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y las Comunicaciones



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editor: Universidad de Granada. Tesis Doctorales  
Autor: Fernando Pérez Bueno 
ISBN: 978-84-1117-645-3 
URI: https://hdl.handle.net/10481/79642 

https://hdl.handle.net/10481/79642


2



i

Agradecimientos (Acknowledgments)

Antes incluso de empezar a escribir este documento, comencé a recibir enhorabue-
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Abstract

Histopathological images are commonly used for the diagnosis of cancer and other
diseases. These images are also used by Computer Assisted Diagnosis (CAD)
systems, which have shown a promising performance on the diagnosis of of cancer
and other diseases.

However, the images obtained in different laboratories show acquisition dif-
ferences that hamper the performance of AI-based CAD systems. In particular,
color variation is often considered the most relevant issue when working with im-
ages from different centers. To accurately reduce color variation it is important
to consider the acquisition procedure of histopathological image and, specifically,
the staining protocol with two or more stains. Blind Color Deconvolution (BCD)
use an observation model that takes the staining protocol into account and sepa-
rate the stains mixed in the observed image, separating also color from structural
information.

This thesis studies Bayesian modeling and inference, and their application to
BCD techniques. With the proposed approach, it is possible to combine prior
knowledge, the observation model, and the data evidence, obtaining robust, high
quality posterior distributions that can be used to reduce the effect of color vari-
ation on CAD systems.

We propose three different Bayesian models for BCD of histopathological im-
ages: A Total Variation (TV) framework, Super Gaussian Sparse priors, and
Bayesian K-Singular Value Decomposition (BKSVD), and apply them to stain
separation, color normalization, stain augmentation, and cancer classification.

Two additional contributions are included in this thesis: the improvement of
multi-spectral satellite images and network anomaly detection. Both benefit too
from the use of Bayesian modeling and inference.

Furthermore, we also present three additional works in which we have collabo-
rated but are not part of the compendium of publications presented to obtain the
Ph.D. degree: a tutorial paper on the processing of histological images, a paper
on blood detection using BCD, and a paper on Deep Variational BCD.

The project of this thesis was awarded the 3 Minute Thesis (3MT) prize at
the University of Granada, and represented the university at the international
Coimbra group competition in 2021.
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Resumen

Las imágenes histopatológicas son una herramienta ampliamente utilizada para el
diagnostico del cáncer y otras enfermedades. También son utilizadas en sistemas
de diagnostico asistido por computador (CAD por sus siglas en ingles). Estos
sistemas han obtenido resultados muy prometedores en el diagnostico automático
del cáncer y otras enfermedades.

Sin embargo, las imágenes obtenidas en distintos laboratorios presentan di-
ferencias, debido al proceso de adquisición, que dificultan el uso de técnicas de
inteligencia artificial. De estas diferencias, la variación de color se suele conside-
rar el mayor problema cuando se trabaja con imágenes de distintos centros. Una
solución precisa del problema de la variación de color requiere tener en cuenta el
proceso de adquisición de las imágenes histopatológicas y, en concreto, el proceso
de tinción con dos o mas tinciones. Las técnicas de deconvolución ciega de color
(BCD, por sus siglas en ingles Blind Color Deconvolution) utilizan un modelo de
observación que tiene en cuenta este proceso y permite separar las tinciones que
aparecen mezcladas en la imagen observada, separando además el color de la de
estructura de las tinciones.

En esta tesis se estudian la modelización e inferencia Bayesianas y su aplicación
a BCD. Con la aproximación propuesta, es posible combinar conocimiento a priori,
el modelo de observación y la evidencia que proporcionan los datos, y obtener aśı
distribuciones a posteriori robustas y de gran calidad que pueden utilizarse para
reducir la variación de color.

Se han propuesto tres modelos Bayesianos diferentes para la deconvolución de
color de imágenes histológicas: El primero utiliza un marco de trabajo basado
en la función de Variación Total (TV), el segundo utiliza distribuciones a priori
de la familia super Gaussiana y por último un modelo basado en descomposición
Bayesiana en K-valores singulares. Los modelos propuestos se han aplicado a
la separación de tinciones, la normalización de color, el aumento de datos y la
clasificación de varios tipos de cáncer.

Se incluyen en esta tesis dos contribuciones adicionales: la mejora de imágenes
multiespectrales tomadas por satélite y la detección de anomaĺıas en redes de
ordenadores. Ambas se benefician también del uso de la modelización e inferencia
Bayesianas.

Además, se presentan tres publicaciones en las que se ha colaborado pero que
no se consideran parte del compendio presentado para obtener el t́ıtulo de doctor:
una revisión sobre el procesado de imágenes histológicas, un trabajo de detección
de sangre usando BCD y otro sobre BCD variacional profundo.

Esta tesis obtuvo el primer premio de la universidad de Granada en el con-
curso Tesis en 3 Minutos (3MT), y representó a la universidad en el concurso
internacional del grupo Coimbra en 2021.
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Resumen extendido en castellano

Introducción

El análisis de imágenes histopatológicas realizado por patólogos y/o sistemas de
diagnóstico asistido por computador (CAD por sus siglas en inglés) es una parte
importante del proceso de diagnóstico del cáncer y otras enfermedades.

Los casos de cáncer, aśı como el cribado orientado a su detección, muestran
una tendencia creciente en los últimos años, lo que aumenta el número de imágenes
que tienen que ser procesadas y analizadas. Esto hace que el uso de sistemas CAD
sea de vital importancia para reducir la carga de trabajo de los patólogos, au-
mentar la precisión de los diagnósticos y reducir el tiempo que requieren. Aunque
estos sistemas han obtenido resultados muy prometedores en varias áreas, su de-
sarrollo viene acompañado de nuevos retos. Por ejemplo, su rendimiento se reduce
significativamente cuando se utilizan imágenes de hospitales que no aparećıan en
el conjunto de entrenamiento.

Las variaciones de color intra- and inter-hospitalarias causadas por diferencias
en la tinción de las imágenes suelen considerarse una de las principales causas de
este problema. El proceso de tinción se utiliza para resaltar las estructuras biológi-
cas con colores diferentes, permitiendo que sean identificadas por los patólogos.
Sin embargo, el aspecto final de las imágenes depende de muchos factores (tem-
peratura, agentes qúımicos y software del escáner, entre otros) lo que imposibilita
la estandarización de las imágenes durante su adquisición.

El procesado de las imágenes para eliminar la variación de color mejora el ren-
dimiento de los sistemas CAD, y es de vital importancia par el desarrollo de sis-
temas que puedan usarse en distintos hospitales. Aparte de entrenar los CAD con
una mayor cantidad de datos de diferentes hospitales, se han propuesto distintas
aproximaciones para resolver el problema de la variación de color: normalización
de color, aumento de color y separación de tinciones.

La normalización de color trata de transformar las imágenes observadas obte-
niendo imágenes que simulan haber sido teñidas bajo las mismas condiciones. El
aumento de color crea nuevas imágenes con más variación de color, con el obje-
tivo de reducir el error de generalización de los sistemas CAD en datos no vistos

ix
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anteriormente. Como se explica más adelante en esta tesis, estas aproximaciones
requieren un paso previo que garantice la fidelidad a la estructura de la imagen
original.

Esta tesis se centra en la separación de tinciones. Dado que las tinciones se
fijan a elementos espećıficos del tejido, la variación de color dificulta la capacidad
de los sistemas CAD para identificar correctamente la estructura y condición de
los mismos. Mediante las técnicas de separación de tinciones es posible identificar
y separar cada una de las tinciones en la imagen. Esta forma de expresar la
información, tiene un mayor sentido biológico que la mezcla de tinciones en la
imagen RGB observada. Además, se ha probado que la separación de tinciones es
útil para el diagnostico automático, como un paso previo a la normalización de
color, y para realizar aumento de color.

Para afrontar el problema de la separación de tinciones se usan frecuentemente
técnicas de deconvolución ciega de color (BCD, por sus siglas en inglés Blind Color
Deconvolution). Estas técnicas, tras una transformación apropiada de la imagen
RGB, estiman los vectores de color y la estructura (concentraciones) correspon-
dientes a cada tinción. Para ello, se hace uso de la ley de Beer-Lambert que, en el
espacio de la densidad optica (OD), establece una relación lineal entre intensidad
observada y la concentración de cada tinción.

Para una imagen observada I ∈ RQ×3 donde cada columna corresponde a un
canal RGB, y Q es el número de ṕıxeles, la OD para cada canal, c, se obtiene
como yc = − log10 (ic/i

0
c), donde i0c representa la luz incidente (t́ıpicamente 255

para imágenes RGB) y las operaciones de división y log se ejecutan para cada ṕıxel.
Aśı, la OD de una imagen histológica Y ∈ RQ×3 teñida con Ns tinciones, puede
separarse en una matriz de color M ∈ R3×Ns y una matriz de concentraciones
C ∈ RQ×Ns como

YT = MCT +NT , (1)

donde N ∈ RQ×3 es una matriz de ruido.

La matriz de color M tendrá tantas columnas como tinciones en la imagen,
donde cada columna representa las propiedades de color de una de las tinciones.
La matriz de concentraciones C contiene también una columna para cada tinción,
y tantas filas como ṕıxeles en la imagen. Cada columna cq = [c1,q, . . . , cns,q]

T

representa la contribución de cada tinción al ṕıxel q-esimo en Y y cada columna
de C representa las concentraciones de cada tinción.

Nótese que para estimar la separación de tinciones latente, es necesario ges-
tionar la incertidumbre que surge del ruido presente en los datos y del número
finito de observaciones. Los modelos probabiĺısticos proporcionan herramientas
para cuantificar y gestionar dicha incertidumbre. Mediante el modelado y la infe-
rencia Bayesiana, se pueden combinar el conocimiento a priori sobre la matriz de
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color y las concentraciones, el modelo de observación, y la evidencia de los datos
observados al microscopio.

Objetivos y estructura de la tesis

El objetivo principal de esta tesis es el uso de modelización e inferencia Bayesia-
nas para la mejora de imágenes histopatológicas y su uso en sistemas CAD. En
particular, se centra en desarrollar y aplicar modelos probabiĺısticos para abor-
dar la variación de color mediante BCD. Además, se incluye un segundo objetivo
que aplica la modelización Bayesiana a otras áreas de interés. Para alcanzar es-
tos objetivos, definimos un conjunto de objetivos espećıficos que se detallan a
continuación.

1. Mejorar las imágenes histopatológicas para su uso en sistemas de diagnóstico
asistido por computador.

(a) Desarrollar modelos probabiĺısticos para deconvolución ciega de color
de imágenes histológicas.

(b) Aplicar BCD para mejorar el rendimiento de los sistemas CAD.

(c) Proponer nuevas aproximaciones para resolver la variación de color.

2. Utilizar los modelos probabiĺısticos en otras áreas de interés.

(a) Imágenes multiespectrales tomadas por satélite.

(b) Detección de anomaĺıas en redes de ordenadores.

Esta tesis está estructurada en tres bloques. En los dos primeros se abordan los
objetivos presentados: Modelización e inferencia Bayesianas para BCD, otras áreas
de aplicación de la modelización probabiĺıstica. El tercero incluye otros trabajos,
bien aceptados en revistas con ı́ndice de impacto, enviados o en preparación que
no forman parte de las cinco publicaciones que conforman el compendio de la
tesis. Los tres bloques se describen a continuación.

1. Modelización e inferencia Bayesianas para BCD. Incluye los caṕıtu-
los 2, 3 y 4. Los dos primeros caṕıtulos presentan modelos BCD Bayesianos
basados en referencias. Aunque los auténticos vectores de color de la ima-
gen observada son desconocidos, no lo es el protocolo de tinción (ej. H&E).
Por tanto, podemos asumir que las tinciones serán similares a una referencia
dada. Los modelos BCD basados en referencias utilizan una a priori de simi-
litud sobre los vectores de color, junto con diferentes distribuciones a priori
sobre las concentraciones. En concreto se presentan los modelos basados en
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la a priori de Variación Total (TV) y la familia de distribuciones Super-
Gaussiana (SG). Estos modelos se han aplicado a separación de tinciones,
normalización de color y clasificación de distintos tipos de cáncer.

El caṕıtulo 4 aborda el problema de BCD como un problema de aprendiza-
je de diccionarios. Los modelos basados en referencias funcionan muy bien
cuando las imágenes observadas están cercanas a la referencia. Sin embargo,
carecen de la flexibilidad necesaria para adaptarse a cambios grandes de co-
lor, como los que podŕıan aparecer entre imágenes de distintos laboratorios.
Afrontar el problema de encontrar la matriz de color como un problema de
aprendizaje de diccionarios resuelve este problema, permitiéndonos encon-
trar la matriz de color que mejor representa las tinciones en la imagen. Este
modelo se ha aplicado a separación de tinciones, normalización de color,
aumento de datos y clasificación de imágenes de cáncer.

Los objetivos 1.a, 1.b y 1.c se trabajan en este bloque.

2. Otras áreas de aplicación de la modelización probabiĺıstica. Incluye
los caṕıtulos 5 y 6, donde se aplican los modelos probabiĺısticos a otras áreas
de interés. En particular, las distribuciones SG se aplican al pansharpening
de imágenes de satélite (Caṕıtulo 5, objetivo 2.a) y el análisis de componen-
tes principales probabiĺıstico (PPCA por sus siglas en inglés) se utiliza para
detección de anomaĺıas en redes de ordenadores (Caṕıtulo 6, objetivo 2.b)

3. Otros trabajos. Este tercer bloque, presentado en el caṕıtulo 7, inclu-
ye otros trabajos de interés en los que el doctorando ha tenido un papel
relevante. Se incluyen, un trabajo en revista JCR, (i) una revisión sobre
técnicas de procesado de WSIs, un trabajo enviado a una revista, (ii) el
desarrollo de modelos Bayesianos profundos para BCD), y un trabajo en
preparación, (iii) una aplicación de las técnicas BCD para la detección de
sangre en WSIs. También se incluye la participación en el concurso Tesis
en 3 Minutos (3MT) del grupo Coimbra, en el que el doctorando obtuvo
el primer premio en la final institucional de la universidad de Granada en
2021. Estos trabajos están relacionados con los objetivos 1.a, 1.b y 1.c.

Conclusiones

La principal conclusión de esta tesis doctoral es que la modelización e inferencia
Bayesianas pueden utilizarse para mejorar las imágenes histológicas de cáncer,
haciéndolas más fáciles de clasificar e interpretar con sistemas CAD. Hemos ex-
plorado la aplicación de las técnicas Bayesianas a la deconvolución ciega de color
para separar las imágenes observadas en los elementos latentes que las componen
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(es decir, el color de las tinciones y su concentración en cada ṕıxel). La modeliza-
ción e inferencia Bayesianas también pueden aplicarse en otros ámbitos como el
pansharpening y la detección de anomaĺıas. A continuación se incluye un desglose
en conclusiones espećıficas:

• El uso de conocimiento a priori sobre las imágenes ayuda a obtener una
mejor separación del color y las concentraciones. Los modelos probabiĺısti-
cos y la inferencia Bayesiana proporcionan las herramientas para utilizar el
conocimiento a priori y gestionar la incertidumbre del problema.

• La mejora de las imágenes puede tener significados diferentes en función de
la tarea a realizar. Para el análisis visual se desea una mayor fidelidad al
tejido original, mientras que para su uso en sistemas CAD se busca obtener
mejores caracteŕısticas de clasificación a partir de imágenes en las que se
eliminan el ruido y los elementos residuales.

• La raleza1 (en el sentido de que un número elevado de elementos tienen un
valor cercano a cero y solo existen unos pocos separados y distintos de cero)
es una caracteŕıstica deseada para la separación latente de las tinciones en
las imágenes. Hemos explorado la raleza en la concentraciones de tinción
con tres enfoques diferentes: utilizando una a priori TV directamente sobre
las concentraciones, utilizando la familia de distribuciones a priori SG en
las concentraciones filtradas mediante paso alto para remarcar los bordes
de la imagen, y con una a priori jerárquica (equivalente a una distribución
Laplaciana) en las concentraciones de cada ṕıxel que promueve la asignación
de los mismos a una sola tinción.

• Las técnicas BCD basadas en referencias de color presentan un enfoque
robusto que no se ve afectado por los artefactos de la imagen, pero carece de
la flexibilidad necesaria para adaptarse a distribuciones de color alejadas de
la referencia. Por otro lado, el aprendizaje de diccionarios para BCD es capaz
de estimar una matriz de color que representa mejor la tinción diferencial
de la imagen, pero que puede estar influida por elementos inesperados en
las imágenes.

• Las técnicas Bayesianas para BCD son computacionalmente costosas pero
superan a los enfoques no probabiĺısticos para la separación de tinciones.
Sin embargo, debido al reducido número de tinciones en las imágenes his-
tológicas, su aplicación a las imágenes de gran tamaño puede acelerarse
mediante el muestreo de ṕıxeles para la estimación de los parámetros del
modelo BKSVD.

1La traducción del término en inglés sparsity no está muy extendida y no queda claro en la
literatura cual es el término más adecuado. Los más habituales son raleza o dispersión.
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• Las técnicas BCD tienen un gran potencial para la mejora e interpretación de
las imágenes histológicas. La separación de tinciones puede utilizarse para la
normalización y el aumento del color, y directamente para su uso en sistemas
CAD. Utilizar los sistemas CAD con las imágenes de concentración de una
sola tinción en lugar de la imagen observada o normalizada RGB puede
mejorar la precisión del diagnóstico. Este enfoque imita el análisis realizado
por los patólogos, ya que diferencian las tinciones en la imagen y no el color
que presentan.

• Algunas de las lecciones aprendidas al trabajar con imágenes histológicas
pueden extenderse a otras áreas. El uso de modelos probabiĺısticos para se-
parar la información en sus componentes latentes puede ayudar a resaltar
la información previamente confundida o disfrazada en las variables obser-
vadas. En concreto:

– La estimación de imágenes multiespectrales a partir de imágenes mul-
tiespectrales de baja resolución e imágenes pancromáticas de alta re-
solución, puede mejorarse haciendo uso de la familia de distribuciones
SG, separando la contribución de la imagen pancromática a cada canal
de la imagen multiespectral de alta resolución.

– El PCA probabiĺıstico (PPCA) proporciona un espacio latente que pue-
de utilizarse para la detección robusta de anomaĺıas. Además, el PPCA
establece un puente entre los modelos clásicos de detección de ano-
maĺıas en redes y los enfoques generativos recientes, como los VAE,
que pueden utilizarse para comprender mejor estos últimos.

• Los trabajos incluidos en el caṕıtulo 7 muestran que es posible e interesante
continuar la investigación en el procesamiento de imágenes histológicas y la
modelización probabiĺıstica. El trabajo de revista en la sección 7.1, revisa
el estado del arte y señala ĺıneas y retos por afrontar. El trabajo reciente-
mente enviado de la sección 7.2, es según nuestro conocimiento, la primera
aproximación Bayesiana a BCD usando redes neuronales profundas, y abre
el camino a nuevos trabajos de aprendizaje profundo. El trabajo en pre-
paración de la sección 7.3, también abre una nueva ĺınea de investigación,
presentando el uso de BCD para la detección de artefactos en imágenes
histológicas. Finalmente, el premio 3MT presentado en la sección 7.4, mues-
tra que la investigación realizada en esta tesis es de interés para el público
general.



CHAPTER 1

Introduction

The analysis of histopathological images by pathologists and/or Computer-Aided
Diagnosis (CAD) systems plays a critical role in cancer diagnosis and treatment
decision. These images are tissue sections, tainted using a combination of stains to
reveal their underlying structures and conditions, and then observed with a digital
microscope and stored as Whole Slide Images (WSIs) [1]. To provide an insight
for the unfamiliar reader, figure 1.1 depicts a glass slide and the histopathological
image observed on the screen.

Figure 1.1: Left: Glass slide ready to be observed or scanned on the microscope.
Right: Histopathological image observed on a screen.

The growing trend of cancer cases, as well as the associated screening for
its detection, in recent years [2], increases the number of slides that need to be
processed and analysed. The use of CAD systems is of paramount importance
to reduce pathologists’ workload, to increase diagnostic accuracy and to reduce
turnaround times [3]. Their development, however, comes with its own challenges.
Although data-driven CAD systems work well in several areas of diagnosis, their
performance degrades significantly when tested on images from hospitals not in-
cluded in the training set [4].

Intra- and inter-hospital color variation [5, 4] caused by differences in the
staining of the images is often considered one of the major causes of the loss of
performance. Staining is used to highlight biological structures with differential

1
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Figure 1.2: Color variation depicted with histological image patches from five
different laboratories.

colors that ultimately help pathologists to identify them. The images that we
include in figure 1.2 as an example, have been stained in five different laboratories
using the most common staining protocol (i.e. Hematoxylin and Eosin (H&E)),
where hematoxylin stains the cell nuclei in blue and eosin stains the cytoplasm
and connective tissue in pink. The final appearance of the images, however, is
affected by variations in temperature, chemicals, and scanning software, among
others, making almost impossible to standardize the appearance of the images
during its acquisition.

Preprocessing the images to eliminate color variation improves the perfor-
mance of CAD systems [6, 4] and is crucial to obtain transferable systems that
can be used in different hospitals [7]. Beyond training CAD systems with more
and multi-hospital data, several approaches have been proposed to tackle color
variation: color normalization (CN), color augmentation (CA), and stain separa-
tion.

CN aims at transforming the observed images into new ones as if all of them
had been tainted using the same protocol and stains. CA aims at hallucinating
new images with augmented color variation, with the objective of reducing the
generalization error of CAD systems on unseen data. See [5]. As we will later ex-
plain in this dissertation, these aproaches require a preliminary step to guarantee
fidelity to the structure of the original image.

This thesis focuses on stain separation. Given that stains bind to specific
elements on the tissue, color variation jeopardizes the ability of the CAD system
to correctly identify the structures of the tissues and their conditions. By using
stain separation techniques it is possible to identify and separate each stain in the
image [5]. This is more biologically meaningful than the mixture of stains in the
observed RGB image [8]. In addition, stain separation has proven to be useful
for automated diagnosis [9, 10, 7], as a preliminary step for CN [11, 12], and to
CA [7, 4].

To tackle the stain separation problem, Blind Color Deconvolution (BCD)
techniques are frequently used. After an appropriated RGB image transformation,
they estimate both the stain color-vectors and the corresponding stain structure
(concentrations). To do so, the make use of the Beer-Lambert law that, in the
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Optical Density (OD) space, establishes a linear relationship between the intensity
observed and the concentration of each stain [13].

For an observed histological image I ∈ RQ×3 where each column corresponds
to a RGB channel and Q is the number of pixels, the OD for each channel, c, is
obtained as yc = − log10 (ic/i

0
c), where i

0
c denotes the incident light (typically 255

for RGB images) and the log and division operations are performed pixel-wise.
Then the OD for a histopathological image Y ∈ RQ×3 stained with Ns stains can
be separated into a color-vector matrix M ∈ R3×Ns and a concentration matrix
C ∈ RQ×Ns as

YT = MCT +NT , (1.1)

where N ∈ RQ×3 is a noise matrix.

The color-vector matrix M will contain as many columns as stains in the
image, where each column represents the color properties of one of the stains.
The concentration matrix C contains also one column for each stain and as many
rows as pixels in the image. Each column cq = [c1,q, . . . , cns,q]

T represents the
contribution of each stain to the q-th pixel in Y and each row of C represents
each stain concentrations.

Notice that estimating the latent stain separation from the observed multi-
stained image requires to deal with the uncertainty that arises both through noise
on the observations, as well as through the finite size of data. Probabilistic models
provide a consistent framework for the quantification and manipulation of such
uncertainty [14]. Using Bayesian modeling and inference it is possible to combine
prior knowledge, the observation model, and the evidence from the data observed
on the microscope. In particular, they can be applied to perform Blind Color
Deconvolution (BCD), by setting prior distributions on the unknown colors and
concentrations of the stains [15]. An example is depicted in figure 1.3.

1.1 Objectives

The main objective in this thesis is to use Bayesian modeling and inference to
improve histopathological images for their use in CAD systems. Specifically, this
Ph.D. thesis focuses on the application of probabilistic modeling to BCD tech-
niques. In addition, we include a second objective where we apply Bayesian
modeling and inference to other areas of interest. To achieve those objectives, we
define a set of specific objectives that are summarized as follows.

1. To improve histopathological images for their use on Computer
Aided Diagnosis systems.
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Figure 1.3: Pipeline of the BCD framework in [12], depicted here to illustrate the
BCD procedure. First, the H&E image is converted to the OD space and given
to the Bayesian framework. Then, applying Bayesian modeling and inference,
posterior estimations for the color-vector matrix M and C are obtained.

(a) To develop state-of-the-art methods for blind color deconvo-
lution of histopathological images using a probabilistic ap-
proach. So far, the application of probabilistic modeling for BCD has
not been explored in deep. Bayesian techniques have proven to achieve
a high performance on other areas of image processing. Therefore, we
truly believe that Bayesian BCD will perform better than state-of-the-
art methods.

(b) Apply the BCD results to improve CAD performance. The
ultimate goal of histological image processing is to facilitate and im-
prove their analysis. We will evaluate the effect of BCD techniques on
cancer classification. We plan to evaluate the use of stain-separated
classification and color normalization using classifiers and to compare
the performance achieved by different BCD techniques.

(c) To propose new approaches to solve color variation. Data
augmentation often used to solve data shortage on complex classifi-
cation models. Using BCD is possible to produce stain augmentation,
a histology-specific type of data augmentation. We seek to propose a
new approach for stain augmentation using Bayesian BCD.

2. Use Bayesian modeling and inference in other areas of interest.
Notice that ultimately, we are using probabilistic models to estimate a sep-
aration of the observed information in their latent components. We plan
to use the Bayesian framework in other areas that might be benefited from
such separation. In particular we explore:
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(a) Pansharpening of multispectral satellite images.

(b) Network anomaly detection.

1.2 Methodology

The development of this thesis requires a methodology that consider both theory
and practice. We follow the guidelines of the scientific method and include the
following steps:

1. Observation: We first study the literature regarding BCD and other pre-
processing techniques for histopathological images.

2. Data collection: The techniques to develop in this thesis require to use
real-world data to assess the algorithms. We consider public databases
whenever possible.

3. Hypothesis formulation: We address the problems presented in the ob-
jectives by proposing new methods that can improve the state-of-the-art
methods.

4. Experimentation: We design and perform a rigorous experimentation of
the methods proposed in step 3 on the collected data from step 2. We use
the computation resources of the Visual Information Processing research
group of the University of Granada. The metrics to use must be chosen
according to the task, ensuring an appropriate evaluation of the results.

5. Hypothesis contrast: We compare, analyze and validate the results ob-
tained in the experimentation with those of the state-of-the-art techniques
in the literature.

6. Hypothesis proof or refusal: The hypothesis is accepted, rejected or
modified in consequence with the gathered results. If necessary, the previous
steps are repeated.

7. Thesis extraction: We formalize the conclusions during the research pro-
cess and justify the developed methods through the experimentation. All
the proposals and results are synthesized in this dissertation.

1.3 Results

According to the objectives and methodology of this thesis, here we present the re-
sults that have been obtained. We have developed and applied different Bayesian
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models to histopathological images, satellite images, and network anomaly detec-
tion. Three main blocks can be distinguished in this thesis. The first two, we
tackle the objectives of this thesis: Bayesian modeling and inference for BCD,
other applications of probabilistic modeling. The third one include other works
that are published in indexed journals, submitted, or in preparation that are not
part of the compendium of five publications presented to obtain the Ph.D. degree.
Their contents are described below:

• Bayesian Modeling and Inference for Blind Color Deconvolution.
This includes Chapters 2, 3, and 4. The first two chapters extend the
Bayesian BCD approach presented in [15]. The actual color-vector matrix of
the stains in the images is assumed to be unknown. The staining protocol,
however, is known (e.g. H&E). Therefore, we can assume that the stain
will show a certain similarity with a given reference. Reference-based BCD
models rely on a similarity prior on the color-vector matrix, together with
different priors on the concentration of the stains such as the Total Variation
(TV) prior or General Super Gaussians (SG) priors. These models were
applied to stain separation, color normalization, and cancer classification.

Chapter 4 approaches the BCD problem as a dictionary learning problem.
The quality of reference-based models results improve when the images are
close to the reference. However, they lack the ability to adapt to larger color
changes as those that might arise between different laboratories, requiring
to set a different reference for each of them. Tackling the problem of finding
the color-vector matrix as a dictionary learning problem solves this issue,
allowing us to find the color-vector matrix that better represents the differ-
ent stains in the image. This model was applied to stain separation, color
normalization, stain augmentation, and cancer classification.

Objectives 1.a, 1.b and 1.c are addressed in this block.

• Other applications of probabilistic modeling. This includes Chap-
ters 5 and 6. This block explores the application of probabilistic models
to other areas of interest addressing objective 2. In particular, the General
SG priors are applied for the pansharpening of satellite images (Chapter 5,
objective 2.a) and Probabilistic Principal Component Analysis (PPCA) is
used for network anomaly detection (Chapter 6, objective 2.b).

• Other works. This third block, presented in Chapter 7, includes other
works of interest in which the Ph.D. candidate had a relevant role in their
elaboration. It includes: A JCR journal paper, (i) a survey on WSI acquisi-
tion and preprocessing techniques, a submitted paper, (ii) the development
of a deep variational Bayesian models for BCD, and a work in preparation,
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(iii) an application of BCD techniques for blood detection on WSI images.
This block also includes the participation of the Ph.D. candidate on the
3 Minute Thesis (3MT) competition hold by the Coimbra group, in which
this thesis won the first prize in the institutional finals of the Univesity of
Granada in 2021.

Since these works are not part of the compendium of publications presented
to obtain the Ph.D. degree, they will only be mentioned with their relevant
contributions. The works included in this chapter are related to objectives
1.a, 1.b and 1.c.

Next, we provide a general overview of each chapter. The Journal Citation
Report (JCR) publication details and main contributions will be highlighted at the
beginning of the corresponding chapter. Finally, the main joint conclusions will
be drawn in Chapter 8. Notice that the focus is on the application of probabilistic
modeling to the field of histopathological images with three journal papers, and
how the two additional journal papers included, on pansharpening of satellite
images and network anomaly detection, share a common element: the underlying
Bayesian modeling and inference to separate the observed information into latent
features of interest.

Chapter 2: In this work, we use a similarity prior on the color-vector matrix,
a Beer-Lambert based observation model, and propose the use of a TV prior on
the stain concentration for BCD of histological images. The TV prior is used
to reduce noise on the image while preserving sharp edges. We also explore the
dichotomy between two conflicting objectives often pursued in histopathological
image analysis: closeness to the original tissue and high classification performance.
The proposed approach was evaluated on real images of different tissues and
prostate cancer classification using shallow and deep classifiers.

Chapter 3: In this work, we apply Bayesian modeling and inference based on
the use of general SG sparse priors on the stain concentrations and the previously
proposed similarity prior on the color-vector matrix for BCD of histopathologi-
cal images. While the inference procedure is more complex than in the previous
chapter, SG priors include a large class of sparse image priors which represent well-
sharp image characteristics. The experimental validation was extended with ad-
ditional databases including images from different laboratories, applying the BCD
results to obtain CN, comparing the classification performance of BCD-separated
stain concentration versus CN RGB images, and analyzing the dependency of the
method on the similarity prior on the color vectors.

Chapter 4: In this work, we introduce Bayesian dictionary learning for
BCD of histopathological images using Bayesian K-Singular Value Decomposi-
tion (BKSVD) to estimate the color-vector matrix. The idea here is that the
stains are added to give differential color to the structures on the image. A spar-
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sity constraint equivalent to a zero-mean Laplace distribution is set on the stains
concentration for each pixel, promoting the unsupervised estimation of a color-
vector matrix that sparsely represents the staining on the image. The method
was tested on stain separation, CN, CA, and classification performance using
large histological datasets with intra- and inter-laboratory variations.

Chapter 5: In this work, we explore Bayesian modeling and inference using
the SG prior model for the pansharpening of multispectral (MS) images. The
pansharpening technique fuses a low spatial resolution MS image and a high spa-
tial resolution panchromatic one to obtain a high-resolution MS image. In this
case, the panchromatic image is modeled as a convex combination of the high
resolution MS channels and the SG distributions are used as priors for the MS-
high resolution image. Therefore, it is possible to separate the contribution of
the panchromatic image to each channel of the MS high resolution image. The
method was tested on real and synthetic images from three different satellites.

Chapter 6: In this work, anomaly detection techniques based on PCA are
revisited from a probabilistic point of view. The Probabilistic PCA (PPCA) pro-
vides a separation of the data into its latent component and a generative modeling
that is at the basis of the definition of Variational AutoEncoders (VAE). Relating
PCA-based anomaly detection models to generative approaches, our objective is
to allow well-known lessons from PCAs to be applied to generative models. The
mathematical model was evaluated using a synthetic dataset created to better
understand the analysis, and a real-traffic dataset for network anomaly detection.

Chapter 7: This chapter comprises additional works in which the Ph.D.
candidate had a relevant role in their elaboration. It includes: A JCR journal
paper, (i) a survey on WSI acquisition and preprocessing techniques, a submitted
paper, (ii) the development of a deep variational Bayesian models for BCD, and a
work in preparation, (iii) an application of BCD techniques for blood detection on
WSI images. This block also includes the participation of the Ph.D. candidate on
the 3 Minute Thesis (3MT) competition hold by the Coimbra group, in which this
thesis won the first prize in the institutional finals of the Univesity of Granada in
2021.
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Reference-based Blind Color Deconvolution

Using a Total Variation Prior

2.1 JCR Publication Details

Authors: Fernando Pérez-Bueno, Miguel López-Pérez, Miguel Vega, Javier Ma-
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2.2 Main Contributions

• We use use Bayesian probabilistic models for the deconvolution of histologi-
cal images. We propose the use of the TV prior on the stain concentrations
which removes noise and preserve sharp edges, in combination with a ref-
erence color-vector matrix prior and a observation model that follows the
Beer-Lambert law. All model parameters and latent variables are automat-
ically estimated.
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• We discuss that visual inspection and automatic classification may be con-
flicting goals, as the better reconstruction of the images does not always
lead to the extraction of better features for an improved classification.

