
DOCTORAL THESIS

Automatic identification of the protein fold

type using representations from the amino

acid sequence and deep learning techniques

University of Granada

Department of Signal Theory, Telematics and Communications

Doctoral Program in Information and Communication Technologies

Author:

Amelia Otilia Villegas Morcillo

Thesis supervisors:

Victoria Eugenia Sánchez Calle

Ángel Manuel Gómez García

Granada, September 2022

Editor: Universidad de Granada. Tesis Doctorales
Autor: Amelia Otilia Villegas Morcillo
ISBN: 978-84-1117-649-1
URI: https://hdl.handle.net/10481/79636

https://hdl.handle.net/10481/79636

A mi familia: Amelia, Antonio y Juanan

v

Acknowledgments

There are many people I would like to thank for being part of this journey and for making
it more enjoyable in one way or another. Whether your name is on this list or not, if we
have crossed paths at any point, thank you!

To my Thesis advisors, Victoria and Ángel, for giving me the opportunity to do a PhD
with you in an exciting field from which I have learned so much over these years. For
helping me to grow professionally and always maintaining a healthy work environment, I
am eternally grateful to you. To Juan Andrés (Juanito) and Paco, for helping me to start
researching in this field, I hope we can collaborate again in the future!

To the rest of the SigMAT group: Antonio, José Luis, José Andrés, Iván, and my
office colleagues and friends Juanma, Alejandro (already doctorates!), and Eros, for being
supportive and providing helpful guidance during these years. Thank you for the daily
coffee breaks, the Friday drinks and tapas, and the occasional ultra-mountain hiking routes
with ‘happy endings’ for our bellies. I wish you all the best in your next endeavors!

To my colleagues at TUDelft: to Marcel, firstly, for allowing me to do a research visit
in the group, and to Stavros, secondly, for actually wanting to collaborate with me. To
people in the Pattern Recognition, Computer Vision, and Bioinformatics labs (yeah and
Social BlaBla also), for the fun times in every Thursday ‘borrel’ and the rare board game
nights. Special mention to my friends Ramin, Yeshwanth, Aysun, (and Stavros of course!)
for making me look forward to returning to the Netherlands, my second home.

To my beloved Chirag, for always providing incredible advice and helping me to see life
from a different perspective. I deeply appreciate all the discussions, and I feel immensely
lucky for having you by my side. This Thesis is also yours.

To my InstaDeep colleagues: my folding team Tom, Louis and Benoit, and the rest of
people in the London and Paris offices, for the good vibes and fun at work, making my
jump from academia to industry a smooth one.

A mis padres Amelia y Antonio, por apoyarme siempre con mis estudios y abrazar cada
una de las oportunidades que me han surgido. A mi hermano Juanan (a.k.a. nene), por ser
una fuente de inspiración tanto personal como profesional, y por enseñarme las maravillas
del mundo tech e incrementar mi curiosidad cada día.

A la familia que se elige, mis amigos. A los de toda la vida: mis “peligrosas”, Marga,
María, Irene y Elena, y mis “granaínos”, Dani, Joseca y Ramón; y a mis “telecos”: Marga
(again), Mario, Borja, Vicente, Irene y Fran. Gracias por hacer posible que pasemos tiempo
de desconexión y risas todos juntos aunque estemos dispersos por el mundo.

vii

Abstract

Proteins are the building blocks of life as they are present in most of the biological processes
of living organisms. The accurate determination of the protein three-dimensional structure
is essential for many applications including drug development and protein design. However,
the high cost of experimental methods has generated an increasing gap between the number
of protein sequences and 3D structures available in public databases. Furthermore, although
all the information needed to fold a protein is contained in its amino acid sequence, the
computational determination of the protein structure is a challenging problem due to the
complexity of the physicochemical interactions that define such structure. One step towards
resolving this is the identification of the fold type the protein belongs to by comparing
it to solved structures. However, this approach has recently been superseded by several
deep learning methods that succeeded in producing highly accurate 3D structures from
scratch. Despite this, it remains crucial to develop algorithms that identify sequential and
structural similarities between proteins at a low computational cost. Since structures tend
to be better conserved than sequences over the course of evolution, protein fold prediction
is also a tool to find structurally related proteins that may not be similar in sequence. This
could help to annotate rare proteins that are yet to be characterized.

The main objective of this Thesis is therefore to advance research on protein fold pre-
diction methods by exploiting the information contained in the amino acid sequences using
deep learning algorithms. The results are presented in this dissertation as a compendium
of scientific papers that have been published during the doctoral period.

The proposed strategies explore different research directions with a common ground:
the use of deep learning techniques to learn meaningful embedding representations of
protein fold types. First, image representations of the protein have been evaluated for the
fold recognition task, including estimated and enhanced contact maps, as well as native
contact and categorical distance maps (from the 3D structure). Then, a convolutional-
recurrent neural network architecture has been proposed for fold recognition, which
successfully processes arbitrary-length protein sequences using amino acid residue-level
features. Subsequently, more discriminative embedding spaces of protein fold classes have
been learned by adjusting the training procedure of neural network models, in particular,
the loss function and the use of prototype fold class vectors to guide the classification.
Finally, the performance of several pre-trained protein language model embeddings has
been analyzed for the fold recognition and fold classification tasks, which have shown
promise and great potential for the field.

ix

Resumen

Las proteínas son los componentes básicos de la vida ya que están presentes en la mayoría
de procesos biológicos de los seres vivos. La determinación de la estructura tridimensional
de la proteína es esencial para muchas aplicaciones incluyendo el desarrollo de fármacos y
el diseño de proteínas. Sin embargo, el alto coste de los métodos experimentales ha generado
una brecha entre el número de secuencias y estructuras 3D de proteínas disponibles en
las bases de datos. Además, a pesar de que toda la información necesaria para plegar una
proteína está contenida en su secuencia de aminoácidos, la determinación de la estructura
por métodos computacionales es difícil debido a la complejidad de las interacciones físico-
químicas que definen dicha estructura. Un paso hacia su resolución es la identificación del
tipo de plegamiento (fold) mediante comparación con estructuras resueltas. Sin embargo,
este enfoque ha sido superado recientemente por varios métodos basados en aprendizaje
profundo, los cuales han logrado producir estructuras 3D muy precisas desde cero. A
pesar de ello, sigue siendo crucial el desarrollo de algoritmos que identifiquen similitudes
secuenciales y estructurales entre proteínas a un bajo coste computacional. Dado que las
estructuras tienden a conservarse mejor que las secuencias a lo largo de la evolución,
la predicción del tipo de plegamiento de la proteína es también una herramienta para
encontrar proteínas relacionadas entre sí a nivel estructural sin necesidad de ser similares
a nivel de secuencia. Esto podría ayudar en la anotación de proteínas poco comunes que
están aún por caracterizar.

El objetivo principal de esta Tesis es, por tanto, avanzar en la investigación de los
métodos de predicción del plegamiento de proteínas explotando la información contenida
en las secuencias de aminoácidos mediante el uso de algoritmos de aprendizaje profundo.
Los resultados se presentan en esta memoria como un compendio de artículos científicos
que han sido publicados durante el periodo doctoral.

Las estrategias propuestas exploran diferentes direcciones de investigación con una
base común: el uso de técnicas de aprendizaje profundo para aprender representaciones
compactas (embeddings) significativas de los tipos de plegamiento de las proteínas. En
primer lugar, se han evaluado representaciones en forma de imagen de la proteína para la
tarea de reconocimiento del plegamiento, incluyendo los mapas de contactos estimados y
mejorados, así como los mapas de contactos nativos y de distancias categorizadas (a partir
de la estructura 3D). Seguidamente, se ha propuesto una arquitectura de red neuronal de
tipo convolucional-recurrente para el reconocimiento del plegamiento, la cual procesa con
éxito secuencias de proteínas de longitud arbitraria utilizando características a nivel de ami-

x Resumen

noácido. Posteriormente, se han aprendido espacios de embedding más discriminativos de
los plegamientos mediante el ajuste del entrenamiento de las redes neuronales, en particular
la función de pérdidas y el uso de vectores prototipo para cada clase con objeto de guiar la
clasificación. Por último, se ha analizado el rendimiento de varios embeddings extraídos
de modelos de lenguaje de proteínas para las tareas de reconocimiento y clasificación de
pliegues, los cuales han demostrado ser prometedores y con gran potencial para el campo.

xi

Contents

Acknowledgments v

Abstract vii

Resumen ix

I Introduction 1

1 Introduction 3

1.1 Background . 3
Antecedentes. 5

1.2 Fundamentals of protein structure . 7
1.3 Representations of proteins . 10
1.4 Protein fold prediction tasks . 15
1.5 Databases . 16
1.6 Common approaches and open challenges 20
1.7 Objectives . 21
1.8 Contributions . 22
1.9 List of publications . 24
References . 25

II Results 33

2 Improved protein residue–residue contact prediction using image denois-

ing methods 35

Abstract . 36
2.1 Introduction . 36
2.2 EC-based contact map estimation . 38
2.3 Proposed methods for contact map denoising 39

2.3.1 Dictionary learning for sparse representations 39
2.3.2 DCNN Training with residual learning 40

2.4 Experimental framework and results . 41
2.4.1 Training and test datasets . 41
2.4.2 Evaluation criteria . 41

xii Contents

2.4.3 K-SVD Parameter setting . 42
2.4.4 DCNN Parameter Setting. 42
2.4.5 Comparison of methods . 43

2.5 Conclusions . 44
References . 45

3 On the impact of using estimated, enhanced, or native contact and cate-

gorical maps on protein fold recognition performance 47

3.1 Introduction . 48
3.2 Materials and methods . 48

3.2.1 Image representations of the protein 48
3.2.2 CMap-FCN for protein contact map enhancement 50
3.2.3 Fold-DCNN for protein fold recognition 52

3.3 Experiments and results . 55
3.3.1 Performance of CMap-FCN on predicting contacts and categorical

distances . 55
3.3.2 Training the Fold-DCNN models: Validation accuracy 57
3.3.3 Protein fold recognition performance of Fold-DCNN 58

3.4 Discussion and conclusion . 60
References . 60

4 Protein fold recognition from sequences using convolutional and recur-

rent neural networks 63

Abstract . 64
4.1 Introduction . 64
4.2 Materials and methods . 66

4.2.1 Feature extraction . 66
4.2.2 Convolutional-recurrent neural network model 67
4.2.3 Datasets . 70
4.2.4 Model training and validation 70
4.2.5 Evaluation and similarity measures 71

4.3 Results and discussion . 72
4.4 Conclusion . 76
References . 77
4.S Supplementary material . 82

4.S.1 Cross-validation sets and training results. 82
4.S.2 Lindahl dataset update (SCOP 1.37 to SCOP 1.75). 85
4.S.3 De novo training of the DeepFR method 86
4.S.4 GRU-based recurrent layer . 87

Contents xiii

4.S.5 Random forest models . 87
4.S.6 Fold-related embeddings analysis using bi-clustering. 88

5 FoldHSphere: deep hyperspherical embeddings for protein fold recogni-

tion 91

Abstract . 92
5.1 Background . 92
5.2 Materials and methods . 95

5.2.1 Datasets . 95
5.2.2 Protein residue-level feature representation 96
5.2.3 Residual-convolutional and recurrent neural network 97
5.2.4 Neural network model optimization 99
5.2.5 Large margin cosine loss . 100
5.2.6 Thomson-derived hyperspherical prototypes 101
5.2.7 Pairwise similarity scores . 102
5.2.8 Evaluation . 103

5.3 Results . 104
5.3.1 Learning fold-related embeddings with LMCL 104
5.3.2 Enhancing embedding discrimination power through Thomson-

derived hyperspherical prototypes 106
5.3.3 Analysis of the hyperspherical embeddings 107
5.3.4 FoldHSphere and FoldHSpherePro pairwise fold recognition per-

formance results . 107
5.4 Discussion . 110
5.5 Conclusion . 112
References . 113
5.S Supplementary material . 118

5.S.1 Training dataset and cross-validation subsets 118
5.S.2 Thomson-derived hyperspherical prototypes 118
5.S.3 Effect of secondary structure predictions on performance 123
5.S.4 Analysis of the hyperspherical embeddings 124
5.S.5 Implementation details . 125

6 An analysis of protein language model embeddings for fold prediction 127

Abstract . 128
6.1 Introduction . 128
6.2 Materials and methods . 131

6.2.1 Input protein information . 131
6.2.2 Pre-trained protein-LM embeddings 131

xiv Contents

6.2.3 Neural network models for protein embedding fine-tuning 133
6.2.4 Evaluation tasks . 136
6.2.5 Datasets . 138

6.3 Results and discussion . 139
6.3.1 Performance of self-supervised LMEmb embeddings in PFR and

DFC tasks . 139
6.3.2 Performance of fine-tuned FoldEmb embeddings in PFR task 140
6.3.3 Performance of fine-tuning models in DFC task 141
6.3.4 Ensemble approaches for increased accuracy in PFR and DFC tasks 143
6.3.5 Comparison with state-of-the-art methods for fold recognition and

fold classification. 143
6.4 Conclusion . 147
References . 149
6.S Supplementary material . 156

III Conclusions 161

7 Conclusions 163

7.1 Conclusions . 163
Conclusiones . 165

7.2 Future work . 167

1

I

Introduction

1

3

1

Introduction

It would take ages to compute all possible conformations
of a typical protein by brute force.

Yet proteins fold spontaneously in nature,
some within milliseconds.

— Levinthal’s Paradox

1.1 Background

P roteins are macromolecules essential for life that play critical roles in many biological
processes [1]. They are composed by chains of varying length, which contain 20

different types of amino acids. The linear arrangement of these amino acids constitutes the
primary structure of the protein. Moreover, the physicochemical properties of amino acids
cause them to interact with one another. Therefore, this variable length sequence guides
each protein to adopt a specific three-dimensional (3D) structure in the space, also called
‘conformation’. In turn, the biological function performed by the protein is conditioned by
its structure [2, 3], so its determination provides highly relevant information in the field of
molecular biology.

Traditional procedures for obtaining the protein 3D structure have been based on
experimental methods such as X-ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy. However, these methods are costly compared to massive genome sequencing
techniques [4], which generate large amounts of uncharacterized protein sequences that
are hosted in public databases [5]. This has led to extensive development of algorithms
that exploit the information contained in the amino acid sequence to predict the protein
3D structure.

1

4 1 Introduction

Historically, the computational estimation of the 3D structure at atomic level has been
considered a highly complex problem [6]. The main developments of the last few decades
have been driven by the CASP (Critical Assessment of Structure Prediction) challenges
[7, 8] in which, until very recently, two main modeling approaches were adopted: template-
based [9] and ab initio [10]. While ab initio techniques aim to build the structure from
scratch, template-based modeling is used to infer the structure of a query protein from a set
of templates with known structure, by looking for similarities in sequence or structure. In
template-based modeling, one of the steps is to predict the fold type the protein belongs to,
a problem known as protein fold recognition in the literature [11–13]. Fold categories group
proteins that share the spatial arrangement of their secondary structure elements and the
topological connections. The task can be seen as either a pairwise identification problem or
a supervised classification problem, since the number of possible folds or structural motifs
is thought to be limited in nature [14]. In fact, the pace of adding new folds to the different
versions of the SCOPe (Structural Classification of Proteins—extended) database has been
rather slow during the last decade [15, 16].

More recently, advances in machine learning techniques, particularly in deep learning
[17], have led to major breakthroughs in the field during the two latest CASP challenges, in
which the AlphaFold methods [18, 19] succeeded in producing accurate protein structures
with high resolution at atomic level. Despite this, there is still interest in developing
algorithms to automatically find sequential and structural similarities between proteins at
reduced computational cost, since they can disclose evolutionary or functional relation-
ships. Given that structures are usually better conserved than sequences [20], protein fold
prediction can also be a means to discover proteins that are structurally related to each
other without necessarily sharing high sequence similarities.

In this Thesis we address the protein fold prediction problem by taking advantage of the
latest developments in deep neural networks (DNN) and representation learning techniques.
To this end, we propose deep learning-based models adapted to different information from
the protein, such as the evolutionary profile or PSSM (position-specific scoring matrix),
the secondary structure (SS), or even the 3D structure in the form of distance and contact
maps. In addition, while most of this information has traditionally been estimated from the
multiple sequence alignment (MSA), recently proposed language models trained on amino
acid sequences learn embeddings that are informative of protein attributes. Therefore, we
evaluate the impact of using either traditional or learned protein representations as input
to DNN models that are trained to map proteins into all possible fold types. These models
also allow the extraction of new feature embeddings that are representative of the fold,
which can be used to compare proteins using simple similarity metrics.

This doctoral Thesis is in agreement with the Doctoral Programme in Information
and Communication Technologies of the University of Granada and is presented as a

1.1 Background

1

5

compendium of scientific papers—both journal publications and conference contributions.
Three of these papers have been published in indexed journals and are included here without
modification. In total there are seven chapters in this dissertation. This Chapter 1 introduces
the research topic and its background, describes all the elements necessary to understand
this Thesis as a whole, and also covers the objectives, contributions and publications
resulting from this Thesis. The core experimental work is included in Chapters 2 to 6.
First, Chapters 2 and 3 cover the initial work done with protein contact maps. Then,
the three published papers on protein fold prediction (as part of the compendium) can
be found in Chapters 4, 5 and 6. Thus, all experimental chapters are self-contained and
prepared to be read individually. Most of them include the following sections: Abstract,
Introduction, Materials and Methods, Results, Conclusion, and References. Therefore, given
the nature of the compendium format, some unavoidable repetitions may be found in this
manuscript. Finally, Chapter 7 brings together all the conclusions drawn from this Thesis,
and summarizes possible lines of future work.

Antecedentes

L as proteínas son macromoléculas esenciales para la vida, las cuales juegan un papel
fundamental en muchos procesos biológicos [1]. Están compuestas por cadenas de

longitud variable, formadas por la combinación de 20 tipos distintos de aminoácidos. La
disposición lineal de estos aminoácidos constituye la estructura primaria de la proteína.
Además, las propiedades físico-químicas de los aminoácidos hacen que estos interactúen
entre sí. Por tanto, esta secuencia de longitud variable es la que guía a cada proteína a
adoptar una estructura tridimensional (3D) específica, también denominada “conformación”.
A su vez, la función biológica que realiza la proteína está condicionada por su estructura
[2, 3], por lo que su determinación aporta información altamente relevante en el campo de
la biología molecular.

Los procedimientos tradicionales para la obtención de la estructura tridimensional se
han basado en métodos experimentales como la cristalografía de rayos X o la espectroscopía
de resonancia magnética nuclear (NMR). Sin embargo, estos métodos son costosos en
comparación con las técnicas de secuenciación masiva de genomas [4], las cuales generan
una gran cantidad de secuencias de proteína sin caracterizar que están siendo alojadas
en bases de datos públicas [5]. Esto ha propiciado un amplio desarrollo de algoritmos
que explotan la información contenida en la secuencia de aminoácidos para predecir la
estructura 3D de la proteína.

Históricamente, la estimación por medios computacionales de la estructura 3D a nivel
atómico se ha considerado un problema altamente complejo [6]. Los principales avances
de las últimas décadas han sido impulsados por los retos CASP (Critical Assessment of

1

6 1 Introduction

Structure Prediction) [7, 8] en los cuales, hasta hace muy poco, se adoptaron dos enfoques
principales para el modelado de estructuras: template-based [9] y ab initio [10]. Mientras
que las técnicas ab initio pretenden construir la estructura desde cero, el modelado de tipo
template-based se utiliza para inferir la estructura de una proteína a partir de un conjunto de
modelos con estructura conocida, buscando similitudes en la secuencia o la estructura. En el
modelado de tipo template-based, uno de los pasos es predecir el tipo de plegamiento al que
pertenece la proteína, un problema conocido en la literatura como protein fold recognition
[11–13]. Las categorías de plegamientos agrupan aquellas proteínas que comparten la
disposición espacial de sus elementos de estructura secundaria, así como las conexiones
topológicas entre ellos. La tarea puede verse como un problema de identificación por pares
o de clasificación supervisada, ya que se cree que el número de posibles plegamientos o
motivos estructurales está limitado en la naturaleza [14]. De hecho, el ritmo de incoporación
de nuevos plegamientos en las diferentes versiones de la base de datos SCOPe (Structural
Classification of Proteins-extended) ha sido bastante lento durante la última década [15, 16].

Más recientemente, los avances en las técnicas de aprendizaje automático, especialmente
en el aprendizaje profundo [17], han dado lugar a importantes adelantos en este campo
durante los dos últimos retos CASP, en los que los métodos AlphaFold [18, 19] lograron
producir estructuras de proteína precisas y con alta resolución a nivel atómico. A pesar
de ello, sigue habiendo interés en desarrollar algoritmos para encontrar automáticamente
similitudes secuenciales y estructurales entre proteínas a un coste computacional reducido,
ya que podrían revelar relaciones evolutivas o funcionales. Dado que las estructuras suelen
estar mejor conservadas que las secuencias [20], la predicción del tipo de plegamiento de
la proteína también puede ser un medio para descubrir proteínas relacionadas entre sí a
nivel estructural, sin que necesariamente posean grandes similitudes de secuencia.

En esta Tesis se aborda el problema de la predicción del tipo de plegamiento de las
proteínas haciendo uso de los últimos avances en redes neuronales profundas (DNN)
y técnicas de aprendizaje de representaciones. Para ello, se proponen modelos basados
en deep learning y adaptados a diferentes tipos de información de la proteína, como el
perfil evolutivo PSSM (position-specific scoring matrix), la estructura secundaria (SS), o
incluso la estructura 3D en forma de mapas de distancias y contactos. Además, aunque la
mayor parte de esta información se ha estimado tradicionalmente a partir del alineamiento
múltiple de secuencias (MSA), los recientemente propuestosmodelos de lenguaje entrenados
con secuencias de aminoácidos aprenden representaciones (embeddings) que contienen
información acerca de distintos atributos de las proteínas. Por lo tanto, tambien se evalúa
el impacto de utilizar representaciones de proteínas tradicionales o aprendidas como
entrada a los modelos DNN entrenados para clasificar las proteínas en todos los tipos de
plegamiento posibles. Estos modelos también permiten la extracción de nuevos embeddings
de características que son representativos del plegamiento, los cuales pueden utilizarse

1.2 Fundamentals of protein structure

1

7

para comparar proteínas utilizando métricas de similitud simples.
Esta Tesis doctoral se ajusta al Programa de Doctorado en Tecnologías de la Información

y la Comunicación de la Universidad de Granada, y se presenta como un compendio de
artículos científicos—tanto publicaciones en revista como contribuciones a congreso. Tres
de estos artículos han sido publicados en revistas indexadas y se incluyen aquí sin ningún
tipo de modificación. En total hay siete capítulos en esta Tesis. Este Capítulo 1 presenta el
tema de investigación y sus antecedentes, describe todos los elementos necesarios para
entender esta Tesis en su conjunto, y también cubre los objetivos y las contribuciones
derivadas de esta Tesis. El trabajo experimental principal se incluye en los Capítulos 2 a 6.
En primer lugar, los Capítulos 2 y 3 abarcan el trabajo inicial realizado con mapas de
contactos. A continuación, los tres artículos publicados del compendio se encuentran
en los Capítulos 4, 5 y 6, respectivamente. Así, todos los capítulos experimentales son
independientes y están preparados para ser leídos de manera individual. La mayoría de
ellos incluyen las siguientes secciones: Resumen, Introducción, Materiales y Métodos,
Resultados, y Referencias. Por lo tanto, dada la naturaleza del formato de compendio,
se pueden encontrar algunas repeticiones inevitables en este manuscrito. Finalmente, el
Capítulo 7 recoge todas las conclusiones extraídas de esta Tesis, y resume las posibles líneas
de trabajo futuras.

1.2 Fundamentals of protein structure

Levels of structure

Proteins are composed of one or more long chains of amino acids (polypeptides) linked
together through peptide bonds in a specific order, that fold into a specific three-dimensional
shape. There are four levels involved in the protein structure: primary, secondary, tertiary,
and quaternary (Figure 1.1) [21, 22].

(i) The primary structure (Figure 1.1a) is defined by the linear sequence of amino acids
that compose the polypeptide chain. This information is determined by the DNA sequence

Figure 1.1: Four levels of protein structure: (a) primary structure, (b) secondary structure, (c) tertiary structure,
and (d) quaternary structure. Adapted from [21].

1

8 1 Introduction

Table 1.1: The 20 common amino acid types, their three- and one-letter abbreviation codes and one attribute of
their side-chain: polar (hydrophilic) and nonpolar (hydrophobic). From [1].

Polar amino acids Nonpolar amino acids

Amino acid 3-letter code 1-letter code Amino acid 3-letter code 1-letter code

Aspartic acid Asp D Alanine Ala A
Glutamic acid Glu E Glycine Gly G
Arginine Arg R Valine Val V
Lysine Lys K Leucine Leu L
Histidine His H Isoleucine Ile I
Asparagine Asn N Proline Pro P
Glutamine Gln Q Phenylalanine Phe F
Serine Ser S Methionine Met M
Threonine Thr T Tryptophan Trp W
Tyrosine Tyr Y Cysteine Cys C

of the gene that encodes the protein. There are 20 common different types of amino acids
(Table 1.1), all of them having an amino group (H2N) and a carboxyl group (CO2H), but a
particular side-chain (R group), attached to their alpha-carbon (C𝛼) atom (Figure 1.2). To
maintain the primary structure, covalent peptide bonds connect the amino acids together,
from the C atom in the carboxyl group of one amino acid to the N atom in the amino
group of the next one. This repeating sequence of core atoms (N–C𝛼–C) constitutes the
backbone of the protein, while the side-chain determines the unique properties of each
amino acid. The group of backbone atoms and side-chain is commonly referred to as a
residue. Following the order of backbone atoms for each amino acid in the sequence, the
protein chain folds from the N-terminus to the C-terminus.

(ii) The secondary structure (Figure 1.1b) refers to local elements that fold due to in-
teractions between atoms of the polypeptide backbone. The secondary structure adopts
two common forms: 𝛼-helix and 𝛽-sheet. The shape of these local structures is held by
hydrogen bonds formed between the carboxyl group of one amino acid and the amino
group of another. 𝛼-helices are formed when one amino acid is hydrogen bonded to another
separated by four amino acids in the chain. This results in a right-handed helical shape
containing 3.6 residues per turn (Figure 1.3a). By contrast, 𝛽-sheets are composed of at least
two adjacent 𝛽-strands that are hydrogen bonded. Each individual 𝛽-strand is a segment
of polypeptide chain with an almost fully extended conformation. Two particular forms of
𝛽-sheet are usually found: parallel, where all strands follow the same direction from N- to
C-terminus; and antiparallel, where the strands point in opposite directions (Figure 1.3b).
Although the side-chains (R groups) are not directly involved in the formation of 𝛼-helices
and 𝛽-strands, they can influence the type of secondary structure element that is created.
An example is the amino acid proline, which cannot form part of a helix because its R
group forms a ring with the amino group, bending the chain in that region. In addition,
some segments of the protein chain acquire simpler shapes, known as loops or coils, which

1.2 Fundamentals of protein structure

1

9

H

H

N C𝛼

R

H

C

O

OH
Amino group

Side-chain

Carboxyl group

Figure 1.2: Molecular composition of atoms
in the amino acids, formed by an amino group
(blue), a carboxyl group (green), the backbone
atoms (dotted), and the side-chain (red) attached
to the central C𝛼 atom.

Figure 1.3: Secondary structure elements: (a) 𝛼-helix and
(b) 𝛽-sheet (parallel and antiparallel 𝛽-strands). From [1].

are responsible for connecting helices and strands in protein structures.
(iii) The tertiary structure (Figure 1.1c) is the overall three-dimensional structure of the

polypeptide chain described by the spatial location of all backbone and side-chain atoms,
as well as the spatial arrangement of secondary structure elements. In this case, the R
groups are fully involved in the formation of the tertiary structure. The R groups interact
with each other contributing to the stabilization of the protein through hydrogen bonds,
disulfide bonds, electrostatic forces, and Van der Waals forces. It is this tertiary structure
that gives polypeptide chains a very specific shape, which allows proteins to interact with
other molecules providing them with a unique function.

(iv) The quaternary structure (Figure 1.1d) is the spatial arrangement of subunits within
a protein formed as a complex of multiple polypeptide chains.

Domains, folds, and motifs

The tertiary structure of a protein chain can be further divided into evolutionary, functional
segments called domains. These units can fold independently into compact, stable three-
dimensional structures that can be associated to specific functions. Protein domains usually
comprise between 40 and 350 residues, and are considered the building blocks for many
larger proteins. While small proteins usually contain one single domain, larger proteins can
be composed of multiple domains. The term fold refers to a particular spatial arrangement
of secondary structure elements (𝛼-helices, 𝛽-sheets, or loops) into a domain structure,
which is common to different proteins. In contrast, structural motifs are generally smaller
than folds and can be contained within them. Examples of folds and motifs can be found in
Figure 1.4. While some structural motifs are observed in many unrelated proteins with
large variability, others appear in protein domains with similar function and are therefore
highly conserved. These share a characteristic amino acid sequence called sequence motif,

1

10 1 Introduction

(a) TIM-barrel (b) Rossmann (c) Beta-sandwich (d) Zinc-finger (e) Helix bundle

Figure 1.4: Graphical visualization (cartoon mode) of protein folds and motifs. For each domain fold 𝛼-helices are
shown in pink, 𝛽-strands in yellow, and loop regions in light green/gray. (a) TIM-barrel fold formed by a 𝛽-strand
followed by an 𝛼-helix, repeated eight times (PDB ID: 1SQ7_A). (b) Rossmann fold containing an alpha/beta twist
that usually binds NAD cofactors (PDB ID: 1EMD_A). (c) Immunoglobulin-like beta-sandwich fold consisting
of 7 or 9 antiparallel 𝛽-strands arranged in two 𝛽-sheets with a Greek-key motif topology (PDB ID: 2AW2_A).
(d) Zinc-finger motif formed by an 𝛼-helix and an antiparallel 𝛽-strand, usually found in DNA-binding proteins
(PDB ID: 1AAY_A). (e) Four-helix bundle motif (PDB ID: 1M6T_A). The structure information for each domain
was taken from the SCOPe version 2.08 database [16], and the figures were created with Mol* Viewer [24].

although not all structural motifs have a unique amino acid sequence. It should be noted
that the terms described here—domain, fold and motif—sometimes have blurred distinctions
and are used interchangeably, especially in the case of large, highly preserved structural
motifs that can be identified as a particular type of domain or fold [1, 22, 23].

1.3 Representations of proteins

The sequence-to-structure nature of proteins allows for feature representations derived
from two different modalities: sequence (attributes of each amino acid) and structure (3D
location of atoms within each residue). To illustrate the different representations, in the
following we use the small protein ubiquitin (76 amino acids) as an example. Information
on its sequence and structure has been obtained from the PDB website (https://rcsb.
org/structure/1ubi).

Seqence features

The amino acid sequence is commonly represented as a string of variable length 𝐿, where
each position can take one of the 20 unique characters in Table 1.1 (usually following
the order ARNDCEQGHILKMFPSTWYV). Protein sequences can also contain ambiguous
(B=[N,D], J=[I,L], Z=[E,Q]), or unknown (X) amino acids. An illustration of
amino acid sequence stored in a FASTA file format can be seen in Example 1.1. The most
straightforward way to encode this sequence is to use a one-hot representation for each
native amino acid [25]. This protein encoding is orthogonal and sparse, with a total size
𝐿×20, but lacks any information about the attributes of individual amino acids, let alone

1.3 Representations of proteins

1

11

Example 1.1: FASTA file content for the protein with PDB ID: 1UBI_A (1ubi.fasta).

1 >1UBI_1|Chain A|UBIQUITIN|Homo sapiens (9606)
2 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

the relative position of the amino acids in the sequence. To solve the first, each position
of the sequence can be instead represented as a vector of biochemical properties for the
amino acid, which can range from 3 values—the hydrophobicity, the hydrophilicity, and
the side-chain mass [26]—to the more than 500 physicochemical properties collected in the
AAIndex database [27]. To account for evolutionary information, the scoring matrices PAM
(point accepted mutation) [28] and BLOSUM (blocks substitution matrix) [29] can be used.
Both matrices are obtained by aligning homologous proteins, i.e. those that share common
ancestors in the evolutionary tree and therefore have similar sequences (more than 25%
shared sequence identity), and then measuring the frequencies of amino acid substitutions
in those related proteins. The final matrices contain the log-odds ratio for each of the
210 possible substitution pairs of the 20 standard amino acids. While PAM matrices are
constructed from global alignments, BLOSUM matrices are developed from local conserved
blocks or clusters of aligned proteins. An example is the widely used BLOSUM62 matrix,
built from amino acid sequences with a maximum pairwise identity of 62% within each
cluster. Table 1.2 provides an example of sequence representation using one-hot encoding,
3 physicochemical properties [26], and evolutionary relationships (BLOSUM62 matrix).

In fact, these substitution matrices play an important role in the building of multiple
sequence alignments (MSA) for proteins (see Figure 1.5), as they are used to evaluate the
quality of the alignment in tools such as BLAST [30]. The idea behind these tools is to
search for homologous proteins that are similar to a query protein (globally or locally) in a
sequence database, and sequentially add them to the alignment including gaps if required.
Then, the position-specific scoring matrix (PSSM) profile is usually computed from this
alignment. This is a frequency matrix of the number of occurrences of each residue at
each position of the alignment. The scores are computed as the log-likelihood ratio of the

Table 1.2: Partial sequence representations for the protein with PDB ID: 1UBI_A.

AA One-hot encoding (𝐿×20) Physicochemical BLOSUM62 log-odds (𝐿×20)seq properties (𝐿×3)

M [0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0] [0.64, −1.3, 75.0] [−1,−1,−2,−3,−1, 0,−2,−3,−2, 1, 2,−1, 5, 0,−2,−1,−1,−1,−1, 1]
Q [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0] [−0.85, 0.2, 72.0] [−1, 1, 0, 0,−3, 5, 2,−2, 0,−3,−2, 1, 0,−3,−1, 0,−1,−2,−1,−2]
I [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0] [1.38, −1.8, 57.0] [−1,−3,−3,−3,−1,−3,−3,−4,−3, 4, 2,−3, 1, 0,−3,−2,−1,−3,−1, 3]
F [0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0] [1.19, −2.5, 91.0] [−2,−3,−3,−3,−2,−3,−3,−3,−1, 0, 0,−3, 0, 6,−4,−2,−2, 1, 3,−1]
V [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1] [1.08, −1.5, 43.0] [0,−3,−3,−3,−1,−2,−2,−3,−3, 3, 1,−2, 1,−1,−2,−2, 0,−3,−1, 4]
⋮ ⋮ ⋮ ⋮
G [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0] [0.48, 0.0, 1.0] [0,−2, 0,−1,−3,−2,−2, 6,−2,−4,−4,−2,−3,−3,−2, 0,−2,−2,−3,−3]

1

12 1 Introduction

Sequence ID Alignment
1 302010

1UBI:A (+) M Q I F V K T L T G K T I T L E V E P S D T I E N V K A K I

A4RRW7 (+) M Q I F A R T V E G K T L V V R D A A T A G S A R A A L
B7XJR0 (+) I I K T P T K L I I R N F E N S M T I A Q L R E I R
A0A0C2J0W2 (+) L I R G L D G R T K V Q T V D C N S T F D T V L D S Y
J8ZR28 (+) I I N H P N N R K E T L T I T E T S I S S L F L I Q
S7XSQ3 (+) F L K S P N G T S T I D L A L E N T L E N V L
A0A0R0LU13 (+) F L L E N G L T T L T N I I S L P S L N
L7JUL8 (+) I L H H S N S T K M L D I P T Y N H L L S F A
A0A0N5ABA2 (+) F I R T L N D S T I T V D V P Y D L P I A E L R E I I
R0MGH8 (+) N V K L F D K T S F Y E V T P E Q S L V S L K E I S
T0MEM5 (+) I C N K K I Y S V D E N T T I S
C4VBC1 (+) I C K F N N K S S F Y N L N T A F D L K E L S
S0B3M4 (+) M Q A V I K R L S G N N E L I T L S A N E T A G M V M T R
A0A0R3VWD7(+) V Q L F L R R V G G S T L C F R C D E E K S V F D V K R H I
L1IRB4 (+) P S V Y V R T L S S V A E A S K T G S V K D L K N F L
C1LXQ0 (+) M R L L V R S H L G G S I V V S A G P D E S V K S L K D K I
mod_tr-Q15ER5(+) M R L F I R S H L H D Q V V I S A G P N E S V R S L K D K I
A0A060T5V4 (+) I Q V T V K S A S D T T I V L S V E P T Q T V A Q I K D L V
L2GS69 (+) M S V L V M H G I E T I S I K D G S A K D V M E L K R R L
mod_tr-Q6CI70(+) M P F T V K F V S G K S Y D V T M D A S N T I A A V K E Y L

NCBI Multiple Sequence Alignment Viewer, Version 1.22.0

Figure 1.5: Partial MSA representation for the protein with PDB ID: 1UBI_A (amino acids 1 to 30).

observed to the expected frequencies. PSI-BLAST [31], for example, is a well-known tool
to compute and refine PSSM matrices in an iterative manner, using previously computed
matrices to repeatedly search for sequences in a database. As a result, the PSI-BLAST PSSM
matrix is a customized scoring matrix that is more sensitive than PAM or BLOSUM for a
specific query. Probabilistic models, such as hidden Markov models (HMM), can be also
built from MSAs using the HMMER [32] and HHblits tools [33]. HMM profiles extend
PSSM scores by adding position-specific penalties for insertions and deletions. Furthermore,
the profile matrices generated by these tools are used to search for remote homologous
sequences in databases with pre-computed profiles, and so build more diverse multiple
sequences alignments.

To include information about the context of amino acids in the sequence, several
protein-level representations have been proposed. An example is the 𝑘-mer composition
[34, 35], which computes the occurrence of each possible short subsequence of length 𝑘
amino acids in the sequence. This representation is high dimensional, with size 20𝑘 . When
𝑘 = 1, it corresponds to the amino acid composition, which simply computes the frequency
of each individual amino acid in the sequence. Other examples are the PseAAC (pseudo
amino acid composition) descriptor [26, 36] and the PSSM auto-covariance (PSSM-AC) [37].
While both measure the correlation between pairs of amino acids separated by different
distances along the sequence, the PseAAC uses biochemical properties and the PSSM-AC
uses evolutionary information from the PSSM profiles.

In recent years there has been a boom in deep-learned representations for proteins,
borrowing concepts from the field of NLP (natural language processing). In particular,
language models (LM) have been adapted to protein sequences, where amino acids are
equivalent to words (tokens) and the protein sequence to a sentence. Currently there exist

1.3 Representations of proteins

1

13

many examples of protein language models (protein-LM) [38], starting from the word2vec
models [39, 40], followed by the contextualized auto-regressive ELMo model [41, 42], and
more recently the transformer-based language model BERT and its variants [43–45]. These
models are trained in a self-supervised manner by either predicting the context of an amino
acid, the following amino acid, or randomly masked amino acids in a sequence. From the
trained protein-LMs, deep representations known as embeddings are extracted for every
amino acid in the protein, which can be averaged along the sequence dimension to obtain
protein-level embeddings.

Structure features

As opposed to sequence features that are extracted from the amino acid sequence alone,
structure features take into account the position and relation of the residues in the space.
The PDB (protein data bank) [46] file format is usually used to store the 3D coordinates for
every residue atom (backbone and side-chain) in the protein (see Example 1.2), along with
other information about the determination of the protein structure.

Given the 3D position of atoms in a protein, the secondary structure assignment for
every residue can be determined by identification of the hydrogen bonds as, for example,
the DSSP program [47] does. DSSP provides 8 states for the secondary structure: H (𝛼-
helix), E (𝛽-strand), C (random coil), G (310-helix), I (𝜋-helix), B (𝛽-bridge), S (bend), and T
(H-bonded turn); which can be further assigned into one of the 3 common states: H (helix:
H, G and I), E (strand: E and B), and C (loop: C, S and T). Together with the secondary
structure states, the angles between bonds within a residue and in consecutive residues
can be also computed. In a protein, each residue has two dihedral or rotational angles [48]:
𝜙 about the N–C𝛼 bond and 𝜓 about the C𝛼–C bond (see Figure 1.2). The third angle 𝜔
between the carboxyl and amino groups (C–N bond) is restricted to 180◦ (mostly) or 0◦ due
to rigid planar peptide bonds. In addition, two other angles (𝜃 and 𝜏) are essential to define
the overall backbone structure. For the 𝑖-th residue in the sequence, 𝜃𝑖 is the angle between

Example 1.2: Partial PDB file content for the protein with PDB ID: 1UBI_A (1ubi.pdb).

1 HEADER CHROMOSOMAL PROTEIN 03-FEB-94 1UBI
2 ATOM 1 N MET A 1 27.343 24.294 2.683 1.00 14.70 N
3 ATOM 2 CA MET A 1 26.381 25.361 2.894 1.00 9.58 C
4 ATOM 3 C MET A 1 26.997 26.557 3.583 1.00 6.78 C
5 ATOM 4 O MET A 1 27.973 26.439 4.351 1.00 11.04 O
6 ATOM 5 CB MET A 1 25.112 24.879 3.647 1.00 15.53 C
7 ATOM 6 CG MET A 1 25.341 24.685 5.142 1.00 18.33 C
8 ATOM 7 SD MET A 1 23.944 23.887 5.986 1.00 16.83 S
9 ATOM 8 CE MET A 1 24.546 23.890 7.694 1.00 9.81 C
10 ATOM 9 N GLN A 2 26.410 27.694 3.332 1.00 10.15 N
11 ATOM 10 CA GLN A 2 26.865 28.934 3.898 1.00 8.89 C
12

1

14 1 Introduction

Figure 1.6: Secondary structure assignment (8-state) and backbone angles for the protein with PDB ID: 1UBI_A.

atoms C𝛼𝑖−1–C𝛼𝑖–C𝛼𝑖+1 , and 𝜏𝑖 is the dihedral angle rotated about the C𝛼𝑖–C𝛼𝑖+1 bond. An
example of the 8-state secondary structure assignment and the torsion angles given by
DSSP is shown in Figure 1.6. We observe that the angles take on more constant values
for consecutive H (𝛼-helix) and E (𝛽-strand) states. This can be compared to the graphical
visualization of the 3D structure in Figure 1.7a, in which the 𝛼-helix and 𝛽-strand elements
can be easily identified. Another property related to the secondary structure is the solvent
accessible surface area [49] which is a function of the protein structure and can be used to
classify the amino acid residues as solvent exposed or buried (non-exposed).

Tertiary structure features of a protein are often calculated as spatial distances between
atoms in the protein backbone. This representation is known as distance map (Figure 1.7b),
which is an 𝐿×𝐿 real-valued symmetric matrix containing the Euclidean distance between
each pair of beta-carbon (C𝛽) atoms within the protein. The C𝛽 is the first atom of the
side-chain in an amino acid residue (since the amino acid Glycine lacks a C𝛽 atom, its
C𝛼 atom is used instead for the computation). From this matrix, the binary contact map
(Figure 1.7c) is computed by applying a distance threshold over the distance map, usually
from 6 to 12 Å (Angstroms). The contact map indicates which residues are close enough
in space to form an interaction, and therefore contains more information about the 3D
structure than the secondary structure representation. Moreover, it is a translation and
rotation invariant representation that can be used as a constraint to reconstruct the 3D
structure of the protein [50].

It is important to note that the number of experimentally determined protein structures
is less abundant than the number of existing amino acid sequences. Therefore, there is a
special interest in predicting structural attributes from the information contained in the
protein sequences. Most methods rely on evolutionary information from the MSAs to
extract representations that are useful for protein structure prediction. One example is the
PSSM and HMM profiles, which have proven to be highly relevant in the prediction of 1D
structural features (i.e. secondary structure, solvent accessibility, and backbone angles)
[51]. Another example is the prediction of contact maps by identifying co-evolutionary

1.4 Protein fold prediction tasks

1

15

(a) PDB structure (b) Distance map (c) Contact map

Figure 1.7: Tertiary structure representations in image form for the protein with PDB ID: 1UBI_A.

signals in pairs of MSA columns [52, 53]. These positions could indicate residues that
interact in space and thus may undergo correlated mutations during evolution—i.e. if one
residue mutates, its counterpart has to mutate as well to preserve the overall 3D structure.

1.4 Protein fold prediction tasks

The main goal of this Thesis is to develop methods to predict the fold type of protein
domains, particularly from their amino acid sequence. To formalize this task, we start by
defining the input and output of our predictionmodels. The input is a protein domain with 𝐿
amino acid residues. Depending on the representation we choose, we can denote the protein
domain either as 𝐗 ∈ ℝ𝐿×𝑑 for residue-level sequential features (e.g. one-hot encoding,
PSSM matrix, secondary structure assignment, backbone angles, solvent accessibility, etc.);
𝐗 ∈ ℝ𝑑 for protein-level features (e.g. PseAAC, PSSM-AC, average protein-LM embeddings,
etc.); or 𝐗 ∈ ℝ𝐿×𝐿 for distance and contact maps. In all cases, 𝐿 denotes the sequence length
and 𝑑 the dimension of the feature vectors representing each amino acid residue. The
output is a fold class 𝑐 taken from a pre-defined closed set of fold classes 𝑐 = {𝑐1, 𝑐2,… , 𝑐𝑁 }.

The protein fold prediction task can be handled in two different ways. On the one hand,
it can be seen as a multi-class classification problem that can be tackled using common
machine learning approaches. In this case, we aim to directly map the input query domain
into one of the 𝑁 fold classes using a classification model. We refer to this task as direct fold

Feature extraction Classification

Query
domain (Q)

Features
(𝐗𝑄) MODEL

𝑐1
𝑐2
𝑐3

...

𝑐𝑁

Figure 1.8: Direct fold classification (DFC) task. The features for the query domain are fed to a model that
computes likelihoods for each one of the fold classes, and then the most likely class is assigned to the query.

1

16 1 Introduction

Feature extraction Scoring and ranking

Query
domain (Q)

Template
domain (T)

Features
(𝐗𝑄)

Features
(𝐗𝑇)

MODEL

Similarity
score

Template Fold Score

T15 𝑐3 0.99
T6 𝑐1 0.75
T23 𝑐5 0.62
.

Figure 1.9: Pairwise fold recognition (PFR) task. The model processes the features for the query domain and
compares to the features for a pool of template domains with known fold. The similarity scores computed between
each pair of query-template domains are then used to rank all templates. Finally, the fold class of the most similar
template is assigned to the query.

classification or DFC (see Figure 1.8). On the other hand, instead of directly outputting the
fold class, the model could measure the similarity degree between pairs of protein domains.
In such case, the query domain is compared to a pool of template domains for which we
know their fold class. For each pair of query-template domains, the model computes a
score that is used to rank the templates by similarity with respect to the query domain.
Then, the most similar template provides the predicted fold class for the query domain. We
denote this task as pairwise fold recognition or PFR (see Figure 1.9).

