09
∆b* 0.74 0.54 0.26 0.21

VE A2 - EN1

∆E00 0.93 0.37 100 40.00 0.49 0.24 100 75.00

RMSE 0.01162 0.00442 0.00580 0.00525
GFC 0.99990 0.00011 0.99998 0.00001
∆L* 0.76 0.41 0.37 0.50
∆a* 0.13 0.09 0.11 0.06
∆b* 0.85 0.66 0.27 0.18

VD A2 - EN3

∆E00 1.05 0.46 95 25.00 0.46 0.39 100 87.5

RMSE 0.01411 0.00858 0.00971 0.00611
GFC 0.99978 0.00023 0.99994 0.00007
∆L* 0.91 0.75 0.69 0.52
∆a* 0.16 0.14 0.20 0.12
∆b* 1.20 0.73 0.53 0.38

VP A2 - EN3

∆E00 1.38 0.72 75 25.00 0.85 0.45 93.75 62.5

When assessing the performance of the predictive model as a function of dentine

shade, measured and predicted reflectances of VE-S1+EN1, VE-S2+EN1, VE-S3+EN2,

VE-S4+EN2 and VE-S5+EN2 DRC systems were compared. Tables 4.9, 4.10, 4.11

and 4.12 show the ∆E00 color differences and spectral metrics between measured

and predicted spectral reflectance curves, for both training set arrangements used

in this study. The means and standard deviations of the performance metrics as

well as the percentage of samples below AT00 and PT00, are presented in Table 4.13.

As expected, better performance metrics were obtained for the 9-samples training

set. Nevertheless, it is worth noting that even for the 5-samples arrangements, all

the color differences found between predicted and measured values are below AT00.

In the case of 5-samples training set approach, the quality of the reconstruction

decreases with darker shades, as it is reflected by the higher mean ∆E00 values

∆E00 = 0.94, ∆E00 = 1.10 and ∆E00 = 1.17 registered for S3, S4 and S5 shades,

respectively. Whereas for lighter shades, the mean ∆E00 values are below PT00,
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exhibiting ∆E00 = 0.71 and ∆E00 = 0.65 for S1 and S2 shades, respectively. However,

for the 9-samples training set, it seems that performance of the PCA-based predictive

models does not depend on shade type, although slightly better values were obtained

for S2, S3 and S4 shades: ∆E00 = 0.43, ∆E00 = 0.36 and ∆E00 = 0.43, respectively.

For the lightest and darkest shades tested (S1 and S5), the mean color differences are

slightly higher, but still below PT00: ∆E00 = 0.47 and ∆E00 = 0.54, respectively.
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Table 4.9: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for the test stacked layered samples of different shades of

VE when a training set of 5-samples is used in the model.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2

2.5 + 2.0 0.98 1.16 0.91 1.14 1.31
2.5 + 1.5 0.96 1.05 1.19 1.53 1.65
2.5 + 1.0 0.41 0.45 1.01 0.90 1.01
2.0 + 2.5 0.41 0.77 0.45 0.52 0.48
2.0 + 2.0 0.17 0.20 0.77 0.85 0.94
2.0 + 1.5 0.74 0.80 1.00 1.15 1.30
2.0 + 1.0 0.77 0.49 1.18 1.14 0.95
2.0 + 0.7 1.26 1.04 0.98 1.39 1.33
1.5 + 2.5 0.40 0.55 0.62 0.87 0.90
1.5 + 2.0 0.40 0.21 0.89 0.90 1.06
1.5 + 1.0 0.89 0.72 1.55 1.22 1.07
1.5 + 0.7 1.02 0.96 0.81 1.40 1.72
1.0 + 2.5 1.01 0.73 0.89 1.12 1.21
1.0 + 2.0 0.77 0.35 0.90 1.04 1.08
1.0 + 1.5 1.43 0.72 1.07 1.13 1.12
1.0 + 1.0 0.48 0.42 1.18 1.29 0.92
1.0 + 0.7 0.35 0.59 0.52 0.97 1.55
0.7 + 2.0 0.26 0.22 0.78 0.84 0.95
0.7 + 1.5 0.70 0.60 1.04 1.26 1.49
0.7 + 1.0 0.82 0.87 1.17 1.36 1.45

Table 4.10: RMSE and GFC metrics between measured and predicted spectral
reflectance curves for the test stacked layered samples of different shades of

VE when a training set of 5-samples is used in the model.

DRC Dentine-Enamel Systems
Test Thickness VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2
D(mm)+E(mm) RMSE GFC RMSE GFC RMSE GFC RMSE GFC RMSE GFC

2.5 + 2.0 0.01888 0.99997 0.02144 0.99997 0.00790 0.99990 0.01024 0.99985 0.01272 0.99979
2.5 + 1.5 0.00783 0.99992 0.00935 0.99991 0.01572 0.99990 0.02111 0.99984 0.01704 0.99973
2.5 + 1.0 0.00970 0.99999 0.00459 0.99998 0.01828 0.99995 0.01327 0.99993 0.01233 0.99989
2.0 + 2.5 0.00967 1.00000 0.01735 1.00000 0.00977 1.00000 0.00900 0.99999 0.00770 0.99999
2.0 + 2.0 0.00310 1.00000 0.00172 1.00000 0.01249 0.99996 0.01530 0.99998 0.01545 0.99996
2.0 + 1.5 0.01508 0.99999 0.01216 0.99997 0.01598 0.99995 0.02032 0.99997 0.01900 0.99992
2.0 + 1.0 0.01818 1.00000 0.01037 1.00000 0.02151 0.99996 0.02027 1.00000 0.01532 0.99998
2.0 + 0.7 0.01620 0.99991 0.00806 0.99989 0.00716 0.99989 0.01030 0.99974 0.00946 0.99972
1.5 + 2.5 0.00353 0.99998 0.00797 0.99995 0.00552 0.99997 0.00690 0.99993 0.00694 0.99991
1.5 + 2.0 0.00718 0.99999 0.00276 0.99998 0.01729 0.99999 0.01726 1.00000 0.01983 1.00000
1.5 + 1.0 0.02006 1.00000 0.01488 1.00000 0.02805 0.99995 0.02081 0.99999 0.01692 0.99999
1.5 + 0.7 0.01434 0.99993 0.00749 0.99989 0.00535 0.99994 0.00889 0.99975 0.01106 0.99955
1.0 + 2.5 0.01588 0.99993 0.00658 0.99990 0.00567 0.99992 0.00699 0.99988 0.00813 0.99984
1.0 + 2.0 0.01483 0.99998 0.00428 0.99998 0.01709 0.99999 0.01904 0.99999 0.01929 0.99999
1.0 + 1.5 0.03135 0.99996 0.01240 0.99998 0.01802 0.99997 0.02037 0.99999 0.02018 0.99999
1.0 + 1.0 0.00964 1.00000 0.00524 0.99999 0.01723 0.99990 0.02138 0.99997 0.01410 0.99999
1.0 + 0.7 0.00531 0.99998 0.01051 0.99998 0.00905 1.00000 0.00607 0.99990 0.00958 0.99969
0.7 + 2.0 0.00291 0.99999 0.00200 0.99999 0.01434 0.99999 0.01501 0.99999 0.01467 0.99996
0.7 + 1.5 0.00975 0.99994 0.00638 0.99994 0.01386 0.99994 0.01229 0.99987 0.01485 0.99980
0.7 + 1.0 0.00766 0.99986 0.00912 0.99988 0.01028 0.99977 0.01059 0.99972 0.01071 0.99967
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Table 4.11: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for the test stacked layered samples of different shades of

VE when a training set of 9-samples is used in the model.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2

2.5 + 2.5 0.96 0.57 0.20 0.21 0.37
2.5 + 2.0 0.55 0.77 0.23 0.37 0.39
2.5 + 1.0 0.42 0.14 0.36 0.51 0.53
2.5 + 0.7 0.70 0.48 0.34 0.39 0.11
2.0 + 2.5 0.44 0.15 0.14 0.19 0.37
2.0 + 1.5 0.23 0.37 0.41 0.49 0.65
2.0 + 0.7 0.44 0.41 0.52 0.30 0.32
1.5 + 2.0 0.29 0.54 0.19 0.12 0.17
1.5 + 1.0 0.19 0.09 0.60 0.27 0.19
1.0 + 2.5 0.23 0.67 0.27 0.61 0.67
1.0 + 1.5 0.74 0.12 0.22 0.17 0.34
1.0 + 0.7 0.37 0.28 0.53 0.69 1.10
0.7 + 2.5 0.40 0.92 0.35 0.56 0.63
0.7 + 2.0 0.61 0.35 0.12 0.34 0.28
0.7 + 1.0 0.18 0.30 0.29 0.56 1.09
0.7 + 0.7 0.82 0.65 0.97 1.10 1.52

Table 4.12: RMSE and GFC metrics between measured and predicted spectral
reflectance curves for the test stacked layered samples of different shades of

VE when a training set of 9-samples is used in the model.