• The proposed approach was successfully evaluated on two real histopatho-
logical image datasets: one for stain separation and one for prostate cancer
classification. It achieved the most accurate stain separation and improved
the performance of several classifiers tested.
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1. Introduction

Histopathological tissues are usually stained with a combination of stains that bind to
specific proteins on the tissue. Hematoxylin and Eosin (H&E) is one of the most commonly
used combination of stains. Hematoxylin stains cell nuclei while eosin stains cytoplasm and
extracellular matrix components [1]. In digital brightfield microscopy, stained slides are
then scanned to obtain high resolution whole-slide images (WSI). WSI analysis requires a
lot of time and effort and computer-aided diagnosis (CAD) systems have become a valuable
ally for pathologists. These systems frequently make use of the information provided by
the different stains separately [2]. The separation of the stains in a WSI is known as Color
Deconvolution (CD) and aims at estimating each stain concentration at each pixel location.
Usually, the color spectral properties of each stain are also unknown since they vary from
image to image. Color variations have a wide range of origins: different scanners, stain
manufactures, or staining procedures, among others that create inter- and intra-laboratory
differences. A study on color variation sources can be found in [3]. Blind CD techniques
estimate image specific stain color-vectors together with stain concentrations.

CD is usually considered as a branch of color normalization. Tosta et al. [3] classified
normalization methods into histogram matching, color transfer, and spectral matching. Nor-
malization does not always require CD. Histogram matching methods do not use it, which
leads to information loss as stains are assumed to be equally distributed. Color transfer
usually separates histological regions identified by a segmentation step or between dyes. Al-
though they usually involve deconvolution steps, it is not their main objective but a way to
apply an statistical based color correction. Spectral matching techniques require to identify
image specific spectral properties through CD. One of the first CD methods was proposed
by Ruifrok et al. [4]. They obtained a set of globally standard color-vectors for hematoxylin,
eosin and 3,3’-Diaminobenzidine (DAB), by measuring the relative absorption of each stain
in single-stained images. The proposed set of stain color-vectors was calibrated for process-
ing and digitization at the authors’ laboratory. While these color vectors have been widely
used, they do not take into account inter-slide variability. Empirical determination of the
color-vector using single-stained tissue was used in [5, 6]. Aside from techniques that require
the user to select pixels corresponding to each stain [7], several methods have been proposed
to tackle inter-slide variability. In [2] Non-negative Matrix Factorization (NMF) is used to
solve the problem formulated as a blind source separation one. This line of research was
further developed in [8] and [9] by adding regularization and sparsity terms to take into
account that a type of stain is only bounds to certain biological structures. Singular Value
Descomposition (SVD), proposed in [10] to separate H&E images, was extended by McCann
et al. [11] by taking into account the interaction between eosin and hematoxylin. The use
of Non-Negative Least Squares (NNLS) to improve the performance of NMF is proposed in
[12] to obtain a faster and less memory demanding method. Clustering techniques were ex-
plored in [13] where the stain vectors are estimated by projecting the input color image onto
the Maxwellian chromaticity plane to form clusters, each one corresponding to one stained
tissue type. In [14], to estimate the stain color-vector matrix, the image is segmented into
background and pixels belonging to each stain using supervised relevant vector machines.
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The mean color of the pixels in each class is utilized as the stain color vector. Alsubaie et
al. [15, 16], following [17], applied Independent Component Analysis (ICA) in the wavelet
domain where the independence condition among sources is relaxed. Astola et al. [18] states
that the method in [10] obtains better results applied in the linearly inverted RGB-space
and not in the (logarithmically inverted) absorbency space. In [19] a loss function based
on the authors’ experience is optimized to obtain the image stain color-vectors. For further
information on classical and state-of-the-art methods, the interested reader might check the
reviews published in [20, 3].

In this paper, we present a framework for blind color deconvolution and classification
of histological images. Depending on the number of stains used to mathematically model
the observed image, the framework can be utilized to either recover the original H&E stains
or to produce an H&E separation that boosts the performance of image classifiers. Within
the framework, the proposed Bayesian blind CD problem algorithm, extends our previous
work in [21] and [22]. In [21], a prior on the color-vectors, favouring similarity to a reference
stain color-vectors, as well as a smoothness Simultaneous Autoregresive (SAR) prior model
on each stain concentrations was used. As the SAR prior tends to oversmooth the edges
of the image structures, in [22], we proposed the use of a Total Variation (TV) prior on
each stain. The TV prior reduces the noise in the images while preserving sharp edges
[23]. All model parameters were experimentally determined. In this paper, we extend
the work in [22] by applying the Variational Bayes inference [24] and an evidence lower
bound to automatically estimate all the latent variables and model parameters for blind
color deconvolution and classification purposes. The proposed framework has been tested
on additional real images for blind color deconvolution, where the fidelity to a ground-truth
stain separation is assessed, and, for the first time, on classification tasks.

The rest of the paper is organized as follows: in section 2 the problem of color decon-
volution is mathematically formulated. Following the Bayesian modelling and inference, in
section 3 we propose a fully Bayesian algorithm for the estimation of the concentrations
and the color-vector matrix as well as all the model parameters. In section 4, the proposed
framework is evaluated on H&E stained images and its performance is compared with other
classical and state-of-the-art CD methods in two different scenarios: color deconvolution
and prostate cancer classification. Finally, section 5 concludes the paper.

2. Problem Formulation

Digital brightfield microscopes usually store a stained histological specimen’s WSI as an
RGB color image of size M ×N , represented by the MN × 3 matrix, I = [iR iG iB]. Each
color plane is stacked into a MN × 1 column vector ic = (i1c, . . . , iMNc)

T, c ∈ {R,G,B}.
Each value iic represents the transmitted light on color band c ∈ {R,G,B} for the pixel i
of the slide.

CAD systems, on the other side, usually work with images in the Optical Density (OD)
space. In this space, the intensity is linear with the amount of each stain absorbed by a
sample. The OD of an image channel, yc ∈ RMN×1, is defined as yc = − log10 (ic/i

0
c), where

i0c denotes the incident light, and the division operation and log10(·) function are computed
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element-wise. The observed OD image Y ∈ RMN×3 has three OD channels, i.e.,

Y =
[
yR yG yB

]
=




yT
1,:
...

yT
MN,:


 =




y1R y1G y1B
...

...
...

yMNR yMNG yMNB


 . (1)

The Beer-Lambert law, for a slide stained with ns stains, establishes that

YT = MCT + NT , (2)

where M ∈ R3×ns is the color-vector matrix,

M =
[
m1 . . . mns

]
=




mT
R

mT
G

mT
B


 =



mR1 . . . mRns

mG1 . . . mGns

mB1 . . . mBns


 ∈ R3×ns , (3)

with each column ms in matrix M being a unit `2-norm stain color-vector containing the
relative RGB color composition of the corresponding stain in the OD space, C ∈ RMN×ns

is the stain concentration matrix,

C =



c11 . . . c1ns

...
. . .

...
cMN1 . . . cMNns


 =




cT
1,:
...

cT
MN,:


 =

[
c1 . . . cns

]
, (4)

with the s-th column cs = (c1s, . . . , cMNs)
T, s ∈ {1, . . . , ns}, representing the concentrations

of the s-th stain, and the i-th row cT
i,: = (ci1, . . . , cins), i = 1, . . . ,MN , representing the

contribution of each stain to the i-th Y pixel value, yi,:, and N is a random matrix of size
MN × 3 with i.i.d. zero mean Gaussian components with variance β−1, representing the
noise introduced by the image capture system.

In the following section we use Bayesian modeling and inference to estimate both C and
M, from Y

3. Bayesian Modelling and Inference

Bayesian methods start with a prior distribution on the unknowns. In this paper we
adopt the TV prior, which smooths the image noise while preserving its edges, for each one
of the independent stain concentration vectors cs, that is,

p(C|α) =
ns∏

s=1

p(cs|αs) ∝
ns∏

s=1

exp [−αsTV(cs)] , (5)

with αs > 0 controlling the image smoothness. The TV function is defined for any cs,
s ∈ {1, . . . , ns}, as

TV(cs) =
MN∑

i=1

√
(∆h

i (cs))
2 + (∆v

i (cs))
2, (6)
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where the operators ∆h
i (cs) and ∆v

i (cs) correspond to the horizontal and vertical first order
differences of cs at pixel i, respectively.

The color-vector matrix M = [m1, . . . ,mns ] varies, as previously discussed, from image
to image. However, images from the same laboratory usually have similar colors and we
can benefit from this prior knowledge. Ruifrok et al. [4] proposed a procedure to obtain
a laboratory dependant standard color-vectors. Although those vectors are not exact for
every single image, they are representative and widely used. To take into account these con-
siderations, we incorporate similarity to a reference color-vector matrix M = [m1, . . . ,mns

]
into the color-vector matrix prior model as

p(M|γ) =
ns∏

s=1

p(ms|γs) ∝
ns∏

s=1

γ
3
2
s exp

(
−1

2
γs‖ms −ms‖2

)
, (7)

where γs, s = 1, . . . , ns, controls our confidence on the accuracy of ms.
Finally, from the degradation model in (2), we have

p(Y|M,C, β) =
MN∏

i=1

p(yi,:|M, ci,:, β) =
MN∏

i=1

N (yi,:|Mci,:, β
−1I3×3). (8)

With all these ingredients, we define the joint probability distribution as

p(Y,C,M, β,α,γ) = p(Y|C,M, β) p(C|α) p(M|γ) p(β) p(α) p(γ) , (9)

where p(γ), p(α) and p(β) are improper distributions of the form p(w) ∝ const.
Following the Bayesian paradigm, inference will be based on the posterior distribution

p(Θ|Y) with Θ = {C,M, β,α,γ} = {c1, . . . , cns ,m1, . . . ,mns , β, α1, . . . , αns , γ1, . . . , γns},
the set of all unknowns.

Since the above posterior cannot be obtained in closed form, several approaches have
been proposed to approximate it. In this paper we use the mean-field variational Bayesian
model [25] to approximate p(Θ|Y) by the distribution q(Θ) of the form

q(Θ) = q(β)
ns∏

s=1

q(ms)q(cs)q(αs)q(γs), (10)

where q(β), q(αs), q(γs), s = 1, . . . , ns, are assumed to be degenerate distributions. The
optimal q(Θ) minimizes the Kullback-Leibler divergence [26] defined as

KL (q(Θ) || p(Θ|Y)) =

∫
q(Θ) log

q(Θ)

p(Θ|Y)
dΘ (11)

=

∫
q(Θ) log

q(Θ)

p(Θ,Y)
dΘ + log p(Y). (12)

The Kullback-Leibler divergence is always non negative and equal to zero if and only if
q(Θ) = p(Θ|Y).
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Even with this factorization, the TV prior for C hampers the evaluation of this di-
vergence. To solve this problem, we define for αs, cs, and any N−dimensions vector
us ∈ (R+)MN , s = 1, . . . , ns, the functional

Ms(cs,us|αs) = exp

[
−αs

2

MN∑

i=1

(∆h
i (cs))

2 + (∆v
i (cs))

2 + uis√
uis

]
. (13)

Now, using the inequality for w ≥ 0 and z > 0,
√
wz ≤ w+z

2
⇒ √w ≤ w+z

2
√
z
,

we can write

exp[−αsTV(cs)] ≥Ms(cs,us|αs), s = 1, . . . , ns. (14)

We, then, define

M(C,U|α) =
∏

s

Ms(cs,us|αs), (15)

where U = [u1 . . .uns ] and F(Θ,U,Y) = p(Y|M,C, β)M(C,U,α)p(M,γ)p(β)p(α)p(γ)
to obtain the inequality

log p(Θ,Y) ≥ log F(Θ,U,Y). (16)

We have then found a lower bound, F(Θ,U,Y), for the joint probability p(Θ,Y) defined
in (9). Utilizing this lower bound in (12), we minimize KL (q(Θ) ||F(Θ,U,Y)) instead of
KL (q(Θ) || p(Θ|Y)).

As shown in [25], the mean field variational distribution approximation establishes that
for each unknown θ ∈ Θ, q(θ) will have the form

q(θ) ∝ exp 〈log F(Y,C,M, β,α,γ)〉q(Θ\θ) , (17)

where Θ\θ represents all the variables in Θ except θ and 〈·〉q(Θ\θ) denotes the expected
value calculated using the distribution q(Θ\θ). For variables with a degenerate posterior
approximation, that is, for θ ∈ {β, α1, . . . , αns , γ1, . . . , γns}, the value where the posterior
degenerates is

θ̂ = arg max
θ
〈log F(Y,C,M, β,α,γ)〉q(Θ\θ) . (18)

For the rest of the variables, that is, for θ ∈ {m1, . . . ,mns , c1, . . . , cns}, when point estimates
are required, the expected value, that is, θ̂ = 〈θ〉q(θ) is used.

Let us now explicitly obtain analytical expressions for these estimates.

3.1. Concentration Update

According to (17), the estimation of the distributions on the concentrations q(cs) is
obtained as

q(cs) ∝ exp 〈log F(Y,C,M, β,α,γ)〉q(Θ\cs) , (19)

where

〈log F(Y,C,M, β,α,γ)〉q(Θ\cs = 〈log p(Y|C,M, β)〉q(Θ\cs) + 〈logM(C,U,α)〉q(Θ\cs) .
(20)
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To calculate the first term of the sum, we rewrite the distribution probability in (8) as

p(Y|M,C, β) ∝ β
1
2

MN∏

i=1

exp

(
−1

2
β‖yi,: −

ns∑

s=1

cisms‖2

)

= β
1
2

MN∏

i=1

exp

(
−1

2
β‖yi,: − cisms −

∑

k 6=s
cikmk‖2

)

= β
1
2

MN∏

i=1

exp

(
−1

2
β

ns∑

s=1

[
−2cism

T
s

(
yi,: −

∑

k 6=s
cikmk

)
+ c2

is‖ms‖2

]

+const

)
, (21)

where we have separated the contribution of the s-th stain to each observed image pixel
from the rest of stains and const indicates the term which does not depend on cs.

Then, we calculate 〈log p(Y|C,M|β)〉q(Θ\cs) as

〈log p(Y|C,M|β)〉q(Θ\cs) =

〈
−β

2

MN∑

i=1

ns∑

s=1

[
−2cism

T
s

(
yi,: −

∑

k 6=s
cikmk

)
+ c2

is‖ms‖2

]〉

=− β

2

(
−2cTs z−s + ‖cs‖2

〈
‖ms‖2

〉)
, (22)

where z−s is a column vector with components

z−si = 〈ms〉T e−si,: with e−si,: = yi,: −
∑

k 6=s
〈cik〉 〈mk〉 , i = 1, . . . ,MN. (23)

From (13), we can calculate

〈logM(C,U,α)〉q(Θ\cs) =

〈
−αs

2

MN∑

i=1

(∆h
i (cs))

2 + (∆v
i (cs))

2 + uis
uis

〉

=− αs
2

(cs)
T
[
(∆h)TW(u)∆h + (∆v)TW(u)∆v

]
cs + const, (24)

where W(us) is a diagonal matrix of the form W(us) = diag(u
−1/2
is ), for i = 1, . . . ,MN .

Hence,

〈log F(Y,C,M|β,α,γ)〉q(Θ\cs) =− β

2

(
−2cT

s z−s+ ‖ cs ‖2
〈
‖ms ‖2

〉)

− αs
2

(cs)
T
[
(∆h)TW(u)∆h + (∆v)TW(u)∆v

]
cs + const,

(25)
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which, from (17), produces q(cs) = N (cs| 〈cs〉 ,Σcs) , where

Σ−1
cs = β

〈
‖ms ‖2

〉
IMN×MN + (∆h)TW(us)∆

h + (∆v)TW(us)∆
v (26)

〈cs〉 = βΣcsz
−s , (27)

where ∆h and ∆v represent the convolution matrices associated with the first order horizontal
and vertical differences, respectively. Note that the matrix W(us) can be interpreted as a
spatial adaptivity matrix since it controls the amount of smoothing at each pixel location
depending on the strength of the intensity variation at that pixel, as expressed by the
horizontal and vertical intensity gradient.

3.2. Color-Vector Update

In a similar way, using (23), we calculate the distribution of ms,

〈log F(Y,C,M|β,α,γ)〉q(Θ\ms) = 〈log p(Y|C,M, β)〉q(Θ\ms) + 〈log p(M,γ)〉q(Θ\ms)

= −β
2

(
‖ms ‖2

MN∑

i=1

〈
c2
is

〉
− 2mT

s

MN∑

i=1

〈cis〉 e−si,:

)
− 1

2
γs ‖ms −ms ‖2 +const, (28)

which, from (17), produces q(ms) = N (ms| 〈ms〉 ,Σms),
where

Σ−1
ms

=

(
β
MN∑

i=1

〈
c2
is

〉
+ γs

)
I3×3, (29)

〈ms〉 = Σms

(
β
MN∑

i=1

〈cis〉 e−si,: + γsms

)
. (30)

Notice that 〈ms〉 may not be a unitary vector even if ms is. To obtain unitary vectors, we
can always replace 〈ms〉 by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms by Σms/ ‖ 〈ms〉 ‖2.

3.3. U Update

The use of the majorization with the functional in (13) introduces a new set of param-
eters, U, that need to be estimated along with the concentrations and the color-vectors
matrix. To estimate the U matrix, we need to solve, for each s ∈ {1, . . . , ns},

ûs = arg min
us

−〈logMs(αs, cs,us)〉q(cs) , (31)

whose solution is given by

ûis = arg min
uis

〈
(∆h

i (cs))
2 + (∆v

i (cs))
2
〉

+ uis√
uis

=
〈
∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉
. (32)
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3.4. Parameter Update

Finally, the estimates of the noise, concentration, and color-vectors parameters are ob-
tained according (18) as

β̂−1 =
tr(
〈
(YT −MCT)(YT −MCT)T

〉
q(Θ)

)

3MN
, (33)

α̂−1
s =

tr
((

(∆h)
T

(∆h) + (∆v)T(∆v)
) 〈

csc
T
s

〉)

MN
, (34)

γ̂−1
s =

tr(
〈
(ms −ms)(ms −ms)

T
〉
)

3
. (35)

3.5. Calculating the expectations and concentration covariance matrices

To estimate the concentrations and color-vectors, the expectations 〈c2
is〉 in (30) and

〈‖ms ‖2〉 in (26) need to be calculated. Also, the computation of the matrix Σcs , defined
in (26), is an issue due to the size of WSI images. In this section we explicitly calculate
the mentioned expected values and address the concentrations covariance matrix calculation
issue.

Notice that 〈c2
is〉 can be calculated using (27) and 〈‖ms ‖2〉 can be easily calculated from

(29) resulting in

MN∑

i=1

〈
c2
is

〉
=

MN∑

i=1

〈cis〉2 + tr(Σcs) ,
〈
‖ms ‖2

〉
=‖ 〈ms〉 ‖2 +tr(Σms) . (36)

The matrix Σcs must be explicitly calculated to find its trace and also to calculate ûis.
However, since its calculation is very intense, following [27], we aproximate the covariance
matrix as follows. We first approximate W(us) using W(us) ≈ z(us)I, where z(us) is
calculated as the mean value of the diagonal values in W(us), that is, z(us) = 1

MN

∑
i

1√
uis

.

We then use the approximation

Σ−1
cs ≈ β

〈
‖ms ‖2

〉
IMN×MN + αsz(us)(∆

h)
T

(∆h) + αsz(us)(∆
v)T(∆v) = B. (37)

Note that the matrix B is a block circulant matrix with circulant blocks (BCCB), thus,
computing its inverse can be very efficiently performed in the discrete Fourier domain.
Finally, we have

〈
∆h
i (cs)

2
〉

+
〈
∆v
i (cs)

2
〉
≈(∆h

i (〈cs〉))2 + (∆v
i (〈cs〉))2

+
1

MN
tr
[
B−1 ×

(
(∆h)

T
(∆h) + (∆v)T(∆v)

)]
. (38)
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Algorithm 1 Variational Bayesian TV Blind Color Deconvolution

Require: Observed image I and reference (prior) color-vector matrix M.

Obtain the observed OD image Y from I and set 〈ms〉(0) = ms, Σ
(0)
ms = 0, Σ

(0)
cs = 0, 〈cs〉(0),

∀s = 1, . . . , ns, from the matrix C obtained as CT = M+YT, with M+ the Moore-Penrose
pseudo-inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Obtain β(n), α(n) and γ(n) from (33), (34) and (35), respectively.

3. Using 〈cs〉(n−1) and Σ
(n−1)
cs , ∀s ∈ {1, . . . , ns}, update the new variational parameters

û
(n)
s from (32).

4. Using 〈cs〉(n−1), Σ
(n−1)
cs and 〈ms〉(n−1), update the color-vectors 〈ms〉(n) and Σ

(n)
ms

from (30) and (29), ∀s.
5. Using 〈ms〉(n), Σ

(n)
ms and û

(n)
s , update the concentrations Σ

(n)
cs and 〈cs〉(n) from (26)

and (27), ∀s.
end while
Output the color-vector m̂s = 〈ms〉(n) and the concentrations ĉs = 〈cs〉(n).

3.6. Proposed Algorithm

Based on the previous derivations, we propose the Variational Bayesian TV Blind Color
Deconvolution in Algorithm 1. The algorithm starts from the observed RGB image and a
reference (prior) color vector matrix. Using this reference color-vector matrix as an starting
point, the algorithm estimates in an iterative way, the model and variational parameters
value, the distribution on the concentrations and distribution on the color-vectors.

The linear equations problem in (27), used in step 5 of Alg. 1, has been solved using
the conjugate gradient approach while the color-vectors update in step 4 of the algorithm
has been directly calculated from the equations due to the small size of the problem. On
convergence, the algorithm returns point estimates of the color-vectors and concentrations
as the mean value of the estimated distributions. Finally, from Alg. 1, an RGB image of
each separated stain, Îsep

s , can be obtained as

(Îsep
s )T = exp10 (−m̂sĉ

T
s ). (39)

4. Experimental results

As previously indicated, blind color deconvolution algorithms are used for visual inspec-
tion and automatic classification of images. These may be conflicting goals since the most
accurate color deconvolved images, in the sense of closeness to each single dye, are not
usually the ones that lead to the highest performance in classification.

In this section, we will show that, depending on the number of components used in
the deconvolution process, the proposed methodology can obtain either the most accurate
color images or produce stains that lead to the highest classification performance. To do
so, we have designed two set of experiments. In the first one, the proposed method is
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applied on the Warwick Stain Separation Benchmark (WSSB) dataset [16] (a dataset where
the ground-truth color-vectors are known) and its results are compared to classical and
state-of-the-art deconvolution methods both visually and numerically. We will show that
the proposed method outperforms the competing methods when two components are used.
We also presents results on prostate cancer detection using the histopathological SICAPv1
database [28]. On this carefully annotated dataset, color deconvolution is used to separate
H&E stains from which a set of features are extracted. Following [28], those features are
then used to train a group of state-of-the-art supervised classification methods to distinguish
between benign and pathological images. In this classification scenario we will show that
the proposed method outperforms its competitors when three components are used.

The experiments carried out will then indicate that the introduced framework can be
used for accurate reconstruction of original stains and to obtain better classification results
depending on the number of stains used to decompose the image.

4.1. Color Deconvolution Experiments

In this first experiment, we assess the quality of the color deconvolution methods for
accurate H&E separation. For this purpose, we used the Warwick Stain Separation Bench-
mark (WSSB) [16] dataset as a test-bed. WSSB contains 24 H&E stained images of different
tissues (breast, colon and lung) from different laboratories which have been captured with
different microscopes. For each image, its ground truth stain color-vector matrix, MGT , was
manually obtained by medical experts. The median value of a set of image pixels with a
single stain was used. The pixels were selected based on biological structures: nuclei for
hematoxylin and cytoplasm for eosin. The ground truth concentrations were obtained in
[16] from the ground-truth color-vector matrix as CT

GT = M+
GTYT. From those ground-

truth concentrations and color-vectors, a RGB image for each stain separately is obtained
by applying (39). A sample breast image from the WSSB dataset is shown in Fig. 1a and
its ground truth RGB separation is depicted in Fig. 1b.

The proposed framework was compared with the classical non-blind method by Ruifrok et
al.[4], the classical blind color deconvolution by Macenko et al.[10], and the state-of-the-art
methods by Vahadane et al.[8], Alsubaie et al.[16], and Hidalgo-Gavira et al.[21]. The pro-

posed Algorithm 1 was run on this dataset until the criterion ‖ 〈cs〉(n)−〈cs〉(n−1) ‖2/‖ 〈cs〉(n) ‖2

< 10−5 was met by all stains, that is, s = 1, 2, . . . , ns. Since different tissues may have dif-
ferent color characteristics, the reference (prior) color-vector matrix M was obtained by
selecting, by non-medical experts, a single pixel from each type of tissue, breast, colon and
lung, containing mainly hematoxylin and another pixel containing mainly eosin. When a
third component is utilized, following the most commonly used implementation of Ruifrok’s
method [29], the color representing the third component of each reference color-vector was
calculated as the complementary of the first two colors. For all the competing algorithms,
parameters were selected following the recommendations in the original paper or the refer-
ence software freely available.

The resulting H-only and E-only images were compared both visually and numerically by
means of the Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) metrics.
Numerical results, presented in Table 1, show that using two stains, i. e., ns = 2, the
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a) H&E image b) H&E Ground truth c) Ruifrok’s method [4]

d) Macenko’s method [10] e) Vahadane’s method [8] f) Alsubaie’s method [16]

g) Hidalgo-Gavira’s method [21] h) Proposed Method ns = 3 i) Proposed Method ns = 2

Figure 1: A breast H&E stained image from the WSSB dataset in [16], its ground truth separated H-only
and E-only images, and its separation results by the competing and proposed methods. Hematoxylin and
eosin separations are presented on the left and right hand sides of each image, respectively.

proposed method produces higher PSNR and SSIM values than the competing models except
for SSIM in lung images where a slightly higher value is obtained by the Hidalgo-Gavira’s
method.

The separated H- and E-only images from the observed image in Fig. 1a are shown
in Fig. 1(c-i). The proposed method and the methods by Vahadane and Hidalgo-Gavira
produce H&E images very similar to the ground truth separation in Fig. 1b. Note also that
the images obtained by Hidalgo-Gavira’s method and the proposed one with two and three
components are very similar. Notice, however, that the H-only images produced by the
proposed method (Fig. 1h-i) are sharper and nuclei are clearer which will be useful, as we
will later see, for classification. Both methods use the same prior model on the color-vectors,
but they differ on the prior on the concentrations. While Hidalgo-Gavira’s method uses a
SAR model, ours uses a TV-based one. This model produces sharper images than those
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Table 1: PSNR and SSIM for the different methods on the WSSB dataset [16].

Image Stain Ruifrok’s Macenko’s Vahadane’s Alsubaie’s Hidalgo-Gavira’s Proposed Proposed
method [4] method [10] method [8] method [16] method [21] method ns = 3 method ns = 2

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Colon
H 22.27 0.8141 23.91 0.8095 25.83 0.8851 21.11 0.7241 28.57 0.9542 24.83 0.9005 28.62 0.9544
E 20.70 0.7456 21.55 0.6365 26.29 0.8904 21.94 0.8540 27.58 0.9139 25.97 0.8695 27.60 0.9161

Breast
H 15.27 0.6215 26.24 0.9552 25.46 0.9239 24.60 0.8068 28.81 0.9528 27.71 0.9538 29.14 0.9560
E 17.66 0.7644 23.62 0.9336 27.68 0.9550 25.92 0.9380 26.60 0.9464 26.84 0.9510 26.76 0.9492

Lung
H 22.47 0.7987 19.52 0.7389 25.87 0.8912 20.62 0.5551 32.91 0.9763 25.00 0.8374 33.10 0.9757
E 22.05 0.7734 18.09 0.5088 25.53 0.8195 23.95 0.8939 30.77 0.9306 25.81 0.8426 31.02 0.9353

Mean
H 20.00 0.7448 23.22 0.8345 25.72 0.9100 22.11 0.6953 30.10 0.9611 25.85 0.8972 30.29 0.9621
E 20.14 0.7611 21.08 0.6930 26.50 0.8883 23.94 0.8953 28.32 0.9303 26.21 0.8877 28.46 0.9336

a) H-only b) E-only c) Third component

Figure 2: Detail of the H-only, E-only and third component separations of the bottom left corner of Fig. 1a
obtained with the proposed method using two components (top) and three components (bottom).

obtained by Hidalgo-Gavira’s method and is richer in details than Vahadane’s method all
the above is reflected in higher PSNR and SSIM values, see Table 1.

When a third component is used, the separation obtained by the proposed method, see
Fig. 1h, is not so close to the ground-truth. Zoomed in areas of the bottom left corner of
Fig. 1(h-i) are shown in Figure 2 for a better visual inspection. Colors are visually similar to
the ones obtained when using two components, but some pixel information, specially from
the background in the hematoxylin band, has been displaced to the third component. It
can be observed that the third component has bright values, that is, only a small fraction
of the information originally in the other bands is captured by this one, and nuclei in the
H-only image appear brighter and are more clearly separated when three components are
used, which will be extremely useful for classification. However, this implies a separation
from the ground-truth images and, hence, lower values of PSNR and SSIM. In spite of the
lower objective quality measure values, the separation in three components leads, as we will
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Table 2: Computational time in seconds for the different methods on the WSSB dataset [16].

Method Ruifrok Macenko Vahadane Alsubaie Hidalgo-Gavira Proposed Proposed
[4] [10] [8] [16] [21] ns = 3 ns = 2

Whole Dataset 147.68 141.47 375.10 210.13 357.03 877.67 507.28
Mean per image 6.15 5.89 15.62 8.75 14.87 36.56 21.13

see in the next section, to a better classification.
To conclude this section, Table 2 contains a computational time comparison between the

competing methods. The method by Ruifrok is the fastest one. As complexity increases,
the methods require higher computational time. Method by Vahadane requires as much
time as the method by Hidalgo-Gavira but achieves lower PSNR and SSIM values. The
proposed method takes longer than the competing ones but the higher computational burden
is accompanied by higher figures-of-merit as already shown in Table 1. Note, also, that the
proposed method estimates the model parameters together with the color-vector matrix and
the concentrations, increasing the running time but making the method parameter free.

4.2. Prostate Cancer Classification Experiments

In this section we study how the use of different stain deconvolution methods affects the
performance of classifiers. We use the SICAPv1 database, a prostate cancer histopathological
database recently presented in [28]. The database contains 79 H&E WSIs from 48 patients
scanned at 40x magnification, 19 correspond to benign prostate tissue biopsies (negative
class) and 60 to pathological prostate tissue biopsies (positive class). In each pathological
WSI, malignant regions were annotated by expert pathologists. The whole dataset was
divided into a training set of 60 WSI (17 benign and 43 pathological), and a test set of 19
WSI (2 benign and 17 pathological). The images were downsampled to 10x scale and those
in the training set were divided into patches of size 512× 512 pixels and 1024× 1024 pixels
with a 50% overlap. Using this scale and patch size it is possible to capture complete glands
in the 512×512 patches. Patches containing more than a 75% of background were discarded.
Benign patches were extracted from benign WSI. Malignant patches were considered only if
they contain at least a 25% of malignant tissue. Following [28] we will use cross-validation
on this subset of the training set to assess the performance of the classifiers. Figure 3
shows an example of malignant patches with the areas annotated by the pathologist. In this
experiment we only consider the dataset with patches of size 1024× 1024 since it produced
the best results in the patch classification experiments carried out in [28]. This training
dataset contains 1909 patches from benign WSIs and 344 from pathological ones.

The dataset was color deconvolved using the proposed and competing methods. The
H&E concentration image in the OD space was used to extract features to be utilized as
input to the classifiers. Following [28], we used the concatenation of Local Binary Patterns
Variance (LBPV) [30] and Geodesic granulometries (GeoGran) features [28]. LBPV features
capture the texture and contrast information from the hematoxylin. GeoGran is an H&E
granulometry based descriptor in the OD space recently proposed in [28] for prostate cancer
classification. It encodes the structure of the glands by recovering, from the hematoxylin,
the structure of the nuclei which formed the gland frontiers (those that enclosed their lumen
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Figure 3: Top row: Patches extracted from SICAPv1 database. Bottom row: The same patches with the
pathological areas annotated by the pathologist colored in red.

Table 3: AUC of the proposed and competing deconvolution methods with different classifiers.

Method RF GP XgBoost DGP

Ruifrok [4] 0.9789±0.0187 0.9855±0.0089 0.9764±0.0218 0.9737±0.0239
Macenko [10] 0.9315±0.0273 0.9535±0.0276 0.9425±0.0209 0.8802±0.0792
Vahadane [8] 0.9222±0.0318 0.9479±0.0321 0.9295±0.0325 0.9420±0.0436
Alsubaie [16] 0.9262±0.0586 0.9442±0.0294 0.9246±0.0612 0.9344±0.0581
Hidalgo-Gavira [21] 0.9157±0.0528 0.9542±0.0332 0.9228±0.0540 0.8997±0.0810
Proposed ns = 2 0.9242±0.0579 0.9498±0.0332 0.9294±0.0824 0.9249±0.0638
Proposed ns = 3 0.9798±0.0174 0.9856±0.0082 0.9797±0.0160 0.9718±0.0208

and cytoplasm). It also utilizes how distinguishable is, in the eosin, the lumen and nuclei
structure from the rest of the stroma. This information is relevant to discriminate between
pathological and benign tissues. The combination of LBPV and GeoGran features, which
obtained the best classification results in the mentioned paper, allows to collect texture
and structural information in the image, creating a descriptor able to accurately classify
histopathological images.