1.5 Databases

Protein seqences and structures

Protein sequence databases are collections of amino acid sequences, which are usually
translated from nucleotide sequences found in resources that contain genome, gene, and
transcript sequence data. Sequence data is provided in FASTA format (see Example 1.1) and
is crucial to search for homologous proteins when building multiple sequence alignments
(MSAs).

The UniProt Knowledgebase (UniProtKB) [5, 54] provides both sequence data and
associated function information. UniProtKB (https://uniprot.org) comprises two main
sections. First, the translations from EMBL (European Molecular Biology Laboratory)
nucleotide entries (https://ebi.ac.uk/ena) are computer-annotated and automatically
transferred to the TrEMBL section (unreviewed). Then, some of these records are selected
for manual annotation and then integrated into the Swiss-Prot section (reviewed). The
Swiss-Prot database provides protein annotations such as function descriptions, the domain
structure, post-translational modifications and variants, by cross-linked integration with
other external databases. The latest release of UniProtKB (2022_02) contains 231.9M
protein sequences, out of which only 567.5k entries (0.24%) are stored in Swiss-Prot.

As part of UniProt we also find the UniProt Archive (UniParc), which collects non-
redundant sequences from most of the publicly available sequence databases, including

1.5 Databases

1

17

UniProtKB, RefSeq (https://ncbi.nlm.nih.gov/refseq), and the Protein Data Bank
(PDB, https://rcsb.org). As of July 2022, UniParc contains 505.7M protein sequences.
Moreover, the UniProt Reference Clusters (UniRef) [55] provides clustered sets fromUniPro-
tKB and selected UniParc records representing the sequence space at several resolutions.
Three sets have been created by removing sequence redundancy using the MMseqs2 al-
gorithm [56]: (i) UniRef100, which combines identical sequences into a single entry, (ii)
UniRef90, which clusters UniRef100 sequences together up to 90% sequence identity, and
(iii) UniRef50, which clusters UniRef90 to 50% maximum sequence identity.

In order to further increase the number of protein sequences for MSA generation,
metagenomic data collected from environmental samples [57] generates billions of protein
sequences that are stored in databases such as MGnify [58] and the Big Fantastic Database
(BFD) [19]. MGnify (https://ebi.ac.uk/metagenomics) provides a non-redundant
protein set generated from thousands of publicly available studies, which contains more
than 1 billion sequences. BFD (https://bfd.mmseqs.com) was constructed by collecting
2.5B protein sequences from UniprotKB (Swiss-Prot and TrEMBL), MetaClust [59], as well
as the Soil and the Marine Eukaryotic Reference Catalogs assembled by PLASS [60].

Complementary to sequence databases, protein structure databases process and dis-
tribute experimentally determined 3D structure data. The best known repository is the
Protein Data Bank (PDB) [46, 61], operated by the Research Collaboratory for Structural
Bioinformatics (RCSB), which contains large molecules of proteins, nucleic acids and other
biological macromolecules. Structure data is usually provided in PDB format (see Exam-
ple 1.2), and can be visualized using dedicated graphics software such as Mol* Viewer (open,
https://molstar.org) or PyMOL (commercial, https://pymol.org). As of July 2022,
PDB contains 188.8k protein structures (https://rcsb.org), mainly determined by X-ray
crystallography (87.2%), nuclear magnetic resonance (NMR) spectroscopy (6.5%) and elec-
tron microscopy (6.1%). Moreover, out of these, 59k structures have direct correspondence
with UniProtKB entries.

To bridge the gap between available sequence and structure data, several repositories
provide access to a large number of predicted structures. An example is the SWISS-
MODEL Repository [62], which contains 3D protein models generated by automated
homology modeling for relevant model organisms. Currently the repository contains over
2.2M predicted structures for UniProtKB entries (https://swissmodel.expasy.org/
repository). More recently, the AlphaFold DB [63] has been released and includes 3D
structures estimated by the AlphaFold2 deep learning-based model [19] for 992.3k proteins
(as of July 2022), covering 48 model organisms (including the human proteome), as well as
the majority of Swiss-Prot entries (https://alphafold.ebi.ac.uk).

1

18 1 Introduction

Classification of domain structures

To record the structural similarities between proteins and their common evolutionary
origins, proteins with solved structure in the PDB have been further split into domains
and hierarchically classified according to structural and sequence similarities. This has led
to several protein structure classification databases such as FSSP (Families of Structurally
Similar Proteins) [64], SCOP (Structural Classification of Proteins) [15, 16, 65], CATH (Class,
Architecture, Topology, Homology) [66, 67], and ECOD (Evolutionary Classification of
Protein Domains) [68]. These databases differ in the methods of classifying structural data:
FSSP is fully automated, SCOP is almost completely manually derived, and CATH and
ECOD employ both automated procedures and manual annotations [68, 69]. Unlike SCOP
and CATH, which assign protein domains into folds or superfamilies, FSSP and ECOD
group domain structures according to evolutionary relationships alone, paying especial
attention to distant relations [70].

Throughout this Thesis, we focus on the use of domain and fold definitions provided
by SCOP [65] (manually derived) and its extended version SCOPe [15] (https://scop.
berkeley.edu). SCOP is a hierarchical database in which protein domains are grouped by
their secondary structure properties into four main levels: structural class, fold, superfamily,
and family (see Figure 1.10). Top levels group domains with increasing structural similarities
and do not imply homology (i.e. structural class, fold, superfamily), whereas bottom levels
are based on evolutionary similarities (i.e. superfamily, family, protein). Starting at the
bottom, the main levels of SCOP have the following characteristics:

SCOPe

All alpha (all-𝛼)
a

All beta (all-𝛽)
b

Alpha and beta (𝛼/𝛽)
c

Alpha plus beta (𝛼+𝛽)
d

TIM beta/alpha-barrel
c.1

Rossmann-fold
c.2

Flavodoxin-like
c.23

Triosephosphate isomerase (TIM)
c.1.1

(Trans)glycosidases
c.1.8

RuBisCo, C-terminal
c.1.14

Amylase, catalytic domain
c.1.8.1

beta-glycanases
c.1.8.3

Fungal alpha-amylases Cyclodextrin glycosyltransferase Oligo-1,6, glucosidase

Aspergillus niger Bacillus circulans Bacillus stearothermophilus Bacillus cereus

2aaa A:1-381
d2aaaa2

1cdg A:1-406
d1cdga4

1cgt A:1-406
d1cgta4

1cyg A:1-402
d1cyga4

1uok A:1-479
d1uoka2

Root

Structural class

Fold

Superfamily

Family

Protein

Species

PDB chain

Domain id

Figure 1.10: Example of the SCOPe hierarchy (adapted from https://scop.berkeley.edu for SCOPe
version 2.08 [16]). At each level, we specify the identification codes for the corresponding structural classes, folds,
superfamilies, and families. We also include the unique identifiers for the final domains at the bottom of the tree.

1.5 Databases

1

19

• Family. The family level groups proteins that have a clear common evolutionary
origin, measured as either sharing more than 30% sequence identity or having similar
functions and structures.

• Superfamily. The superfamily level groups families whose proteins have low
sequence identities but their structures and functional features suggest that a common
evolutionary origin is probable.

• Fold: The fold level groups superfamilies with proteins that have the same ma-
jor secondary structures in the same arrangement and with the same topological
connections. These structural similarities might arise from the physics and chem-
istry of proteins favoring certain motifs and chain topologies, or an unclear common
evolutionary origin where the structure has been better conserved than the sequence.

• Structural class: The structural class level groups folds according to their secondary
structure elements and organization. There are 7 major structural classes in SCOPe,
termed from a to g. The most important ones are the following (Figure 1.10):
a. All alpha (all-𝛼): proteins whose structure is formed by 𝛼-helices.
b. All beta (all-𝛽): proteins whose structure is formed by 𝛽-sheets.
c. Alpha and beta (𝛼/𝛽): proteins with 𝛼-helices and 𝛽-strands that are largely

interleaved, usually arranged in beta-alpha-beta units.
d. Alpha plus beta (𝛼+𝛽): proteins in which 𝛼-helices and 𝛽-strands are spatially

segregated in different parts of the protein.

Figure 1.11 shows the number of protein domains and folds contained in the different
versions of the SCOP and SCOPe databases (from 2001 to 2021). In the case of SCOPe, we
observe that while the number of domains has more than doubled, the number of folds has

1.55 1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.73 1.75 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08
600

700

800

900

1000

1100

1200

1300

Fo
ld

s

SCOP version (2001-2009) SCOPe version (2012-2021)

Folds

0

50k

100k

150k

200k

250k

300k

350k

Do
m

ai
ns

Domains

Figure 1.11: Number of protein domains and folds stored in the different versions of the SCOP (from 2001 to 2009)
and SCOPe (from 2012 to 2021) databases. The information was taken from https://scop.berkeley.edu.

1

20 1 Introduction

remained almost constant at around 1200 (from 1194 in v2.01 [15] to 1257 in v2.08 [16]).
This is consistent with related literature suggesting that the number of folds is limited in
nature [71–73].

1.6 Common approaches and open challenges

The protein fold identification task [74–77] has been tackled following two broad ap-
proaches: alignment-based fold recognition, in which the fold class of the query protein is
inferred by finding similarities with templates with known structure; and taxonomy-based
fold classification, in which machine learning methods are used to directly map the protein
domains into their fold class.

Early alignment-based approaches tried to find proteins with the same fold by using
sequence alignment methods [13] or by comparing the PSSM profiles, HMM profiles [78],
or Markov random fields [79]. This is known in the literature as homology modeling, since
it relies on finding sequences that are homologous to a query protein. While sequence
alignment is conceptually simple and an effective method for certain sequences, it can
easily fail when no close homologs exist for the query protein. Profile comparison ap-
proaches slightly remedy such a drawback by constructing an overall profile from summary
statistics computed on the MSAs. However, they are also bottlenecked by the quality of
the MSA, which can be again hard for those proteins without close homologous sequences.
Consequently, threading methods [80–86] have been proposed to improve performance in
remote homology. Here, structural properties can be used along with sequence profiles to
perform sequence-to-structure alignment.

Taxonomy-based classification approaches use traditional machine learning (ML) meth-
ods such as support vector machines (SVM), random forests (RF) or neural networks (NN)
to directly map an input protein domain into its fold class. The advantage is that once
trained, these models offer significant speed gains in detecting fold types compared to
alignment-based methods. However, a crucial limitation of traditional ML approaches is
that they only consider the most populated fold classes: 27 or 30 in contrast to the more
than 1000 folds in the SCOP database [37, 87–95].

While taxonomy-based methods view the task as a multi-class classification problem,
another set of methods attempt to instead predict whether two protein domains belong to
the same fold, casting the task into a binary classification problem [96–98]. To improve
performance, ensemble methods have also been proposed, which combine multiple protein
feature representations and prediction models [92, 99–101]. However all such models are
limited to using protein-level representations, usually derived from evolutionary informa-
tion (e.g. PSSM-AC). While the proteins themselves are variable in length, which itself
carries information, these representations are computed to be fixed-sized vectors in order

1.7 Objectives

1

21

to work with traditional ML approaches.

A more promising approach lies in using deep representation learning methods. First,
by scaling well with data, they allow for classification over the full set of SCOP folds
(as demonstrated in the DeepSF method [102]), overcoming the limitations imposed by
considering only populated folds. Second, the classification process can be a means to learn
deep embeddings that are representative of the fold type. This strategy was proposed by
the DeepFR [103] method and followed by more recent approaches [104–108]. These fold-
representative embeddings can then be used to measure the structural similarity between
two protein domains, providing a better score than previous alignment and threading
methods. However, despite these improvements, existing deep learning approaches suffer
from several drawbacks. The use of sampling/padding, cropping, or adaptive pooling
strategies to fix the size previous to the classification layer discards information that could
be useful for classification. In addition, while increasing performance for the hardest cases
(proteins with same fold but different sequence), deep learning methods usually perform
worse than alignment methods at the family level (i.e. when the sequences are similar).

1.7 Objectives

In this Thesis, we build upon the advantages of deep learning approaches to develop
algorithms that improve the prediction accuracy of the protein fold type by leveraging
sequence and structure information from different representations of the protein. In order
to accomplish this, the following sub-objectives are defined:

1. To analyze the existing protein datasets from public databases of sequences (UniProt
[54, 109]), structures (PDB [46]), and structural classification (SCOPe [15, 65]), as
well as to adapt them to the training and evaluation tasks of the developed systems.

2. To design deep neural network architectures that process different representa-
tions of the protein—either sequential (for each amino acid residue), in image form
(residue–residue pairs), or as a fixed-size vector (at the protein level).

3. To implement representation learning strategies for the neural network models to
generate new features or embedding vectors for each protein that contain information
about the protein fold in a compact form.

4. To develop and evaluate systems that improve accuracy in the prediction of the

protein fold type, using machine learning algorithms on the learned fold-related
features in combination with other representations extracted from the protein.

1

22 1 Introduction

1.8 Contributions

This section presents the contributions derived from this Thesis and their correspondence
with the different Chapters of this dissertation.

Contact maps for protein fold recognition. In Chapter 2 we analyze two approaches
to reduce Gaussian noise in estimated protein contact maps. The best performing method
trains a fully-convolutional neural network (FCN) for image denoising. This strategy is
used in Chapter 3 to generate enhanced contact and categorical maps, which are then
compared against the native maps obtained from the protein 3D structure in terms of fold
recognition performance. To do so, we use a deep convolutional neural network (DCNN)
model that processes the input images through several 2D convolutional layers and then
performs the classification into fold types through fully-connected layers. Even though
the fold-related features extracted from native contact maps are effective at recognizing
proteins with the same fold, there is still room for improvement which could be achieved
by using other types of information.

Neural network architectures adapted to variable-length protein sequences. Protein
sequences are inherently variable in length. Previous approaches for protein fold recogni-
tion have used fixed-size features as input to the machine learning models. We argue that
such representations result in a loss of information and the entire protein sequence should
be used instead. In Chapter 4 we introduce a method to tackle this issue by training a neural
network model on protein residue-level features—i.e. one feature vector for each amino acid
residue in the sequence including evolutionary and secondary structure information. The
architecture of the model consists of a convolutional part (CNN), followed by a bidirectional
gated recurrent unit-based (BGRU) layer that generates a fixed-size representation, and
fully-connected layers to perform the final classification from this representation. As a
result, the fold-related embeddings extracted from the CNN-BGRU architecture perform
better at recognizing the fold class than those learned from estimated contact maps. Fur-
thermore, we observe a performance gain in our CNN-BGRU-RF+ method, which combines
the pairwise scores calculated from the two sources (residue-level features and contact
maps) with other similarity measures in a random forest (RF) model.

Learning strategies for better fold-discriminative embeddings. When analyzing the
state-of-the-art results on protein fold recognition, we find that there exists a performance
gap at the fold level compared to the relatively easier family level. This suggests that it
might be possible to learn an embedding space that better discriminates between protein
folds. To that end, in Chapter 5 we focus on the learning part of the neural network and
propose a two-stage training procedure called FoldHSphere. The method first obtains
prototype vectors for each fold class that are maximally separated in hyperspherical space.

1.8 Contributions

1

23

We then train a residual-convolutional and recurrent (ResCNN-BGRU) neural network by
minimizing the angular large margin cosine loss (LMCL) to learn protein embeddings clus-
tered around the corresponding fold prototypes. The resulting hyperspherical embeddings
are discriminative of the protein folds, as they are effective at recognizing the fold class by
pairwise comparison. Moreover, the FoldHSpherePro method using an RF ensemble model
yields high accuracy at the fold level, successfully bridging the performance gap between
the different levels of evaluation.

Protein language model embeddings to predict fold types. Traditionally, information
extracted from the multiple sequence alignment (MSA) has mainly been used as input
source for different protein prediction tasks. In contrast, recent studies have shown that
language models trained on millions of protein sequences are able to learn protein repre-
sentations (protein-LM embeddings) containing relevant information about the protein
and the contextual relationships between its amino acids. In Chapter 6 we analyze the
performance of six different protein-LM embeddings on two fold-related tasks—pairwise
fold recognition (PFR) and direct fold classification (DFC). We further train three neural net-
work models to fine-tune the protein-LM embeddings and extract new fold-representative
embeddings (PFR task) as well as perform the final fold classification (DFC task). These
architectures include a multi-layer perceptron (MLP) working on protein-level embeddings,
and the ResCNN-BGRU (RBG) and light-attention (LAT) models to process amino acid-level
embeddings. The results indicate that the combination of transformer-based embeddings,
particularly those obtained at amino acid-level, with the RBG and LAT fine-tuning models
performs remarkably well in both tasks. Furthermore, ensemble strategies proposed for
PFR and DFC provide a significant improvement over the current state-of-the-art results.

Extension to other tasks: protein function prediction. Although we do not present the
published work on protein function prediction [110] explicitly as part of this dissertation,
such work has contributed to the achievement of the Thesis objectives, and we summarize
it here: Proteins can perform one or several functions, which are labeled according to terms
in the Gene Ontology (GO) database. Therefore, the function prediction task can be seen as
a multi-label classification problem that can be tackled using supervised machine learning
algorithms. However, there is less labeled data than is needed to train complex models for
this task. In [110] we argue that the use of deep protein representations from pre-trained
protein language models (as in Chapter 6) could ease this problem. In particular, we analyze
the performance of the protein-LM embeddings at predicting protein function, and compare
against hand-crafted features extracted from the protein sequence (one-hot encoding of
amino acids or k-mer counts) or the native structure (distance maps, secondary structure or
backbone angles). We show that the protein-LM embeddings alone provide the best results
using a simple classification model. Furthermore, the performance is not improved when

1

24 1 Introduction

combining these embeddings with distance map information in a graph convolutional
network (GCN) model, although it does so when considering simple representations of the
amino acids instead.

1.9 List of publications

All publications resulting from the work of this Thesis are listed below. The items are
arranged in order of publication date, the latest first. For each journal, we also provide the
Impact Factor (IF) computed by the Journal Citation Reports (JCR). Some journal papers
have additionally been presented as an oral communication and/or a poster at international
conferences. The symbol indicates the journal papers supporting the compendium
format in agreement with the Doctoral Programme.

 1. Amelia Villegas-Morcillo, Angel M. Gomez, and Victoria Sanchez. An analysis of
protein language model embeddings for fold prediction. Briefings in Bioinformatics,
23(3):bbac142, 2022.

IF (JCR 2021): 13.994. Mathematical & Computational Biology. Rank 1/57 (D1).

 2. Amelia Villegas-Morcillo, Victoria Sanchez, and Angel M. Gomez. FoldHSphere:
deep hyperspherical embeddings for protein fold recognition. BMC Bioinformatics,
22(1):1-21, 2021.

IF (JCR 2021): 3.328. Mathematical & Computational Biology. Rank 20/57 (Q2).

Note: This work was also presented as a poster in the 29th International Conference on
Intelligent Systems for Molecular Biology / 20th European Conference on Computational
Biology (ISMB/ECCB), July 25-30, Virtual, 2021.

 3. Amelia Villegas-Morcillo, Angel M. Gomez, Juan A. Morales-Cordovilla, and
Victoria Sanchez. Protein fold recognition from sequences using convolutional and
recurrent neural networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 18(6):2848-2854, 2021.

IF (JCR 2021): 3.702. Mathematics, Interdisciplinary Applications. Rank 16/108 (Q1).

4. Amelia Villegas-Morcillo, Juan A. Morales-Cordovilla, Angel M. Gomez, and
Victoria Sanchez. Improved protein residue–residue contact prediction using image
denoising methods. In Proceedings of 26th European Signal Processing Conference
(EUSIPCO), pp. 1167-1171, September 3-7, Rome (Italy), 2018.

The following papers are not directly included in this dissertation, but were also developed
during the doctoral period on related research topics:

References

1

25

5. Amelia Villegas-Morcillo*, Stavros Makrodimitris*, Roeland C.H.J. van Ham, An-
gel M. Gomez, Victoria Sanchez, and Marcel J.T. Reinders. Unsupervised protein
embeddings outperform hand-crafted sequence and structure features at predicting
molecular function. Bioinformatics, 37(2):162-170, 2021.

IF (JCR 2021): 6.931. Mathematical & Computational Biology. Rank 5/57 (D1).

[∗] Denotes equal contribution

Note: This work was also presented as both oral communication and poster in the
28th International Conference on Intelligent Systems for Molecular Biology (ISMB), July
13-16, Virtual, 2020.

6. Francisco Gonzalez-Lopez, Juan A. Morales-Cordovilla, Amelia Villegas-Morcillo,
Angel M. Gomez, and Victoria Sanchez. End-to-end prediction of protein-protein
interaction based on embedding and recurrent neural networks. In Proceedings of
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.
2344-2350, December 3-6, Madrid (Spain), 2018.

References

[1] B. Alberts, D. Bray, K. Hopkin, et al. Essential cell biology. Garland Science, 2015.

[2] C. A. Wilson, J. Kreychman, and M. Gerstein. Assessing annotation transfer for genomics:
quantifying the relations between protein sequence, structure and function through traditional
and probabilistic scores. Journal of Molecular Biology, 297(1):233–249, 2000.

[3] M. I. Sadowski and D. T. Jones. The sequence–structure relationship and protein function
prediction. Current opinion in structural biology, 19(3):357–362, 2009.

[4] M. Morey, A. Fernández-Marmiesse, D. Castiñeiras, et al. A glimpse into past, present, and
future DNA sequencing. Molecular Genetics and Metabolism, 110(1-2):3–24, 2013.

[5] U. Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research,
49(D1):D480–D489, 2021.

[6] B. Kuhlman and P. Bradley. Advances in protein structure prediction and design. Nature
Reviews Molecular Cell Biology, 20(11):681–697, 2019.

[7] J. Moult. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction.
Current Opinion in Structural Biology, 15(3):285–289, 2005.

[8] A. Kryshtafovych, T. Schwede, M. Topf, K. Fidelis, and J. Moult. Critical assessment of
methods of protein structure prediction (CASP)–Round XIV. Proteins: Structure, Function, and
Bioinformatics, 89(12):1607–1617, 2021.

[9] A. Fiser. Template-based protein structure modeling. In Computational Biology, pages 73–94.
Humana Press, 2010.

1

26 1 Introduction

[10] J. Lee, P. L. Freddolino, and Y. Zhang. Ab initio protein structure prediction. In From Protein
Structure to Function with Bioinformatics, pages 3–35. Springer, 2017.

[11] C. Chothia and A. V. Finkelstein. The classification and origins of protein folding patterns.
Annual Review of Biochemistry, 59(1):1007–1035, 1990.

[12] D. T. Jones, W. R. Taylor, and J. M. Thornton. A new approach to protein fold recognition.
Nature, 358(6381):86, 1992.

[13] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily and fold
level. Journal of Molecular Biology, 295(3):613–625, 2000.

[14] R. D. Schaeffer and V. Daggett. Protein folds and protein folding. Protein Engineering, Design
& Selection, 24(1-2):11–19, 2010.

[15] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. SCOPe: Structural classification of proteins–
extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic
Acids Research, 42(D1):D304–D309, 2014.

[16] J.-M. Chandonia, L. Guan, S. Lin, et al. SCOPe: improvements to the structural classification of
proteins–extended database to facilitate variant interpretation and machine learning. Nucleic
Acids Research, 50(D1):D553–D559, 2022.

[17] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[18] A. W. Senior, R. Evans, J. Jumper, et al. Improved protein structure prediction using potentials
from deep learning. Nature, 577(7792):706–710, 2020.

[19] J. Jumper, R. Evans, A. Pritzel, et al. Highly accurate protein structure predictionwith AlphaFold.
Nature, 596(7873):583–589, 2021.

[20] K. Illergård, D. H. Ardell, and A. Elofsson. Structure is three to ten times more conserved than
sequence–A study of structural response in protein cores. Proteins: Structure, Function, and
Bioinformatics, 77(3):499–508, 2009.

[21] OpenStax, Microbiology. OpenStax CNX. https://openstax.org/books/
microbiology/pages/7-4-proteins. Mar 5, 2022.

[22] P. D. Sun, C. E. Foster, and J. C. Boyington. Overview of protein structural and functional folds.
Current Protocols in Protein Science, 35(1):1–189, 2004.

[23] M. Levitt and C. Chothia. Structural patterns in globular proteins. Nature, 261(5561):552–558,
1976.

[24] D. Sehnal, S. Bittrich, M. Deshpande, et al. Mol* Viewer: modern web app for 3D visualization
and analysis of large biomolecular structures. Nucleic Acids Research, 49(W1):W431–W437,
2021.

[25] K. Lin, A. C. May, and W. R. Taylor. Amino acid encoding schemes from protein structure
alignments: Multi-dimensional vectors to describe residue types. Journal of Theoretical Biology,
216(3):361–365, 2002.

References

1

27

[26] K.-C. Chou. Prediction of protein cellular attributes using pseudo-amino acid composition.
Proteins: Structure, Function, and Bioinformatics, 43(3):246–255, 2001.

[27] S. Kawashima and M. Kanehisa. AAindex: Amino Acid index database. Nucleic Acids Research,
28(1):374–374, 2000.

[28] M. O. Dayhoff, R. Schwartz, and B. Orcutt. A model of evolutionary change in proteins. Atlas
of Protein Sequence and Structure, 5:345–352, 1978.

[29] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proceed-
ings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[30] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[31] S. F. Altschul, T. L. Madden, A. A. Schäffer, et al. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research, 25(17):3389–3402,
1997.

[32] S. R. Eddy. A new generation of homology search tools based on probabilistic inference. In
International Conference on Genome Informatics, pages 205–211, 2009.

[33] M. Remmert, A. Biegert, A. Hauser, and J. Söding. HHblits: lightning-fast iterative protein
sequence searching by HMM-HMM alignment. Nature Methods, 9(2):173–175, 2012.

[34] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification. In Biocomputing 2002, pages 564–575. World Scientific, 2001.

[35] B. Liu, X. Wang, L. Lin, Q. Dong, and X. Wang. A discriminative method for protein remote
homology detection and fold recognition combining Top-𝑛-grams and latent semantic analysis.
BMC Bioinformatics, 9(1):1–16, 2008.

[36] K.-C. Chou. Some remarks on protein attribute prediction and pseudo amino acid composition.
Journal of Theoretical Biology, 273(1):236–247, 2011.

[37] Q. Dong, S. Zhou, and J. Guan. A new taxonomy-based protein fold recognition approach
based on autocross-covariance transformation. Bioinformatics, 25(20):2655–2662, 2009.

[38] D. Ofer, N. Brandes, and M. Linial. The language of proteins: Nlp, machine learning & protein
sequences. Computational and Structural Biotechnology Journal, 19:1750–1758, 2021.

[39] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing
Systems, pages 3111–3119, 2013.

[40] E. Asgari and M. R. K. Mofrad. Continuous distributed representation of biological sequences
for deep proteomics and genomics. PLoS ONE, 10(11):e0141287, 2015.

[41] M. E. Peters, M. Neumann, M. Iyyer, et al. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

[42] M. Heinzinger, A. Elnaggar, Y. Wang, et al. Modeling aspects of the language of life through

1

28 1 Introduction

transfer-learning protein sequences. BMC Bioinformatics, 20(1):1–17, 2019.

[43] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[44] A. Rives, J. Meier, T. Sercu, et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National Academy
of Sciences, 118(15):e2016239118, 2021.

[45] A. Elnaggar, M. Heinzinger, C. Dallago, et al. ProtTrans: Towards cracking the language of
life’s code through self-supervised deep learning and high performance computing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–16, 2021.

[46] H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

[47] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of
hydrogen-bonded and geometrical features. Biopolymers: Original Research on Biomolecules,
22(12):2577–2637, 1983.

[48] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide
chain configurations. Journal of Molecular Biology, 7(1):95–99, 1963.

[49] C. Chothia. The nature of the accessible and buried surfaces in proteins. Journal of molecular
biology, 105(1):1–12, 1976.

[50] L. Bartoli, E. Capriotti, P. Fariselli, P. L. Martelli, and R. Casadio. The pros and cons of predicting
protein contact maps. Methods in Molecular Biology, 2007.

[51] J. Hanson, K. Paliwal, T. Litfin, Y. Yang, and Y. Zhou. Improving prediction of protein secondary
structure, backbone angles, solvent accessibility and contact numbers by using predicted
contact maps and an ensemble of recurrent and residual convolutional neural networks.
Bioinformatics, 35(14):2403–2410, 2019.

[52] U. Göbel, C. Sander, R. Schneider, and A. Valencia. Correlated mutations and residue contacts
in proteins. Proteins: Structure, Function, and Bioinformatics, 18(4):309–317, 1994.

[53] D. de Juan, F. Pazos, and A. Valencia. Emerging methods in protein co-evolution. Nature
Reviews Genetics, 14(4):249–261, 2013.

[54] U. Consortium. The universal protein resource (UniProt). Nucleic Acids Research, 36:D190–D195,
2007.

[55] B. E. Suzek, Y. Wang, H. Huang, et al. UniRef clusters: a comprehensive and scalable alternative
for improving sequence similarity searches. Bioinformatics, 31(6):926–932, 2015.

[56] M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, 2017.

[57] Q. Hou, F. Pucci, F. Pan, et al. Using metagenomic data to boost protein structure prediction
and discovery. Computational and Structural Biotechnology Journal, 20:434–442, 2022.

References

1

29

[58] A. L. Mitchell, A. Almeida, M. Beracochea, et al. MGnify: the microbiome analysis resource in
2020. Nucleic Acids Research, 48(D1):D570–D578, 2020.

[59] M. Steinegger and J. Söding. Clustering huge protein sequence sets in linear time. Nature
Communications, 9(1):1–8, 2018.

[60] M. Steinegger, M. Mirdita, and J. Söding. Protein-level assembly increases protein sequence
recovery from metagenomic samples manyfold. Nature Methods, 16(7):603–606, 2019.

[61] S. K. Burley, C. Bhikadiya, C. Bi, et al. RCSB Protein Data Bank: powerful new tools for
exploring 3d structures of biological macromolecules for basic and applied research and
education in fundamental biology, biomedicine, biotechnology, bioengineering and energy
sciences. Nucleic Acids Research, 49(D1):D437–D451, 2021.

[62] A. Waterhouse, M. Bertoni, S. Bienert, et al. SWISS-MODEL: homology modelling of protein
structures and complexes. Nucleic Acids Research, 46(W1):W296–W303, 2018.

[63] M. Varadi, S. Anyango, M. Deshpande, et al. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Research, 2021.

[64] L. Holm and C. Sander. The FSSP database of structurally aligned protein fold families. Nucleic
Acids Research, 22(17):3600, 1994.

[65] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification
of proteins database for the investigation of sequences and structures. journal of Molecular
Biology, 247(4):536–540, 1995.

[66] C. A. Orengo, A. D. Michie, S. Jones, et al. CATH — a hierarchic classification of protein
domain structures. Structure, 5(8):1093–1109, 1997.

[67] I. Sillitoe, N. Bordin, N. Dawson, et al. CATH: increased structural coverage of functional
space. Nucleic acids research, 49(D1):D266–D273, 2021.

[68] H. Cheng, R. D. Schaeffer, Y. Liao, et al. ECOD: an evolutionary classification of protein
domains. PLoS Computational Biology, 10(12):e1003926, 2014.

[69] C. Hadley and D. T. Jones. A systematic comparison of protein structure classifications: SCOP,
CATH and FSSP. Structure, 7(9):1099–1112, 1999.

[70] R. D. Schaeffer, L. N. Kinch, J. Pei, K. E. Medvedev, and N. V. Grishin. Completeness and
consistency in structural domain classifications. ACS Omega, 6(24):15698–15707, 2021.

[71] C. Chothia. One thousand families for the molecular biologist. Nature, 357(6379):543–544,
1992.

[72] S. Govindarajan, R. Recabarren, and R. A. Goldstein. Estimating the total number of protein
folds. Proteins: Structure, Function, and Bioinformatics, 35(4):408–414, 1999.

[73] A. Grant, D. Lee, and C. Orengo. Progress towards mapping the universe of protein folds.
Genome Biology, 5(5):1–9, 2004.

1

30 1 Introduction

[74] M. S. Abual-Rub and R. Abdullah. A survey of protein fold recognition algorithms. Journal of
Computer Science, 4(9):768–776, 2008.

[75] L. Wei and Q. Zou. Recent progress in machine learning-based methods for protein fold
recognition. International journal of Molecular Sciences, 17(12):2118, 2016.

[76] J. Chen, M. Guo, X. Wang, and B. Liu. A comprehensive review and comparison of different
computational methods for protein remote homology detection. Briefings in Bioinformatics,
19(2):231–244, 2018.

[77] K. Stapor, I. Roterman-Konieczna, and P. Fabian. Machine learning methods for the protein fold
recognition problem. In Machine Learning Paradigms, volume 149, pages 101–127. Springer,
2019.

[78] J. Söding. Protein homology detection by HMM–HMM comparison. Bioinformatics, 21(7):951–
960, 2005.

[79] J. Ma, S. Wang, Z. Wang, and J. Xu. MRFalign: Protein homology detection through alignment
of Markov random fields. PLoS Computational Biology, 10(3):e1003500, 2014.

[80] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein threading by linear programming.
Journal of Bioinformatics and Computational Biology, 1(1):95–117, 2003.

[81] J. Peng and J. Xu. Boosting protein threading accuracy. In Annual International Conference on
Research in Computational Molecular Biology, pages 31–45, 2009.

[82] Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou. Improving protein fold recognition and
template-based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of query and corresponding native properties of templates.
Bioinformatics, 27(15):2076–2082, 2011.

[83] J. Ma, J. Peng, S. Wang, and J. Xu. A conditional neural fields model for protein threading.
Bioinformatics, 28(12):i59–i66, 2012.

[84] J. A. Morales-Cordovilla, V. Sanchez, and M. Ratajczak. Protein alignment based on higher
order conditional random fields for template-based modeling. PLoS ONE, 13(6):e0197912, 2018.

[85] D. W. A. Buchan and D. T. Jones. EigenTHREADER: analogous protein fold recognition by
efficient contact map threading. Bioinformatics, 33(17):2684–2690, 2017.

[86] W. Zheng, Q. Wuyun, Y. Li, et al. Detecting distant-homology protein structures by aligning
deep neural-network based contact maps. PLoS Computational Biology, 15(10):1–27, 2019.

[87] C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognition using support vector
machines and neural networks. Bioinformatics, 17(4):349–358, 2001.

[88] H.-B. Shen and K.-C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinfor-
matics, 22(14):1717–1722, 2006.

[89] J.-Y. Yang and X. Chen. Improving taxonomy-based protein fold recognition by using global
and local features. Proteins: Structure, Function, and Bioinformatics, 79(7):2053–2064, 2011.

References

1

31

[90] J. Lyons, A. Dehzangi, R. Heffernan, et al. Advancing the accuracy of protein fold recognition by
utilizing profiles from hidden Markov models. IEEE Transactions on Nanobioscience, 14(7):761–
772, 2015.

[91] D. Chen, X. Tian, B. Zhou, and J. Gao. ProFold: Protein fold classification with additional
structural features and a novel ensemble classifier. BioMed Research International, 2016:1–10,
2016.

[92] J. Xia, Z. Peng, D. Qi, H. Mu, and J. Yang. An ensemble approach to protein fold classification by
integration of template-based assignment and support vector machine classifier. Bioinformatics,
33(6):863–870, 2016.

[93] W. Ibrahim and M. S. Abadeh. Protein fold recognition using deep kernelized extreme learning
machine and linear discriminant analysis. Neural Computing and Applications, 31(8):4201–4214,
2019.

[94] S. Bankapur and N. Patil. An enhanced protein fold recognition for low similarity datasets
using convolutional and skip-gram features with deep neural network. IEEE Transactions on
NanoBioscience, 20(1):42–49, 2020.

[95] W. Elhefnawy, M. Li, J. Wang, and Y. Li. DeepFrag-k: a fragment-based deep learning approach
for protein fold recognition. BMC Bioinformatics, 21(6):1–12, 2020.

[96] J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold
recognition. Bioinformatics, 22(12):1456–1463, 2006.

[97] T. Jo and J. Cheng. Improving protein fold recognition by random forest. BMC Bioinformatics,
15(11):S14, 2014.

[98] T. Jo, J. Hou, J. Eickholt, and J. Cheng. Improving protein fold recognition by deep learning
networks. Scientific Reports, 5:17573, 2015.

[99] K. Yan, X. Fang, Y. Xu, and B. Liu. Protein fold recognition based on multi-view modeling.
Bioinformatics, 35(17):2982–2990, 2019.

[100] K. Yan, J. W. an Yong Xu, and B. Liu. Protein fold recognition based on auto-weighted multi-
view graph embedding learning model. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2020.

[101] K. Yan, J. Wen, Y. Xu, and B. Liu. MLDH-Fold: Protein fold recognition based on multi-view
low-rank modeling. Neurocomputing, 421:127–139, 2021.

[102] J. Hou, B. Adhikari, and J. Cheng. DeepSF: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[103] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[104] B. Liu, C.-C. Li, and K. Yan. DeepSVM-fold: protein fold recognition by combining support
vector machines and pairwise sequence similarity scores generated by deep learning networks.
Briefings in Bioinformatics, 2019.

1

32 1 Introduction

[105] C.-C. Li and B. Liu. MotifCNN-fold: protein fold recognition based on fold-specific features
extracted bymotif-based convolutional neural networks. Briefings in Bioinformatics, 21(6):2133–
2141, 2020.

[106] Y. Pang and B. Liu. SelfAT-Fold: protein fold recognition based on residue-based and motif-
based self-attention networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2020.

[107] Y. Liu, Y.-H. Zhu, X. Song, J. Song, and D.-J. Yu. Why can deep convolutional neural net-
works improve protein fold recognition? a visual explanation by interpretation. Briefings in
Bioinformatics, 2021.

[108] Y. Liu, K. Han, Y.-H. Zhu, et al. Improving protein fold recognition using triplet network and
ensemble deep learning. Briefings in Bioinformatics, 22(6):bbab248, 2021.

[109] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids
Research, 45(D1):D158–D169, 2017.

[110] A. Villegas-Morcillo, S. Makrodimitris, R. C. H. J. van Ham, et al. Unsupervised protein
embeddings outperform hand-crafted sequence and structure features at predicting molecular
function. Bioinformatics, 37(2):162–170, 2021.

33

II

Results

2

35

2
Improved protein residue–residue

contact prediction using image

denoising methods

Amelia Villegas-Morcillo, Juan A. Morales-Cordovilla,

Angel M. Gomez, and Victoria Sanchez

This chapter has been published as follows: A. Villegas-Morcillo, J.A. Morales-Cordovilla, A.M. Gomez, and V.
Sanchez. Improved protein residue--residue contact prediction using image denoising methods. In Proceedings of
26th European Signal Processing Conference (EUSIPCO), pp. 1167-1171, September 3-7, Rome (Italy), 2018. DOI:
10.23919/EUSIPCO.2018.8553519

2

36 2 Improved protein residue–residue contact prediction using image denoising methods

Abstract

A protein contact map is a simplified matrix representation of the protein structure, where the

spatial proximity of two amino acid residues is reflected. Although the accurate prediction of

protein inter-residue contacts from the amino acid sequence is an open problem, considerable

progress has been made in recent years. This progress has been driven by the development

of contact predictors that identify the co-evolutionary events occurring in a protein multiple

sequence alignment (MSA). However, it has been shown that these methods introduce Gaussian

noise in the estimated contact map, making its reduction necessary. In this paper, we propose

the use of two different Gaussian denoising approximations in order to enhance the protein

contact estimation. These approaches are based on (i) sparse representations over learned

dictionaries, and (ii) deep residual convolutional neural networks. The results highlight that

the residual learning strategy allows a better reconstruction of the contact map, thus improving

contact predictions.

Index terms: Protein Contact Map, Evolutionary Coupling, Image Denoising, Sparse Repre-

sentations, Dictionary Learning, Deep Convolutional Neural Networks, Residual Learning

2.1 Introduction

Proteins are life essential macromolecules composed of long chains that contain 20 different
types of amino acid residues. Protein folding is one of the most challenging problems
found in bioinformatics, which still remains unsolved. It refers to the spatial arrangement
of the amino acid sequence in three-dimensional (3D) space, which is closely related to the
biological function performed by the protein.

Several experimental techniques, such as X-ray crystallography, nuclear magnetic
resonance spectroscopy and electron microscopy, are widely employed to determine protein
structure. However, these methods are not cost-efficient compared to fast deoxyribonucleic
acid (DNA) sequencing processes, which are continuously generating a huge quantity of
amino acid sequences with unsolved structure [1]. This fact has led to a great development
of computational methods that attempt to predict the protein structure from its amino
acid sequence. These computational methods can be divided into template-based and
template-free modeling. Template-free modeling methods, also known as de novo or
ab initio prediction methods, are suitable for proteins without structural homologs [2].
The complexity of this approach is usually reduced by using a two-dimensional (2D)
representation known as protein contact map. Two amino acid residues within a protein
are said to form a contact when they share a spatial proximity that is sufficient for a
molecular interaction to occur. Thus, the true contact map for a protein with 𝐿 residues
consists of an 𝐿×𝐿 symmetrical matrix, where each element specifies whether two inter-
residues are in contact under a certain Euclidean distance threshold. By contrast, the matrix

2.1 Introduction

2

37

elements within an estimated contact map indicate the contact probability of two residues.
Recent research has shown that even a low proportion of correctly-predicted contacts can
be enough for accurately modeling the protein structure [3].

Current state-of-the-art contact predictors can be classified into two main categories,
based on evolutionary coupling analysis (EC) and supervised machine learning (ML),
respectively [4]. In the first group we can find methods such as PSICOV [5] and CCMpred
[6], which aim to identify co-evolved residues from the protein multiple sequence alignment
(MSA). Co-evolution is related to correlated mutations occurring in proteins. This means
that if one of the two residues in contact has mutated during evolution, its counterpart has
to change as well in order for the 3D structure to remain stable [7]. On the other hand,
supervised machine learning-based predictors use a set of input features derived from the
MSA to estimate the contact map, including position-specific scoring matrices (PSSM),
secondary structure predictions or solvent accessibility information [8]. ML-based methods
learn from these features using several algorithms, such as support vector machines, neural
networks and random forests.

Generally, the performance of evolutionary coupling methods relies on having a suffi-
cient number of effective homologous sequences to construct the protein MSA. In order to
improve the precision of estimated contacts, methods such as MetaPSICOV [9] wisely com-
bine the EC-based approach with machine learning. Additionally, the EC-based methods
were designed to reduce the number of misleading indirect coupling pairs, i.e. those that
show a high degree of correlated mutation without being close in the 3D space. This is
caused by the transitive relationship between residue pairs, resulting in a transitive noise
within the contact map [4].

Besides this transitive noise, it has been recently shown that Gaussian noise also
exists in contact maps derived from evolutionary couplings. To reduce its effect, the R2C
system [10] included a post-processing noise filter, yielding higher contact precision. This
denoising step was implemented using the non-local means with optimal weights algorithm
specified in [11]. In this work, we aim to improve the estimated protein contact map by
further suppressing the inherent Gaussian noise. To accomplish that, we have followed two
approaches related to image processing: sparse representations over learned dictionaries,
and deep residual convolutional neural networks.

First, we consider the K-SVD algorithm [12], widely used to design overcomplete
dictionaries for sparse representations of signals. This method has proven to be successful
for image super-resolution, compression and denoising [13]. Sparse representations exploit
image redundancies, trying to find the minimum number of dictionary entries needed
to properly reconstruct the image. Although finding the sparsest solution is an NP-hard
problem, approximate solutions can be efficiently found by using pursuit algorithms.

Then, we explore a deep neural network approach, as there is a growing interest in

2

38 2 Improved protein residue–residue contact prediction using image denoising methods

deep learning for proteomics (see [14, 15]). In particular, we analyze a deep convolutional
neural network (DCNN) specially designed for image denoising [16]. Convolutional neural
networks have the ability to extract structural motifs, which makes them suitable for image
processing. Moreover, it is possible to reach a high level of abstraction with very deep
architectures and residual learning.

The rest of the paper is structured as follows. In Section 2.2, we explain the contact
map estimation process. Section 2.3 describes the proposed methods for contact map
denoising. In Section 2.4, we present the main results obtained from the experiments.
Finally, Section 2.5 summarizes the conclusions derived from this research and its possible
extensions.

2.2 EC-based contact map estimation

The overall approach proposed in this work is outlined in Figure 2.1. Our objective is to
improve the precision of estimated contact maps. True contacts are defined in terms of
spatial molecular interaction. The residue spatial proximity is measured as the Euclidean
distance between their beta carbon (𝐶𝛽) atoms (𝐶𝛼 in Glycine). This results in a distance
map, which is converted to a binary contact map (a symmetrical matrix) by considering
a threshold (in this work we used a distance less than 8 Å). Thus, the extraction of true
contacts requires knowledge of the protein’s 3D experimental structure.

In this work, we have used one of the most popular EC-based methods, CCMpred
[6], to estimate the contact map. CCMpred implements the approach based on Markov

Figure 2.1: Description of the overall protein contact map denoising procedures.

2.3 Proposed methods for contact map denoising

2

39

random field pseudo-likelihood maximization. Its election was motivated by the high
contact precision reached in comparison to other EC-based methods [4]. In addition, it
can be run on a GPU card. The first step of this method is to build a multiple sequence
alignment (MSA) for each query protein, using the HHblits software [17] to search for
homologous sequences in the uniprot20_2016_02 database [18]. Then, the MSA is
used as input to CCMpred, which estimates correlated mutations between each pair of
residues, generating a symmetrical contact likelihood matrix as a result. All parameters in
both tools were set to default values, except for the number of HHblits iterations that was
increased to five.

2.3 Proposed methods for contact map denoising

The estimated contact map derived from CCMpred can be viewed as an image 𝐗, which is
a noisy version of the true contact map 𝐘 corrupted by an additive Gaussian noise 𝐙:

𝐗 = 𝐘+𝐙. (2.1)

As indicated in the introduction, in order to address the contact map denoising problem,
we propose the use of two noise removal techniques: sparse representations over learned
dictionaries and deep residual convolutional neural networks.

2.3.1 Dictionary learning for sparse representations

The overall K-SVD method for image denoising [13] can be seen as a three-stage iterative
process: (i) sparse coding, (ii) dictionary updating, and (iii) final averaging.

In the sparse coding stage, a fixed dictionary 𝐃 with 𝐾 entries (also known as atoms)
and the noisy image 𝐗 divided into 𝑁 overlapping patches of size √

𝑛×
√
𝑛 are considered.

Thus, the sparse coding vector 𝜶 𝑖 associated to the 𝑖-th patch (𝑖= 1,2, ...,𝑁) can be computed
by solving the following optimization problem:

�̂� 𝑖 = argmin
𝜶 𝑖

‖𝜶 𝑖‖0 subject to ‖𝐱𝑖−𝐃𝜶 𝑖‖22 ≤ 𝜖2 (2.2)

where 𝐱𝑖 is the 𝑖-th flattened patch (column vector) of size 𝑛, 𝐃 is the dictionary of size
𝑛×𝐾 , 𝜖 is the error tolerance that depends on the noisy image SNR, and ‖⋅‖𝑝 represents
the 𝑙𝑝-norm. This problem can be addressed with the greedy orthogonal matching pursuit
(OMP) algorithm [19], which takes the closest atom of the dictionary at a time to update
the sparse coding vector.