DRC Dentine-Enamel Systems
Test Thickness VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2
D(mm)+E(mm) RMSE GFC RMSE GFC RMSE GFC RMSE GFC RMSE GFC

2.5 + 2.5 0.02010 0.99997 0.01271 0.99999 0.00379 0.99999 0.00354 0.99998 0.0060 1.0000
2.5 + 2.0 0.00479 0.99997 0.01435 0.99997 0.00255 0.99999 0.00431 0.99998 0.0041 1.0000
2.5 + 1.0 0.00610 0.99999 0.00212 0.99999 0.00449 0.99998 0.00377 0.99997 0.0036 1.0000
2.5 + 0.7 0.01592 0.99999 0.00407 0.99999 0.00579 0.99999 0.00655 1.00000 0.0018 1.0000
2.0 + 2.5 0.00899 1.00000 0.00158 1.00000 0.00126 1.00000 0.00243 1.00000 0.0019 1.0000
2.0 + 1.5 0.00241 1.00000 0.00462 1.00000 0.00608 1.00000 0.00440 0.99999 0.0042 1.0000
2.0 + 0.7 0.00701 0.99999 0.00178 0.99999 0.00613 0.99998 0.00282 0.99999 0.0042 1.0000
1.5 + 2.0 0.00518 1.00000 0.01155 0.99999 0.00130 1.00000 0.00097 1.00000 0.0017 1.0000
1.5 + 1.0 0.00306 1.00000 0.00122 1.00000 0.01060 0.99998 0.00316 0.99999 0.0026 1.0000
1.0 + 2.5 0.00442 1.00000 0.01163 0.99999 0.00263 0.99999 0.00584 0.99999 0.0029 1.0000
1.0 + 1.5 0.01667 0.99998 0.00085 1.00000 0.00237 1.00000 0.00164 0.99999 0.0025 1.0000
1.0 + 0.7 0.00520 0.99999 0.00395 1.00000 0.00772 0.99998 0.00491 0.99996 0.0042 1.0000
0.7 + 2.5 0.00893 1.00000 0.01612 0.99998 0.00448 0.99999 0.00596 0.99999 0.0020 1.0000
0.7 + 2.0 0.01265 0.99999 0.00203 0.99999 0.00158 1.00000 0.00449 1.00000 0.0019 1.0000
0.7 + 1.0 0.00338 0.99997 0.00354 0.99998 0.00255 0.99998 0.00472 0.99995 0.0069 0.9998
0.7 + 0.7 0.01504 0.99999 0.01042 0.99999 0.01567 0.99999 0.01568 0.99998 0.0092 0.9998

106



Section 4.3: Results and discussion

Table 4.13: Statistics of error metrics for test stacked layered samples of
different shades of VE.

5-samples training set 9-samples training set
Layers Variable Mean SD < AT00(%) < PT00(%) Mean SD < AT00(%) < PT00(%)

RMSE 0.01205 0.00703 0.00874 0.00559
GFC 0.99997 0.00004 0.99999 0.00001
∆L* 0.69 0.47 0.50 0.37
∆a* 0.05 0.04 0.08 0.05
∆b* 0.49 0.33 0.23 0.17

VE S1 - EN1

∆E00 0.71 0.34 100 60.00 0.47 0.24 100 87.50
RMSE 0.00873 0.00512 0.00641 0.00535
GFC 0.99996 0.00004 0.99999 0.00001
∆L* 0.47 0.37 0.42 0.37
∆a* 0.04 0.03 0.10 0.07
∆b* 0.51 0.35 0.20 0.12

VE S2 - EN1

∆E00 0.65 0.29 100 75.00 0.43 0.25 100 93.75
RMSE 0.01353 0.00598 0.00494 0.00384
GFC 0.99994 0.00005 0.99999 0.00001
∆L* 0.86 0.51 0.33 0.31
∆a* 0.07 0.05 0.09 0.05
∆b* 0.59 0.40 0.17 0.14

VE S3 - EN2

∆E00 0.94 0.25 100 25.00 0.36 0.22 100 93.75
RMSE 0.01427 0.00545 0.00470 0.00330
GFC 0.99991 0.00009 0.99999 0.00001
∆L* 0.89 0.52 0.31 0.28
∆a* 0.08 0.08 0.15 0.11
∆b* 0.76 0.55 0.25 0.18

VE S4 - EN2

∆E00 1.10 0.24 100 5.00 0.43 0.25 100 93.75
RMSE 0.01376 0.00420 0.00375 0.00212
GFC 0.99987 0.00014 0.99997 0.00006
∆L* 0.87 0.41 0.21 0.10
∆a* 0.23 0.15 0.26 0.25
∆b* 0.87 0.60 0.34 0.28

VE S5 - EN2

∆E00 1.17 0.30 100 5.00 0.54 0.39 100 81.25
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As an example of the output of the developed predicitive algorithms, Figure 4.6

shows all the measured spectra of the stacked layered samples of the DRC system

VE-S3+EN2 that belong both to the 5-samples and 9-samples test-sets, together with

their corresponding predicted (reconstructed) spectra.

(a) D 2.5mm + E 2.0mm (b) D 2.5mm + E 1.0mm (c) D 2.0mm + E 2.5mm

(d) D 2.0mm + E 1.5mm (e) D 2.0mm + E 0.7mm (f) D 1.5mm + E 2.0mm

(g) D 1.5mm + E 1.0mm (h) D 1.0mm + E 2.5mm (i) D 1.0mm + E 1.5mm

(j) D 1.0mm + E 0.7mm (k) D 0.7mm + E 2.0mm (l) D 0.7mm + E 1.0mm

Figure 4.6: Reflectance reconstruction of the stacked layered samples of
VE-S3+EN2 of different thicknesses, using the 5-samples and 9-samples

training sets.
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Therefore, based on the results of this study, the first research hypothesis was

accepted, since the reflectance spectrum of layered dental samples was predicted with

satisfactory results using a PCA-based algorithm. According to other studies [168],

a RMSE of around 2% and a GFC ≥ 0.9999 result in an very good reconstruction,

which is the case of our RMSE and GFC values obtained when comparing the directly

measured and the predicted reflectance curves (Table 4.8 and Table 4.13). When

analyzing the color differences between predicted and measured values, the values

obtained can be classified as very good in most cases, since the vast majority of them

are below the acceptability threshold for color differences in dentistry. Furthermore,

it can be observed that these color differences are mainly introduced by the L* and

b* coordinates. This is somehow expected, since the tooth color range is roughly

L* = 51.5 - 85.5, a* = -1.5 - 12.6 and b* = 12.0 - 43.3 [63], therefore the differences in

CIE a* coordinate values are much smaller than those of CIE L* and b* coordinates.

Moreover, if we compare the performance of the predictive algorithm when using

5-samples or 9-samples configuration of training set, it can be observed that the

number of samples introduced in the training set clearly affects the accuracy of the

method. Just by looking at Figure 4.6, it is clear that there is a notable difference

in performance between the two configurations. While a training set of 5 samples

(X-shaped arrangement) already gives promising results, with very good RMSE and

GFC values [168], the use of a training set of 9 samples (diamond-shaped arrange-

ment) results in an considerably improvement of the quality of the predictive model,

especially regarding the percentage of samples below AT00 (Table 4.8). This becomes

even more evident when analyzing the percentage of samples below PT00, which

exceeds 80% in most cases for the 9-samples training set, while is considerably lower

for the 5-samples one (between 5% and 75%). One might think that this error partly

derives from the fact that using 5-samples in the training set implies using 20 samples
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in the testing set, while when using the extended 9-samples training set, the testing

set only uses 16 samples. However, if we pay attention to the standard deviation

values it can be observed that they are similar in both configurations. Therefore,

we can assume that the additional measurements in the 9-samples training set are

necessary to achieve a considerable increase in performance. Furthermore, it has to

be considered that the diamond-shaped configuration for the training set implies that

there is no input for extreme thickness combinations (for example: 0.7 mm dentine +

0.7 mm enamel; 2.5 mm dentine + 0.7 mm enamel, 2.5 mm dentine + 2.5 mm enamel,

etc.). This requires the algorithm to forecast reflectance values for an area for which

it does not have input values (extrapolation), which could, beforehand, diminish its

predictive capability and result in a lower performance. However, this is not the case,

as the 9-samples training set consistently provides better performance metrics than

the 5-samples configuration. Thus, the second research hypothesis of this study was

also accepted.

Lastly, the third hypothesis was partially rejected. According to the results pre-

sented in Table 4.8, it is observed that the errors obtained for VE or VD are clearly

lower than those obtained for VP. This occurs independently of the number of sam-

ples introduced in the training set. Therefore, it is clear that the performance of the

PCA-based predictive algorithm depends, to some extent, on the type of DRC used. In

the case when different shades for dentine samples were used, the method performs

differently for each training set configuration. So, while there are more significant

errors when dark shades are used in the case of the 5-samples training set, there is

no clear tendency observed for the 9-sample configuration, as results obtained for all

shades are all within the same error range (Table 4.13). Furthermore, according to the

∆E00 values presented in Tables 4.8 and 4.13, the percentage of reconstructed samples

below AT00 and PT00 varies according to the DRC system, as well as, in some cases,
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according to dentine shade.