A set of shallow and deep classifiers were trained with those descriptors and their results
were compared. We used Random Forest (RF) [31], Extreme Gradient Boosting (XgBoost)
[32], Gaussian Processes (GP)[33] and Deep Gaussian Processes (DGP)[34]. The tree-based
ensemble models and the shallow and Deep GP can capture complex patterns in data and
they are state-of-art classifiers. RF and XgBoost are configured with 1000 estimators and
maximum depth of 20 and 30, respectively. A learning rate of 0.01 is chosen for XgBoost.
Following the same approach as in [28] we use variational inference on a single-layer GP
classifier with a RBF kernel [35]. For DGP, doubly stochastic variational inference [36] in a
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Table 4: Accuracy of the proposed and competing deconvolution methods with different classifiers.

Method RF GP XgBoost DGP

Ruifrok [4] 0.9408±0.0301 0.9512±0.0272 0.9324±0.0505 0.9349±0.0337
Macenko [10] 0.8656±0.0277 0.8883±0.0561 0.8904±0.0205 0.8043±0.0399
Vahadane [8] 0.8870±0.0284 0.8826±0.0531 0.8830±0.0299 0.8996±0.0317
Alsubaie [16] 0.8825±0.0557 0.8793±0.0438 0.8730±0.0769 0.8885±0.05985
Hidalgo-Gavira [21] 0.8799±0.0105 0.8706±0.0445 0.8881±0.0673 0.8693±0.0810
Proposed ns = 2 0.8914±0.0579 0.9029±0.0426 0.8910±0.0824 0.8797±0.0649
Proposed ns = 3 0.9422±0.0375 0.9519±0.0319 0.9420±0.0339 0.9349±0.0257

Table 5: Accuracy of the proposed methods with different classifiers in train and test.

Method RF GP XgBoost DGP

ns = 2 train 0.9789±0.0036 0.9794±0.0030 0.9697±0.0033 0.9401±0.0166
ns = 2 test 0.8914±0.0579 0.9029±0.0426 0.8910±0.0824 0.8797±0.0649
ns = 3 train 0.9774±0.0026 0.9878±0.0041 0.9796±0.0001 0.9605±0.0059
ns = 3 test 0.9422±0.0375 0.9519±0.0319 0.9420±0.0339 0.9349±0.0257

three-layer classifier with RBF kernel and 100 inducing points per layer was used.
For each classifier, a five-fold cross-validation was applied to compare its performance

with each deconvolution method. To avoid correlation between training and test sets, patches
from the same image and patient were assigned to the same fold. Since the training set has
more benign than pathological patches, an usual scenario on medical applications, balanced
classifiers were built with all the pathological instances and a subset of the benign ones.
The final prediction will be the average of the predictions of each classifier. The area under
the ROC curve (AUC) obtained by the different deconvolution methods and classifiers is
presented in Figure 4 and Table 3. Accuracy is shown in Table 4.

From Table 3, the best results are obtained using the proposed method with ns = 3
and GP, with an AUC of 0.9856. The proposed method with ns = 3 also obtains the best
results among the shallow classifiers being the Ruifrok’s method the one obtaining the best
result with the DGP classifier. When the proposed method is run with only two components
results are also competitive but not as good as the ones obtained with three components.
The curves in Figure 4 clearly show the advantage of the proposed ns = 3 method and
Ruifrok’s over the others. Average results of the method with ns = 2 are also visible.
From Table 4, the proposed method with ns = 3 reaches the highest accuracy for all the
classification methods. Notice that Ruifrok’s method was used for color deconvolution in
[28] and so the figures of merits reported in the first line of Table 3 coincide with those
reported in Table 5 in [28]. Finally, we would like to mention that in [28] a comparison with
the deep learning methods VGG19, Inception v3, and Xception was carried out. The deep
learning methods use as input the original RGB images, so the values reported for them in
[28] are valid here. GPs and DGPs perform similarly and are competitive to VGG19, the
best performing deep learning method in [28].

To assess the generalization capability of our model, we show in Table 5 the accuracy of
the proposed method obtained for the train and test sets when performing cross validation.
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a) RF b) GP

d) XgBoost e) DGP

Figure 4: ROC curves for the competing methods and classifiers. Each sub-image contains all deconvolution
methods AUC for a single classifier.

The use of ns = 2 induced a higher overfitting to the train data in all the classification
methods, reducing their generalization capability. For the GP and DGP models, Figure 5
includes the evolution of accuracy in train and test during the training procedure. Both
GP and DGP models obtain a high accuracy from the beginning of the training and quickly
converge. The overfitting when using ns = 2 is visible in both models. The values obtained
in training data using ns = 2 and ns = 3 are similar while the results obtained in testing
data with ns = 2 are much lower than the ones obtained with ns = 3.

For classification, the use of a third component capturing residual information is clearly
an advantage although the obtained images are not as close to the ground-truth separations
as those obtained using ns = 2. As seen in section 4.1, the third component is mainly
capturing background information from the hematoxylin channel. An example of component
concentration values in the OD space, which are used to extract the features, is shown in
Fig. 6. The hematoxylin is used to extract LBPV and GeoGran features, that is, textures and
nuclei structure. Due to the prostate tissue characteristics, the cytoplasm captures eosin
and, partly, hematoxylin, so it appears also on the background of the hematoxylin band
(see Fig. 6a). When three components are used, this background information is displaced
to the third component. This also leads to a clearer hematoxylin (Fig. 6c) where nucleus
information, belonging to the gland frontiers, is enhanced while the nucleus information
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Figure 5: Train and test accuracy during the training procedure. a) GP model. b) DGP model.

belonging to the stroma (non-discriminative) appears in the third component. This allows
to obtain less noisy features.

The eosin band is used to obtain GeoGran features to capture stroma information and
identifies whether is invaded by nuclei or not. The use of three components makes the eosin
band slightly more contrasted, which allows to obtain better descriptors. The joint use of
descriptors extracted from hematoxylin and eosin bands by the proposed method using three
component leads to an increased classification performance. The use of the TV prior, which
produces sharper edges, also helps the feature extractors and, hence, the classifier.

4.2.1. Whole slide image evaluation

Our ultimate goal is to analyse full WSI images. To extend patch-wise classification
to WSI classification, each WSI was split into overlapping patches. For each pixel, the
probability of being cancerous was estimated by bilinearly interpolating the predicted prob-
abilities of its four closest patches (using Euclidean distance to the center of the patches). A
pixel-wise probability map was then obtained for each WSI. To assess the proposed method
performance on this task, we deconvolved the train and test sets using ns = 3. The GP
classifier was then trained with the 60 images of the training set and used to predict the
19 WSIs in the test set. To obtain a better map resolution, 512×512 patches were used
with 75% overlap. Figure 7 illustrates the result on a WSI of the test set. Probability
maps are represented as heat maps. Red and blue colors are assigned to highest and lowest
probabilities of being cancerous, respectively. The obtained probabilities correctly identify
the annotated areas. Figure 8 shows zoomed in regions of interest.

5. Conclusions

In this work we have presented a framework for blind color deconvolution and classi-
fication of histological images. In this framework, we have developed a novel variational
Bayesian blind color deconvolution algorithm which automatically estimates the concentra-
tion of stains, the color-vector matrix, and all the model parameters. It takes into account
the spatial relations between pixels by means of a TV prior model, as well as the similarity
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a) H-only, ns = 2 b) E-only, ns = 2

c) H-only, ns = 3 d) E-only, ns = 3 e) Third component, ns = 3

Figure 6: Detail of the H-only, E-only and third component concentration values in the OD space for a patch
of SICAPv1 database obtained by the proposed method using two (top) and three components (bottom).
The color-map of the images is inverted for a better visualization.

to a reference color-vector matrix. The use of the non-quadratic TV energy helps to reduce
the noise in the images while preserving sharp edges.

For H&E stained images, color deconvolution with two components can be used in order
to capture all stain details when visual inspection is needed. Classification algorithms,
however, benefit from a clearer separation between classes. The use of a third, residual,
component helps that separation by capturing information that is not completely explained
by only one of the two stains. We found that, when using a third component, we obtain a
clearer hematoxylin background, while nucleus information is enhanced and nuclei appear
more clearly. The eosin is not severely modified, but the contrast of the image is increased
which meliorates the discrimination power of this band. The use of a third component
reduces the SSIM and PSNR values, but it helps the geodesic and LBPV descriptors to
extract the relevant information and leads to better classification results.
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Figure 7: Full WSI comparison. Left: Areas annotated by the pathologists. Right: Probability maps (heat
maps) obtained by the proposed method with ns = 3 and GP classifier with 512×512 patches.

Figure 8: Regions of interest from Figure 7. Top row: annotations by a pathologist. Bottom row: Probability
maps (heat maps) obtained.

30 CHAPTER 2. REFERENCE-BASED BCD USING TV



6. References

References

[1] A. H. Fischer, K. A. Jacobson, J. Rose, R. Zeller, Hematoxylin and Eosin Staining of Tissue and Cell
Sections, Cold Spring Harbor Protocols (2008).

[2] A. Rabinovich, S. Agarwal, C. Laris, J. H. Price, S. J. Belongie, Unsupervised color decomposition of
histologically stained tissue samples, in: Advances in Neural Information Processing Systems, 2004,
pp. 667–674.

[3] T. A. A. Tosta, P. R. de Faria, L. A. Neves, M. Z. do Nascimento, Computational normalization of
H&E-stained histological images: Progress, challenges and future potential, Artificial Intelligence in
Medicine 95 (2019) 118 – 132.

[4] A. C. Ruifrok, D. A. Johnston, Quantification of histochemical staining by color deconvolution, Ana-
lytical and quantitative cytology and histology 23 (2001) 291–299.

[5] P. A. Bautista, Y. Yagi, Staining correction in digital pathology by utilizing a dye amount table, Journal
of digital imaging 28 (3) (2015) 283–294.

[6] T. Abe, H. Haneishi, P. A. Bautista, Y. Murakami, M. Yamaguchi, N. Ohyama, Y. Yagi, Color correc-
tion of red blood cell area in H&E stained images by using multispectral imaging, in: 4th European
Conference on Colour in Graphics, Imaging, and Vision and 10th International Symposium on Multi-
spectral Colour Science, CGIV, 2008, pp. 432–436.

[7] E. Reinhard, M. Adhikhmin, B. Gooch, P. Shirley, Color transfer between images, IEEE Computer
Graphics and Applications 21 (5) (2001) 34–41.

[8] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Es-
posito, N. Navab, Structure-preserving color normalization and sparse stain separation for histological
images, IEEE Transactions on Medical Imaging 35 (2016) 1962–1971.

[9] J. Xu, L. Xiang, G. Wang, S. Ganesan, M. Feldman, N. N. Shih, H. Gilmore, A. Madabhushi, Sparse
non-negative matrix factorization (SNMF) based color unmixing for breast histopathological image
analysis, Computerized Medical Imaging and Graphics 46 (2015) 20–29.

[10] M. Macenko, M. Niethammer, et al., A method for normalizing histology slides for quantitative analysis,
in: International Symposium on Biomedical Imaging (ISBI), 2009, pp. 1107–1110.

[11] M. T. McCann, J. Majumdar, et al., Algorithm and benchmark dataset for stain separation in histology
images, in: International Conference on Image Processing (ICIP), 2014, pp. 3953–3957.

[12] D. Carey, V. Wijayathunga, A. Bulpitt, D. Treanor, A novel approach for the colour deconvolution of
multiple histological stains, in: Proceedings of the 19th Conference of Medical Image Understanding
and Analysis, 2015, pp. 156–162.

[13] M. Gavrilovic, J. C. Azar, et al., Blind color decomposition of histological images, IEEE Transactions
on Medical Imaging 32 (2013) 983–994.

[14] A. M. Khan, N. Rajpoot, D. Treanor, D. Magee, A nonlinear mapping approach to stain normaliza-
tion in digital histopathology images using image-specific color deconvolution, IEEE Transactions on
Biomedical Eng. 61 (6) (2014) 1729–1738.

[15] N. Alsubaie, S. E. A. Raza, N. Rajpoot, Stain deconvolution of histology images via independent
component analysis in the wavelet domain, in: 2016 IEEE 13th International Symposium on Biomedical
Imaging (ISBI), 2016, pp. 803–806.

[16] N. Alsubaie, N. Trahearn, S. E. A. Raza, D. Snead, N. Rajpoot, Stain deconvolution using statistical
analysis of multi-resolution stain colour representation, PLOS ONE 12 (2017) e0169875.

[17] N. Trahearn, D. Snead, I. Cree, N. Rajpoot, Multi-class stain separation using independent component
analysis, in: Medical Imaging 2015: Digital Pathology, 2015, p. 94200J.

[18] L. Astola, Stain separation in digital bright field histopathology, in: 2016 Sixth International Conference
on Image Processing Theory, Tools and Applications (IPTA), 2016, pp. 1–6.

[19] Y. Zheng, Z. Jiang, H. Zhang, F. Xie, J. Shi, C. Xue, Adaptive color deconvolution for histological WSI
normalization, Computer Methods and Programs in Biomedicine 170 (2019) 107–120.

2.2. MAIN CONTRIBUTIONS 31



[20] S. Roy, A. K. Jain, S. Lal, J. Kini, A study about color normalization methods for histopathology
images, Micron 114 (2018) 42–61.

[21] N. Hidalgo-Gavira, J. Mateos, M. Vega, R. Molina, A. K. Katsaggelos, Variational Bayesian blind
color deconvolution of histopathological images, IEEE Transactions on Image Processing accepted for
publication.

[22] M. Vega, J. Mateos, R. Molina, A. K. Katsaggelos, Variational Bayes color deconvolution with a total
variation prior, in: 27th European Signal Processing Conference, EUSIPCO 2019, 2019, p. TuEP3.7.

[23] S. Villena, M. Vega, R. Molina, A. Katsaggelos, A non-stationary image prior combination in super-
resolution, Digital Signal Processing 32 (2014) 1–10.

[24] P. Ruiz, X. Zhou, J. Mateos, R. Molina, A. Katsaggelos, Variational Bayesian blind image deconvolu-
tion: A review, Digital Signal Processing 47 (2015) 116–127.

[25] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006, pp. 454–455.
[26] S. Kullback, Information Theory and Statistics, Dover Pub., 1959.
[27] S. D. Babacan, R. Molina, A. K. Katsaggelos, Parameter estimation in TV image restoration using

variational distribution approximation, IEEE Transactions Image Processing (2008) 326–339.
[28] A. E. Esteban, M. Lopez-Perez, A. Colomer, M. A. Sales, R. Molina, V. Naranjo, A new optical density

granulometry-based descriptor for the classification of prostate histological images using shallow and
deep Gaussian processes, Computer Methods and Programs in Biomedicine 178 (2019) 303–317.

[29] G. Landini, Colour deconvolution, https://blog.bham.ac.uk/intellimic/g-landini-software/
colour-deconvolution/, accessed: 2019-10-30.

[30] Z. Guo, L. Zhang, D. Zhang, Rotation invariant texture classification using LBP variance (LBPV) with
global matching, Pattern Recognition 43 (3) (2010) 706–719.

[31] M. Valkonen, K. Kartasalo, K. Liimatainen, M. Nykter, L. Latonen, P. Ruusuvuori, Metastasis detec-
tion from whole slide images using local features and random forests, Cytometry Part A 91 (6) (2017)
555–565.

[32] A. Pimkin, G. Makarchuk, V. Kondratenko, M. Pisov, E. Krivov, M. Belyaev, Ensembling neural
networks for digital pathology images classification and segmentation, Lecture Notes in Computer
Science 10882 LNCS (2018) 877–886.

[33] C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and
Machine Learning), The MIT Press, 2006.

[34] A. Damianou, N. Lawrence, Deep Gaussian processes, Journal of Machine Learning Research 31 (2013)
207–215.

[35] M. Opper, C. Archambeau, The variational Gaussian approximation revisited, Neural Comput. 21 (3)
(2009) 786–792.

[36] H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference for deep Gaussian processes, in:
Advances in Neural Information Processing Systems, 2017, pp. 4591–4602.

32 CHAPTER 2. REFERENCE-BASED BCD USING TV



CHAPTER 3

Reference-based Blind Color Deconvolution

Using General Super Gaussian Priors

3.1 JCR Publication Details
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3.2 Main Contributions

• We propose the use of Super Gaussian (SG) sparse priors to represent the
sharp image features in the stain concentrations of histological images.
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• The model is evaluated with two representative members of the SG distri-
butions, those corresponding to lp and log energy functions.

• The proposed approach was successfully evaluated on five real histopatholog-
ical image datasets and three different histological tasks: stain separation,
color normalization and cancer classification. Time requirements and de-
pendency to the reference prior were also evaluated. Our method improved
stain separation, color normalization and cancer classification in comparison
with state-of-the-art methods for BCD.
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Color deconvolution aims at separating multi-stained images into single stained
ones. In digital histopathological images, true stain color vectors vary between
images and need to be estimated to obtain stain concentrations and separate stain
bands. These band images can be used for image analysis purposes and, once nor-
malized, utilized with other multi-stained images (from different laboratories and
obtained using different scanners) for classification purposes. In this paper we pro-
pose the use of Super Gaussian (SG) priors for each stain concentration together
with the similarity to a given reference matrix for the color vectors. Variational
inference and an evidence lower bound are utilized to automatically estimate all
the latent variables. The proposed methodology is tested on real images and com-
pared to classical and state-of-the-art methods for histopathological blind image
color deconvolution.
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3.3.3 Abstract

In digital pathology blind color deconvolution techniques separate multi-stained
images into single stained bands. These band images are then used for image
analysis and classification purposes. This paper proposes the use of Super Gaus-
sian priors for each stain band together with the similarity to a given reference
matrix for the color vectors. Variational inference and an evidence lower bound
are then utilized to automatically estimate the latent variables and model pa-
rameters. The proposed methodology is tested on real images and compared to
classical and state-of-the-art methods for histopathological blind image color de-
convolution. Its use as a preprocessing step in prostate cancer classification is also
analysed.
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Abstract

Background and Objective:
Color variations in digital histopathology severely impact the performance of computer-aided
diagnosis systems. They are due to differences in the staining process and acquisition system,
among other reasons. Blind color deconvolution techniques separate multi-stained images into
single stained bands which, once normalized, can be used to eliminate these negative color
variations and improve the performance of machine learning tasks.
Methods:
In this work, we decompose the observed RGB image in its hematoxylin and eosin com-
ponents. We apply Bayesian modeling and inference based on the use of Super Gaussian
sparse priors for each stain together with prior closeness to a given reference color-vector
matrix. The hematoxylin and eosin components are then used for image normalization and
classification of histological images. The proposed framework is tested on stain separation,
image normalization, and cancer classification problems. The results are measured using the
peak signal to noise ratio, normalized median intensity and the area under ROC curve on
five different databases.
Results:
The obtained results show the superiority of our approach to current state-of-the-art blind
color deconvolution techniques. In particular, the fidelity to the tissue improves 1,27 dB in
mean PSNR. The normalized median intensity shows a good normalization quality of the
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proposed approach on the tested datasets. Finally, in cancer classification experiments the
area under the ROC curve improves from 0.9491 to 0.9656 and from 0.9279 to 0.9541 on
Camelyon-16 and Camelyon-17, respectively, when the original and processed images are
used. Furthermore, these figures of merits are better than those obtained by the methods
compared with.
Conclusions:
The proposed framework for blind color deconvolution, normalization and classification of
images guarantees fidelity to the tissue structure and can be used both for normalization and
classification. In addition, color deconvolution enables the use of the optical density space
for classification, which improves the classification performance.

Keywords: Blind Color Deconvolution, Image normalization, histopathological images,
Variational Bayes, Super Gaussian

1. Introduction

Histopathological tissues utilized for cancer diagnosis are stained using different dyes,
commonly Hematoxylin-Eosin (H&E)[1]. This process facilitates the analysis made by pathol-
ogists. The Whole-Slide Images (WSIs) obtained by high-resolution scanners have many
advantages: images do not deteriorate over time, they can be easily accessed and shared
and, very importantly, enable pathologists to study slides on a screen and the development
of Computer-Aided-Diagnosis (CAD) systems. The performance of CAD systems can be
significantly affected by color variations of histological images[2]. These variations, which
can be inter- and intra- laboratory are introduced in the acquisition procedure. Caused by
variables like fixatives, staining manufactures, lab condition and temperatures, and the use
of different scanners, among others, see [3] for details. Two main approaches have been pro-
posed to minimize the influence of color variations on the obtained images and their posterior
analysis. Blind Color Deconvolution (BCD) and Color Normalization (CN).

BCD techniques separate the stains in an image by estimating its stain color-vectors
and the corresponding stain concentrations. The process should lead to structure, nuclei
(hematoxylin), cytoplasm and collagen of the stroma (eosin), etc, preservation. BCD can
be used for image normalization (by normalizing each stain separately), but this is only one
of the possible solutions it offers to deal with color variation. Stain separation also allows
CAD systems to use the information provided by each stain separately [4]. Furthermore,
concentrations can be directly used for classification [4, 5].

CN focuses on transforming histological images to a common color range, usually ob-
tained from a reference WSI. Tosta et al. [3] classifies direct CN methods into histogram
matching and color transfer. Histogram matching techniques adjust image colors using his-
togram information. This is a common solution for general images but it is not appropriate
for histological images as it assumes that stains are equally distributed and disregards local
information. Stain concentration is closely related to the tissue and cell structures which need
to be preserved. Color transfer often includes a segmentation step to identify histological
regions or dyes. Then a stain-specific based color correction is applied. However, the selective
transformation occasionally causes artifacts on the images. Most Deep Learning (DL) meth-
ods are included in this category as they usually perform CN without Color Deconvolution
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(CD) [6, 7].

1.1. Related work

A wide range of solutions have been proposed to find the stain color-vector in the im-
ages. They can be experimentally obtained as Ruifrok et al. [8] did in one of the pioneer
works in the CD field. The empirically obtained color-vectors proposed in [8] do not tackle
stain color variation. To take variablity into account, the selection of pixels corresponding
to each stain was proposed in [9]. The amount of slides available quickly made this solution
obsolete. Formulating the problem as blind source separation, Non-negative Matrix Factor-
ization (NMF) was used in [10]. Using the same principles [11] and [12] further developed
this research approach including regularization and sparsity terms which encapsulate the as-
sumption that each stain fixes only to specific tissue structures, forcing most of the pixels to
respond to one type of stain only. Singular Value Decomposition (SVD), was applied in [13]
for H&E stain separation and then further developed in [14] by considering the interaction
between stains. It was recently revisited in [15] where the steps were reorganized to obtain
a time-optimized pipeline. The NMF memory and time requirements were reduced in [16]
with the use of Non-Negative Least Squares (NNLS). In [17], stain vectors were estimated
through clustering in the Maxwellian chromacity plane. In [18], supervised relevant vector
machines are used to segment background, hematoxylin and eosin pixels. The color-vector
for each stain is then defined as the mean of the pixels in each class. Recently, Salvi et
al.[19] have presented a three steps method using Gabor kernels, structure segmentation and
a final deconvolution step. Independent Component Analysis (ICA) was utilized in [20] and
extended in [21, 22], using the wavelet transform that reduces the independence condition
between sources. The method in [13] was revised in [23], where the author state that they
obtained better result applying it in the linearly inverted RGB-space instead of the (logarith-
mically inverted) absorbency space. The work by Zheng et al.[24] includes the deconvolution
by Ruifrok as a starting point and optimizes the color-vector and concentration values using
a prior knowledge-based objective function.

In this work, we develop a Bayesian framework for BCD, CN, and classification of histolog-
ical images using both normalized and stain separated images. Like the approaches presented
in [25] and [5], this work uses Bayesian modeling and inference. In [25], a similarity prior to
reference stain color-vectors, together with a smoothness Simultaneous Autoregressive (SAR)
prior model on the stain concentrations were used. Since the SAR prior oversmooths edges,
in [5], we presented the use of a Total Variation (TV) prior on the stain concentrations. The
TV prior preserves sharp edges while reducing noise in the images[26], but unfortunately, in
some cases, it tends to flatten areas which, together with the edges, are essential for image
classification. For blind natural image deconvolution, we proposed in [26, 27] a general frame-
work to model and restore the the image from its blurred and noisy version. We introduced
a large class of sparse image priors, the so called Super Gaussians (SGs) which represent well
sharp image characteristics. Most sparse image models used in the literature are included in
the formulation as special cases. In this work we provide a complete mathematical derivation
of how to combine SG prior models with the likelihood associated to blind color deconvo-
lution of histological images. The proposed approach is tested on stain separation, image
normalization, and classification problems using five different databases. Preliminary results
were presented in [28, 29] where a limited theoretical derivation was provided and a reduced
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set of SG priors and datasets were utilized in the experimental validation. In this work we
extend [28, 29] by providing a complete and clearer mathematical derivation of the model.
We also provide an extensive experimental validation using three additional databases in-
cluding images from different laboratories. The validation now includes: Application of the
SG prior models to stain normalization, a complete evaluation of the stain normalization re-
sults, additional classification experiments using normalized images and stain concentrations
separately, time comparison of the competing methods, and analysis of the similarity prior
on the color-vectors. Furthermore we also evaluate the use of normalized images or stain
concentrations for classification tasks, and discuss the use of a third residual stain.

The paper is organized as follows: Section 2 introduces the BCD problem and its math-
ematical formulation. Section 2.2 presents the modeling and Bayesian inference proposed
for the estimation of the color-vector matrix, the stain concentrations, and all the model
parameters. In section 4, we use H&E stained images to evaluate the proposed framework
and provide a comparison with classical and state-of-the-art CD methods using four different
histolopathology related tasks: BCD stain separation, image normalization, deconvolution
based prostate cancer classification, and breast cancer classification using normalized images
and stain concentrations. Section 5 includes the discussion and finally, section 6 concludes
the paper.

2. Methods

2.1. Problem Formulation

For each WSI, the tissue observed by a brightfield miscroscope is represented as an MN×3
matrix I. Each color plane is stacked into a MN × 1 column vector ic = (i1c, . . . , iMNc)

T, c ∈
{R,G,B}. The transmitted light on the color band c ∈ {R,G,B} for the i-th pixel in the
slide is stored in iic. Stain deconvolution methods usually apply the Beer-Lambert law to
transform slide images to the Optical Density (OD) space, where the ns stained slide can be
expressed as

YT = MCT + NT , (1)

The observed OD image Y ∈ RMN×3 contains three channels, i.e., Y = [yR yG yB] and each
channel yc ∈ RMN×1 is defined as yc = − log10 (ic/i

0
c), with i0c the incident light (Typically 255

for RGB images). The values for yc are computed element-wise. The matrix C ∈ RMN×ns

contains the stain concentration, M ∈ R3×ns is the color-vector matrix and N ∈ RMN×3 is a
random noise matrix with i.i.d. zero mean Gaussian components with variance β−1.

The BCD aproach aims to estimate both C and M. In C, the concentration of each stain
in the i-th Y pixel value, yi,:, is expressed as the i-th row cT

i,: = (ci1, . . . , cins) and the whole
contribution of the s-th stain to the image is the s-th column cs = (c1s, . . . , cMNs)

T. In the
color-vector matrix M, each ms column contains the color composition of the s-th stain.

2.2. SG Bayesian Model

Using the Beer-Lambert model in (1), the observation model is

p(Y|C,M, β) =
MN∏

i=1

N (yi,:|Mci,:, β
−1I3×3). (2)
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Table 1: Some penalty functions

Label ρ(s) ρ′(s)/|s|
`p , 0 < p ≤ 1 1

p
|s|p |s|p−2

log log(ε+ |s|) (ε+ |s|)−1|s|−1

The Bayesian approach requires to select a prior distribution on the unknowns. Here we
adopt SG distributions as priors for the stain concentrations in the filtered space. SG priors
are known to preserve sharp images [26]. They induce sparsity and allow us to find the key
values for each stain. We use a set of J high-pass filters noted as {Dν}Jν=1 to obtain the
filtered concentrations cνs = Dνcs. The filtered space remarks the edges in the image that
we want to preserve.

p(C|α) =
J∏

ν=1

ns∏

s=1

p(cνs|ανs)

=
J∏

ν=1

ns∏

s=1

MN∏

i=1

Z(ανs) exp [−ανsρ(cνs(i))] , (3)

with ανs > 0 and Z(ανs) a partition function. For p(cνs|ανs) in (3) to be SG, the penalty
function ρ(.) has to be symmetric around zero. In addition, ρ(

√
s) has to be increasing and

concave for s ∈ (0,∞), which is equivalent to ρ′(s)/s being decreasing on (0,∞). The latter
condition allows ρ to be written as follows

ρ (cνs(i)) = inf
ηνs(i)>0

L (cνs(i), ηνs(i)) (4)

where L (cνs(i), ηνs(i)) = 1
2
ηνs(i) cν

2
s(i) − ρ∗

(
1
2
ηνs(i)

)
, inf denotes infimum and ρ∗ (·) is the

concave conjugate of ρ(·) and ηνs = {ηνs(i)}MN
i=1 are positive parameters. The relationship

dual to (4) is given by [30]

ρ∗
(

1

2
ηνs(i)

)
= inf

cνs(i)

1

2
ηνs(i) cν

2
s(i)− ρ (cνs(i)) . (5)

Table 1 and figure 1 show possible choices for the penalty function and their corresponding
SG distributions (for additional SG distributions, see [26]).

The color-vector matrix M = [m1, . . . ,mns ] is also unknow, but it is expected to be
similar to a reference color-vector matrix M = [m1, . . . ,mns ]. Therefore we use a similarty
prior as

p(M|γ) =
ns∏

s=1

p(ms|γs)

∝
ns∏

s=1

γ
3
2
s exp

(
−1

2
γs‖ms −ms‖2

)
, (6)

where the parameter γs, s = 1, . . . , ns, measures the confidence on the accuracy of the
reference ms.
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Figure 1: Penalties corresponding to functions in Table 1. log |s| is bounded for better visualization.

The joint probability distribution is then defined as

p(Y,C,M,β,α,γ) = p(M|γ)p(γ)p(Y|C,M, β)p(β)

×
J∏

ν=1

ns∏

s=1

p(cνs|ανs)p(ανs) , (7)

where we include the hyperpriors p(γ), p(β) and p(ανs) on the model hyperparameters for
automatic estimation.

Following the Bayesian paradigm, the estimation of M and C is based on our estimation
of the posterior distribution p(Θ|Y) with Θ = {C,M,β,α,γ} including all the unknowns.
Our approach approximates p(Θ|Y) using the mean-field variational Bayesian model [31],
by the distribution q(Θ) of the form q(Θ) =

∏ns
s=1 q(ms)

∏J
ν=1 q(cνs) that minimizes the

Kullback-Leibler (KL) divergence [32] defined as

KL (q(Θ) || p(Θ|Y)) =

∫
q(Θ) log

q(Θ)

p(Θ,Y)
dΘ

+ log p(Y). (8)

However, the SG prior for Cν makes the evaluation of this divergence intractable. To
tackle this problem we will make use of the quadratic bound for ρ to bound the prior in (3)
with a Gaussian form

p (cνs(i)|ανs) ≥ Z(ανs) exp[−ανsL(cνs(i), ηνs(i))], (9)

∀ηνs(i) > 0. Then we define

Mν(C,ην |αν) =
ns∏

s=1

MN∏

i=1

Z(ανs) exp [−ανsL(cνs(i), ηνs(i))] (10)

and
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F(Θ,Y) = p(M,γ)p(γ)p(Y|C,M, β)p(β)

×
∏

ν

Mν(C,ην |αν)p(αν) , (11)

obtaining the bound log p(Θ,Y) ≥ log F(Θ,Y).
Using F(Θ,Y) for the posterior distribution in (8) we can now minimize KL (q(Θ) ||F(Θ,Y))

instead of KL (q(Θ) || p(Θ|Y)).
As described in [31], q(θ), for each unknown θ ∈ Θ, can be written as

q(θ) ∝ exp 〈log F(Θ,Y)〉q(Θ\θ) , (12)

where 〈·〉 is the expectation and q(Θ\θ) indicates that it is taken with respect to all param-
eters in Θ except θ. The mean is used when a point estimation is required.

2.3. Updating the Concentrations

We define

e−si,: = yi,: −
∑

k 6=s 〈cik〉 〈mk〉
z−si = 〈ms〉T e−si,: , i = 1, . . . ,MN, (13)

from eq. (12) we can obtain that q(cs) = N (cs| 〈cs〉 ,Σcs) , where the inverse of the covariance
matrix is given by

Σ−1
cs = β

〈
‖ms ‖2

〉
IMN×MN +

∑

ν

ανsD
T
ν diag(ηνs)Dν (14)

and the mean is obtained as

Σ−1
cs 〈cs〉 = βz−s . (15)

2.4. Updating the Color-Vector matrix

Similarly, from (13), we obtain that q(ms) = N (ms| 〈ms〉 ,Σms), where

Σ−1
ms

=

(
J∑

ν=1

βν

MN∑

i=1

〈
c2
νis

〉
+ γs

)
I3×3,

Σ−1
ms
〈ms〉 =

(
J∑

ν=1

βν

MN∑

i=1

〈cνis〉 e−sνi,: + γsms

)
. (16)

To ensure 〈ms〉 to be a unitary vector, we replace 〈ms〉 by 〈ms〉 / ‖ 〈ms〉 ‖ and Σms by
Σms/ ‖ 〈ms〉 ‖2.
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2.5. Updating the Variational Parameter
The estimation of the η matrix, requires to solve, for each s ∈ {1, . . . , ns}, ν ∈ {1, . . . , J}

and i ∈ {1, . . . ,MN}
η̂νs(i) = arg min

ηνs(i)
〈L (cνs(i), ηνs(i))〉q(cs)

= arg min
ηνs(i)

1

2
ηνs(i)uν

2
s(i) − ρ∗

(
1

2
ηνs(i)

)
(17)

where uνs(i) =
√
〈cν2

s(i)〉. Since

ρ∗(
η̂νs(i)

2
) = min

x

1

2
η̂νs(i)x

2 − ρ(x) (18)

whose minimum is achieved at x = uνs(i). Then, differentiating the right hand side of (18)
with respect to x, equating it to zero and substituting the value for x at its minimum, we
have,

η̂νs(i) = ρ′(uνs(i))/|uνs(i)|. (19)

2.6. Updating the Hyperparameters
The estimates of the parameters controlling the noise and color-vectors confidence are

calculated from

β̂−1 =
tr
〈
(YT −MCT)(YT −MCT)T

〉
q(Θ)

3MN
, (20)

γ̂−1
s =

tr(
〈
(ms −ms)(ms −ms)

T
〉
)

3
. (21)

Using (12) the distribution for ανs is written as follows

q(ανs) = const +
MN∑

i=1

logZ(ανs) exp [−ανsρ(uνs(i))] , (22)

where uνs(i) was defined in section 2.5. Estimating ανs with the mode of (22), we obtain α̂νs
from

∂ logZ(α̂νs)

∂α̂νs
=

1

MN

MN∑

i=1

ρ(uνs(i)). (23)

From the penalty functions shown in Table 1, `p produces proper priors, where we can
evaluate the partition function. However, the log penalty function produces an improper
prior. To tackle this problem we examine the behaviour of

Z(ανs, K)−1 =

∫ K

−K
exp [−ανsρ(t)] dt (24)

when ανs 6= 1, and keeping in ∂Z(ανs)/∂ανs the term that depends on ανs. This produces
for the log prior

∂Z(α̂νs)

∂α̂νs
= (α̂νs − 1)−1. (25)

Values for α̂νs can be obtained substituting this last expression into (23). Flat hyperpriors
have been used for all the hyperparamenters.
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Algorithm 1 Fully Variational Bayesian SG BCD

Require: Observed RGB image I and reference (prior) color-vector matrix M.