Once the 𝑁 sparse coding vectors are computed, a new version of the patches �̂�𝑖 =𝐃�̂� 𝑖

is obtained to update the dictionary (the initial dictionary 𝐃0 is usually built from the
overcomplete discrete cosine transform (DCT) or with randomly taken patches from the
image). For each atom 𝑘 in the dictionary, the K-SVD algorithm [12] locates the set of

2

40 2 Improved protein residue–residue contact prediction using image denoising methods

patches that use this atom (�̂� 𝑖(𝑘) ≠ 0), to perform a singular value decomposition (SVD)
operation on the representation errors 𝐞𝑘𝑖 , which are calculated as

𝐞𝑘𝑖 = 𝐱𝑖−∑
𝑙≠𝑘

𝐝𝑙�̂� 𝑖(𝑙) (2.3)

where 𝐝𝑙 are the flattened dictionary atoms. These two stages are repeated a fixed number
of iterations, resulting in a learned dictionary 𝐃 and sparse coding vectors �̂� 𝑖 associated
to each patch. Finally, the reconstructed image �̂� is computed as an average of the 𝑁
overlapping denoised patches �̂�𝑖 with the original noisy image 𝐗:

�̂� =
𝜆𝐗+∑𝑖𝐑𝑇𝑖 𝐃�̂� 𝑖

𝜆𝐈+∑𝑖𝐑𝑇𝑖 𝐑𝑖
(2.4)

where 𝐑𝑖 is a mask matrix that extracts the 𝑖-th patch from the image (𝐱𝑖 = 𝐑𝑖𝐗) and 𝜆 is
an hyper-parameter dependent on the noisy image SNR.

In our study, we evaluated the K-SVD method to denoise our contact map images.
To do so, we adopted the efficient implementation available in [20], which is based on
approximated K-SVD and batch-OMP. In order to exploit the symmetry in contact maps,
we trained the dictionary only with overlapping patches from the upper triangular part of
the image. We only considered this reconstructed part to evaluate the denoised contacts.

2.3.2 DCNN Training with residual learning

The DCNN model implements a very deep architecture with 2D convolutional layers. This
architecture consists of 𝑑 layers that apply 64 convolution filters of size 3×3. As our contact
map images are in gray-scale, we have one channel at the input layer and one filter at the
output layer. The output image size is kept by applying zero-padding before convolutions.
At each layer (except for the output one), rectified linear units (ReLU) non-linearities are
used as activation function. In addition, if we want that all the pixels within a patch (of
size √

𝑛×
√
𝑛) contribute to each output after the cascade of convolutional layers (with

√𝑛𝑓 ×
√𝑛𝑓 filter size), network depth 𝑑 must be set to a minimum value given as:

𝑑 = (
√
𝑛−1)/(

√
𝑛𝑓 −1) . (2.5)

On the other hand, the residual learning strategy aims to extract the differences between
the network inputs and outputs. In other words, the DCNN trains a residual mapping of
the input image regarding the noise(𝐗) ≈ 𝐙 and then calculates the reconstructed image
as �̂� = 𝐗−(𝐗). Thus, the loss function 𝑙(𝚯) can be formulated as:

𝑙(𝚯) =
1
2𝐵

𝐵
∑
𝑖=1

‖(𝐱𝑖;𝚯)− (𝐱𝑖−𝐲𝑖)‖2𝐹 (2.6)

2.4 Experimental framework and results

2

41

where 𝐵 is the number of noisy/clean training patches in a batch, and 𝚯 are the trainable
parameters. This is equivalent to minimizing the mean squared error between each clean
patch 𝐲𝑖 and the reconstructed patch �̂�𝑖. Besides residual learning, an optimization strategy
based on mini-batches with Adam algorithm for gradient-descend and batch-normalization
was adopted as in [16].

Unlike the K-SVD method, this approximation is able to train the model without
knowing the noisy image SNR. We adopted the TensorFlow GPU implementation of [16] to
train a noise level-independent model with our contact map images. As the output matrix
is not assured to be symmetrical, we computed the mean value of the two triangular parts
(upper and lower) to evaluate the contacts.

2.4 Experimental framework and results

In this section, we first describe the protein datasets used in the experiments. Next, we
specify the criteria followed for contact evaluation. Finally, we present the results obtained
from the experiments carried out and we discuss them.

2.4.1 Training and test datasets

During the evaluation stage, we considered three test datasets. The first one comprises
150 Pfam proteins from PSICOV [5], which have been widely used for contact map evalua-
tions. The other two sets were obtained from two CASP (Critical Assessment of Structure
Prediction) competitions. In particular, 116 protein domains from CASP10 (2012) and 103
from CASP11 (2014) were used as in [10]. Moreover, none of the test sequences contained
less than 50 residues or more than 519 residues.

For DCNN training purposes, a set with 3760 protein domains [15] was taken. We
further modified this set in order to guarantee its independence from the testing sets. To
do so, we run the CD-HIT [21] tool to exclude those proteins that shared more than 40%
of sequence identity with any protein in the test set. A total number of 3427 training
proteins were kept, with sequence lengths varying from 28 to 597 residues. From these, we
randomly selected 300 proteins to validate the DCNN and we used the remaining ones in
the training stage.

2.4.2 Evaluation criteria

Contact evaluationwas accomplished by comparing the estimated contact mapwith the true
contact map extracted from the protein data bank (PDB) [1]. The widely used evaluation
strategy [4] is based on dividing contacts into three groups. These groups are dependent
on the amino acid sequence positions, i.e. short-range (residue separation between 6 and 11
positions), medium-range (from 12 to 23) or long-range (greater than 23). For each group,
prediction accuracy is obtained by computing the precision of the 𝐿/𝑘 contacts with the

2

42 2 Improved protein residue–residue contact prediction using image denoising methods

highest probability, where 𝐿 is the sequence length and 𝑘 = {10,5,2,1} controls the ratio of
contacts to be evaluated.

2.4.3 K-SVD Parameter setting

In order to evaluate the K-SVD method, we followed a dictionary learning strategy based
on training one dictionary 𝐃 for each noisy contact map. Thus, we first divided the upper
triangular part of the zero-padded image in overlapping patches. As the contact map has
size 𝐿×𝐿 and protein lengths are variable, the number of training patches also varies in each
case. To initialize each dictionary, we used the overcomplete DCT with 𝐾 atoms. Then, we
executed 10 iterations of the K-SVD algorithm, using OMP for sparse coding with maximum
error 𝜖 = 1.15

√
𝑛𝜎, where the noise standard deviation 𝜎 was estimated following the fast

approach cited in [10]. Finally, the upper triangular matrix was reconstructed using (2.4),
with 𝜆 = 0.5/𝜎. We chose low values for 𝜆 in order to give less importance to the original
noisy contact map than to the denoised one.

For K-SVD parameter selection purposes, we conducted initial experiments on the
150 Pfam proteins, testing two patch sizes (5 × 5 and 7 × 7) and two different number of
atoms 𝐾 (625 and 900). The results were compared with the baseline, i.e. contact precision
values from CCMpred estimations. All combinations of patch/dictionary sizes yielded
similar contact results. However, slightly better results were achieved when considering
5 × 5 patches and 𝐾 = 900 atoms, so we have selected this configuration for a complete
evaluation on the rest of datasets.

2.4.4 DCNN Parameter Setting

The denoising task with DCNN was carried out by adopting the architecture described
in Section 2.3.2. In order to apply residual learning, we extracted the true and estimated
contact maps from the 3127 training proteins mentioned in Section 2.4.1. All training
contact maps were divided into patches of size 35×35 (with a stride of 10 pixels), which
provided us with more than a million noisy/clean samples to train the DCNN. Unlike the
previous method, we extracted patches from the entire image and not only from the upper
triangle (the denoising procedure was also applied on the entire image). According to (2.5),
the depth of the network was set to 𝑑 = 17. Training contact maps that are smaller than
the patch size (35×35) were filled with zeros at the input and multiplied by a binary mask
before computing the loss function in (2.6).

Thereafter, we trained the DCNN for 50 epochs in a mini-batch mode. At each epoch,
we randomly scrambled all patches and iteratively fed the network with subsets (batches)
of 256 noisy/clean samples. When an epoch was finished, we used the current model
to denoise and evaluate the 300 validation contact maps. Figure 2.2 shows the precision
curves for long-range contact predictions on the validation set. As can be observed, the

2.4 Experimental framework and results

2

43

0 10 20 30 40 50

Training epoch

30

40

50

60

70

80

P
re

c
is

io
n
 (

%
)

L/10

L/5

L/2

L

Figure 2.2: Long-range contact prediction performance on 300 validation protein domains along DCNN training
epochs.

evaluation values in epoch 0 (before the first gradient-descend step) are similar to those
from the baseline (CCMpred), which can be explained by the residual learning strategy.
Although the precision curves show a considerable performance increase in the very first
epochs, saturation appears rapidly. In this study, we followed an early stopping strategy to
prevent DCNN overfitting. Thus, we selected the model at epoch 31 to denoise the three
test datasets, as it yields the best evaluation results on the validation dataset.

2.4.5 Comparison of methods

Finally, we present the contact precision results for the three test datasets (i.e. 150 Pfam
proteins, 116 CASP10 protein domains and 103 CASP11 protein domains), achieved by
the baseline (CCMpred) and the proposed post-processing denoising methods K-SVD and
DCNN. These results have been also compared to the R2C noise filter [10]. In this case, we
used the implementation in [11], setting the main parameters to 9×9 for neighboring size
and 13×13 for patch size, as in [10].

Table 2.1 summarizes all the prediction results for short-, medium- and long-range
contacts. For all contact ranges in each test dataset, we marked in red those results that
are worse than the baseline and, in boldface, the best results. As we can see, both the
R2C filter and the K-SVD method do not perform very well in some cases (specially for
short-range contacts). The proposed K-SVD method performs slightly better than the R2C
filter, whereas the highest overall prediction enhancement is achieved with the residual
DCNN approach.

This is due to the fact that, both the R2C filter and the K-SVD method only consider
the estimated contact map itself, while the residual DCNN has access to true contact maps
during the training phase. Therefore, the first two approaches have the ability to reduce

2

44 2 Improved protein residue–residue contact prediction using image denoising methods

Table 2.1: Contact precision values for short-, medium- and long-range for the evaluated methods on the test
datasets.

Test set Method

Short-range Medium-range Long-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

150 Pfam proteins

Baseline 56.1 40.2 23.0 15.5 64.2 49.8 29.0 18.4 78.1 71.0 50.5 33.7
R2C filter 51.3 36.8 22.0 15.2 64.5 49.4 29.9 19.2 78.9 70.1 51.2 35.8
K-SVD OMP 55.7 39.7 24.1 16.3 67.2 53.0 32.2 20.8 79.8 73.0 54.0 38.4
DCNN 77.6 65.2 40.9 25.0 80.5 71.0 48.3 30.3 89.6 85.3 72.1 54.5

116 CASP10 proteins

Baseline 41.5 31.2 19.4 13.5 53.1 41.9 26.3 18.1 53.7 47.8 34.4 23.1
R2C filter 41.3 30.6 19.8 14.3 54.0 42.5 27.8 19.1 57.1 51.1 37.3 26.4
K-SVD OMP 43.1 32.2 20.6 14.7 55.6 43.8 29.8 20.4 56.3 49.7 38.2 27.1
DCNN 58.4 48.5 31.9 20.7 65.8 58.1 43.0 29.8 67.3 63.2 50.6 37.6

103 CASP11 proteins

Baseline 32.9 23.9 15.3 11.3 38.0 28.5 17.8 12.5 47.4 40.2 28.9 20.1
R2C filter 31.4 22.8 14.6 11.5 39.7 29.6 19.2 13.8 50.0 42.5 30.7 22.3
K-SVD OMP 32.8 23.4 15.4 12.1 40.4 31.7 20.6 14.3 48.5 42.4 31.4 22.7
DCNN 48.1 38.8 26.1 17.6 53.7 46.6 31.9 21.2 56.5 53.2 43.0 32.6

Gaussian noise but at the cost of losing some contacts due to a smoothing effect. On the
contrary, the residual DCNN shows noise reduction potential along with the ability to
recover some missing contacts not present in CCMpred estimations. Moreover, one of the
main DCNN advantages is that we can train a blind model without knowing the noise
standard deviation, so we can avoid using poor estimations of it as in the R2C filter or the
K-SVD method. As an example, Figure 2.3 shows the resulting contact maps for protein
domain T0682-D1 (included in the CASP10 dataset), produced by the three denoising
methods in comparison to the true and baseline contact maps. Once again, we can see that
the DCNN provides the best denoised contact map.

2.5 Conclusions

In this paper, we have evaluated two alternative Gaussian denoising methods for the protein
contact map prediction problem. The first one is based on sparse representations over
learned dictionaries for image denoising, using K-SVD with the OMP algorithm. In the
second one, we train a deep convolutional neural network (DCNN) with residual learning
for image noise removal. The experimental results show that better contact precision
values can be obtained by these noise reduction techniques. We particularly found that the
residual DCNN strategy performs the best in the denoising task, allowing the acquisition
of more true contacts. Future work will explore other residual DCNN architectures that
can exploit the sparse nature of contact maps, along with the study of how the improved
contacts enhance the prediction of the 3D protein structure.

References

2

45

Figure 2.3: Contact maps obtained for protein domain T0682-D1 in the CASP10 dataset. a) True from PDB. b)
Estimated from CCMpred. c) Denoised using R2C. d) Denoised using K-SVD OMP. e) Denoised using DCNN.

Acknowledgments

This work has been supported by the Spanish MINECO/FEDER Project TEC2016-80141-P
and the associated FPI grant BES-2017-079792. We also acknowledge the support of NVIDIA
Corporation with the donation of a Titan X GPU.

References

[1] H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

[2] S. H. P. de Oliveira, J. Shi, and C. M. Deane. Comparing co-evolution methods and their
application to template-free protein structure prediction. Bioinformatics, 33(3):373–381, 2017.

[3] D. E. Kim, F. DiMaio, R. Y.-R. Wang, Y. Song, and D. Baker. One contact for every twelve residues
allows robust and accurate topology-level protein structure modeling. Proteins, 82(0 2):208–218,
2014.

[4] Q. Wuyun, W. Zheng, Z. Peng, and J. Yang. A large-scale comparative assessment of methods
for residue–residue contact prediction. Briefings in Bioinformatics, pages 1–12, 2016.

[5] D. T. Jones, D. W. A. Buchan, D. Cozzetto, and M. Pontil. PSICOV: precise structural contact
prediction using sparse inverse covariance estimation on large multiple sequence alignments.
Bioinformatics, 28(2):184–190, 2012.

[6] S. Seemayer, M. Gruber, and J. Söding. CCMpred—fast and precise prediction of protein residue–
residue contacts from correlated mutations. Bioinformatics, 30(21):3128–3130, 2014.

[7] U. Göbel, C. Sander, R. Schneider, and A. Valencia. Correlated mutations and residue contacts

2

46 2 Improved protein residue–residue contact prediction using image denoising methods

in proteins. Proteins: Structure, Function, and Bioinformatics, 18(4):309–317, 1994.

[8] J. Eickholt and J. Cheng. Predicting protein residue–residue contacts using deep networks and
boosting. Bioinformatics, 28(23):3066–3072, 2012.

[9] D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner. MetaPSICOV: combining coevolution
methods for accurate prediction of contacts and long range hydrogen bonding in proteins.
Bioinformatics, 31(7):999–1006, 2015.

[10] J. Yang, Q.-Y. Jin, B. Zhang, and H.-B. Shen. R2C: improving ab initio residue contact map
prediction using dynamic fusion strategy and Gaussian noise filter. Bioinformatics, 32(16):2435–
2443, 2016.

[11] Q. Jin, I. Grama, C. Kervrann, and Q. Liu. Non-local means and optimal weights for noise
removal. SIAM Journal on Imaging Sciences, 10(4):1878–1920, 2017.

[12] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322,
2006.

[13] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing, 15(12):3736–3745, 2006.

[14] S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu. Accurate de novo prediction of protein contact map
by ultra-deep learning model. PLoS Computational Biology, 13(1):e1005324, 2017.

[15] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[16] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: Residual
learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–
3155, 2017.

[17] M. Remmert, A. Biegert, A. Hauser, and J. Söding. HHblits: lightning-fast iterative protein
sequence searching by HMM-HMM alignment. Nature Methods, 9(2):173–175, 2012.

[18] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Research,
45(D1):D158–D169, 2017.

[19] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: recursive function
approximation with applications to wavelet decomposition. 27-th Asilomar Conference on
Signals, Systems and Computers, 1:40–44, 1993.

[20] R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient implementation of the K-SVD algorithm
using Batch Orthogonal Matching Pursuit. Cs Technion, 40(8):1–15, 2008.

[21] W. Li and A. Godzik. Cd-hit: a fast program for clustering and comparing large sets of protein
or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

3

47

3
On the impact of using estimated,

enhanced, or native contact and

categorical maps on protein fold

recognition performance

3

48
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

3.1 Introduction

In this chapter we take a first step towards the design of protein fold recognition methods
that advance the state of the art. In particular, we consider image representations of the
protein in the form of contact maps. The approach we follow here is the one proposed
for the deep learning-based DeepFR method [1]. As input source, DeepFR takes estimated
contact maps from the evolutionary coupling analysis-based method CCMpred [2]. These
image representations are fed into a deep convolutional neural network (DCNN) that is
trained to classify them into the whole set of fold classes defined in the SCOP database
(more than 1000) [3, 4]. Instead of directly evaluating the predicted folds, the DeepFR
model is used to extract a fold-specific vector for each protein domain (embedding). Then,
fold recognition is performed for each pair of query-template domains using these vectors
and a comparison metric based on cosine similarity. When evaluating the fold recognition
performance, three levels of difficulty are usually considered following the hierarchical
classification from SCOP: fold, superfamily, and family. The hardest one is the fold level,
where protein domains significantly differ in their amino acid sequences, and therefore
the fold class cannot be easily inferred by comparison with other sequences (homology
modeling).

Our objective here is to analyze to what extent contact maps alone are useful for protein
fold recognition, following the DeepFR approach. To do so, we study the impact of using
different input image representations on the fold-specific vectors learned by the model,
which we refer to as Fold-DCNN here. We compare the performance of estimated contact
maps (using CCMpred) to native contact maps obtained directly from the PDB structure.
We also propose to use categorical maps as proxies of the full distance maps and include
them in the comparison. As a middle ground between estimated and native maps, we
obtain enhanced versions of the contact and categorical maps. To this end, we train and
evaluate an adapted version of the fully-convolutional network (FCN) model from our
previous work [5], called CMap-FCN here, which also uses estimated contact maps from
CCMpred as inputs.

3.2 Materials and methods

3.2.1 Image representations of the protein

Native maps

To obtain a native (ground-truth) image representations of the protein (Figure 3.1a) we
first pulled their experimental 3D structures from the protein data bank (PDB). Using the
3D coordinates, we then computed the distance map using beta-carbon atoms [6, 7]. From
this, we obtained two different representations: the contact map [8, 9], a binary matrix

3.2 Materials and methods

3

49

Figure 3.1: Image representations of the protein with PDB id 1d1q (chain 𝐴). (a) Maps obtained from the 3D
structure of the protein: real-valued distance map, binary contact map (threshold 8 Å), and categorical map using
5 bins. (b) Estimated contact map, obtained from applying multiple sequence analysis (MSA) on the amino acid
sequence of the protein. Darker gray level indicates closer 3D distance for the native maps, and higher probability
of contact for the estimated map.

which results from applying a distance threshold of 8 Å over the distance map; and the
categorical map [10, 11], a coarse approximation of the distance map which is generated
by quantizing the distance values in several bins. To obtain the optimal intervals, we
computed the Euclidean distances between beta-carbon atoms in a set of 3127 protein
domains from SCOPe version 2.06 (training set from [5]). The histogram of the distance
values is plotted in Figure 3.2. As can be seen, the histogram shows three local maximum
peaks at 5.53 Å, 7.48 Å, and 10.73 Å, while the global maximum peak is at 20.48 Å, after
which the frequency decreases exponentially with the distance. Based on this information,

Figure 3.2: Histogram of the Euclidean distance values (measured in Å) in a set of 3127 protein domains from
SCOPe (version 2.06).

3

50
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

we decided to use the following 5 (quantization) intervals in our categorical maps: [0,5),
[5,8), [8,15), [15,20), and [20,+∞) Å.

Estimated and enhanced maps

For the predicted image representations of the protein we first considered the estimated
contact map (Figure 3.1b) using the evolutionary coupling-based method CCMpred [2].
This method works on evolutionary information extracted from the multiple sequence
alignment (MSA) for each protein. The MSA was obtained running HHblits [12] to search
for homologous sequences in the uniprot20_2016_02 database [13]. The CCMpred
method then uses this information to estimate correlated mutations between each pair of
amino acid residues, generating a symmetrical contact likelihood matrix as a result.

In addition, in this chapter we use both CCMpred estimated contact maps and native
maps to obtain enhanced versions of the protein contact and categorical maps. To do so, we
train a fully-convolutional network (FCN) on estimated contact maps, called CMap-FCN,
which we describe in detail in the following section.

3.2.2 CMap-FCN for protein contact map enhancement

Model architecture and training

We followed-up on our previous work [5] for contact map improvement using denoising
methods. More specifically, we adapted the fully-convolutional network (FCN) with residual
learning to work on full images instead on patches. The original model architecture
(DenDCNN [5, 14]) was proposed for image denoising, and consisted of an initial 2D
convolutional layer followed by 17 intermediate layers, all applying 64 convolution filters
of size 3×3. The final convolutional layer combined the 64 filters of the last intermediate
layer by applying 1 filter of size 1×1 to obtain the output gray-scale image. At each layer
(except for the last one), the rectified linear unit (ReLU) was used as activation function,
and batch normalization [15] was applied in all the intermediate layers. In addition, the
original model was trained to learn differences between the network input and output
image (residual learning), and then reconstruct the image using the input and the residual
map. Thereby, the loss function computed the mean squared error (MSE) between the
native contact map image and the reconstructed one.

Here, we made several changes to the aforementioned model that improved perfor-
mance. In the following, we refer to the input, enhanced, and native maps as 𝐱, �̂�, and 𝐲,
respectively. First, we simplified the model by removing the residual connection and so
trained the model to directly estimate the enhanced contact/categorical map at the output.
We also applied dropout [16] with drop probability 0.2 to every third intermediate layer.
The training was performed on full images instead of patches, using a batch size of 1. Since
the native contact/categorical map is a symmetric matrix, we applied a symmetrization

3.2 Materials and methods

3

51

Figure 3.3: Overview of the CMap-FCN model for protein contact and categorical map enhancement. The model
architecture has been taken from [14]. Here we used the protein with PDB id 1d1q (chain 𝐴) as an example.

operation to the output image as (�̂�+ �̂�𝑇)/2. Moreover, we changed the MSE to a negative
log loss function, as it is better suited for classification tasks in which the aim is to predict
the likelihood that the input belongs to a specific class. We optimized the model for 50
epochs using Adam [17] with learning rate 10−3.

We refer to this adapted model as CMap-FCN (Figure 3.3). In fact, we trained two
different models with the same architecture but different training targets: one to predict
binary contact maps and another one for categorical map prediction using 5 bins (see
Section 3.2.1). Therefore, the last convolutional layer applied either 1 or 5 filters, for contact
and categorical map prediction, respectively. Two different loss functions have been used
here: binary and softmax cross-entropy. To account for the imbalance between classes, we
added weights for each class to the loss.

• Weighted binary cross-entropy loss for contact map prediction, computed as

𝐿𝑏𝑐𝑒(𝚯) = −
1
𝑁

𝑁
∑
𝑛=1

∑
𝑖∈𝑦𝑛

𝐰𝑛𝑖 [𝐲𝑛𝑖 log(𝜎(�̂�𝑛𝑖))+ (1−𝐲𝑛𝑖) log(1−𝜎(�̂�𝑛𝑖))] , (3.1)

where 𝑁 is the number of samples in a batch, 𝑛 is each element in the flattened
matrices, 𝑖 refers to the class, 𝜎(𝑧) = 1/(1+e−𝑧) is the sigmoid function, and 𝐰𝑛 is a
weight vector of the same size as 𝐲𝑛 containing the following values:

𝐰𝑛𝑖 =
⎧⎪⎪
⎨⎪⎪⎩

3 if 𝐲𝑛𝑖 = 1 (positive contact)

1 if 𝐲𝑛𝑖 = 0 (negative contact)
(3.2)

3

52
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

• Weighted softmax cross-entropy loss for categorical map prediction, computed as

𝐿𝑐𝑒(𝚯) = −
1
𝑁

𝑁
∑
𝑛=1

∑
𝑖∈𝑦𝑛

𝐰𝑛𝑖 log(𝐩𝑛𝑖) = −
1
𝑁

𝑁
∑
𝑛=1

∑
𝑖∈𝑦𝑛

𝐰𝑛𝑖 log
exp(�̂�𝑛𝑖,𝐲𝑛𝑖)

∑𝐾
𝑘=1 exp(�̂�𝑛𝑖,𝑘)

, (3.3)

where 𝐾 is the number of categories (𝐾 = 5 in this case), 𝐲𝑛𝑖 is the true class (as a
one-hot vector of 𝐾 elements). Here, the weight vector 𝐰𝑛 contains the following
values:

𝐰𝑛𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

4 if 𝐲𝑛𝑖 = {0,1} (distance bins [0,5) and [5,8) Å)

2 if 𝐲𝑛𝑖 = {2,3} (distance bins [8,15) and [15,20) Å)

1 if 𝐲𝑛𝑖 = 4 (distances ≥ 20 Å)

(3.4)

Evaluation

We evaluated the contact prediction performance of the CMap-FCN model by comparing
its output with the native contact map. Following the evaluation in [5] we first divided
the contacts into three groups depending on the position of the amino acid residues in the
sequence. These groups are: short-range (residue separation between 6 and 11 positions),
medium-range (from 12 to 23) and long-range (greater than 23). For each group, we reported
the precision accuracy of the 𝐿/𝑘 contacts with the highest probability, where 𝐿 is the
sequence length and 𝑘 = {10;5;2;1} controls the number of contacts to be evaluated.

Training and test sets

To train and evaluate the CMap-FCN models, we used the datasets described in our previous
work [5]. That is, a training set with 3427 protein domains, from which we extracted a
validation set with 300 domains; and three test sets for evaluation: 150 Pfam proteins
(Pfam150), 116 proteins from CASP10 (2012), and 103 from CASP11 (2014).

3.2.3 Fold-DCNN for protein fold recognition

Model architecture

We performed protein fold recognition following the pipeline proposed in the DeepFR
method [1]. This method trained a deep convolutional neural network (DCNN) model to
classify input protein domains into the fold classes defined by SCOPe [4] (version 2.06).
The DCNN model proposed in [1] is depicted in Figure 3.4. The inputs to the original
model were estimated contact maps using CCMpred. In addition to these, here we also
compare the different protein image representations described in the previous section.
Particularly, the DCNN model takes as inputs 227×227 crops of images with size 256×256
and one channel. The first 2D convolutional layer applies 96 filters of size 7×7 and stride
2 in both spatial dimensions. The outputs are passed through the ReLU function, max-
pooled (in regions of size 3 × 3 and using a stride of 2), and batch normalized [15]. This

3.2 Materials and methods

3

53

Figure 3.4: Overview of the Fold-DCNN model for protein fold recognition using one of the 5 image represen-
tations of the protein: estimated contact map (from CCMpred), enhanced contact and categorical maps (from
CMap-FCN), and native contact and categorical maps (from the PDB). The model architecture has been taken
from DeepFR [1]. Here we used as an example the protein domain with SCOPe id d1d1qa_ and fold class c.44.

results in 96 feature maps of size 55 × 55. A similar process is repeated in the following
convolutional layers (from 2 to 5), but max-pooling is skipped in the 3rd and 4th layers.
The final 192 feature maps of size 6 × 6 are flattened in a 6912-dimensional vector. This
vector is processed by two fully-connected layers with 2048 and 1024 units, followed by
ReLU activation and batch normalization. The 1024-dimensional output of this layer is
extracted in the evaluation phase as fold-specific features to compute similarity between
protein domains. The final linear layer has 1221 units, equal to the number of fold types
in SCOPe 2.06, and applies the softmax operation to output a predicted distribution over
fold classes. We call this model Fold-DCNN (Figure 3.4) to differentiate it from the model
described in the previous section for contact/categorical map enhancement CMap-FCN
(Figure 3.3).

Training strategies

We trained a different Fold-DCNN model for each of the 5 image representations of the
protein we considered here (Figure 3.4). To fix the size of the input images to 256 × 256,
we followed the two strategies proposed in [1]. On the one hand, the first strategy (s1)
uses a single input image for each protein domain. Each input map is resized by applying
local averaging or nearest-neighbor interpolation, depending on whether the sequence
length is greater or less than 256, respectively. On the other hand, the second strategy (s2)
considers an ensemble of multiple matrices for each domain (number proportional to the

3

54
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

sequence length). Instead of resizing, in this case we either sample crops from the original
map or embed it in random positions into a 256×256 matrix initialized to zeros. This set of
ensemble matrices is fed into the Fold-DCNN model and the outputs are averaged.

Common to both strategies, we trained the models by minimizing the cross-entropy
loss between the predicted class distribution and the true fold class, using mini-batches
with 16 input maps each. The optimization was performed using the stochastic gradient
descent (SGD) algorithm [18] with momentum set to 0.9 and an initial learning rate of 10−3.
As in [1], the learning rate was reduced by a factor of 10 every 200k iterations, and the
whole optimization process was completed after 500k iterations. To prevent overfitting,
we applied 𝐿2 penalty with a small weight decay of 5 ⋅10−4, and dropout [16] with a drop
probability of 0.5 in the fully-connected layers. We used the original implementation1 in
caffe [19], and run it on a single GPU card with 12GB of memory.

Evaluation

For each protein domain contained in the test sets, we extracted a 1024-dimensional fold-
specific feature vector from the trained Fold-DCNN model (fc7 layer outputs in Figure 3.4).
Then, we compared the feature vectors of every two protein domains using the cosine
similarity (DeepFR score in [1]) as comparisonmetric. For each individual domain in the test
set (query), we ranked all other domains (templates) according to the cosine similarity score,
and then assigned the fold type of the most similar template to the query. The evaluation
was performed at three levels of SCOP: family, superfamily, and fold, as proposed in [20].
For each level, we reported the accuracy of finding the true fold class in the top 1 and top 5
ranked templates as performance metrics.

Training and test sets

We used the datasets described in [1] for training and evaluating the Fold-DCNN models.
The training set consists of 16133 protein domains from SCOPe (version 2.06) covering 1154
folds. This set resulted from removing any redundant sequence with respect to the test
datasets (maximum sequence identity of 40% and e-value < 10−4) and within the training
set itself (sequence identity < 95%). We also used the validation set with 3760 domains.

The performance of the Fold-DCNN models was evaluated on two test sets: SCOP_TEST
[21] and LINDAHL [20]. The SCOP_TEST set contains 124 domains from SCOP (version
1.75), which cover 14 fold classes, while LINDAHL has 976 domains from SCOP (version
1.37) covering a total of 330 folds. The maximum sequence identity between domains in
each test set is 40%. The number of individual domains evaluated at the family, superfamily,
and fold levels, respectively, are as follows: 106, 56, and 36 for the SCOP_TEST set; and
555, 434 and 321 for the LINDAHL set.
1https://github.com/zhujianwei31415/deepfr

3.3 Experiments and results

3

55

3.3 Experiments and results

3.3.1 Performance of CMap-FCN on predicting contacts and

categorical distances

We first evaluated the performance of the CMap-FCN models to predict protein contacts.
We assessed both the enhanced contact and categorical maps provided by these models.
For categorical maps, we summed the softmax scores of the first two bins, corresponding
to [0,5) and [5,8) Å, to obtain the likelihood of the spatial distance being less than 8 Å. In
Table 3.1 we report the contact precision results for short-, medium- and long-range, using
as a reference the results in [5] for the CCMpred and denoising DCNN (DenDCNN) methods.
As can be seen, the CMap-FCN models yield better results than the original DenDCNN
model in most cases. In addition, we observe small differences in contact precision when
comparing the enhanced contact maps to the categorical maps obtained by CMap-FCN.
Here, the enhanced contact maps provide better results overall, particularly for the CASP11
test set, which could be explained by the model being trained to only discriminate between
contacts and non-contacts.

We then tested the ability of the CMap-FCN model to classify spatial distances into 5
bins (categorical maps). Figure 3.5 plots the average confusion matrices (color mapped) for
each test set, differentiating between short-, medium- and long-range groups of residue
pairs. Here, each row of the confusion matrix has been normalized to add up to 100%.

Table 3.1: Contact precision values for short-, medium- and long-range for the evaluated methods on the Pfam150,
CASP10 and CASP11 test sets. Boldface indicates best performance per test set.

Test set Method

Short-range Medium-range Long-range

L/10 L/5 L/2 L L/10 L/5 L/2 L L/10 L/5 L/2 L

Pfam150

CCMpred [5] 56.1 40.2 23.0 15.5 64.2 49.8 29.0 18.4 78.1 71.0 50.5 33.7
DenDCNN [5] 77.6 65.2 40.9 25.0 80.5 71.0 48.3 30.3 89.6 85.3 72.1 54.5

CMap-FCN
—Contact 78.9 66.0 41.3 25.3 81.3 70.6 48.0 30.6 91.3 85.9 71.0 54.4
—Categorical 79.2 66.1 41.0 24.8 81.3 70.4 47.9 30.3 91.2 86.6 71.4 54.1

CASP10

CCMpred [5] 41.5 31.2 19.4 13.5 53.1 41.9 26.3 18.1 53.7 47.8 34.4 23.1
DenDCNN [5] 58.4 48.5 31.9 20.7 65.8 58.1 43.0 29.8 67.3 63.2 50.6 37.6
CMap-FCN
—Contact 60.4 50.4 33.7 21.3 66.8 59.6 43.1 30.3 68.9 63.4 51.2 38.3

—Categorical 59.7 50.0 33.2 21.3 67.2 58.5 42.4 29.9 70.1 64.1 50.5 37.5

CASP11

CCMpred [5] 32.9 23.9 15.3 11.3 38.0 28.5 17.8 12.5 47.4 40.2 28.9 20.1
DenDCNN [5] 48.1 38.8 26.1 17.6 53.7 46.6 31.9 21.2 56.5 53.2 43.0 32.6
CMap-FCN
—Contact 51.5 43.3 27.6 18.1 54.3 47.4 32.9 21.5 61.0 56.6 45.4 34.1

—Categorical 49.0 40.4 26.3 17.7 54.1 46.7 31.9 21.2 60.1 55.7 44.5 33.5

3

56
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

0 1 2 3 4
Predicted Category

0
1

2
3

4
Tr

ue
 C

at
eg

or
y

6.9% 44.1% 32.6% 13.0% 3.4%

1.3% 37.6% 43.0% 14.5% 3.6%

0.0% 1.9% 65.8% 27.1% 5.2%

0.0% 0.1% 16.8% 66.4% 16.7%

0.0% 0.1% 3.9% 26.4% 69.7%

Short-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

9.8% 42.4% 26.2% 7.0% 14.5%

1.5% 38.9% 32.7% 10.2% 16.7%

0.0% 2.4% 41.1% 29.6% 27.0%

0.0% 0.1% 7.8% 44.2% 47.9%

0.0% 0.0% 0.9% 11.4% 87.7%

Medium-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

9.1% 32.2% 24.7% 7.5% 26.4%

1.3% 29.4% 29.3% 10.1% 29.9%

0.0% 1.7% 28.4% 23.3% 46.6%

0.0% 0.1% 5.4% 25.5% 69.1%

0.0% 0.0% 0.5% 5.1% 94.4%

Long-Range Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) Pfam150 Test Set

0 1 2 3 4
Predicted Category

0
1

2
3

4
Tr

ue
 C

at
eg

or
y

8.0% 31.6% 39.3% 15.3% 5.9%

1.0% 28.8% 43.7% 19.7% 6.7%

0.0% 1.6% 61.2% 30.0% 7.2%

0.0% 0.2% 19.6% 64.2% 16.1%

0.0% 0.0% 6.5% 34.6% 58.8%

Short-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

14.1% 28.1% 27.4% 11.1% 19.3%

3.4% 31.1% 32.5% 12.8% 20.2%

0.1% 3.0% 37.4% 29.0% 30.5%

0.0% 0.1% 9.0% 42.8% 48.1%

0.0% 0.0% 1.8% 13.9% 84.3%

Medium-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

7.2% 24.5% 22.6% 10.3% 35.4%

1.0% 22.0% 26.0% 11.8% 39.2%

0.0% 1.5% 23.6% 21.0% 53.8%

0.0% 0.1% 5.3% 21.7% 72.9%

0.0% 0.0% 0.7% 4.4% 94.9%

Long-Range Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(b) CASP10 Test Set

0 1 2 3 4
Predicted Category

0
1

2
3

4
Tr

ue
 C

at
eg

or
y

4.2% 26.4% 40.5% 19.1% 9.8%

0.4% 23.1% 42.7% 23.0% 10.8%

0.0% 1.7% 58.3% 30.9% 9.0%

0.0% 0.3% 19.8% 62.5% 17.4%

0.0% 0.2% 7.7% 34.9% 57.2%

Short-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

6.4% 29.4% 22.8% 14.2% 27.3%

0.8% 23.5% 29.0% 17.4% 29.3%

0.0% 2.1% 31.6% 29.2% 37.0%

0.0% 0.1% 8.4% 40.3% 51.2%

0.0% 0.1% 2.3% 14.6% 83.1%

Medium-Range Confusion Matrix

0 1 2 3 4
Predicted Category

0
1

2
3

4

5.8% 21.3% 21.5% 12.5% 38.9%

0.8% 19.6% 24.4% 13.4% 41.8%

0.0% 1.3% 22.0% 21.9% 54.9%

0.0% 0.1% 5.7% 22.4% 71.8%

0.0% 0.0% 0.9% 5.4% 93.6%

Long-Range Confusion Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(c) CASP11 Test Set

Figure 3.5: Average confusion matrices of the categorical maps (5-bin classification) for short-, medium- and
long-range for the CMap-FCN method on the (a) Pfam150, (b) CASP10 and (c) CASP11 test sets.

This shows, for every true category, the percentage of predictions that lie in each of the 5
categories. The diagonals therefore include the accuracy results for each numbered category
from 0 to 4, corresponding to the 5 distance bins specified in Section 3.2.1. We observe that
the classification performance is very similar for all test sets. In particular, larger spatial

3.3 Experiments and results

3

57

distances (bin 4 ∶= [20,+∞) Å) are better predicted for medium- and long-range, while the
smaller distances (bin 0 ∶= [0,5) Å) are harder to predict at the three ranges. We note that
the model tends to classify long-range residues as very far in space (prediction category
4). This could be explained by the large number of distances that fall into this category in
the training data, especially for long-range residues. Nonetheless, it must be taken into
account that we tried to minimize the impact of this by adding weights to each class (see
Eq. 3.4). Moreover, the categorical maps have been predicted using contact estimations
from CCMpred as inputs, which is based on co-evolution information alone. Thereby, these
results could be improved by adding other types of input representations. However, since
the main objective of this study is to compare the fold recognition performance between
enhanced and native contact/categorical maps, the individual classification results of the
categorical maps predicted by CMap-FCN are not as crucial here.

3.3.2 Training the Fold-DCNN models: Validation accuracy

As a preliminary test, during training we tracked the performance of the Fold-DCNN
models in classifying protein folds as a function of the image representation used as input.
For this purpose, we evaluated the classification accuracy on an independent validation
dataset at each training iteration. Figure 3.6 shows the validation accuracy for the two
training strategies: single input image (s1) and multiple input images (s2). To provide
better visual clues about the accuracy, we applied a Gaussian filter to smooth the validation
curves. As we can see, the accuracy of all models improves and stabilizes after iteration

0 100 200 300 400 500
Iter (K)

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Single Input Image (s1)

Estimated contact map
Enhanced contact map
Enhanced categorical map

Native contact map
Native categorical map

0 100 200 300 400 500
Iter (K)

Multiple Input Images (s2)

Figure 3.6: Validation accuracy (%) of the Fold-DCNN models for each iteration of training, using 5 distinct image
representations of the protein: estimated contact map (from CCMpred), enhanced contact and categorical maps
(from CMap-FCN), and native contact and categorical maps (from the PDB). Here we differentiate between two
training strategies: single input image (s1) on the left and multiple input images (s2) on the right.

3

58
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

number 200k, when we first reduce the learning rate. For the s1 strategy, we observe three
distinct performance levels: one for estimated contact maps (∼ 52%), one for enhanced
maps (slightly below 60%), and one for native maps (above 70%). Here, the enhanced
and native contact maps provide better results than the respective enhanced and native
categorical maps. In contrast, for the s2 strategy, the performance of the estimated and the
two enhanced maps is more similar to one another (∼ 55%); the same for the native contact
and categorical maps (∼ 70%). Altogether, the accuracy values of s1 are slightly better than
s2, particularly for the enhanced and native maps. However, the strategy s2 can be seen
as a data augmentation approach, in which we average the results of several images for
the input protein domain. This could have a different impact on the final classification
performance than on the quality of the fold-specific vector extracted from the Fold-DCNN
model (see Figure 3.4), an issue we address in the next section.

3.3.3 Protein fold recognition performance of Fold-DCNN

The performance of the fold-specific vectors extracted from the Fold-DCNN models was
evaluated on the SCOP_TEST and LINDAHL sets. For each test set, the pairwise fold
recognition results at the family, superfamily and fold levels, considering the top 1 and top
5 predictions, can be found in Tables 3.2 and 3.3, respectively. We differentiate between
the two training strategies: single input image (s1) and multiple input images (s2). We also
compare the performance of the 5 distinct image representations to the state-of-the-art
DeepFR method [1], which uses estimated contact maps from CCMpred as inputs.

In general, for both test sets, we observe that the models trained here using estimated
contact maps as inputs perform worse than the original DeepFR model. This is particularly
noticeable in the LINDAHL test set at the fold level (Table 3.3). Thereby, we were unable
to reproduce the fold recognition results in [1], even when applying the same procedure

Table 3.2: Pairwise fold recognition accuracy (%) results at the family, superfamily and fold levels within the
SCOP_TEST set. Underline indicates best performance per estimated/enhanced or native maps for each training
strategy (single input image, s1, and multiple input images, s2). Boldface indicates best overall.

Input map

Single input image (s1) Multiple input images (s2)

Family Superfamily Fold Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR [1] 74.5 91.5 76.8 87.5 77.8 80.6 75.5 93.4 78.6 83.9 86.1 88.9
Estimated Contact 71.7 90.6 76.8 83.9 72.2 83.3 79.2 88.7 80.4 85.7 80.6 88.9

Enhanced Contact 72.6 88.7 78.6 83.9 80.6 86.1 82.1 95.3 78.6 91.1 86.1 88.9
Categorical 71.7 89.6 78.6 85.7 80.6 88.9 75.5 90.6 78.6 89.3 83.3 88.9

Native Contact 75.5 92.5 76.8 87.5 88.9 88.9 81.1 96.2 87.5 92.9 91.7 91.7

Categorical 77.4 90.6 75.0 89.3 88.9 91.7 84.0 94.3 85.7 92.9 91.7 91.7

3.3 Experiments and results

3

59

Table 3.3: Pairwise fold recognition accuracy (%) results at the family, superfamily and fold levels within the
LINDAHL set. Underline indicates best performance per estimated/enhanced or native maps for each training
strategy (single input image, s1, and multiple input images, s2). Boldface indicates best overall.

Input map

Single input image (s1) Multiple input images (s2)

Family Superfamily Fold Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR [1] 67.4 80.9 47.0 63.4 44.5 62.9 65.4 83.4 51.4 67.1 56.1 70.1
Estimated Contact 68.8 81.3 42.9 58.5 35.2 57.9 70.3 84.0 50.9 70.0 45.2 65.4

Enhanced Contact 67.4 80.5 46.3 65.7 45.5 66.0 70.1 85.9 61.5 76.0 56.7 74.5
Categorical 65.4 78.9 42.9 63.1 45.5 66.7 69.7 83.6 59.7 74.2 53.3 71.3

Native Contact 74.2 90.1 56.9 77.9 69.2 86.8 74.2 89.7 67.7 86.2 79.4 94.4

Categorical 73.5 87.9 60.8 78.3 68.8 88.5 74.1 91.0 68.0 84.1 76.6 93.8

to generate the estimated contact maps and train the DCNN model. However, we do
see that the performance of the strategy s2 is considerably better than s1 for all image
representations at the three levels, in accordance with the original DeepFR results. When
comparing the performance of the individual input images, we see that the native maps
perform the best at the task, followed by the enhanced maps, and then both the estimated
contact map and DeepFR. In addition, the enhanced and native contact maps tend to perform
better than their respective categorical maps, which is consistent with the validation results
in Figure 3.6.

In particular, if we focus on the results of strategy s2, for the SCOP_TEST set (Table 3.2)
we see that the enhanced contact maps achieve top 1 accuracy values of 82.1% (87/106
hits), 78.6% (44/56 hits), and 86.1% (31/36 hits) at the family, superfamily, and fold levels,
respectively. These results are outperformed by the native contact maps at the superfamily
and fold levels, obtaining 87.5% (49/56 hits) and 91.7% (33/36 hits) top 1 predictions, which
are very similar to the results obtained by native categorical maps. For the LINDAHL
set (Table 3.3), the enhanced contact maps yield top 1 accuracy values of 70.1% (389/555
hits), 61.5% (267/434 hits), and 56.7% (182/321 hits) at the three levels, respectively. In
this case, the native contact maps achieve significantly better results than the enhanced
maps, especially at the fold level: 79.4% (255/321 hits) top 1 and 94.4% (303/321 hits) top
5 accuracy values. Here the differences in performance between contact and categorical
maps are slightly larger at the fold level: 56.7% compared to 53.3% for the enhanced maps,
and 79.4% compared to 76.6% for the native maps. Note that few domains are evaluated in
the SCOP_TEST set, and therefore small errors in the predictions can lead to large changes
in the accuracy values (especially at the fold level).