Bearing the limitations in mind, given the current experimental setup, the thick-

ness of the monolithic samples must be precisely controlled in order to produce

homogeneously spread training and test sets. Also, it is important to consider that the

layered samples were obtained by stacking two monolithic pellets. This implies an

abrupt material change at the interface between the two layers, which is not usually

the case when materials are coupled by polymerization processes, that generally

result in fuzzier transitions between the layers. Moreover, only composite materials

have been used, therefore future research should include a wider range of multi-layer

materials and shades. Another limitation of the present study might be related to

the use of a combination of only two layers (dentine and enamel) when preparing

samples, which might not always be the case in a clinical scenario. However, the

use of only two composites (dentine + enamel) for direct restorations are usually

considered enough to achieve a proper color match with the surrounding natural

tooth structures [172].

Nevertheless, the high accuracy obtained with the shades and materials already

tested confirms that the proposed method for reconstructing reflectance spectra

of stacked layered samples can be used to find an optimal color match for dental

materials. Nonetheless, future studies testing the proposed algorithm in polymerized

(stratified) layered samples are still needed.
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Section 5.1: Introduction

In this Chapter a new regression algorithm is developed for color prediction of

monolithic and layered dental resin composites of different materials and shades with

varying clinically relevant thickness.

It extends the study submitted as:

M. Tejada-Casado, R. Ghinea, M. Pérez, J. Ruiz-López, H. Lübbe and L. Herrera,

“Development of thickness-dependent predictive methods for the estimation of the

CIEL*a*b* color coordinates of monolithic and layered dental resin composites”.

(Submitted to Materials, 2022)

5.1 Introduction

The goal of any dental restoration is to create a natural appearance that is highly

esthetic while remaining functional [173]. It has already been highlighted that the

final color of a direct dental restoration results from the merge of the layering of

several restorative materials of different shades and thicknesses [170].

Finding the best dentine and enamel shades combination is not an easy task

for the dental clinician. In most clinical settings, shade matching of natural tooth

color to dental restorations is carried out by visual comparisons with shade guides.

However there are many parameters that might influence the final shade selection,

such as variability among different shade guides, the background or the lighting

conditions [13, 70, 71, 73].

For this reason, the reflectance spectrum of an object is known as the best way to

describe its color. Nonetheless, devices that are able to properly measure reflectance

spectrum are usually very expensive and thus they are mostly used for research
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purposes only [53, 137]. To approach objective color measurements to the dental field

and make the shade matching process more accurate and not so highly subjective,

simpler measuring devices, such as spectrophotometers or colorimeters [65, 67, 68],

have been introduced within the clinical practice. These clinically commercial devices

usually provide measurements of the CIE-L*a*b* color coordinates. Therefore, if

these parameters could be predicted with a certain accuracy, the trial-and-error in

the shade matching process and the esthetic outcome of dental restorations could be

considerably enhanced.

The fundamentals of most studies that have attempted color prediction in dentistry

are usually based on spectral measurements [134,138,139,141], although, as mentioned

before, spectral measurement devices are barely available in the clinical practice. Few

studies [59, 60] proposed color estimations of CIE-L*a*b* color coordinates of natural

dental structures using color readings obtained with clinical dental color measuring

devices. These studies used both linear and non-linear regressions methods, but the

performance of the proposed predictive algorithms is prone to improvement. To the

best of our knowledge, there are no studies that using only color data measurements

(CIE-L*a*b* color coordinates), aimed for predictions of CIE-L*a*b* values of dental

materials.

Therefore, the main objective of this study is to develop and assess the accuracy of

a prediction method for the CIE-L*a*b* chromaticity coordinates of both monolithic

and layered dental resin-based composites with varying shades and thicknesses and

under different illuminants.

The following research hypotheses were tested in this study:

1. Linear regression-based prediction algorithms can be used to estimate the

CIE-L*a*b* chromaticity coordinates of monolithic and layered dental samples

under different illuminants with satisfactory results.
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2. There are differences in estimation accuracy for monolithic and layered DRC

samples.

3. The performance of the proposed method will be affected by the use of different

types or shades of DRC.

5.2 Materials and method

5.2.1 Specimen preparation

Monolithic DRC samples of different materials, shades and thicknesses were

used in this study (Table 5.1). As for the previous study (Ch.4), the monolithic

dentine and enamel pellets were produced by polymerization of dental masses under

combined heat-and-pressure treatment according to manufacturer’s specifications,

as was described in detail in Chapter 3 Section 3.2.1. All monolithic specimens were

ground to specific thicknesses 0.7 mm, 1.0 mm, 1.5 mm, 2.0 mm and 2.5 mm with a

tolerance of ±0.1 mm, polished with 9µm diamond paste by the same trained operator

and cleaned from debris in an ultrasonic bath.

The performance of the proposed method was tested for both monolithic and

layered samples:

• Monolithic samples:

VITAPAN Dentine pellets corresponding to 7 VITA Classical shades -A1, A2,

A3, A3.5, B2, C2 and D2-, were used.

• Layered samples:

The layered samples were obtained by stacking monolithic specimens, following

the procedure described in Chapter 4. This is by pressure bonding each dentine
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sample with each enamel sample of the 5 different thicknesses. Again, as

described in the previous Chapter (Ch. 4), the algorithm was evaluated as a

function of DRC type and as a function of dentine shade. To this end, monolithic

samples of VE, VD and VP of the same shade (A2); monolithic samples VE

of two light shades (named S1 and S2), two intermediate shades (named S3

and S4) and one dark shade (named S5); and three different enamel shades

(EN1, EN2 and EN3) were prepared (Table 5.1) and combined according to

manufacturer’s indications, in order to create 8 different DRC systems (dentine-

enamel combination) as follows:

– Testing according to DRC type:

VE-A2+EN1, VD-A2+EN3 and VP-A2+EN3.

– Testing according to DRC shade:

VE-S1+EN1, VE-S2+EN1, VE-S3+EN2, VE-S4+EN2 and VE-S5+EN2.

Table 5.1: Used dental resin-based composites with corresponding selected
shades, composition and thickness.

Composite Shades Chemical composition Thickness (mm)

VITAPAN Excell (VE) A2, S1, S2, S3, S4, S5 PMMA (84-86%) ,
SiO2 (14-15%)

and Pigments (< 1%)

0.7 ± 0.1; 1.0 ± 0.1;
1.5 ± 0.1; 2.0 ± 0.1
and 2.5 ± 0.1

VITAPAN Dentine (VD) A1, A2, A3, A3.5, B2, C2, D2
VITA Physiodens (VP) A2

VITA Enamel (EN) EN1, EN2, EN3

Examples of the specimens used in this study are presented in Figures 4.1 and 4.2.
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5.2.2 Color measurements

The spectral reflectance spectrum (380 nm – 780 nm) of both monolithic and

stacked layered samples was measured as previously described in Section 3.2.2. Three

repeated reflectance measurements without replacement were performed for each

specimen, and the results were averaged. To test the performance of the predic-

tive algorithm for different illuminants, the spectral reflectance measurements were

converted into CIELAB color coordinates using the CIE 2◦ Standard Observer and

three different CIE illuminants: CIE D65 Standard Illuminant, for being the current

recommendation of the CIE [12]; CIE D55 illuminant, since it is the most used within

dental color measuring clinical devices [174]; and CIE LED-B1, since, among all the

newly proposed LED illuminants by the CIE is the closest one (in terms of CCT and

xy-chromaticity coordinates) to CIE D65 and CIE D55 [11, 12].

5.2.3 Computational method

In order to develop and evaluate a predictive method, and similar to previous

studies presented in this PhD Thesis, the samples were divided into training and

testing sets. Computed CIE-L*a*b* coordinates corresponding to the samples included

in the training set were used to build the regression models, while those of the

samples included in the testing set were used exclusively for testing the appropriate

functioning of the model as well as its accuracy. The procedure used to allocate

samples in the training and testing sets was different for monolithic and layered

samples.

As was explained in Chapter 3, for monolithic samples, given a total of 5 different

samples (i.e. 5 different thicknesses) for each VD shade, our set was divided in

such a way that, if the CIE-L*a*b* coordinates of one of the dental samples was
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predicted, only the samples corresponding to the same shade but with different

thickness were used for the development of the predictive model (training set). As

previously described, this separation into training and testing groups is repeated for

all thicknesses of each shade. A diagram of this division is shown in Figure 5.1a.

As was explained in Chapter 4, in the case of stacked layered samples, combining

all 5 different samples of the first layer (dentine) with all 5 samples of the second

layer (enamel), resulted in a total of 25 enamel-dentine layered combinations for each

DRC system. These 25 layered specimens were subsequently divided into a training

and a testing set of samples. According to the findings of the previous study (Ch. 4),

a training set of 9 samples arranged in a diamond-shaped configuration is optimal

to achieve very good color estimations, therefore the same configuration was used,

resulting in a training set of 9 samples and a testing set of 16 samples for each DRC

system. The arrangement of training and testing sets for layered samples is shown in

figure 5.1b.

(a) Monolithic training set (b) Layered training set

Figure 5.1: Samples being included in the training set (orange) and testing set
(gray). (a) For monolithic samples, each thickness is used as a test sample
while the other four thicknesses are included in the training set. (b) For

stacked layered samples, 25 dentine + enamel combinations are obtained and
divided into 9-samples training set and 16-samples testing set.
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Linear Regression Models were used to predict each CIE-L*, CIE-a* and CIE-b*

coordinates of all monolithic and layered samples of different thicknesses included

in the testing sets. Since the coordinates were predicted individually, three different

models were computed for each test sample. According to best performance achieved

in preliminary tests, 2nd degree polynomial was used to find the best-fit-curve and

best-fit-surface for monolithic and layered samples, respectively.