Obtain the OD image Y from I and set 〈ms〉(0) = ms, Σ
(0)
ms = 0, Σ

(0)
cs = 0, 〈cs〉(0), ∀s = 1, . . . , ns, from

the matrix C obtained as CT = M+YT, with M+ the Moore-Penrose pseudo-inverse of M, and n = 0.
while convergence criterion is not met do

1. Set n = n+ 1.
2. Obtain β(n), γ

(n)
s and α

(n)
νs from (20), (21) and (23).

3. Using 〈cs〉(n−1)
and Σ

(n−1)
cs ∀s, update variational parameters η̂

(n)
νs from (19) ∀ν.

4. Using 〈cs〉(n−1)
, Σ

(n−1)
cs and 〈ms〉(n−1)

update Σ
(n)−1
ms and solve (16) for the color-vectors 〈ms〉(n),

∀s.
5. Using 〈ms〉(n), Σ

(n)
ms and η̂

(n)
νs ∀ν update Σ

(n)−1
cs from (14) and solve (15) for the concentrations

〈cs〉(n), ∀s.
end while
Output color-vector m̂s = 〈ms〉(n) and ĉs = 〈cs〉(n).

2.7. Covariance matrices for the concentration:

We have to find the covariance matrix Σcs in order to calculate its trace as well as η̂νs(i).
Unfortunately, this is computationally intensive. To reduce the impact of the calculation, we
propose to approximate Σcs as follows. First, we approximate diag(ηνs) by

diag(ηνs) ≈ z(ηνs)I, (26)

where we use the mean of the diagonal values to calculate z(ηνs). Then we approximate

Σ−1
cs ≈ β

〈
‖ms ‖2

〉
IMN×MN +

∑

ν

ανsz(ηνs)D
T
ν Dν = B.

Finally we have 〈cν2
s(i)〉 ≈ (〈cνs(i)〉)2 + 1

MN
tr
[
B−1DT

ν Dν

]
.

2.8. Proposed Algorithm

Considering the previous inference, we propose the Fully Variational Bayesian SG BCD in
Algorithm 1. Figure 2 depicts the pipeline followed by the proposed framework. We use the
Conjugate Gradient approach to solve the linear equation problem in step 4 of Alg. 1. The
inference procedure iterates between concentration update, color-vector update, variational
parameter update, and parameter update. When necessary, a single-stain RGB image Îsep

s ,
can be obtained from the outputs in Alg. 1 as follows

(Îsep
s )T = exp10 (−m̂sĉ

T
s ) (27)

2.9. Use of the algorithm on WSIs

The size of WSI images is usually on the order of Gigapixels, making their processing
challenging. The proposed method could, in principle, be used directly on WSIs but Bayesian
methods are computationally expensive and the computational burden would be considerable,
notice that M and N would be huge. However, WSIs are not usually processed at once and
most classification or analysis tasks require patching [4, 33] or focusing only on Regions-of-
Interest (RoI) [22].
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Figure 2: Pipeline of the proposed framework. First, the H&E image is converted to the OD space. The OD
image Y and the reference matrix M are given to the SG Bayesian framework. The values of all parameters
are automatically estimated during the inference procedure using the KL divergence. Finally, the estimated
color-vector matrix M̂ and concentrations Ĉ are obtained.

For classification purposes it is possible to deconvolve patches separately. This approach
can tackle local variations but will create variations in the estimated color-vector matrix for
each patch. Another possible solution is to select a RoI in order to obtain the color matrix.
This is the approach we follow in this paper. First, we select the biggest connected RoI within
the patches of interest and estimate the color-vector matrix M̂ for the complete WSI. Then,
the concentrations of the remaining patches are obtained using CT = M̂+YT, with M̂+ the
Moore-Penrose pseudo-inverse of M̂. Notice that a single color-vector matrix is obtained
for all patches belonging to the same WSI and that they can be stitched together without
artifacts if necessary.

An alternative approach is to use the prior on the concentrations in eq. (3) and the
observation model in eq. (2) for all the patches in the WSI we want to use. In other words,
eq. (2) becomes a product over patches of interest. This is the approach we follow in the
paper. Notice that the new variational distributions are similar to those derived in the paper
but now have to consider all the utilized patches.

3. Data Material

Five databases, were used in the experiments Warwick Stain Separation Benchmark
(WSSB) [22], SICAPv1 [4], SICAP-GR, Camelyon-16 [34] and Camelyon-17 [35]. Details
for each database are provided below:

3.0.1. WSSB

WSSB is a multi-tissue dataset (breast, colon, and lung) that contains 24 H&E stained
images from different laboratories and captured with different microscopes. Colon images
were captured at 20x magnification and Breast and Lung at 40x. Hematoxylin- and Eosin-
only pixels manually selected by expert pathologists were used to obtain the ground truth
stain color-vector matrix for each image. Then, the ground truth concentration is calculated
in [22] as

CT
GT = M+

GTYT. (28)

46 CHAPTER 3. REFERENCE-BASED BCD USING SG



Table 2: Camelyon 17 dataset labeling structure

stage label
Subset WSI total negative itc micro macro
Whole training set 500 318 36 59 87
annotated 50 0 16 17 17
no annotated 450 318 20 42 70

Then using (27), a single-stain RGB image was calculated for both hematoxylin and eosin.
This database will be used for BCD evaluation.

3.0.2. SICAPv1

This database comes from Hospital Cĺınico Universitario de Valencia, Spain, it contains
79 H&E WSI from 48 patients, 19 benign prostate tissue biopsies (negative class) and 60
pathological prostate tissue biopsies (positive class). The images were digitized using a
Ventana iScan Coreo scanner at 40x magnification. Malignant regions of each pathological
WSI were annotated by expert pathologists. 60 WSI (17 benign and 43 pathological) were
used as training set and the remaining 19 WSI (2 benign and 17 pathological) were utilized
for testing. This database will be used for classification purposes and some of its slides will
also be used for CN as we describe next.

3.0.3. SICAP-HUVNGR

This dataset contains 26 prostate H&E WSI: 13 slides at 40x magnification from Hospital
Universitario Virgen de las Nieves de Granada (HUVNGR) and 13 slides from Hospital
Cĺınico Universitario de Valencia (randomly extracted from SICAPv1 dataset). These WSIs
will be used for CN evaluation.

3.0.4. Camelyon-16 and 17

These two databases are part of the Camelyon challenge1 for cancer metastasis detection
in the lymph node. We will use them in CN and classification experiments. Both Camelyon
databases were scanned at 40x. They are described below.

• Camelyon-16 contains 400 H&E-stained lymph node multiresolution WSIs from 2 dif-
ferent laboratories. 270 are used from training (159 referred as normal and 111 as
tumor) and 130 for testing. Cancer regions were annotated by expert pathologists in
tumor and test images. All the annotations are available.

• Camelyon-17 contains 1000 WSIs from 5 medical centers. Only the training set, which
contains 500 WSIs, was used since the annotations for the testing WSIs are not yet
available. The dataset comprises 20 patients per center and 5 slides per patient. Cancer
regions were annotated by pathologists only on 50 WSIs, but the stage label: negative,
isolated tumor cells (itc), micrometastasis (micro), macrometastasis (macro) is available
for all the slides in the training set. See Table 2 for details.

For a clearer perspective, we include Table 3 that shows the experiments performed for
each database.

1https://camelyon17.grand-challenge.org/.
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Table 3: Experiments performed for each database

database Stain separation Color normalization Classification
WSSB X
SICAPv1 X X
HUVNGR
Camelyon-16 X X
Camelyon-17 X X

4. Experiments and Results

As mentioned previously, BCD techniques are used to facilitate the visual analysis and to
improve the automatic classification of WSIs. These are frequently conflicting goals due to the
differences between the human eye and computer vision. Usually, the highest classification
performance is not obtained with the most accurate color deconvolved images, where each
stain is accurately separated.

We have designed a set of experiments to test the performance of the algorithms on
the most common histological color deconvolution related tasks: stain separation, image
normalization, and classification. Our first experiment is devoted to assess the quality of
the stain separated images, that is, of the concentration matrices and color vector. Then, in
the second one, we analyze the quality of these matrices in CN. In the CN step a reference
WSI is selected and the color-vectors of the image to normalize are substituted by those
of the reference image, keeping the concentrations. Finally, the obtained deconvolved and
normalized images are evaluated on histological classification problems.

The proposed SG framework was compared with the following (B)CD methods frequently
used in the literature: the classical non-blind CD method by Ruifrok et al.[8] and the BCD
methods by Macenko et al. [13], Vahadane et al. [11], Alsubaie et al. [22], Hidalgo-Gavira et al.
[25], Pérez-Bueno et al. [5] and Zheng et al. [24]. They will be denoted by RUI, MAC, VAH,
ALS, HID, PER, and ZHE, respectively. Since SG represents a family of prior distributions,
we have selected two of its representative members, the corresponding to `p and log energy
functions. They will be denoted by L1 and LOG, respectively, in the experiments.2 For the
`p function we experimentally compared values for p in the interval [0.6, 1] and found no
significant differences. For simplicity, we choose `1. The proposed L1 and LOG methods
were run until the criterion ‖ 〈cs〉(n) − 〈cs〉(n−1) ‖2/ ‖ 〈cs〉(n) ‖2 < 10−3 was met by all the
stains. Vertical, horizontal and diagonal differences were used as high-pass filters in the
concentration prior (eq. (3)). All the model parameters are automatically estimated.

4.1. BCD Stain Separation Experiments

We begin the experimental assessment by comparing the fidelity to the H&E separation
obtained by the different BCD methods on the WSSB database, see Section 3. From this
dataset, we show an observed RGB image (Fig. 3(a)) and the corresponding ground truth
H&E-only RGB image (Fig. 3(b)).

To set an adequate prior for our method, we consider that the stain color properties may
change for the different tissues types in WSSB (Colon, breast, lung). For each tissue, an

2The code used in the experiments will be made available at https://github.com/vipgugr upon acceptance
of the paper.
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a) Observed H&E

b) Ground truth c) RUI d) MAC e) VAH f) ALS g) HID

h) PER i) ZHE j) LOG ns = 2 k) L1 ns = 2 l) LOG ns = 3 m) L1 ns = 3

Figure 3: Single breast observed H&E RGB image from WSSB [22], corresponding ground truth single stain
E-only and H-only images and separation obtained by the BCD methods. Eosin and hematoxylin separations
are presented on the left and right hand sides of each image, respectively.

H&E reference color-vector matrix M was selected by a non-medical expert using a single
pixel for each stain. Following the widely used implementation [36] of Ruifrok’s method,
when a third residual component is used, the reference color-vector is calculated using the
vector product of the H&E components in the color matrix.

The single stain images obtained from the observed image in Fig. 3(a) are shown in
Fig. 3(c-k). The standard color vector used by RUI obtains a separation that do not represent
the ground truth. The proposed methods, L1 and LOG, and MAC, HID, and PER are able
to find colors that are close to the ground truth separation in Fig. 3(b). The Bayesian
methods HID, PER and the proposed ones share the same prior for the color-vectors, but
their differences lay on the concentration prior. HID uses a SAR model, that tends to
oversmooth images. The TV based method PER keeps edges sharp, but flattens the inner area
of the tissues. The proposed SG methods does not suffer from the Gaussian oversmoothing,
obtaining sharper edges depending on the prior chosen and richer details than MAC and the
just described methods.

The quantitative comparison on the stain separated images was performed using the
Quaternion Structural Similarity (QSSIM)[37] and the Peak Signal to Noise Ratio (PSNR)
metrics. The mean value for each tissue in the dataset is presented in Table 4. The results
show that the proposed L1 with ns = 2 achieves outperform the competitors. The proposed
LOG slightly improves the results of the TV based method PER. This table also includes
the performance of our proposed methods when three color vectors are used. As we will later
show, the use of a residual component facilitates the classification task, see also [5]. Although
the use of three components deteriorates the quality of the stained separated images, our
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Table 4: Mean PSNR and QSSIM values for all the methods on the WSSB dataset [22].

RUI MAC VAH ALS HID PER ZHE
LOG LOG L1 L1
ns = 2 ns = 3 ns = 2 ns = 3

Image Stain

Colon
H 22.27 23.91 25.83 21.11 28.57 28.62 17.89 28.66 24.12 29.01 24.12
E 20.70 21.55 26.29 21.94 27.58 27.60 14.76 27.74 25.31 28.38 25.31

Breast
H 15.27 26.24 25.46 24.60 28.81 29.14 15.31 29.23 27.56 30.50 27.56
E 17.66 23.62 27.68 25.92 26.60 26.76 14.99 26.74 27.19 27.71 27.19

Lung
H 22.47 19.52 25.87 20.62 32.91 33.10 19.51 31.21 24.69 35.21 24.69
E 22.05 18.09 25.53 23.95 30.77 31.02 16.23 29.99 25.50 33.07 25.50

Mean
H 20.00 23.22 25.72 22.11 30.10 30.29 17.57 29.70 25.46 31.57 25.46
E 20.14 21.08 26.50 23.94 28.32 28.46 15.33 28.16 26.00 29.72 26.00

QSSIM
Image Stain

Colon
H 0.8841 0.8581 0.9536 0.5369 0.9635 0.9163 0.7490 0.9556 0.9168 0.9696 0.9168
E 0.5670 0.6133 0.8656 0.7642 0.8713 0.6111 0.4407 0.8455 0.8404 0.9011 0.8404

Breast
H 0.7721 0.9859 0.9881 0.7347 0.9919 0.6813 0.5231 0.9903 0.9852 0.9918 0.9852
E 0.7721 0.8907 0.9695 0.8068 0.9598 0.5527 0.3108 0.9567 0.9594 0.9605 0.9594

Lung
H 0.9206 0.6973 0.9489 0.4603 0.9959 0.9519 0.7747 0.9894 0.9442 0.9957 0.9442
E 0.5368 0.3500 0.8064 0.7983 0.9401 0.6226 0.3359 0.8807 0.8405 0.9433 0.8405

Mean
H 0.8589 0.8471 0.9635 0.5773 0.9838 0.8499 0.6823 0.9784 0.9488 0.9857 0.9488
E 0.6253 0.6180 0.8805 0.7898 0.9237 0.5955 0.3624 0.8943 0.8801 0.9349 0.8801

methods perform similarly to some other methods (not the worst ones) in terms of PSNR
and QSSIM values.

As it can be observed in Figs 3(j-m) the differences when a third component is used are
difficult to distinguish. For a better visual comparison, Figure 4 shows zoomed in details
from Fig. 3(k&m). Notice that we report L1 results since this method obtains the best
PSNR and QSSIM values with ns = 2 and the difference with the ns = 3 results is wider.
The difference between hematoxylin (Figs 4(a&d) and eosin (Figs 4(b&c) colors is small.
The third component captures only residual information extracted from the H&E bands.
The third band is discarded, which implies less fidelity to the original image. Then, the
experimental design in [22] implies that removing information will lead to lower PSNR and
QSSIM values. In spite of the lower figures of merit, we will see in following sections that
the use of a third component leads to better classification performances.

4.1.1. Dependency on the reference color-vector M

The similarity prior in (6) requires the use of a reference color-vector matrix M. On one
hand, the prior on M ensures that the obtained result agrees with our previous knowledge
on the H&E channels. On the other hand, it reduces the search space of feasible solutions.
The prior for our model should be as accurate as possible. However, the color variability
in the WSIs might hamper the accuracy of our prior. To assess the impact of the reference
matrix M we have evaluated a breast image on the WSSB dataset using different values of M.
Variations of M were obtained by adding random values sampled from an uniform distribution
U(−σ, σ), with σ ∈ [0.05, 0.3]. Then, each row is normalized to achieve ‖ ms ‖= 1. Twenty
different color-vectors were used as prior for the L1 method. Figure 5 depicts some values
for M, PSNR, and QSSIM as σ increases. Values of σ > 0.2 produce low quality values for
the prior, as they do not represent the stains in the image and even reach unreal values for
the H&E channels. The variations on the prior have a considerable impact on the obtained
separation. The proposed method is able to deal with variations up to σ = 0.1 while obtaining
values comparable to the competing methods.
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a) H-only (ns = 2) b) E-only (ns = 2) c) Original

d) H-only (ns = 3) e) E-only (ns = 3) f) Third component

Figure 4: Detail of the of the bottom left corner of Fig. 3(a) and its H-only, E-only and third component
separations. Separations in the top and bottom rows were obtained with the proposed method L1 with two
components Fig. 3(k) and three components Fig. 3(m), respectively.

4.1.2. Time comparison

Using a single WSSB image, we measured the time needed for the competing methods to
deconvolve the image. The comparison is shown in figure 6 as a joint plot with the PSNR
values obtained. RUI, which does not require color-vector estimation, obtains the lowest
time. More complex blind methods require more computational time to estimate the color-
vector matrix. ZHE implements a similar deconvolution step to RUI using a similar time.
ALS requires as much time as HID but its PSNR and QSSIM values are lower. The proposed
approach is severely impacted by the chosen prior. Using LOG the proposed method is
expensive in time cost. However L1 reduces by half the time spent by the TV-based method,
PER. L1 requires a longer time than some of the competing methods but also obtains the
best figures-of-merit as already reported in Table 4. Considering a third stain component
increases the time required by L1 but reduces it for LOG. This is due to a higher number of
parameters to estimate but less iterations required to converge, specially for LOG. L1 required
6 iterations to deconvolve the image in both cases while LOG used 10 and 6 with ns = 2
and ns = 3, respectively. Notice, also, that the proposed fully Bayesian approach includes
estimation of all model parameters together with the stain concentrations and color-vector
matrix All these estimations increase the running time but make our methods parameter
free.
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Figure 6: Joint plot of mean PSNR and running time for deconvolving a 2000x2000 image. The time is
counted in seconds and the x axis is presented in logarithmic scale. The time was measured in a shared
server running CentOS 7 with 32 CPU Intel(R) Xeon(R) (2.4 GHz).
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Figure 7: Pipeline of the normalization procedure. Both, reference and original image are color deconvolved.
To obtain the normalized image, the dynamic range of the concentration Ĉ is adjusted to be the same as that
of Ĉreference and the color matrix M̂ is substituted by M̂reference. Then, the normalized image ŶNormalized

is transformed back to RGB space.

4.2. CN Experiments

Deep learning based CAD systems usually make use of the observed H&E images instead
of the separated bands [38]. Therefore, they are highly affected by stain color variations.
CN aims to provide an improved input to CAD system. The images are preprocessed to
reduce the staining variations without modifying their structure. CN can easily be achieved
as an additional step after BCD, as stain color information is separated from the structure
of stain concentration. This section performs a comparison on the color variations between
the original data and the CN obtained by all the competing methods.

To normalize the images a reference image, Ireference is used. Let M̂reference and Ĉreference

be the estimated color and concentration matrices in the OD space obtained using one of our
proposed methods on the image Yreference (obtained from Ireference). Following [11], given a

new image I, the dynamic range of its corresponding Ĉ is adjusted to be the same as that
of Ĉreference and the color matrix M̂ is substituted by M̂reference to obtain the normalized
image as follows:

(Ŷnormalized)
T =

ns∑

s=1

−(m̂s)referenceĉ
T
s

P99((ĉs)reference)

P99(ĉs)
(29)

where P99(v) represents the pseudo maximum (99%) of vector v. The normalized RGB image
Înormalized is then

Înormalized = exp10 Ŷnormalized (30)

Figure 7 depicts the pipeline followed to obtain the normalized image.
To measure the quality of a CN procedure, we use the normalized median intensity (NMI)

measure [39] defined as
NMI(I) = Median(u)/P95(u) (31)

where I denotes a WSI and u is a vector where each ui component is the mean value of the
R, G, and B channels at the i-th pixel, [40].

The NMI value is calculated for each WSI in a given dataset. However, we require
information about the distribution of the NMI values in the dataset. Then, the standard
deviation of the NMI values in the dataset (NMI SD) and the coefficient of the variation
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Figure 8: Violin plots of NMI values for the original and normalized images by the compared methods on
the SICAP-HUVNGR dataset. The bars mark the maximum, median and minimum values for each plot.

(NMI CV), i.e., NMI SD divided by mean of the dataset, were used as metrics . Lower values
of NMI SD and NMI CV indicate a more consistent normalization.

Three datasets containing images from different centers were used in this section. SICAP-
HUVNGR, Camelyon-16 and Camelyon-17, see Section 3.

In the SICAP-HUVNGR dataset, to avoid the influence of large background regions,
512x512 pixel patches at 40x magnification, with at least 70% tissue, were sampled from each
WSI. This patch size is motivated by the prostate slide appearance. They are narrow tissue
segments surrounded by background which is also visible inside glands. The use of a larger
patch size, while maintaining the above tissue percentage, discard most patches containing
glands and keep only stroma patches mainly stained with eosin, because they have low nuclear
density. The NMI for each WSI is calculated over all the pixels in the patches. The number
of patches used from each WSI was evaluated from 20 to 120, observing that beyond 60 the
NMI value did not change.

For Camelyon-16 and Camelyon-17 datasets, 224x224 pixel patches, with at least 70%
tissue, were sampled from each WSI. This will also be the patch size used for classification,
see section 4.4. Following [24], 500 patches were sampled from each WSI in the datasets for
CN and classification purposes.

Let us now describe the obtained results. First we notice that RUI does not estimate
the color-vectors in the images, therefore it is not possible to use it for CN. Furthermore,
the prior color-vector matrix M used by our method is fixed to the standard proposed by
Ruifrok et al.[8].

Table 5: NMI SD and NMI CV comparison for diferent normalization methods on SICAP-HUVNGR dataset.

Method NMI SD NMI CV
Original Data 0.0591 0.0705
MAC 0.0782 0.1079
VAH 0.0796 0.1099
ALS 0.0799 0.1114
HID 0.0313 0.0378
PER 0.0296 0.0356
ZHE 0.0398 0.0472
LOG ns = 2 0.0330 0.0400
LOG ns = 3 0.0307 0.0368
L1 ns = 2 0.0306 0.0368
L1 ns = 3 0.0287 0.0342

NMI values for the SICAP-HUVNGR dataset are shown in Table 5. The proposed meth-
ods, LOG and L1, reduce by half the NMI SD and NMI CV values of the original data. L1
obtains the best value with ns = 3. ZHE significantly reduces both values, but the results
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are not as clustered as the obtained by HID and PER. MAC, VAH, and ALS do not improve
the initial NMI values. Figure 8 depicts the distribution of NMI values using violin plots.
In the first column of the figure, two different NMI distributions can be appreciated on the
original data. They correspond to the two centers the images come from. The two centers
are still visible when MAC, VAH, ALS and ZHE are used, but disappear when HID, PER,
and the proposed L1 and LOG are utilized. The proposed L1 and LOG correctly identify the
H&E distribution on the WSIs. When CN is applied, the color distribution is equalized for
all the WSIs and the color properties of each stain are fixed to those in the reference image,
reducing the NMI SD and CV values.

The CN analysis on Camelyon databases is provided below. Due to the computational
cost of CD and parameter estimation (See figure 6) on the large volume of WSIs in those
databases and also to the superior performance in previous experiments (See tables 4 & 5)
only the proposed L1, and not LOG, was used in the comparison.

In addition to undesired color variance due to the staining procedure and also to the
acquisition system used, pathology related color variations also appear in the WSIs (e.g:
tumor images usually have a higher percentage of hematoxylin pixels). The fully labeled
Camelyon-16 allows us to study the pathological color variance. For that matter, NMI SD
and NMI CV were calculated for the whole dataset and for the tumor, normal and test WSIs
as separated subsets. NMI SD and NMI CV values obtained for the Camelyon-16 dataset
are shown in Table 6 and Figure 9. The best result for the complete dataset is obtained
by ZHE, closely followed by our proposed L1. However, in the separated normal and tumor
subsets, the proposed method obtained the best values. Images normalized by our method
are more similar to those in the same subset, but the difference between classes is preserved.
The proposed L1 method with ns = 3 obtains higher NMI values than the original dataset
when all images are considered, however it is reduced in the normal and tumor subsets. This
is caused by a wide separation on the colors for the hematoxylin and eosin channels, that
will be useful for classification as we will see in the following sections.

Table 6: NMI SD and NMI CV comparison for diferent normalization methods on Camelyon-16.

database Camelyon-16
subset All images Tumor Normal Test
Method SD CV SD CV SD CV SD CV
Original Data 0.0629 0.0860 0.0497 0.0693 0.0528 0.0684 0.0538 0.0778
Macenko 0.0799 0.1359 0.0553 0.0826 0.0629 0.1122 0.0678 0.1221
Vahadane 0.1127 0.2112 0.0877 0.1404 0.0741 0.1471 0.1274 0.2573
Alsubaie 0.0698 0.1262 0.1186 0.2015 0.1048 0.1540 0.1923 0.3271
Hidalgo-Gavira 0.0645 0.0915 0.0373 0.0480 0.0552 0.0795 0.0378 0.0572
Pérez-Bueno 0.0624 0.0900 0.0375 0.0492 0.0506 0.0740 0.0351 0.0539
Zheng 0.0477 0.0616 0.0394 0.0519 0.0396 0.0516 0.0551 0.0693
`1 prior ns = 2 0.0532 0.0775 0.0376 0.0491 0.0357 0.0549 0.0532 0.0785
`1 prior ns = 3 0.0793 0.1136 0.0493 0.0622 0.0617 0.0910 0.0457 0.0708

In Figure 9.(a-c) we observe that the NMI variation on Camelyon-16 dataset comes not
only from different centers but also from different pathologies. Images in tumor, and nor-
mal image subsets show different distributions on the original data. The normalized images
by HID, PER, and the proposed L1 preserve those differences, keeping a separation on the
median NMI value of both subsets. ZHE, designed to optimize NMI values, tends to over-
normalize the images, eliminating most of the NMI difference between tumor and normal
subsets.
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Table 7: NMI SD and NMI CV comparison for diferent normalization methods on Camelyon-17 dataset.

All images Non-Negative Negative
Method SD CV SD CV SD CV
Original Data 0.0773 0.1035 0.0812 0.1087 0.0750 0.1004
Macenko 0.1031 0.1689 0.0993 0.1581 0.1040 0.1731
Vahadane 0.1058 0.1823 0.1010 0.1685 0.1069 0.1878
Alsubaie 0.0992 0.1806 0.0989 0.1753 0.0984 0.1819
Hidalgo-Gavira 0.0635 0.0948 0.0671 0.0987 0.0606 0.0913
Pérez-Bueno 0.0629 0.0941 0.0668 0.0984 0.0598 0.0902
Zheng 0.0489 0.0631 0.0488 0.0628 0.0489 0.0632
`1 prior ns = 2 0.0624 0.0935 0.0720 0.1051 0.0534 0.0813
`1 prior ns = 3 0.0793 0.1136 0.0684 0.1037 0.0638 0.0994
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Figure 9: Violin plots of NMI values for the normalized patches from Camelyon-16 dataset by the compared
methods. The bars mark the maximum, median and minimum values for each plot.

The NMI values obtained for Camelyon-17 are shown in Table 7 and Figure 10. The
labeling is more complex on this dataset (See Table 2), so the NMI is calculated for the
negative (normal WSIs) and non negative (itc, micro and macro) subsets, along with the
full dataset. The original WSIs from Camelyon-17 have larger color variations than previous
datasets, although they are not as balanced in terms of normal and tumoral WSIs. From Fig-
ure 10(a-c) it can be appreciated that the subset distributions are similar to the whole dataset
distribution, meaning that the NMI differences caused by pathologies are overwhelmed by
the differences between centers. In the non-negative subset there is also variation due to the
significant differences between itc, micro and macro. The lower NMI SD and CV values are
obtained by ZHE. The proposed L1 with ns = 2 obtains the second lowest value in most cases.
L1 obtained its lowest values on the negative subset while mantaining a wide distribution
on the non negative, probably due to the inter-subset differences mentioned. The Bayesian
methods HID and PER show similar results to the proposed one.

To conclude this section we include Figure 11 to qualitatively compare the CNs obtained
by the competing methods. The reference image and some of their 224x224 extracted patches
are shown in the first row. The remaining rows contain patches from different WSIs in the
Camelyon-16 dataset normalized using the competing methods. MAC and VAH tend to
saturate the color in the images. ALS introduces artifacts in some of the patches. ZHE over-
brighten the images. HID and PER effectively transformed the color to that of the reference
image. The proposed L1 keeps the structure and tissue differences but set the stain properties
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Figure 10: Violin plots of NMIs for the normalized patches from Camelyon-17 dataset by the compared
methods. The bars mark the maximum, median and minimum values for each plot.

to those observed in the reference image. The normalization with the proposed L1 and ns = 2
is the most similar to the reference image. When using a third component, the eosin is clearer.
and more distinguishable from the hematoxylin. The difference between patches is higher,
but the stains keep the common color properties. The effect of the residual component is
clearly appreciated in the first and third rows of the last column. Although the removal of the
residual produces artifacts, small hematoxylin structures are eliminated and nuclei appear
more clearly separated. As discussed in previous sections, discarding the residual reduces the
fidelity to the original image. In the following sections, we will demonstrate the beneficial
effect of the third component on classification tasks.

4.3. Deconvolution based classification

BCD allows CAD systems to use the single stained bands separately, which can improve
the classifier performance [4]. The separated H&E concentrations are used to extract features
and train four different classifiers. The prostate cancer histopathological SICAPv1 database
[4] was used for this purpose. In the 10x scale, we use patches of size 1024x1024 pixels
with the purpose of capturing complete glands within the patches. Training patches have
50% overlap and we discarded those containing mostly background (75%). From the WSI
annotated as benign we obtained 1909 negative patches. A minimum of 25% of malignant
tissue was required for malignant patches, obtaining 344 pathological ones.

The proposed and competing methods were used to color deconvolve the dataset. Fol-
lowing [4], the hematoxylin and eosin OD concentration images were used to extract the
concatenation of Geodesic granulometries (GeoGran)[4] and Local Binary Patterns Variance
(LBPV) [41] features. The H&E GeoGran descriptor was proposed in [4] for prostate cancer
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Figure 11: Example patches from different WSIs in Camelyon-16. The first row shows the reference image
used an a sample of 224x224 patches extracted from the reference. The original patch is shown in the first
column.

classification, obtaining stain-specific information. From the hematoxylin, it recovers the
gland frontiers formed by the nuclei structure (those that enclosed their lumen and cyto-
plasm). From the eosin, it encodes how the stroma is affected by the lumen and nuclei
structure. LBPV features are extracted from the hematoxylin band to capture texture and
contrast information. The use of both Geogran and LBPV features, recovers texture and
structural information in the stain separated bands, and has been proven to be an accurate
descriptor for histopathological image classification [4].

With the described descriptors, the following set of state-of-art classifiers were trained:
Random Forest (RF) [42, 43], Extreme Gradient Boosting (XgBoost) [44], Gaussian Processes
(GP) [45] and Deep Gaussian Processes (DGP)[46]. The classifiers were configured following
[4] to achieve an unbiased classification benchmark. For RF and XgBoost we use 1000
estimators and a maximum depth of 20 and 30, respectively. The learning rate for XgBoost
is fixed to 0.01. GP and DGP classifiers were configured following the same approach as in
[4]. A GP classifier with Radial Basis Function (RBF) kernel [47] using variational inference
and a three-layer DGP classifier with RBF kernel and 100 inducing points per layer, following
the doubly stochastic inference proposed in [48]. DGP uses a mini-batch size of 1000 and the
inducing points were initialized using kmeans. Both models GP and DGP were optimized
using Adam with a learning rate of 0.01.

To tackle the unbalance of positive and negative patches (common in cancer classification),
we use a five-fold cross-validation. Each patient is assigned to a single fold to avoid correlation
between training and testing sets. With this configuration, each classifier was built using all
positive patches and a subset of the negative ones. The classifiers were trained from scratch
using each deconvolution method

AUCs obtained by all the compared methods are shown in Table 8 and Figure 12. Since
HID oversmooths the images, it performs worse as it happens to methods like MAC which
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Table 8: AUC obtained by different classifiers when trained with different deconvolution methods on the
SICAPv1 cross validation.

Method RF GP XgBoost DGP

RUI 0.9789 0.9855 0.9764 0.9737
MAC 0.9315 0.9535 0.9425 0.8802
VAH 0.9222 0.9479 0.9295 0.9420
ALS 0.9262 0.9442 0.9246 0.9344
HID 0.9157 0.9542 0.9228 0.8997
PER 0.9798 0.9856 0.9797 0.9718
ZHE 0.9194 0.9420 0.9263 0.9251
LOG ns = 2 0.9256 0.9497 0.9281 0.9303
LOG ns = 3 0.9796 0.9842 0.9798 0.9723
L1 ns = 2 0.9256 0.9497 0.9281 0.9303
L1 ns = 3 0.9796 0.9842 0.9796 0.9729

obtain less detailed images. ZHE scores poorly even when its deconvolution step is based on
RUI. Although L1 and LOG using ns = 2 do not obtain the best results, the use of ns = 3
leads to a performance comparable to RUI and PER. With XgBoost, LOG obtains the best
result. Notice that the best AUC (0.9856) is obtained using PER and GP, closely followed
by RUI, L1, and LOG. Notice also that L1 and LOG perform very similarly. This is due to
the very close estimated color vector matrix which leads to very similar extracted features.