3

60
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

3.4 Discussion and conclusion

In this chapter we have analyzed the performance of different input image representations
for the protein fold recognition task following the approach from DeepFR [1]. To do so,
we trained deep convolutional neural network-based models (Fold-DCNN) to map input
domains into fold classes, and then extracted fold-specific vectors to compare pairs of
protein domains. As input images, we used either estimated contact maps (from CCMpred),
enhanced contact and categorical maps, or native contact and categorical maps (from
the PDB). The enhanced maps were obtained from fully-convolutional network-based
models (CMap-FCN), trained to classify contacts and categorical distances from input
estimated contact maps. Although the contact precision of the resulting enhanced maps
is not excessively high, they perform better than estimated contact maps when used for
recognizing protein folds. For this task, we have found that native contact maps are the
most suitable input representation for the protein domains. This is an expected conclusion,
since native maps are directly obtained from the protein 3D structure. However, while
native categorical maps contain more information about the Euclidean distance between
amino acid residues, they do not perform as well as the native contact maps for the task.
This suggests that the Fold-DCNN model itself handles binary images better than gray-scale
ones. In addition, it should be noted that in the s1 training strategy, the model takes a
degraded version of the input map, resulting from the resizing operation to 256×256, after
which the residue–residue distance information is blurred in the matrix. This is partially
mitigated by the s2 training strategy, where fixed-size crops are randomly taken along the
main diagonal of the matrix. However, this may cause a loss of information as well, since
pairs of amino acid residues separated by more than 256 positions in the sequence are not
seen by the model.

As for the input information about the protein domains, we could obtain improved fold
recognition results by using better contact or distance estimation methods, such as the best
performer in the CASP12 challenge [22]: the RaptorX-Contact [23] method. However, our
results on the LINDAHL test set imply that, even when native contact maps are available,
there is still room for improvement at all three levels (top 1 accuracy values are below
80%). Furthermore, in most cases we are interested in inferring the fold class from protein
sequential information alone, as there is a general lack of solved protein 3D structures.
Therefore, there exists a need to investigate models that better handle other types of
sequence information, such as that extracted from the protein MSA (among others), which
may perform better at recognizing protein folds than the Fold-DCNN model trained on
estimated, enhanced or even native contact maps.

References

3

61

References

[1] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[2] S. Seemayer, M. Gruber, and J. Söding. CCMpred—fast and precise prediction of protein residue–
residue contacts from correlated mutations. Bioinformatics, 30(21):3128–3130, 2014.

[3] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification of
proteins database for the investigation of sequences and structures. journal of Molecular Biology,
247(4):536–540, 1995.

[4] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. SCOPe: Structural classification of proteins–
extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic
Acids Research, 42(D1):D304–D309, 2014.

[5] A. Villegas-Morcillo, J. A. Morales-Cordovilla, A. M. Gomez, and V. Sanchez. Improved protein
residue-residue contact prediction using image denoising methods. In 26th European Signal
Processing Conference (EUSIPCO), pages 1167–1171, 2018.

[6] L. Holm and C. Sander. Protein structure comparison by alignment of distance matrices. Journal
of Molecular Biology, 233(1):123–138, 1993.

[7] J. E. Chen, C. C. Huang, and T. E. Ferrin. RRDistMaps: a UCSF Chimera tool for viewing and
comparing protein distance maps. Bioinformatics, 31(9):1484–1486, 2015.

[8] I. A. Emerson and A. Amala. Protein contact maps: A binary depiction of protein 3d structures.
Physica A: Statistical Mechanics and its Applications, 465:782–791, 2017.

[9] S. H. P. de Oliveira, J. Shi, and C. M. Deane. Comparing co-evolution methods and their
application to template-free protein structure prediction. Bioinformatics, 33(3):373–381, 2017.

[10] I. Walsh, D. Baù, A. J. M. Martin, et al. Ab initio and template-based prediction of multi-class
distance maps by two-dimensional recursive neural networks. BMC Structural Biology, 9(1):1–20,
2009.

[11] P. Kukic, C. Mirabello, G. Tradigo, et al. Toward an accurate prediction of inter-residue distances
in proteins using 2d recursive neural networks. BMC Bioinformatics, 15(1):1–15, 2014.

[12] M. Remmert, A. Biegert, A. Hauser, and J. Söding. HHblits: lightning-fast iterative protein
sequence searching by HMM-HMM alignment. Nature Methods, 9(2):173–175, 2012.

[13] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Research,
45(D1):D158–D169, 2017.

[14] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: Residual
learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–
3155, 2017.

[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pages 448–456, 2015.

3

62
3 On the impact of using estimated, enhanced, or native contact and categorical maps

on protein fold recognition performance

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of Machine Learning Research,
15(1):1929–1958, 2014.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] L. Bottou. Stochastic gradient descent tricks. In G. Montavon, G. B. Orr, and K.-R. Müller,
editors, Neural Networks: Tricks of the Trade, pages 421–436. Springer Berlin Heidelberg, 2012.

[19] Y. Jia, E. Shelhamer, J. Donahue, et al. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, pages
675–678, 2014.

[20] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily and fold
level. Journal of Molecular Biology, 295(3):613–625, 2000.

[21] T. Jo, J. Hou, J. Eickholt, and J. Cheng. Improving protein fold recognition by deep learning
networks. Scientific Reports, 5:17573, 2015.

[22] J. Schaarschmidt, B. Monastyrskyy, A. Kryshtafovych, and A. M. J. J. Bonvin. Assessment
of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins:
Structure, Function, and Bioinformatics, 86:51–66, 2018.

[23] S. Wang, S. Sun, Z. Li, R. Zhang, and J. Xu. Accurate de novo prediction of protein contact map
by ultra-deep learning model. PLoS Computational Biology, 13(1):e1005324, 2017.

4

63

4
Protein fold recognition from

seqences using convolutional and

recurrent neural networks

Amelia Villegas-Morcillo, Angel M. Gomez,

Juan A. Morales-Cordovilla, and Victoria Sanchez

This chapter has been published as follows: A. Villegas-Morcillo, A.M. Gomez, J.A. Morales-Cordovilla, and V.
Sanchez. Protein fold recognition from sequences using convolutional and recurrent neural networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 18(6):2848-2854, 2021. DOI: 10.1109/TCBB.2020.3012732.

• Status: Received in February 2020. Accepted and Published Online in July 2020. Issued in December 2021.
• Impact Factor (JCR 2021): 3.702. Mathematics, Interdisciplinary Applications. Rank 16/108 (Q1).

4

64 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

Abstract

The identification of a protein fold type from its amino acid sequence provides important

insights about the protein 3D structure. In this paper, we propose a deep learning architecture

that can process protein residue-level features to address the protein fold recognition task.

Our neural network model combines 1D-convolutional layers with gated recurrent unit (GRU)

layers. The GRU cells, as recurrent layers, cope with the processing issues associated to the

highly variable protein sequence lengths and so extract a fold-related embedding of fixed

size for each protein domain. These embeddings are then used to perform the pairwise fold

recognition task, which is based on transferring the fold type of the most similar template

structure. We compare our model with several template-based and deep learning-based

methods from the state-of-the-art. The evaluation results over the well-known LINDAHL and

SCOP_TEST sets, along with a proposed LINDAHL test set updated to SCOP 1.75, show that

our embeddings perform significantly better than these methods, specially at the fold level.

Supplementary material, source code and trained models are available at http://sigmat.

ugr.es/~amelia/CNN-GRU-RF+/.

Index terms: Protein Fold Recognition, Deep Learning, Convolutional Neural Networks,

Recurrent Neural Networks, Embedding Learning, Random Forests

4.1 Introduction

The determination of the protein’s tri-dimensional structure from its amino acid sequence
is one of the main challenges in structural biology. Its importance is given by the close
relationship between the protein’s 3D structure and its biological function. Although
structure prediction at atomic level is a hard problem, knowing the fold type [1] [2] the
protein belongs to may disclose relevant information about its structure and function [3].
Protein fold prediction can be accomplished by comparison with related proteins from
the Protein Data Bank (PDB) database [4] that are already classified in different levels
according to sequential and structural similarities [5].

The Structural Classification of Proteins (SCOP) database [6] and its latest extended
version SCOPe [7] provide a hierarchical classification of protein domains in structural
classes, folds, superfamilies, families, proteins and species. According to SCOP, structural
class and fold levels comprise domains that share structural features and similar topology,
and do not imply sequence homology as those in the same superfamily or family. Moreover,
it has been estimated that the number of possible folds is limited in nature [8].

State-of-the-art computational methods aim to identify protein folds following twomain
approaches, which are known as protein fold classification and protein fold recognition.
The taxonomy-based fold classification approach [9] can be viewed as a typical multi-
class classification problem, in which the protein sequences are directly mapped into fold

4.1 Introduction

4

65

classes. The machine learning-based methods, such as [10], FP-Pred [11], ACCFold [12],
TAXFOLD [13], HMMFold [14] and ProFold [15], were designed to successfully classify
into a predefined group of SCOP fold classes. However, the selected folds comprise a small
set including only those folds with a higher amount of protein domains (27 folds in [10]
[12] or 30 folds in [16]), in contrast to the more than one thousand existing fold classes in
the SCOP database.

On the other hand, the protein fold recognition approach is derived from the template-
based structure prediction problem (homology modelling and threading), where the fold
type is inferred by comparing with template proteins with known structure [17] [18]. In
the fold recognition methods, the query protein is compared with a set of templates and the
fold class of the most similar template is transferred to the query [19]. Homology modelling
methods recognize template proteins which present a high sequence similarity with the
query protein. This can be assessed by sequence-to-sequence alignment [20] or profile-to-
profile alignment using hidden Markov models (HHpred [21]) and Markov random fields
(MRFAlign [22]). On its part, threading methods are suitable for those proteins that have
low similarity in sequence, and try to match the query sequence with template structures
using structural properties. Threading methods include RAPTOR [23], BoostThreader [24],
SPARKS-X [25], CNFpred [26] and [27], mostly based on conditional random fields, and
CEthreader [28]. More recently, the fold recognition task has been addressed as a binary
classification problem for each query-template protein pair by using machine learning
tools such as support vector machines (FOLDpro [29]), random forests (RF-Fold [30]) and
deep neural networks (DN-Fold [31]). Furthermore, other ensemble methods that combine
multiple feature types (describing amino acid sequences, evolutionary changes or structure
properties) and different prediction techniques have been proposed, such as the machine
learning with template-based recognition TA-Fold [32], the multi-view model MT-fold [33],
and the learning to rank Fold-LTR-TCP [34] methods.

In the past few years, deep learning [35] approaches have been introduced to improve
the existing protein fold recognition methods. These methods rely on training a deep neural
network to classify the whole set of SCOP fold classes. Then, the outputs of the last hidden
layer are extracted as a fold-related embedding vector for each protein domain, which is
used to perform pairwise protein fold recognition. Among the state-of-the-art techniques
we can find the deep learning methods DeepFR [36], DeepSF [37], DeepSVM-fold [38] and
MotifCNN-fold [39]. The proposed architectures are mainly based on applying convolution
operations over image-form features (predicted contact maps) and protein residue-level
features (evolutionary and secondary structure predictions). However, convolutional
networks only exploit local relations within the protein sequence. Another hurdle is that
protein sequences cover a wide range of possible lengths (from 10 to 10000 amino acids),
but feed-forward neural network architectures require a fixed-size input. In order to tackle

4

66 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

these issues, we propose here a different architecture which introduces a recurrent layer
after the CNN to obtain a fixed-size representation from the variable-length input sequence.

Recurrent neural networks (RNN) with long short-term memory (LSTM) units [40]
have been employed in sequential problems such as speech recognition [41] and machine
translation [42], as well as in the field of proteomics, addressing the protein homology
detection [43] and protein secondary/tertiary structure prediction [44] [45] tasks. Moreover,
architectures that combine deep CNN with LSTM have been proposed in proteomics to
improve the predictions of subcellular localizations of proteins [46], residue-residue contact
maps [47], protein secondary structure [48] and local backbone angles [49]. Thereby, the
promising results achieved in these studies suggest that neural networks including recurrent
layers can also be suitable for addressing the protein fold recognition task, as shown by the
recent DeepSVM-fold [38] method. However, the neural network architecture introduced
in [38] imposes limitations on the length of the protein sequences to be processed. In this
paper we go one step further and propose a more straightforward architecture that can
handle protein sequences of any length.

Thus, the contributions of this work are several. First of all, we propose a neural
network architecture that combines convolutional and recurrent layers, which is able to
process protein residue-level features of arbitrary length, and classify them into all the
SCOP fold classes. Secondly, we leverage the trained neural network to extract a fold-
related embedding suitable for performing pairwise fold recognition. Finally, we provide
evaluation results by combining our similarity scores with other pairwise measures in
a random forest classifier, which outperforms all state-of-the-art existing methods. A
complete overview of our fold recognition approach is depicted in Figure 4.1.

4.2 Materials and methods

4.2.1 Feature extraction

In this work, we represent the protein domain with variable-length 𝐿 as a sequence of 𝐿
vectors, each one of size 45 representing each amino acid residue in the domain sequence
(Figure 4.1a), as in [37]. These 45 residue-level features include information about the
amino acid, evolutionary profile, secondary structure and solvent accessibility. Thus,
the first 20 elements contain a one-hot vector representation of the amino acid. The
profile information is given by the position-specific scoring matrix (PSSM) that contains
20 elements for each amino acid position, and is computed by PSI-BLAST [50] using the
non-redundant database ‘nr90’ for sequence homology searching. Secondary structure
and solvent accessibility information are predicted, respectively, by the SSpro and ACCpro
methods from the SCRATCH suite [51]. This secondary structure is then encoded by a
one-hot vector of three elements which correspond to helix, strand and loop structural

4.2 Materials and methods

4

67

Domain sequence A
. . . FEFHGYARSG. . .

Domain sequence B
. . . SALLVLEDGT. . .

𝐿𝐴 × 45
features

𝐿𝐵 × 45
features

CNN-BGRU

MODEL

CNN-BGRU

MODEL

𝐿
×
45

fe
at
ur
es

1D-Conv
(5 × 128) 𝐿

×
12
8 1D-Conv

(5 × 256) 𝐿
×
25
6

−−−→GRU
(1024)

←−−−GRU
(1024)

2⋅
10
24

−→
𝐡𝐿

←−
𝐡𝐿

FC
(512)

51
2
(E
m
b
e
d
d
i
n
g
)

FC (𝑁)

𝑁
cl
as
s

pr
ed
ic
tio

ns

training phase
Em

be
dd

in
g
A

Em
be
dd

in
g
B

shared
weights

Cosine
similarity 1

Pairwise
similarities

84

DeepFR
score

1

RANDOM

FOREST

MODEL

1
final score

(a) (b) (c)

Figure 4.1: The proposed fold recognition approach to obtain a fold similarity score for two protein domains. (a)
First, 45 input features are extracted for each amino acid in each of the two domain sequences. (b) The resulting
𝐿×45 residue-level features are passed through the CNN-BGRUmodel, previously trained tomap protein sequences
into fold classes. The model architecture (bottom part) consists of two one-dimensional convolutional layers, a
bidirectional gated recurrent unit (GRU) layer and two fully-connected (FC) layers. The CNN-GRU model is very
similar but with a unidirectional GRU instead and hence an output of size 1024. The two input protein domains
are processed independently by the same network model (i.e. with identical trained weights). This model is then
used to extract a fold-related embedding vector for each one (from the 512-dimensional output of the first FC
layer). (c) The cosine similarity distance is computed between the two embeddings, which is concatenated to
other similarity measures in a vector to obtain the final fold similarity score using a random forest model.

classes, whereas the solvent accessibility is encoded by a one-hot vector of two elements
corresponding to exposed and buried states. The resulting 𝐿×45 features for each protein
domain are then used as input to the neural network model, which is trained to map it into
one of the SCOP fold classes.

4.2.2 Convolutional-recurrent neural network model

Our neural network model architecture (Figure 4.1b) is formed by a concatenation of three
different types of layers: convolutional (CNN), recurrent (RNN) and fully-connected (FC).
The details and purpose of each part of the network are described in the following subsec-
tions. The number of layers, filters, units per layer, and the rest of hyperparameters which
configure the network, were chosen after conducting a cross-validation study (described in
Section 4.2.4).

4

68 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

Convolutional neural network

The purpose of the convolutional neural network (CNN) part is to capture the local context
of each amino acid in the protein domain and discover patterns in the sequence. To this
end, several 1D-CNN layers are used to convolve the inputs across the sequence dimension.

In contrast to conventional 2D-CNN networks, frequently used in image processing,
1D-CNN are intended for sequence processing. In these networks, a kernel of learned
weights, or convolutional filter, slides across only one dimension (instead of two). In our
model, the sliding is done through the sequence dimension (from amino acid 𝑙 = 1 to 𝑙 = 𝐿).
Thus, a filter of length 𝑘 (and deep 45) is applied over the residue-level features of each
amino acid 𝑙 in the sequence along with those in its local context (that is, from 𝑙− 𝑘−1

2 to
𝑙+ 𝑘−1

2). As each filter yields a value per amino acid and several filters are learned and
applied to the same layer, the output of the 1D-CNN layer is of size 𝐿×𝐾 , where 𝐾 is the
number of filters.

In our model, two 1D-CNN layers, using 𝐾1 = 128 and 𝐾2 = 256 filters of length 𝑘1 =
𝑘2 = 5, respectively, are applied over the 𝐿×45 residue-level input features (Figure 4.1b).
Note that the use of 1D convolutions allows the model to be insensitive to the residue-level
feature size. Thus, an arbitrary number of features per amino acid could be used instead
of 45 as this only implies a different deep (inner size) of the first-layer’s convolutional
filters. After each 1D-convolutional layer, ReLU activation and Batch-Normalization [52]
are applied.

Recurrent neural network

Unlike feed-forward neural networks, where the information only flows from the input
to the output, recurrent neural networks (RNNs) introduce iteration loops that allow
information to travel from the output to the input of the network as well. Thus, a typical
RNN uses its own output at a previous iteration, along with the input at the current one, to
compute the current output. For this reason, RNNs are frequently used for sequential data
processing, exploiting long-distance relations and summarizing the sequence.

In this case, RNNs are used to iteratively process the amino acid sequence. In each
iteration (i.e. for each amino acid 𝑙 in the sequence), the current output is computed using
the RNN output at the previous iteration (from the previous amino acid 𝑙−1) which, in
turn, has been computed considering the output from the previous amino acid (𝑙−2) and
so on. In our model, only the RNN output at the last iteration (from amino acid 𝑙 = 𝐿) is
retained as a summary of the whole domain sequence, while RNN outputs for intermediate
amino acids (𝑙 = 1,… ,𝐿−1) are discarded.

As vanilla RNN layers suffer from the vanishing/exploding gradient problem when the
sequence length 𝐿 increases, gated recurrent unit (GRU) based layers, as those proposed
in [53], are used in this work instead. GRU-based layers solve the gradient problem

4.2 Materials and methods

4

69

by defining and updating a state vector at each network iteration 𝑙 which summarizes
relevant information about the previous amino acids in the sequence (1,… , 𝑙−1). More
information about how this state vector is updated can be found in the Supplementary
Material (Section 4.S). Thus, in each iteration, the output of a GRU layer is a vector of size
𝐻 , where 𝐻 is the number of state units in the GRU cell. Other authors propose retaining
and post-processing the full sequence of state vectors along iterations (i.e. a matrix of
𝐿×𝐻 outputs) [38], which makes the model architecture dependent on the sequence length
dimension. By contrast, as we mentioned above, in this work we only consider the last
state vector (𝐡𝐿), after processing the entire sequence of length 𝐿. This fixed-size vector
represents the whole variable-length protein domain sequence. In this way, the proposed
model can process domain sequences of any arbitrary length.

Therefore, in our neural network architecture, the 𝐿× 256 output from the previous
1D-CNN is fed into a GRU-based recurrent layer with 𝐻 = 1024 state units, yielding a
fixed-size vector of size 1024 (Figure 4.1b). We refer to this approach as CNN-GRU model.
As we do not want to make assumptions about directionality relevance in protein sequence
processing, the same sequence but in reverse order (i.e. from 𝑙 = 𝐿 to 𝑙 = 1), is also fed into
another same-size GRU-based recurrent layer [54]. The outputs from both forward (−→𝐡𝐿)
and backward (←−𝐡𝐿) GRU layers are then concatenated into a vector of 2048 elements. We
refer to the model resulting from this bidirectional GRU as CNN-BGRU model.

Fully-connected layer

Finally, a fully-connected (FC) layer is used to learn a non-linear combination of the GRU
output vector (−→𝐡𝐿 of size 1024 in the CNN-GRU model or [−→𝐡𝐿,

←−
𝐡𝐿] of size 2048 in the CNN-

BGRU one) and create a fold-related embedding representing the protein domain. This FC
layer consists of a dense layer with 512 units, after which the sigmoid activation function
is applied.

While fold-related embeddings are the actual outputs of our model and the ones used for
the fold recognition task during the test phase (Figure 4.1c), model training requires some
additional steps to be successfully accomplished. Thus, to train the network for learning
suitable fold-related embeddings, a direct fold classification task is employed. To this end,
a second FC layer is added to the model (Figure 4.1b, bottom right). This dense layer
contains 𝑁 output units and performs a simple linear combination of the 512-dimensional
embedding vector. Here, 𝑁 is the number of fold classes in which the input proteins are
going to be classified during training. The cross-entropy computed from model predictions
and one-hot vectors encoding the true fold class is used as the loss function which guides
the optimization process.

4

70 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

Table 4.1: Three levels SCOP_TEST, LINDAHL and LINDAHL_1.75 test sets for pairwise fold recognition.

Test set name

SCOP Full test set Family level Superfamily level Fold level

version Proteins Folds Pairs Proteins Folds Pairs Proteins Folds Pairs Proteins Folds

SCOP_TEST [31] 1.75 124 14 614 106 13 336 56 6 300 36 4
LINDAHL [19] 1.37 976 330 1646 555 121 2130 434 79 3662 321 38
LINDAHL_1.75 1.75 976 323 1532 547 120 1988 431 75 4188 356 43

4.2.3 Datasets

In our study, we use the same set of protein domains selected from the SCOPe version
2.06 database as in [36] to train the models. This training set includes 16133 domains with
less than 95% pairwise sequence identity covering 𝑁 = 1154 folds. In order to test the
method, we considered the well-known SCOP_TEST [31] and LINDAHL [19] sets, which
have been widely used in previous studies for assessing the pairwise fold recognition task.
The SCOP_TEST set contains 124 protein domains from SCOP version 1.75, which cover 14
fold classes, while the LINDAHL set has 976 domains from SCOP version 1.37 covering a
total of 330 folds. The maximum sequence identity inside both test sets and also regarding
the training set is 40%. In order to test the performance of the methods on the pairwise fold
recognition problem, the protein domains within each test set are paired and evaluated
at family, superfamily and fold levels, as detailed in Section 4.2.5. The number of positive
pairs at each level and the resulting individual domains to be evaluated are reported in
Table 4.1. As can be seen, in the SCOP_TEST set, 106, 56 and 36 domains are evaluated at
family, superfamily and fold levels respectively, whereas in the LINDAHL set, we evaluate
555, 434 and 321 domains at each level respectively.

In addition, it should be mentioned that the original LINDAHL dataset is quite old
(1999) and the SCOP definition of folds has changed since then. Therefore, in this paper we
also propose an update of the original LINDAHL from SCOP version 1.37 to version 1.75,
where the family, superfamily and fold classes are consistent with the most recent versions
of SCOPe. To do so, we searched for the original LINDAHL sequences in the SCOP v1.75
database and then we updated the modified domain identifiers and class labels. In Table 4.1,
we show the total number of fold classes included in the new LINDAHL_1.75 set. As can
be observed, the number of pairs and protein domains at each level have changed, so the
evaluation at fold level is now carried out over more domains covering more fold classes.

4.2.4 Model training and validation

In order to decide the best hyperparameters for our CNN-GRU and CNN-BGRU models, we
performed a 5-stage cross-validation over the training set. To ensure independence between
cross-validation subsets, we split the family classes contained within each structural class
into 5 groups. Next, we used 4 subsets to train the model and the remaining one to validate

4.2 Materials and methods

4

71

it. Tested hyperparameter values included model architecture configuration, learning rate
and number of epochs. We selected those that achieved the highest average results to carry
out a final training procedure comprising the entire training dataset.

During the training phase, the variable-length sequence domains were grouped into
mini-batches of 50 samples applying zero-padding to the maximum length within each
mini-batch. In the GRU layer, we kept the last state vector of each domain sample in
the mini-batch (i.e. before zero-padding). We trained the network by minimizing the
cross-entropy loss function for a fixed number of epochs. We used the Adam optimizer
[55] with an initial learning rate of 10−3, which we reduced to 10−4 in epoch number 40 as
cross-validation suggested. The whole optimization process was completed in 80 epochs.
In order to prevent overfitting to the most populated fold classes, we applied L2 penalty
with a small weight decay of 5 ⋅10−4, and dropout [56] with a drop probability of 0.2 in the
CNN and the first FC layers.

Our neural network models were implemented using Pytorch [57] (version 1.0) and
trained on a GPU card (NVIDIA GTX Titan X, 12GB). The GPU memory required for
training our CNN-GRU and CNN-BGRU models was 4.0 and 6.6 GB, respectively. The
network complexity was estimated in terms of MAC (multiply-accumulator unit) counts,
yielding 2.4 MMACs per processed amino acid for the CNN-GRU model and 3.5 MMACs
for the CNN-BGRU model. Moreover, the CNN-GRU and CNN-BGRU models needed 75
and 109 seconds per epoch, completing the 80 training epochs in approximately 2 and 3
hours, respectively.

4.2.5 Evaluation and similarity measures

Evaluation is conducted in terms of pairwise fold recognition accuracy, using the fold-
related embedding vectors. In this task, all the test domains are paired and evaluated
following the SCOP hierarchy at three levels with increasing difficulty, as proposed by
[19]: (i) family level, populated with pairs of test domains that share the same family class,
(ii) superfamily level, with pairs of test domains that share the same superfamily class, but
not the same family, and (iii) fold level, with pairs of test domains that share the same fold
class, but neither share the same family nor superfamily.

At each level, the individual protein domains are considered as queries which are
compared to a pool of templates. We addressed this task in the same way as the DeepFR
method [36]. To compare each pair of query-template domains, we first use the extracted
fold-related embeddings from each neural network model (CNN-GRU or CNN-BGRU). This
comparison is carried out by computing the cosine similarity distance between the query
and the template embedding vectors (Figure 4.1c). Then, the templates for each query
are ranked by score value and, following the nearest neighbor condition, the fold class of
the most similar template is assigned to the query domain. We refer to these methods as

4

72 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

CNN-GRU and CNN-BGRU.
This first fold similarity score was enhanced by training a random forest (RF) model

using our cosine similarity score along with the 84 similarity measures used by the Deep-
FRpro method [36]. These pairwise measures contain sequence similarity information,
sequence and profile alignment features, and structural relations [30, 31]. Thus, the RF
input vectors are of size 85 and correspond to each pair of proteins. As before, we used the
RF output pairwise scores to perform template ranking for each query domain. We named
these methods CNN-GRU-RF and CNN-BGRU-RF, depending on the recurrent network
used for extracting the fold-related embeddings (unidirectional or bidirectional).

Finally, with the aim of including structural information from predicted contact maps,
we also concatenated the cosine similarity score from the DeepFR method to our vector
of pairwise scores (total size of 86). This extended score vector was then used to train a
second random forest model and obtain an improved fold similarity score (Figure 4.1c,
CNN-GRU-RF+ and CNN-BGRU-RF+ methods).

The random forest classifiers were trained with 500 decision trees, using the Python
Scikit-learn package [58] implementation. As in [36], for the SCOP_TEST set the RF models
were trained on the whole LINDAHL set, while we performed a 10-stage cross-validation
to evaluate the LINDAHL and LINDAHL_1.75 test sets.

The performance metric used in all approaches is the fold recognition accuracy, which
computes the ratio of samples that have been correctly classified (top 1 prediction). We
also provide the ratio of finding the true fold in one of the five classes with the highest
score values (named as top 5 prediction).

4.3 Results and discussion

The experimental accuracy results for the SCOP_TEST and LINDAHL test sets can be found
in Table 4.2 and Table 4.3, respectively. We provide pairwise fold recognition results at the
family, superfamily and fold levels, considering both the top 1 and top 5 predictions, as
described in Section 4.2.5. In both test sets, we compare our CNN-GRU (CNN-GRU-RF,
CNN-GRU-RF+) and CNN-BGRU (CNN-BGRU-RF, CNN-BGRU-RF+) based methods to
several template-based and deep learning-based methods from the state-of-the-art that
also address the protein fold recognition problem.

For the SCOP_TEST set (Table 4.2), our CNN-BGRU method obtained the best results
at fold level, with accuracy values of 91.7% (33/36 hits) and 94.4% (34/36 hits) at top 1 and
top 5 predictions, respectively. These results were closely followed by our CNN-BGRU-RF
and CNN-BGRU-RF+ methods, both achieving 88.9% accuracy at the fold level (91.7% at top
5). The mentioned methods also provided good results at the family and superfamily levels.
Indeed, our CNN-BGRU-RF+ method yielded the best accuracy values at superfamily level

4.3 Results and discussion

4

73

Table 4.2: Pairwise fold recognition accuracy results at the family, superfamily and fold levels within the
SCOP_TEST set.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

RF-Fold [31] 93.4 98.1 83.9 91.1 55.6 72.2
DN-Fold [31] 94.3 97.2 82.1 91.1 61.1 86.1
RFDN-Fold [31] 93.4 97.2 82.1 91.1 61.1 86.1
MRFalign [36] 91.5 98.1 85.7 94.6 63.9 72.2
CEthreader [28] 84.0 95.3 73.2 89.3 80.6 91.7
DeepFR (s1) [36] 74.5 91.5 76.8 87.5 77.8 80.6
DeepFR (s2) [36] 75.5 93.4 78.6 83.9 86.1 88.9
DeepFRpro (s1) [36] 95.3 99.1 89.3 92.9 75.0 91.7
DeepFRpro (s2) [36] 94.3 96.2 87.5 94.6 83.3 88.9

CNN-GRU 84.9 95.3 80.4 87.5 72.2 86.1
CNN-BGRU 84.9 96.2 87.5 91.1 91.7 94.4

CNN-GRU-RF 93.4 96.2 87.5 96.4 75.0 83.3
CNN-BGRU-RF 91.5 95.3 87.5 92.9 88.9 91.7
CNN-GRU-RF+ 93.4 96.2 89.3 94.6 83.3 88.9
CNN-BGRU-RF+ 92.5 95.3 92.9 96.4 88.9 91.7

(92.9% and 96.4% at top 1 and top 5 predictions). Furthermore, as can be seen in Table 4.3,
our CNN-BGRU-RF+ method outperformed all state-of-the-art methods at the fold level
considering the LINDAHL test set. It achieves accuracy values of 76.3% (245/321 hits)
and 85.7% (275/321 hits) at top 1 and top 5 predictions, respectively. This method was
closely followed by our CNN-GRU-RF+ method, which also yielded the best results at the
superfamily level (78.3% and 88.0% at top 1 and top 5 predictions).

In order to assess the raw performance of the fold-related embeddings extracted from
our CNN-GRU and CNN-BGRU models, we can compare our results with those obtained
from the DeepFR method [36] (both strategies 1 and 2). In this case, the metric used for
embedding comparison is the cosine similarity distance. A notable difference is that our
models use protein residue-level features at input, while the DeepFR model processes more
informative structural features in the form of predicted contact maps. The evaluation
results showed that our models performed better than the best DeepFR method (strategy
2). Specifically, our CNN-BGRU model stands out for its top 1 and top 5 predictions in both
test sets (Tables 4.2 and 4.3). These results imply that our fold-related embedding vectors
are suitable for template ranking and fold matching. Our models succeed in processing the
input protein residue-level features (which include evolutionary and secondary structure
information). The performance is comparable or even better to that obtained with image-
form contact map features by the DeepFR method. This can be attributed to the use of
recurrent layers that properly cope with the variable-length protein sequence, providing a
well-suited fold-related embedding.

4

74 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

Table 4.3: Pairwise fold recognition accuracy results at the family, superfamily and fold levels within the
LINDAHL test set.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST [19] 71.2 72.3 27.4 27.9 4.0 4.7
HHpred [24] 82.9 87.1 58.0 70.0 25.2 39.4
RAPTOR [24] 86.6 89.3 56.3 69.0 38.2 58.7
BoostThreader [24] 86.5 90.5 66.1 76.4 42.6 57.4
SPARKS-X [25] 84.1 90.3 59.0 76.3 45.2 67.0
FOLDpro [31] 85.0 89.9 55.0 70.0 26.5 48.3
RF-Fold [31] 84.5 91.5 63.4 79.3 40.8 58.3
DN-Fold [31] 84.5 91.2 61.5 76.5 33.6 60.7
RFDN-Fold [31] 84.7 91.5 65.7 78.8 37.7 61.7
TA-fold [32] 85.2 —– 74.2 —– 53.9 —–
MRFalign [36] 85.2 90.8 72.4 80.9 38.6 56.7
CEthreader [28] 76.6 87.2 69.4 81.8 52.3 70.4
DeepFR (s1) [36] 67.4 80.9 47.0 63.4 44.5 62.9
DeepFR (s2) [36] 65.4 83.4 51.4 67.1 56.1 70.1
DeepFRpro (s1) [36] 85.6 91.9 66.6 82.0 57.6 73.8
DeepFRpro (s2) [36] 83.1 92.3 69.6 82.5 66.0 78.8
MT-fold [33] —– —– —– —– 54.1 —–
DeepSVM-fold [38] —– —– —– —– 67.3 —–
MotifCNN-fold [39] —– —– —– —– 72.6 —–
Fold-LTR-TCP [34] —– —– —– —– 73.2 —–

CNN-GRU 68.6 89.2 56.2 77.4 56.7 74.1
CNN-BGRU 71.0 87.7 60.1 77.2 58.3 78.8
CNN-GRU-RF 84.9 94.1 74.4 88.5 63.9 81.3
CNN-BGRU-RF 85.6 93.0 72.4 86.9 65.4 82.2
CNN-GRU-RF+ 84.5 95.0 78.3 88.0 73.2 86.3

CNN-BGRU-RF+ 85.4 93.5 73.3 87.8 76.3 85.7

To further explore whether the extracted embeddings from our CNN-BGRU model are
related to the fold classes, we run bi-clustering over a subset of SCOP_TEST with 46 protein
domains covering 6 folds. These fold classes are 𝑎.3, 𝑏.36, 𝑐.1, 𝑐.67, 𝑑.41, and 𝑓 .4, which
provided better classification results in the SCOP_TEST dataset using the CNN-BGRU
model. Figure 4.2 shows the resulting dendroheatmap, where each row corresponds to the
512-dimensional embedding extracted for each sample. As can be seen, protein domains
in the same fold class present similar blocks (in red and green colors) in their embedding
vectors. Also, the hierarchical clustering differentiates 6 clusters, each one grouping protein
domains from the same fold together. We notice that folds 𝑐.1 and 𝑐.67 (from structural
class 𝑐) cluster together at a higher level, indicating that the clustering is consistent with
the SCOPe hierarchy. These findings suggest that the extracted embedding vectors are fold
related.

We then evaluated the pairwise score obtained from our random forest classifier (using

4.3 Results and discussion

4

75

b.36.1.1 d1r6ja_
 b.36.1.1 d2cssa1
 b.36.1.1 d1g9oa_
 b.36.1.1 d1q3oa_
 b.36.1.1 d1wi4a1
 b.36.1.1 d1va8a1
 b.36.1.1 d1rgwa_
 b.36.1.1 d1uewa_
 b.36.1.1 d1vaea_
 b.36.1.1 d1rzxa_
 b.36.1.1 d1tp5a1
 c.1.10.1 d1to3a_
 c.1.2.4 d1i4na_
 c.1.2.4 d1vc4a_
 c.1.8.5 d1eoka_
 c.1.10.1 d1wbha1
 c.1.11.2 d1kkoa1
 c.1.4.1 d1djqa1
 c.1.4.1 d1ps9a1
 c.1.10.1 d1hl2a_
 c.1.2.4 d1rd5a_
 c.67.1.4 d1ohwa_
 c.67.1.3 d2ctza1
c.67.1.3 d1c7na_

 c.67.1.3 d1cl1a_
 c.67.1.1 d2r5ea1
 c.67.1.3 d1m 32a_
 c.67.1.1 d1u08a_
 c.67.1.1 d1v72a1
 c.67.1.1 d1m 6sa_
 c.67.1.1 d2hoxa1
 c.67.1.4 d1b9ha_
 c.67.1.3 d1iuga_
 c.67.1.4 d1o69a_
 d.41.4.2 d2gyck1
 d.41.3.1 d1brwa3
 d.41.3.1 d2tpta3
 a.3.1.1 d1e29a_
 a.3.1.1 d1i8oa_
 a.3.1.1 d1dw0a_
 a.3.1.1 d1gu2a_
 a.3.1.1 d1ct ja_
 a.3.1.1 d1wvec1
 a.3.1.1 d2c8sa1
 f.4.3.2 d1a0tp_
 f.4.3.4 d1t16a_

0.15 0.30 0.45 0.60 0.75 0.90

c.1

b.36

c.67

d.41

a.3

f.4

Figure 4.2: Dendroheatmap of the 512-dimensional fold-related embeddings extracted from the CNN-BGRU
model. The analysis has been done by running bi-clustering over 46 protein domains (covering 6 folds) in the
SCOP_TEST set. We computed the cosine distance between embedding vectors (rows) and embedding components
(columns) separately. We then applied hierarchical clustering with single linkage to group similar vectors and
components together. The embedding components are colored according to their values (lower values in green
and higher values in red).

the 85-dimensional score vectors) in the fold recognition task. The results on the LINDAHL
test set show an improvement of our advanced methods CNN-GRU-RF and CNN-BGRU-RF
with respect to using our cosine similarity score alone. Accuracy results are competitive
when compared to other previous template-based methods (as RAPTOR [23] and RF-Fold
[30]) and ensemble methods (as TA-fold [32] and DeepFRpro [36]) at the three levels. Our
methods also provide good results if we consider the top 5 predictions, outperforming the
most similar method DeepFRpro (both s1 and s2) at the three levels. When evaluating the
smaller SCOP_TEST set, we noticed a greater improvement from our CNN-GRU-RF method
than the CNN-BGRU-RF version, likely due to its good results before the integration of
different scores.

Our CNN-GRU-RF+ and CNN-BGRU-RF+ methods led to a further performance in
both test sets, specially at the superfamily and fold levels. In this case, we integrate
pairwise scores derived from both evolutionary information and predicted contact maps,
so that our LINDAHL results can be fairly compared with those from the recent deep
learning-based methods DeepSVM-fold [38] and MotifCNN-fold [39]. We can see that
our CNN-GRU-RF+ and CNN-BGRU-RF+ methods performed better than these methods
at the fold level. Moreover, our CNN-BGRU-RF+ method outperformed the best method
from the state-of-the-art, Fold-LTR-TCP [34]. These results suggest that our fold-related
embeddings contain complementary information to those of the DeepFR method (derived

4

76 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

Table 4.4: Pairwise fold recognition accuracy results at the family, superfamily and fold levels within the
LINDAHL_1.75 test set.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s1) 69.7 82.3 43.4 60.6 40.2 59.0
DeepFR (s2) 72.2 85.6 46.6 64.3 50.8 67.1
DeepFRpro (s1) 88.3 94.3 71.9 82.8 56.5 74.2
DeepFRpro (s2) 87.0 93.8 71.9 82.6 63.5 77.2

CNN-GRU 70.2 88.7 55.7 77.0 57.9 77.0
CNN-BGRU 73.1 88.3 60.1 74.9 60.1 78.7
CNN-GRU-RF 87.9 93.6 74.9 87.7 69.1 80.6
CNN-BGRU-RF 87.9 93.1 71.7 87.0 66.3 83.4
CNN-GRU-RF+ 89.0 94.3 77.3 89.1 73.6 84.0
CNN-BGRU-RF+ 88.5 94.3 74.0 86.3 71.1 86.8

from predicted contact maps), confirming the importance of combining both sequential
and structural information for the protein fold recognition task.

The pairwise fold recognition was also assessed using the proposed LINDAHL_1.75,
whose results are shown in Table 4.4. In this case, the DeepFR and DeepFRpro methods
(both strategies 1 and 2) were trained and evaluated using the code and guidelines provided
by the authors in [36]. We also extracted the 84 pairwise similarity measures for the new
LINDAHL_1.75 and trained the random forest models. As can be seen in Table 4.4, the
performance of the deep learning methods on the updated version of LINDAHL is similar
to the original one at the family, superfamily and fold levels. Our CNN-GRU-RF+ provided
the best top 1 results at the three levels, with accuracy values of 89.0% (487/547 hits), 77.3%
(333/431 hits) and 73.6% (262/356 hits), respectively. In addition to this, our CNN-BGRU-RF+
method performed the best at the fold level considering the top 5 predictions, yielding
an accuracy of 86.8% (309/356 hits). As can be seen, the updated LINDAHL_1.75 test set
proposed in this work could be considered as a valid replacement of the original LINDAHL
in future protein fold recognition studies.

4.4 Conclusion

In this study, we have proposed a deep learning method to address the protein fold recog-
nition problem. Our neural network architecture combines convolutional and recurrent
(unidirectional and bidirectional) layers in order to seamlessly process arbitrary-length
protein sequences. In addition to properly processing the input residue-level features of
proteins of any length, our method is able to learn fixed-size fold-related embeddings to
perform pairwise fold recognition through similarity distance between embedding vectors.
The inclusion of recurrent layers yielded very competitive results in comparison with the

References

4

77

state-of-the-art methods, such as DeepFR, DeepSVM-fold and MotifCNN-fold, which make
use of more informative structural features through predicted contact maps. In general,
the learned embeddings from our CNN-BGRU model provide better results than those of
our CNN-GRU model. Performance variability could be explained by the high number
of parameters to be trained in the bidirectional GRU layer, which almost doubles those
of the unidirectional one. Our study confirmed that the integration of both sequential
and structural features is beneficial for protein fold recognition. When combining our
cosine similarity score with other pairwise similarity measures, including the DeepFR score,
we noticed a significant performance improvement with respect to other state-of-the-art
ensemble methods. Our CNN-BGRU-RF+ method yielded the best fold level result in the
LINDAHL test set, outperforming the best method Fold-LTR-TCP. We should also highlight
our remarkable top 5 results in all cases, meaning that the proposed method is suitable for
fold matching and template ranking. Furthermore, we provided a curated version of the
well-known LINDAHL dataset updated to the SCOP version 1.75 database, which can be
used as a benchmark test set in future studies.

As future work, the fold-related embeddings could be used to efficiently find templates
in the template-based modeling of protein structures. Also, the proposed neural network
architectures could be extended to integrate and process other protein-level features along
with the residue-level features used here. These models could be further tested in the direct
fold classification task, training and evaluating them in the complete set of SCOPe folds.

Acknowledgments

This work was supported by the Spanish MINECO/FEDER Project TEC2016-80141-P and
the associated FPI grant BES-2017-079792. The authors also acknowledge the support of
NVIDIA Corporation with the donation of a Titan X GPU.

References

[1] C. Chothia and A. V. Finkelstein. The classification and origins of protein folding patterns.
Annual Review of Biochemistry, 59(1):1007–1035, 1990.

[2] D. T. Jones, W. R. Taylor, and J. M. Thornton. A new approach to protein fold recognition.
Nature, 358(6381):86, 1992.

[3] R. Kolodny, L. Pereyaslavets, A. O. Samson, and M. Levitt. On the universe of protein folds.
Annual Review of Biophysics, 42:559–582, 2013.

[4] H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

[5] C. Hadley and D. T. Jones. A systematic comparison of protein structure classifications: SCOP,
CATH and FSSP. Structure, 7(9):1099–1112, 1999.

4

78 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

[6] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification of
proteins database for the investigation of sequences and structures. journal of Molecular Biology,
247(4):536–540, 1995.

[7] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. SCOPe: Structural classification of proteins–
extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic
Acids Research, 42(D1):D304–D309, 2014.

[8] R. D. Schaeffer and V. Daggett. Protein folds and protein folding. Protein Engineering, Design &
Selection, 24(1-2):11–19, 2010.

[9] L. Wei and Q. Zou. Recent progress in machine learning-based methods for protein fold
recognition. International journal of Molecular Sciences, 17(12):2118, 2016.

[10] C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognition using support vector machines
and neural networks. Bioinformatics, 17(4):349–358, 2001.

[11] H.-B. Shen and K.-C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinfor-
matics, 22(14):1717–1722, 2006.

[12] Q. Dong, S. Zhou, and J. Guan. A new taxonomy-based protein fold recognition approach based
on autocross-covariance transformation. Bioinformatics, 25(20):2655–2662, 2009.

[13] J.-Y. Yang and X. Chen. Improving taxonomy-based protein fold recognition by using global
and local features. Proteins: Structure, Function, and Bioinformatics, 79(7):2053–2064, 2011.

[14] J. Lyons, A. Dehzangi, R. Heffernan, et al. Advancing the accuracy of protein fold recognition by
utilizing profiles from hidden Markov models. IEEE Transactions on Nanobioscience, 14(7):761–
772, 2015.

[15] D. Chen, X. Tian, B. Zhou, and J. Gao. ProFold: Protein fold classification with additional
structural features and a novel ensemble classifier. BioMed Research International, 2016:1–10,
2016.

[16] Y. H. Taguchi and M. M. Gromiha. Application of amino acid occurrence for discriminating
different folding types of globular proteins. BMC Bioinformatics, 8(1):404, 2007.

[17] J. Chen, M. Guo, X. Wang, and B. Liu. A comprehensive review and comparison of different
computational methods for protein remote homology detection. Briefings in Bioinformatics,
19(2):231–244, 2018.

[18] M. S. Abual-Rub and R. Abdullah. A survey of protein fold recognition algorithms. Journal of
Computer Science, 4(9):768–776, 2008.

[19] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily and fold
level. Journal of Molecular Biology, 295(3):613–625, 2000.

[20] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[21] J. Söding. Protein homology detection by HMM–HMM comparison. Bioinformatics, 21(7):951–

References

4

79

960, 2005.

[22] J. Ma, S. Wang, Z. Wang, and J. Xu. MRFalign: Protein homology detection through alignment
of Markov random fields. PLoS Computational Biology, 10(3):e1003500, 2014.

[23] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein threading by linear programming.
Journal of Bioinformatics and Computational Biology, 1(1):95–117, 2003.

[24] J. Peng and J. Xu. Boosting protein threading accuracy. In Annual International Conference on
Research in Computational Molecular Biology, pages 31–45, 2009.

[25] Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou. Improving protein fold recognition and template-
based modeling by employing probabilistic-based matching between predicted one-dimensional
structural properties of query and corresponding native properties of templates. Bioinformatics,
27(15):2076–2082, 2011.

[26] J. Ma, J. Peng, S. Wang, and J. Xu. A conditional neural fields model for protein threading.
Bioinformatics, 28(12):i59–i66, 2012.

[27] J. A. Morales-Cordovilla, V. Sanchez, and M. Ratajczak. Protein alignment based on higher
order conditional random fields for template-based modeling. PLoS ONE, 13(6):e0197912, 2018.

[28] W. Zheng, Q. Wuyun, Y. Li, et al. Detecting distant-homology protein structures by aligning
deep neural-network based contact maps. PLoS Computational Biology, 15(10):1–27, 2019.

[29] J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold
recognition. Bioinformatics, 22(12):1456–1463, 2006.