For single layer samples, the equation describing the models is:

f(x) = p1x
2 + p2x+ p3 (5.2.1)

where, f is the predicted CIE-L*, CIE-a* or CIE-b* values, x corresponds to the sample

thickness, and p1 to p3 are the parameters of the model.

For layered samples, the surface is defined as:

s(x, y) = p1x
2 + p2y

2 + p3xy + p4x+ p5y + p6 (5.2.2)

where s is the predicted CIE-L*, CIE-a* or CIE-b* coordinate value, x and y correspond

to the dentine and enamel thicknesses respectively and p1 to p6 are the parameters of

the models.

In order to solve both problems, specific functions were implemented in MATLAB

(MathWorks, Natick, MA) to compute the Linear Least Squares for monolithic and

layered test samples, respectively. Once these curves and surfaces are determined,

the CIE-L*, CIE-a* or CIE-b* values corresponding to any different desired thickness

can be extracted. An example of this procedure is shown in figure 5.2.
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(a) Dentine A3.5: Test Thickness = 2 mm

(b) VE A2-EN1: Test Thickness = D(2 mm)+E(1.5 mm)

Figure 5.2: Examples of best-fit-curve (top) and best-fit-surface (bottom) for
the CIE-L*, CIE-a* and CIE-b* color coordinates for a given monolithic and

layered sample. Blue dots represent the values corresponding to the training
set samples and red dots the values predicted by the model for a specific

thickness.

5.2.4 Evaluation of color differences

Total color differences between measured and predicted values for each sample in

the testing group were computed using the CIEDE2000 (∆E00) total color difference

formula [95] as shown in Equation 3.2.6. Similarly as described in previous chapters

of this PhD Thesis, ∆E00 values were comparatively evaluated to their correspond-

ing 50:50% perceptibility (PT00) and acceptability (AT00) thresholds for dentistry, as

recommended by the ISO/TR 28642:2016 [94]: PT00 = 0.8 and AT00 = 1.8 [27, 92].
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5.3 Results and discussion

In this study, linear regression models were used to predict the CIE-L*, CIE-a*

and CIE-b* color coordinates for different sets of monolithic and layered samples

of different thicknesses, shades and materials. As described in previous chapters, a

spectroradiometer was used to measure the reflectance spectrum of all monolithic

and layered specimens over a standard black background, in order to simulate the

darkness in the oral cavity. This type of devices have been already recognized as

first option when performing highly accurate color measurements in dental research

[26, 81].

It is well known that the color of a sample is strongly dependant on the illu-

mination under which it is observed. In order to evaluate the performance of the

proposed predictive methods under different illumination conditions, the spectral

reflectance measurements were converted into CIELAB color coordinates using the

CIE 2◦ Standard Observer and a set of three different illuminants: CIE D65 Standard

Illuminant, CIE D55 illuminant and CIE LED-B5.

Some studies have estimated CIE-L*a*b* values of dental natural structures based

on data obtained with clinical color measurements devices [59, 60]. However, their

predictive models focused on color of natural teeth with respect to age and gender

but not on dental materials, which is also of interest in dental restorations. Many

existing studies confirmed that color of different dental materials can be estimated

based on different predictive approaches [138, 139, 141, 154, 175, 176]. Noteworthy,

all the proposed predictive models are based on acquired spectral data, which is

not provided by most of the clinically available color measurement devices. In this

sense, an advantage of the predictive method proposed in this study is that it is based

exclusively on CIE-L*a*b* coordinates, making it easier to implement and deploy
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in a real clinical scenario. Additionally, a wide variety of shades (including light,

intermediate and dark colors) and clinically relevant thicknesses [171] were used in

this study, which allowed us to analyze the performance of the proposed algorithm

with respect to different parameters.

As the standard metric for color evaluation in dental research [13, 65, 71, 72, 82,

102, 177], color differences between real measured values and estimated ones were

calculated with the CIEDE2000 color difference formula, since it has proven to fit more

accurately with visual perception [95]. The results have been evaluated according to

the 50:50% perceptibility and acceptability thresholds established for dentistry and

dental applications (PT00 = 0.8 and AT00 = 1.8) [27, 92].

According to our results, the performance of the predictive methods was almost

identical for all three illuminants tested, being the total mean color differences be-

tween measured and predicted CIE-L*a*b* values for the whole data set (including

monolithic and layered) of ∆E00 = 0.74, ∆E00 = 0.75 and ∆E00 = 0.74, for CIE D65,

CIE D55 and CIE LED-B5, respectively. When analyzing the percentage of color

estimations that returned a color difference lower than the acceptability threshold,

it was found that, for the three illuminants tested, in 91.4 (%) of the cases the color

differences between real and predicted values were lower than AT00. In the case

of PT00, the percentage of color differences between real and predicted values that

were imperceptible to an average observer varied slightly for the different illumi-

nants tested, being 72.4%, 73.0% and 71.8%, for CIE D65, CIE D55 and CIE LED-B5,

respectively.

Although there are differences among the different illuminants tested, these are

very subtle and there is not a clear outperformance of any of the illuminants used. In

this regard, for presentation purposes and simplicity, only the results corresponding

to the CIE-L*a*b* values computed for the Standard Illuminant D65 are further
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presented for a deeper analysis, as it is the recommended illuminant by the CIE [12].

Tables 5.2, 5.3 and 5.4 show the ∆E00 color differences between measured and

predicted CIE-L*a*b* values, for monolithic and stacked layered samples, respectively.

For the single layers, the values presented in the table correspond to those of a certain

test thickness when the other four samples of the same shade are being used to build

the model. For the stacked layered samples, the presented values correspond to the

samples included in the testing set, as previously described in section 5.2.3.

Table 5.2: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for all monolithic samples tested in our study.

Text Thickness Shade
Dentine (mm) A1 A2 A3 A3.5 B2 C2 D2

2.5 3.83 1.57 2.80 3.31 2.21 3.62 3.66
2.0 1.31 0.48 0.80 1.01 0.73 1.13 1.23
1.5 0.39 0.57 0.68 0.15 0.12 0.09 0.26
1.0 1.49 0.98 1.65 1.41 0.83 1.36 1.45
0.7 3.91 1.99 3.38 3.01 1.91 3.11 3.49

Table 5.3: ∆E00 color differences between measured and predicted CIE-L*a*b*
values for stacked layered samples of different materials tested in this study.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE A2-EN1 VD A2-EN3 VP A2-EN3

2.5 + 2.5 0.89 0.67 1.58
2.5 + 2.0 0.90 0.49 0.89
2.5 + 1.0 0.42 0.25 0.61
2.5 + 0.7 0.20 0.12 1.06
2.0 + 2.5 0.26 0.46 0.17
2.0 + 1.5 0.38 0.13 0.41
2.0 + 0.7 0.35 0.42 1.16
1.5 + 2.0 0.49 0.27 0.60
1.5 + 1.0 0.22 0.36 0.75
1.0 + 2.5 0.43 0.15 0.87
1.0 + 1.5 0.19 0.18 0.58
1.0 + 0.7 0.19 0.59 1.86
0.7 + 2.5 0.40 0.14 0.26
0.7 + 2.0 0.79 0.26 0.69
0.7 + 1.0 0.51 1.02 0.50
0.7 + 0.7 0.99 1.71 1.74
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Table 5.4: ∆E00 color differences between measured and predicted
CIE-L*a*b* values for stacked layered samples of different shade lightness

tested in this study.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE D1-EN1 VE D2-EN1 VE D3-EN2 VE D4-EN2 VE D5-EN2

2.5 + 2.5 1.09 0.80 0.55 0.51 0.54
2.5 + 2.0 0.65 0.77 0.44 0.48 0.59
2.5 + 1.0 0.26 0.19 0.31 0.30 0.27
2.5 + 0.7 0.67 0.30 0.36 0.33 0.31
2.0 + 2.5 0.42 0.10 0.10 0.14 0.25
2.0 + 1.5 0.22 0.31 0.35 0.29 0.32
2.0 + 0.7 0.36 0.17 0.41 0.27 0.29
1.5 + 2.0 0.26 0.56 0.15 0.11 0.21
1.5 + 1.0 0.15 0.12 0.60 0.29 0.28
1.0 + 2.5 0.20 0.54 0.30 0.30 0.13
1.0 + 1.5 0.75 0.09 0.16 0.16 0.33
1.0 + 0.7 0.35 0.27 0.54 0.40 0.34
0.7 + 2.5 0.38 0.73 0.34 0.35 0.11
0.7 + 2.0 0.60 0.29 0.21 0.40 0.18
0.7 + 1.0 0.14 0.33 0.27 0.62 1.17
0.7 + 0.7 0.89 0.77 1.10 1.21 1.36

In a recent study [13], it was stated that color gamuts of a set of teeth, tested un-

der several illuminants (including D65 and LED-B5, among others), showed similar

volume and shape in CIELAB color space, but their centers of gravity changed in

different directions. Considering that the sensitivity of the human visual system also

changes with illumination and that the CIEDE2000 has been designed to fit more

accurately with visual perception [95], a change of illumination could lead to higher

∆E00 between measured and estimated CIE-L*a*b* values. However, in the present

study, very similar results were obtained independently of the illuminant considered

(CIE D65, D55 or LED-B5), which proves the robustness of the proposed predictive

method, and ensures satisfactory outcomes for its implementation in different set-

tings. Therefore, the first research hypothesis was accepted, since satisfactory color

coordinates estimations can be achieved for monolithic and layered samples using

the proposed methods, independently of the illuminant used, as shown by the ∆E00
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values presented in Tables 5.2, 5.3 and 5.4.