The results obtained by L1 and LOG are in agreement with those obtained in our previous
work [5]. Including a third residual component (ns = 3) in the deconvolution step leads to
better classification performance although the obtained stain separation is not as close to
the ground-truth separation as that obtained using ns = 2. Despite of a lower fidelity, the
information captured by the residual channel makes the nuclei in the hematoxylin channel
to appear more clearly separated and with less noise. The distribution of nuclei is usually
considered be the most determinant feature for classification [4]. We believe this is the most
plausible reason for the discriminative power of the residual band.

4.4. Normalization based classification

As we have already indicated, CN can be considered as a preprocessing step whose goal is
to increase the performance of CAD systems[49], specially those using as input the original
RGB images. To conclude the experimental section, in our last experiment we compare the
performance of VGG19 [50], a common CNN used in cancer classification [38, 4], when it is
fed with the original and color normalized patches. We also analyze the VGG19 performance
when trained and tested using the OD concentrations obtained by the different methods,
as they can be seen as a two channel image. Figure 13 shows an example of Camelyon-16
patches and their OD concentration channels.

From the patches extracted in section 4.2, 55,000 tumor annotated (positive class) patches
and 55,000 normal (negative class) patches from negative WSIs were randomly sampled from
each Camelyon dataset training set, see Section 3. Since Camelyon-17 contains only 50 tumor
annotated WSIs, to complete its 55,000 tumor annotated patches, additional tumor patches
were extracted following the procedure described in section 4.2. Using the above protocol,
Camelyon-16 testing set contains approximately 19000 tumor patches, and from this testing
dataset 19000 normal patches were sampled. VGG19 was trained and tested in two scenarios.
In the first case, we explore how normalization affects performance within a single database
(using Camelyon-16 training and testing set). In the second scenario we use Camelyon-17 for
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Figure 12: ROC curves and AUC for the competing methods and classifiers on the SICAPv1 dataset. Each
sub-image contains a single classifier trained with all deconvolution methods.

training and since Camelyon-17 test set labels are not available, Camelyon-16 is used for test.
This experiment provides information on the inter-generalization capabilities of the model.

VGG19 with batch normalization was trained during 100 epochs in each case, which was
enough for the network to converge. A batch size of 64 samples was used, constrained by the
available memory of the Nvidia Titan X GPU utilized in this work. The learning rate was
initially set to 0.01 and was reduced by factor 0.5 each 30 epochs. AUCs were calculated on
the test set using the training best performing epoch for each method.

Table 9: AUC Performance of the VGG19 over Cameylon-16 testing set using CN images and OD concen-
trations obtained by the proposed and competing deconvolution methods.

Training set

Method
Camelyon-16 Camelyon-17
CN OD CN OD

Original images 0.9491 NA 0.9279 NA
RUI NA 0.9458 NA 0.9003
MAC 0.9564 0.9608 0.8652 0.8503
ALS 0.9557 0.9556 0.9144 0.8874
HID 0.9479 0.9558 0.9042 0.7994
PER 0.9627 0.9552 0.9106 0.8941
ZHE 0.9466 0.9621 0.9370 0.9380
L1 ns = 2 0.9656 0.9429 0.9289 0.9009
L1 ns = 3 0.9505 0.9634 0.9378 0.9541

The obtained AUCs are shown in Table 9 and the ROC curves in Figure 14. Notice
that for Camelyon-16, VGG19 performs well on the original images (better than some of the
methods). The proposed L1 with ns = 2 is however the best feed to VGG19 since its AUC
increases from 0.9479 (original data) to 0.9656. The oversmoothing of the edges by HID
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Original H&E H OD channel E OD channel

Figure 13: Examples of the OD concentrations channels obtained by the proposed method L1 ns = 2 for
different patches and used to train VGG19 using a 2-band image as input.

and the overnormalization of ZHE obtained a slightly lower value than the non-normalized
original data. The use as input to VGG19 of Camelyon-16 OD concentrations, was a boost
for the methods ZHE and the proposed L1 using ns = 3, and had a slightly beneficial effect
for most methods.

Camelyon-17 training set contains more WSIs than Camelyon-16, furthermore its color
variance is considerable as images come from 5 different centers. An adequate preprocessing
has a higher impact on the generalization capability of the CNN. In this case, the original
data reached an AUC=0.9279. Using CN, the proposed L1 with ns = 3 obtained the best
result with 0.9377. ZHE performs better in this experiment than in the previous one. In
this inter database case, only ZHE and L1 with ns = 3 were boosted by the use of OD
concentrations to train the network. The L1 AUC raised to 0.9541 when using ns = 3.

The effect of using a third component was limited using normalized images in the Camelyon-
16 dataset. However, this configuration obtained the best performance in OD and in both
cases when using Camelyon-17. As discussed in previous sections, the most plausible reason
is that the third residual component makes nuclei to appear more different from other struc-
tures. This effect can be also appreciated on normalized images in Figure 11. Where the
patches in the last column show a bigger difference between hematoxylin and eosin colors.

5. Discussion

BCD is a critical step towards normalization and classification of histological images. The
stain separation allows to measure the fidelity to the tissue and facilitate feature extraction.
The obtained results clearly show that SG priors are a good choice for color deconvolution
of histopathological images. As previously indicated, each stain should fix only and com-
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Figure 14: ROC curve and AUC obtained by the VGG19 when trained with normalized images and OD
concentrations by competing methods. Testing set is always the one from Camelyon 16. a) Training set from
Camelyon 16 normalized. b) Training set from Camelyon 16 concentrations. c) Training set from Camelyon
17 normalized. d) Training set from Camelyon 17 concentrations.

pletely to specific proteins on the tissue, leading to sparse stain concentration differences at
neighbouring pixels [11]. However, the experimental results show that the sparsity on the
differences is moderated. The `1 prior, with a lower kurtosis than the log prior, allows to keep
more non-zero values. This makes `1 a good prior for this problem, as its induced sparsity is
softer than that of the log prior.

We have analyzed the effect of using two or three stain components in our proposed
approach to deconvolution. The carried out experiments indicate that using two components
produces stains closer to the original ones and also provides good CN. The use of a third
component to capture residual information from the H&E images, makes it possible to obtain
a clearer stain separation. In the hematoxylin band, the nuclei appear more clearly enhancing
nucleus information and the noisy background is reduced. The effect of the third component
in the eosin band is reduced but the contrast is increased. Then, we should choose whether
to use the third component for BCD depending on our goal. Its use may reduce the fidelity
to the tissue in terms of PSNR and SSIM values, but it improves the performance of feature
based and CNN classification methods, improving class separation and helping the descriptors
or CNN layers to capture the relevant information.

Finally, the use of BCD allows to extract stain-specific information from H&E channels.
Our comparison between classification using the normalized images and OD concentrations
have shown that CN of histopathological images improves the performance of CNN methods,
however the use of CD to obtain the separated H&E concentrations leads to better perfor-
mance. The H&E separation is directly provided to the CNN by the OD concentration and
directly related to a better class separation.

62 CHAPTER 3. REFERENCE-BASED BCD USING SG



6. Conclusions

In this work we have proposed the use of SG priors for blind color deconvolution of his-
tological images. The framework presented includes a novel variational Bayesian blind color
deconvolution algorithm which automatically estimates the color-vector matrix, the concen-
tration of stains, and all the model parameters. SG priors are used to model neighbouring
pixel differences. The use of the SG family is a powerful tool to fine tuning the sparsity
of concentration differences, reducing the noise in the images while preserving the tissue
structure without oversmoothing the edges. Two penalty functions, named L1 and LOG,
corresponding to SG distribution have been used. The information obtained through the
proposed deconvolution guarantees fidelity to the tissue structure and can be used both for
normalization and classification of histological images.

The proposed LOG and L1 methods have been experimentally compared to classical and
state-of-art methods on a set of experiments covering the most common histological color
deconvolution related tasks: stain separation, image normalization and cancer classification.
They obtained very good results on all the performed experiments.

We have analyzed the effect of using a third residual stain component during deconvolu-
tion, showing that an affordable reduction of the fidelity to the tissue improves classification
performance using descriptors or CNN classifiers

Finally, our study includes a comparison between classification using the normalized im-
ages and OD concentrations showing that although CN improves the performance of clas-
sifiers over the raw data, stain separated OD concentrations lead to better classification
performance.
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4.2 Main Contributions

• We propose the use of Bayesian K-SVD for the estimation of the color-
vector matrix and deconvolution of histological images with fully automatic
estimation of the model parameters.

• Two Bayesian inference approaches to K-SVD are presented: variational
and empirical Bayes.

• We present a novel methodology for the use of Bayesian approaches in mas-
sive WSI images.

• We propose a combination of color augmentation and color normalization
using the BCD results. With this combination, the data is normalized before
being augmented, with the idea that future test data will be normalized
before being fed to the CAD system.

• The proposed approach was successfully evaluated on stain separation on a
multi tissue dataset. It was also applied to color normalization and CNN-
based cancer classification on a multi-center dataset, where we include the
use of color augmentation.
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Abstract

Stain variation between images is a main issue in the analysis of histological images. These
color variations, produced by different staining protocols and scanners in each laboratory,
hamper the performance of computer-aided diagnosis (CAD) systems that are usually un-
able to generalize to unseen color distributions. Blind color deconvolution techniques sep-
arate multi-stained images into single stained bands that can then be used to reduce the
generalization error of CAD systems through stain color normalization and/or stain color
augmentation. In this work, we present a Bayesian modeling and inference blind color de-
convolution framework based on the K-Singular Value Decomposition algorithm. Two pos-
sible inference procedures, variational and empirical Bayes are presented. Both provide the
automatic estimation of the stain color matrix, stain concentrations and all model parame-
ters. The proposed framework is tested on stain separation, image normalization, stain color
augmentation, and classification problems.

Keywords: Bayesian modelling, Histological images, Blind Color Deconvolution, Stain
Normalization

1. Introduction

The analysis of Whole-Slide Images (WSI), i.e., digitalized histological slides of tissue
sections, is a crucial step towards the development of Computer Aided Diagnosis (CAD)
systems. The tissues in a WSI are stained with different dyes to make their structure visible
under the microscope. Hematoxylin-Eosin (H&E) is the most common combination, high-
lighting cell nuclei in blue color and cytoplasm and connective tissue in pink, respectively
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(Fischer et al., 2008). However, the color distribution of H&E WSI is affected by the stain-
ing and scanning procedures (Tosta et al., 2019b), resulting in inter- and intra- laboratory
color variations. These variations hamper the performance of CAD systems, which are usu-
ally unable to generalize to unseen color distributions. The different approaches proposed
to minimize the influence of color variation on CAD systems can be categorized into three
groups: Blind Color Deconvolution (BCD), Color Normalization (CN) and Stain Color Aug-
mentation (SCA). Let us review the most important contributions in each of these groups.

1.1. Blind Color Deconvolution

BCD techniques deal with color variation by estimating the image specific stain color-
vectors and stain concentrations. The pioneer approach by Ruifrok and Johnston (2001)
experimentally obtained a standard color vector matrix that is still used today. More recent
methods tackle inter-slide variations by using different techniques. The use of Non-Negative
Matrix Factorization (NMF) was proposed by Rabinovich et al. (2004), (Vahadane et al.,
2016; Xu et al., 2015) added regularization and sparsity terms which encapsulate the as-
sumption that a type of stain is only bound to certain structures. In Tosta et al. (2019a) the
sparsity parameter was estimated using a fuzzy set method. Independent Component Analy-
sis (ICA) was utilized in Trahearn et al. (2015) and extended in (Alsubaie et al., 2016, 2017)
by applying ICA in the wavelet domain where the independence condition among sources is
relaxed. The use of Singular Value Descomposition (SVD) was proposed in Macenko et al.
(2009) to separate H&E channels. In McCann et al. (2014), the authors take into account
the interaction between dyes. The method in Macenko et al. (2009) was revised in Astola
(2016), where the author states that better results are obtained by applying it in the linearly
inverted RGB-space instead of the (logarithmically inverted) absorbency space. Clustering
was utilized in Gavrilovic et al. (2013) using the Maxwellian chromacity plane to obtain the
stain vectors. Vicory et al. (2015) used K-means and a prior on the stain vectors to prevent
misclustering when the amount of each stain is not balanced. In Khan et al. (2014), images
are segmented into background and pixels belonging to each stain using supervised relevant
vector machines. The color-vector for each stain is then defined as the mean of the pixels
in each class. The work in Zheng et al. (2019) includes the deconvolution by Ruifrok as
starting point and optimizes the color-vector and concentration values using a prior knowl-
edge based objective function. Recently, a three-step method using Gabor kernels, structure
segmentation and a final deconvolution step has been presented in Salvi et al. (2020).

Several Bayesian approaches have already been presented. In Hidalgo-Gavira et al. (2018),
a similarity prior on the color-vectors as well as a smoothness Simultaneous Autorregresive
(SAR) prior model on each stain concentration were used. This work was extended with
the use of a TV prior in Pérez-Bueno et al. (2020) and with the use of sparse general Super
Gaussian priors on the high-pass filtered concentrations in Pérez-Bueno et al. (2021).

Despite the Deep Learning popularity, few works have used it for BCD. Based on Macenko
et al. (2009), the work in Duggal et al. (2017) implements a stain deconvolution layer for
CNNs to provide a stain separated input to CNN-classifiers. Similarly, Zheng et al. (2021)
use a Capsule Network that produces multiple stain separation candidates using 1 by 1
convolution operators and finally assembles the output based on a sparse constraint.

All BCD techniques have in common that they separate color from structural information,
offering a strong control on the information preprocessing. They can preserve the tissue
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structure and lead to high fidelity to the original images. Often, BCD methods are presented
as CN methods since the obtained results can be used for CN (by normalizing each stain
separately), but this is only one of the possible solutions BCD offers to deal with color
variation.

1.2. Color Normalization

CN aims to reduce the stain variation by matching the color in the images to a selected
template or reference. Direct CN methods do not necessary estimate the concentrations
and color vector matrix as BCD methods do. In Tosta et al. (2019b), they are classified into
histogram matching, color transfer, and spectral matching. The first one adjusts image colors
using histogram information (Reinhard et al., 2001), a common solution for general images.
However, this is not appropriate for histological images as it ignores the local information and
the unequally distribution of the stains. This work was further developed with three fuzzy
normalization steps and adapted to histopathological images in Vijh et al. (2021). Color
transfer methods assume that stain concentration is closely related to tissue structure and
usually include region or dye segmentation. The latest color transfer methods, based on deep
generative models (Janowczyk et al., 2017; Zanjani et al., 2018; Bentaieb and Hamarneh,
2018), perform CN without a previous color deconvolution by formulating the problem as a
style transfer task where the style is the color distribution of a selected laboratory. Recently,
other popular CNN architectures have been adapted to CN problems, such as Pix2pix (Salehi
and Chalechale, 2020), disentangled representations (Xiang et al., 2020), CycleGAN (Runz
et al., 2021) or Invertible Neural Networks (Lan et al., 2021). Since they require large datasets
to train the networks that transform to an specific stain distribution, usually, they cannot
handle intra-laboratory variations. Spectral matching methods typically perform BCD as a
first step to CN. In Tosta et al. (2019b), most of the BCD methods mentioned in the previous
section are reviewed as CN methods. The normalization is usually performed by replacing the
stain color vectors obtained using BCD by the reference color vectors, often obtained from
a template image (Vahadane et al., 2016; Vicory et al., 2015; Zheng et al., 2019). Different
approaches are used to adjust the concentration intensity of both source and target images.
In Macenko et al. (2009) each concentration intensity is scaled by using the 99th percentile
to compute a robust estimation of the maximum. In Vicory et al. (2015) the median of the
concentrations is used while in Zheng et al. (2019) the parameters normalizing the intensities
are estimated jointly with the stain color vectors. Recently, Hoque et al. (2021) presented a
multiscale Retinex model, that estimates and corrects the reflectance and illumination map
for pixels of both stains separately.

1.3. Stain Color Augmentation

Data augmentation is a popular solution to reduce generalization error on CNN-based
classifiers (Zheng et al., 2021). In contrast to BCD and CN, which aim to avoid the unseen
stain distribution by eliminating the color variation, the augmentation approach aims to
simulate unseen data by producing realistic variations of the available data. Although for
histological images, morphological, generative (Wei et al., 2020; Zhu et al., 2017), and color
augmentation techniques can be used (Tellez et al., 2019; Mpinda Ataky et al., 2020), in this
study, we will focus on the latter to study the effect of color augmentation on classification in
comparison to BCD and CN techniques. Color augmentation techniques do not modify the

4.2. MAIN CONTRIBUTIONS 73



image morphological features and only generate color variations. In Liu et al. (2017) common
computer vision perturbations of brightness, contrast and hue are used. Furthermore, an
specific histological stain color augmentation (SCA) technique was recently proposed in Tellez
et al. (2018) where the method in Ruifrok and Johnston (2001) is applied to obtain the H&E
concentration and variations of the observed data are created. In Tellez et al. (2019), several
SCA and CN methods were evaluated on classification tasks with CNN. Additionally, a new
CNN based CN method is proposed which is trained on SCA data.

1.4. Contributions

In the recent years, the field of BCD has received few contributions as CN approaches
using Deep Learning usually avoid this step. However, BCD has some advantages for his-
tological image analysis that should not be ignored. Its structure preserving properties,
interpretability by doctors, and potential for classification purposes make this a field of in-
terest for new works. The use of Bayesian models for BCD has been hardly explored and
previous contributions are dependant on a similarity prior on the color-vectors. The choice
of a reference color-vector matrix used for that prior, becomes a problem when working with
images from different laboratories. Finally, BCD is required for the recently proposed SCA,
which has been only compared to CN in Tellez et al. (2019). SCA and BCD have never
been directly compared. For those reasons, in this work we propose a novel Bayesian K-SVD
approach to perform BCD of histological images. K-SVD (Aharon et al., 2006) is a popular
greedy algorithm for dictionary learning and sparse representation of signals. In BCD of his-
tological images, the dictionary and the sparse representation will be the stain color vectors
and the stain concentrations, respectively (Vahadane et al., 2016). However, K-SVD has two
mayor drawbacks that need to be addressed for its use in BCD, the lack of uncertainty in the
estimation procedure and the need to know in advance the number of non-zero components
in the signal. The Bayesian K-SVD model (Serra et al., 2017) we adapt in this paper to BCD
tackles these problems allowing its use for BCD of histological images. Using the obtained
stain concentrations and color-vectors, our method can be utilized for CN and SCA. Our
contributions are summarized as follows:

• Proposal of a new BCD framework that is able to preserve histological structures, with
two possible inference approaches: variational and empirical Bayes.

• Unsupervised estimation of the stain concentrations and color properties.

• Automatic estimation of all model parameters.

• Stain specific data augmentation using the stain concentrations and color-vector matrix.

• Performance evaluation on large histological datasets with intra- an inter-laboratory
variations.

• Analysis of classification performance when using normalized images or stain concen-
trations.

The proposed method is tested on a set of experiments designed to cover the main tasks
of digital histopathology.
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The paper is organized as follows. In section 2 we present the mathematical formulation of
the BCD problem. In section 3, this problem is cast into the hierarchical Bayesian paradigm
and inference is carried out to estimate the stain concentrations and color-vectors as well as
all model parameters. Using Empirical Bayes, in section 4 we modify the inference already
presented in section 3 to increase the sparsity of the obtained solution. Section 5 adapts
the proposed methods to its application in massive WSI. Section 6 describes the utilized
images and methods. The effectiveness of the proposed framework is experimentally assessed
in Section 7, where the proposed methods are compared to classical and state-of-the-art
alternatives. Finally, section 8 concludes the paper.

2. Problem Formulation

Each WSI is stored as an M ×N × 3 RGB intensity image which is rearranged into the
matrix I ∈ R3×Q, Q = MN , where each value icq ∈ I represents the transmitted light across
the slide for pixel q and channel c. Diagnosis protocols use the contribution of each stain to
this value, that is, its absorbency or optical density (OD). The OD corresponding to intensity
icq, ycq ∈ Y, is defined as ycq = − log10(icq/i

0
cq), where i0cq denotes the incident light. The

monochromatic Beer-Lambert law establishes that a slide Y stained with Ns stains follows
the equation

Y = MC + N , (1)

where M = [m1, · · · ,mNs ] ∈ R3×Ns is the normalized stains’ specific color-vector matrix;
C ∈ RNs×Q is the stain concentration matrix, its qth column, cq = [c1,q, . . . , cns,q]

T, represents
the contribution of each stain to the qth pixel value in Y; and, finally, N ∈ R3×Q is a random
matrix with i.i.d. zero-mean Gaussian components with unknown variance β−1. Each column,
ms, in matrix M is assumed to be a unit `2-norm stain color-vector containing the relative
RGB color composition of the corresponding stain in the OD space.

Notice that each column yq can be represented as a linear combination of the color vectors

weighted by the corresponding concentrations, that is, yq =
∑Ns

s=1 csqms + nq. Hematoxylin
is a basic stain that dyes basophilic structures, namely nuclei, while eosin is an acidic stain
that fixes to cytoplasm and other structures, usually referred to as eosinophilic. Although
the actual color of biological structures will be influenced by both stains, they will present
structure-specific color properties (Vahadane et al., 2016) (effective stains) that are the basis
of differential staining. Therefore, we can assume that most pixels in the image are stained
by a single effective stain (Vahadane et al., 2016), making our stain concentration matrix
sparse, in other words, most of the weights, csq ∈ cq, in this linear combination are expected
to be zero (or very small). We would like to find not only the sparse coefficients of these linear
combinations, but at the same time, also estimate the color vectors ms which result in the
best, most sparse, solution. This dual estimation can clearly be understood as a dictionary
learning problem. Notice that we estimate the effective stains that allow to sparsely separate
biological structures.

The original problem of finding an exactly sparse solution minimizing the number of non-
zero elements in each cq (i.e., minimizing ‖cq‖0,∀q)1, is known to be NP-hard, see (Babacan

1‖ · ‖0 denotes the `0-(pseudo)norm, which counts the number of non-zero elements in a vector.
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et al., 2010), for example. The true solution can be approximated with greedy methods (e.g,
the popular K-SVD Aharon et al. (2006) method). Alternatively, the sparsity constraint on
the concentration vectors can be relaxed by using the `1-norm instead. Formally, we can
formulate this problem as

min
M,C
‖Y −MC‖2F (2)

s.t. ‖cq‖1 ≤ T, ∀q,

where ‖ · ‖F and ‖ · ‖1 denote the Frobenius and `1-norms respectively, and T is nonnegative
real parameter that determines the degree of regularization. The main advantage of this
relaxation is that convex optimization techniques can be used to solve this problem (e.g.,
(Aharon et al., 2006; Mairal et al., 2009; Zhou et al., 2009)).

The novel Bayesian framework we propose solves the histological color deconvolution as
an `1 dictionary learning problem, following the method introduced in Serra et al. (2017),
automatically estimating the optimal color-vector matrix M, the posterior distribution of C
considering the uncertainty of the coefficients, along with all model parameters. The next
section gives detailed intuition on the modelling and inference of the proposed method, albeit
not a full derivation. We encourage the interested reader to consult Appendix A for further
explanation.

3. Bayesian Model and Inference

Our Bayesian model for solving the dictionary learning problem in (2) relies on defin-
ing suitable probability distributions on the observations Y and on the set of unknowns
{β,M,C}. The observation model in (1) described above corresponds to the isometric Gaus-
sian distribution on Y given by

p(Y|β,M,C) ∝ β
3Q
2 exp

(
− β

2
‖Y −MC‖2F

)
. (3)

The obvious choice for the noise precision, β, since it is a positive-valued variable, is a gamma
distribution, thus, p(β) = Γ(β|aβ, bβ) with aβ, bβ > 0. Our modelling for the stain vector
matrix M focuses on imposing unit norm for each column ms; for this purpose we use a flat
prior on the columns of M such that p(ms) = const., if ‖ms‖ = 1, 0 otherwise, and assume
independent column vectors. Finally, notice that the sparsity constraint on the coefficient
vectors cq in (2) is equivalent to imposing a zero-mean Laplace distribution with scale param-
eter λq > 0, p(cq) ∝ exp

(
−
√
λq‖cq‖1

)
. The Laplace prior is more peaked than the normal

distribution with longer tails, which is also interesting for structure preserving (Babacan
et al., 2012). Unfortunately, the non-conjugacy of this distribution with the likelihood in
(3) makes inference intractable. We circumvent this problem by using a two-tiered hierar-
chical prior on cq instead. First, we impose a zero-mean normal distribution with diagonal
covariance matrix Γq = diag(γq), i.e., cq ∼ N (cq|0Ns ,Γq). And secondly, we use the Gamma
hyperpriors on the positive-valued γsq given by γsq ∼ Γ(1, λq/2) and assume independence
yet again, so that p(γq) =

∏
s p(γsq). This two-tier prior can be further expanded with a

third prior on the scale parameters λq, however, although it gives more flexibility to the
model, in practice does not turn into noticeable estimation improvement. The idea behind
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this hierarchical prior is to sample the covariance matrix of the normal distribution p(cq|γq)
from a Gamma distribution with shape 1 and variable scale (an exponential distribution).
The samples produced using this scheme follow a Laplace distribution, which can be shown
by marginalization of γq, i.e.,

∫
p(cq|γq)p(γq|λq)dγq ∼ Laplace(cq|λq).

In order to estimate the whole set of unknowns, Θ, that includes the noise precision, the
color-vector matrix and the coefficient matrix along with the corresponding hyperparameters,
Θ = {β,M,C,Γ,λ} with Γ = {γq}Qq=1 and λ = {λq}Qq=1, we make use of Bayesian inference.
The exact calculation of the true posterior p(Θ|Y) = p(Y,Θ)/p(Y), with joint distribution

p(Y,Θ) = p(Y|β,M,C)p(β)p(M)p(C|Γ)p(Γ|λ), (4)

cannot be done analytically since it requires the marginal p(Y) =
∫

p(Y,Θ)dΘ which is
intractable. We use variational inference to approximate the true posterior, which requires
the assumption of simplifications on the form of the posterior. These simplifications should
render the inference tractable, while at the same time ensure that the model is flexible
enough to closely approximate the true posterior distribution. Concretely, we will assume
that our approximate posterior q(Θ) factorizes as q (Θ) = q(β)q (Γ) q (λ) q(C)

∏
s q(ms),

which is referred to as mean-field factorization in the literature, see (Bishop, 2006). Notice,
however, that we do not make any assumption on the individual distributions of each random
variable; this will be determined by the inference procedure. The optimal solution is found by
minimizing the Kullback-Leibler divergence between the approximate q(Θ) and true posterior
p(Θ|Y). This optimization has a well-known optimum given by

log q (θi) = 〈log p (Y,Θ)〉Θ\θi + const., (5)

where 〈·〉Θ\θi denotes the expectation taken w.r.t. all approximating variables θj ∈ Θ, with
j 6= i. In the case of degenerate distributions q(θi), this calculation simplifies to finding the
maximum w.r.t. θi of the same expectation as in (5). Notice that this implies that we will
not find a proper distribution for θi, but only its mean with zero variance. We will assume
degenerate posterior distributions on M, Γ and λ, which will simplify the calculation of the
expectations w.r.t. these random variables since 〈f(θi)〉θi = f(θ̂i), where θ̂i := 〈θi〉θi . In
contrast, we will obtain full distributions for the noise precision and the stain concentration
sparse vectors.

After careful derivation using (5) on C, (Serra et al., 2017) for the details, we find that
each cq follows a Gaussian distribution with mean and covariance matrix given by

ĉq = β̂ΣcqM̂
Tyq, (6)

Σcq =
(
β̂M̂TM̂ + Γ̂−1q

)−1
. (7)

We can now find the optimal estimations for the associated hyperparameters of the hier-
archical prior γq and λq by maximization of the right-hand side of (5) as described above,
obtaining

γ̂sq =− 1

2λ̂q
+

√
1

4λ̂2q
+
ĉ2sq + Σcq(s, s)

λ̂q
, (8)

λ̂q =
2Ns∑Ns

s=1 γ̂sq
. (9)
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It is interesting to study the effect of the uncertainty on the estimates of csq given by Σcq(s, s)
in (8). As our uncertainty in the estimation grows, so will γsq, which models the variance of
csq, and, therefore, it will increase the uncertainty on this parameter.

The optimal ms ∈ M can be found assuming column independence and degenerate ap-
proximate posteriors q(ms) on a point on the unit sphere, ‖ms‖ = 1. Following the inference
procedure described above, we have

m̂s ∝
[
Y −

∑

i 6=s
m̂iĉi,:

]
ĉT
s,: −

∑

i 6=s

∑

q

σisqm̂i, (10)

where σisq denotes Σcq(i, s) and defines the influence of the uncertainty of the estimation of
the coefficient vectors. The actual estimate of ms is obtained by normalizing (10).

Finally, applying (5) for β results in a gamma-distributed posterior with mean given by

β̂ =
3Q+ 2aβ

‖Y − M̂Ĉ‖2F +
∑Q

q=1 tr(M̂TM̂Σcq) + 2bβ
. (11)

Once more, note here how the uncertainty in the estimation of the coefficient vectors cq given
by Σcq impacts the estimation of the noise precision, resulting in lower precision (higher
variance) when this uncertainties grow.

The procedure to obtain the estimated M̂ and Ĉ using the above presented modelling
and inference is summarized in Algorithm 1.

Algorithm 1 Pseudocode for BKSVD BCD algorithm

Input: Observed image I, initial normalized M, no. stains Ns.
Output: Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,

1: Obtain the OD image Y from I and set m̂s = ms, Σcs = 0, Ĉ = M+Y, with M+ the
Moore-Penrose pseudo-inverse of M and Γ = 1

2: while Ĉ has not converged do
3: for q in 1, . . . , Q do
4: Update λ̂q using (9)
5: Update γ̂sq using (8), for all s in 1, . . . , Ns

6: Update Σcq and ĉq using (7) and (6), respectively
7: end for
8: for s in 1, . . . , Ns do
9: Update m̂s using (10)

10: end for
11: Update β̂ using (11)
12: end while
13: return M̂ and Ĉ

4. Sequential Inference for Sparse Bayesian Models

The previous section introduced a mathematically sound inference procedure. However,
the sparse values in the columns cq are not guaranteed to be zero. Since most of the pixels
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in the image should be stained only by one stain, higher sparsity is desired. To increase the
sparsity of the obtained solution we use Empirical Bayes (Tipping and Faul, 2003; Babacan
et al., 2010; Serra et al., 2017) to obtain a new inference procedure. This approach was
first presented in (Tipping and Faul, 2003) for Sparse Bayesian Learning (SBL) and later
in (Babacan et al., 2010) and (Serra et al., 2017) for recovery of sparse signals. In this
paper, we introduce the necessary adaptation for the application to histological blind color
deconvolution.

In particular, for each cq, we use a constructive approach for identifying the locations
where it takes non-zero values, i.e., its support. At these non-zero locations, we use Maximum
A Posteriori (MAP) estimation to obtain the values of the hyperparameters. Therefore,
sparsity makes the effective problem dimensions to be drastically reduced. The estimated
values of the columns cq in its support are obtained using (6).

The main idea behind this inference scheme consists on replacing the variational inference
of hyperparameters γq with direct maximization of the (log) marginal likelihood

L(γq) = log
[
p(γq|λ̂q)

∫
p(yq|cq, β̂)p(cq|γq)dcq

]
, (12)

where p(yq|cq, β̂) = N (yq|M̂cq, β̂
−1I), following the observation model, and M̂, β̂ and λ̂q are

estimated as shown in Sec. 3. The marginal likelihood L(γq) has interesting properties that
allow for a highly efficient maximization thereof. Concretely, its functional form allows us
to separate the contribution of a single γsq so that L(γq) = L({γiq}i 6=s) + l(γsq). A closed
form solution of the maximization of L(γq), when only its s-th component is changed, can
be found by holding the other hyperparameters fixed, taking its derivative with respect to
γsq and setting it equal to zero. Note that this derivative will be different from zero only for
l(γsq). Analysis of l(γsq) (see Appendix A) shows that the marginal likelihood has a unique
maximum w.r.t. γsq and allows us to efficiently estimate the increase in log-likelihood that
changing this parameter will introduce.

The Empirical Bayesian K-SVD (EBKSVD) in Algorithm 2 is initialized by including
only one color vector, the one that produces the highest increase in log-likelihood, and the
corresponding γsq; the remaining {γiq}i 6=s are set to 0. At each iteration of the algorithm we
will be able to add a new color vector, and its corresponding γsq, to our current model if
the previous value of the γsq that produces the greatest increase of L(γq) was zero; we will
remove the element from the model if the optimal value of γsq is 0; or, finally, reestimate
(update) γsq if ms was already part of the model. In all three cases we are able to make
incremental changes to the model structure while guaranteeing an increase of log-likelihood.
Finally, the updates for cq and Σq will be done using only the γsq included in the model,
which will guarantee the sparsity of this inference method. See details in Appendix A.