[30] T. Jo and J. Cheng. Improving protein fold recognition by random forest. BMC Bioinformatics,
15(11):S14, 2014.

[31] T. Jo, J. Hou, J. Eickholt, and J. Cheng. Improving protein fold recognition by deep learning
networks. Scientific Reports, 5:17573, 2015.

[32] J. Xia, Z. Peng, D. Qi, H. Mu, and J. Yang. An ensemble approach to protein fold classification by
integration of template-based assignment and support vector machine classifier. Bioinformatics,
33(6):863–870, 2016.

[33] K. Yan, X. Fang, Y. Xu, and B. Liu. Protein fold recognition based on multi-view modeling.
Bioinformatics, 35(17):2982–2990, 2019.

[34] B. Liu, Y. Zhu, and K. Yan. Fold-LTR-TCP: protein fold recognition based on triadic closure
principle. Briefings in Bioinformatics, 2019.

[35] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, 2015.

[36] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[37] J. Hou, B. Adhikari, and J. Cheng. DeepSF: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[38] B. Liu, C.-C. Li, and K. Yan. DeepSVM-fold: protein fold recognition by combining support

4

80 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

vector machines and pairwise sequence similarity scores generated by deep learning networks.
Briefings in Bioinformatics, 2019.

[39] C.-C. Li and B. Liu. MotifCNN-fold: protein fold recognition based on fold-specific features
extracted by motif-based convolutional neural networks. Briefings in Bioinformatics, 21(6):2133–
2141, 2020.

[40] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[41] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks.
In International Conference on Machine Learning, pages 1764–1772, 2014.

[42] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[43] S. Hochreiter, M. Heusel, and K. Obermayer. Fast model-based protein homology detection
without alignment. Bioinformatics, 23(14):1728–1736, 2007.

[44] S. K. Sønderby and O. Winther. Protein secondary structure prediction with long short term
memory networks. arXiv preprint arXiv:1412.7828, 2014.

[45] M. AlQuraishi. End-to-end differentiable learning of protein structure. Cell Systems, 8(4):292–301,
2019.

[46] S. K. Sønderby, C. K. Sønderby, H. Nielsen, and O. Winther. Convolutional LSTM networks for
subcellular localization of proteins. In International Conference on Algorithms for Computational
Biology, pages 68–80. Springer, 2015.

[47] J. Hanson, K. Paliwal, T. Litfin, Y. Yang, and Y. Zhou. Accurate prediction of protein contact maps
by coupling residual two-dimensional bidirectional long short-term memory with convolutional
neural networks. Bioinformatics, 34(23):4039–4045, 2018.

[48] B. Zhang, J. Li, and Q. Lü. Prediction of 8-state protein secondary structures by a novel deep
learning architecture. BMC Bioinformatics, 19(1):293, 2018.

[49] J. Hanson, K. Paliwal, T. Litfin, Y. Yang, and Y. Zhou. Improving prediction of protein secondary
structure, backbone angles, solvent accessibility and contact numbers by using predicted contact
maps and an ensemble of recurrent and residual convolutional neural networks. Bioinformatics,
35(14):2403–2410, 2019.

[50] S. F. Altschul, T. L. Madden, A. A. Schäffer, et al. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[51] C. N. Magnan and P. Baldi. SSpro/ACCpro 5: almost perfect prediction of protein secondary
structure and relative solvent accessibility using profiles, machine learning and structural
similarity. Bioinformatics, 30(18):2592–2597, 2014.

[52] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pages 448–456, 2015.

References

4

81

[53] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[54] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of Machine Learning Research,
15(1):1929–1958, 2014.

[57] A. Paszke, S. Gross, S. Chintala, et al. Automatic differentiation in PyTorch. In Advances in
Neural Information Processing Systems, 2017.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: machine learning in Python. journal
of Machine Learning Research, 12:2825–2830, 2011.

4

82 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

4.S Supplementary material

4.S.1 Cross-validation sets and training results

Table 4.S1: Number of protein domains, families, superfamilies and folds in each structural class for the SCOPe
2.06 training dataset.

Structural class Protein domains Family classes Superfamily classes Fold classes

a 2684 943 480 273
b 3603 858 343 168
c 4739 900 233 144
d 3882 1193 528 368
e 319 100 65 65
f 296 137 98 56
g 610 213 115 80

Total 16133 4344 1862 1154

Table 4.S2: Cross-validation subsets for the SCOPe 2.06 training dataset (family separation).

Subset Protein domains Family classes Superfamily classes Fold classes
Train Valid Train Valid Train Valid Train Valid

CV1 12859 3274 3474 870 1641 615 1015 442
CV2 12895 3238 3474 870 1642 606 1032 429
CV3 12794 3339 3474 870 1633 630 1030 436
CV4 13023 3110 3474 870 1646 611 1035 436
CV5 12961 3172 3480 864 1626 632 1035 436

Table 4.S3: SCOPe 2.06 cross-validation accuracy results in training and validation sets (epoch 80).

Model CNN-GRU CNN-BGRU

Subset CV-Train CV-Val CV-Train CV-Val
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

CV1 98.99 99.94 68.23 79.23 99.70 100.00 70.22 81.06
CV2 99.40 99.99 66.21 76.78 99.89 100.00 68.41 77.79
CV3 99.34 99.99 67.95 79.19 99.84 100.00 71.24 80.26
CV4 98.83 99.98 64.98 78.75 99.80 100.00 69.68 79.16
CV5 99.55 100.00 67.37 76.64 99.88 100.00 69.64 79.73

4.S Supplementary material

4

83

0

1

2

3

4

Cr
os

s-
En

tro
py

 L
os

s

CNN-GRU CV-Training Curves

0 10 20 30 40 50 60 70 80
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CV1
CV2
CV3
CV4
CV5

Figure 4.S1: Cross-validation: CNN-GRU model training loss and accuracy.

2.0

2.5

3.0

3.5

4.0

4.5

Cr
os

s-
En

tro
py

 L
os

s

CNN-GRU CV-Validation Curves

0 10 20 30 40 50 60 70 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CV1
CV2
CV3
CV4
CV5

Figure 4.S2: Cross-validation: CNN-GRU model validation loss and accuracy.

4

84 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

0

1

2

3

4
Cr

os
s-

En
tro

py
 L

os
s

CNN-BGRU CV-Training Curves

0 10 20 30 40 50 60 70 80
Epoch

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

CV1
CV2
CV3
CV4
CV5

Figure 4.S3: Cross-validation: CNN-BGRU model training loss and accuracy.

2.0

2.5

3.0

3.5

4.0

4.5

Cr
os

s-
En

tro
py

 L
os

s

CNN-BGRU CV-Validation Curves

0 10 20 30 40 50 60 70 80
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

CV1
CV2
CV3
CV4
CV5

Figure 4.S4: Cross-validation: CNN-BGRU model validation loss and accuracy.

4.S Supplementary material

4

85

4.S.2 Lindahl dataset update (SCOP 1.37 to SCOP 1.75)

Table 4.S4: Original and new Lindahl identifiers and labels.

Original id Original label New id New label

Changes in PDB names

d1alo_1 1_47_1_1 d1vlba1 a.56.1.1
d1alo_3 4_23_1_1 d1vlba3 d.41.1.1
d1alo_4 4_77_1_1 d1vlba4 d.133.1.1
d1cxsa1 2_35_2_1 d1eu1a1 b.52.2.2
d1etd 1_4_3_9 d1k78b_ a.4.5.21
d1ezm_2 4_50_1_2 d1ezma_ d.92.1.2
d1gdoa 4_88_1_1 d1xffa_ d.153.1.1
d1kst 7_17_1_1 d1n4ya_ g.20.1.1
d1lefa 1_20_1_1 d2lefa_ a.21.1.1
d1lpt 1_42_1_1 d1gh1a_ a.52.1.1
d1tsg 4_97_1_3 d1o7bt_ d.169.1.4
d1tssa1 2_26_2_2 d2tssa1 b.40.2.2
d1tssa2 4_12_5_1 d2tssa2 d.15.6.1
d1wsyb 3_59_1_1 d1bksb_ c.79.1.1
d2blta 5_4_1_1 d1xx2a_ e.3.1.1
d2fxb 4_33_1_4 d1iqza_ d.58.1.4
d2stv 2_8_1_2 d2buka1 b.121.7.1
d2wrpr 1_78_1_1 d2oz9r1 a.4.12.1
d3b5c 4_66_1_1 d1cyoa_ d.120.1.1

Deleted domains

d1alo_5 4_77_1_1 ———— ————
d1alo_6 4_77_1_1 ———— ————
d1alo_7 4_77_1_1 ———— ————
d1ezm_1 1_53_1_1 ———— ————
d1gal_2 4_13_1_4 ———— ————

Added domains

———— ———— d1v97a5 d.133.1.1
———— ———— d1n62b2 d.133.1.1
———— ———— d1t3qb2 d.133.1.1
———— ———— d1ffya1 a.27.1.1
———— ———— d1c0pa2 d.16.1.3

Decisions over split domains

d1aky 3_25_1_1 d1akya1 c.37.1.1
d1div 4_82_1_1 d1diva1 d.99.1.1
d1dkza 5_17_1_1 d1dkza2 b.130.1.1
d1knya 5_10_1_2 d1knya2 d.218.1.1
d1rpl 5_10_1_1 d1rpla2 d.218.1.2
d1zyma 3_5_1_2 d1zyma2 c.8.1.2

4

86 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

4.S.3 De novo training of the DeepFR method

Image-form feature extraction command pipeline

For each protein domain in the dataset:
• Construct multiple sequence alignment (MSA) using the uniprot20_2016_02 HHM
database (hhblits from HHsuite version 3.0.3):

1 hhblits -i ${id}.fasta -d uniprot20_2016_02 -n 5 \
2 -oa3m ${id}.a3m -o ${id}.hhr

• Convert a3m file to aln format:
1 awk ‘NR % 2 = = 0’ ${id}.a3m | sed ‘s/[a-z]//g’ > ${id}.aln

• Get predicted contact map matrix using CCMpred on GPU:
1 ccmpred -R ${id}.aln ${id}.ccm

• Create image file from the contact map matrix by using the following python script:
1 python convert_ccmpred_to_image.py ${id}.ccm ${id}.ccm.png
2 ...
3 import sys
4 import matplotlib.pyplot as plt
5 import numpy as np
6

7 ccm_mat, image_name = sys.argv[1:]
8 matrix = np.loadtxt(ccm_mat)
9 plt.imsave(image_name, matrix, cmap=plt.cm.gray_r)

2D convolutional neural network architecture and training hyperpa-

rameters

• Common hyperparameters
– Input features size: 256x256x1
– Number of 2D convolutional layers: 5
– Max-pooling after layers: 1-2-5
– Embedding size: 1024
– Optimizer: SGD with momentum 0.9
– Initial learning rate: 0.001
– Learning rate reduction step: 100k
– Learning rate reduction factor: 10
– Weight decay value: 0.0005

• Strategy 1 (reshaping) hyperparameters
– Mini-batch size: 32
– Number of training iterations: 500k

• Strategy 2 (sampling/padding) hyperparameters
– Mini-batch size: 128
– Number of training iterations: 250k

4.S Supplementary material

4

87

4.S.4 GRU-based recurrent layer

In the proposed neural network architecture, the outputs of the last convolutional layer
are fed to the GRU-based recurrent layer (GRU stands for gated recurrent unit). The GRU
cell computes the following function:

• Reset gate: 𝐫𝑡 = 𝜎(𝐖𝑖𝑟𝐱𝑡 +𝐛𝑖𝑟 +𝐖ℎ𝑟𝐡(𝑡−1)+𝐛ℎ𝑟)
• Update gate: 𝐳𝑡 = 𝜎(𝐖𝑖𝑧𝐱𝑡 +𝐛𝑖𝑧 +𝐖ℎ𝑧𝐡(𝑡−1)+𝐛ℎ𝑧)
• New gate: 𝐧𝑡 = tanh(𝐖𝑖𝑛𝐱𝑡 +𝐛𝑖𝑛+ 𝐫𝑡 ∗ (𝐖ℎ𝑛𝐡(𝑡−1)+𝐛ℎ𝑛))
• New hidden state: 𝐡𝑡 = (1− 𝐳𝑡) ∗ 𝐧𝑡 + 𝐳𝑡 ∗ 𝐡(𝑡−1)

where 𝐱𝑡 and 𝐡𝑡 are the feature and hidden state vectors associated to the amino acid 𝑡 in the
protein sequence (𝑡 = 1,… ,𝐿),𝐖𝑥𝑦 and 𝐛𝑥𝑦 are the weight matrices and bias vectors learned
in the GRU cell, 𝜎() and tanh() refer to the sigmoid and hyperbolic tangent activation
functions, respectively. At each amino acid 𝑡, the reset gate (𝐫𝑡) decides which information
to forget from the previous amino acid (𝑡 − 1), while the update gate (𝐳𝑡) decides what
information to throw away (previous amino acid) and what new information to add (current
amino acid).

4.S.5 Random forest models

Python code for random forest classifier training and evaluation using the Scikit-learn
package, where 𝑋_𝑡𝑟𝑎𝑖𝑛 and 𝑋_𝑡𝑒𝑠𝑡 are the pairwise score vectors (85 or 86-dimensional)
and 𝑦_𝑡𝑟𝑎𝑖𝑛 contains the true training labels (1 if the pair of proteins belong to the same
fold, -1 otherwise). The 𝑦_𝑝𝑟𝑜𝑏 vector includes an improved pairwise score for each pair
of proteins in the test set.

1 from sklearn.ensemble import RandomForestClassifier
2

3 clf = RandomForestClassifier(n_estimators=500, random_state=0)
4 clf.fit(X_train, y_train)
5 y_prob = clf.predict_proba(X_test)

4

88 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

4.S.6 Fold-related embeddings analysis using bi-clustering

d.41.4.2 d2gyck1
 d.41.3.1 d1brwa3
 d.41.3.1 d2tpta3
 a.3.1.1 d2c8sa1
 a.3.1.1 d1i8oa_
 a.3.1.1 d1e29a_
 a.3.1.1 d1gu2a_
 a.3.1.1 d1dw0a_
 a.3.1.1 d1ct ja_
 a.3.1.1 d1wvec1
 b.36.1.1 d1g9oa_
 b.36.1.1 d2cssa1
 b.36.1.1 d1rgwa_
 b.36.1.1 d1va8a1
 b.36.1.1 d1vaea_
 b.36.1.1 d1rzxa_
 b.36.1.1 d1tp5a1
 b.36.1.1 d1r6ja_
 b.36.1.1 d1wi4a1
 b.36.1.1 d1q3oa_
 b.36.1.1 d1uewa_
 f.4.3.2 d1a0tp_
 f.4.3.4 d1t16a_
c.67.1.3 d1iuga_

 c.67.1.4 d1o69a_
 c.67.1.1 d2hoxa1
 c.67.1.1 d2r5ea1
 c.67.1.3 d1cl1a_
 c.67.1.4 d1b9ha_
 c.67.1.1 d1m 6sa_
 c.67.1.1 d1u08a_
 c.67.1.4 d1ohwa_
 c.67.1.1 d1v72a1
 c.67.1.3 d1c7na_
 c.67.1.3 d1m 32a_
 c.67.1.3 d2ctza1
 c.1.10.1 d1wbha1
 c.1.4.1 d1djqa1
 c.1.4.1 d1ps9a1
 c.1.2.4 d1i4na_
 c.1.2.4 d1vc4a_
 c.1.2.4 d1rd5a_
 c.1.10.1 d1hl2a_
 c.1.11.2 d1kkoa1
 c.1.8.5 d1eoka_
 c.1.10.1 d1to3a_

0.15 0.30 0.45 0.60 0.75 0.900.15 0.30 0.45 0.60 0.75 0.90

c.1

d.41

c.67

f.4

a.3

b.36

Figure 4.S5: Dendroheatmap of the 512-dimensional fold-related embeddings extracted from the CNN-GRU
model. The analysis has been done by running bi-clustering over 46 protein domains (covering 6 folds) in the
SCOP_TEST set.

b.36.1.1 d1r6ja_
 b.36.1.1 d2cssa1
 b.36.1.1 d1g9oa_
 b.36.1.1 d1q3oa_
 b.36.1.1 d1wi4a1
 b.36.1.1 d1va8a1
 b.36.1.1 d1rgwa_
 b.36.1.1 d1uewa_
 b.36.1.1 d1vaea_
 b.36.1.1 d1rzxa_
 b.36.1.1 d1tp5a1
 c.1.10.1 d1to3a_
 c.1.2.4 d1i4na_
 c.1.2.4 d1vc4a_
 c.1.8.5 d1eoka_
 c.1.10.1 d1wbha1
 c.1.11.2 d1kkoa1
 c.1.4.1 d1djqa1
 c.1.4.1 d1ps9a1
 c.1.10.1 d1hl2a_
 c.1.2.4 d1rd5a_
 c.67.1.4 d1ohwa_
 c.67.1.3 d2ctza1
c.67.1.3 d1c7na_

 c.67.1.3 d1cl1a_
 c.67.1.1 d2r5ea1
 c.67.1.3 d1m 32a_
 c.67.1.1 d1u08a_
 c.67.1.1 d1v72a1
 c.67.1.1 d1m 6sa_
 c.67.1.1 d2hoxa1
 c.67.1.4 d1b9ha_
 c.67.1.3 d1iuga_
 c.67.1.4 d1o69a_
 d.41.4.2 d2gyck1
 d.41.3.1 d1brwa3
 d.41.3.1 d2tpta3
 a.3.1.1 d1e29a_
 a.3.1.1 d1i8oa_
 a.3.1.1 d1dw0a_
 a.3.1.1 d1gu2a_
 a.3.1.1 d1ct ja_
 a.3.1.1 d1wvec1
 a.3.1.1 d2c8sa1
 f.4.3.2 d1a0tp_
 f.4.3.4 d1t16a_

0.15 0.30 0.45 0.60 0.75 0.90

c.1

b.36

c.67

d.41

a.3

f.4

Figure 4.S6: Dendroheatmap of the 512-dimensional fold-related embeddings extracted from the CNN-BGRU
model. The analysis has been done by running bi-clustering over 46 protein domains (covering 6 folds) in the
SCOP_TEST set.

4.S Supplementary material

4

89

f.4.3.2 d1a0tp_
 f.4.3.4 d1t16a_
 a.3.1.1 d1dw0a_
 a.3.1.1 d1e29a_
 a.3.1.1 d1gu2a_
 a.3.1.1 d2c8sa1
 a.3.1.1 d1i8oa_
 a.3.1.1 d1ct ja_
 a.3.1.1 d1wvec1
 c.67.1.3 d1iuga_
 c.67.1.3 d1cl1a_
 c.67.1.4 d1ohwa_
 c.67.1.1 d1v72a1
 c.67.1.1 d2r5ea1
 c.67.1.4 d1o69a_
 c.67.1.4 d1b9ha_
 c.67.1.3 d1c7na_
 c.67.1.3 d1m 32a_
 c.67.1.1 d1u08a_
 c.67.1.1 d1m 6sa_
 c.67.1.1 d2hoxa1
 d.41.4.2 d2gyck1
 d.41.3.1 d1brwa3
 d.41.3.1 d2tpta3
 c.67.1.3 d2ctza1
 c.1.10.1 d1wbha1
 c.1.4.1 d1djqa1
 c.1.4.1 d1ps9a1
 c.1.2.4 d1i4na_
 c.1.2.4 d1vc4a_
 c.1.2.4 d1rd5a_
 c.1.10.1 d1hl2a_
 c.1.11.2 d1kkoa1
 c.1.8.5 d1eoka_
 c.1.10.1 d1to3a_
 c.8.5.1 d1kida_
 d.26.1.1 d1q6ha_
 c.8.3.1 d1a9xb1
 d.26.1.1 d1jvwa_
 d.26.1.1 d1u79a_
 b.36.1.1 d2cssa1
 b.36.1.1 d1g9oa_
 b.36.1.1 d1va8a1
 b.36.1.1 d1vaea_
 b.36.1.1 d1tp5a1
 b.36.1.1 d1r6ja_
 b.36.1.1 d1wi4a1
 b.36.1.1 d1q3oa_
 b.36.1.1 d1uewa_
 b.36.1.1 d1rgwa_
 b.36.1.1 d1rzxa_
 d.26.1.1 d1t11a3
 d.26.1.1 d1hxva_
 d.26.1.2 d2f23a2
 c.8.9.1 d2isba1
 c.8.8.1 d1r61a_
 c.8.8.1 d2b0aa1
 c.8.6.1 d2d0oa1
 c.8.2.3 d2hi6a1
 c.8.1.1 d1kbla2
 c.8.7.1 d1nxja_
 d.68.7.1 d1m sza_
 d.68.7.1 d1whra_
 d.68.4.1 d1jo0a_
 c.8.5.2 d1q3qa2
 d.68.6.1 d2bkya1
 d.68.5.1 d1nj8a2
 d.26.1.1 d1eq3a_
 d.26.1.1 d1m 5ya3
 d.68.5.1 d1hc7a3
 d.68.3.3 d1jdqa_
 d.68.3.3 d1pava_
 d.68.2.2 d1g6sa_
 d.68.2.2 d1ejda_
 d.68.2.2 d1rf6a_
 c.37.1.10 d1vcoa2
 c.37.1.10 d1byia_
 c.37.1.10 d1nija1
 c.37.1.11 d1g6oa_
 c.37.1.12 d1l2ta_
 c.37.1.12 d2onka1
 c.37.1.12 d1jj7a_
 c.37.1.12 d3dhwc1
 c.8.2.1 d1l5ja2
 c.8.2.1 d2b3ya1
 g.9.1.1 d1ewsa_
 g.9.1.1 d1ijva_
 g.9.1.1 d1zuea1
 d.153.1.4 d1g3ka_
 d.153.1.4 d1yara1
 d.153.1.4 d1rypg_
 d.153.1.4 d1rypb_
 d.153.1.4 d1rypc_
 d.153.1.4 d1rype_
 d.153.1.4 d1ryp2_
 d.153.1.4 d1ryph_
 g.9.1.1 d1kj6a_
 d.19.1.1 d1lqva_
 d.19.1.1 d2h26a2
 d.19.1.1 d1hyrc2
 d.19.1.1 d1t7va2
 d.19.1.1 d1uvqb2
 d.19.1.1 d1hdm a2
 d.19.1.1 d1hdm b2
 a.5.2.1 d2dkla1
 a.5.2.4 d1ot ra_
 a.5.2.1 d1pgya_
 a.5.2.1 d1t tea1
 a.5.2.1 d1vega_
 a.5.2.1 d3e46a1
 a.5.2.4 d1m n3a_
 a.5.2.1 d1wiva_
 a.5.2.2 d1xb2b1
 a.5.2.1 d1veka_
 a.5.2.1 d1wgna_
 a.5.2.3 d1oaia_
 a.5.2.3 d1v92a_
 a.5.2.1 d2crna1
 a.5.2.1 d2cpwa1
 a.5.2.1 d2dnaa1
 a.5.2.1 d2bwba1
 a.5.2.1 d2k0bx1
 a.5.2.1 d1vdla_
 a.5.2.1 d1wj7a1

0.15 0.30 0.45 0.60 0.75 0.90

Figure 4.S7: Dendroheatmap of the 512-dimensional fold-related embeddings extracted from the CNN-GRU
model. The analysis has been done by running bi-clustering over all 124 protein domains (covering 14 folds) in
the SCOP_TEST set.

4

90 4 Protein fold recognition from sequences using convolutional and recurrent neural networks

d.19.1.1 d2h26a2
 d.19.1.1 d1t7va2
 d.19.1.1 d1hyrc2
 d.19.1.1 d1lqva_
 d.19.1.1 d1hdm b2
 d.19.1.1 d1hdm a2
 d.19.1.1 d1uvqb2
 f.4.3.2 d1a0tp_
 f.4.3.4 d1t16a_
 d.153.1.4 d1g3ka_
 d.153.1.4 d1yara1
 d.153.1.4 d1rype_
 d.153.1.4 d1rypb_
 d.153.1.4 d1rypc_
 d.153.1.4 d1rypg_
 d.153.1.4 d1ryp2_
 d.153.1.4 d1ryph_
 g.9.1.1 d1kj6a_
 g.9.1.1 d1ewsa_
 g.9.1.1 d1ijva_
 g.9.1.1 d1zuea1
 a.3.1.1 d1e29a_
 a.3.1.1 d1dw0a_
 a.3.1.1 d1gu2a_
 a.3.1.1 d1i8oa_
 a.3.1.1 d1ct ja_
 a.3.1.1 d1wvec1
 a.3.1.1 d2c8sa1
 a.5.2.1 d2dkla1
 a.5.2.2 d1xb2b1
 a.5.2.1 d1vdla_
 a.5.2.4 d1ot ra_
 a.5.2.1 d1pgya_
 a.5.2.1 d1t tea1
 a.5.2.1 d1wj7a1
 a.5.2.1 d1wgna_
 a.5.2.1 d1vega_
 a.5.2.1 d1wiva_
 a.5.2.3 d1oaia_
 a.5.2.4 d1m n3a_
 a.5.2.1 d1veka_
 a.5.2.1 d2crna1
 a.5.2.3 d1v92a_
 a.5.2.1 d2cpwa1
 a.5.2.1 d3e46a1
 a.5.2.1 d2k0bx1
 a.5.2.1 d2bwba1
 a.5.2.1 d2dnaa1
 c.67.1.4 d1ohwa_
 c.67.1.3 d2ctza1
 c.67.1.3 d1cl1a_
 c.67.1.3 d1c7na_
 c.67.1.1 d1m 6sa_
 c.67.1.1 d2hoxa1
 c.67.1.1 d1v72a1
 c.67.1.1 d1u08a_
 c.67.1.1 d2r5ea1
 c.67.1.3 d1m 32a_
 c.67.1.3 d1iuga_
 c.67.1.4 d1b9ha_
 c.67.1.4 d1o69a_
 d.41.4.2 d2gyck1
 d.41.3.1 d1brwa3
 d.41.3.1 d2tpta3
 d.68.7.1 d1whra_
 d.68.6.1 d2bkya1
 d.68.7.1 d1m sza_
 d.68.5.1 d1hc7a3
 d.68.4.1 d1jo0a_
 d.68.3.3 d1jdqa_
 d.68.3.3 d1pava_
 d.68.5.1 d1nj8a2
 d.26.1.1 d1eq3a_
 d.26.1.1 d1m 5ya3
 d.26.1.2 d2f23a2
 d.26.1.1 d1q6ha_
 d.26.1.1 d1jvwa_
 d.26.1.1 d1u79a_
 d.26.1.1 d1hxva_
 d.26.1.1 d1t11a3
 c.1.10.1 d1to3a_
 c.1.8.5 d1eoka_
 c.1.10.1 d1wbha1
 c.1.2.4 d1i4na_
 c.1.2.4 d1vc4a_
 c.1.10.1 d1hl2a_
 c.1.2.4 d1rd5a_
 c.1.11.2 d1kkoa1
 c.1.4.1 d1djqa1
 c.1.4.1 d1ps9a1
 b.36.1.1 d1r6ja_
 b.36.1.1 d1q3oa_
 b.36.1.1 d1wi4a1
 b.36.1.1 d2cssa1
 b.36.1.1 d1rgwa_
 b.36.1.1 d1g9oa_
 b.36.1.1 d1tp5a1
 b.36.1.1 d1va8a1
 b.36.1.1 d1rzxa_
 b.36.1.1 d1uewa_
 b.36.1.1 d1vaea_
 c.8.9.1 d2isba1
 c.37.1.11 d1g6oa_
 c.37.1.12 d2onka1
 c.37.1.10 d1vcoa2
 c.37.1.12 d1l2ta_
 c.37.1.10 d1nija1
 c.37.1.10 d1byia_
 c.37.1.12 d1jj7a_
 c.37.1.12 d3dhwc1
 d.68.2.2 d1ejda_
 d.68.2.2 d1g6sa_
 d.68.2.2 d1rf6a_
 c.8.5.1 d1kida_
 c.8.8.1 d1r61a_
 c.8.8.1 d2b0aa1
 c.8.2.1 d1l5ja2
 c.8.2.1 d2b3ya1
 c.8.5.2 d1q3qa2
 c.8.1.1 d1kbla2
 c.8.7.1 d1nxja_
 c.8.3.1 d1a9xb1
 c.8.6.1 d2d0oa1
 c.8.2.3 d2hi6a1

0.15 0.30 0.45 0.60 0.75 0.90

Figure 4.S8: Dendroheatmap of the 512-dimensional fold-related embeddings extracted from the CNN-BGRU
model. The analysis has been done by running bi-clustering over all 124 protein domains (covering 14 folds) in
the SCOP_TEST set.

5

91

5
FoldHSphere: deep hyperspherical

embeddings for protein fold

recognition

Amelia Villegas-Morcillo, Victoria Sanchez, and Angel M. Gomez

This chapter has been published as follows: A. Villegas-Morcillo, V. Sanchez, and A.M. Gomez. FoldHSphere: deep
hyperspherical embeddings for protein fold recognition. BMCBioinformatics, 22(1):1-21, 2021. DOI: 10.1186/s12859-
021-04419-7.

• Status: Received in May 2021. Accepted in September 2021. Published in October 2021.
• Impact Factor (JCR 2021): 3.328. Mathematical & Computational Biology. Rank 20/57 (Q2).

5

92 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

Abstract

Background: Current state-of-the-art deep learning approaches for protein fold recognition

learn protein embeddings that improve prediction performance at the fold level. However,

there still exists a performance gap at the fold level and the (relatively easier) family level,

suggesting that it might be possible to learn an embedding space that better represents the

protein folds.

Results: In this paper, we propose the FoldHSphere method to learn a better fold embedding

space through a two-stage training procedure. We first obtain prototype vectors for each fold

class that are maximally separated in hyperspherical space. We then train a neural network by

minimizing the angular large margin cosine loss (LMCL) to learn protein embeddings clustered

around the corresponding hyperspherical fold prototypes. Our network architectures, ResCNN-

GRU and ResCNN-BGRU, process the input protein sequences by applying several residual-

convolutional blocks followed by a gated recurrent unit-based recurrent layer. Evaluation

results on the LINDAHL dataset indicate that the use of our hyperspherical embeddings

effectively bridges the performance gap at the family and fold levels. Furthermore, our

FoldHSpherePro ensemble method yields an accuracy of 81.3% at the fold level, outperforming

all the state-of-the-art methods.

Conclusions: Our methodology is efficient in learning discriminative and fold-representative

embeddings for the protein domains. The proposed hyperspherical embeddings are effective

at identifying the protein fold class by pairwise comparison, even when amino acid sequence

similarities are low.

Keywords: Protein Fold Recognition; Deep Neural Networks; Residual Convolutions; Embed-

ding Learning; Hyperspherical Space; Thomson Problem

5.1 Background

Protein structure prediction given the amino acid sequence is a challenging problem in
structural bioinformatics. One of the key steps in the template-based modelling (TBM) of
protein structures is the recognition of the protein fold [1–5]. The goal is to predict the fold
type of a protein domain by comparison with template structures from the Protein Data
Bank (PDB) [6]. Solved structure domains from the PDB are classified into several levels
according to structural and sequence similarities in databases as SCOP [7, 8] and CATH
[9]. The objective here is to identify proteins sharing the same fold class—with similar
arrangement of structural elements but differing in the amino acid sequence.

Early computational approaches to recognizing proteins with similar structure and
sequence (homology modelling) were based on sequence-to-sequence (BLAST [10]) or
profile-to-profile (HHpred [11]) alignments, as well as Markov random fields (MRFAlign

5.1 Background

5

93

[12]). In addition, threading methods aim to recognize distant-homologous proteins with
low similarity in sequence by using structural properties instead. These methods include
RAPTOR [13], BoostThreader [14], SPARKS-X [15], conditional random field-based CNF-
pred [16] and [17], and more recently the EigenTHREADER [18] and CEthreader [19]
methods, which use predicted contact map information.

In general, the protein fold recognition methods as the ones described above are derived
from the template-based structure prediction problem. Unlike these, in the taxonomy-based
fold classification approaches [20] the protein sequences are directly mapped into fold
classes. To this end, machine learning approaches such as FP-Pred [21], ACCFold [22],
TAXFOLD [23], [24, 25], HMMFold [26], ProFold [27], and DKELM-LDA [28], as well as
the deep learning methods Conv-SXGbg-DeepFold [29] and DeepFrag-k [30], have been
proposed to successfully classify into a pre-defined group of SCOP fold classes. However,
the evaluated folds comprise a small set including only those folds with a higher amount
of protein domains (27 or 30 folds), in contrast to the more than 1000 existing fold classes
in the SCOP database.

Several machine learning algorithms have been also introduced for the protein fold
recognition task [31]. First attempts treated the task as a binary classification problem
to decide whether two protein domains belonged to the same fold. Different techniques
were applied here, such as support vector machines (FOLDpro [32]), random forests (RF-
Fold [33]) and neural networks (DN-Fold [34]). Moreover, ensemble methods enhance
the recognition performance by combining multiple protein feature representations and
prediction techniques. Examples are TA-Fold [35] and the multi-view learning ensemble
frameworks MT-fold [36], EMfold [37] and MLDH-Fold [38]. On the other hand, the
learning to rank methods, such as Fold-LTR-TCP [39], FoldRec-C2C [40], and ProtFold-
DFG [41], treat the problem as an information retrieval task and try to learn the relationship
among proteins in the datasets.

Furthermore, deep learning-based methods have been recently proposed to identify
the protein fold, such as DeepSF [42], DeepFR [43], DeepSVM-Fold [44], MotifCNN-fold
[45], SelfAT-Fold [46], VGGfold [47], and CNN-BGRU [48]. In these methods, a supervised
neural network model is trained to classify the input protein domain into one of the possible
fold classes. From the trained model, a fold-related embedding representation is extracted,
which is then used to measure the similarity between each two protein domains. In this
context, the learned embeddings constitute a 𝑑-dimensional space in which we can map
high-dimensional protein representations such as evolutionary profiles [48] (𝐿×20, where
𝐿 is the protein sequence length) or contact maps [43] (𝐿×𝐿). Moreover, these embeddings
capture the fold information during training by placing inputs from the same fold close
together in the embedding space. The model architecture for protein fold recognition
usually contains a convolutional neural network (CNN) alone or in combination with

5

94 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

recurrent layers—long-short term memory (LSTM) [49] or gated recurrent unit (GRU) [50]
cells—or self-attention layers [51]. Hence, in preceding works, most of the effort has been
put into improving the neural network architectures and making them suitable to process
different protein representations, such as predicted contact maps, evolutionary profiles
or predicted secondary structure elements. In this work, we propose two architectures
formed by several blocks of residual-convolutions [52] and a recurrent layer, which we
name ResCNN-GRU and ResCNN-BGRU. Here, the suffix ‘BGRU’ refers to bidirectional
GRU, while ‘GRU’ indicates the use of a unidirectional GRU. These two architectures are
derived from our previous CNN-GRU and CNN-BGRU models [48], and can also process
arbitrary length protein sequences represented by residue-level features.

However, unlike previous deep learning approaches, ourmain interest here is to improve
the fold-related embedding vectors by modifying the neural network optimization criterion.
While the softmax cross-entropy loss is commonly used for multi-class classification
problems, it lacks sufficient discriminative power for classification [53–55]. In this regard,
modifications on the loss function have been introduced, leading to improved functions
such as the center loss [53], the large margin softmax (L-Softmax) loss [54], and the angular
softmax (A-Softmax) loss [55]. Thus, in this work, we propose to minimize an angular-
based loss function, namely the large margin cosine loss (LMCL) [56]. LMCL removes any
vector norm dependencies by normalizing the input embedding and class weight vectors
in the classification layer and therefore distributes them angularly on a high-dimensional
sphere—or hypersphere. The function also introduces a class boundary margin to enlarge
the inter-class angular separation while reducing the intra-class separation for embeddings
within the same fold class.

We further improve the training of our neural network model by minimizing the LMCL
with a fixed weight matrix in the last classification layer. Such a matrix contains a pre-
defined set fold class vectors—hyperspherical prototypes—that are maximally separated on
the surface of a hypersphere. To ensure maximum angular separation between prototypes,
we draw inspiration from the well-known Thomson problem [57]. Its goal is to determine
the minimum energy configuration of 𝐾 charged particles on the surface of a unit sphere.
By minimizing a Thomson-based loss function, extended to a hypersphere of arbitrary
number of dimensions, we optimize the angular distribution of our prototype vectors. Here
we pre-train the prototype matrix separately and keep it fixed during the optimization of
our neural network model. It must be noted that, unlike conventional transfer learning
procedures in which the last layers of the network are fine-tuned, we pre-define the output
embedding space given by a set of fold prototypes representing the cluster centroids for
each fold class [58]. In this way, during training, the model is forced to learn protein
embeddings clustered around the corresponding hyperspherical fold prototypes.

In summary, our main contribution is a training procedure that provides hyperspher-

5.2 Materials and methods

5

95

Protein

features

Neural Network

Optimization

Softmax

fold-related

embeddings

Fold class

vectors wkSoftmax loss

W Prototypes

Optimization

Hyperspherical

prototypes

a.3

c.1

b.36

d.41

f.4

g.50

e.8

Thomson loss

Protein

features

Neural Network

Optimization

Hyperspherical

fold-related

embeddings

Fixed W

LMCL

Cosine

similarity

FoldHSphere

ranking

Pairwise

similarities

DeepFR

score

Random Forest

Optimization

FoldHSpherePro

ranking

(a) (b)

(c)

(d)

Figure 5.1: Overview of the FoldHSphere approach for protein fold recognition. In the first stage (a) we train
a neural network model to map the protein domains into 𝐾 fold classes using the softmax cross-entropy as
loss function. From this trained model, we extract fold class weight vectors 𝐰𝑘 , 𝑘 = 1,… ,𝐾 learned in the last
classification layer. (b) We then optimize the position of the 𝐰𝑘 vectors by our proposed Thomson-based loss, so
that they are maximally separated in the angular space. (c) The resulting hyperspherical prototypes are used as a
fixed non-trainable classification matrix 𝐖 in the last layer of the neural network model, which is trained again,
but now minimizing the LMCL. The final hyperspherical embeddings are extracted from the fully-connected
part of this model. (d) Finally, the cosine similarity is computed between each two embeddings and a template
ranking is performed for each query protein domain (FoldHSphere method). Moreover, template ranking is
further improved by using enhanced scores provided by a random forest model trained with additional similarity
measures as inputs (FoldHSpherePro method).

ical protein embeddings, learned by minimizing the angular LMCL around pre-defined
prototypes for the fold classes in a hyperspherical space. We obtain these embeddings by
training the ResCNN-GRU and ResCNN-BGRU architectures that are effective at processing
arbitrary length protein sequences. An overview of our approach is depicted in Figure 5.1.
Our proposed methods, named FoldHSphere and FoldHSpherePro, significantly advance
the state-of-the-art performance on well-known benchmark datasets.

5.2 Materials and methods

5.2.1 Datasets

The datasets were obtained from the public protein databases SCOP [7] and the extended
SCOPe [8]. These databases contain a hierarchical structural classification of protein
domains with solved structure. From the top-down view, such hierarchical levels are
structural class, fold, superfamily and family, which group protein domains with increasing
sequence similarity at each level.

5

96 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

Training dataset

We trained our neural network models using the SCOPe 2.06 training set from [43]. Such a
training set was obtained after filtering out protein domains having a significant sequence
similarity to those in the test set. To do so, the following similarity reduction methods
were executed: MMseqs2 [59] (sequence identity 25%, e-value 10−4), CD-HIT-2D [60]
(sequence identity 40%) and BLAST+ [61] (e-value 10−4). The final dataset contains 16133
protein domains sharing at most 95% pairwise sequence identity, which are classified into
𝐾 = 1154 folds. For hyperparameter tuning, we performed a 5-stage cross-validation over
the entire training set. Hence, we split the 16133 protein domains into 5 groups, including
domains from different families in each one (Supplementary Material 5.S.1). This prevents
having proteins in the validation subsets with similar amino acid sequence to those in the
corresponding training subset.

Benchmark datasets

We tested the effectiveness of our hyperspherical embeddings using both the well-known
LINDAHL dataset [3] and the updated LINDAHL_1.75 dataset we recently proposed in
[48]. The original LINDAHL dataset includes 976 domains from SCOP 1.37 covering 330
folds. Updated to SCOP 1.75, the LINDAHL_1.75 dataset contains the same number of
proteins (976) but now classified into 323 folds. Protein domains within both test sets share
a maximum sequence identity of 40%, as well as with respect to the training domains. Each
dataset is paired and evaluated independently at three different levels—family, superfamily
and fold. Thus, while the number of individual protein domains evaluated within the
LINDAHL dataset are 555, 434 and 321 for the family, superfamily and fold levels, in
LINDAHL_1.75 we evaluate 547, 431 and 356 domains, respectively.

5.2.2 Protein residue-level feature representation

In order to represent the protein amino acid sequence with variable length 𝐿, we considered
45 features for each amino acid as in previous works [42, 48]. These 45 residue-level
features contain the following information:

• Amino acid encoding: one-hot vector of size 20 representing the amino acid type.
• Position-specific scoring matrix (PSSM): 20 elements which contain the evolutionary
profile information obtained from the multiple sequence alignment (MSA). We com-
puted the PSSM matrix using PSI-BLAST [10] and the non-redundant database ‘nr90’
for sequence homology searching.

• Secondary structure: one-hot vector of size 3 encoding the helix, strand and loop
secondary structure elements. To predict the secondary structure we used the SSpro
method from the SCRATCH suite [62].

5.2 Materials and methods

5

97

• Solvent accessibility: one-hot vector of size 2 encoding the exposed and buried states.
Similar to before, we used the ACCpro method from SCRATCH to predict the solvent
accessibility states.

These 𝐿×45 features are used as input to our neural network models, which are trained
to predict the fold class for each protein domain.

5.2.3 Residual-convolutionalandrecurrentneuralnetwork

In this study, we improve our previously proposed neural network models, CNN-GRU
and CNN-BGRU [48], with blocks of residual convolutions [52]. As a result, the model
architecture is formed by three main parts, as depicted in Figure 5.2: residual-convolutional
(ResCNN), recurrent (RNN) and fully-connected (FC). We named these new models as
ResCNN-GRU and ResCNN-BGRU, depending on the use of unidirectional or bidirectional
layers of gated recurrent units (GRU) in the recurrent part.

Residual-convolutional part

The convolutional neural network (CNN) aims to capture the local context of each residue
in the protein domain and discover short-term patterns within the amino acid sequence. At
each CNN layer, we apply a 1D-convolution operation along the sequence dimension, with
several convolutional filters of specific length to be learned. Considering an input of size
𝐿×45, the output of each 1D-convolutional layer is of size 𝐿×𝑁𝑙 , where 𝑁𝑙 is the number
of learned filters in the 𝑙-th layer. In our model, the 1D-convolutional layers are grouped
into residual blocks [52]. The output(𝑥𝑏,𝑏) of each residual block is combined with its
input 𝑥𝑏 as 𝑥𝑏+1 = 𝑥𝑏+(𝑥𝑏,𝑏), where𝑏 are the weights and biases associated to the
𝑏-th residual block, and(⋅) is the mapping function performed by the block.

Figure 5.2a presents the ResCNN part of our model. We first apply an initial 1D-
convolution to transform the 𝐿×45 input features into 𝐿×256 outputs by using 256 filters
of length 1. These are then processed by two residual blocks, each one formed by two
layers with 64 and 256 filters of length 5. After each convolution, ReLU activation and
Batch-Normalization [63] are applied.

Recurrent part

The purpose of the recurrent neural network (RNN) is to exploit long-distance relations
through all the amino acid sequence and generate a summary of the whole protein domain
at its output. Here, the 𝐿×256 outputs from the ResCNN are fed into a gated recurrent unit
(GRU) [50] based layer with 1024 state units.

As shown in Figure 5.2b, instead of saving all the 𝐿×1024 states of the GRU, we only
consider the last state (−→𝐡𝐿) as a summary vector of 1024 elements. In this way, our model
architecture can process amino acid sequences of arbitrary length and extract a fixed-size

5

98 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

L× 45 features

1D-Conv (1× 256)

1D-Conv (5× 64)

1D-Conv (5× 256)

+

1D-Conv (5× 64)

1D-Conv (5× 256)

+

L× 256

−−−→
GRU

(1024)

←−−−
GRU

(1024)

2 · 1024

−→
hL

←−
hL

FC (512)

512 – Embedding

FC (K) – W

K class predictions

(a) Residual-

Convolutional

Part

(b) Recurrent

Part

(c) Fully-

Connected

Part

embedding extraction

(training and test phases)

classification

(training phase)

Figure 5.2: The proposed ResCNN-BGRU neural network model for fold-related embedding learning through
protein fold classification. The model architecture contains three differentiated parts. The residual-convolutional
network (a) processes the input 𝐿×45 residue-level features and consists of two residual blocks with two 1D-
convolutional layers each. Its output is passed through a bidirectional layer of gated recurrent units (b) to obtain
a fixed size representation of the input domain, which is further processed by two fully-connected layers (c).
The first FC layer learns a 512-dimensional embedding vector for each input, while the second one learns a class
weight matrix 𝐖 to perform the classification into 𝐾 fold classes. The ResCNN-GRU model is identical but using
a unidirectional GRU layer instead.

vector representing the whole protein domain. We refer to this model as ResCNN-GRU. An
alternative architecture is that based on a bidirectional GRU [64] which also processes the
sequence in reverse order. In such a case, last states from both forward (−→𝐡𝐿) and backward
(←−𝐡𝐿) GRU layers are concatenated into a vector of 2048 elements. We denote this model as
ResCNN-BGRU.

5.2 Materials and methods

5

99

Fully-connected part

Finally, the fully-connected (FC) part combines the recurrent output to create a fold-related
embedding for the whole protein domain, which is then used to perform a preliminary fold
classification. The classification step guides the model during training to learn a meaningful
embedding space, which is related to the protein folds. Then, these learned embeddings
are used for pairwise fold recognition in the test phase.

In particular, the FC part (Figure 5.2c) consists of two dense layers. The first one, with
512 units, is used to learn a nonlinear combination of the GRU output vector (1024 or
2048 for the unidirectional and bidirectional architectures, respectively) which shapes the
fold-related embedding. As nonlinearity, both the sigmoid and the hyperbolic tangent
(tanh) activation functions have been tested in our experiments. The last layer performs
a linear classification of the 512-dimensional embeddings using 𝐾 output units. Here, 𝐾
is the number of fold classes in which the input proteins are classified during training.
In the following subsections we detail how this last classification layer can be modified
to learn more discriminative embedding vectors by distributing the fold class vectors in
hyperspherical space.