As was already mentioned in the study presented in Chapter 3 of this PhD Thesis,

when dealing with predicted data, different modelling behaviours can be expected for

the estimation of the CIE-L*a*b* values of a test sample whose thickness falls outside

(extrapolation) or within the range of available training samples (interpolation). Thus,

in order to assess the prediction capability of our method when out-of-the-range

predictions are avoided, two different methods of analysis have been performed for

the monolithic pellets. Following a similar procedure to that of the previous study,

for the extrapolation approach, all samples presented in the testing set are used in

the evaluation while for the interpolation approach, the analysis is limited to only

those samples that fall within the cloud of available data (samples of 2.0 mm, 1.5 mm

and 1.0 mm). The means and standard deviations of the performance metrics (∆L*,

∆a*, ∆b* and ∆E00), as well as the percentage of samples lower than AT00 and PT00

for all shades and thicknesses, are presented in Table 5.5, for both extrapolation and

interpolation approaches.

Table 5.5: Statistics of error metrics for the extrapolation (35 specimens
considered for prediction) and interpolation approach (21 specimens

considered for prediction).

Method of analysis Variable Mean SD < AT00(%) <PT00(%)

Extrapolation
(n = 35)

∆L* 2.00 1.50
∆a* 0.14 0.13
∆b* 0.62 0.58
∆E00 1.71 1.22 62.86 28.57

Interpolation
(n = 21)

∆L* 0.99 0.67
∆a* 0.09 0.07
∆b* 0.39 0.26
∆E00 0.86 0.49 100 47.62

Similarly to the study previously presented in Chapter 4 for layered samples,

the performance of the method have been assessed both as a function of DRC type

and shade lightness. As for the monolithic samples, the measured and predicted

CIE-L*a*b* values were compared using different color metrics (∆L*, ∆a*, ∆b* and
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∆E00). The means and standard deviations, as well as the percentage of samples with

color differences between measured and predicted values lower than AT00 and PT00,

are presented in Tables 5.6 and 5.7, respectively.

Table 5.6: Statistics of error metrics for the test stacked layered samples of
shade A2 of different DRC types.

Layers Variable Mean SD < AT00(%) < PT00(%)
∆L* 0.39 0.33
∆a* 0.05 0.04
∆b* 0.34 0.25VE A2 - EN1

∆E00 0.48 0.27 100 81.25
∆L* 0.38 0.51
∆a* 0.06 0.04
∆b* 0.29 0.21VD A2 - EN3

∆E00 0.45 0.41 100 87.5
∆L* 0.78 0.60
∆a* 0.09 0.05
∆b* 0.60 0.34VP A2 - EN3

∆E00 0.86 0.51 93.75 56.25

Table 5.7: Statistics of error metrics for the test stacked layered samples of
different shades of VITA Excell.

Layers Variable Mean SD < AT00(%) < PT00(%)
∆L* 0.51 0.41
∆a* 0.04 0.03
∆b* 0.24 0.20VE S1 - EN1

∆E00 0.46 0.28 100 87.50
∆L* 0.40 0.37
∆a* 0.03 0.02
∆b* 0.23 0.14VE S2 - EN1

∆E00 0.40 0.26 100 100
∆L* 0.36 0.35
∆a* 0.04 0.02
∆b* 0.23 0.15VE S3 - EN2

∆E00 0.39 0.24 100 93.75
∆L* 0.29 0.32
∆a* 0.05 0.03
∆b* 0.27 0.20VE S4 - EN2

∆E00 0.39 0.26 100 93.75
∆L* 0.20 0.16
∆a* 0.10 0.13
∆b* 0.36 0.35VE S5 - EN2

∆E00 0.42 0.35 100 87.5
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When comparing the performance metrics of the predictive algorithms developed

for monolithic and stacked layered samples, it was found that slightly better values

were obtained for the later ones. At first sight, this might seem surprising, as pre-

dicting color data of monolithic samples should be an easier task and therefore lead

to better results (in terms of predictive accuracy). Monolithic samples are easier to

fabricate and the respective predictive method is designed for 2 dimensional data

versus the 3 dimensions needed for the layered samples. However, the differences in

performance between the monolithic and layered samples can be partially explained

by the size of the training sets. In the study presented in Chapter 4 of this Thesis,

where reflectance data and color of a set of DRC materials was estimated with PCA-

based predictive algorithms, it was proved that the sample size of the training set

strongly affected the performance of the proposed predictive models. In this regard,

in the present study, the training set consisted of only 4 samples for each monolithic

shade group, while for the layered specimens the training set consisted of a total of 9

samples (Figure 5.1).

In terms of color differences between predicted and real measured data, in the

present study 62.86% and 28.57% of the forecasted data exhibited color differences

lower than AT00 and PT00, respectively, when training sets of 4 samples, as the ones

uses for the monolithic pellets (Table 5.5), were used. These results are in accordance

with the ones presented in Chapter 4, that predicted reflectance data and color of

a set of layered DRC materials for training sets of 5 samples (Tables 4.8 and 4.13),

where values within 75%− 100% of the color differences between predicted and real

measured data below AT00, and 5%− 75% below PT00, were found.

When a predicted data point falls outside the cloud defined by the set of available

data points (i.e. extrapolation approach), the accuracy of the predictive models is

expected to decrease. This is the case of monolithic samples of 0.7 mm and 2.5
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mm (Table 5.2), which are the extreme thicknesses of our sample data sets. For this

reason, the predictive capability of the proposed models was also assessed when

samples corresponding to these extreme thicknesses were left out of the testing sets,

as suggested in the study presented in Chapter 3 of this Thesis, where significant

differences were found for extrapolation and interpolation approaches (Table 5.5).

Indeed, more accurate estimations were found when only samples that fall within

the cloud of data points defined by the training set (i.e. interpolation approach)

were included in the analysis, with 100% and 47.42% of the color differences between

predicted and measured data lower than AT00 and PT00, were obtained respectively.

However, in the case of the stacked layered specimens, there are also test samples

outside the cloud of data points (Tables 5.3 and 5.4), as for example DRC systems

conformed of dentine of 2.5 mm - enamel of 0.7 mm, among others, and color values

predictions tend to be considerably better than extrapolations of the monolithic

samples.

For these reasons, the second research hypothesis was partially accepted, since, in

some cases, differences in estimation accuracy were found between monolithic and

layered samples, probably due to the size of the training sets and the geometry of

the predictive models used -2 dimensions versus 3 dimensions-, for monolithic and

layered samples, respectively.

Lastly, when comparing the performance of the predictive methods for different

materials and shades (Tables 5.5, 5.6 and 5.7), a clear difference in performance, when

different shades of the same material were considered, was not found. However,

an important difference in predictive performance was registered when different

materials were considered for analysis. For both monolithic and stacked layered

samples, the estimations performed for VD and VE materials were considerably better

than those obtained for VP material (Table 5.6). In the study presented in Chapter 3 it
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was also highlighted that the performance of a predictive method for color estimation

of dental materials varied between dental ceramics and DRC materials, being better

for the later ones. It was suggested that the differences in performance might come

from different sample preparation procedures. However, this is not the case of the

current study, as all the specimens were prepared under the exact same conditions and

by the same trained operator, which ensured the repeatability of the samples quality.

In this sense, it is clear that the performance of the predictive algorithm depends, to

great extent, on the type of DRC used. Therefore, the third research hypothesis of

this study was also partially accepted, as the performance of the proposed predictive

methods is affected by the use of different types of DRC but not by the use of different

shades of the same DRC.

Bearing the limitations in mind, only composite materials have been used in this

study. Also, as stated in the previous chapter, it is important to consider that the

layered samples were obtained by stacking two monolithic pellets and they were not

coupled by polymerization processes, which for sure affects the interface between

the two layers. Therefore, further studies including polymerized layered pellets

are required in order to analyze the effect of these materials transitions within the

interface of the two layers and to fully understand the behaviour of the proposed

predictive models for DRC samples.

Nevertheless, the low variability in the obtained results and the high accuracy

obtained with the shades and materials already tested, confirms that the proposed

method for reconstructing the CIE-L*a*b* chromaticity coordinates of single-layer and

bi-layered samples can be used to find an optimal color match for dental materials.

The predictive methods presented in this study have the potential to provide essential

information of the final appearance of both monolithic and layered dental restorations.

Lastly, it is worth highlighting that the predictive models developed in the present

131



Chapter 5: Estimation of CIE L*a*b* color coordinates of monolithic and layered DRC

study are using as input solely CIE-L*a*b* values, which are ease to obtain with

affordable clinical color measurement commercial devices for dentistry.
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Section 6.1: Introduction

In this Chapter, the PCA-based and the linear regression-based algorithms devel-

oped for stacked layered samples in Chapters 4 and 5, respectively, are applied for

the reflectance and color prediction of polymerized layered (stratified) samples. Also,

a general overview on the advantages and disadvantages of the different algorithms

proposed is provided.