To conclude this section, let us briefly compare the variational and empirical approaches.
As previously discussed, the variational inference in section 3 achieves a softer sparsity, where
the concentrations will include residual non-zero values. The combination of residual and
non-sparse values might influence the final estimation of M̂. The empirical approach reduces
this effect by calculating only the values where cq takes non-zero values. Empirical Bayes is
usually used to reduce the computational burden of Bayesian methods, as the calculation of
the covariance matrix in (7) require to calculate the inverse matrix at each step and might
be expensive for big matrices. Note that this is not the case for BCD of histological images,
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Algorithm 2 Pseudocode for Empirical BKSVD BCD algorithm

Input: Observed image I, initial normalized M, no. stains Ns.
Output: Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,

1: Obtain the OD image Y from I and set m̂s = ms, Σcs = 0, Ĉ = M+Y, with M+ the
Moore-Penrose pseudo-inverse of M, Γ = 0, and λ = 0

2: while Ĉ has not converged do
3: for q in 1, . . . , Q do
4: Choose a s ∈ {1, . . . , ns} (or equivalently choose a γsq)
5: Find the optimal value of γ̂sq using (A.9)
6: Update Σcq and ĉq using (7) and (6), respectively
7: Update gsq and hsq using (A.12) and (A.14), respectively, for all s in 1, . . . , Ns

8: Update λ̂q using (9)
9: end for

10: for s in 1, . . . , Ns do
11: Update m̂S using (10)
12: end for
13: Update β̂ using (11)
14: end while
15: return M̂ and Ĉ

where the number of stains is usually Ns = 2 and the inversion of 2 × 2 matrices is not
costly. Although the computational saving is reduced, the additional sparsity induced by the
empirical method is useful in the estimation of M, as we will make clear in the following
sections.

5. Application of Bayesian K-SVD for WSI analysis

Bayesian methods are usually computationally expensive as they require to take into
account the uncertainties of the coefficients at each element in the image. While previous
applications as denoising or inpainting (Serra et al., 2017) were carried out on small 256×256
grayscale images (64Kpixels), its application to blind color deconvolution problem is hindered
by the massive size of WSI images. WSIs are RGB images in the Gigapixels order which makes
their processing challenging. Therefore, it is extremely necessary to introduce additional
adaptations that make the BKSVD and EBKSVD more suitable for WSI images.

First, during training and reconstruction of the histological images, the highest compu-
tational cost is the computation of the sparse representation of the concentrations for each
pixel. However, the reduced amount of stains suggests that it is not required to use all WSI
pixels to learn M̂. We here reformulate (1) as

YB = MCB + NB , (13)

where YB is a representative subset of the pixels in Y and CB its associated concentration
matrix. To find the representative set of pixels, we first look at those that can be discarded.
Large background areas are typically removed upon patching for most applications. However
background pixels can also appear on lumens or tissue borders. Since those low stained
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pixels do not provide information on the stain’s color, following Vahadane et al. (2016), we
can remove them for the estimation of M. The optical density of those pixels is close to zero
making it easy to filter them. The removal of low stained pixels accelerates the procedure of
estimating M̂ and eliminates the influence of background pixels.

Despite considering only tissue pixels, usually there are still too many pixels for practical
application of the algorithms. WSI images often include several resolutions. While using the
smaller images obtained at lower magnifications could be tempting, we should avoid them
in the estimation of M. Pixels values at lower resolutions, when interpolated linearly, are a
weighted average of a set of pixels at a higher resolution. Note, however, that this average
takes place in the RGB space. Then, obtaining the OD image requires the use of the non-
linear logarithmic transformation. As the logarithm is a concave function, for a single pixel
at a lower resolution, we have for non-negative weights {τq} in a neighborhood that add up
to one

y = − log

(∑

q

τq
iq
i0

)
≤ −

∑

q

τq log

(
iq
i0

)
= −

∑

q

τq(Mcq) (14)

where iq = [i1, ..., iN ] are the high resolution pixels contributing to the averaged pixel. Al-
though the linearity in the RGB space is not preserved in OD, we can expect the assumption
that most pixels are stained by a single stain to be less satisfied as resolution decreases.
Therefore, as the proposed methods are based on the sparsity assumption, it is preferred to
extract a subset of pixels from the WSI at the higher magnification available, typically 40×.

Therefore we need find another method to reduce the amount of pixels to be considered.
Patching is the most common way of dealing with the massive size of WSIs during preprocess-
ing or classification. This approach allows to take into account local tissue structures, which
are important for WSI interpretation. However, it is not a suitable solution for obtaining M̂
as local tissue structures may not correctly represent both stains. Note that the proposed
framework assumes that each pixel stain’s concentrations are independent, thus eliminating
spatial constrains. This modelling allows us to select individual pixels in the image, indepen-
dently of their neighbours. Therefore, we can obtain a representative subset YB within the
image using an uniform random sampling of the stained pixels. This allows, on the one side,
to accurately sample the whole WSI the image and, on the other, dramatically to reduce the
number of pixels used to estimate the stain-color matrix M.

For a given subset YB, the color vector matrix M̂ can be estimated using BKSVD or
EBKSVD in Alg. 1 and Alg. 2, respectively. To avoid overfitting to a given subset YB,
once the chosen method converges, a new batch of pixels YB is selected and the estimation
procedure is repeated until the matrix M̂ converges. Notice that we do not use complete
epochs as our objective is to ensure that the obtained M̂ faithfully represents the colors in
the WSI without using all pixels in the image.

Once the color vectors of the image are estimated using YB, we still need to obtain the
stain concentrations C for the whole image. We could consider to execute Alg. 1 or Alg. 2 for
the whole image keeping M̂ fixed. However, this still requires to iterate in order to estimate
the model parameters and concentrations at each pixel, which is time prohibitive for the
whole image. Then, assuming that M̂ is an accurate estimation of M, the final values of
the concentrations, Ĉ, for the whole image will be computed as Ĉ = M̂+Y (Ruifrok and
Johnston, 2001; Alsubaie et al., 2017), with M̂+ the Moore-Penrose pseudo-inverse of M̂.
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Note that, for a fixed M̂, this is also the minimum squared error estimator of C from (1).
Finally, the described multibatch procedure is summarized in Algorithm 3.

Algorithm 3 Multibatch Bayesian KSVD

Input: Observed image I, initial normalized M, no. stains Ns, batch size B.
Output: Estimated stain color-vector matrix, M̂, and concentrations, Ĉ,

1: Obtain the OD image Y from I
2: Remove low stained pixels from Y
3: while M̂ has not converged do
4: Sample a batch YB of B stained pixels from Y.
5: Estimate M̂ using BKSVD or EBKSVD
6: end while
7: return M̂ and Ĉ = M̂+Y

6. Materials and methods

To assess its quality, the proposed BKSVD and EBKSVD were compared to the following
methods frequently used in the literature: the classical non-blind CD method by Ruifrok
and Johnston (2001) and the BCD methods by Macenko et al. (2009), Vahadane et al.
(2016), Alsubaie et al. (2017), Hidalgo-Gavira et al. (2020), Pérez-Bueno et al. (2020), and
Zheng et al. (2019). They will be denoted by RUI, MAC, VAH, ALS, HID, PER, and ZHE,
respectively. All experiments in the following sections were conducted using the multibatch
Bayesian K-SVD2 in Alg. 3 with Ns = 2. As initial color-vector matrix, we used the standard
H&E vectors proposed by Ruifrok and Johnston (2001). The proposed method was run until
the criterion ‖M(n) −M(n−1)‖2F < 5 × 10−3 was met. Algorithms 1 and 2 were run until

the criterion ‖ 〈cs〉(n) − 〈cs〉(n−1) ‖2/‖ 〈cs〉(n) ‖2 < 10−4 was met by both stains. All model
parameters are automatically estimated. Using the obtained M̂ and Ĉ it is possible to
perform CN and SCA. Further details are provided in the following experimental section.

To test the performance and robustness of our algorithm in different scenarios related to
digital histopathology (i.e., stain separation quality, color normalization, and stain color aug-
mentation for cancer classification), we have selected data containing a variety of histopatho-
logical images from several types of tissue and laboratories. In this section we describe the
details of the databases used in this paper.

6.1. Warwick Stain Separation Benchmark (WSSB)

WSSB dataset (Alsubaie et al., 2017) contains 24 H&E stained images of different tissues
(breast, colon, and lung) from different laboratories which have been captured with different
microscopes. For each image, its ground truth stain color-vector matrix, MGT , was manually
obtained by expert pathologists as follows. The experts selected a set of pixels for each
stain, based on biological structures: nuclei for hematoxylin and cytoplasm for eosin. Then,
the median value of each set of pixels with a single stain was used as a measure of the

2The code used in the experiments will be made available at https://github.com/vipgugr upon acceptance
of the paper.
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Table 1: CAMELYON17 dataset labeling structure

Stage label

Subset WSI total Negative ITC Micro Macro

Whole training set 500 318 36 59 87
Annotated 50 0 16 17 17
Not annotated 450 318 20 42 70

corresponding stain color-vector. Ground truth concentrations were obtained in Alsubaie
et al. (2017) from the ground-truth color-vector matrix as

CGT = M+
GTY. (15)

From those ground-truth concentrations and color-vectors, a separate RGB image for each
stain is obtained. This database will be used for BCD evaluation.

6.2. CAMELYON17

This database is part of the CAMELYON17 challenge (Bándi et al., 2019) for breast
cancer metastasis detection in the lymph node sections. We will use it in CN and classification
experiments including the use of SCA.

CAMELYON17 contains a total of 1000 WSIs from 5 medical centers. Only the training
set, which contains 500 WSIs, was used since the annotations for the test WSIs are not
available yet. The dataset comprises 20 patients per center and 5 slides per patient. Cancer
regions were annotated by pathologists only on 50 WSIs, but the stage label: negative,
isolated tumor cells (ITC), micrometastasis (Micro), macrometastasis (Macro), is available
for all the slides in the training set. See Table 1 for details.

Following Zheng et al. (2019) the experiments on this dataset were performed using non-
overlapping 224× 224 pixel patches, with at least a 70% of tissue, sampled from each WSI.

7. Experimental results

We have carried out a set of experiments to evaluate the performance of the proposed
framework on the most common histological color deconvolution related tasks: stain sep-
aration, image normalization, and CNN-based classification, where we include the use of
SCA.

First, we evaluate the influence of the pixel batch size on the proposed methods. Then
we assess the quality of the concentration and color-vector matrices obtained by the BCD
algorithms. In a third experiment, we analyze the quality of the CN obtained by the al-
gorithms when the color-vectors are substituted by those of a reference-image, keeping the
concentration values. Finally, the deconvolved, normalized, and SCA images are evaluated
on a histological classification scenario.

7.1. Influence of the batch size in the color vector estimation

The use of pixel sampling introduced in Section 5 requires to assess the influence of the
pixel batch size on the similarity of the obtained color vector matrix M̂P (obtained using P
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Table 2: Mean values required to estimate M̂P and M̂all using Alg. 3

BKSVD
batch size in pixels full images

50 100 300 500 1000 2000 4000 104 2·104 105 2·105 4·106 16·106

no. batches 9.8 10 7.3 7.2 5.3 4.7 4.2 4.1 4.3 4.3 1 1 1
no. total iter. 97.34 80.07 43.87 41.53 31.20 29.07 27.87 27.34 27.6 27.67 18 13 17
time/iter. (s) 0.09 0.11 0.14 0.15 0.17 0.20 0.24 0.34 0.52 1.88 2.78 34.08 268.80
total time 8.68 8.86 6.00 6.05 5.37 5.86 6.8 9.31 14.47 52.09 50.06 443.06 4569.60

EBKSVD
batch size in pixels full images

50 100 300 500 1000 2000 4000 104 2·104 105 2·105 4·106 16·106

no. batches 9.3 8.7 7.8 8 5.3 5.5 5.4 5.2 4.8 3.7 1 1 1
no. total iter. 154.47 135.27 109.33 98.73 85.00 79.13 76.2 67.8 49.4 43.00 34 8 15
time/iter. (s) 0.10 0.13 0.17 0.21 0.27 0.43 0.77 2.02 3.99 19.75 38.23 431.01 2338.30
total time 15.95 18.03 18.65 20.33 22.83 33.91 58.78 136.99 197.27 849.37 1300.15 3448.11 35074.50

pixels) to the M̂all obtained using all non-white pixels and the execution time required for the
estimation. Unfortunately, it is not possible to use complete WSIs in this experiment due to
the computational burden, therefore we use three different images of typical sizes 500× 500,
2000× 2000 and 4000× 4000 pixels and batch sizes from 50 to 1.6 · 107 pixels. Algorithm 3,
using both BKSVD and EBKSVD, was run 5 times for each different batch size up to 2 · 104

pixels and only once for bigger ones.
Table 2 summarizes the mean number of batches, iterations, time per iteration and total

time required by Alg. 3 on the three images tested when a different batch sizes are used.
Analogous figures for Alg. 1 and Alg. 2 using the whole image are also reported. For both
BKSVD and EBKSVD, the number of batches and the total number of iterations required
to estimate M̂P decrease with the size of the batch P . The time per iteration grows with P
reaching unaffordable values for higher values of P , which supports the idea of working with
smaller batches. EBKSVD consumes more time, both with a larger number of iterations
required to converge and a higher time per iteration. The times required by Alg. 1 and
Alg. 2 are usually higher than those needed by Alg. 3, even when a large batch size is used.
Although the tested images are far from the Gigapixel size of a WSI, the total time required to
estimate the color vector matrix using the full images shows the importance of the adaptation
introduced in section 5 for the use of Bayesian methods on the BCD problem for histological
images.

Furthermore, the comparison plotted in Figure 1, depicting the time and convergence
ratio for the different images and batch size, shows that the execution time grows linearly
with P while the difference between M̂P and M̂all quickly converges to zero. Note that using
only a batch size of 50 pixels we achieve a difference in norm of less than 0.05 in most cases.
The EBKSVD method, plotted in dashed lines, requires a lower amount of pixels to converge
but also requires more time since it needs to find the location of non-zero elements in each
step. Using a batch size of 1000 pixels ensures an accurate estimation, with low variance
and an affordable computational burden. Note that the time needed by EBKSVD grows
significantly faster for batch sizes above 1000 pixels. The BKSVD method is significantly
faster but requires more pixels to reach the same output as using the whole image. According
to the three images tested and the above mentioned criteria, a batch size of 4000 pixels is
the best choice for this method.
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Figure 1: Top: Mean time required to obtain the dictionary for the proposed methods. Bottom:
Difference between the obtained dictionary M̂P with a batch size P and the dictionary M̂all obtained using
all pixels for the BKSVD (left) and EBKSVD (right) methods.

Note that both EBKSVD and BKSVD provide an accurate estimation with a batch size
of 1000 and 4000 pixels, respectively, for all the image sizes tested. The results plotted in
Fig. 1 suggest that these batch sizes will also provide an accurate estimation of M for larger
images in a similar time, making Alg. 3 an scalable solution for obtaining M̂ in WSIs. As a
consequence, for the rest of the experiments in this paper, the batch size was fixed to 1000
pixels for EBKSVD and 4000 pixels for BKSVD.

7.2. BCD Stain Separation

Table 3: PSNR and SSIM for the different methods on the WSSB dataset (Alsubaie et al., 2017).

PSNR RUI MAC VAH ALS HID PER ZHE EBKSVD BKSVD
Image Stain

Colon
H 22.27 23.91 25.83 21.11 28.57 28.62 17.89 32.12 34.08
E 20.70 21.55 26.29 21.94 27.58 27.60 14.76 31.11 33.32

Breast
H 15.27 26.24 25.46 24.60 28.81 29.14 15.31 31.69 32.20
E 17.66 23.62 27.68 25.92 26.60 26.76 14.99 28.81 29.43

Lung
H 22.47 19.52 25.87 20.62 32.91 33.10 19.51 33.06 32.67
E 22.05 18.09 25.53 23.95 30.77 31.02 16.23 31.87 30.61

Mean
H 20.00 23.22 25.72 22.11 30.10 30.29 17.57 32.29 32.98
E 20.14 21.08 26.50 23.94 28.32 28.46 15.33 30.60 31.12

SSIM RUI MAC VAH ALS HID PER ZHE EBKSVD BKSVD
Image Stain

Colon
H 0.8141 0.8095 0.8851 0.7241 0.9542 0.9544 0.7894 0.9733 0.9826
E 0.7456 0.6365 0.8904 0.8540 0.9139 0.9161 0.4625 0.9422 0.9646

Breast
H 0.6215 0.9552 0.9239 0.8068 0.9528 0.9560 0.6488 0.9845 0.9801
E 0.7644 0.9336 0.9550 0.9380 0.9464 0.9492 0.7150 0.9717 0.9632

Lung
H 0.7987 0.7389 0.8912 0.5551 0.9763 0.9757 0.8116 0.9759 0.9764
E 0.7734 0.5088 0.8195 0.8939 0.9306 0.9353 0.5390 0.9670 0.9461

Mean
H 0.7448 0.8345 0.9100 0.6953 0.9611 0.9621 0.7500 0.9779 0.9797
E 0.7611 0.6930 0.8883 0.8953 0.9303 0.9336 0.5722 0.9603 0.9580

To evaluate the fidelity of the H&E separation obtained by the different BCD methods,
we use the WSSB database (introduced in Section 6). A ground truth separation from WSSB
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a) Ground truth b) RUI c) MAC d) VAH e) ALS

f) HID g) PER h) ZHE i) EBKSVD j) BKSVD

Figure 2: a) Ground truth separated E-only (left) and H-only (right) images from a Breast image of the
WSSB dataset in Alsubaie et al. (2017) and results for the b)-h)competing and i-j) proposed methods.

is shown in Figure 2(a). Figures 2(b)–2(j) contain the separated images obtained by different
BCD methods. RUI obtains highly contrasted images, but the fixed color vectors are far
from those of the ground truth in Figure 2(a). Some nuclei are moved from the H to the
E channel. MAC results are closer to the ground truth but the eosin channel still presents
residual information from the nuclei. ALS creates artifacts in the flat zones of the H channel
and over-saturates the colors. HID obtains colors slightly more saturated than the ground
truth and smooths some details. ZHE colors seem unreal and it tends to mix the information
of both channels with nuclei clearly appearing in the E channel and cytoplasm in the H
channel. The proposed EBKSVD and BKSVD, VAH, as well as PER produce colors very
similar to the ground truth separation in Figure 2(a). VAH obtains very similar colors with
high differentiation between bands but some information is lost in the H channel, apparently
moved to the E channel (see, for instance, the right side of the H channel and the center-left
side of the E channel in Figure 2(d)). PER obtains a very good stain separation, although the
E color is slightly more reddish than the ground truth. This is due to the prior on the color
matrix. It imposes similarity to a reference color vector matrix manually selected for each
tissue type. The proposed EBKSVD and BKSVD produce sharp edges, and automatically
estimate the color vector matrix without manually selecting a reference. EBKSVD obtains
a better mean estimation for the eosin and hematoxylin channels, while BKSVD obtains a
slightly darker eosin and a bluish hematoxylin color. Both methods obtain richer details, and
a stain separation closer to the ground truth than the competing methods.

The quantitative comparison, based on the Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM), is presented in Table 3. The proposed BKSVD outperforms
the rest of methods obtaining a higher mean PSNR (+2.69dB in H and +2.66dB in E) and a
higher SSIM than the closest competitor (PER). The proposed EBKSVD obtains the second
best mean performance just behind BKSVD, and is able to obtain better values for some
tissue types (i.e., lung tissue). For SSIM, both BKSVD and EBKSVD methods are close and
the best choice depends on the tissue type.
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Figure 3: Mean PSNR in dB vs running time in seconds for deconvolving a 2000× 2000 image.

The obtained results indicate that the proposed EBKSVD and BKSVD correctly separate
the structural information in the image for all tested tissue types. BKSVD obtains the best
estimation in mean, mainly due to its higher performance in the colon images. Since colon
images are obtained at a lower magnification (20×), this suggests that BKSVD performs
better than EBKSVD when a lower magnification is used, that is when a lower sparsity
is expected. This is consistent with the results obtained in Serra et al. (2017) where the
performance of the EBKSVD is affected by a lower sparsity.

In both cases, the high quality stain separation obtained by the proposed methods guar-
antees the fidelity to the tissue in CN and SCA transformations detailed in the following
sections.

7.2.1. Time Comparison

One important issue with BCD methods is that the required time to perform deconvo-
lution needs to be low enough for practical use. Figure 3 shows the time needed by each
BCD method vs. PSNR for the WSSB dataset. The RUI method is the fastest since no
color estimation is performed. The computational time increases with the complexity of the
method. The proposed BKSVD method outperforms the rest obtaining a significantly higher
PSNR while requiring a similar time to HID and VAH methods. EBKSVD obtains the second
highest mean PSNR but requires a higher computational time to obtain the sparser solution.
Note that the proposed EBKSVD and BKSVD methods are scalable, requiring a similar time
for larger images (see Section 7.1).

7.3. Color Normalization

This section compares the color distribution in the original data and the CN obtained
by the competing methods. CN is the most extended procedure to deal with stain color
variations because CNN based CAD systems usually work with the observed RGB image.
CN aims to reduce the impact of color variations on those systems. With the use of BCD,
CN can be easily achieved as an additional step, as the stain color information and stain
concentrations are separated and can be modified independently. CN based on BCD ensures
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Table 4: NMI values for the centers in CAMELYON17.
Center 0 Center 1 Center 2 Center 3 Center 4 All centers

Method SD CV SD CV SD CV SD CV SD CV SD CV

Original 0.0403 0.0527 0.0464 0.0667 0.0574 0.0792 0.0601 0.0867 0.0377 0.0441 0.0774 0.1036
MAC 0.0474 0.0734 0.0585 0.1035 0.0855 0.1559 0.0812 0.1489 0.0577 0.0771 0.1032 0.1689
VAH 0.0535 0.0868 0.0658 0.1236 0.0929 0.1787 0.0818 0.1582 0.0638 0.0892 0.1058 0.1823
ALS 0.0512 0.0855 0.0632 0.1303 0.0641 0.1267 0.0841 0.1740 0.0554 0.0821 0.0993 0.1806
HID 0.0413 0.0637 0.0363 0.0576 0.0587 0.0868 0.0463 0.0718 0.0478 0.0636 0.0635 0.0948
PER 0.0405 0.0626 0.0359 0.0570 0.0561 0.0832 0.0454 0.0706 0.0471 0.0628 0.0629 0.0941
ZHE 0.0345 0.0434 0.0277 0.0365 0.0449 0.0608 0.0428 0.0566 0.0311 0.0375 0.0489 0.0632
EBKSVD 0.0243 0.0313 0.0331 0.0440 0.0292 0.0379 0.0327 0.0436 0.0252 0.0323 0.0320 0.0418
BKSVD 0.0202 0.0258 0.0239 0.0317 0.0304 0.0398 0.0280 0.0372 0.0258 0.0329 0.0290 0.0378

fidelity to the image structures, while reducing color variations. Following Vahadane et al.
(2016) we normalize an input image to a reference image using

Ŷnorm =
ns∑

s=1

m̂ref
s ĉnorms,: , (16)

where

ĉnorms,: = ĉs,:
P99(ĉ

ref
s,: )

P99(ĉs,:)
, (17)

and m̂s
ref and ĉs

ref are the color vectors and concentrations obtained from the reference
image. P99(·) represents the pseudo-maximum at 99%. Note that the color vectors m̂s

are replaced by m̂ref
s corresponding to the reference image, and the dynamic range of ĉs is

corrected to be the same as that of ĉrefs . Therefore, Ŷnorm is the normalized OD image and
the normalized RGB image is obtained as Înorm = exp(−Ŷnorm).

To measure the quality of the CN, we used the normalized median intensity (NMI) (Basa-
vanhally and Madabhushi, 2013), defined as

NMI(I) = median(u)/P95(u), (18)

where I denotes a WSI and u is a vector where each component ui is the mean value of the
R, G, and B channels at the ith pixel, (Bejnordi et al., 2016). The NMI value was obtained
for each image in a given dataset, and the standard deviation (NMI SD) and coefficient of
the variation (NMI CV), i.e., NMI SD divided by the mean, were used as metrics. Lower
values of NMI SD and NMI CV indicate a more consistent normalization.

CN tests are carried out on the CAMELYON17 dataset, introduced in Sect. 6, which
includes images from 5 different centers. Following Zheng et al. (2019), 500 patches of size
224×224 pixels were sampled from each WSI in the dataset for CN and classification purposes.
To avoid the influence of large background regions, only patches with at least 70% tissue were
considered. The patch size is motivated for its use in the classification experiments in section
7.4 and does not affect the measurement of the normalization quality.

The results of the proposed and competing CN algorithms for each center and the whole
dataset are reported numerically in Table 4 and graphically in Figure 4 where the NMI
information for each center and method is plotted as a violin plot. MAC, VAH and ALS
transform the images in each center to a similar distribution, but with a larger inter and
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intra-center variance than the original images’ distribution. Bayesian methods HID and PER
strongly reduce the intra-center differences, but are not able to completely reduce inter-center
differences. They have a similar behavior as they share the same similarity prior on the color
vector matrix. ZHE significantly reduces intra-center differences but does not completely
eliminate inter-center variance. The proposed methods outperform all competitors. Figure 4
and Table 4 show that BKSVD obtains the most consistent normalization, with the lowest
intra-center variance and the most similar median values for all the centers in the dataset.
EBKSVD closely follows, obtaining the best values for two out of five centers, but with
slightly more variation than BKSVD, as can be seen in Figure 4(h) and 4(i).

The CN results were also compared in terms of fidelity to the original observed image
using PSNR and SSIM. Although it is important to keep the structure of the original image,
notice that fidelity and CN could be conflicting goals as the best fidelity is obtained by
not modifying the image. PSNR and SSIM values are shown in Table 5. ZHE obtains
the highest fidelity, followed by the proposed BKSVD and EBKSVD. Except for ZHE, that
was optimized for its use in CN, the results obtained by the other methods are consistent
with those presented in Section 7.2. The better the fidelity to the H&E GT, the better the
fidelity after CN. As previously discussed, our methods guarantee fidelity to the H&E bands
separately. Since the CN in (16) modifies the concentration dynamic range, it will reduce
the similarity to the original image (e.g. by increasing the contrast between stains) but will
not have a negative impact on the stain structure and, hence, the PSNR and SSIM values
are not heavily affected.

Table 5: PSNR and SSIM for the normalized CAMELYON17 dataset.

MAC VAH ALS HID PER ZHE EBKSVD BKSVD

PSNR 13.80 12.74 11.16 17.77 17.73 22.20 19.29 19.54
SSIM 0.7265 0.6490 0.3132 0.8617 0.8644 0.9603 0.8594 0.8735

For a visual qualitative analysis, we depict in Figure 5 a sample patch for each center and
the corresponding CN by the different methods. The first row shows the reference image and
some 224× 224 patches extracted from it showing the variance within the reference image at
the same scale as the other patches. The remaining rows show, in the first column, the patch
to be normalized and the rest of the columns the CN result with different methods. We notice
that MAC and VAH normalize the images but do not obtain colors similar to the reference.
ALS introduces color artifacts in most of the patches. ZHE, which is trained to reduce NMI,
obtains good figures, but tends to over-brighten the images to reduce NMI variation. The
Bayesian methods HID and PER also obtain a consistent normalization, but in some cases,
they tend to over-estimate the presence of hematoxylin. The proposed BKSVD and EBKSVD
obtain the images most similar to the reference image for all centers, producing high quality
results and minimizing the inter-center color variations while maintaining clear differences
between both stains. The difference between both methods is difficult to appreciate in this
figure. Only in the image of the second center (third row), where hematoxylin and eosin
are difficult to differentiate, EBKSVD clearly separates them although it introduces some
artifacts, while BKSVD and the other methods do not correctly identify the eosin.
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Figure 4: Violin plots of NMI values for each center in CAMELYON17. The blue shadow represents the
histogram of NMIs for each plot, the maximum, median and minimum values for each plot are marked with
bars. The x-axis indicates the center corresponding to a set of images.

7.4. Data augmentation and cancer classification

The main objective of BCD and CN is to improve the performance of CAD systems,
usually based on patch classification systems (Esteban et al., 2019; Tellez et al., 2019). In
this section we quantitatively assess the effect of BCD, CN and SCA on a breast cancer de-
tection task (CAMELYON17). For that, we train a VGG19 (Simonyan and Zisserman, 2015)
classifier, commonly used in cancer detection (Esteban et al., 2019), on the original, color
normalized, and color augmented patches, both from RGB images and OD concentrations.

As previously discussed, using the original WSIs implies dealing with inter-center staining
variations that produce generalization errors to unseen stain color variations. BCD and
CN aim to reduce the generalization error by reducing color-variation in the input data.
However, it is also possible to reduce the generalization error by simulating realistic variations
of the training data. The SCA approach is a specific technique of data augmentation for
histopathological images that produces realistic variations of the stain colors of the available
data. As CN, SCA can also be obtained as an additional step after BCD. While Tellez et al.
(2018) applies SCA on the concentrations obtained from Ruifrok and Johnston (2001), we
propose to use a combination of both CN and SCA as to obtain an augmented OD image
Ŷaug as follows:

Ŷaug =
ns∑

s=1

m̂ref
s ĉaugs,: , (19)

where the augmented concentrations ĉaugs,: are synthesized as

ĉaugs,: = αsĉ
norm
s,: + βs · 1, (20)

being ĉnorms,: the normalized concentrations obtained using (17) and αs, βs random values fol-
lowing uniform distributions U(1−σ, 1+σ) and U(−σ, σ), respectively. This procedure leads
to augmentation on the objective reference domain, allowing us to combine the advantages
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Reference 224× 224 patches from the reference image

Original MAC VAH ALS HID PER ZHE EBKSVD BKSVD

Figure 5: Example 224 × 224 patches from different centers in CAMELYON17. The first row shows the
reference image and some 224 × 224 patches extracted from the reference. Rows 2–6 correspond to the
different centers in CAMELYON17. The original patch is shown in the first column and the other columns
show the CN results with different methods.

of both CN and SCA approaches. CN will reduce the variation between centers and SCA
will cover the variations that were not completely captured by the CN.

We train the network with the RGB normalized images, OD concentrations obtained by
the BCD methods, the SCA in Tellez et al. (2018), denoted by TEL, and the SCA using
(19), denoted by BKSVDaug and EBKSVDaug depending on whether we use the BKSVD or
EBKSVD concentrations. Following Tellez et al. (2018), σ = 0.05 and σ = 0.2 were used for
light and strong augmentation, respectively.

From CAMELYON17, four centers were used for training and the 5th center, which
showed a bigger color difference in the previous section, was used as test set. From the
50 tumor annotated WSIs in CAMELYON17, approximately 55.000 positive patches were
sampled for training and 12.500 for testing. Negative patches were sampled from negative
WSIs only, obtaining 55.000 for training and 12.500 for testing.

VGG19 was trained from scratch for 100 epochs in each case using 64 sample batches
with batch normalization. The learning rate was initially set to 0.01, which is halved every
30 epochs. When using OD concentrations, the architecture was modified to use 2 input
channels (H&E) instead of the RGB image. The area under the ROC curve (AUC), shown in
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Tables 6 and 7, was calculated on the test set for the best performing epoch during training
for each method.

Table 6: AUC performance of the VGG19 classifier for the proposed and competing methods using CN both
on the RGB and OD spaces. Bold values indicate the highest performance for each space.

Input Original RUI MAC ALS HID VAH PER ZHE EBKSVD BKSVD

RBG 0.9491 NA 0.9499 0.9738 0.9479 0.7985 0.9305 0.9755 0.9817 0.9711
OD NA 0.9417 0.9468 0.9725 0.9642 0.6614 0.9508 0.9864 0.9834 0.9672

Table 7: AUC performance of the VGG19 classifier for the proposed and competing methods using SCA both
on the RGB and OD spaces. Bold values indicate the highest performance for each space.

Input TELstrongaug TELlightaug EBKSVDstrong
aug EBKSVDlight

aug BKSVDstrong
aug BKSVDlight

aug

RGB 0.9673 0.9601 0.9716 0.9647 0.9679 0.9650
OD 0.9654 0.9639 0.9865 0.9879 0.9728 0.9790

The results show that, when using RGB images, CN increased the AUC in most cases,
increasing it from the original images (0.9491) up to 0.9817 with the proposed EBKSVD. The
less sparse BKSVD approach, slightly increases the AUC without reaching the outperforming
result of the EBKSVD. CN obtained by ZHE and ALS also increased the classification per-
formance considerably despite the over-brightened images produced by ZHE and the artifacts
produced by ALS.

Results using OD concentrations show that most methods increase AUC in comparison
to the baseline RUI method. Also, the performance of HID, PER, ZHE and the proposed
EBKSVD is better in OD than in normalized RGB space, showing that BCD is able to
provide more useful information for the CNN. Separating the structures in the image from
the color information, usually produces better results than using the RGB image since the
network does not need to extract the structural information from colors. SCA improves the
performance with respect to the original images, both using RGB and OD concentrations,
obtaining the best performance with the latter. The highest AUC value was obtained using
EBKSVD and light SCA in the OD space. Our results show that SCA benefits from the
use of EBKSVD instead of the RUI method used by TEL. The difference between light and
strong augmentation is minor both in TEL and the proposed augmentation. Our results
show that CN and BCD have a bigger impact on classification than SCA when RGB images
are used. However, the proposed combination of CN and SCA improves the results on the
OD space.

8. Conclusions

In this paper, we have proposed a novel Bayesian approach for blind color deconvolu-
tion of histopathological images, based on K-SVD with two possible inference approaches:
variational and empirical Bayes. We utilize a hierarchical prior on the concentrations that
enforces sparsity in the same way as a Laplacian prior while allowing for a tractable Bayesian
inference. The framework presented automatically estimates the stain concentrations, the
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color-vector matrix, and all model parameters. The proposed BKSVD and EBKSVD meth-
ods guarantee fidelity to the tissue structure on different relevant histopathological tasks such
as color normalization, stain color augmentation, and classification of histological images.

The proposed method is designed to work at the highest magnification available. Although
the proposed approach has shown a good performance at 20× and 40×, it is unclear how
magnification affects the estimation of the color-vector matrix and has never been explored
in the literature. This is an interesting topic to be addressed in future research, specially if
hierarchical model are to be used.