5.2.4 Neural network model optimization

We trained our neural network models with mini-batches of 64 protein domains. To process
variable-length sequences, we applied zero-padding to the maximum length within each
mini-batch. After the GRU layer, we kept the last state vector of each domain sample before
the zero-padding, which corresponds to the last amino acid residue of each domain in the
mini-batch. In the bidirectional GRU, the same GRU layers are used but the amino acid
sequences were first reversed for the backward layer, so the last state (before zero-padding)
corresponds to the first residue of each domain. The optimization process was performed
in two different stages by comparing the model predictions with the true fold classes
(ground truth). In the first one (Figure 5.1a), we optimized the models by minimizing the
well-known softmax cross-entropy loss, while in the second stage (Figure 5.1c) we used the
large margin cosine loss (LMCL) [56], which is a normalized and margin discriminative
version of the softmax loss. In this case, we also used a fixed (i.e. non-trainable) weight
matrix in the classification layer (𝐖 in Figure 5.2c) which maximally separates fold class
vectors in hyperspherical space (Figure 5.1b). We used the Adam optimizer [65] with
an initial learning rate of 10−3, which we reduced by a factor of 10 at epoch number 40,
whereas the whole optimization process was completed in 80 epochs. In order to prevent
overfitting to the most populated fold classes, we applied 𝐿2 penalty with a small weight
decay of 5 ⋅10−4 and dropout [66] with a drop probability of 0.2 in the convolutional and
the first FC layers.

5

100 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

5.2.5 Large margin cosine loss

The softmax cross-entropy loss (softmax loss for simplicity) is one of the most common
loss functions for multi-class classification problems. It is defined as:

𝐿𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 = −
1
𝑁

𝑁
∑
𝑖=1

log𝑝𝑖 = −
1
𝑁

𝑁
∑
𝑖=1

log
𝑒𝑓𝑦𝑖

∑𝐾
𝑘=1 𝑒𝑓𝑘

, (5.1)

where 𝑝𝑖 is the posterior probability of the 𝐱𝑖 embedding sample being classified into its
ground-truth class 𝑦𝑖, 𝑁 is the number of training samples in the mini-batch (𝑖 = 1,… ,𝑁),
𝐾 is the number of classes (𝑘 = 1,… ,𝐾), and 𝑓𝑘 is the output of the last linear classification
layer with weight matrix𝐖 ∈ ℝ𝐾×𝑑 (the bias is set to zero for simplicity). For each input 𝐱𝑖,
the output corresponding to class 𝑘 is computed as:

𝑓𝑘 =𝐰𝑇
𝑘𝐱𝑖 = ‖𝐰𝑘‖ ‖𝐱𝑖‖cos(𝜃𝑘,𝑖), (5.2)

with 𝜃𝑘,𝑖 being the angle between the vectors𝐰𝑘 and 𝐱𝑖. If we enforce that ‖𝐰𝑘‖ = 1 through
𝐿2 normalization, and ‖𝐱𝑖‖ = 𝑠 by using a tunable scale hyperparameter, the posterior
probability only depends on the cosine of the angle 𝜃𝑘,𝑖. This results in the normalized
softmax loss (NSL), defined as:

𝐿𝑛𝑠 = −
1
𝑁

𝑁
∑
𝑖=1

log
𝑒𝑠 cos(𝜃𝑦𝑖,𝑖)

∑𝐾
𝑘=1 𝑒𝑠 cos(𝜃𝑘,𝑖)

. (5.3)

The feature embeddings learned by NSL are angularly distributed, but they are not
necessarily more discriminative than the ones learned by softmax loss. In order to control
the classification boundaries, two variants of the NSL, the angular softmax (A-Softmax)
loss [55] and the large margin cosine loss (LMCL) [56], introduce a margin hyperparameter
(𝑚 ≥ 0). The decision margin in LMCL is defined in cosine space rather than in angle space,
which proved to be more beneficial when learning the classification boundaries [56]. This
is therefore the loss function we adopted to optimize our neural network models, and is
formally defined as:

𝐿𝑙𝑚𝑐 = −
1
𝑁

𝑁
∑
𝑖=1

log
𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚)

𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚)+∑𝑘≠𝑦𝑖 𝑒
𝑠 cos(𝜃𝑘,𝑖)

, (5.4)

subject to cos(𝜃𝑘,𝑖) = �̂�𝑇
𝑘 �̂�𝑖, where �̂�𝑘 and �̂�𝑖 are the 𝐿2 normalized vectors (�̂�𝑘 =𝐰𝑘/ ‖𝐰𝑘‖

and �̂�𝑖 = 𝐱𝑖/ ‖𝐱𝑖‖).
As stated in the original paper [56], by 𝐿2-normalizing the embedding vectors 𝐱𝑖, we

enforce them to be distributed on the surface of a 𝑑-dimensional hypersphere. Thus, the
scaling hyperparameter 𝑠 controls the radius of such hypersphere and its value increases
with the number of classes. The margin hyperparameter 𝑚 relates to the capacity of

5.2 Materials and methods

5

101

learning more discriminative embeddings. Possible values are in the range 𝑚 ∈ [0, 𝐾
𝐾−1),

although high values close to the upper-bound could cause failures in convergence. Having
this in mind, we tuned the scale 𝑠 and margin 𝑚 hyperparameters for each neural network
model through cross-validation.

5.2.6 Thomson-derived hyperspherical prototypes

We hypothesize that by providing a non-trainable matrix 𝐖 ∈ ℝ𝐾×𝑑 to the classification
layer we can ease the training process. Such matrix contains 𝐾 pre-defined prototype
vectors representing each fold class, 𝐖 = {𝐰1,… ,𝐰𝐾 }. Thus, we can shape the embedding
space to be representative of the protein folds, and so extract more meaningful fold-related
embeddings for each protein during the training stage (Figure 5.1c). The use of such
prototype networks was first proposed in [58].

Optimal distribution of prototypes

We argue that the optimal configuration of the 𝐾 prototype vectors is that which provides
maximal separation in the angular space. This can be achieved by placing the 𝐾 points
equidistant on the surface of a 𝑑-dimensional hypersphere, so 𝐰𝑘 ∈ 𝕊𝑑−1, as shown in
Figure 5.1b. The Thomson problem [57] addresses this by studying the distribution of 𝐾
charged particles on the surface of a unit 3D-sphere. The minimum energy configuration
can be optimized by measuring the Coulomb’s law. When using simplified units for electron
charges and Coulomb’s constant, the formula for a pair of electrons reduces to 𝐸𝑖𝑗 = 1/𝑟𝑖𝑗 ,
relying only on the distance (𝑟𝑖𝑗) between the two points.

This can be extended to points located on the surface of a hypersphere of 𝑑 dimensions
and computed for all possible pairs of points [67]. We could therefore optimize the distri-
bution of our 𝐰𝑘 prototype vectors by minimizing the generalized Thomson loss (THL),
defined as:

𝐿𝑡ℎ =
𝐾
∑
𝑘=1

𝑘−1
∑
𝑗=1

1
‖‖𝐰𝑘 −𝐰𝑗 ‖‖

2
2

+
𝜆
2

𝐾
∑
𝑘=1

(‖𝐰𝑘‖2−1)2. (5.5)

The hyperparameter 𝜆 controls the weight of the norm constraint. Note that the
Thomson loss uses the Euclidean distance between points, which is affected by the norm of
each vector, while the cosine similarity is more adequate to measure the angular separation
(independent of the norm). In order to remove the norm constraint from the loss function,
we propose to directly maximize the Euclidean distance of the projected (𝐿2-normalized)
vectors. Thus, we can remove the hyperparameter 𝜆 from equation (5.5), obtaining the
following Thomson loss (THL–sum):

5

102 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

𝐿𝑡ℎ_𝑠𝑢𝑚 =
𝐾
∑
𝑘=1

𝑘−1
∑
𝑗=1

‖‖‖‖‖

𝐰𝑘
‖𝐰𝑘‖

−
𝐰𝑗
‖‖𝐰𝑗 ‖‖

‖‖‖‖‖

−2

2

. (5.6)

Alternatively, we can instead minimize the maximum cosine similarity computed for
each prototype vector [58], using the following loss function (THL–maxcos):

𝐿𝑡ℎ_𝑚𝑎𝑥𝑐𝑜𝑠 =
1
𝐾

𝐾
∑
𝑘=1

max
𝑗≠𝑘 (

𝐰𝑘 ⋅𝐰𝑗

‖𝐰𝑘‖ ‖‖𝐰𝑗 ‖‖)
. (5.7)

Maximally separated prototype vectors are obtained by means of gradient descent over
the proposed loss function (either THL–sum or THL–maxcos), where it must be noted that
all possible pairs of points are taken to perform a single iteration step.

Initial prototype vectors

As initial matrix of prototypes we can consider a set of 𝐾 Gaussian random variables
of dimension 𝑑,𝐖𝑟𝑎𝑛𝑑𝑜𝑚. However, we found that the learned classification matrix from
a model previously trained with the softmax cross-entropy loss (Figure 5.1a), 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 ,
provides better results. Unlike𝐖𝑟𝑎𝑛𝑑𝑜𝑚, the matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 has been trained to classify
protein domains into folds, somehow preserving the arrangement of the structural classes
within the learned space. To show this, we measured the intra- and inter-structural class
prototype separation, as well as the angular Fisher score (AFS) [55]. Further details can be
found in Supplementary Material 5.S.2.

5.2.7 Pairwise similarity scores

Cosine similarity measures

The FoldHSphere method (Figure 5.1d) uses the hyperspherical embeddings extracted from
our neural network model to compute a fold similarity measure between each pair of
protein domains. Following previous works [43, 48], we used the cosine similarity between
two embedding vectors [𝐱𝑖,𝐱𝑗] ∈ ℝ𝑑 as metric, computed as:

cos(𝐱𝑖,𝐱𝑗) =
𝐱𝑖 ⋅𝐱𝑗
‖𝐱𝑖‖ ‖‖𝐱𝑗 ‖‖

, (5.8)

which is a measure of angular separation (in the range [−1,1]) and independent of the
norm of each embedding vector.

Random forest enhanced scores

To obtain an improved fold similarity score (FoldHSpherePro in Figure 5.1d), we trained
a random forest (RF) model using our cosine similarity score along with the 84 pairwise
similarity measures from [33, 34] and the DeepFR cosine similarity [43]. Thus, each input

5.2 Materials and methods

5

103

vector is of size 86 and corresponds to a pair of protein domains. The RF model uses
this information to determine whether the domains in such a pair share the same fold
class (binary classification). We trained and evaluated the RF models in a 10-stage cross-
validation setting for the LINDAHL and LINDAHL_1.75 test sets independently. The
random forest models used 500 decision trees each as in [43, 48].

5.2.8 Evaluation

Three-level rank performance accuracy

As originally proposed in [3], we evaluated the test protein domains at three levels of
increasing difficulty—family, superfamily and fold. At each level, we differentiated between
positive and negative pairs of domains. A negative pair contains two protein domains from
different fold classes, while in a positive pair both domains are from the same fold class.
Each level includes all the negative pairs, while positive pairs are selected according to
the SCOP hierarchy [7]. That is, the family level contains pairs of domains that share the
same family class, and therefore the same superfamily and fold classes. At the superfamily
level, the domains in each pair share the same superfamily class—and therefore the same
fold—but not the same family. Finally, domains in positive pairs at the fold level only share
the same fold class, but neither share the same family nor superfamily.

At each of these levels, for every individual protein domain (query) we ranked the rest
of domains (templates) according to their similarity scores. These can be either cosine
similarities or random forest output scores. Then, we assigned the fold class of the most
similar template to the query and computed the ratio of hits—top 1 accuracy. We also
obtained the ratio of finding the correct fold class within the 5 first-ranked templates—top
5 accuracy. It must be noted that, instead of using the training set as the search database, in
this evaluation we aim to find template domains inside the test set itself (either LINDAHL
or LINDAHL_1.75).

In order to measure the statistical significance of our top 1 and top 5 accuracy results, we
also provide standard errors estimated as the standard deviation of 1000 bootstrap samples.
To do so, we sampled with replacement from the set of individual protein domains that are
tested at each level (555, 434 and 321 domains respectively in the LINDAHL dataset). Then,
for each sampled set we selected all negative pairs and positive pairs corresponding to the
specific level, and proceeded with the evaluation as before.

Fold-level LINDAHL cross-validation evaluation

In order to compare with some recent methods [35–41, 44–46] we also provide results
on a fold-level 2-stage cross-validation setting on the LINDAHL test set [22]. Here, the
321 protein domains which form positive pairs at the fold level are separated into two
subsets LE_a and LE_b, with 159 and 162 domains each. Note that the rest of domains

5

104 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

within LINDAHL (up to 976) are not considered during this evaluation. When evaluating
the protein domains in each subset (e.g. LE_a), the domains in the other subset (LE_b)
act as templates for ranking. Thus, the random forest models are trained using pairs of
protein domains from one subset, whereas the evaluation is performed on the other one. In
this evaluation, we report the averaged performance accuracy over both cross-validation
subsets.

5.3 Results

5.3.1 Learning fold-related embeddings with LMCL

We first assessed the performance of the different neural network models trained either
with the softmax loss (5.1) or the LMCL (5.4) (see Figure 5.1a), by cross-validation over
the SCOPe 2.06 training set. For the softmax loss, we used the sigmoid activation in the
embedding layer (first FC layer in Figure 5.2c), so that we can compare with the CNN-GRU
and CNN-BGRU models from [48]. Then, for each model trained with the LMCL function,
we tuned the scale and margin hyperparameters through cross-validation. We considered
two values for the scale 𝑠 = {30,50} and margins in the range 𝑚 = [0.1,0.9]. Here we tested
two activation functions at the embedding layer: sigmoid as well as hyperbolic tangent
(tanh). We argue that having negative and positive values ranging from −1 to 1 in the
embedding vector (tanh activation) would better exploit the hyperspherical space than
having only positive values (sigmoid activation, range [0,1]).

The cross-validation fold classification accuracy on the training set for the different
models and loss functions is shown in Figure 5.3. When using softmax loss, we can observe
that themodels applying residual convolutions (ResCNN-GRU and ResCNN-BGRU) perform
better at fold classification than their counterparts (CNN-GRU and CNN-BGRU). We also
observe that the tanh activation function yields better results than the sigmoid activation
for all tested margin values in the LMCL function. In this case, the scale value 𝑠 = 30
outperforms 𝑠 = 50 for both activation functions. As for the margin, larger values seem
to further benefit models applying bidirectional GRU (CNN-BGRU and ResCNN-BGRU),
suggesting that these models have a higher discriminative capacity. The optimal LMCL
hyperparameters for each model are summarized in Table 5.1a.

In Table 5.2 we provide the fold recognition accuracy results on the LINDAHL test set
(at the family, superfamily and fold levels), when using the cosine similarity (5.8) as ranking
metric. Here, we used the optimal LMCL hyperparameters to train each model on the
whole training set, from which we extracted the fold-related embeddings. Table 5.2a shows
that the learned embeddings from the ResCNN-GRU and ResCNN-BGRU models using
softmax loss yield slightly better fold recognition performance at the three levels than the
CNN-GRU and CNN-BGRU models. On the other hand, in Table 5.2b we observe a large

5.3 Results

5

105

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

68

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

CNN-GRU model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

CNN-BGRU model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

68

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

ResCNN-GRU model

Softmax Loss (sigmoid)

LMCL (sigmoid, s = 30)
LMCL (sigmoid, s = 50)

LMCL (tanh, s = 30)
LMCL (tanh, s = 50)

Thomson LMCL (tanh, s = 30)
Thomson LMCL (tanh, s = 50)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

ResCNN-BGRU model

Figure 5.3: Cross-validation fold classification accuracy (%) results for different LMCL margins and scales
𝑠 = {30,50}, using the SCOPe 2.06 training set. The results are provided separately for each neural network model:
CNN-GRU, CNN-BGRU, ResCNN-GRU and ResCNN-BGRU, trained using different combinations of activation
function (in the embedding layer) and loss function. These are: softmax loss with sigmoid activation (dash-dotted
horizontal line), LMCL with sigmoid activation (blue lines), LMCL with tanh activation (magenta lines) and
Thomson LMCL with tanh activation (green lines). For the LMCL and Thomson LMCL results, solid lines and
dashed lines correspond to scale values 30 and 50, respectively.

Table 5.1: Optimal set of hyperparameters for the LMCL function.

Model

(a) LMCL (b) Thomson LMCL

scale margin iter THL–sum scale margin

CNN-GRU 30 0.25 1130 30 0.25
CNN-BGRU 30 0.55 1172 30 0.45
ResCNN-GRU 30 0.50 1181 30 0.55
ResCNN-BGRU 30 0.60 1020 30 0.60

The scale and margin hyperparameters are provided for each neural network model and two approaches:
(a) training the last classification layer end-to-end, (b) using the fixed prototype matrix by minimizing the
Thomson loss THL–sum. We also include here the optimal iteration from the Thomson algorithm.

5

106 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

Table 5.2: Effect of model architecture and loss function choice on FoldHSphere performance using the LINDAHL
dataset.

Model

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

(a) Softmax Loss

CNN-GRU [48] 68.6 (1.94) 89.2 (1.37) 56.2 (2.34) 77.4 (1.96) 56.7 (2.82) 74.1 (2.46)
CNN-BGRU [48] 71.0 (1.92) 87.7 (1.42) 60.1 (2.30) 77.2 (2.02) 58.3 (2.83) 78.8 (2.27)
ResCNN-GRU 72.6 (1.87) 90.3 (1.24) 59.4 (2.32) 77.0 (2.00) 58.9 (2.88) 75.1 (2.44)
ResCNN-BGRU 76.8 (1.78) 91.2 (1.23) 65.0 (2.29) 82.0 (1.84) 59.5 (2.79) 76.6 (2.35)

(b) LMCL

CNN-GRU 76.6 (1.80) 90.8 (1.25) 64.7 (2.21) 80.2 (1.90) 65.7 (2.69) 79.8 (2.22)
CNN-BGRU 76.2 (1.79) 89.4 (1.31) 70.5 (2.12) 83.2 (1.80) 72.0 (2.48) 81.0 (2.21)
ResCNN-GRU 75.7 (1.77) 89.7 (1.25) 66.4 (2.29) 81.1 (1.86) 67.6 (2.63) 80.1 (2.23)
ResCNN-BGRU 75.1 (1.84) 89.5 (1.30) 69.8 (2.25) 85.3 (1.67) 74.1 (2.42) 82.2 (2.12)

(c) Thomson LMCL

CNN-GRU 80.0 (1.73) 90.6 (1.24) 66.8 (2.23) 80.2 (1.94) 66.0 (2.62) 80.1 (2.22)
CNN-BGRU 77.5 (1.75) 91.7 (1.19) 69.8 (2.09) 85.3 (1.64) 72.6 (2.48) 82.2 (2.14)
ResCNN-GRU 76.9 (1.78) 89.5 (1.28) 69.1 (2.20) 82.9 (1.77) 69.5 (2.57) 79.4 (2.26)
ResCNN-BGRU 76.4 (1.77) 89.2 (1.30) 72.8 (2.15) 86.4 (1.63) 75.1 (2.47) 84.1 (2.12)

The fold recognition accuracy (%) results are provided at the family, superfamily and fold levels, considering
both the top 1 and top 5 ranked templates. We compare the CNN-GRU, CNN-BGRU, ResCNN-GRU and
ResCNN-BGRU neural network models, trained with different loss functions: (a) Softmax loss with sigmoid
activation, (b) LMCL with tanh activation, and (c) Thomson LMCL with tanh activation. Optimal LMCL
hyperparameters are in Table 5.1. For each accuracy result, we also provide in parentheses the standard error
estimated using 1000 bootstraps.

performance boost at all levels when introducing the LMCL as loss function in comparison
with softmax loss. At the fold level, we achieve performance gains of 9 or more percentage
points for most of the models. More precisely, the CNN-BGRU and ResCNN-BGRU models
stand out for their remarkable results at the fold level, with 72.0% and 74.1% top 1 accuracy
values respectively.

5.3.2 Enhancing embedding discrimination power through

Thomson-derived hyperspherical prototypes

We then tested the performance of our neural network models trained with a fixed matrix
of prototypes𝐖 ∈ ℝ𝐾×𝑑 in the classification layer (Figure 5.1c), being the number of fold
classes 𝐾 = 1154 and embedding dimension 𝑑 = 512. The fold prototype vectors have been
maximally separated in the angular space by minimizing the THL–sum (5.6), using the
𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 from each model as initial matrix (Figure 5.1b). A detailed study comparing the
performance of the two variants for the Thomson loss (THL–sum and THL–maxcos) and
two options for the initial matrix (𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and𝐖𝑟𝑎𝑛𝑑𝑜𝑚) can be found in Supplementary
Material 5.S.2.

5.3 Results

5

107

Given the optimized matrix of prototypes for each model, we tuned the LMCL scale and
margin values by cross-validation over the SCOPe 2.06 training set, considering the tanh
activation in the embedding layer. Results from this tuning are also shown in Figure 5.3. As
can be observed, the Thomson LMCL achieves better fold classification results, specially for
the models applying residual convolutions, and particularly in the case of ResCNN-BGRU.

Finally, we set the optimal LMCL hyperparameters for each model (Table 5.1b) and
trained them to extract fold-related hyperspherical embeddings. The fold recognition
LINDAHL results in Table 5.2c show that, at the fold level, all the models benefit from the
Thomson LMCL. Our best model, the ResCNN-BGRU, achieves top 1 accuracy values of
76.4%, 72.8% and 75.1% at the family, superfamily and fold levels, and top 5 accuracy of
89.2%, 86.4% and 84.1% at each level, respectively.

5.3.3 Analysis of the hyperspherical embeddings

The fold recognition results of our FoldHSphere method using the ResCNN-BGRU model
trained with hyperspherical prototypes reflect the effectiveness and discrimination capa-
bility of the learned hyperspherical embeddings. To further illustrate this, we analyzed
the 512-dimensional embeddings extracted from the 976 protein domains in the LINDAHL
dataset. Figure 5.4 compares the histogram of cosine similarities computed between each
pair of embeddings for the softmax, LMCL and Thomson LMCL options. For each one,
we plotted separately the histogram of negative pairs (different fold classes) and positive
pairs (same fold class). It can be seen that the Thomson LMCL provides a better separation
between positive and negative pairs, with a small overlap between the two groups. This
directly contributes to a better performance in the pairwise fold recognition task. Addi-
tionally, we provide a two-dimensional visualization of the embedding space learned by
the three loss functions in Supplementary Figure 5.S6, as well as a dendroheatmap of the
hyperspherical embeddings obtained by the Thomson LMCL approach in Supplementary
Figure 5.S7.

5.3.4 FoldHSphere and FoldHSpherePro pairwise fold recog-

nition performance results

Finally, we compare the results of our FoldHSphere and FoldHSpherePro approaches
with several methods from the state-of-the-art, considering both the LINDAHL and LIN-
DAHL_1.75 test sets. The FoldHSphere results correspond to those from the ResCNN-BGRU
model trained with hyperspherical prototypes (Table 5.2). The FoldHSpherePro results
were obtained after conducting a 10-stage cross-validation on a random forest model using
the FoldHSphere scores along with other pre-computed protein pairwise similarities as
inputs.

5

108 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Scores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

(a) Softmax Loss (sigmoid)
negatives positives

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Scores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

(b) LMCL (tanh)
negatives positives

0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity Scores

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ob

ab
ilit

y

(c) Thomson LMCL (tanh)
negatives positives

Figure 5.4: Cosine similarity probability histograms computed for all unique pairs within the LINDAHL test set
(976 domains), grouping the negative pairs in blue color, and positive pairs in orange. To compute the cosine
similarity scores, we used the embeddings extracted from the ResCNN-BGRU model trained with (a) softmax loss
with sigmoid activation, (b) LMCL with tanh activation, or (c) Thomson LMCL with tanh activation.

5.3 Results

5

109

The three-level LINDAHL fold recognition results are shown in Table 5.3. We can see
that our FoldHSphere method yields better top 1 accuracy values, above 12 percentage
points at the superfamily and fold levels compared to the state-of-the-art method CNN-
BGRU [48]. At the family level, we outperform all the deep learning methods. However, the
alignment methods and approaches relying on pairwise similarities provide better results
at this level. We include such information in the FoldHSpherePro method, which can
be compared to DeepFRpro [43] and CNN-BGRU-RF+ [48] as all of them apply the same
random forest ensemble approach. Our method provides a significant performance boost,
obtaining remarkable top 1 accuracy results, with values of 79.0% at the superfamily level
and 81.3% at the fold level. In terms of top 5 accuracy values, FoldHSpherePro also achieves
the best performance, providing 89.2% and 90.3% at superfamily and fold levels respectively.
On the other hand, at the family level we obtain on par results with the CNN-BGRU-RF+
method, being only outperformed by alignment and threading methods. This suggests that
the performance of deep learning approaches might be saturating at this level. Similar
conclusions can be drawn when evaluating the LINDAHL_1.75 test set (Table 5.4). Here we
only compare to the DeepFR and CNN-BGRU methods, as they have been previously tested
on such a dataset. The results show that our FoldHSpherePro approach also performs the

Table 5.3: Three-level LINDAHL fold recognition results of FoldHSphere and FoldHSpherePro in comparison
with the state-of-the-art.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST [3] 71.2 72.3 27.4 27.9 4.0 4.7
HHpred [14] 82.9 87.1 58.0 70.0 25.2 39.4
RAPTOR [14] 86.6 89.3 56.3 69.0 38.2 58.7
BoostThreader [14] 86.5 90.5 66.1 76.4 42.6 57.4
SPARKS-X [15] 84.1 90.3 59.0 76.3 45.2 67.0
FOLDpro [34] 85.0 89.9 55.0 70.0 26.5 48.3
RF-Fold [34] 84.5 91.5 63.4 79.3 40.8 58.3
DN-Fold [34] 84.5 91.2 61.5 76.5 33.6 60.7
RFDN-Fold [34] 84.7 91.5 65.7 78.8 37.7 61.7
MRFalign [43] 85.2 90.8 72.4 80.9 38.6 56.7
CEthreader [48] 76.6 87.2 69.4 81.8 52.3 70.4
DeepFR (s2) [43] 65.4 83.4 51.4 67.1 56.1 70.1
DeepFRpro (s2) [43] 83.1 92.3 69.6 82.5 66.0 78.8
VGGfold [47] 67.9 84.3 53.2 68.4 58.3 73.5
CNN-BGRU [48] 71.0 87.7 60.1 77.2 58.3 78.8
CNN-BGRU-RF+ [48] 85.4 93.5 73.3 87.8 76.3 85.7

FoldHSphere 76.4 89.2 72.8 86.4 75.1 84.1
FoldHSpherePro 85.2 93.0 79.0 89.2 81.3 90.3

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1
and top 5 ranked templates.

5

110 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

Table 5.4: Three-level LINDAHL_1.75 fold recognition results of FoldHSphere and FoldHSpherePro in comparison
with the state-of-the-art.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s2) [48] 72.2 85.6 46.6 64.3 50.8 67.1
DeepFRpro (s2) [48] 87.0 93.8 71.9 82.6 63.5 77.2
CNN-BGRU [48] 73.1 88.3 60.1 74.9 60.1 78.7
CNN-BGRU-RF+ [48] 88.5 94.3 74.0 86.3 71.1 86.8

FoldHSphere 77.9 89.0 72.4 87.0 75.8 84.3
FoldHSpherePro 87.9 94.1 81.2 90.0 80.9 88.5

The accuracy (%) results are provided at the family, superfamily and fold levels, considering both the top 1
and top 5 ranked templates.

best in this dataset, yielding top 1 accuracy values of 87.9%, 81.2% and 80.9% at the three
levels respectively.

Figure 5.5 includes the evaluation results of the fold-level 2-stage cross-validation setting
on the LINDAHL dataset (over subsets LE_a and LE_b). In this case, we only compare to
ensemble methods that have been assessed with such a methodology, namely TA-fold [35],
the multi-view learning frameworks MT-fold [36], EMfold [37] and MLDH-Fold [38], the
learning to rank approaches Fold-LTR-TCP [39], FoldRec-C2C [40] and ProtFold-DFG [41],
and the deep learning methods DeepSVM-fold [44], MotifCNN-fold [45] and SelfAT-Fold
[46] (residue and motif options). The results in Figure 5.5 show that our FoldHSpherePro
method outperforms all of them yielding an accuracy of 85.6%.

5.4 Discussion

In order to learn an embedding space that is representative of the protein folds, we have
proposed a two-stage learning procedure. Our intuition here is that pre-defining the
structure of the embedding space through fixed fold prototypes would ease the learning
process for a neural network that embeds individual proteins into this space. The result of
our experiments indicate that this intuition is well founded.

There are two important considerations when pre-defining the embedding space in our
methodology: the initialization of the fold prototypes and how to obtain a suitable spatial
distribution of these prototypes in the embedding space. Here we find that rather than
initializing with random vectors in the hyperspherical space, better results are obtained by
using the weight matrix from the classification layer of a neural network previously trained
to map proteins to fold classes. Then, by maximally separating the weight vectors in this
matrix in hyperspherical space, we obtain an effective configuration of the fold prototypes.
We believe one of the main reasons is that such a matrix preserves the arrangement of the

5.4 Discussion

5

111

TA-fold
MT-fold

EMfold
MLDH-Fold

Fold-LTR-TCP

FoldRec-C2C

ProtFold-DFG

DeepSVM-fold

MotifCNN-fold

SelfAT-Fold (res)

SelfAT-Fold (mot)

FoldHSpherePro
45

50

55

60

65

70

75

80

85

90
Pa

irw
ise

 F
ol

d
Ac

cu
ra

cy
 (%

)

53.9 54.1

73.9 74.8 73.2

77.9
81.9

67.3

72.6
75.7

78.2

85.6

Figure 5.5: Fold-level LINDAHL fold recognition accuracy (%) results of our proposed FoldHSpherePro method
in comparison with other ensemble methods from the state-of-the-art. The results are averaged over the two
cross-validated subsets (LE_a and LE_b).

structural classes in the learned space, grouping related fold classes together and pushing
them away from folds of unrelated structural classes (see Supplementary Material 5.S.1).

Our experimental results in Table 5.2 display a large performance boost at the su-
perfamily and fold levels when comparing our methodology (using LMCL) to previous
approaches that use the softmax loss. Our initial intuition for the lower performance of
the state-of-the-art at these levels is that since evaluation is done for pairs of proteins, it is
possible that two proteins from different folds lying near the fold classification boundary
are closer to each other than they are to proteins from their respective folds. This informs
our choice for using the LMCL as loss function, which introduces a margin between fold
classes to avoid these cases.

A further performance gain is seen when combining the LMCL margin with the pre-
trained fold prototypes (Table 5.2c). Here we use the fold prototypes optimized in the
previous stage as a fixed (non-trainable) classification matrix for each neural network. We
believe that the additional performance improvement is due to the simplified learning
process that results from having this pre-defined organization of the folds in the embedding
space, which is especially useful with limited and unbalanced training data. Stated differ-
ently, our models can focus on projecting protein embeddings closest to the corresponding
fold prototypes without simultaneously learning where these prototypes should be.

We also observe from Figure 5.3 and Table 5.2 that the models applying residual convo-

5

112 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

lutions benefit more from the use of pre-trained prototypes compared to only optimizing
with LMCL. This suggests the residual connections might extract more robust features
for each amino acid, which seems to be helpful for the recurrent layer to obtain a better
fixed-size representation for the whole protein domain. In particular, our ResCNN-BGRU
architecture provides the best results, which can be attributed to its greater flexibility
compared to the other tested architectures.

5.5 Conclusion

In this work we have proposed the FoldHSphere method to tackle the protein fold recogni-
tion problem. We described a neural network training procedure to learn fold-representative
hyperspherical embeddings for the protein domains. The embeddings were extracted from
a residual-convolutional and recurrent network architecture (ResCNN-BGRU), which is
trained by minimizing the angular large margin cosine loss (LMCL) around pre-defined pro-
totypes for the fold classes. We used a Thomson-based loss function to maximally separate
the fold prototypes in hyperspherical space. This way, our embeddings proved to be more
effective at identifying the fold class of each protein domain by pairwise comparison. When
evaluating the LINDAHL dataset, FoldHSphere alone provided a remarkable performance
boost at the superfamily and fold levels, being competitive even with previous ensemble
methods. Furthermore, our FoldHSpherePro ensemble method significantly improved the
state-of-the-art results, outperforming the best method CNN-BGRU-RF+ at these levels.
Therefore, due to their discrimination capability, the hyperspherical embeddings could be
used to find template proteins even when the amino acid sequence similarities are low and
thus advance in the template-based modeling of protein structures.

As future work, we will explore the application of recently proposed embeddings from
language models pre-trained using millions of unannotated protein sequences for the
protein fold recognition task, as they have shown promising results in several downstream
tasks, such as protein secondary structure prediction and subcellular localization prediction
[68–70].

Data and code availability

Source code, data and trained models can be found at
http://sigmat.ugr.es/~amelia/FoldHSphere/.

Funding

This work has been supported by the Spanish Ministry of Science, Innovation and
Universities Project No. PID2019-104206GB-I00 / SRA (State Research Agency) /
10.13039/501100011033, as well as the FPI grant BES-2017-079792.

References

5

113

Acknowledgements

Amelia would like to thank Chirag Raman for his valuable input and feedback provided
throughout the project.

References

[1] C. Chothia and A. V. Finkelstein. The classification and origins of protein folding patterns.
Annual Review of Biochemistry, 59(1):1007–1035, 1990.

[2] D. T. Jones, W. R. Taylor, and J. M. Thornton. A new approach to protein fold recognition.
Nature, 358(6381):86, 1992.

[3] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily and fold
level. Journal of Molecular Biology, 295(3):613–625, 2000.

[4] R. D. Schaeffer and V. Daggett. Protein folds and protein folding. Protein Engineering, Design &
Selection, 24(1-2):11–19, 2010.

[5] R. Kolodny, L. Pereyaslavets, A. O. Samson, and M. Levitt. On the universe of protein folds.
Annual Review of Biophysics, 42:559–582, 2013.

[6] H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

[7] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification of
proteins database for the investigation of sequences and structures. journal of Molecular Biology,
247(4):536–540, 1995.

[8] N. K. Fox, S. E. Brenner, and J.-M. Chandonia. SCOPe: Structural classification of proteins–
extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic
Acids Research, 42(D1):D304–D309, 2014.

[9] C. A. Orengo, A. D. Michie, S. Jones, et al. CATH — a hierarchic classification of protein domain
structures. Structure, 5(8):1093–1109, 1997.

[10] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[11] J. Söding. Protein homology detection by HMM–HMM comparison. Bioinformatics, 21(7):951–
960, 2005.

[12] J. Ma, S. Wang, Z. Wang, and J. Xu. MRFalign: Protein homology detection through alignment
of Markov random fields. PLoS Computational Biology, 10(3):e1003500, 2014.

[13] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein threading by linear programming.
Journal of Bioinformatics and Computational Biology, 1(1):95–117, 2003.

[14] J. Peng and J. Xu. Boosting protein threading accuracy. In Annual International Conference on
Research in Computational Molecular Biology, pages 31–45, 2009.

5

114 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

[15] Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou. Improving protein fold recognition and template-
based modeling by employing probabilistic-based matching between predicted one-dimensional
structural properties of query and corresponding native properties of templates. Bioinformatics,
27(15):2076–2082, 2011.

[16] J. Ma, J. Peng, S. Wang, and J. Xu. A conditional neural fields model for protein threading.
Bioinformatics, 28(12):i59–i66, 2012.

[17] J. A. Morales-Cordovilla, V. Sanchez, and M. Ratajczak. Protein alignment based on higher
order conditional random fields for template-based modeling. PLoS ONE, 13(6):e0197912, 2018.

[18] D. W. A. Buchan and D. T. Jones. EigenTHREADER: analogous protein fold recognition by
efficient contact map threading. Bioinformatics, 33(17):2684–2690, 2017.

[19] W. Zheng, Q. Wuyun, Y. Li, et al. Detecting distant-homology protein structures by aligning
deep neural-network based contact maps. PLoS Computational Biology, 15(10):1–27, 2019.

[20] L. Wei and Q. Zou. Recent progress in machine learning-based methods for protein fold
recognition. International journal of Molecular Sciences, 17(12):2118, 2016.

[21] H.-B. Shen and K.-C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinfor-
matics, 22(14):1717–1722, 2006.

[22] Q. Dong, S. Zhou, and J. Guan. A new taxonomy-based protein fold recognition approach based
on autocross-covariance transformation. Bioinformatics, 25(20):2655–2662, 2009.

[23] J.-Y. Yang and X. Chen. Improving taxonomy-based protein fold recognition by using global
and local features. Proteins: Structure, Function, and Bioinformatics, 79(7):2053–2064, 2011.

[24] A. Dehzangi, K. K. Paliwal, J. Lyons, A. Sharma, and A. Sattar. A segmentation-based method to
extract structural and evolutionary features for protein fold recognition. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 11(3):510–519, 2014.

[25] K. K. Paliwal, A. Sharma, J. Lyons, and A. Dehzangi. Improving protein fold recognition using
the amalgamation of evolutionary-based and structural based information. BMC Bioinformatics,
15(16):1–9, 2014.

[26] J. Lyons, A. Dehzangi, R. Heffernan, et al. Advancing the accuracy of protein fold recognition by
utilizing profiles from hidden Markov models. IEEE Transactions on Nanobioscience, 14(7):761–
772, 2015.

[27] D. Chen, X. Tian, B. Zhou, and J. Gao. ProFold: Protein fold classification with additional
structural features and a novel ensemble classifier. BioMed Research International, 2016:1–10,
2016.

[28] W. Ibrahim and M. S. Abadeh. Protein fold recognition using deep kernelized extreme learning
machine and linear discriminant analysis. Neural Computing and Applications, 31(8):4201–4214,
2019.

[29] S. Bankapur and N. Patil. An enhanced protein fold recognition for low similarity datasets
using convolutional and skip-gram features with deep neural network. IEEE Transactions on

References

5

115

NanoBioscience, 20(1):42–49, 2020.

[30] W. Elhefnawy, M. Li, J. Wang, and Y. Li. DeepFrag-k: a fragment-based deep learning approach
for protein fold recognition. BMC Bioinformatics, 21(6):1–12, 2020.

[31] K. Stapor, I. Roterman-Konieczna, and P. Fabian. Machine learning methods for the protein fold
recognition problem. In Machine Learning Paradigms, volume 149, pages 101–127. Springer,
2019.

[32] J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold
recognition. Bioinformatics, 22(12):1456–1463, 2006.

[33] T. Jo and J. Cheng. Improving protein fold recognition by random forest. BMC Bioinformatics,
15(11):S14, 2014.

[34] T. Jo, J. Hou, J. Eickholt, and J. Cheng. Improving protein fold recognition by deep learning
networks. Scientific Reports, 5:17573, 2015.

[35] J. Xia, Z. Peng, D. Qi, H. Mu, and J. Yang. An ensemble approach to protein fold classification by
integration of template-based assignment and support vector machine classifier. Bioinformatics,
33(6):863–870, 2016.

[36] K. Yan, X. Fang, Y. Xu, and B. Liu. Protein fold recognition based on multi-view modeling.
Bioinformatics, 35(17):2982–2990, 2019.

[37] K. Yan, J. W. an Yong Xu, and B. Liu. Protein fold recognition based on auto-weighted multi-
view graph embedding learning model. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2020.

[38] K. Yan, J. Wen, Y. Xu, and B. Liu. MLDH-Fold: Protein fold recognition based on multi-view
low-rank modeling. Neurocomputing, 421:127–139, 2021.

[39] B. Liu, Y. Zhu, and K. Yan. Fold-LTR-TCP: protein fold recognition based on triadic closure
principle. Briefings in Bioinformatics, 2019.

[40] J. Shao, K. Yan, and B. Liu. FoldRec-C2C: protein fold recognition by combining cluster-to-cluster
model and protein similarity network. Briefings in Bioinformatics, 2020.

[41] J. Shao and B. Liu. ProtFold-DFG: protein fold recognition by combining Directed Fusion Graph
and PageRank algorithm. Briefings in Bioinformatics, 2020.

[42] J. Hou, B. Adhikari, and J. Cheng. DeepSF: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[43] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[44] B. Liu, C.-C. Li, and K. Yan. DeepSVM-fold: protein fold recognition by combining support
vector machines and pairwise sequence similarity scores generated by deep learning networks.
Briefings in Bioinformatics, 2019.

[45] C.-C. Li and B. Liu. MotifCNN-fold: protein fold recognition based on fold-specific features

5

116 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

extracted by motif-based convolutional neural networks. Briefings in Bioinformatics, 21(6):2133–
2141, 2020.

[46] Y. Pang and B. Liu. SelfAT-Fold: protein fold recognition based on residue-based and motif-based
self-attention networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2020.

[47] Y. Liu, Y.-H. Zhu, X. Song, J. Song, and D.-J. Yu. Why can deep convolutional neural net-
works improve protein fold recognition? a visual explanation by interpretation. Briefings in
Bioinformatics, 2021.

[48] A. Villegas-Morcillo, A. M. Gomez, J. A. Morales-Cordovilla, and V. Sanchez. Protein fold
recognition from sequences using convolutional and recurrent neural networks. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 18(6):2848–2854, 2021.

[49] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[50] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[51] A. Vaswani, N. Shazeer, N. Parmar, et al. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30, pages 5998–6008, 2017.

[52] K. He, X. Zhang, S. Ren, and J. Su. Deep residual learning for image recognition. IEEE Conference
on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[53] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face
recognition. In European Conference on Computer Vision (ECCV), pages 499–515, 2016.

[54] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural
networks. In International Conference on Machine Learning, volume 2, page 7, 2016.

[55] W. Liu, Y. Wen, Z. Yu, et al. SphereFace: Deep hypersphere embedding for face recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
212–220, 2017.

[56] H. Wang, Y. Wang, Z. Zhou, et al. CosFace: Large margin cosine loss for deep face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
5265–5274, 2018.

[57] J. J. Thomson. XXIV. On the structure of the atom: an investigation of the stability and periods
of oscillation of a number of corpuscles arranged at equal intervals around the circumference of
a circle; with application of the results to the theory of atomic structure. The London, Edinburgh,
and Dublin Philosophical Magazine and journal of Science, 7(39):237–265, 1904.

[58] P. Mettes, E. van der Pol, and C. G. M. Snoek. Hyperspherical prototype networks. In Advances
in Neural Information Processing Systems, 2019.

[59] M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nature Biotechnology, 35(11):1026–1028, 2017.

References

5

117

[60] W. Li and A. Godzik. Cd-hit: a fast program for clustering and comparing large sets of protein
or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

[61] C. Camacho, G. Coulouris, V. Avagyan, et al. BLAST+: architecture and applications. BMC
Bioinformatics, 10(1):1–9, 2009.

[62] C. N. Magnan and P. Baldi. SSpro/ACCpro 5: almost perfect prediction of protein secondary
structure and relative solvent accessibility using profiles, machine learning and structural
similarity. Bioinformatics, 30(18):2592–2597, 2014.

[63] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pages 448–456, 2015.

[64] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[65] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[66] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of Machine Learning Research,
15(1):1929–1958, 2014.

[67] P. Raman and J. Yang. Optimization on the surface of the (hyper)-sphere. arXiv preprint
arXiv:1909.06463, 2019.

[68] M. Heinzinger, A. Elnaggar, Y. Wang, et al. Modeling aspects of the language of life through
transfer-learning protein sequences. BMC Bioinformatics, 20(1):1–17, 2019.

[69] A. Rives, J. Meier, T. Sercu, et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of
Sciences, 118(15):e2016239118, 2021.

[70] A. Elnaggar, M. Heinzinger, C. Dallago, et al. ProtTrans: Towards cracking the language of life’s
code through self-supervised deep learning and high performance computing. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–16, 2021.

[71] M. S. Klausen, M. C. Jespersen, H. Nielsen, et al. NetSurfP-2.0: Improved prediction of protein
structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics,
87(6):520–527, 2019.

[72] L. V. der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(11):2579–2605, 2008.

[73] A. Paszke, S. Gross, S. Chintala, et al. Automatic differentiation in PyTorch. In Advances in
Neural Information Processing Systems, 2017.

[74] W. A. Falcon et al. PyTorch Lightning. 2019.

[75] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: machine learning in Python. journal
of Machine Learning Research, 12:2825–2830, 2011.

5

118 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

5.S Supplementary material

5.S.1 Training dataset and cross-validation subsets

Table 5.S1: Number of protein domains, families, superfamilies and folds in each structural class within the
SCOPe 2.06 training dataset.

Structural class Protein domains Family classes Superfamily classes Fold classes

a 2684 943 480 273
b 3603 858 343 168
c 4739 900 233 144
d 3882 1193 528 368
e 319 100 65 65
f 296 137 98 56
g 610 213 115 80

Total 16133 4344 1862 1154

Table 5.S2: Cross-validation subsets for the SCOPe 2.06 training dataset. Here we split the 16133 protein domains
into 5 groups, each one including domains from different family classes.

Subset Protein domains Family classes Superfamily classes Fold classes

Train Valid Train Valid Train Valid Train Valid

CV1 12859 3274 3474 870 1641 615 1015 442
CV2 12895 3238 3474 870 1642 606 1032 429
CV3 12794 3339 3474 870 1633 630 1030 436
CV4 13023 3110 3474 870 1646 611 1035 436
CV5 12961 3172 3480 864 1626 632 1035 436

5.S.2 Thomson-derived hyperspherical prototypes

Optimization curves

In order to maximally separate our fold class prototypes in the hyperspherical space, we
minimized a Thomson-related loss function to optimize the matrix 𝐖 ∈ ℝ𝐾×𝑑 , being the
number of fold classes 𝐾 = 1154 and embedding dimension 𝑑 = 512. We accelerated the
optimization process by using the Adam optimizer [65] with a learning rate of 10−3. To
check the convergence of the algorithm, at each iteration we monitored both the sum of
all inverse distances (THL–sum) and the maximum cosine similarity between all pairs of
prototypes. Figure 5.S1 includes the optimization curves for the two variants, THL–sum or
THL–maxcos, and initial matrices𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 from the CNN-GRU model or𝐖𝑟𝑎𝑛𝑑𝑜𝑚. When
optimizing the THL–sum function, we see that the maximum cosine similarity between
all pairs of prototypes decreases until a certain point in which starts increasing again.
This suggests the algorithm is incorrectly trying to separate the majority of points, while

5.S Supplementary material

5

119

bringing a few others together in order to further minimize the loss function. To avoid
this unwanted behavior, we set the optimum iteration as the one with minimum value of
maximum cosine similarity, which is 1130 for the 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and 546 for the 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 initial
matrices. On the other hand, the THL–maxcos function provides lower maximum cosine
similarity, whereas the sum of inverse distances remains higher. In this case, we optimized
for a huge number of iterations (50,000).

470400

470500

470600

470700

470800

470900

su
m

(1
/d

ist
)

Wsoftmax + THL sum
Wsoftmax + THL maxcos
Wrandom + THL sum

0 1000 2000 3000 4000 5000 6000
Iteration

0.05

0.10

0.15

0.20

0.25

0.30

m
ax

(c
os

)

Figure 5.S1: Thomson optimization curves at each iteration monitoring two metrics: sum of inverse of distances
(above) and maximum cosine similarity (below) between all pairs of prototypes. For both metrics, we compare
different options for initialization and loss function: initial matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and THL–sum (blue line),𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥

and THL–maxcos (magenta line), or 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 and THL–sum (green dashed line).