6.1 Introduction

In this PhD Thesis, different reflectance and color predictive algorithms have been

proposed and tested for the color prediction of monolithic and layered dental materi-

als with varying thickness. These layered samples have been produced by staking two

monolithic pellets, and were not actually obtained through polymerization processes

(stratified samples). In a first stage, working with stacked layered samples has many

benefits, since multiple samples with controlled layer thicknesses could be produced

consistently and very easily. However, the disadvantage of preparing stacked layered

samples relies on the abrupt transition between the different layers, different from the

smooth transition usually found in natural dental tissues (dentine-enamel junction)

or when two materials are coupled by polymerization processes when manufactured

(stratified materials).

Although the algorithms proposed in the previous chapters of this PhD The-

sis have proven to be valid for stacked layered samples, further studies including

stratified layered pellets are required in order to analyze the effect of these material

transitions within the interface of the two layers and to fully understand the behaviour

and robustness of the proposed predictive models for DRC samples. Therefore, the
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main objective of the study proposed in this chapter is to evaluate and validate the use

of the previously proposed PCA-based as well as linear regression-based CIE-L*a*b*

prediction algorithms for manufactured stratified layered dental resin composites

with different thicknesses and shades.

The following research hypotheses were tested in this study:

1. The reflectance spectrum of stratified layered dental samples can be predicted

with satisfactory results using a PCA-based algorithm.

2. Linear regression-based CIE-L*a*b* prediction algorithms can be used to esti-

mate the CIE-L*a*b* color coordinates of stratified layered dental samples with

satisfactory results.

6.2 Materials and method

6.2.1 Specimen preparation

Stratified layered samples were produced at VITA Zahnfabrik facilities by a trained

materials expert. As was the case for the monolithic pellets fabrication, described

in Chapter 3 Section 3.2.1, the fabrication of polymerized stratified layered samples

was based on the same organic dentine and enamel masses that are used for the

production of prosthesis teeth. As previously explained, these masses were prepared

and stored in conventional deep-freezers and just before being used they were taken

out and exposed to ambient temperatures.

For the fabrication of the stratified pellets, slices of the produced masses were cal-

endered to sheets of specific thicknesses (Thcal), calculated according to the polymer-

ization shrinkage ratio. First, disc-shaped pieces of 1.5 cm diameter of the calendered

enamel masses were die-cut and inserted into the nests of the metallic mold (Figure
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6.1a). The masses were then compacted by a combined treatment of uniaxial pressure

and vibration in a blender (Figure 6.1b). The thickness of the compacted disc-shaped

parts (Thpress) was defined by the height of the pressing punch. Compaction ratios

were defined as (Thcal − Thpress)/Thcal and were critical to the success of the fabrica-

tion. Afterwards, the dentine material was added, again as a 1.5 cm diameter disc of

another calendered sheet. This layer was pressed to slightly overfill the nests of the

mold, as can be seen in Figure 6.1c, in order to maintain pressure during the whole

process. The pressing was done with a mechanical hand press (Figure 6.1d), which

was equipped with a dial gauge that allows to control the height of the punch with

sub-millimeter precision.

Controlling these parameters was key, since, for example, insufficient pressure

would lead to opaque and blurry polymerized pellets. After the dentine layer was

added and adjusted in height, the metallic mould was closed and the two-layer

polymerized pellets were produced by the same heat-and-pressure treatment in a

conventional transfer press as for the monolithic pellets.

Regarding the thickness of the layers, the enamel layer was directly obtained right

after the polymerization, so the pellets were only ground on the dentine side to set

up the right thickness of this layer. The dentine thickness was then controlled by

measuring the total stratified pellet thickness and subtracting the enamel thickness.

Finally, the produced pellets were polished with a 9µm diamond paste on the

enamel face to achieve a pre-defined surface roughness. The polishing procedure was

performed by the same trained operator, as described in previous Chapters. Examples

of the specimens used in this study are presented in Figure 6.2.
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(a) (b)

(c) (d)

Figure 6.1: Fabrication process of the polymerized layered specimens.
a) Molds used for the fabrication of the samples. b) Vibration blender.

c) Over filled mold after the dentine layer is added. d) Hand press.

(a) (b) (c)

Figure 6.2: Example a stratified DRC layered system, viewed from different
perspectives.
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In order to obtain comparable results to those of the studies included in Chapters 4

and 5, the same dentine and enamel materials which were used for the production of

the monolithic pellets were used for the fabrication of the stratified layered samples.

Therefore, a total of 5 DRC stratified systems of VE, with increasing dentine lightness,

were produced: VE-S1+EN1, VE-S2+EN1, VE-S3+EN2, VE-S4+EN2 and VE-S5+EN2,

where S1 and S2 correspond to light shades, S3 and S4 correspond to intermediate

shades and S5 correspond to a dark shade. Each system was composed of a total of

16 samples -divided into training and testing sets, as further discussed- with varying

dentine and enamel thicknesses ranging from 0.5 mm to 2.5 mm.

6.2.2 Color measurements and evaluation of color differences

Similar to the other studies included in the present PhD Thesis, the spectral

reflectance spectrum of the layered samples was measured with a spectroradiometer

and the experimental set-up described in section 3.2.2. Consequently, the CIE-L*a*b*

color coordinates were computed using the CIE 2◦ Standard Observer and D65

Standard Illuminant.

6.2.3 Computational method

Stratified samples were divided into training and testing groups to develop and

evaluate the predictive methods, respectively. Measured reflectance curves and

computed CIE-L*a*b* coordinates, corresponding to the samples included in the

training set, were used to build the models, while those corresponding to samples of

the testing set, were used exclusively for testing their accuracy.

According to the findings of the study presented in Chapter 4 and similarly to

the study in Chapter 5, a training set of 9 samples arranged in a diamond-shaped
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configuration was used, since it proved to be the optimal arrangement to achieve very

good color estimations. Therefore, for the training set, 9 stratified layered samples

with specific thicknesses according to that configuration, were used. However, due

to manufacturing constraints, for the testing set only 7 samples, homogeneously

distributed within testing set pre-defined limits, were used. The arrangement of

stratified samples included in the training and testing sets is shown in figure 6.3.

Figure 6.3: Arrangement of training (9-samples) and testing (7-samples) sets.
Samples being included in the training set (orange) and testing set (gray).

As previously mentioned, the purpose of this study was to evaluate the perfor-

mance of the predictive algorithms described in previous chapters of this Thesis,

in a more realistic scenario, when stratified layered samples were used instead of

stacked layered samples. Therefore, the previously developed PCA-based predictive

algorithm described in Chapter 4 and the linear regression-based predictive algorithm

described in Chapter 5 were used to estimate the spectral reflectance and CIE-L*a*b*

chromaticity coordinates of the layered samples belonging to the testing set.
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6.2.4 Evaluation of color differences

Similar to the studies presented in previous Chapters of this Thesis, RMSE (Eq.

3.2.4) and GFC (Eq. 3.2.5) spectral metrics were used to evaluate the performance of

the PCA-based algorithms. Additionally, for both predictive models, color differences

between measured and predicted values were computed using the CIEDE2000 (∆E00)

total color difference formula [95], as shown in Equation 3.2.6. Consequently, ∆E00

values were comparatively evaluated with their corresponding 50:50% perceptibility

(PT00) and acceptability (AT00) thresholds for dentistry: PT00 = 0.8 and AT00 = 1.8

[27, 92, 94].

6.3 Results and discussion

In this study, stratified layered samples were employed to test the performance of

the prediction algorithms described in former chapters of this PhD Thesis.

The same dentine and enamel shades of VE DRC used for the production of the

monolithic pellets in Chapters 4 and 5 were used for the fabrication of the stratified

layered samples. A total of 5 DRC stratified layered systems, with different dentine

lightness, were obtained: VE-S1+EN1, VE-S2+EN1, VE-S3+EN2, VE-S4+EN2 and VE-

S5+EN2. For each DRC system, 9 samples, with specific thicknesses according to the

diamond-shaped arrangement were fabricated in order to train the predictive models

and 7 samples were fabricated in order to test the performance of the algorithms.

The PCA-based algorithm used to predict reflectance curves of stratified samples

is the same as described in Chapter 4, which means that the reflectance spectral

curves of the 7 samples belonging to the testing set were predicted using 3 Principal

Components and second degree polynomial regression (as it was suggested in Section
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4.2.3). From those estimated curves, CIE-L*a*b* color coordinates were computed as

described above, and ∆E00 color differences between measured and computed values

were calculated (Table 6.1). To evaluate the matching quality between measured and

estimated reflectances, RMSE and GFC spectral performance metrics were computed

and the results are presented in Table 6.2. The means and standard deviations of

these performance metrics, as well as the percentage of samples that exhibit total

color differences below the 50:50% AT00 and PT00 thresholds for the 5 DRC systems,

are presented in Table 6.3.