The proposed approach solves the dependency on the reference color-vector matrix of
previous Bayesian approaches. However, this also exposes a limitation that affects to many
other BCD and CN methods: the common assumption that colors on the image come exclu-
sively from H&E stains might not hold in some scenarios Although the proposed Bayesian
approach and the pixel sampling provide a certain robustness to variations, large areas of
blood, cauterized tissue (e.g. bladder samples) or other anomalies in the WSIs can affect
the BCD results and therefore the CN or SCA performance. This issue, that also affects
CNN-based CN methods, has never been explored in the BCD or CN fields and needs to be
addressed in future research.

The proposed BKSVD and EBKSVD methods outperform classical and state-of-the-art
methods on all the performed experiments obtaining higher fidelity to the tissue structure,
a more consistent normalization, and a stain specific color augmentation that improves clas-
sification on VGG19. The optimal approach, BKSVD or EBKSVD, varies depending on the
task.

We have analyzed the effect of using color normalized images or OD concentrations to
feed a CNN classifier. The carried out experiments indicate that using OD concentrations for
H&E achieves higher classification performance than feeding the network with RGB images.
The dependency on a reference image is a well-known issue for BCD-based CN. The choice of
a proper reference image also have an impact on the classification performance. The relevance
of this choice needs to be quantified in future research. However, it can be avoided with the
use of OD concentrations directly for classification.

Finally, we have shown that stain color augmentation techniques are more beneficial when
using high-quality stain concentrations that better represent the real structure of the stains
in the image. The use of the OD concentrations as input for the network is also useful when
working with augmentation techniques.

Appendix A. Derivation of the Sequential Inference for Sparse Bayesian Models

We detail now the maximization of the marginal likelihood in (12), which we introduce
here for the sake of completeness

L(γq) = log
[
p(γq|λ̂q)

∫
p(yq|cq, β̂)p(cq|γq)dcq

]
, (A.1)

where p(yq|cq, β̂) ∼ N (M̂cq, β̂
−1I), which is clear from the observation model in (1); p(cq|γq) ∼

N (cq|0,Γq) as defined in Sec. 3; and, the remaining variables, M, β and λq, are fixed to the
values estimated with variational inference. The marginal integral in (A.1) is a well-known
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result:

p(yq|β̂, M̂,γq) :=

∫
p(yq|cq, β̂)p(cq|γq)dcq = N (yq|0,Xq), (A.2)

with covariance matrix
Xq = β̂−1I3 + M̂ΓqM̂

T. (A.3)

Now we can rewrite the marginal likelihood as

L(γq) = log p(γq|λ̂q)p(yq|β̂, M̂,γq)

=− 1

2

[
log |Xq|+ yT

q Xq
−1yq + λ̂q

∑

s

γsq

]
+ const., (A.4)

where the constant includes all terms not depending on γq.
Notice that we can easily find the posterior distribution of cq, using (6) and (7), once γ̂q

has been calculated. In addition, if γsq = 0, then the posterior distribution of csq will be
degenerate at zero.

The marginal likelihood L(γq) has interesting properties that result in a sequential max-
imization strategy which will allow us to add, update or remove a single γsq in order to
increase L(γq). Concretely, see how we can isolate the contribution of a single γsq in the
covariance matrix Xq writing

Xq =
[
β̂−1I3 +

∑

i 6=s
γiqm̂im̂

T
i

]
+ γsqm̂sm̂

T
s =: X̃q + γsqm̂sm̂

T
s , (A.5)

where, clearly, X̃q has no dependence on γsq. Using the determinant identity and the matrix
inversion lemma on Xq we can write

Xq
−1 = X̃−1q −

X̃−1q m̂sm̂
T
s X̃−1q

γsq−1 + m̂T
s X̃−1q m̂s

, (A.6)

|Xq| = |X̃q| · |1 + γsqm̂
T
s X̃−1q m̂s| . (A.7)

The previous equations allow us to rewrite (A.4) as

L(γq) = −1

2

[
log |X̃q|+ yq

TX̃−1q yq + λ̂q
∑

n6=s
γnq

]
+

1

2

[
log

1

1 + γsqgsq
+

h2sqγsq

1 + γsqgsq
− λ̂qγsq

]

=: L({γiq}i 6=s) + l(γsq), (A.8)

where gsq = m̂T
s X̃−1q m̂s and hsq = d̂T

s X̃−1q yq and the constant has been omitted as it plays
no role in the optimization. Notice that the quantities gsq and hsq do not depend on γsq.
Therefore, the terms related to a single hyperparameter γsq are now separated from the rest.
A closed form solution of the maximization of L(γq), when only its sth component is changed,
can be found by holding the other hyperparameters fixed, taking its derivative with respect
to γsq and setting it equal to zero, obtaining a unique maximum at

γ̂sq =




−(gsq+2λ̂q)+

√
g2sq−4λ̂qh2sq

2λ̂qgsq
, h2sq − gsq ≥ λ̂q

0, otherwise.
(A.9)

94 CHAPTER 4. DICTIONARY LEARNING FOR BCD



In order to effectively reduce the computational burden, this calculation must be per-
formed efficiently. To explain how to carry them out, let us overload slightly the notation.
The current (c) covariance matrix of the marginal of the observations is rewritten as

Xc
q = β̂−1I3 +

∑

i∈A
γciqm̂im̂

T
i +

∑

i∈A

γciqm̂im̂
T
i , (A.10)

where A = {i|γciq > 0} and A = {i|γciq = 0}. Notice that, the last term on the right hand side
of (A.10) is equal to zero and has been included for clarity. Then, applying the Woodbury
identity, we obtain

m̂T
s Xc

q
−1m̂s = β̂m̂T

s m̂s − β̂2m̂T
s M̂cΣc

cq(M̂
c)Tm̂s =: Gsq (A.11)

where Σc
cq is obtained from Σcq by keeping only the columns and rows associated to the

indices in A. We apply the same restriction to the columns of M̂c, that is, we keep in M̂c

the columns associated to γciq > 0. From (A.6), for s ∈ A ∪A, we have

gsq =
Gsq

1− γcsq Gsq

. (A.12)

Furthermore

m̂T
s Xc

q
−1yq = β̂m̂T

s yq − β̂2m̂T
s M̂cΣc

cq(M̂
c)Tyq =: Hsq (A.13)

Using an analogous procedure we can write

hsq =
Hsq

1− γcsq Gsq

. (A.14)

Given Σc
cq we can now efficiently check whether we should add γsq, s ∈ A, or update, or

remove γsq, s ∈ A. Moreover, the amount the marginal log likelihood is improved by each
single addition, update, or removal is easily calculated from (A.8). Finally,we notice that Σc

q

and ĉcq can be updated very efficiently considering only a single coefficient γsq, see Tipping
and Faul (2003).
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Franke, J., Küsters-Vandevelde, H., Vreuls, W., Bult, P., van Ginneken, B., van der Laak,
J., Litjens, G., 2019. From detection of individual metastases to classification of lymph
node status at the patient level: The CAMELYON17 challenge. IEEE Transactions on
Medical Imaging 38, 550–560.

Duggal, R., Gupta, A., Gupta, R., Mallick, P., 2017. SD-Layer: Stain Deconvolutional Layer
for CNNs in Medical Microscopic Imaging, in: Descoteaux, M., Maier-Hein, L., Franz, A.,
Jannin, P., Collins, D.L., Duchesne, S. (Eds.), Medical Image Computing and Computer
Assisted Intervention - MICCAI 2017. Lecture Notes in Computer Science. Springer, Cham,
pp. 435–443.

Esteban, A.E., Lopez-Perez, M., Colomer, A., Sales, M.A., Molina, R., Naranjo, V., 2019. A
new optical density granulometry-based descriptor for the classification of prostate histolog-
ical images using shallow and deep Gaussian processes. Computer Methods and Programs
in Biomedicine 178, 303–317.

96 CHAPTER 4. DICTIONARY LEARNING FOR BCD



Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R., 2008. Hematoxylin and Eosin Staining of
Tissue and Cell Sections. Cold Spring Harbor Protocols.

Gavrilovic, M., Azar, J.C., Lindblad, J., Wählby, C., Bengtsson, E., Busch, C., Carlbom,
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5.2 Main Contributions

• We propose a variational Bayesian methodology for pansharpening of mul-
tispectral images based on the use of SG priors, with fully automatic esti-
mation of the model parameters.
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• The model is evaluated with two representative members of the SG distri-
butions, those corresponding to lp and log energy functions.

• The proposed approach was evaluated using real and synthetic data from
three different satellites.
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6.2 Main Contributions

• We connect the generative Probabilistic PCA model with the previously
presented Multivariate Statistical Network Monitoring (MSNM) for anomaly
detection, showing that the MSNM is a particular case of PPCA. We then
develop a mathematical framework to explain from a probabilistic point
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of view, the meaning of the anomaly detection statistics proposed in the
MSNM approach.

• We use the generative model to circumvent limitations of the MSNM model,
such as the weighting of the regularization and reconstruction terms and the
automatic estimation of the model parameters.

• The generative PPCA model is used to better understand the relationship
with more complex generative models such as Variational Autoencoders.

• The mathematical model was validated on synthetic and real-traffic datasets
for network anomaly detection.



Leveraging a Probabilistic PCA model to
Understand the Multivariate Statistical Network

Monitoring Framework for Network Security
Anomaly Detection

Fernando Pérez-Bueno, Luz Garcı́a, Gabriel Maciá-Fernández, Rafael Molina

Abstract

Network anomaly detection is a very relevant research area nowadays, especially due to its multiple
applications in the field of network security. The boost of new models based on variational autoencoders
and generative adversarial networks has motivated a reevaluation of traditional techniques for anomaly
detection. It is, however, essential to be able to understand these new models from the perspective of
the experience attained from years of evaluating network security data for anomaly detection. In this
paper, we revisit anomaly detection techniques based on PCA from a probabilistic generative model
point of view, and contribute a mathematical model that relates them. Specifically, we start with the
probabilistic PCA model and explain its connection to the Multivariate Statistical Network Monitoring
(MSNM) framework. MSNM was recently successfully proposed as a means of incorporating industrial
process anomaly detection experience into the field of networking. We have evaluated the mathematical
model using two different datasets. The first, a synthetic dataset created to better understand the analysis
proposed, and the second, UGR’16, is a specifically designed real-traffic dataset for network security
anomaly detection. We have drawn conclusions that we consider to be useful when applying generative
models to network security detection.

Index Terms

Anomaly Detection; PPCA; Generative Models; Network Security.

I. INTRODUCTION

Network security constitutes mainly a research and development focus nowadays, with a
forecasted market of $170.4 billion in 2022 according to Gartner [1], and a constant flow
of worrying news concerning security incidents, like data breaches, denial of service, data
exfiltration, privacy issues, advanced persistent threats, or even government cyberwar issues [2].
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Many security technologies have been developed in recent years to deal with these relevant
problems. The in-depth security design paradigm advocates the use of different layers of security
protection to deal with such problems. Among these layers, the detection of network security
incidents is a crucial part of developing effective response measures when attacks occur.

There are two main approaches to the detection of network security incidents. One, signature
detection works with rules defined by experts that identify known attacks. This approach works
efficiently on known attacks but lacks the flexibility to detect unseen attack patterns or multi-
stage attacks. An alternative approach, known as anomaly detection, based on building a normality
model and detecting deviations from it, has gained popularity. However, the main limitation of
anomaly detection technologies is related to the appearance of false positives or negatives, due
to the lack of accuracy in the normality models obtained.

In this context, many different approaches to anomaly detection have been proposed in the
literature [3]. Recent research in the deep learning area is generating high expectations with
regard to the promising results that could be obtained in the field of network anomaly detection
[4] [5] [6]. Preliminary results on the use of generative models, like variational autoencoders or
generative adversarial networks, show high performance. There is, however, a concern that the
internals of these models are not completely understood and that they might only show good
results for specific datasets. In summary, there is a need to comprehensively understand the
evolution from widely used models to these new deep generative models.

A family of models formed by those based on PCA are currently being successfully applied in
the network anomaly detection problem. The first proposal to use PCA was that of Lakhina et al.
[7] [8] in 2004. A training data matrix was built with different features extracted from network
flows. The latent PCA model was then extracted from it and subsequently used to evaluate new
network samples to decide on their abnormality.

Later in 2016, Camacho et al. [9] proposed the use of a framework based on PCA called MSNM
(Multivariate Statistical Network Monitoring). MSNM essentially adapts a methodology known
as MSPC (Multivariate Statistical Process Control), which has been extensively and successfully
used in the field of anomaly detection in industrial process control to deal with the specificities
of the network anomaly detection problem. In brief, the framework suggests the construction of
a PCA model1 for normal traffic patterns, and the use of two statistics, termed D and Q, which
are thresholded in order to determine if an anomaly occurs. While the statistic Q is similar to
the one used by Lakhina, the use of D, a Hotelling’s T2 statistic [10], is a novelty that also
captures possible deviations from the latent model, rather than only in the observation model (Q
statistic).

Despite the effectiveness of MSNM in anomaly detection (see the comparative analysis in [11]),
two problems appear in the application of this model. First, there is a lack of understanding on
how D and Q statistics behave in different scenarios and why. This implies that obtaining good
results in certain scenarios could lead to false conclusions being drawn. Second, there is a need
to relate these PCA based anomaly detection models to more novel approaches like generative
models, e.g., VAEs, which are currently being used profusely in the anomaly detection area.
Understanding this relationship allows well-known lessons from PCAs to be applied to generative
models.

A better way to understand these models from a generative perspective was provided by Tipping
and Bishop [12], in which the PCA model is derived from a probabilistic PCA (PPCA) model

1The use of linear PCA techniques is justified by the advantages in the diagnosing of anomalies in posterior phases of an
incident lifecycle.
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when the variance of the latent distribution becomes zero. In addition, PPCA is at the basis of
the definition of VAEs [13].

Starting from the PPCA model (a generative model that explains PCA), the focus of this paper
is to derive an analytical model that elucidates why the use of the two MSNM statistics, D and Q,
leads to effective anomaly detection and how this is understood in the framework of generative
models. Note that the aim of this paper is not to contribute with a novel approach derived from
MSNM, but rather to relate this model with generative models (analytically and empirically).

As it will be shown, while the Q statistic measures the quality of the reconstruction model, the
D statistic will represent a regularization term in the generative model. As previously discussed,
these conclusions should help to understand how to soundly employ generative models, like VAEs
and GANs, for network anomaly detection. As an example, some of the current proposals for
anomaly detection using VAEs, e.g., [14], use only the reconstruction model, thus discarding the
contributions of the regularization term that could be relevant, as we will show in what follows.

In summary, the contribution of this paper is threefold: i) A PPCA model is leveraged to
understand the MSNM framework from a generative point of view. We then develop a mathe-
matical framework to explain, from a probabilistic point of view, the meaning of the Q and D
statistics. ii) Using the generative model, we show how some limitations of the MSNM model are
circumvented. Specifically, the authors of [15] propose the use of a combined weighted statistic
for both Q and D (called the t-Score). Then, we obtain a probabilistic interpretation for this
weighted combination with PPCA-MSNM. iii) We test the generative model on both a synthetic
dataset and a real network traffic dataset to show how detection results stay coherent with both
models.

The rest of this paper is structured as follows. In Section II, we present related work and
explain the contributions of this paper in more detail. Then, we provide the basics for MSNM
and PPCA in Sections III and IV, respectively. The mathematical model that connects MSNM
and PPCA is proposed in Section V. This proposal is validated with the experiments shown in
Section VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

Many statistical strategies for anomaly detection on the basis of Lakhina’s approximation [7]
[8] have been profusely proposed. The benefits of PCA’s unsupervised nature have motivated
the appearance of a wide range of work, like the PCA-based traffic matrix estimation of [16],
the network anomography proposed by [17], or the combination of distributed tracking and
in-network PCA-based anomaly detection of [18] among many others. Limitations of these
models, like the high sensitivity to calibration settings, ineffective detection of large anomalies or
difficulties to capture temporal correlations have been reported [19]. In addition, the proposals to
solve these limitations also use different frameworks. Robust PCA [20], and its variation [21] [22],
or the Karhunen-Loève expansion used by [23], are examples of the achieved progress.

In 2016, Camacho et al. proposed the use of the Multivariate Statistical Network Monitoring
(MSNM) framework [9] [15] as an improvement to previous PCA proposals. In essence, MSNM is
an adaptation from a sibling framework traditionally used in the field of industrial process control,
known as MSPC (Multivariate Statistical Process Control) [24] [25] [26]. In order to face the
particularities of the networking field, MSNM adapted the MSPC methodology to introduce new
data pre-processing strategies and processing steps, like the deparsing of network traces [11]. In
addition, MSNM research has focused on the evaluation of its implementation in real networks,
the optimization of its parameters with semi-supervised models, enabling big-data processing, its
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application to hierarchical architectures for issuing privacy and traffic reduction [9], enhancing
visualization of network anomalies or supporting authentication systems [27].

The use of deep generative models in the field of anomaly detection, is currently a hot research
topic due to good performance achieved by the use of deep learning techniques. Many authors
have followed this approach using variational autoencoders (VAEs) as a natural evolution of
PCA in the frame of reconstruction approaches to detect anomalies. Despite the fact that image
and video processing research was the initial promoter of these models [6], they are also being
extensively evaluated in the field of network anomaly detection. A recent survey of applications
and techniques can be found in [4], yet, it is surprising to see that in many of these studies, like
[14], where they consider the time gradient effect, or in the conditional VAE implemented in [28],
or in others like [29] or [30], anomaly scores are evaluated by only considering the reconstruction
error provided by the VAE. That is, the regularization term present in the VAE marginal likelihood
is not taken into account. Very few proposals, like [31], use both the regularization and the error
reconstruction terms of the marginal likelihood to evaluate anomaly scores.

As will be shown in the rest of this paper, not using the regularization term in VAEs is similar
to the well-known limitation in Lakhina’s PCA approaches that do not consider the latent variable
space deviations for anomaly detection. Thus, although evaluating the impact of the use of both
terms (regularization and reconstruction) in VAEs is out of the scope of this paper, the goal here
is to show the connection between these terms in a PPCA generative model (precursor of VAE)
and MSNM detection statistics.

III. MSNM FOR ANOMALY DETECTION

Multivariate Statistical Network Monitoring (MSNM) [9] transfers the theory of Statistical
Processes Control, which has been used for a long time in industrial applications, to network
traffic analysis. Its goal is to jointly analyze several interrelated variables to differentiate common
from special causes of variation called anomalies. The approach consists of five steps [11], which
are explained in what follows.

First, raw network traffic data from different sources are parsed and transformed into a set of
quantitative features, often using the feature-as-a-counter approach. Examples of such features
are the number of times an event takes place, the count of a given word in a log, the number of
times a given event takes place in a given time window, or the number of traffic flows with a
given destination port in a NetFlow. The selection of the specific features and their parsing step
require an effective comprehension of the data.

Second, all features are fused for the multivariate analysis, maintaining a common sampling
rate. As a result, traffic flow matrices of N observations featured in M-dimensional vectors N×M
are ready to be analyzed.

The third and main step of MSNM is the anomaly detection, which is based on PCA. The
well-known technique is applied to the mean-centered and auto-scaled M -dimensional dataset of
N observations (N × M ), and projected into a subspace of range P < M that maximizes the
variance. To do so, original features are transformed into Principal Components (PC) using the
eigenvectors of the covariance matrix XTX/N . As a result, a residual matrix E is generated as
the differential error between projections and real samples. The transformation follows Eq. (1),
with T (N × P ) and V (M × P ) being the score and loading matrices, respectively :

X = T · V T + E (1)

Based on such transformation, MSNM proposes the usage of two complementary statistics
extracted from the PCA analysis:
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• The Q-statistic, also called Squared Prediction Error, comprises the residuals in the n-th
row of E for a given observation xn, following expression (2). As mentioned in Section I,
Q evaluates the reconstruction error of the projection used:

Qn = ene
t
n (2)

• The D-statistic, or Hotelling’s T2 statistic, is computed by applying Eq. (3) to PCA scores.
As mentioned in Section I, D represents a regularization term that rates how close the
observation is to the data prior distribution. For a given observation xn, and as tn is the
score vector in the n-th row of T:

Dn = tnΛ
−1ttn (3)

Intuitively, Q measures the capability of the model to recover a certain point in the data, while
the regularization term D measures the similarity of the latent representation with respect to
those in the calibration data. As each term focuses on different domains, they are able to capture
different types of anomalies.

It is well known that the Q-statistic has a high anomaly detection capability, and its usage
together with the D-statistic is a key feature of the MSNM approach that offers attractive
improvements [9]. Once D and Q are calculated, they are used to model the normal operating
conditions for the calibration of the MSNM system. In order to do so, upper control limits
(UCL) for a given significance level are defined for both Q, termed UCLQ, and D, termed
UCLD. Diverse combinations of the two statistics can be used to provide a final expression for
the anomaly evaluation. The authors of [15] propose the following weighting of Q and D to
generate the anomaly score for a given observation xn:

t− Scoren =
P ·Dn

M · UCLD

+
(M − P ) ·Qn

M · UCLQ

(4)

Once the anomaly is detected, the fourth step of MSNM approximation is the pre-diagnosis.
Features associated with the anomalies are identified in order to make an initial guess on their
root causes. Contribution plots or others tools like oMEDA [9] are commonly used to identify
such features.

Finally, the fifth step consists of de-parsing the information pointed out during the detection
(anomaly time-stamps) and pre-diagnosis (anomaly related features) phases. As a final result,
raw information about the anomaly is extracted from specific logs or network traces.

In what follows, we will introduce PPCA as a generative model framework (described in
Section IV) in order to derive the expressions for Q and D statistics, as well as the interpretation
of Eq. (4) in Section V.

IV. PPCA FOR ANOMALY DETECTION

Probabilistic PCA (PPCA) provides a method to calculate the principal subspace of a set of
data vectors using a generative point of view and a maximum-likelihood framework. In order
to be able to understand MSNM from a generative model perspective, it is important to first
understand how PPCA is related to PCA.

This section provides a description of this connection, following the presentation of probabilis-
tic PCA provided in [32]. While PCA is based on a deterministic linear projection of the data
on a lower dimensional subspace, PPCA is a linear-Gaussian framework that considers a latent
distribution for the data. Therefore a whole distribution of possible latent candidates is available
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for each observed data point. PPCA includes the measurement of deviations in the latent space,
achieved in MSNM with the addition of the D statistic, among other advantages (see [12] for a
complete list).

Let X denote the N ×M network traffic matrix whose i-th row, xT
i , corresponds to the i-th

observed instance, i = 1, . . . , N . That is, XT = [x1, . . . ,xN ]. We assume that each column of
XT has been centered and normalized by its standard deviation. We also assume that calibrated
observations are used. For each instance (network traffic observation) an explicit latent variable
z with P components is introduced. As we will see, it corresponds to components in a principal-
component subspace. Next, a Gaussian prior distribution p(z) over the latent variable and a
Gaussian observation distribution p(x|z) are introduced. Specifically:

p(z) = N (0, I) (5)
p(x|z) = N (x|Wz, σ2I) (6)

where W is a M × P matrix whose columns span a linear (the principal-component) subspace
within the data space, and the scale σ2 governs the variance of the conditional distribution. Notice
that, in what follows, we will omit the dependence of p(x|z) on W and σ2 for simplicity.

To estimate the values of the parameters W and σ2, we use maximum likelihood, and the
marginal distribution p(x) is required. It can be easily calculated because the prior and the
observation models in Eqs. (5) and (6) are both Gaussian. It follows that:

p(x) =

∫
p(x|z)p(z)dz = N (x|0

¯
,C), (7)

where
C = WWT + σ2I. (8)

The above likelihood requires the calculation of C which may consume a lot of computational
resources. This can be alleviated when N is larger than P (the dimension of the principal
component subspace) and by utilizing the matrix inversion identity

C−1 = σ−2(I−WM−1WT), (9)

where
M = WTW + σ2I. (10)

Using our normalized and calibrated observations, the maximum likelihood estimates are
calculated by solving

WML, σ
2
ML = arg max

W,σ2

N∑

n=1

ln p(xn|W,σ2)

= arg max
W,σ2

−NP

2
ln(2π)− N

2
ln |C| − 1

2

N∑

n=1

xT
nC

−1xn

= arg max
W,σ2

−N

2
{P ln(2π) + ln |C|+ tr(C−1S)} (11)

where S is the data normalized and calibrated covariance matrix.
Maximizing the above equation with respect to W and σ2 is not easy. However, it can be

shown —see [32]— that
WML = U(L− σ2I)1/2R (12)
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where U is a M × P matrix whose columns correspond to the P eigenvectors associated with
the P largest eigenvalues of the data normalized and calibrated covariance matrix S, λ1, . . . , λP .
L is a diagonal matrix with diagonal values these eigenvalues, and R is an P × P orthonormal
matrix that represents any rotation. Note that σ2 is constrained to be smaller than the lowest
eigenvalue λP (the minimum element in the diagonal matrix L, thus avoiding a negative square
root in Eq. (12)). Thus, σ2 ∈ [0, λP ). Furthermore, the maximum likelihood for σ2 is

σ2
ML =

1

M − P

M∑

i=P+1

λi (13)

Note that with the estimated WML and σ2
ML we can calculate, for a given normalized sample

x, the quantity

ln p(x|WML,σ
2
ML) = −M

2
ln(2π)− 1

2
ln |C| − 1

2
xTC−1x (14)

and use it to decide whether x is an anomaly (we have omitted the dependency of C on
WML and σ2

ML for simplicity). The whole process for anomaly detection in PPCA is represented
in algorithm 1. First, the data need to be mean-centered around zero and scaled as PCA and
PPCA are sensitive to feature scaling. Then, the parameters of the model are estimated using
Eq. (13) and Eq (12) on trusted calibration data. Once the parameters are fixed, new data can be
checked for anomalies.

Algorithm 1 PPCA for anomaly detection.
Require: Centered and normalized observations X, predefined threshold thr.

Obtain σ2
ML using Eq. (13).

Obtain WML using Eq. (12).
For a new sample xnew, decide whether it is an anomaly by thresholding
ln p(xnew|WML,σ

2
ML) defined in Eq. (14), that is if,

1

2
xTC−1x > thr. (15)

Notice that Algorithm 1 can be used even with a value σ2 that is different from σ2
ML. The

only constraint on σ2 is that it has to be smaller than λP , see Eq. (12).
Using 1

2
xTC−1x > thr to detect anomalies does not provide an insight into the roles played

by the prior and the observation models in the detection process. This is crucial since it will
allow us to relate PPCA and MSNM, as we will see in the following section.

V. RELATING PPCA TO MSNM
A. Revisiting PPCA for anomaly detection

In order to relate PPCA and MSNM we will evaluate other variance values apart from σ2
ML,

in the expressions for PPCA. Thus, for clarity, we will make the formulations using a generic
variance δ (smaller than λP ). We will use the Laplace approximation [32] described in Appendix
A as a starting point for the analysis. Given a marginal probability p(x|W, δ), with W and δ
being its score matrix and variance, and following Eq. (33), it follows that:

ln p(x|W, δ) = −1

2
(ẑTẑ+

1

δ
∥ x−Wẑ ∥2) + const. (16)
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where ẑ is the mode of the posterior distribution p(z|x).
Therefore, leaving constants aside for the sake of clarity, we can equalise the thresholding

expression of lnp(x|W, δ) for PPCA —Eq. (14)— to its Laplace approximation:

1

2
xTC−1x =

1

2
(ẑTẑ+

1

δ
∥ x−Wẑ ∥2) (17)

In order to calculate the term ẑ in Eq. (17), the closed expression for p(z|x) derived in [32] can
be used:

p(z|x) = N (z|M−1WTx, δM−1) (18)

and since for this Gaussian distribution the mode and the mean coincide, it follows that:

ẑ = M−1WTx (19)

As seen in Eq. (12) (Section IV), W depends on the variance δ ∈ [0, λP ):

W(δ) = U(L− δI)1/2, (20)

where for the sake of simplicity, R = I is used in (12). Introducing Eq. (20) in Eq. (10), and
taking into account that UTU = I, it follows that:

M = W(δ)TW(δ) + δI = (L− δI) + δI = L (21)

Using Eqs. (20) and (21) in Eq. (19):

ẑ(δ) = M−1W(δ)Tx = L−1(L− δI)1/2UTx. (22)

In short, the whole process for anomaly detection with this revisited PPCA is summarized in
Algorithm 2. Note that it is equivalent to Algorithm 1, and allows arbitrary variance values to
be used. The parameters of the model are estimated on trusted calibration data before checking
new data for anomalies.

Algorithm 2 PPCA for anomaly detection (Revisited)
Require: Centered and normalized observations X, predefined threshold thr.

Set a certain variance δ ∈ [0, λP ).
Obtain W(δ) using Eq. (20).
Obtain M(δ) using Eq. (21).
Obtain ẑ(δ) using Eq. (22).
For a new sample xnew, decide whether it is an anomaly by thresholding ln p(xnew|W(δ), δ)
defined in Eq. (16), that is if,

1

2
(ẑT(δ)ẑ(δ) +

1

δ
∥ x−W(δ)ẑ(δ) ∥2)

> thr (23)
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B. Analysis of the variance: connecting PPCA and MSNM
Recall that Algorithm 2 can be used with a value of δ ∈ [0, λP ) which is different from

σ2
ML. We can observe the connection between PPCA and MSNM when studying the range of

values that this variance δ might take. To do so, let us analyze the expression of ln p(x|W, δ) in
Eq. (16). Leaving aside constant terms, Eq. (16) is formed using two terms, the first of which
considers the influence of the latent space in the probability calculation, and somehow acts as a
regularization term:

ẑ(δ)T ẑ(δ) (24)

while the second evaluates the difference between a sample x and its reconstruction from the
latent space. Thus, it plays the role of a reconstruction error:

∥ x−Wẑ(δ) ∥2 (25)

Note that the reconstruction error contribution to the sample’s probability is weighted by a factor
1/δ. At this point, we separate the influence of δ in this weighting factor from that of δ in W(δ)
and ẑ(δ). Thus, we let the weighting factor take a fixed value 1/α while δ keeps taking possible
values in [0, λP ). Thus, a function fα(δ) can be defined to study the behavior of ln p(x|W, δ)
for different values δ ∈ [0, λP ) :

fα(δ) =
1

2
(ẑT(δ))ẑ(δ) +

1

α
∥ x−W(δ)ẑ(δ) ∥2) (26)

It can be seen that —see Appendix B and Figure 1— fα(δ) in Eq. (26) has 3 properties:
(i) fα(δ) is convex,

(ii) its minimum value is achieved at δ = α/2,
(iii) fα(0) = fα(α).
Based on the fact that MSNM uses PCA for its modelling and PPCA converges to PCA when
δ = 0 — see [32]—, we have explored the value of fα(δ) for δ = 0:

fα(0) =
1

2
(xTUL−1UTx+

1

α
∥ x−UUTx ∥2) (27)

Eq. (27) is exactly the quantity used by MSNM to detect anomalies since:
• xTUL−1UTx, the regularization part of the probability, matches Eq. (3) that defines the
D-statistic.

• ∥ x−UUTx ∥2, the reconstruction error part of the probability, matches Eq. (2) that defines
the Q-statistic.

• Both terms, regularization and reconstruction error, contribute with a different weighting: i)
1/σ2

ML in PPCA, and ii) the empirical value (M − P/M) —see Eq. (4)— in MSNM.
The results obtained show that the conditions that make MSNM and PPCA coincide are:

α = σ2
ML (28)

δ = σ2
ML or δ = 0

The behavior of the function fα(δ) is shown in Figure 1.
Notice also that in this revisited version of PPCA we could use a value of δ that is different

from zero and σ2
ML. In that case, for a given anomaly probability threshold, the anomaly detection

model would accept less observations (lower probability) if δ ∈ [0, α] and more if α < δ < λP .
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Figure 1. Analysis of fα(δ).

To end Section V, note that the conclusions obtained for PPCA are applicable to other gener-
ative models based on PPCA, like Variational Autoencoders (VAEs). In VAEs, the calculation of
p(z|x) in a closed form is not possible and, thus, we must rely on the so called Evidence Lower
Bound (ELBO), which comprises two different terms (as in PPCA): a reconstruction error and
a regularization term. Our conclusions for PPCA lead to the same recommendations for VAEs,
i.e., both terms should be used in the calculation of anomaly scores. We consider this to be a
relevant contribution of this paper, as we can still find examples in the state-of-the-art [14] [28]
[29] [30] that only use the error reconstruction term for anomaly detection.

VI. EXPERIMENTAL VALIDATION

A. Datasets Description
To experimentally validate the theory introduced in the previous sections, we will make use

of two datasets: one with synthetic data, and another with real network traffic information, as
described below.

1) Synthetic dataset: The synthetic dataset is intended to provide a 2-dimensional plottable
scenario that provides an easy interpretation of the anomalies and behaviour of the different
models. Using the PCA observation model given by x = Wz + ϵ, we obtain N samples of
z from a Gaussian distribution with zero mean and unit variance. Then we multiply z by an
arbitrary W = [0.707, 0.707]T and add ϵ sampled from N (0, 0.1 · I) to obtain N bidimensional
samples of x. The samples will follow a Gaussian distribution along the selected W. Using this
method, we generate 1000 samples of clean data to calibrate our models. For the testing set,
we mix 1000 new clean data samples with two different types of anomalies. The first type of
anomaly is sampled from a distribution that is different from that of the above described samples.
Specifically, we choose a multivariate Gaussian with zero mean and a diagonal variance matrix
5×I. Anomaly type 1 is not designed according to the linear model. The second type of anomaly
is generated in the latent space, we sample zanom using a Gaussian with mean 5 and unit variance.
The values of zanom are then randomly multiplied by −1 following a Bernoulli (0.5) distribution.
This procedure provides anomalies that follow the generative model but whose latent distribution
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Figure 2. Synthetic dataset test bench. Normal data is presented in blue circles, Anomaly type 1 is presented in fuchsia with
x-shaped markers, while the green triangles refer to Anomaly type 2. The arbitrary line W used to create the data is plotted in
red.

is different from that of the calibration data. For each type of anomaly mentioned, 100 data
points are introduced. See Figure 2 for a visual representation of the data and anomalies.