Cosine similarity of prototype vectors

We then examined several structural characteristics from the optimized prototypes, in
comparison with the initial matrices 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and 𝐖𝑟𝑎𝑛𝑑𝑜𝑚. In Figure 5.S2, we plot the
𝐾 ×𝐾 cosine similarity matrix for each set of fold class vectors or prototypes, as well as
the histogram of such pairwise cosine similarities. To ensure maximum angular separation
between prototypes—given the number of points (fold classes) and dimensions in the hy-
persphere—the cosine values should be around 0 or negatives, as this translates into angles
close to or greater than 90 degrees. We observe this in the cosine similarity histograms for
the optimized prototypes. However, the cosine similarity matrix for the initial 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥

suggests that the fold class vectors learned by softmax loss may contain rich information
about the structural classes (i.e. 7 clusters can be observed, the same number as structural
classes defined in SCOPe [8]).

5

120 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

0 200 400 600 800 1000
0

200

400

600

800

1000Si
m

ila
rit

y
M

at
rix

 (K
xK

)
init Wsoftmax

0 200 400 600 800 1000
Wsoftmax + THL sum

0 200 400 600 800 1000
Wsoftmax + THL maxcos

0 200 400 600 800 1000
init Wrandom

0 200 400 600 800 1000
Wrandom + THL sum

1.0 0.5 0.0 0.5 1.0
Cosine Similarity Scores

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

1.0 0.5 0.0 0.5 1.0
Cosine Similarity Scores

1.0 0.5 0.0 0.5 1.0
Cosine Similarity Scores

1.0 0.5 0.0 0.5 1.0
Cosine Similarity Scores

1.0 0.5 0.0 0.5 1.0
Cosine Similarity Scores

1.0

0.5

0.0

0.5

1.0

Figure 5.S2: Cosine similarity matrices (above) and cosine similarity probability histograms (below) computed
for the 𝐾 prototypes (corresponding to 𝐾 different folds). The compared sets of prototypes, from left to right
are: initial matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 , optimized𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 with THL–sum, optimized𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 with THL–maxcos, initial
𝐖𝑟𝑎𝑛𝑑𝑜𝑚, or optimized𝐖𝑟𝑎𝑛𝑑𝑜𝑚 with THL–sum.

Intra- and inter-structural class prototype separation

To evaluate the structural class information contained in the optimized prototypes, we
grouped the 𝐾 fold prototypes into their respective structural classes (7 classes from 𝑎 to
𝑔 in SCOPe [8]). Then, we measured the average separation in terms of cosine distance,
considering fold prototypes within the same structural class (intra-class separation), and
prototypes from different structural classes (inter-class separation). We also computed the
angular Fisher score (AFS) [55], defined as:

𝐴𝐹𝑆 =
𝑆𝑖𝑛𝑡𝑒𝑟
𝑆𝑖𝑛𝑡𝑟𝑎

=
∑𝑟∑𝐰𝑗∈𝐖𝑟 (1−cos(𝐰𝑗 ,𝐦𝑟))

∑𝑟 𝑛𝑟 (1−cos(𝐦𝑟 ,𝐦))
, (5.9)

where 𝑆𝑖𝑛𝑡𝑒𝑟 and 𝑆𝑖𝑛𝑡𝑟𝑎 are the inter-class and intra-class scatter values, respectively. 𝐖𝑟 is
a subset of 𝐖 containing 𝑛𝑟 prototypes from structural class 𝑟 , 𝐦𝑟 is the mean vector of
those 𝑛𝑟 prototypes, and 𝐦 is the mean vector of the whole set of prototypes.

In Figure 5.S3, we can see that the optimized prototypes from the𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 using the
THL–sum function retain the structural class information, with higher intra-class cosine
similarity values than those across different structural classes. However, this informa-
tion is not preserved when using 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 as initial matrix or the THL–maxcos as a loss
function. Additionally, in Table 5.S3 we observe that the initial 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 provides a lower
angular Fisher score (AFS) value than the initial 𝐖𝑟𝑎𝑛𝑑𝑜𝑚. Once more, this suggests that
the prototypes in 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 are more informative about the structural classes. However,
the AFS values decrease after optimizing both initial matrices with Thomson. This can be
attributed to the significant increase in the cosine distance between all prototypes, which
also increases the 𝑆𝑖𝑛𝑡𝑟𝑎 term in equation (5.9). Overall, the𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 with THL–sum option

5.S Supplementary material

5

121

provides a better angular Fisher score (0.9073) than the rest of options.

a b c d e f g
-0.002 [90.11]

-0.001 [90.06]

0.000 [90.00]

0.001 [89.94]

0.002 [89.89]

0.003 [89.83]

0.004 [89.77]

0.005 [89.71]

Co
sin

e
Si

m
ila

rit
y

[A
ng

le
 (d

eg
)]

Intra-class separation

Wsoftmax + THL sum Wsoftmax + THL maxcos Wrandom Wrandom + THL sum

a b c d e f g

Inter-class separation

Figure 5.S3: Intra- and inter-structural class separation of the 𝐾 prototypes (corresponding to 𝐾 different
folds) considering the 7 structural classes {𝑎,𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ,𝑔} defined in SCOPe [8]. The separation values have been
measured in terms of cosine similarity and converted to angles in degrees. The intra-class separation (left) is
computed for all pairs within the same structural class, while the inter-class separation (right) is computed for
each prototype in one structural class with the rest of classes. Here, we compare different options for the set of
prototypes: initial matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and THL–sum (blue line),𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and THL–maxcos (magenta line),𝐖𝑟𝑎𝑛𝑑𝑜𝑚

before optimizing (yellow dashed line), or 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 and THL–sum (green dashed line).

Table 5.S3: Angular Fisher score of different sets of prototypes: initial matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 , optimized𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 with
THL–sum, optimized 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 with THL–maxcos, initial 𝐖𝑟𝑎𝑛𝑑𝑜𝑚, or optimized 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 with THL–sum. For the
optimized sets of prototypes, we also include the selected iteration from the Thomson optimization algorithm.

Matrix

initial 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 initial 𝐖𝑟𝑎𝑛𝑑𝑜𝑚

𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 THL−𝑠𝑢𝑚 THL−𝑚𝑎𝑥𝑐𝑜𝑠 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 THL−𝑠𝑢𝑚

Iteration —– 1130 50,000 —– 546
AFS 0.9524 0.9073 0.9441 1.7031 0.9309

Cross-validation performance and optimal set of prototypes

We then trained our neural network models CNN-GRU and ResCNN-GRU using the LMCL
function and a fixed matrix of prototypes in the classification layer. In Figure 5.S4 we com-
pare the cross-validation performance of three optimized matrices by Thomson: 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥

from each model with either THL–sum or THL–maxcos, and𝐖𝑟𝑎𝑛𝑑𝑜𝑚 with THL–sum. Here
we applied the tanh activation in the embedding layer and used a scale 𝑠 = 30 in the LMCL
function. These results show that the set of prototypes derived from the𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 matrix
with the THL–sum loss function yields a better fold classification performance than the
other two options.

Finally, we repeated the process for the rest of neural network models (considering
their own matrix𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥) and obtained the set of optimized prototypes by minimizing

5

122 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

73.0

73.5

74.0

74.5

75.0

75.5

76.0

76.5

Ac
cu

ra
cy

 (%
)

CNN-GRU model

Wsoftmax + THL sum Wsoftmax + THL maxcos Wrandom + THL sum

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LMCL margin

ResCNN-GRU model

Figure 5.S4: Cross-validation fold classification accuracy (%) results for different LMCL margins (with 𝑠 = 30).
The results are provided for the CNN-GRU and ResCNN-GRU models trained with Thomson LMCL. Here, we
compare three options for the Thomson-optimized set of prototypes: initial matrix 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and THL–sum (blue
line), 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 and THL–maxcos (magenta line), or 𝐖𝑟𝑎𝑛𝑑𝑜𝑚 and THL–sum (green dashed line).

the THL–sum. The Thomson optimization curves and the optimal iteration for each model
can be found in Figure 5.S5. These optimized matrices are the ones we used to train the
neural network models with the Thomson LMCL option.

470350

470400

470450

470500

470550

470600

su
m

(1
/d

ist
)

0 1000 2000 3000 4000 5000 6000
Iteration

0.10

0.15

0.20

0.25

0.30

m
ax

(c
os

)

CNN-GRU (best iter=1130)
CNN-BGRU (best iter=1172)
ResCNN-GRU (best iter=1181)
ResCNN-BGRU (best iter=1020)

Figure 5.S5: Thomson optimization curves at each iteration monitoring two metrics: sum of inverse of distances
(above) and maximum cosine similarity (below) between all pairs of prototypes. We minimized the THL–sum
considering 𝐖𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 as initial matrix, trained from the models: CNN-GRU (soft blue line), the CNN-BGRU (soft
pink line), the ResCNN-GRU (soft yellow line), or ResCNN-BGRU (soft green line).

5.S Supplementary material

5

123

5.S.3 Effect of secondary structure predictions on perfor-

mance

In this work we represented the protein domain using a set of 45 features for each amino
acid residue in the sequence, which include a one-hot encoding of the amino acid, the
PSSM profile, as well as secondary structure and solvent accessibility predictions. As
other methods from the bibliography [42, 48], we used the SSPro/ACCPro programs from
SCRATCH-1D [62] to obtain predictions for the secondary structure and solvent accessibil-
ity. However, it must be noted that SSPro/ACCPro use homology analysis, so when the
protein domain can be found in the PDB database they provide nearly perfect predictions
of these features. In order to study the impact of using different predictors, we replaced our
predictions with those given by SSPro/ACCPro “ab-initio” (i.e. without homology analysis)

Table 5.S4: Effect of secondary structure and solvent accessibility predictions on FoldHSphere performance
using the LINDAHL dataset. The fold recognition accuracy (%) results are provided at the family, superfamily
and fold levels, considering both the top 1 and top 5 ranked templates. We compare the predictions given by
SCRATCH (homology) [62], SCRATCH-AB (ab-initio) [62] and NetSurfP-2.0 (hhblits) [71] on the pre-trained
ResCNN-GRU and ResCNN-BGRU neural network models, using different loss functions: (a) Softmax loss with
sigmoid activation, (b) LMCL with tanh activation, and (c) Thomson LMCL with tanh activation.

Model

SS/ACC Family Superfamily Fold

predictor Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

(a) Softmax Loss

ResCNN-GRU
SCRATCH 72.6 90.3 59.4 77.0 58.9 75.1
SCRATCH-AB 63.1 83.4 47.5 67.1 47.4 67.0
NetSurfP-2.0 72.1 88.8 56.5 74.4 62.6 75.7

ResCNN-BGRU
SCRATCH 76.8 91.2 65.0 82.0 59.5 76.6
SCRATCH-AB 67.2 84.0 52.3 69.1 46.1 67.3
NetSurfP-2.0 73.9 87.4 56.7 75.3 55.1 74.1

(b) LMCL

ResCNN-GRU
SCRATCH 75.7 89.7 66.4 81.1 67.6 80.1
SCRATCH-AB 68.1 82.7 58.1 71.9 53.9 69.5
NetSurfP-2.0 74.2 89.5 62.0 77.4 70.4 78.8

ResCNN-BGRU
SCRATCH 75.1 89.5 69.8 85.3 74.1 82.2
SCRATCH-AB 69.2 84.9 60.4 73.3 60.7 72.6
NetSurfP-2.0 75.1 90.1 64.3 84.1 70.4 80.1

(c) Thomson LMCL

ResCNN-GRU
SCRATCH 76.9 89.5 69.1 82.9 69.5 79.4
SCRATCH-AB 69.0 84.0 56.7 72.4 54.5 71.7
NetSurfP-2.0 78.0 89.2 65.4 81.8 69.5 78.8

ResCNN-BGRU
SCRATCH 76.4 89.2 72.8 86.4 75.1 84.1
SCRATCH-AB 68.5 84.1 62.7 79.0 60.4 71.7
NetSurfP-2.0 75.5 88.3 66.8 83.6 67.3 81.0

5

124 5 FoldHSphere: deep hyperspherical embeddings for protein fold recognition

and NetSurfP-2.0 (hhblits) [71]. As the NetSurfP-2.0 method has been introduced quite
recently, we expect it to provide better results than SSPro/ACCPro “ab-initio” and closer to
the ones given by SSPro/ACCPro “homology”.

Table 5.S4 includes the results obtained at the test phase (using LINDAHL) by our
ResCNN-GRU and ResCNN-BGRU models trained using either softmax loss, LMCL or
Thomson LMCL. As we can see, a performance drop is shown when deactivating the
homology analysis (SCRATCH-AB) but, in general, the proposed losses achieve better
performance than softmax. NetSurfP-2.0, on the other hand, provides more similar results
to those given by SCRATCH (homology), especially if we consider the top 5 accuracy
results. However, it is difficult to draw conclusions without re-training our models using
such predictions. Differences in performance could be explained by the fact that, in order to
predict the fold class, some models might be more robust to secondary structure prediction
errors than others.

5.S.4 Analysis of the hyperspherical embeddings

(a) Softmax Loss (sigmoid)

1: all alpha (a)
2: all beta (b)

3: a/b
4: a+b

5: multi-domain
6: membrane

7: small
8: peptides

9: designed

(b) LMCL (tanh) (c) Thomson LMCL (tanh)

Figure 5.S6: Visualization of the embedding space learned by the ResCNN-BGRU model trained with either (a)
softmax loss with sigmoid activation, (b) LMCL with tanh activation, and (c) Thomson LMCL with tanh activation.
Here, the 976 embeddings within the LINDAHL dataset have been projected into two dimensions by means of
t-distributed stochastic neighbor embedding (t-SNE) [72], using a perplexity of 50 and ‘cosine’ as metric. The
resulting points have been colored according to the structural class of each domain, which are named from 1 to 9
in SCOP 1.37 [7].

5.S Supplementary material

5

125

1_3_1_1 5cyt-d5cytr
1_3_1_1 451c-d351c
1_3_1_1 1cc5-d1cc5
1_3_1_1 1gks-d1gks
1_3_1_3 1etpa-d1etpa2
1_3_1_1 2mtac-d2mtac
1_3_1_3 1fcdc-d1fcdc1
1_3_1_3 1fcdc-d1fcdc2
1_3_1_1 1cyj-d1cyi
1_3_1_1 1dvh-d1dvh
1_3_1_3 1etpa-d1etpa1
3_33_1_5 1gsea-d1gsea2
3_33_1_5 2glra-d1glqa2
3_33_1_5 3gsta-d2gsta2
3_33_1_2 1mek-d1mek
3_33_1_1 1xoa-d2trxa
3_33_1_1 1kte-d1kte
3_33_1_1 1aba-d1aba
3_33_1_1 1egr-d1ego
7_28_1_1 1znf-d1znf
7_28_1_1 1ncs-d1ncs
7_28_1_1 1aay-d1zaac3
7_28_1_1 1bbo-d1bbo_2
7_28_1_1 1ard-d1ard
7_28_1_1 1paa-d1paa
7_28_1_1 1zfd-d1zfd
7_28_1_1 1aay-d1zaac2
7_28_1_1 1zaac-d1zaac1
7_28_1_1 5znf-d5znf
6_7_1_2 1mpmb-d1mal
6_7_1_1 2omf-d2omf
6_7_1_1 1prn-d1prn
6_7_1_1 2por-d2por
4_76_1_1 2pola-d2pola2
4_76_1_1 2pola-d2pola3
4_76_1_1 2pola-d2pola1
4_76_1_2 1plq-d1plq_1
4_76_1_2 1plr-d1plq_2
5_1_1_1 2csn-d1csn
5_1_1_1 1apme-d1apme
5_1_1_1 1kob-d1koba
5_1_1_1 1phk-d1phk
2_8_1_1 2bpa1-d2bpa1
2_8_1_4 1sva5-d1sva1
2_8_1_2 2stv-d2stv
2_8_1_4 2plv-d1pvc1
2_8_1_3 2bbvc-d2bbva
2_8_1_4 2mev1-d2mev1
2_8_1_4 2cas-d2cas
2_8_1_2 1cwpb-d1cwpa
2_8_1_2 1smvc-d1smva
2_8_1_2 1bmv1-d1bmv1
2_8_1_4 1tme1-d1tme1

0.9 0.6 0.3 0.0 0.3 0.6 0.9

2_8

5_1

4_76

6_7

7_28

3_33

1_3

Figure 5.S7: Dendroheatmap of the 512-dimensional hyperspherical embeddings extracted from the ResCNN-
BGRU model trained with Thomson LMCL (𝑠 = 30 and 𝑚 = 0.6). The analysis has been done by running bi-
clustering over 53 protein domains from the LINDAHL test set, covering 7 folds named 1_3, 2_8, 3_33, 4_76, 5_1,
6_7 and 7_28. We computed the cosine distance between embedding vectors (rows) and embedding components
(columns) separately. We then applied hierarchical clustering with single linkage to group similar vectors and
components together. The individual elements in each embedding vector are colored according to their values
(lower values in green and higher values in red). Note that the legend values range from −1 to 1, as the embeddings
were extracted after applying the tanh activation function. We can see how the protein domains cluster together
according to their embedding vectors into 7 differentiated clusters, one for each selected fold.

5.S.5 Implementation details

We implemented our neural network models using Pytorch [73] (version 1.4.0) and Pytorch
Lightning [74] (version 0.10.0), and were trained on a single GPU card (NVIDIA GTX
Titan X, 12GB). The Thomson optimization algorithm was also implemented in Pytorch
and run on a single GPU card. On the other hand, we used the Python Scikit-learn [75]
package (version 0.23.1) implementations to train the random forest models and visualize
the embedding space by means of t-SNE. Source code and data needed to reproduce the
results of this paper can be found in http://sigmat.ugr.es/~amelia/FoldHSphere.

6

127

6
An analysis of protein language

model embeddings for fold

prediction

Amelia Villegas-Morcillo, Angel M. Gomez, and Victoria Sanchez

This chapter has been published as follows: A. Villegas-Morcillo, A.M. Gomez, and V. Sanchez. An analysis of
protein language model embeddings for fold prediction. Briefings in Bioinformatics, 23(3):bbac142, 2022. DOI:
10.1093/bib/bbac142.

• Status: Received in February 2022. Accepted in March 2022. Published in May 2022.
• Impact Factor (JCR 2021): 13.994. Mathematical & Computational Biology. Rank 1/57 (D1).

6

128 6 An analysis of protein language model embeddings for fold prediction

Abstract

The identification of the protein fold class is a challenging problem in structural biology. Recent

computational methods for fold prediction leverage deep learning techniques to extract protein

fold-representative embeddings mainly using evolutionary information in the form of multiple

sequence alignment (MSA) as input source. In contrast, protein language models (LM) have

reshaped the field thanks to their ability to learn efficient protein representations (protein-LM

embeddings) from purely sequential information in a self-supervised manner. In this paper,

we analyze a framework for protein fold prediction using pre-trained protein-LM embeddings

as input to several fine-tuning neural network models which are supervisedly trained with

fold labels. In particular, we compare the performance of six protein-LM embeddings: the

LSTM-based UniRep and SeqVec, and the transformer-based ESM-1b, ESM-MSA, ProtBERT,

and ProtT5; as well as three neural networks: Multi-Layer Perceptron (MLP), ResCNN-BGRU

(RBG), and Light-Attention (LAT). We separately evaluated the pairwise fold recognition (PFR)

and direct fold classification (DFC) tasks on well-known benchmark datasets. The results

indicate that the combination of transformer-based embeddings, particularly those obtained

at amino acid-level, with the RBG and LAT fine-tuning models performs remarkably well in

both tasks. To further increase prediction accuracy, we propose several ensemble strategies for

PFR and DFC, which provide a significant performance boost over the current state-of-the-art

results. All this suggests that moving from traditional protein representations to protein-LM

embeddings is a very promising approach to protein fold-related tasks.

Key words: Protein Fold Prediction, Protein Language Models, Fine-Tuning Neural Networks,

Embedding Learning

6.1 Introduction

Despite recent breakthroughs in predicting protein three-dimensional structures with
high accuracy (AlphaFold [1, 2] and RoseTTAFold [3]), there is still a special interest in
identifying the fold type of a protein. Although fold identification can be seen as an in-
termediate step in the prediction of the protein tertiary structure, this information also
allows us to understand protein function through the identification of remote evolutionary
relationships [4]. This step is crucial for a complete annotation of the newly solved struc-
tures (e.g. AlphaFold DB [5]), and it is often accomplished by classifying them according
to structural and sequential similarities with respect to known proteins. In this regard,
structural classification databases such as SCOP [6, 7] and CATH [8, 9] already provide a
hierarchical grouping of protein domains from the protein data bank (PDB) [10, 11] into
different categories. In SCOP these are named structural class, fold, superfamily and family,
with increasing amino acid sequence similarity and closer evolutionary relationships at
each level. Among them, the focus is on obtaining accurate predictions at the fold level,

6.1 Introduction

6

129

where protein domains have a similar arrangement of structural elements but substantially
differ in the amino acid sequence, a problem widely known as protein fold recognition
[12–16].

During the past few decades, many computational methods have been proposed to
predict the fold class of a protein domain. These can be divided according to the task they
aim to solve. The first one is pairwise fold recognition (PFR), in which the fold class of the
query protein is inferred by comparing with templates with known structure [17–19]. PFR
approaches mainly include methods based on homology modeling (sequence alignments
[14], profile alignments [20], and Markov random fields [21]); threading [22–28]; machine
learning for binary classification [29–31]; multi-view learning [32–34]; and learning to rank
[35–37]. Another set of methods use deep learning to learn fold-representative embeddings,
which are then used to measure the structural similarity between two protein domains.
DeepFR [38] introduced this methodology, which has been followed by more recent ap-
proaches [39–45] using either predicted contact maps, or evolutionary information as input
representation of the protein. The second task is direct fold classification (DFC), in which
the protein sequences are directly mapped into a pre-defined group of fold classes [46].
Most of the proposed methods [47–56] had used evolutionary information and machine
learning to classify only a small portion of all possible SCOP folds (i.e. the most populated
ones). In contrast to them, DeepSF [57] was the first method to perform fold classification
into one of the more than thousand existing folds in SCOP through deep learning.

Traditionally, the state-of-the-art methods for different protein-related tasks have used
representations derived from the multiple sequence alignment (MSA), such as the ones
described in [58], as input source. Following a more modern approach, recent methods
use protein representations that are extracted from pre-trained protein language models
(protein-LMs). These models have been taken from the field of NLP (natural language
processing) [59], by treating the protein sequences as sentences, and the amino acids as
word equivalents. More specifically, the models learn meaningful representations of the
proteins (protein-LM embeddings) in a self-supervised manner [60] by using the vast amount
of unlabeled sequences contained in protein databases such as Swiss-Prot [61], Pfam [62],
and UniRef [63] (all based on UniProt [64]); and metagenomic databases such as the big
fantastic database (BFD) [65, 66]. This way, ProtVec [67], based on word2vec [68, 69], was
the first method proposed to extract protein representations from their sequences. Unlike
word2vec, more sophisticated protein-LMs take into account both the context and order of
amino acids in the sequence through LSTM (long short-term memory) recurrent units [70].
These include methods such as UDSMProt [71] and UniRep [72], using weight-dropped
LSTMs and multiplicative LSTMs, respectively; as well as two methods based on the ELMo
model [73]: SeqVec [74] and the language model part from [75]. The next generation
of protein-LMs come from the use of transformer architectures based on self-attention

6

130 6 An analysis of protein language model embeddings for fold prediction

mechanisms [76]. Examples are TAPE-Transformer [77], ESM-1b [78], ESM-MSA [79] and
ProtBERT [80], which have been inspired in the BERT model [81]. In addition to BERT, the
ProtTrans project [80] explored the use of other five transformer architectures [82–86] for
protein representation learning.

These pre-trained models allow for transfer learning to different protein-related down-
stream tasks in which the amount of labeled sequences in the databases is significantly
smaller. By using simple supervised models, protein-LM embeddings have proven to be
successful in predicting protein secondary structure, subcelullar localization, and remote
homologs [74, 77, 80, 87], as well as protein function [88–90] and sequence variation
[91, 92]. It has been also found that the attention layers in transformer models are able to
learn protein contact map information directly from self-supervised training on sequences
[78, 79, 93].

Our proposal here (summarized in Figure 6.1) is to leverage several pre-trained protein-
LM embeddings for fold prediction. We hypothesize that self-supervised training of the
protein-LMs might capture fold information from millions of protein sequences, and
therefore the learned representations could be useful for comparison of structurally similar
proteins (PFR task), as well as classification into fold classes as defined by SCOP (DFC task).
To test this, we followed the same idea of the DeepSF, DeepFR, and subsequent deep learning
models for fold prediction. These neural networkmodels allow for the fine-tuning of protein-
LM embeddings (here LMEmb) to learn new fold-representative embedding vectors (here
FoldEmb), while performing fold classification. In both tasks, PFR and DFC, we compared
the performance of different neural network architectures working on either amino acid-
level or protein-level embeddings. Comparison with previous methods also allowed us

Input Pre-training Fine-tuning Output

Sequence
or

MSA

Self-supervised
protein-LM

Supervised
NN model

LMEmb

FoldEmb

Fold class
scores

Figure 6.1: Overview of our approach for protein fold prediction. First, we extract a protein embedding
representation from the amino acid sequence or multiple sequence alignment (MSA) using protein language
models (protein-LMs) which have been pre-trained in a self-supervised manner (i.e. using the input sequential
information itself). As a result, we obtain a protein-LM embedding (LMEmb) of size 𝐿×𝐹 , where 𝐿 is the length of
the protein sequence and 𝐹 is the size of the amino acid-level embedding. Then, we fine-tune this embedding
through a neural network (NN) model that is trained, in a supervised manner, to map the input protein into 𝐾 fold
classes. The outputs of this model are, on the one hand, a fold-representative embedding of the protein (FoldEmb
with fixed-size 512), used to perform the pairwise fold recognition (PFR) task; and, on the other hand, the scores
for each fold class, used in the direct fold classification (DFC) task.

6.2 Materials and methods

6

131

to analyze the impact of changing traditional protein evolutionary features by protein-
LM embeddings as input representations. All in all, we found that transformer-based
protein-LM embeddings are particularly useful for protein fold prediction, outperforming
the state-of-the-art results for both fold recognition and fold classification.

6.2 Materials and methods

6.2.1 Input protein information

Our framework for fold prediction (Figure 6.1) takes as input sequential information of
the protein, either the amino acid sequence or a multiple sequence alignment (MSA). To
build the MSAs for our protein domains, we followed the pipeline specified in [79]. That is,
we first generated the MSA by running HHblits [94] against the uniclust30_2017_10
database [95], with number of iterations equal to 3. The resultingMSAwas then subsampled
by filtering the number of sequences down to 256 with hhfilter [94]. If more than 256
sequences were returned, we applied the diversity maximizing strategy from [79] to select
those sequences with highest average hamming distance.

6.2.2 Pre-trained protein-LM embeddings

As protein representations, we used self-supervised embeddings from pre-trained protein
language models (protein-LMs). We analyzed the performance of LSTM-based protein-
LMs such as UniRep [72] and SeqVec [74], as well as several transformer-based models
such as ESM-1b [78], ESM-MSA-1b (here ESM-MSA) [79], ProtBERT-BFD and ProtT5-XL-
U50 (here ProtBERT and ProtT5) [80]. We denote these self-supervised embeddings as
LMEmb, in order to differentiate them from our fine-tuned embeddings, FoldEmb, which
are supervisedly trained using fold labels. The total size of an LMEmb embedding for a
protein of length 𝐿 is 𝐿× 𝐹 , where 𝐹 is the size of the individual embedding provided by
the protein-LM for each amino acid. By averaging the embedding matrix over the length
dimension, we can obtain an alternative fixed-size representation for the protein domain
(size 𝐹). We will refer to this representation as protein-level embeddings or LMEmb-Prot
(size 𝐹) in contrast to the amino acid-level embeddings defined above and denoted as
LMEmb-AA (size 𝐿 × 𝐹). Table 6.1 summarizes the training details for each protein-LM
embedding included in the analysis.

LSTM-based models. UniRep [72] and SeqVec [74] are two protein-LMs trained using
recurrent layers with long short-termmemory (LSTM) [70] units. Both models were trained
in an auto-regressive manner, trying to predict the next amino acid given all previous
amino acids in a protein sequence. The UniRep model consists of one layer of multiplicative
LSTM (mLSTM) [96] with 1900 hidden units, trained on 24 million protein sequences from

6

132 6 An analysis of protein language model embeddings for fold prediction

Table 6.1: Characteristics of the protein language model (protein-LM) embeddings used in this analysis.

Embeddings Size (F) Language Model #Layers #Parameters Training Database

UniRep [72] 1900 mLSTM 1 18M UniRef50 (24M seqs)
SeqVec [74] 1024 ELMo (BLSTM) 2 93M UniRef50 (33M seqs)
ESM-1b [78] 1280 BERT (Transformer) 33 650M UniRef50 (27M seqs)
ESM-MSA [79] 768 BERT (Transformer) 12 100M UniRef50 (26M MSAs)
ProtBERT [80] 1024 BERT (Transformer) 30 420M BFD (2B seqs)
ProtT5 [80] 1024 T5 (Transformer) 24 3B BFD (2B seqs) + UniRef50 (45M seqs)

the UniRef50 database. We used the TAPE [77] implementation1 and the pre-trained model
from UniRep to extract 𝐿 × 1900 dimensional embeddings for our protein domains. On
the other hand, SeqVec is based on the ELMo model [73] from NLP. The SeqVec model
was trained on 33 million protein sequences from UniRef50. Its architecture is formed
by one CharCNN layer to embed the input characters (amino acids), followed by two
layers of bidirectional LSTMs (BLSTM) [97] with shared parameters for the forward and
backward passes. We obtained 𝐿×1024 dimensional SeqVec embeddings by concatenating
both directions of the LSTMs and then adding the outputs of the three layers. To do so, we
used the official code2 and the pre-trained model of SeqVec.

Transformer-based models. We consider two sets of transformer-based protein-LMs
—evolutionary scale modeling (ESM) [78, 79] and ProtTrans [80]. The ESM models are
based on the BERT transformer architecture [81]. Unlike auto-regressive LSTM-based
protein-LMs, ESM models were trained to predict masked amino acids using all preceding
and following amino acids in the sequence. This training objective is referred to as masked
language modeling (MLM). In our analysis, we consider the pre-trained ESM-1b model
[78], which has 33 transformer layers and a total of 650M parameters, and was trained on
27 million protein sequences from UniRef50. Instead of individual protein sequences, the
ESM-MSA model [79] was trained on multiple sequence alignments (MSAs) constructed
from sequences in UniRef50 (26 million of MSAs). This model uses the axial attention
mechanism from [98] and has fewer transformer layers (12) and parameters (100M) than
ESM-1b. To obtain an embedding for each protein domain in our datasets we used the
official code3 and the pre-trained ESM-1b and ESM-MSA models. For ESM-1b, we extracted
amino acid-level embeddings from the last transformer layer, resulting in 𝐿×1280 vectors.
In contrast, the ESM-MSA model provides embeddings for each sequence in the MSA,
so the output of the last transformer layer is of size 256 ×𝐿 × 768. We averaged over all
sequences in the MSA to obtain final embeddings of size 𝐿×768.

1https://github.com/songlab-cal/tape
2https://github.com/mheinzinger/SeqVec
3https://github.com/facebookresearch/esm

6.2 Materials and methods

6

133

In contrast to the ESM models, the ProtTrans project [80] scaled up the transformer-
based protein-LMs to leverage metagenomic databases with billions of protein sequences,
leading to architectures with several billions of parameters. In this work, we consider
models based on two auto-encoder transformers, BERT and T5 [84], denoted here as
ProtBERT and ProtT5 respectively. The ProtBERT model has 30 layers and a total of 420M
parameters, and has been trained on 2 billion protein sequences from the BFD database.
Unlike ProtBERT and the previous ESM models, which only train the encoder component,
ProtT5 includes both the encoder and decoder, with 24 layers and a total of 3B parameters.
It was trained on the BFD database and later refined using 45 million sequences from
UniRef50. To extract 𝐿×1024 dimensional embeddings for our protein domains, we used
the official ProtTrans implementation4 and the pre-trained models for ProtBERT and ProtT5.
Following the recommendations in [80], we only used the encoder part of ProtT5 to embed
our protein domains.

6.2.3 Neural network models for protein embedding fine-

tuning

In this subsection we describe the neural architectures and the corresponding supervised
training procedures for fine-tuning the protein-LM embeddings LMEmb into the fold
representative embeddings FoldEmb (see Figure 6.1).

Neural architectures

Our neural network models include a supervised embedding extractor followed by a
linear classifier. Specifically, the embedding extractors accept as input either the amino
acid-level protein-LM embeddings LMEmb-AA or the averaged protein-level embeddings
LMEmb-Prot. We used three different neural architectures to extract supervised embeddings,
FoldEmb, of fixed-size (512): a Multi-Layer Perceptron (MLP), our previously proposed
Residual-Convolutional network and Bidirectional Gated Recurrent Unit (RBG) [45], and
the Light-Attention (LAT) architecture from [87]. These architectures are illustrated in
Figure 6.2. For the last step classifier we use a single fully-connected (FC) layer which
projects the FoldEmb embeddings into 𝐾 output elements (i.e. logits) corresponding to the
fold classes. The supervised embedding extractor and classifier are trained together in an
end-to-end fashion.

Multi-layer perceptron (MLP). As a reference model, we processed the LMEmb-Prot
embeddings through a simple MLP. The architecture consists of two FC layers with 1024
and 512 neurons each (see Figure 6.2a) with ReLU activation. After each layer, we also
apply batch-normalization [99] and dropout [100] with drop probability 𝑝 = 0.5 to prevent
overfitting during training.
4https://github.com/agemagician/ProtTrans

6

134 6 An analysis of protein language model embeddings for fold prediction

(a)Multi-Layer Perceptron (MLP) Model

𝐹
(L
M
E
m
b
-
P
r
o
t
)

FC
(1
02
4)

FC
(5
12
)

51
2
(F
o
l
d
E
m
b
)

FC
(𝐾

)

𝐾
fo
ld

cl
as
s

pr
ed
ic
tio

ns

embedding extraction classification

(b) ResCNN-BGRU (RBG) Model

𝐿
×
𝐹
(L
M
E
m
b
-
A
A
)

1D
-C
on

v
(5
×
51
2)

1D
-C
on

v
(5
×
𝐹)

+

1D
-C
on

v
(5
×
51
2)

1D
-C
on

v
(5
×
𝐹)

+

𝐿
×
𝐹

−−−→GRU
(1024)

←−−−GRU
(1024)

2⋅
10
24

−→
𝐡𝐿

←−
𝐡𝐿

FC
(5
12
)

51
2
(F
o
l
d
E
m
b
)

FC
(𝐾

)

𝐾
fo
ld

cl
as
s

pr
ed
ic
tio

ns

embedding extraction classification

(c) Light-Attention (LAT) Model

𝐿
×
𝐹
(L
M
E
m
b
-
A
A
) 1D-Conv

(9 × 𝐹)
+ Softmax

1D-Conv
(9 × 𝐹)

𝐿 × 𝐹
(Attention
Scores)

𝐿 × 𝐹
(Values)

⋅

2⋅
𝐹

sum

max

FC
(5
12
)

51
2
(F
o
l
d
E
m
b
)

FC
(𝐾

)

𝐾
fo
ld

cl
as
s

pr
ed
ic
tio

ns

embedding extraction classification

Figure 6.2: Neural network models used to fine-tune the protein-LM embeddings (LMEmb) to fold-representative
embeddings (FoldEmb), as well as to perform direct fold classification. Three neural architectures are used as
embedding extractors (identified with three distinct background colors). (a) The Multi-Layer Perceptron (MLP)
model processes the protein-level embeddings (LMEmb-Prot) through two fully-connected (FC) layers. (b) The
ResCNN-BGRU (RBG) model [45] processes the amino acid-level embeddings (LMEmb-AA) through two residual-
convolutional blocks, a bidirectional gated recurrent unit (GRU) layer, and an FC layer. (c) The Light-Attention
(LAT) model, adapted from [87], also processes LMEmb-AA through an attention mechanism followed by an FC
layer.

Residual-convolutional network and bidirectional gated recurrent unit (RBG). To
process LMEmb-AA embeddings, we consider our ResCNN-BGRU (RBG) model architecture
(Figure 6.2b) which obtained state-of-the-art performance on protein fold recognition [45].
This architecture consists of three distinct parts, which we briefly describe here (further

6.2 Materials and methods

6

135

details can be found in [45]). First, the residual-convolutional part consists of two identical
residual blocks with skip connections. Each block contains two 1D-convolutions with
512 and 𝐹 filters of length 5, where 𝐹 is the dimensionality of the input embedding (see
Table 6.1). The 1D-convolutions are followed by ReLU activation, batch-normalization
and dropout (𝑝 = 0.2). Second, a bidirectional recurrent layer is applied on top of the 𝐿× 𝐹
outputs of the residual-convolutional part. This consists of a bi-directional gated recurrent
unit (GRU) [101] layer with 1024 state units for each direction. To obtain a fixed-size vector,
we concatenate the last states from both forward (−→𝐡𝐿) and backward (←−𝐡𝐿) GRU layers into a
vector of 2048 elements. Finally, we project this vector into a 512-dimensional embedding
(FoldEmb) using an FC layer of size 512, followed by hyperbolic tangent (tanh) activation
and dropout (𝑝 = 0.2).

Light-attention (LAT). We also include in our analysis the Light-Attention (LAT) model
from [87], which has been recently proposed for predicting protein subcellular location,
using LMEmb-AA embeddings as inputs. The architecture is shown in Figure 6.2c. It
applies two parallel 1D-convolutions with 𝐹 filters of length 9, to produce the attention
coefficients and value features separately. The attention weights are obtained from the
coefficients by applying the softmax operation over the length dimension. The resulting
weights are used to compute a weighted sum of the values, producing an 𝐹 -dimensional
vector independent of the protein length. This vector is then concatenated with the max-
pooled values (across the length dimension) to produce a vector of size 2𝐹 . To compute
the 512-dimensional FoldEmb embeddings, we adapted the MLP part of the original LAT
architecture by including an FC layer similar to that described above for the RBG model.

Model optimization

The fine-tuning models were trained to minimize the large margin cosine loss (LMCL)
[102] between the predicted and true fold classes for each protein domain in the training
dataset. The LMCL is an 𝐿2-normalized and margin discriminative version of the softmax
cross-entropy loss. The 𝐿2 normalization enforces the FoldEmb vectors to be distributed on
the surface of a hypersphere. It is formally defined as:

𝐿𝑙𝑚𝑐 = −
1
𝑁

𝑁
∑
𝑖=1

log
𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚)

𝑒𝑠(cos(𝜃𝑦𝑖,𝑖)−𝑚)+∑𝑘≠𝑦𝑖 𝑒
𝑠 cos(𝜃𝑘,𝑖)

, (6.1)

where 𝑁 is the number of training samples in the mini-batch and 𝐾 is the number of fold
classes. The cosine is computed as cos(𝜃𝑘,𝑖) = �̂�𝑇

𝑘 �̂�𝑖, where �̂�𝑘 and �̂�𝑖 are 𝐿2-normalized
versions of the 𝑘-th class weight vector 𝐰𝑘 (from the last classification layer, bias is set to
zero for simplicity) and the 𝑖-th embedding vector 𝐱𝑖 (here the 512-dimensional FoldEmb).
As can be noticed from Eq. 6.1, this loss introduces two hyperparameters, the scale and
margin (𝑠,𝑚 ≥ 0). The scaling hyperparameter 𝑠 controls the radius of the hypersphere on

6

136 6 An analysis of protein language model embeddings for fold prediction

which the embeddings are distributed, while the margin𝑚 controls the decision boundaries
between fold classes, and so the capacity of learning more discriminative embeddings.

Following previous results [45] and light hyperparameter tuning using cross-validation,
we use the same scale for all our networks (𝑠 = 30) and a margin with value 𝑚 = 0.2 for the
MLP model and 𝑚 = 0.6 for the models working on LMEmb-AA embeddings (that is, RBG
and LAT).

For training, we usemini-batches with 64 protein domains each, and the Adam optimizer
[103] with an initial learning rate equal to 10−3. To prevent overfitting, along with the
batch-normalization and dropout techniques specified before, we apply 𝐿2 penalty with
a weight decay of 5 ⋅ 10−4. All models were trained for 80 epochs and we decreased the
learning rate by a factor of 10 at epoch 40, as it proved to improve the performance in
previous works [44, 45]. We implemented our models using PyTorch [104] and executed
them on a single GPU (NVIDIA Tesla V100) with 32GB of memory.

6.2.4 Evaluation tasks

This subsection details the scoring procedures, ensembling strategies, and performance
metrics used to evaluate the two protein fold-related tasks: pairwise fold recognition
(PFR) and direct fold classification (DFC). As a reference, an evaluation where the protein-
LM embeddings are directly used without fine-tuning (i.e. without additional supervised
training) was also considered for both tasks.

Pairwise fold recognition (PFR)

PFR task. The pairwise fold recognition task involves evaluating the structural similarity
of two protein domains. To do so, we used the 512-dimensional supervised embeddings
(FoldEmb) extracted from our neural network models (Figure 6.2). These embeddings
were used to compute a fold similarity score for each of two domains within the test set,
indicating whether they belong to the same fold class or not. Following previous works,
we used the cosine similarity as the similarity metric [38, 44, 45].

Ensemble strategies. Since ensemble methods have been found to be promising for PFR
in previous works [38, 43–45], we also leveraged ensembling techniques here to obtain a
better fold similarity score from our best performing FoldEmb embeddings. The first type of
ensembling strategy, which we refer to as average ensemble, involves directly averaging the
cosine similarity scores, provided by the chosen models, for each pair of protein domains
in the test set. The second ensembling strategy consists of training a random forest (RF)
model using our cosine similarity scores along with the 84 pairwise similarity measures
from [30, 31]. We refer to this strategy as random forest ensemble. The RF model was trained
to determine whether the protein domains in each pair share the same fold class using the
vector of pairwise scores as input, and a total of 500 decision trees. Note that this strategy

6.2 Materials and methods

6

137

involves training an RF model, so we evaluated using a 10-stage cross-testing setting over
the test set as in [38, 44, 45].

Ranking and evaluation. To evaluate an individual protein domain (query), we ranked
the rest of domains in the test set (templates) by fold similarity score, and then assigned
the fold class of the most similar one to the query. As originally proposed in [14] and
following subsequent works [38, 44, 45], this evaluation was performed at three levels with
increasing difficulty, according to the SCOP hierarchy—family, superfamily and fold [6].
At each level, a positive pair contains two protein domains sharing the same class in the
selected level, but a different class in the level immediately below. For example, at the
superfamily level, two domains within a positive pair belong to the same superfamily class
(and therefore the same fold class), but different family classes. Irrespective of the level, all
negative pairs were evaluated, each one containing two protein domains from different
fold classes. After the ranking and fold assignment, we computed the ratio of hits (top
1 accuracy), as well as the ratio of finding the correct fold class within the 5 top-ranked
templates (top 5 accuracy).

Direct fold classification (DFC)

DFC task. In the direct fold classification task, we evaluated the ability of our neural
network-based models to classify the input test domains into 𝐾 fold classes. This task was
originally proposed in [57]. In this case, instead of extracting the supervised embeddings
(FoldEmb), we obtained a score (i.e. logit) for each fold class from the last classification
layer of our models (Figure 6.2), and the predicted fold as the one maximizing the class
scoring vector.

Ensemble strategies. As with the PFR task, we combined the best performing fine-tuning
models to generate several ensembles. In this case, we followed the soft voting ensemble
approach to get a better prediction for each tested protein domain. This strategy involves
computing the vector of logits from each model and accumulating them in a new class
scoring vector. Then, we assign the fold which maximizes this scoring vector for each
query domain.

Evaluation. We also assessed the DFC task at the family, superfamily and fold levels. In
contrast to the PFR task, now the full test set is split into three subsets, each one containing
test domains that only share the specific level with domains from the training dataset. As
performance metric, we consider the ratio of protein domains that were correctly classified
(top 1 accuracy), as well as the ratio of finding the correct fold within the 5 top-scoring
classes (top 5 accuracy).

6

138 6 An analysis of protein language model embeddings for fold prediction

Baseline evaluation of protein-LM embeddings

To provide a baseline comparison, we also evaluated the PFR and DFC tasks directly with
the pre-trained protein-LM embeddings (LMEmb). We used the cosine similarity metric for
the protein-level embeddings LMEmb-Prot. In contrast, for the amino acid-level embeddings
LMEmb-AA, we computed the soft symmetric alignment (SSA) proposed in [75] but using
cosine similarity instead of 𝐿1 distance. That is, given two sequences of embeddings
𝑥1, ..., 𝑥𝐿1 and 𝑦1, ..., 𝑦𝐿2 , SSA is obtained as:

𝑆𝑆𝐴 =
1
𝐴

𝐿1
∑
𝑖=1

𝐿2
∑
𝑗=1

𝑎𝑖𝑗 cos(𝑥𝑖, 𝑦𝑗), (6.2)

where 𝐴 =∑𝐿1
𝑖=1∑

𝐿2
𝑗=1 𝑎𝑖𝑗 acts as a normalization factor, and 𝑎𝑖𝑗 = 𝛼𝑖𝑗 +𝛽𝑖𝑗 −𝛼𝑖𝑗𝛽𝑖𝑗 represent

the alignment matrix, whose components are computed as:

𝛼𝑖𝑗 =
𝑒cos(𝑥𝑖 ,𝑦𝑗)

∑𝐿2
𝑘=1 𝑒cos(𝑥𝑖 ,𝑦𝑘)

,𝛽𝑖𝑗 =
𝑒cos(𝑥𝑖 ,𝑦𝑗)

∑𝐿1
𝑘=1 𝑒

cos(𝑥𝑘 ,𝑦𝑗)
. (6.3)

Note that, while the baseline PFR task is performed using pairs from the test set only,
the DFC one involves computing the fold similarity metric for each test embedding against
all the training ones, and then assigning the fold class of the closest training domain.

6.2.5 Datasets

To assess the aforementioned tasks, we trained the fine-tuning models using 16133 protein
domains from SCOPe version v2.06 [38], which are classified into 𝐾 = 1154 folds. For
PFR, we tested the models using the well-known LINDAHL dataset [14] containing 976
protein domains from 330 distinct folds. For the DFC task, we used the updated version of
LINDAHL to SCOP v1.75 [44] (named LINDAHL_1.75), where, in order to directly classify
the test domains, we keep only those (of the 976) that share their fold class with one of the
𝐾 seen during training. This resulted in a test set with 871 domains from 244 folds.

Table 6.2: Number of protein domains and fold classes evaluated in each test set.