Table 6.1: ∆E00 color differences between measured and predicted reflectance
curves computed with the PCA-based algorithm, for the stratified layered

samples tested in this study.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2

2.5 + 2.5 0.45 0.26 1.15 0.74 0.96
0.5 + 2.5 0.97 0.78 0.59 1.41 0.75
1.5 + 2.0 1.50 0.54 0.43 0.61 0.97
2.0 + 1.5 0.83 0.34 0.43 0.54 0.39
1.0 + 1.5 0.73 0.12 1.37 0.90 0.22
1.5 + 1.0 1.00 0.30 0.44 0.91 1.02
2.5 + 0.5 0.49 0.21 1.19 1.25 1.39

Table 6.2: RMSE and GFC metrics between measured and predicted
reflectance curves computed with the PCA-based algorithm, for the stratified

layered samples tested in this study.

DRC Dentine-Enamel Systems
Test Thickness VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2
D(mm)+E(mm) RMSE GFC RMSE GFC RMSE GFC RMSE GFC RMSE GFC

2.5 + 2.5 0.00896 0.99998 0.00239 0.99999 0.01759 0.99986 0.0118 0.9999 0.0101 0.9999
0.5 + 2.5 0.01684 0.99995 0.01025 0.99995 0.00300 0.99997 0.0211 0.9999 0.0079 1.0000
1.5 + 2.0 0.01120 0.99969 0.00443 0.99996 0.00290 0.99998 0.0060 0.9999 0.0118 0.9999
2.0 + 1.5 0.01208 0.99984 0.00485 0.99999 0.00646 0.99999 0.0046 1.0000 0.0053 1.0000
1.0 + 1.5 0.00536 0.99994 0.00202 1.00000 0.02261 0.99999 0.0117 1.0000 0.0024 1.0000
1.5 + 1.0 0.00747 0.99987 0.00489 1.00000 0.00508 0.99998 0.0110 1.0000 0.0110 0.9998
2.5 + 0.5 0.01338 0.99998 0.00289 0.99999 0.01075 0.99976 0.0174 1.0000 0.0138 0.9998
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Table 6.3: Statistics of error metrics for the results obtained when the
PCA-based algorithm is used for stratified layered samples.

Layers Variable Mean SD < AT00(%) < PT00(%)

VE S1 - EN1

RMSE 0.01076 0.00385
GFC 0.99989 0.00010
∆L* 0.47 0.36
∆a* 0.14 0.13
∆b* 0.72 0.63
∆E00 0.85 0.36 100 42.85

VE S2 - EN1

RMSE 0.00453 0.00278
GFC 0.99998 0.00002
∆L* 0.29 0.18
∆a* 0.12 0.11
∆b* 0.22 0.19
∆E00 0.36 0.22 100 100

VE S3 - EN2

RMSE 0.00977 0.00767
GFC 0.99993 0.00009
∆L* 0.62 0.61
∆a* 0.11 0.09
∆b* 0.71 0.55
∆E00 0.80 0.42 100 57.14

VE S4 - EN2

RMSE 0.01194 0.00583
GFC 0.99995 0.00003
∆L* 0.80 0.59
∆a* 0.29 0.11
∆b* 0.46 0.34
∆E00 0.91 0.32 100 42.85

VE S5 - EN2

RMSE 0.00888 0.00398
GFC 0.99991 0.00009
∆L* 0.70 0.34
∆a* 0.12 0.09
∆b* 0.71 0.48
∆E00 0.82 0.40 100 42.85

For performance evaluation of the linear regression-based prediction algorithm

presented in Chapter 5, the CIE-L*, CIE-a* and CIE-b* color coordinates of the test

samples of each stratified DRC system were predicted according to the methodology

described in section 5.2.3. Besides, ∆E00 color differences between measured and

estimated values were calculated (Table 6.4). The means and standard deviations,

as well as the percentage of samples with color differences between measured and

predicted values lower than 50:50% AT00 and PT00, are presented in Table 6.5.
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Table 6.4: ∆E00 color differences between measured and predicted
CIE-L*a*b* values computed with the linear regression-based algorithm, for

the stratified layered samples tested in this study.

Test Thickness DRC Dentine-Enamel Systems
D(mm)+E(mm) VE S1-EN1 VE S2-EN1 VE S3-EN2 VE S4-EN2 VE S5-EN2

2.5 + 2.5 0.53 0.40 1.32 0.94 1.20
0.5 + 2.5 0.92 0.92 0.42 1.55 0.61
1.5 + 2.0 1.47 0.54 0.44 0.63 0.97
2.0 + 1.5 0.83 0.38 0.48 0.51 0.37
1.0 + 1.5 0.68 0.10 1.34 0.82 0.19
1.5 + 1.0 0.97 0.27 0.49 0.85 1.04
2.5 + 0.5 0.67 0.16 1.06 1.18 1.17

Table 6.5: Statistics of error metrics for the results obtained when the linear
regression-based algorithm is used for stratified layered samples.

Layers Variable Mean SD < AT00(%) < PT00(%)
∆L* 0.49 0.36
∆a* 0.14 0.14
∆b* 0.75 0.60VE S1 - EN1

∆E00 0.87 0.31 100 42.85
∆L* 0.28 0.22
∆a* 0.07 0.11
∆b* 0.32 0.26VE S2 - EN1

∆E00 0.40 0.27 100 85.71
∆L* 0.63 0.59
∆a* 0.12 0.12
∆b* 0.69 0.50VE S3 - EN2

∆E00 0.79 0.43 100 57.14
∆L* 0.80 0.58
∆a* 0.26 0.14
∆b* 0.57 0.29VE S4 - EN2

∆E00 0.93 0.35 100 28.57
∆L* 0.70 0.34
∆a* 0.16 0.14
∆b* 0.61 0.41VE S5 - EN2

∆E00 0.79 0.40 100 42.85

As it can be observed in Table 6.2, very good spectral matches were found between

measured and predicted reflectance curves, with very low RMSE values (around

2%) and a GFC ≥ 0.9999 in all cases. RMSE and GFC values at this range have

previously been reported as indicators of a high-quality fit [168]. When analyzing

the color differences between measured and predicted values (Table 6.3), all ∆E00
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values were below the AT00, which highlights once again the very good results

obtained for reflectance and color estimation of stratified layered samples with the

proposed method. Similar to the case of stacked layered samples (Table 4.13), the

color differences were mostly introduced by variations of the CIE-L* and CIE-b*

color coordinates, rather than the CIE-a* coordinate, what can be justified due to the

shape of the dental color space, with a narrower range for the a* coordinate (a* =

-1.5 - 12.6) as compared to the other two coordinates (L* = 51.5 - 85.5 and b* = 12.0

- 43.3) [63]. Therefore, based on the findings of the present study, the first research

hypothesis was accepted since the reflectance spectrum of stratified layered samples

can be successfully predicted using the PCA-based proposed algorithm.

Regarding the results obtained for stratified layered samples when the linear

regression-based algorithm proposed in Chapter 5 was used to predict the color data,

the color differences obtained between measured and predicted values were low in

almost all cases (Table 6.4). These very good outcomes are also confirmed by the fact

that 100% of the color differences between measured and predicted CIE-L*a*b* color

coordinates were below the 50:50% AT00 and, in some cases (as for VE-S2+EN1), as

much as 85% of the color differences were lower than the 50:50% PT00 (Table 6.5).

Therefore, the second research hypothesis of this study was also accepted, as it seems

clear that linear regression-based prediction algorithms can be used to estimate the

CIE-L*a*b* color coordinates of stratified layered dental samples with satisfactory

results.

It is true that both algorithms tested in this study perform in a satisfactory manner,

since color differences below the acceptability threshold were always obtained for

both stacked and stratified layered samples. However, comparing the results obtained

for stacked layered samples presented in Tables 4.13 and 5.7 with the ones obtained

for stratified layered samples presented in Tables 6.3 and 6.5, a slight decrease in
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performance can be observed, especially when analyzing the mean ∆E00 color differ-

ences and the percentage of color differences below the PT00. For example, for stacked

layered samples, mean ∆E00 values of roughly 0.5 and 0.4 color units were found for

the PCA-based and the linear regression-based algorithms, respectively. However,

when polymerized layered samples were used, these values increased to roughly 0.85

color difference units for both algorithms. Also, while, for stacked layered samples,

the lowest found percentages of color differences below the PT00 were 81.25% and

87.5%, for the PCA-based and the linear regression-based algorithms, respectively,

these percentages dropped to 42.82% and 28.57% for the case of stratified layered

samples.

By looking at the percentages it seems that the algorithms perform slightly better

for stacked samples. However, it is important to consider that, except for very

few isolated cases where ∆E00 values of roughly 1.5 color difference units were

found, the majority of the ∆E00 color difference values presented in Tables 6.3 and

6.5 were around the limit of PT00 with ∆E00 values of roughly 1.0 color difference

units. Besides, even very small ∆E00 values were obtained for some dentine-enamel

combinations, such as ∆E00 = 0.12 and ∆E00 = 0.10, obtained for the stratified

layered sample of D(1.0 mm)+E(1.5 mm) of the VE S2-EN1 system, as can be observed

in Tables 6.1 and 6.4, respectively. Therefore, from the results presented above, it

can be stated that the fuzzy transition present at the interface between dentine and

enamel layers, which was the main concern of the present study, does not seem to

negatively affect the predictive capability of the proposed algorithms, since very

good color difference values between measured and predicted data were obtained in

several cases.