2) UGR’16 dataset: The UGR’16 dataset [33] was designed for the evaluation of cyclostationary-
based network IDSs. It contains real anonymized NetFlow traces captured over several months in
a tier-3 ISP. The traces include legitimate traffic from many virtualized services in the cloud, like
web servers with proprietary and standard configurations, and other hosted services like DNS,
FTP, mail servers, etc. In addition, a set of malicious virtual machines was configured in the
network to generate attack traffic. The traffic is captured from two border routers of the ISP
network. Thus, the dataset includes both legitimate traffic and realistic attack scenarios, all of
them labeled.

UGR’16 divides the data in two differentiated sets: calibration and test. The calibration set
contains real background traffic data gathered from March to June in 2016 (4 months). The test
set mixes real background traffic and synthetically generated malicious traffic, gathered from July
to August 2016. Although the data was captured in 2016, it was published in 2018 and is still
considered of interest in recent work [34], [35].

To train our models, we use the data gathered during working days in May, where less
anomalies were detected after data obtained was analyzed [33], and no synthetically generated
attacks were introduced. The test set uses data gathered on those working days when synthet-
ically generated attacks were interlaced within background traffic. The attack types that were
synthetically generated include:

• Low-rate Denial of Service (DoS): TCP SYN packets are sent to the victims port 80 using
1280-bit packets and a rate of 100 packets/s. The rate is not high enough to avoid the normal
operation of the network being affected.

• Port scanning: A continuous SYN scan of common ports of victims. Two variants are
implemented for this attack: Scan11 (one-to-one scan attack) and Scan44 (Four-to-four scan
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Table I
SUMMARY OF DATA FLOWS FROM UGR’16 USED TO TRAIN AND TEST THE MODELS

Flow type Calibration Test

Background traffic 31680 8714
DoS NA 299

Scan44 NA 65
Scan11 NA 66

Nerisbotnet NA 488
UDPscan NA 9
SSHscan NA 9

Spam NA 3616

attack).
• Botnet traffic: Obtained from the execution of the malware known as Neris in a controlled

environment (See [36] for details about the malware and [33] for details about its injection
in the data.).

The test set also included labels for a real UDP Scan campaign that was identified in the
background traffic.

The labels are provided as a list of timestamps (in mins) of when the attacks were executed.
Table I summarizes the traces in the train and test sets. The NetFlow logs cannot be directly used
to feed PCA-based anomaly detection systems [8]. Thus, following [11], we use the FCParser2

tool to extract 143 quantitative features from the NetFlow logs. Each feature counts the number
of times that a given event takes place during each minute , e.g., number of flows with a given
destination port, number of flows with an accumulated payload size greater than a threshold,
etc. Features were manually defined in [11] from domain knowledge using regular expressions.
Therefore, they represent information that experts would use to manually identify anomalies in
the data. In this paper, we focus on differentiating the minutes labeled as anomalies from those
labeled as background data. We study each type of anomaly/attack separately. The anomaly scores
are calculated for the whole test set at once. Then, classification metrics are calculated for each
anomaly type against background data only (binary classification)

The evaluation of the variance captured by the different principal components of PCA on the
calibration set (see Figure 3), shows that the principal components 1-5 are the most relevant and
capture a higher percentage of variance than the rest. The model with 5 P explains 33.65% of
the total variance.

B. Experiments
This section focuses on describing three different experiments: i) Anomaly detection using the

MSNM and PPCA models with a common threshold to show that detection results from both
models coincide. ii) Anomaly detection using only either the regularization or the reconstruction
error term separately, to analyze their performance for different types of anomalies. iii) Finally,
we assess the correctness of the weighting values for both regularization and reconstruction error
terms, for MSNM and PPCA models.

1) MSNM and PPCA equivalence: To experimentally demonstrate the MSNM and PPCA
equivalency shown in Section V, we perform anomaly detection on the datasets presented in

2Available at: https://github.com/josecamachop/FCParser
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Figure 3. Explained variance per component in the UGR’16 dataset.

Table II
PERFORMANCE METRICS FOR THE SYNTHETIC DATASET USING DIFFERENT THRESHOLD VALUES SELECTED ACCORDING TO

DIFFERENT CONFIDENCE LEVELS ON THE CALIBRATION SET.

Confidence level 95% 96% 97% 98% 99%

Threshold χ2 5.99 6.43 7.01 7.82 9.21
Accuracy 0.9925 0.9933 0.9925 0.9866 0.9808

False Alarm Ratio 0.002 0.001 0.001 0.001 0

Section VI-A using both MSNM and PPCA models. The anomaly score is calculated using
Eq. (26) with the condition in Eq. (28), i.e., α = σ2

ML and δ = 0 or δ = σ2
ML for the MSNM and

PPCA models, respectively. When a threshold value is needed, it should be chosen in accordance
with the values in the calibration set, according to our confidence in the absence of malicious
traffic in the training data. In our case, the threshold is the 99-percentile of the anomaly scores
of the calibration set for each model. The threshold can be modified if the confidence in the
calibration data is reduced.

Note also that once σ2
ML and WML have been calculated, Eq. (14) can be used to set a non-

experimental value. Since p(x|WML, σ
2
ML) is a normal distribution we can select a threshold δ

such as
∫

xTC−1x≤δ

p(x|WML, σ
2
ML)dx ≥ α (29)

for a confidence level α. We can take into account that xTC−1x ∼ χ2(M) and select for this
distribution a threshold δ with a given confidence level α. This theoretical approach is less used
in practice.

In Figure 4 we can see how the detection area changes according to the confidence level α.
Table II includes the threshold value, accuracy and False Alarm Ratio using the theoretical bound
xTC−1x ≤ δ.

Figure 5 shows the parallelism between MSNM and PPCA models in the synthetic test set.
The same data points are identified as anomalies by both models, obtaining identical ROC curves
and AUC values. The accuracy (0.9858) and the False Alarm Ratio (0.012%) were also the same
values for both models. The equivalence of both models is also tested on the UGR’16 dataset.
Although the anomaly score is calculated for all testing data at once, we calculate the ROC curve
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levels α on the calibration data is shown in dashed lines .
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Figure 5. Anomaly detection on the synthetic dataset for both a) MSNM and b) PPCA models. Blue circles identify normal data,
fuchsia xs and green triangles identify different types of anomalies. Red circumferences mark the points detected as anomalies.
The orange shadows cover the detection area in each case. c) ROC curves for both models.

and AUC for each attack type against the background traffic. Table III includes identical results
for both models when detecting different kind of attacks, using several numbers of principal
components, P = [1, 2, ..., 5]. For further details, Figure 6 shows the ROC curves obtained for
both models in different attacks using P = 3.

2) Using the regularization and reconstruction error terms to detect different types of anoma-
lies: As previously indicated, both terms in Eq. (26) are able to identify different behaviour in the
data. To quickly gain an overview of how both terms work, Figure 7 depicts the anomalies in the
synthetic dataset that are detected using a single PPCA/MSNM term only. Note that when using
a single term, the threshold is the 99th-percentile of the calibration set for that term. When we
only use the reconstruction error term —Eq. (25)—, we can see in Figure 7(a) how we are unable
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Table III
AUC VALUES FOR THE ATTACKS ON UGR’16 USING MSNM AND PPCA

1 P 2 P 3 P 4 P 5 P

Attack type MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA

DoS 0.9118 0.9118 0.9089 0.9089 0.9089 0.9089 0.9097 0.9097 0.9091 0.9091
Scan44 0.9903 0.9903 0.9902 0.9902 0.9896 0.9896 0.9882 0.9882 0.9880 0.9880
Scan11 0.9384 0.9384 0.9390 0.9390 0.9412 0.9412 0.9318 0.9318 0.9303 0.9303
Nerisbotnet 0.8204 0.8204 0.8211 0.8211 0.8198 0.8198 0.8201 0.8201 0.8203 0.8203
UDPscan 0.7826 0.7826 0.7844 0.7844 0.7707 0.7707 0.7707 0.7707 0.7727 0.7727
SSHscan 0.5593 0.5593 0.5624 0.5624 0.5569 0.5569 0.5588 0.5588 0.5614 0.5614
Spam 0.4669 0.4669 0.4610 0.4610 0.4588 0.4588 0.4585 0.4585 0.4512 0.4512

Table IV
AUC VALUES FOR THE ATTACKS ON UGR’16 USING DIVERGENCE (PRIOR) AND ERROR (OBSERV.) TERMS SEPARATELY.

1 P 2 P 3 P 4 P 5 P

Attack type Prior Observ. Prior Observ. Prior Observ. Prior Observ. Prior Observ.

DoS 0.5242 0.9118 0.9191 0.9085 0.9178 0.9085 0.9050 0.9095 0.9152 0.9087
Scan44 0.8747 0.9903 0.8483 0.9902 0.9968 0.9895 0.9960 0.9878 0.9957 0.9875
Scan11 0.4966 0.9385 0.3771 0.9391 0.7714 0.9416 0.9691 0.9304 0.9691 0.9285
Nerisbotnet 0.4358 0.8207 0.3686 0.8214 0.4741 0.8199 0.4480 0.8203 0.4926 0.8204
UDPscan 0.6618 0.7817 0.7084 0.7838 0.8886 0.7682 0.8659 0.7674 0.8372 0.7698

Mean 0.5986 0.8886 0.6443 0.8886 0.8097 0.8855 0.8368 0.8831 0.8419 0.8830

to identify anomalies that have been generated following the linear model. Note that this case
is equivalent to using a simple PCA analysis. Using the regularization term only —Eq. (24)—,
see Figure 7(b), results in a similar problem. This term is calculated using only the latent ẑ(δ),
therefore all data points whose latent value is within the distribution of the normal data remains
undetected. To effectively detect all anomalies, it is clearly necessary to use both terms.

When it comes to complex networking data, such as those in UGR’16, it is difficult to predict
which anomalies will be correctly detected by the two terms in the PPCA/MSNM model. Table IV
shows that different attacks are captured differently by both terms. Some attacks (DoS, Scan44)
are captured correctly by both terms. Neris Botnet traffic can be identified using the reconstruction
error term, but cannot usually be identified with the regularization term.

The results for Scan11 and UDP Scan attacks show that the ability of the model to identify
anomalies using the error reconstruction or regularization terms depends on the number of
principal components used. We have included Fig 8 as an example of where the discriminative
power of the regularization term increases with P , even outperforming the error reconstruction
term performance. Note that the error reconstruction term is not severely affected by the number
of P because the explained variance of the model is low, and therefore the error reconstruction for
most anomalies remains high. As the number of P increases, the latent space is able to capture
more features of the data, also allowing anomalies in the latent domain to better identified.

3) Weighting reconstruction error and regularization terms: The previous experiments have
shown that both terms in Eq. (26) are relevant and should be used. Furthermore, a single term
is not usually able to correctly identify all types of anomalies. The forthcoming question is how
to combine them to obtain a single anomaly score.

On the one hand, the work in [15] suggested the use of the significance levels UCLQ and
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Figure 6. ROC curves for different attacks on UGR’16 using MSNM and PPCA with P=3.

UCLD and a weighting parameter calculated as P/M (see Section III). On the other hand,
PPCA provides a probabilistic interpretation for the weighting parameter, combining both terms
according to their contribution to the marginal likelihood —see Eq. (17)—. In this section, we
compare the MSNM approach in Eq. (4) with the PPCA approach in Eq. (17).

In the synthetic dataset, both strategies obtain a similar result in AUC: 0.9974 for PPCA and
0.9973 for MSNM. Note that in both cases, the combination of both terms obtains a better AUC
than the values reported in the previous section for each term separately.

The difference between the results from PPCA and MSNM is more clearly shown in Table
VII, where the UGR’16 dataset is analyzed. Even when the MSNM approach results in slightly
better AUC values for some combinations of attacks and number of P, the PPCA AUC score
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Table V
ACCURACY VALUES FOR THE ATTACKS ON UGR’16 USING DIVERGENCE (PRIOR) AND ERROR (OBSERV.) TERMS

SEPARATELY.

1 P 2 P 3 P 4 P 5 P

Attack type Prior Observ. Prior Observ. Prior Observ. Prior Observ. Prior Observ.

Dos 0.9237 0.8946 0.9655 0.8939 0.9273 0.8932 0.8939 0.8943 0.9287 0.8922
scan44 0.9507 0.9011 0.9713 0.9008 0.9320 0.9004 0.8979 0.9015 0.9347 0.8991
scan11 0.9460 0.8999 0.9667 0.8995 0.9300 0.8992 0.8974 0.9001 0.9337 0.8977
nerisbotnet 0.9022 0.8801 0.9223 0.8798 0.8850 0.8795 0.8541 0.8806 0.8880 0.8788
anomaly-udpscan 0.9520 0.9001 0.9728 0.8998 0.9312 0.8995 0.8969 0.9005 0.9340 0.8981

mean 0.9349 0.8952 0.9597 0.8948 0.9211 0.8943 0.8880 0.8954 0.9238 0.8932

Table VI
MEAN FALSE ALARM RATIO ON UGR’16 USING DIVERGENCE (PRIOR) AND ERROR (OBSERV.) TERMS SEPARATELY.

1 P 2 P 3 P 4 P 5 P

Prior Observ. Prior Observ. Prior Observ. Prior Observ. Prior Observ.
0.0474 0.0995 0.0267 0.0998 0.0684 0.1002 0.1027 0.0992 0.0656 0.1016

Table VII
AUC VALUES FOR THE ATTACKS ON UGR’16 USING DIFFERENT NUMBER OF PCS AND MODELS: MSNM —EQ. (4)— AND

PPCA —EQ. (17)—.

1 P 2 P 3 P 4 P 5 P

Attack type MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA

DoS 0.9118 0.9118 0.9085 0.9089 0.9085 0.9089 0.9095 0.9097 0.9087 0.9091
Scan44 0.9903 0.9903 0.9902 0.9902 0.9895 0.9896 0.9878 0.9882 0.9875 0.9880
Scan11 0.9385 0.9384 0.9391 0.9390 0.9415 0.9412 0.9305 0.9318 0.9286 0.9303
Nerisbotnet 0.8207 0.8204 0.8214 0.8211 0.8199 0.8198 0.8203 0.8201 0.8204 0.8203
UDPscan 0.7817 0.7826 0.7838 0.7844 0.7683 0.7707 0.7674 0.7707 0.7700 0.7727

Mean 0.8886 0.8887 0.8886 0.8887 0.8855 0.8860 0.8831 0.8841 0.8830 0.8841

Table VIII
ACCURACY VALUES FOR THE ATTACKS ON UGR’16 USING DIFFERENT NUMBER OF PCS AND MODELS: MSNM —EQ. (4)—

AND PPCA —EQ. (17)—.

MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA

Dos 0.8946 0.8947 0.8939 0.8946 0.8932 0.9655 0.8944 0.8947 0.8922 0.8932
scan44 0.9011 0.9012 0.9008 0.9011 0.9004 0.9713 0.9015 0.9017 0.8991 0.9004
scan11 0.8999 0.9000 0.8995 0.8999 0.8992 0.9667 0.9001 0.9003 0.8977 0.8992
nerisbotnet 0.8801 0.8802 0.8798 0.8801 0.8794 0.9223 0.8806 0.8807 0.8788 0.8795
anomaly-udpscan 0.9001 0.9003 0.8998 0.9001 0.8995 0.9728 0.9005 0.9007 0.8981 0.8995

mean 0.8952 0.8953 0.8948 0.8952 0.8943 0.9597 0.8954 0.8956 0.8932 0.8943
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Figure 7. Detected anomalies in the synthetic dataset using only a single term. Blue circles identify normal data, fuchsia xs
and green triangles identify different types of anomalies. Red circumferences mark the points detected as anomalies. The orange
shadows cover the detection area in each case.
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Figure 8. Evolution of the ROC curves of both divergence and error terms on the Scan11 attack for different latent space sizes.

yields a better mean value in each case. While the differences are subtle, they indicate that PPCA
is better when it comes to combining information from both regularization and reconstruction
error terms. Looking at Table VII, we can observe that PPCA obtains better values than MSNM
in those attacks where the regularization term is more informative. In addition, note that while a
single term might be better at recognising a given attack type, the mean AUC values are always
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Table IX
MEAN FALSE ALARM RATIO ON UGR’16 USING DIFFERENT NUMBER OF PCS AND MODELS: MSNM —EQ. (4)— AND

PPCA —EQ. (17)—.

1 P 2 P 3 P 4 P 5 P

MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA MSNM PPCA
0.0995 0.0994 0.0998 0.1000 0.1002 0.1000 0.0992 0.0989 0.1016 0.1018

higher than those obtained using only a single term.

VII. CONCLUSIONS

In this paper we have analyzed the use of the generative model known as probabilistic
PCA (PPCA) for detection of anomalies in network security. Specifically, we have provided
a detailed mathematical model that connects MSNM, a well-known framework for network
anomaly detection, and PPCA. The generative PPCA model provides a probabilistic point of
view to explain the MSNM framework and the meaning of its principal elements: The use of
Q and D statistics, which are derived as an error reconstruction term and a regularization term,
respectively, in the PPCA formulation.

Understanding the role of both terms in the anomaly detection process is a key step towards the
correct use of generative models in this security research field. Specifically, a direct application
is that of correctly using other generative models like VAEs and GANs. In a review of research
works that use these models, we note that while the error reconstruction term is widely used due
to its high anomaly detection capability, the regularization term is often forgotten or discarded.
We have theoretically and experimentally assessed that both terms are relevant and capture
complementary information. This implies that they should be used together for a robust anomaly
detection.

In addition, the PPCA generative framework provides a combination of both terms that con-
siders their contribution to the marginal distribution p(x) with a probabilistic interpretation, thus
offering a non-empirical solution for the weighting parameter required by MSNM.

Although the linear PPCA generative model is easy to understand and helps obtain the above
conclusions, its simplicity limits its generalization to non-linear data. Non-linearity is often
present in real traffic data and would be difficult to capture and detect. Also, PPCA inherits some
of the disadvantages from PCA, which is quite common when working with latent space models.
Even with a linear model, the latent combination of the original features is not easy to interpret.
So, as shown in Figure 8, the choice of the latent space size P is critical for the detection of
some attacks. While the use of linear detection models is useful in the later diagnosis of network
incidents, this paper intends to establish a first step for more complex generative approaches
to network anomaly detection. Further research on the combination of both error reconstruction
and regularization terms for those models is also needed. Finally, the choice of the threshold
is a well-known problem for anomaly detection. The calibration set provides a benchmark to
choose the decision boundary, but it should be determined according to the confidence in the
calibration data. The Gaussian form of p(x|WML, σ

2
ML) allows us to choose the confidence-

based threshold. Although the threshold might also be experimentally determined with the use
of testing sets, this approach relies on known attacks, and therefore does not provide information
about the optimal threshold for new or unknown attacks. Finally, system requirements usually
determine the threshold to use in industry applications. A high cost of undetected false negatives
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might induce the use of a lower threshold that will produce a higher number of false positives.
When combining both decision terms, the use of a combined or separated threshold for each
term is also an open field for future research.
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nando Pérez-Bueno was sponsored by Ministerio de Economı́a, Industria y Competitividad under
FPI contract BES-2017-081584.

The authors would like to thank Daniel Cortés Troya for his collaboration in the early stages
of this work.

APPENDIX

A. Laplace approximation
It follows that:

p(x) =

∫
p(z)p(x|z)dz =

∫
exp[ln p(z)p(x|z)]dz (30)

where f(z) = ln(p(z)p(x|z)) is a quadratic function that can be expanded around the maximum
a posteriori (MAP)

ẑ = argmax
z

f(z) = argmax
z

ln(p(z)p(x|z)) (31)

to obtain

p(z)p(x|z) = exp[ln p(z)p(x|z)] (32)

∝ exp[f(ẑ)− 1

2
(z− ẑ)T(I+

1

σ2
WTW)(z− ẑ)],

which produces, from Eq. (30), ln p(x) = f(ẑ) + const, and so

ln p(x|W,σ2) = −1

2
(ẑTẑ+

1

σ2
∥ x−Wẑ ∥2) + const. (33)

B. Analysis of fα(δ)
Let us define

fα(δ) =
1

2
(ẑT(δ)ẑ(δ) +

1

α
∥ x−W(δ)ẑ(δ) ∥2), (34)

and study its properties.
We observe that this function depends on x but we do not make this dependency explicit in

order to simplify the notation. Note also that we will end up studying the basic properties of the
associated quadratic form.

Theorem 1. Let us consider fα(δ) defined in Eq. (34) with α < λP and δ ∈ [0, λP ). Then
• fα(δ) is a convex function on δ with minimum at α/2,
• and fα(0) = fα(α).
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Proof. Therefore,

fα(δ)

=
1

2
(xTU(L−δI)L−2UTx+

1

α
∥ x−U(L−δI)L−1UTx ∥2)

=
1

2
(xTU(L− δI)L−2UTx

+
1

α
(xTx+xTU(L−δI)2L−2UTx−2xTU(L−δI)L−1UTx))

and

f ′
α(δ) =

1

2
(−xTUL−2UTx (35)

+
1

α
(−2xTU(L− δI)L−2UTx+ 2xTUL−1UTx)).

Furthermore, we have the following identity for the sum of the matrices involved in f ′
α(δ),

−L−2 +
2

α
(−(L− δI)L−2 + L−1) = L−2[−I+

2

α
δI] (36)

from which we can see that the sum is the zero matrix iff δ = α/2.
We also note that

f ′′
α(δ) =

1

2α
xTUL−2UTx ≥ 0 (37)

So, fα(δ) is a convex quadratic function on δ whose minimum is achieved at δ = α/2.
Furthermore, using the Taylor expansion around the minimum it follows that

fα(δ) = fα(
α

2
) +

1

2
(δ − α

2
)2f ′′

α(
α

2
) (38)

and so fα(0) = fα(α).
In summary, f ′′

α(δ) is convex, its minimum value is achieved at δ = α/2, and fα(0) = fα(α).
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[33] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, P. Garcı́a-Teodoro, and R. Therón, “UGR‘16: A new dataset for
the evaluation of cyclostationarity-based network IDSs,” Computers & Security, vol. 73, pp. 411–424, 2018. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0167404817302353

[34] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A survey of network-based
intrusion detection data sets,” Computers & Security, vol. 86, pp. 147–167, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016740481930118X

[35] M. Catillo, A. Pecchia, M. Rak, and U. Villano, “Demystifying the role of public intrusion datasets: A replication
study of dos network traffic data,” Computers & Security, vol. 108, p. 102341, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404821001656

[36] S. Garcı́a, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detection methods,” Computers & Secu-
rity, vol. 45, pp. 100–123, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167404814000923

154 CHAPTER 6. APPLICATION TO ANOMALY DECTECTION



CHAPTER 7

Other works (published, submitted, in

preparation)

This chapter includes three additional works developed during this Ph.D. in which
the candidate had a relevant role in their elaboration. Since they are not part of
the compendium of publications presented to obtain the Ph.D. degree, they will
only be mentioned along with their relevant contributions. We also include here
the 3 Minute Thesis (3MT) competition. This Ph.D. thesis won the first prize at
the University of Granada in 2021.
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7.1. WSI ACQUISITION AND PROCESSING. A REVIEW. 157

7.1 The Devil Is in the Details: Whole Slide Im-

age Acquisition and Processing for Artifact

Detection, Color Variation, and Data Aug-

mentation. A Review.

7.1.1 JCR Publication Details

Authors: Neel Kanwal*, Fernando Pérez-Bueno*, Arne Schmidt, Kjersti Engan,
Rafael Molina (* Indicates equal contribution)
Title: The devil is in the details: Whole Slide Image acquisition and processing
for artifact detection, color variation, and data augmentation. A review.
Reference: IEEE Access, 2022, 10, 58821-58844
Status: Published
DOI: 10.1109/ACCESS.2022.3176091
Quality indices:

• Impact Factor (JCR 2021): 3.476

– Rank 105/276 (Q2) in Engineering, Electrical and Electronic

– Rank: 79/164 (Q2) in Computer Science, Information Systems

• Journal Citation Indicator (JCR 2021): 0,93

– Rank 104/344 (Q2) in Engineering, Electrical and Electronic

– Rank: 75/246 (Q2) in Computer Science, Information Systems

7.1.2 Abstract

Whole Slide Images (WSI) are widely used in histopathology for research and
the diagnosis of different types of cancer. The preparation and digitization of
histological tissues leads to the introduction of artifacts and variations that need to
be addressed before the tissues are analyzed. WSI preprocessing can significantly
improve the performance of computational pathology systems and is often used to
facilitate human or machine analysis. Color processing techniques are usually the
main concern, while other areas are frequently ignored. In this paper, we present a
detailed study of the state-of-the-art in three different areas of WSI preprocessing:
Artifact detection, color variation, and the emerging field of pathology-specific
data augmentation. We include a summary of evaluation techniques along with a
discussion of possible limitations and future research directions for new methods.
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7.1.3 Main Contributions

• We present a complete review on WSI preprocessing techniques connecting
the WSI acquisition procedure to the causes for WSI variations and the
crucial preprocessing steps.

• Three areas of interest for WSI preprocessing are included: artifact detec-
tion, color variation, and data augmentation.

• We discuss the current challenges and future directions for WSI preprocess-
ing.
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7.2 Deep Variational Bayesian Stain Separation

of Histopathological Images Using Blind Co-

lor Deconvolution

7.2.1 JCR Publication Details

Authors: Shuowen Yang, Fernando Pérez-Bueno, Hanlin Qin, Rafael Molina,
Aggelos K.Katsaggelos
Title: Deep Variational Bayesian Stain Separation of Histopathological Images
Using Blind Color Deconvolution.
Status: Submitted
Quality indices:

• Impact Factor (JCR 2021): 11.041

– Rank 12/144 (D1) in Computer Science, Artificial Intelligence

– Rank 12/276 (D1) in Engineering, Electrical and Electronic

• Journal Citation Indicator (JCR 2021): 2.16

– Rank 13/189 (D1) in Computer Science, Artificial Intelligence

– Rank 17/344 (D1) in Engineering, Electrical and Electronic

7.2.2 Abstract

Histological images are often tainted with two or more stains to reveal their un-
derlying structures and conditions. Blind Color Deconvolution (BCD) techniques
separate colors (stains) and structural information (concentrations). This is a
process useful for the processing, data augmentation, and classification of such
images.

Classical BCD methods are often computationally expensive models in two
different senses. Firstly, for a given image, the estimation of the corresponding
colors and concentrations is time consuming and, secondly, the whole estimation
process has to be carried out on each image independently (non-amortized). Deep
neural networks learn a mapping from input to output (or probability distributions
over the output) whose estimation may be time consuming but once it has been
learned it can be used in a fast, amortized manner on unseen inputs.

Due to the lack of large databases of ground truth color and concentrations,
deep learning methods have hardly been applied to BCD. In this work, we propose
a deep variational Bayesian BCD neural network (BCDnet) for stain separation
and concentration estimation. Under this framework, we tackle the lack of ground
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truth by using Bayesian modeling and inference. A prior distribution on the stain
colors, which does not require the knowledge of the true colors, and the use of
maximum likelihood to estimate the concentrations are proposed. BCDnet is
trained by maximizing the evidence lower bound of the observed images. Fidelity
to the observed images (in a transformed space) and the Kullback-Leibler diver-
gence between the estimated posterior distribution of the colors and the chosen
prior are the terms that define the bound to be optimized. The model is trained,
validated, and tested on two multicenter databases: Camelyon-17 and a stain
separation benchmark with three different tissue types. The proposed approach
performs well in comparison to classical non-amortized methods and paves the
way for the use of deep learning techniques on BCD problems.

7.2.3 Main Contributions

• We introduce the first Bayesian approach to Blind Color Deconvolution
using Deep Neural Networks.

• We tackle the lack of the true underlying ground truth color stains and
concentrations for training by: a) the introduction of relevant priors on
the color-vector matrix and concentrations and, b) the use of variational
inference to approximate the posterior distribution of the color-vector matrix
and concentrations given the observed optical density image.

• The proposed approach is the first amortized model presented for BCD of
histological images.

• The proposed approach was evaluated on stain separation and showed com-
petitive results with state-of-the-art BCD methods.
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7.3 Robust blind color deconvolution and blood

detection on H&E histological images using

Bayesian K-Singular Value Decomposition

7.3.1 Publication Details

Authors: Fernando Pérez-Bueno, Kjersti Engan, Rafael Molina
Title: Robust blind color deconvolution and blood detection on H&E histological
images using Bayesian K-Singular Value Decomposition.
Status: In preparation

7.3.2 Abstract

Color variation between histological images from different laboratories is a known
issue that degrades the performance of Computer Aided Diagnosis (CAD) systems.
These variations are caused by differences in the staining protocol (e.g., with
Hematoxylin and Eosin (H&E)). Histology-specific models to solve color variation
are designed taking into account the staining procedure. In particular, Blind Color
Deconvolution (BCD) methods aim to identify the observed color the stains in the
image and to separate the tissue structure from the color information. A common
assumption is that images are stained with and only with the expected protocol
(e.g., two stains for H&E). This assumption might not hold true in the presence of
common artifacts such as blood in the image, were the blood cells usually obtain
a third different color. The presence of blood usually hampers the ability of color
standardization algorithms to correctly identify the stains in the image, producing
unexpected outputs. In this work, we use the recently proposed Bayesian K-
Singular Value Decomposition including a third ‘stain’ channel to detect blood in
histological images and produce a robust blind color deconvolution. Our method
was tested on synthetic and real images containing different amount of blood
pixels.

7.3.3 Main Contributions

• We extend the BKSVD method for BCD to make it robust against artifacts
in the image.

• We relate the fields of artifact detection and color variation by focusing
on blood and how its presence affects BCD methods on H&E histological
images.
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• We propose the use of BCD for blood detection.
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7.4 3 Minute Thesis (3MT) Competition

7.4.1 JCR Publication Details

Authors: Fernando Pérez-Bueno, Valery Naranjo, Rafael Molina.
Title: In Cancer Detection, the Devil Is in the Details.
Reference: 2021 Coimbra Group 3MT Competition.
Quality indices: First Prize (University of Granada, institutional finals)

7.4.2 Summary:

Developed by The University of Queensland (UQ), the 3MT competition consists
of effectively explaining one’s research in three minutes, in a language appropriate
to a non-specialist audience. Competitors are allowed one PowerPoint slide, but
no other resources. The event was streamed live on the UGR-media YouTube
channel and the recording is available in [16].

The speech presented at the 3MT competition introduced the problem of color
variation of histopathological images and how the models proposed in this Ph.D.
thesis can improve CAD performance when using images from different hospitals.
It was awarded with the first prize at the University of Granada and chosen to
represent the university in the international competition held by the Coimbra
Group.

Figure 7.1: A frame from the speech presented in [16].
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CHAPTER 8

Concluding Remarks

The main conclusion of this Ph.D. thesis is that Bayesian probabilistic model-
ing and inference can be used to improve histological images making them easier
to classify and interpret using CAD systems. We explored Bayesian blind color
deconvolution to separate the observed images into the latent elements that com-
pose them (i.e. stain color and stain concentrations (Chapters 2-4)). Bayesian
modeling and inference can also be applied in other areas such as pansharpening
(Chapter 5) and network anomaly detection (Chapter 6). This can be specified
through the following specific conclusions:

• The use of prior knowledge on the stain color and concentrations can lead to
a better separation of the information on the observed image. Probabilistic
models and Bayesian inference provide a consistent framework to introduce
prior knowledge and to manage uncertainty in histopathological images.

• Improving the image might have a different sense depending on the task to
perform. Higher fidelity to the original tissue is desired for visual analysis,
while better classification features for CAD systems might be obtained from
images where the noise and residual elements are removed.

• Sparsity is a desired feature for the latent separation of the stains in the im-
age. We have explored sparsity on the stain concentration in three different
approaches: by using the TV prior directly on the concentrations, by using
the SG family of priors on the high-pass filtered concentrations to remark
the edges, and with a two-tiered hierarchical prior (equivalent to a Laplacian
prior) on the concentrations for each pixel to promote a separation where
each pixel is assigned to only one stain.

• On the one hand, reference-based BCD is a robust approach that is not
affected by artifacts on the image, but lacks the flexibility to adapt to color
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distributions that are far from the reference. On the other hand, Dictionary
Learning for BCD is able to estimate a color-vector matrix that better rep-
resents the differential staining, but is exposed to artifacts (e.g. blood or
cauterized areas) on the images.

• Bayesian BCD is computationally expensive but outperforms non-probabilis-
tic approaches for stain separation. However, due to the reduced number
of stains in histological images, its application to massive WSI processing
can be boosted with pixel sampling for the estimation of the BKSVD model
parameters.

• BCD has a high potential for the improvement and interpretation of his-
tological images. Stain separation can be used for color normalization and
color augmentation, or directly for CAD purposes. Feeding CAD systems
with the single-stained concentration images instead of the RGB observed or
normalized image can improve the performance of the diagnostic. This ap-
proach mimics the analysis performed by pathologists, as they differentiate
the stains on the image and not the color they present.

• Some of the lessons learned while working with histological images can be
extended to other areas. Using probabilistic models to separate the informa-
tion in their latent components can help to highlight information previously
confused or disguised in the observed variables. Specifically:

– The estimation of high-resolution multispectral images from a low-
resolution multispectral images and a high-resolution panchromatic
image can be improved by using the SG priors, separating the con-
tribution of the panchromatic image to each channel of the HR MS
image.

– Probabilistic PCA provides a latent space that can be used for robust
network anomaly detection. In addition, PPCA establishes a bridge
between previous network anomaly detection models (i.e. MSNM) and
recent generative approaches such as VAEs that can be used to better
understand the latter.

• The works included in chapter 7 show that there is room for future research
in histological image processing and probabilistic modeling. In the paper
in section 7.1 reviews the state-of-the-art and remarks future directions and
challenges of WSI processing. The recently submitted work in section 7.2 is,
to the best of our knowledge, the first Bayesian approach to BCD using deep
neural networks, and paves the way for new works using deep learning. The
work in preparation in 7.3, also opens a new research line, presenting the
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use of BCD for artifact detection in histological images. Finally, the 3MT
award in 7.4, shows that the research developed in this thesis is of interest
for a general audience.
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