Overall, both algorithms perform in a very similar way with both stacked and

stratified layered samples. The differences found between the different studies pre-
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sented in this PhD Thesis are not probably attributable to the algorithms themselves,

which have proven to be valid for most of the samples tested in the study, and also

outperform the results obtained in other studies related to color prediction in den-

tistry [59, 60, 101, 135, 138, 139, 141, 178–180]. It is very likely that the differences found

between the results obtained with stacked and stratified samples to be introduced by

other factors that cannot be controlled (non-modelable factors) which are affecting the

performance to some extent. For example, it can be mentioned the difficulty to pre-

cisely control or measure the thickness of the dentine and enamel layers for stratified

layered samples, different to the case of the stacked layered samples, whose mono-

lithic pellets thicknesses were directly measured with a precision caliper. Also, errors

derived from the measuring device itself or the reproducibility of the experimental

method might impact the outcomes of the predictive methods.

It is clear that each of the proposed algorithms have pros and cons, and there-

fore, one or the other could be used for color prediction according to the purpose

for which the color needs to be predicted. Initially, an algorithm that is able to es-

timate the reflectance curve of any object is more versatile than other which can

only estimate color coordinates. In this sense, complete spectral data can provide

information on the consistency of the material and therefore can detect potential

problems of metamerism. Knowing the reflectance spectrum of an object also allows

the calculation of colorimetric data for each lightning source expected to illuminate

the specimen. Another advantage of dealing with complete reflectance spectra is

that the Kubelka-Munk theory can be applied for the study of the optical properties

of the materials, as has been already used in many research studies in the dental

field [53, 84, 161, 164, 167] and therefore, light-material interactions could be also

studied. These aspects of a prediction algorithm could be of great interest to dental

materials experts and companies. However, there are many other applications, and
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especially in clinical settings, where complex data such as reflectance spectra is not

easily obtained and, therefore, the prediction of CIE-L*a*b* values could be more

convenient and more straightforward for dentists and dental technicians to apply

and interpret.

We have seen many different approaches attempting to solve the problem of color

prediction in dentistry and it is clear that there is still a long way to go. However, the

studies presented in this PhD Thesis open the door to future lines of research that

could include the development of new predictive algorithms for more than two-layers

dental materials and also the prediction of reflectance and color of complete prosthetic

teeth.
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1. The PCA-based algorithm proposed in this PhD Thesis can be used for re-

flectance estimation of flat monolithic samples of dental ceramics and dental resin

composites, of different thicknesses and shades without compromising its perfor-

mance. The final color of monolithic samples can be estimated at color differences

below the acceptability threshold, and in most cases also below the perceptibility

threshold.

2. The use of 3 principal components and second degree polynomial was proved

to be the best configuration for PCA-based spectral reconstruction. In order to

achieve better accuracy in the prediction of the reflectance and color of the monolithic

materials, the use of a training set that includes both thicker and thinner samples than

those to be predicted (interpolation approach - test samples within the limits of the

training set) has to be considered.

3. The PCA-based algorithm can be used for the estimation of the reflectance

spectrum and color coordinates of stacked layered samples of dental resin composites

of different thicknesses and shades. With a training set of 5-samples in a X-shaped

arrangement, color differences between measured and estimated reflectances below

the acceptability threshold are generally obtained. However, a training set which

includes 9 samples in a diamond-shaped arrangement has proven to be the optimal

strategy, since color differences between estimated and measured reflectances are al-

ways below the acceptability threshold, and in most cases also below the perceptibility

threshold.

4. The performance of the PCA-based predictive algorithm proposed for stacked

layered samples is dependent to some extent on the materials used but, within a

group of samples manufactured using the same material, it is independent of sample

shade.
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5. Linear Regression Models can be satisfactorily used for CIE-L*a*b* color coor-

dinates estimation of monolithic and stacked layered dental resin-based composites

under different illuminations.

6. The linear regression-based algorithms for CIE-L*a*b* color coordinates estima-

tion are intended for scenarios where spectral measurements are not available. Similar

performance metrics to those of more complex algorithms are obtained, with color

differences below the acceptability threshold, and generally below the perceptibility

threshold.

7. Satisfactory results are also obtained when the PCA-based and linear regression-

based algorithms proposed in this PhD Thesis are applied to stratified layered samples

of different thicknesses and shades. Although slight differences are observed between

the two types of samples evaluated (stacked and stratified), the registered color

differences between measured and predicted reflectances were always below the

acceptability threshold.

8. Overall, the results in the studies presented in this PhD Thesis demonstrate that

the predictive methods proposed can be used to model and predict the reflectance

and colorimetric properties of monolithic and layered (stacked and stratified) translu-

cent biomaterials. This could help to custom design dental materials with multiple

clinical and industrial applications, such as the fabrication of dental shade guides, the

development of new dental materials and, finally, achieving dental restorations that

perfectly match the color of the surrounding dental structures. However, future re-

search is needed, where flat samples including more than two layers or tooth shaped

samples with different geometries than a flat surface should be included. Also, future

studies can be carried out for the development of algorithms capable of identifying

optimal combinations of materials and thicknesses in order to achieve a desired color.
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1. El algoritmo basado en ACP propuesto en esta Tesis Doctoral puede utilizarse

para la estimación de la reflectancia de muestras monolíticas planas de cerámica y

resinas composite, de diferentes espesores y colores sin comprometer su rendimiento.

El color final de las muestras monolíticas puede estimarse con diferencias de color

por debajo del umbral de aceptabilidad, y en la mayoría de los casos también por

debajo del umbral de perceptibilidad.

2. El uso de 3 componentes principales y un polinomio de segundo grado resultó

ser la mejor configuración para la reconstrucción espectral basada en ACP. Para lograr

una mayor precisión en la predicción de la reflectancia y el color de los materiales

monolíticos, hay que considerar el uso de un conjunto de entrenamiento (test) que

incluya muestras tanto más gruesas como más finas que las que se van a predecir

(estrategia de interpolación - muestras de prueba dentro de los límites del conjunto

de entrenamiento).

3. El algoritmo basado en ACP puede utilizarse para la estimación de la re-

flectancia espectral y las coordenadas de color de muestras de resina de composite

superpuestas de diferentes espesores y tonos. Con un conjunto de entrenamiento

de 5 muestras en forma de X, generalmente se obtienen diferencias de color entre

las reflectancias medidas y estimadas por debajo del umbral de aceptabilidad. Sin

embargo, un conjunto de entrenamiento que incluya 9 muestras, en una disposición

en forma de diamante, ha demostrado ser la estrategia óptima, ya que las diferencias

de color entre las reflectancias estimadas y las medidas están siempre por debajo del

umbral de aceptabilidad y, en la mayoría de los casos, también por debajo del umbral

de perceptibilidad.

4. El rendimiento del algoritmo de predicción basado en ACP que se propone

para las muestras superpuestas depende en cierta medida del material, pero, dentro

de un grupo de muestras fabricadas con el mismo material, es independiente del

155



Chapter 7: Conclusiones

color de la muestra.

5. Se han utilizado modelos de regresión lineal para estimar con precisión las co-

ordenadas de color CIE-L*a*b* de muestras de resina de composite tanto monolíticas

como bicapa superpuestas y bajo diferentes iluminaciones.

6. Los algoritmos basados en regresión lineal diseñados para las estimar las

coordenadas de color CIE-L*a*b* están pensados para escenarios en los que no se

dispone de medidas de reflectancia espectral. Con estos algoritmos se han obtenido

métricas de rendimiento similares a las de algoritmos más complejos, con diferencias

de color por debajo del umbral de aceptabilidad, y generalmente por debajo del

umbral de perceptibilidad.

7. También se obtienen resultados satisfactorios cuando los algoritmos basados

en ACP y en regresión lineal, propuestos en esta Tesis Doctoral, se aplican a muestras

bicapa estratificadas de diferentes espesores y tonos. Aunque se observan ligeras

diferencias en el rendimiento entre los dos tipos de muestras evaluadas (superpuestas

y estratificadas), las diferencias de color encontradas entre las reflectancias medidas y

estimadas estuvieron siempre por debajo del umbral de aceptabilidad.

8. En general, los resultados de los estudios presentados en esta Tesis Doctoral

demuestran que los métodos predictivos propuestos pueden utilizarse para modelar

y predecir la reflectancia espectral y las propiedades colorimétricas de biomateriales

translúcidos monolíticos y bicapa (superpuestos y estratificados). Esto podría ayudar

a personalizar el diseño de materiales dentales con múltiples aplicaciones clínicas e

industriales, como la fabricación de guías de color dentales, el desarrollo de nuevos

materiales y, finalmente, conseguir restauraciones que se ajusten perfectamente al

color de las estructuras dentales colindantes. Sin embargo, es necesario realizar

investigaciones futuras en las que se consideren muestras planas que incluyan más

de dos capas o muestras con forma de diente con geometrías diferentes a la de una
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superficie plana. Además, se pueden realizar estudios futuros para el desarrollo de

algoritmos capaces de identificar combinaciones óptimas de materiales y espesores

para conseguir un color deseado.
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