Task Test Set

Full Set Family Level Superfamily Level Fold Level

#Domains #Folds #Domains #Folds #Domains #Folds #Domains #Folds

PFR LINDAHL 976 330 555 121 434 79 321 38

DFC LINDAHL_1.75 871 244 591 177 210 107 70 37
SCOP_2.06 2533 550 742 316 1754 418 37 15

The LINDAHL test set is evaluated on the pairwise fold recognition (PFR) task, whereas the LINDAHL_1.75
and SCOP_2.06 test sets are evaluated on the direct fold classification (DFC) task. We also provide the number
of domains and folds evaluated at the family, superfamily and fold levels.

6.3 Results and discussion

6

139

In addition, for DFC we also evaluated the performance over the SCOP_2.06 test set
[57], which contains 2533 protein domains from 550 folds. To avoid overlap between this
test set and the training set described above (both are derived from SCOPe v2.06), in this
particular case we used the training set proposed in [57], which contains 16712 domains
classified into 𝐾 = 1195 folds (from SCOP v1.75).

For each task and test set, Table 6.2 summarizes the number of individual protein
domains and distinct folds evaluated at each level (family, superfamily and fold). In all
cases, the protein domains within each training set share at most 95% sequence similarity.
Moreover, the maximum sequence identity within each of the test sets is 40%, as well as
with respect to their respective training sets.

6.3 Results and discussion

6.3.1 Performance of self-supervised LMEmb embeddings in

PFR and DFC tasks

We first evaluated how the self-supervised LMEmb embeddings perform in predicting
structural similarity using the LINDAHL test set. In Table 6.3 we provide the pairwise
fold recognition (PFR) results for the two types of embeddings, LMEmb-AA and LMEmb-
Prot, from the 6 protein-LMs we considered. To gain insight into the PFR results in
Table 6.3, we also plotted the histograms of the cosine similarity scores for the negative

Table 6.3: Performance of the LMEmb embeddings in the pairwise fold recognition (PFR) task, using the LINDAHL
test set.

Embeddings

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LMEmb-AA (𝐿× 𝐹)

UniRep 28.5 49.2 25.3 38.9 14.3 35.8
SeqVec 48.3 66.5 27.2 47.0 13.7 29.3
ESM-1b 7.4 14.8 2.1 6.7 0.6 8.1
ESM-MSA 27.9 47.7 13.8 29.5 12.1 22.4
ProtBERT 18.9 34.8 4.4 15.9 4.4 15.9
ProtT5 76.4 87.4 34.3 56.5 14.0 29.9

LMEmb-Prot (𝐹)

UniRep 45.6 60.9 35.0 47.7 19.3 35.8
SeqVec 62.3 77.8 44.9 60.6 18.4 37.7
ESM-1b 81.6 88.5 44.9 59.7 21.2 37.1
ESM-MSA 76.6 88.1 42.9 54.4 16.2 28.0
ProtBERT 42.9 58.6 10.8 27.2 8.4 22.4
ProtT5 81.1 90.8 40.3 62.0 16.5 32.4

The top 1 and top 5 accuracy (%) results are provided at the family, superfamily and fold levels. We compare the
performance of the amino acid-level embeddings LMEmb-AA (using the SSAmetric in Eq. 6.2) and protein-level
embeddings LMEmb-Prot (using the cosine similarity metric). Underline indicates best performance.

6

140 6 An analysis of protein language model embeddings for fold prediction

and positive pairs within the LINDAHL test set in Supplementary Figure 6.S1. We find that
aggregating embeddings across the protein length (LMEmb-Prot) helps in all cases when
using cosine similarity. Note that, as can be seen in Supplementary Table 6.S1, using 𝐿1
distance as comparison metric shows similar results to cosine similarity for all LMEmb-Prot
embeddings.

Amongst the LMEmb-Prot embeddings, the ESM-1b ones yield better overall PFR results,
while the ProtBERT embeddings perform the worst at the three levels. We also notice
differences across levels. For example, the ESM-1b and ProtT5 embeddings perform the best
at the family level, with a high accuracy (81% top 1). This suggests that these embeddings
could be used for homology searching when the amino acid sequence similarities are
high. Furthermore, ESM-1b outperforms the rest of embeddings at the fold level (21.2%).
Nevertheless, the accuracy values are generally low at this level. A similar trend is observed
in Supplementary Table 6.S2 for the direct fold classification (DFC) task evaluated on
the LINDAHL_1.75 and SCOP_2.06 test sets. It should be noted that the overall poor
performance of protein-LM embeddings at the fold level is to be expected, as they have
been learned in a self-supervised manner without any information about the fold type.

6.3.2 Performance of fine-tuned FoldEmb embeddings in PFR

task

Figure 6.3 summarizes the PFR results of the fold-representative embeddings, FoldEmb,
resulting from fine-tuning the LMEmb embeddings through neural network models: MLP,
RBG and LAT. As a baseline, we also include the results obtained directly using the LMEmb-
Prot embeddings (from Table 6.3). The cosine similarity histograms for the fine-tuned
FoldEmb embeddings can be found in Supplementary Figure 6.S1. As can be observed, the
LMEmb embeddings can be significantly enhanced by fine-tuning even when a simple MLP
model is used for the task (LMEmb-Prot vs MLP in Figure 6.3), especially at the superfamily
and fold levels. In general, after fine-tuning, the transformer-based protein-LM embeddings
(ESM-1b, ESM-MSA, ProtBERT, ProtT5) show better PFR performance than the LSTM-based
ones (UniRep, SeqVec). Regarding the supervised models, the RBG and LAT, both working
on LMEmb-AA, provide better PFR results than MLP at the superfamily and fold levels. This
contrasts with the results in Table 6.3 for LMEmb-AA, suggesting that the RBG and LAT
models successfully exploit the protein sequence information possibly contained in these
self-supervised embeddings. Thus, the top-performing model at the fold level is ProtT5 +
LAT, which obtains 82.6% top 1 and 88.5% top 5 accuracy values. In contrast, our ESM-MSA
+ RBG model provides the best PFR results at the family and superfamily levels, with 83.2%
and 81.3% top 1 accuracy, respectively. It is therefore clear that the fine-tuned FoldEmb
embeddings are necessary to identify structural similarity in the hardest cases—when the
sequence similarities are low.

6.3 Results and discussion

6

141

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

0

20

40

60

80

100

Pa
irw

ise
 F

ol
d

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Family Level

LMEmb-Prot (top 1)
LMEmb-Prot (top 5)

MLP (top 1)
MLP (top 5)

RBG (top 1)
RBG (top 5)

LAT (top 1)
LAT (top 5)

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Superfamily Level

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Fold Level

Figure 6.3: Pairwise fold recognition (PFR) accuracy (%) results on the LINDAHL test set. At each level (family,
superfamily and fold), we compare the performance of the 6 protein-LM embeddings in Table 6.1 (UniRep, SeqVec,
ESM-1b, ESM-MSA, ProtBERT, and ProtT5) fine-tuned by the 3 neural architectures from Figure 6.2 (MLP in cyan,
RBG in orange, and LAT in green colored bars). For each one, top 1 accuracy is shown in filled bars, while top 5
accuracy is shown in empty bars. Baseline PFR results using the protein-level embeddings LMEmb-Prot are also
included as square markers over the MLP bars (note that MLP uses these embeddings as input).

We additionally performed an ablation study (see Supplementary Table 6.S3) using the
softmax cross-entropy as loss function instead of the LMCL. This modification leads to a
performance drop for most combinations of input LMEmb and neural architecture, which
is particularly noticeable at the fold level. This confirms that the LMCL is a more suitable
loss function to learn a proper organization of the fold-representative FoldEmb vectors in
the embedding space.

6.3.3 Performance of fine-tuning models in DFC task

We evaluated the ability of our neural network models to directly classify the input protein
domains into fold classes (DFC task). The classification results for the LINDAHL_1.75 and
SCOP_2.06 test sets are shown in Figure 6.4. As in the PFR task, we also include the results
provided by the LMEmb-Prot embeddings as a baseline (from Supplementary Table 6.S2).
The results for LINDAHL_1.75 in Figure 6.4a show a similar pattern to those in Figure 6.3
for the PFR task. However, in this case, the differences in performance between the family
and fold levels are more pronounced. This behavior is expected. As test domains in the
family subset share a higher sequence similarity with some domains from the training
set, they are likely to be easier to predict for the models. This reinforces the idea that
protein-LM embeddings capture sequence similarity in proteins. By contrast, the accuracy
results at the fold level are indicative of the generalization capability of the models. Here
we observe that the best performing model at both the superfamily and fold levels is ProtT5
+ RBG (79.5% and 55.7% top 1 accuracy, respectively), followed by ProtT5 + LAT (77.6%

6

142 6 An analysis of protein language model embeddings for fold prediction

(a) LINDAHL_1.75 Test Set

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

0

20

40

60

80

100

Di
re

ct
 F

ol
d

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Family Subset

LMEmb-Prot (top 1)
LMEmb-Prot (top 5)

MLP (top 1)
MLP (top 5)

RBG (top 1)
RBG (top 5)

LAT (top 1)
LAT (top 5)

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Superfamily Subset

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Fold Subset

(b) SCOP_2.06 Test Set

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

0

20

40

60

80

100

Di
re

ct
 F

ol
d

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Family Subset

LMEmb-Prot (top 1)
LMEmb-Prot (top 5)

MLP (top 1)
MLP (top 5)

RBG (top 1)
RBG (top 5)

LAT (top 1)
LAT (top 5)

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Superfamily Subset

UniRep
SeqVec

ESM-1b
ESM-MSA

ProtBERT
ProtT5

Fold Subset

Figure 6.4: Direct fold classification (DFC) accuracy (%) results on the (a) LINDAHL_1.75 and (b) SCOP_2.06 test
sets. For each subset (family, superfamily and fold), we compare the performance of the 6 protein-LM embeddings
in Table 6.1 (UniRep, SeqVec, ESM-1b, ESM-MSA, ProtBERT, and ProtT5) fine-tuned by the 3 neural architectures
from Figure 6.2 (MLP in cyan, RBG in orange, and LAT in green colored bars). For each one, top 1 accuracy is
shown in filled bars, while top 5 accuracy is shown in empty bars. Baseline DFC results using the protein-level
embeddings LMEmb-Prot are also included as square markers over the MLP bars (note that MLP uses these
embeddings as input).

and 50.0%). It is also worth noting the huge differences between top 1 and top 5 accuracies
of some protein-LM embeddings in the fold subset. For example, for the ESM-MSA + RBG
model the top 1 accuracy is 40.0%, whereas the top 5 accuracy reaches 65.7%.

Figure 6.4b shows the results of the DFC task on the SCOP_2.06 test set. As can be
observed, the models predict the family and superfamily levels subsets with high accuracy
(close to 100% in some cases). However, similarly to the LINDAHL_1.75 test set, the fold
subset in SCOP_2.06 is also difficult to classify correctly. Nevertheless, our fine-tuned
models outperform the original LMEmb embeddings. Compared to the rest of embeddings,

6.3 Results and discussion

6

143

ESM-MSA works particularly well here for all considered neural architectures (MLP, RBG
and LAT), with top 1 accuracy values around 70% at the fold level.

6.3.4 Ensemble approaches for increased accuracy in PFR

and DFC tasks

Given the good performance of the transformer-based ESM-1b, ESM-MSA, and ProtT5
embeddings processed by the RBG and LAT models, we now explore the benefits of
integrating them through ensemble strategies for the two assessed tasks; using average
ensemble for PFR, and soft voting ensemble for DFC. Provided that the predictions from
individual models are sufficiently uncorrelated (see Supplementary Figure 6.S2), we expect
an increase in performance after ensembling. In Figure 6.5 we show the accuracy results
at the fold level for the ensembling integration of all 6 aforementioned models (the 3
protein-LMs by the 2 neural architectures). This approach outperforms other integration
options that can be found in the Supplementary Material (Table 6.S4 for PFR and Table 6.S5
for DFC). As a reference, we also include the performance of the 6 individual models used
in the ensemble.

For the PFR task, the LINDAHL test set is used to evaluate the ensemble strategy
(Figure 6.5a). By simply averaging the cosine similarity scores we obtain 86.3% top 1
accuracy (93.1% top 5) at the fold level, almost 4 percentage points over the best individual
model (ProtT5 + LAT). For the DFC task evaluated on LINDAHL_1.75 (Figure 6.5b), the
ensemble approach obtains 57.1% top 1 accuracy at the fold level, slightly better than the
best individual ProtT5 + RBG model (55.7%). This suggests that accurate classification at
the fold level is still difficult even after ensembling. However, a noticeable improvement
is observed when considering the top 5 accuracy (81.4% over the 65.7% in ProtT5 + RBG).
Additionally, the ensemble approach yields better performance for the SCOP_2.06 test set
(Figure 6.5c) in terms of both top 1 and top 5 accuracy (75.7% and 86.5%, respectively), that
is, more than 5 percentage points over the best individual model (ESM-MSA + RBG).

When taking into account the family and superfamily levels (Supplementary Ta-
bles 6.S4 and 6.S5), a performance boost over the individual models is also achieved by the
ensembling approach in both tasks (PFR and DFC).

6.3.5 Comparison with state-of-the-art methods for fold

recognition and fold classification

Finally, we compare the performance of our best individual models, as well as the ensemble
strategy we propose, against the state-of-the-art results for fold recognition and fold
classification. First, we compare to several methods intended for the PFR task, which
can be grouped into three categories: (i) alignment and threading methods such as PSI-
BLAST [14], HHpred [20], RAPTOR [23], BoostThreader [22], SPARKS-X [24], MRFalign

6

144 6 An analysis of protein language model embeddings for fold prediction

0

20

40

60

80

100

Pa
irw

ise
 F

ol
d

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

(a) LINDAHL Fold Level

0

20

40

60

80

100

Di
re

ct
 F

ol
d

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

(b) LINDAHL_1.75 Fold Subset

ESM-1b
ESM-MSA

ProtT5
Ensemble

0

20

40

60

80

100

Di
re

ct
 F

ol
d

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Individual models

(c) SCOP_2.06 Fold Subset

RBG (top 1)
RBG (top 5)

LAT (top 1)
LAT (top 5)

Figure 6.5: Ensemble strategy accuracy (%) results at the fold level for the (a) pairwise fold recognition (PFR)
task using the LINDAHL test set, and the direct fold classification (DFC) task using both (b) LINDAHL_1.75 and
(c) SCOP_2.06 test sets. Here the best performing ensemble strategy is shown (in purple), which involves the
integration of 6 individual models. As a reference, the results of such models are also included—the 3 protein-LM
embeddings (ESM-1b, ESM-MSA, and ProtT5) with neural architectures RBG (in orange) and LAT (in green). Top
1 and top 5 accuracies for each technique are represented in filled and empty bars, respectively.

[21], and CEthreader [28]; (ii) machine learning methods such as FOLDpro [29], RF-Fold
[31], DN-Fold [31], RFDN-Fold [31]; and (iii) deep learning methods such as DeepFR [38],
CNN-BGRU [44] VGGfold [42], FoldTR [43], and FoldHSphere [45]. Note that the PFR
results of the alignment methods PSI-BLAST [14] and HHpred [20] can be fairly compared

6.3 Results and discussion

6

145

to the performance of the LMEmb embeddings (in Table 6.3), as all these methods rely
exclusively on sequential information. In addition, it must be noted that the CNN-BGRU
and FoldHSphere methods use traditional amino acid-level features as input, including the
PSSM profile matrix and one-hot encodings for each amino acid, and therefore constitute a
strong baseline for comparing the performance of the protein-LM embeddings. We also
provide the results of the FoldHSphere method without the Thomson-LMCL stage. That is,
the RBG model (Figure 6.2b) trained on traditional features and using the LMCL as loss
function [45], which we denote as PSSM/SS + RBG here.

Table 6.4 shows the PFR accuracy results achieved by these methods on the LINDAHL
test set, as well as the best performing model ProtT5 + LAT and the average ensemble. We
notice that ProtT5 + LAT alone outperforms all state-of-the-art methods at the superfamily
and fold levels. At the family level, it also obtains better accuracy than the rest of deep
learning-based methods which, at this level, tend to performworse than alignment methods.
Furthermore, as we discussed in the previous section, the ensemble strategy shows a
performance boost at the fold level, but also at the family level. At this level, it achieves a

Table 6.4: Three-level LINDAHL pairwise fold recognition (PFR) results of the best individual model and the
ensembling strategy (average ensemble), in comparison with the state-of-the-art.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST [14] 71.2 72.3 27.4 27.9 4.0 4.7
HHpred [23] 82.9 87.1 58.0 70.0 25.2 39.4
RAPTOR [23] 86.6 89.3 56.3 69.0 38.2 58.7
BoostThreader [23] 86.5 90.5 66.1 76.4 42.6 57.4
SPARKS-X [24] 84.1 90.3 59.0 76.3 45.2 67.0
FOLDpro [31] 85.0 89.9 55.0 70.0 26.5 48.3
RF-Fold [31] 84.5 91.5 63.4 79.3 40.8 58.3
DN-Fold [31] 84.5 91.2 61.5 76.5 33.6 60.7
RFDN-Fold [31] 84.7 91.5 65.7 78.8 37.7 61.7
MRFalign [38] 85.2 90.8 72.4 80.9 38.6 56.7
CEthreader [44] 76.6 87.2 69.4 81.8 52.3 70.4
DeepFR (s1) [38] 67.4 80.9 47.0 63.4 44.5 62.9
DeepFR (s2) [38] 65.4 83.4 51.4 67.1 56.1 70.1
CNN-BGRU [44] 71.0 87.7 60.1 77.2 58.3 78.8
VGGfold [42] 67.9 84.3 53.2 68.4 58.3 73.5
FoldTR [43] 55.5 79.8 62.4 78.6 62.6 82.6
PSSM/SS + RBG [45] 75.1 89.5 69.8 85.3 74.1 82.2
FoldHSphere [45] 76.4 89.2 72.8 86.4 75.1 84.1

ProtT5 + LAT 81.1 91.7 80.2 90.6 82.6 88.5
Ensemble Strategy 86.5 94.6 81.1 90.8 86.3 93.1

The top 1 and top 5 accuracy (%) results are provided at the family, superfamily and fold levels. Boldface
indicates best performance.

6

146 6 An analysis of protein language model embeddings for fold prediction

Table 6.5: Three-level LINDAHL pairwise fold recognition (PFR) results of the random forest (RF) ensemble, in
comparison with the state-of-the-art.

Method

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFRpro (s1) [38] 85.6 91.9 66.6 82.0 57.6 73.8
DeepFRpro (s2) [38] 83.1 92.3 69.6 82.5 66.0 78.8
CNN-BGRU-RF+ [44] 85.4 93.5 73.3 87.8 76.3 85.7
FoldTRpro [43] 83.8 92.8 76.0 89.2 58.3 87.2
FSD_XGBoostpro [43] 82.7 94.6 77.9 91.5 68.2 91.9
FoldHSpherePro [45] 85.2 93.0 79.0 89.2 81.3 90.3

RF Ensemble 79.6 92.8 82.5 92.4 90.3 94.4

The top 1 and top 5 accuracy (%) results are provided at the family, superfamily and fold levels. Boldface
indicates best performance.

top 1 accuracy similar to the best alignment methods, and clearly outperforms all in top
5. Therefore, the use of the protein-LM embeddings as the input representation not only
bridges the gap at the family and fold levels, but also increases the performance of fold
recognition consistently at all levels.

In addition, in order to compare with DeepFRpro [38], CNN-BGRU-RF+ [44], FoldTRpro
[43], FSD_XGBoostpro [43], and FoldHSphere [45], which apply a random forest (RF)
ensemble, we implemented and tested the same RF strategy in our ensemble approach
(see Materials and Methods section). It must be noted that these results cannot be directly
compared to the previous ones, as this approach involves additional training of the RF
models on the test set in a 10-stage cross-testing manner. From Table 6.5 we can see that
the RF ensemble introduced here consistently outperforms all previous state-of-the-art
methods at the superfamily and fold levels. However, it provides lower accuracy at the
family level. Interestingly, this evaluation scenario seems to lead to unexpected results due
to cross-testing. That is why we believe average ensembling provides more reliable results
than the RF ensemble, and can be compared more fairly against the individual models.

For the DFC task we compare to deep learning methods that allow for the direct
classification of protein domains into different folds. In Table 6.6 we show the results for
the LINDAHL_1.75 and SCOP_2.06 test sets. Using both sets we evaluated the state-of-
the-art DeepFR, CNN-BGRU, and FoldHSphere methods. In addition, for SCOP_2.06 we
include the results of the DeepSF method [57], which originally introduced the SCOP_2.06
set and the DFC task. In the case of LINDAHL_1.75 (Table 6.6a), we observe that the
top-performing ProtT5 + RBG model obtains better results than previous methods at all
three levels, considerably outperforming them at the superfamily and fold levels. For
SCOP_2.06 (Table 6.6b), the top-performing ESM-MSA + RBG model seems to fit the family
and superfamily subsets almost perfectly, obtaining accuracy values above 99%. It also

6.4 Conclusion

6

147

Table 6.6: Three-level (a) LINDAHL_1.75 and (b) SCOP_2.06 direct fold classification (DFC) results of the best
individual models and the ensembling strategy (soft voting ensemble), in comparison with the state-of-the-art.

(a) LINDAHL_1.75 Test Set

Method

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s1) 57.3 72.5 70.7 83.9 34.8 55.7 11.4 25.7
DeepFR (s2) 66.5 76.0 79.5 86.5 45.2 57.6 20.0 42.9
CNN-BGRU 70.3 85.1 80.7 92.7 48.6 71.0 47.1 62.9
PSSM/SS + RBG 81.8 90.8 93.7 98.1 63.3 80.0 35.7 61.4
FoldHSphere 82.0 90.9 92.7 97.3 66.2 81.4 38.6 65.7

ProtT5 + RBG 87.6 92.4 94.3 97.1 79.5 88.1 55.7 65.7
Ensemble Strategy 92.3 97.5 97.6 99.3 89.1 97.6 57.1 81.4

(b) SCOP_2.06 Test Set

Method

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeepFR (s1) 89.2 94.2 88.1 93.9 91.1 95.4 24.3 37.8
DeepFR (s2) 91.2 95.6 91.1 95.8 92.3 96.4 37.8 54.1
DeepSF [57] 73.0 90.3 75.9 91.8 72.2 90.1 51.4 67.6
CNN-BGRU 89.9 96.5 91.5 96.8 90.1 97.0 48.7 64.9
PSSM/SS + RBG 96.1 98.3 96.8 98.5 96.7 98.8 54.1 70.3
FoldHSphere 96.5 98.3 97.2 98.4 97.1 98.9 51.4 67.6

ESM-MSA + RBG 99.2 99.4 99.5 99.5 99.7 99.8 70.3 81.1
Ensemble Strategy 99.3 99.6 99.3 99.6 99.8 99.9 75.7 86.5

The top 1 and top 5 accuracy (%) results are provided for the full test set, and the family, superfamily and fold
subsets. Boldface indicates best performance per set.

generalizes better than previous methods in the fold subset, with a top 1 accuracy of 70.3%
(81.1% top 5) which is more than 15 percentage points higher than the previous methods
DeepSF and FoldHSphere (both obtained 51.5% top 1 and 65.7% top 5 accuracies). Moreover,
as discussed before, the ensemble strategy already outperformed the best individual models
on both test sets and, therefore, all the considered methods from the state-of-the-art.

Taken together, these results show the superiority of protein-LM embeddings over other
sequence representations such as the PSSM and secondary structure (DeepSF, CNN-BGRU,
and FoldHSphere), or two-dimensional representations such as contact maps (DeepFR,
VGGfold, and FoldTR).

6.4 Conclusion

This work provides a comparative analysis of different pre-trained embeddings from
protein language models (protein-LMs) in protein fold prediction. To do so, we fine-tuned
the protein-LM embeddings (LMEmb) through several state-of-the-art neural network

6

148 6 An analysis of protein language model embeddings for fold prediction

models using fold labels for supervised training. The performance was evaluated in two
differentiated tasks: pairwise fold recognition (PFR) and direct fold classification (DFC).
For the PFR task, we extracted a fold-representative embedding vector (FoldEmb), which
we used to predict the protein fold class by pairwise comparison with known protein
domains. In contrast, in the DFC task we directly mapped the protein domain into one
of the more than thousand existing fold classes in the SCOP database. For both tasks,
the protein-LM embeddings learned by pre-trained transformer-based models proved to
be more effective at identifying the protein fold than those extracted from LSTM-based
models. Thus, the ESM-MSA and ProtT5 amino acid-level embeddings in combination with
the RBG and LAT architectures provided the best PFR and DFC results. Compared to the
state-of-the-art, these models alone were able to predict the fold class with higher accuracy
at the three levels—family, superfamily and fold. Furthermore, our proposed ensemble
approaches provided a significant performance boost over these individual models and thus
over the current state-of-the-art. These results demonstrate the suitability of protein-LM
embeddings over other traditional protein representations for fold prediction.

Data availability

Input data, protein-LM embeddings, and trained models can be downloaded from http:

//sigmat.ugr.es/~amelia/FoldEmbeddings/. The source code used in this paper is
available at https://github.com/amelvim/FoldEmbeddings.

Funding

This work has been supported by the project PID2019-104206GB-I00 funded by MCIN/ AEI
/10.13039/ 501100011033, as well as the FPI grant BES-2017-079792.

Acknowledgments

Amelia would like to thank Chirag Raman for his valuable input and comments on the
manuscript.

Key points

• Pre-trained protein language models (protein-LMs) provide us with embedding repre-
sentations that can be efficiently used in a wide range of protein-related tasks, including
protein fold prediction.

• While protein-LM embeddings can be used for homology searching when the amino acid
sequence similarities are high, fine-tuned embeddings are necessary to predict structural
similarity in the most difficult cases (i.e. when the sequence similarities are low).

References

6

149

• Despite amino acid-level protein-LM embeddings alone fail to identify the protein fold
class, they yield the best results after being fine-tuned by the RBG and LAT models.

• When compared to the state-of-the-art methods for fold prediction, the use of protein-
LM embeddings proves superior to more traditional protein representations based on
multiple sequence alignments (MSA) as input source.

References

[1] A. W. Senior, R. Evans, J. Jumper, et al. Improved protein structure prediction using potentials
from deep learning. Nature, 577(7792):706–710, 2020.

[2] J. Jumper, R. Evans, A. Pritzel, et al. Highly accurate protein structure predictionwith AlphaFold.
Nature, 596(7873):583–589, 2021.

[3] M. Baek, F. DiMaio, I. Anishchenko, et al. Accurate prediction of protein structures and
interactions using a three-track neural network. Science, 373(6557):871–876, 2021.

[4] D. Whitford. Proteins: structure and function. John Wiley & Sons, 2013.

[5] M. Varadi, S. Anyango, M. Deshpande, et al. AlphaFold Protein Structure Database: massively
expanding the structural coverage of protein-sequence space with high-accuracy models.
Nucleic Acids Research, 2021.

[6] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification
of proteins database for the investigation of sequences and structures. journal of Molecular
Biology, 247(4):536–540, 1995.

[7] J.-M. Chandonia, L. Guan, S. Lin, et al. SCOPe: improvements to the structural classification of
proteins–extended database to facilitate variant interpretation and machine learning. Nucleic
Acids Research, 50(D1):D553–D559, 2022.

[8] C. A. Orengo, A. D. Michie, S. Jones, et al. CATH — a hierarchic classification of protein
domain structures. Structure, 5(8):1093–1109, 1997.

[9] I. Sillitoe, N. Bordin, N. Dawson, et al. CATH: increased structural coverage of functional
space. Nucleic acids research, 49(D1):D266–D273, 2021.

[10] H. M. Berman, J. Westbrook, Z. Feng, et al. The protein data bank. Nucleic Acids Research,
28(1):235–242, 2000.

[11] S. K. Burley, C. Bhikadiya, C. Bi, et al. RCSB Protein Data Bank: powerful new tools for
exploring 3d structures of biological macromolecules for basic and applied research and
education in fundamental biology, biomedicine, biotechnology, bioengineering and energy
sciences. Nucleic Acids Research, 49(D1):D437–D451, 2021.

[12] C. Chothia and A. V. Finkelstein. The classification and origins of protein folding patterns.
Annual Review of Biochemistry, 59(1):1007–1035, 1990.

[13] D. T. Jones, W. R. Taylor, and J. M. Thornton. A new approach to protein fold recognition.

6

150 6 An analysis of protein language model embeddings for fold prediction

Nature, 358(6381):86, 1992.

[14] E. Lindahl and A. Elofsson. Identification of related proteins on family, superfamily and fold
level. Journal of Molecular Biology, 295(3):613–625, 2000.

[15] R. D. Schaeffer and V. Daggett. Protein folds and protein folding. Protein Engineering, Design
& Selection, 24(1-2):11–19, 2010.

[16] R. Kolodny, L. Pereyaslavets, A. O. Samson, and M. Levitt. On the universe of protein folds.
Annual Review of Biophysics, 42:559–582, 2013.

[17] M. S. Abual-Rub and R. Abdullah. A survey of protein fold recognition algorithms. Journal of
Computer Science, 4(9):768–776, 2008.

[18] J. Chen, M. Guo, X. Wang, and B. Liu. A comprehensive review and comparison of different
computational methods for protein remote homology detection. Briefings in Bioinformatics,
19(2):231–244, 2018.

[19] K. Stapor, I. Roterman-Konieczna, and P. Fabian. Machine learning methods for the protein fold
recognition problem. In Machine Learning Paradigms, volume 149, pages 101–127. Springer,
2019.

[20] J. Söding. Protein homology detection by HMM–HMM comparison. Bioinformatics, 21(7):951–
960, 2005.

[21] J. Ma, S. Wang, Z. Wang, and J. Xu. MRFalign: Protein homology detection through alignment
of Markov random fields. PLoS Computational Biology, 10(3):e1003500, 2014.

[22] J. Xu, M. Li, D. Kim, and Y. Xu. RAPTOR: optimal protein threading by linear programming.
Journal of Bioinformatics and Computational Biology, 1(1):95–117, 2003.

[23] J. Peng and J. Xu. Boosting protein threading accuracy. In Annual International Conference on
Research in Computational Molecular Biology, pages 31–45, 2009.

[24] Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou. Improving protein fold recognition and
template-based modeling by employing probabilistic-based matching between predicted one-
dimensional structural properties of query and corresponding native properties of templates.
Bioinformatics, 27(15):2076–2082, 2011.

[25] J. Ma, J. Peng, S. Wang, and J. Xu. A conditional neural fields model for protein threading.
Bioinformatics, 28(12):i59–i66, 2012.

[26] J. A. Morales-Cordovilla, V. Sanchez, and M. Ratajczak. Protein alignment based on higher
order conditional random fields for template-based modeling. PLoS ONE, 13(6):e0197912, 2018.

[27] D. W. A. Buchan and D. T. Jones. EigenTHREADER: analogous protein fold recognition by
efficient contact map threading. Bioinformatics, 33(17):2684–2690, 2017.

[28] W. Zheng, Q. Wuyun, Y. Li, et al. Detecting distant-homology protein structures by aligning
deep neural-network based contact maps. PLoS Computational Biology, 15(10):1–27, 2019.

[29] J. Cheng and P. Baldi. A machine learning information retrieval approach to protein fold

References

6

151

recognition. Bioinformatics, 22(12):1456–1463, 2006.

[30] T. Jo and J. Cheng. Improving protein fold recognition by random forest. BMC Bioinformatics,
15(11):S14, 2014.

[31] T. Jo, J. Hou, J. Eickholt, and J. Cheng. Improving protein fold recognition by deep learning
networks. Scientific Reports, 5:17573, 2015.

[32] K. Yan, X. Fang, Y. Xu, and B. Liu. Protein fold recognition based on multi-view modeling.
Bioinformatics, 35(17):2982–2990, 2019.

[33] K. Yan, J. W. an Yong Xu, and B. Liu. Protein fold recognition based on auto-weighted multi-
view graph embedding learning model. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2020.

[34] K. Yan, J. Wen, Y. Xu, and B. Liu. MLDH-Fold: Protein fold recognition based on multi-view
low-rank modeling. Neurocomputing, 421:127–139, 2021.

[35] B. Liu, Y. Zhu, and K. Yan. Fold-LTR-TCP: protein fold recognition based on triadic closure
principle. Briefings in Bioinformatics, 2019.

[36] J. Shao, K. Yan, and B. Liu. FoldRec-C2C: protein fold recognition by combining cluster-to-
cluster model and protein similarity network. Briefings in Bioinformatics, 2020.

[37] J. Shao and B. Liu. ProtFold-DFG: protein fold recognition by combining Directed Fusion
Graph and PageRank algorithm. Briefings in Bioinformatics, 2020.

[38] J. Zhu, H. Zhang, S. C. Li, et al. Improving protein fold recognition by extracting fold-specific
features from predicted residue–residue contaacts. Bioinformatics, 33(23):3749–3757, 2017.

[39] B. Liu, C.-C. Li, and K. Yan. DeepSVM-fold: protein fold recognition by combining support
vector machines and pairwise sequence similarity scores generated by deep learning networks.
Briefings in Bioinformatics, 2019.

[40] C.-C. Li and B. Liu. MotifCNN-fold: protein fold recognition based on fold-specific features
extracted bymotif-based convolutional neural networks. Briefings in Bioinformatics, 21(6):2133–
2141, 2020.

[41] Y. Pang and B. Liu. SelfAT-Fold: protein fold recognition based on residue-based and motif-
based self-attention networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2020.

[42] Y. Liu, Y.-H. Zhu, X. Song, J. Song, and D.-J. Yu. Why can deep convolutional neural net-
works improve protein fold recognition? a visual explanation by interpretation. Briefings in
Bioinformatics, 2021.

[43] Y. Liu, K. Han, Y.-H. Zhu, et al. Improving protein fold recognition using triplet network and
ensemble deep learning. Briefings in Bioinformatics, 22(6):bbab248, 2021.

[44] A. Villegas-Morcillo, A. M. Gomez, J. A. Morales-Cordovilla, and V. Sanchez. Protein fold
recognition from sequences using convolutional and recurrent neural networks. IEEE/ACM

6

152 6 An analysis of protein language model embeddings for fold prediction

Transactions on Computational Biology and Bioinformatics, 18(6):2848–2854, 2021.

[45] A. Villegas-Morcillo, V. Sanchez, and A. M. Gomez. FoldHSphere: deep hyperspherical embed-
dings for protein fold recognition. BMC Bioinformatics, 22(1):1–21, 2021.

[46] L. Wei and Q. Zou. Recent progress in machine learning-based methods for protein fold
recognition. International journal of Molecular Sciences, 17(12):2118, 2016.

[47] C. H. Q. Ding and I. Dubchak. Multi-class protein fold recognition using support vector
machines and neural networks. Bioinformatics, 17(4):349–358, 2001.

[48] H.-B. Shen and K.-C. Chou. Ensemble classifier for protein fold pattern recognition. Bioinfor-
matics, 22(14):1717–1722, 2006.

[49] Q. Dong, S. Zhou, and J. Guan. A new taxonomy-based protein fold recognition approach
based on autocross-covariance transformation. Bioinformatics, 25(20):2655–2662, 2009.

[50] J.-Y. Yang and X. Chen. Improving taxonomy-based protein fold recognition by using global
and local features. Proteins: Structure, Function, and Bioinformatics, 79(7):2053–2064, 2011.

[51] J. Lyons, A. Dehzangi, R. Heffernan, et al. Advancing the accuracy of protein fold recognition by
utilizing profiles from hidden Markov models. IEEE Transactions on Nanobioscience, 14(7):761–
772, 2015.

[52] D. Chen, X. Tian, B. Zhou, and J. Gao. ProFold: Protein fold classification with additional
structural features and a novel ensemble classifier. BioMed Research International, 2016:1–10,
2016.

[53] J. Xia, Z. Peng, D. Qi, H. Mu, and J. Yang. An ensemble approach to protein fold classification by
integration of template-based assignment and support vector machine classifier. Bioinformatics,
33(6):863–870, 2016.

[54] W. Ibrahim and M. S. Abadeh. Protein fold recognition using deep kernelized extreme learning
machine and linear discriminant analysis. Neural Computing and Applications, 31(8):4201–4214,
2019.

[55] S. Bankapur and N. Patil. An enhanced protein fold recognition for low similarity datasets
using convolutional and skip-gram features with deep neural network. IEEE Transactions on
NanoBioscience, 20(1):42–49, 2020.

[56] W. Elhefnawy, M. Li, J. Wang, and Y. Li. DeepFrag-k: a fragment-based deep learning approach
for protein fold recognition. BMC Bioinformatics, 21(6):1–12, 2020.

[57] J. Hou, B. Adhikari, and J. Cheng. DeepSF: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

[58] X. Jing, Q. Dong, D. Hong, and R. Lu. Amino acid encoding methods for protein sequences: a
comprehensive review and assessment. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 17(6):1918–1931, 2019.

[59] M. Zhou, N. Duan, S. Liu, and H.-Y. Shum. Progress in neural nlp: Modeling, learning, and

References

6

153

reasoning. Engineering, 6(3):275–290, 2020.

[60] D. Ofer, N. Brandes, and M. Linial. The language of proteins: Nlp, machine learning & protein
sequences. Computational and Structural Biotechnology Journal, 19:1750–1758, 2021.

[61] B. Boeckmann, A. Bairoch, R. Apweiler, et al. The SWISS-PROT protein knowledgebase and
its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1):365–370, 2003.

[62] J. Mistry, S. Chuguransky, L. Williams, et al. Pfam: The protein families database in 2021.
Nucleic Acids Research, 49(D1):D412–D419, 2021.

[63] B. E. Suzek, Y. Wang, H. Huang, et al. UniRef clusters: a comprehensive and scalable alternative
for improving sequence similarity searches. Bioinformatics, 31(6):926–932, 2015.

[64] U. Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research,
49(D1):D480–D489, 2021.

[65] M. Steinegger and J. Söding. Clustering huge protein sequence sets in linear time. Nature
Communications, 9(1):1–8, 2018.

[66] M. Steinegger, M. Mirdita, and J. Söding. Protein-level assembly increases protein sequence
recovery from metagenomic samples manyfold. Nature Methods, 16(7):603–606, 2019.

[67] E. Asgari and M. R. K. Mofrad. Continuous distributed representation of biological sequences
for deep proteomics and genomics. PLoS ONE, 10(11):e0141287, 2015.

[68] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in
vector space. In International Conference on Learning Representations, 2013.

[69] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing
Systems, pages 3111–3119, 2013.

[70] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

[71] N. Strodthoff, P. Wagner, M. Wenzel, and W. Samek. UDSMProt: universal deep sequence
models for protein classification. Bioinformatics, 36(8):2401–2409, 2020.

[72] E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M. Church. Unified rational protein
engineering with sequence-based deep representation learning. Nature Methods, 16(12):1315–
1322, 2019.

[73] M. E. Peters, M. Neumann, M. Iyyer, et al. Deep contextualized word representations. arXiv
preprint arXiv:1802.05365, 2018.

[74] M. Heinzinger, A. Elnaggar, Y. Wang, et al. Modeling aspects of the language of life through
transfer-learning protein sequences. BMC Bioinformatics, 20(1):1–17, 2019.

[75] T. Bepler and B. Berger. Learning protein sequence embeddings using information from
structure. In International Conference on Learning Representations, 2019.

[76] A. Vaswani, N. Shazeer, N. Parmar, et al. Attention is all you need. In Advances in Neural

6

154 6 An analysis of protein language model embeddings for fold prediction

Information Processing Systems, volume 30, pages 5998–6008, 2017.

[77] R. Rao, N. Bhattacharya, N. Thomas, et al. Evaluating protein transfer learning with TAPE. In
Advances in Neural Information Processing Systems, 2019.

[78] A. Rives, J. Meier, T. Sercu, et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proceedings of the National Academy
of Sciences, 118(15):e2016239118, 2021.

[79] R. M. Rao, J. Liu, R. Verkuil, et al. MSA Transformer. In Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 8844–8856, 2021.

[80] A. Elnaggar, M. Heinzinger, C. Dallago, et al. ProtTrans: Towards cracking the language of
life’s code through self-supervised deep learning and high performance computing. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–16, 2021.

[81] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[82] Z. Dai, Z. Yang, Y. Yang, et al. Transformer-XL: attentive language models beyond a fixed-
length context. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, page 2978–2988, 2019.

[83] Z. Yang, Z. Dai, Y. Yang, et al. XLNet: generalized autoregressive pretraining for language
understanding. In Advances in Neural Information Processing Systems, 2019.

[84] C. Raffel, N. Shazeer, A. Roberts, et al. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[85] Z. Lan, M. Chen, S. Goodman, et al. ALBERT: a lite BERT for self-supervised learning of
language representations. In International Conference on Learning Representations, 2020.

[86] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. ELECTRA: pre-training text encoders as
discriminators rather than generators. In International Conference on Learning Representations,
2020.

[87] H. Stärk, C. Dallago, M. Heinzinger, and B. Rost. Light attention predicts protein location from
the language of life. Bioinformatics Advances, 11 2021. vbab035.

[88] A. Villegas-Morcillo, S. Makrodimitris, R. C. H. J. van Ham, et al. Unsupervised protein
embeddings outperform hand-crafted sequence and structure features at predicting molecular
function. Bioinformatics, 37(2):162–170, 2021.

[89] M. Littmann, M. Heinzinger, C. Dallago, T. Olenyi, and B. Rost. Embeddings from deep learning
transfer GO annotations beyond homology. Scientific reports, 11(1):1–14, 2021.

[90] I. van den Bent, S. Makrodimitris, and M. Reinders. The power of universal contextualized
protein embeddings in cross-species protein function prediction. Evolutionary Bioinformatics,
17:1–15, 2021.

References

6

155

[91] J. Meier, R. Rao, R. Verkuil, et al. Language models enable zero-shot prediction of the effects of
mutations on protein function. In Advances on Neural Information Processing Systems, 2021.

[92] C. Marquet, M. Heinzinger, T. Olenyi, et al. Embeddings from protein language models predict
conservation and variant effects. Human Genetics, pages 1–19, 2021.

[93] J. Vig, A. Madani, L. R. Varshney, et al. BERTology meets biology: Interpreting attention in
protein language models. In International Conference on Learning Representations, 2021.

[94] M. Steinegger, M. Meier, M. Mirdita, et al. HH-suite3 for fast remote homology detection and
deep protein annotation. BMC Bioinformatics, 20(1):1–15, 2019.

[95] M. Mirdita, L. von den Driesch, C. Galiez, et al. Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic Acids Research, 45(D1):D170–D176, 2017.

[96] B. Krause, L. Lu, I. Murray, and S. Renals. Multiplicative lstm for sequence modelling. arXiv
preprint arXiv:1609.07959, 2016.

[97] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[98] J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans. Axial attention in multidimensional
transformers. arXiv preprint arXiv:1912.12180, 2019.

[99] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pages 448–456, 2015.

[100] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of Machine Learning Research,
15(1):1929–1958, 2014.

[101] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[102] H. Wang, Y. Wang, Z. Zhou, et al. CosFace: Large margin cosine loss for deep face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
5265–5274, 2018.

[103] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[104] A. Paszke, S. Gross, S. Chintala, et al. Automatic differentiation in PyTorch. In Advances in
Neural Information Processing Systems, 2017.

6

156 6 An analysis of protein language model embeddings for fold prediction

6.S Supplementary material

0.5 0.0 0.5 1.0
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
Un

iR
ep

LMEmb-AA

0.5 0.0 0.5 1.0

LMEmb-Prot

0.5 0.0 0.5 1.0

FoldEmb-MLP

0.5 0.0 0.5 1.0

FoldEmb-RBG

0.5 0.0 0.5 1.0

FoldEmb-LAT

0.5 0.0 0.5 1.0
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
Se

qV
ec

0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

0.5 0.0 0.5 1.0
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
ES

M
-1

b

0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

0.5 0.0 0.5 1.0
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
ES

M
-M

SA

0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

0.5 0.0 0.5 1.0
0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
Pr

ot
BE

RT

0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

0.5 0.0 0.5 1.0
Similarity Scores

0.000
0.025
0.050
0.075
0.100
0.125
0.150

Pr
ob

ab
ilit

y
Pr

ot
T5

0.5 0.0 0.5 1.0
Similarity Scores

0.5 0.0 0.5 1.0
Similarity Scores

0.5 0.0 0.5 1.0
Similarity Scores

0.5 0.0 0.5 1.0
Similarity Scores

negatives positives

Figure 6.S1: Cosine similarity probability histograms computed for all unique pairs within the LINDAHL test
set (976 domains), grouping the negative pairs in gray color, and positive pairs in red. Here we compare the
scores computed over pre-trained LMEmb-AA (using the SSA metric), and LMEmb-Prot embeddings, as well
as the fine-tuned FoldEmb embeddings using the MLP, RBG, and LAT models, for the 6 protein-LM (UniRep,
SeqVec, ESM-1b, ESM-MSA, ProtBERT, and ProtT5). We observe that the FoldEmb embeddings provide a better
separation of the two classes, especially when considering the transformer-based ESM-1b, ESM-MSA, and ProtT5
embeddings as input to the RBG and LAT fine-tuning models.

6.S Supplementary material

6

157

Table 6.S1: Performance of the LMEmb embeddings in the pairwise fold recognition (PFR) task, using the
LINDAHL test set. The top 1 and top 5 accuracy (%) results are provided at the family, superfamily and fold levels.
We compare the performance of the amino acid-level embeddings LMEmb-AA and protein-level embeddings
LMEmb-Prot, using 𝐿1 distance as comparison metric. Underline indicates best performance.

Embeddings

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

LMEmb-AA (𝐿× 𝐹)

UniRep 51.4 64.0 30.0 41.7 17.1 32.1
SeqVec 31.7 45.4 5.8 12.9 0.3 4.4
ESM-1b 60.2 66.5 14.5 22.4 3.7 9.0
ESM-MSA 83.1 90.1 55.8 64.5 20.2 35.8
ProtBERT 33.2 44.3 6.0 12.0 3.4 13.4
ProtT5 74.6 84.9 25.6 40.6 4.7 13.7

LMEmb-Prot (𝐹)

UniRep 45.6 62.5 34.1 45.6 19.6 36.8
SeqVec 59.1 75.0 39.9 53.9 16.8 36.1
ESM-1b 82.2 89.0 47.0 65.7 21.2 39.6
ESM-MSA 76.9 88.3 43.3 54.4 15.9 29.3
ProtBERT 45.9 62.0 13.8 28.8 9.7 20.6
ProtT5 79.8 89.4 35.0 56.0 16.2 30.5

Table 6.S2: Performance of the LMEmb-Prot embeddings in the direct fold classification (DFC) task, using the
(a) LINDAHL_1.75 and (b) SCOP_2.06 test sets, and cosine similarity as comparison metric. The top 1 and top 5
accuracy (%) results are provided for the full test set, and the family, superfamily and fold subsets. Underline
indicates best performance per set.

(a) LINDAHL_1.75 Test Set

Embeddings

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

UniRep 42.1 53.2 49.4 61.8 29.1 35.7 20.0 32.9
SeqVec 57.1 66.7 66.8 77.0 42.4 50.5 18.6 28.6
ESM-1b 73.8 80.0 83.1 88.5 62.9 69.1 28.6 41.4
ESM-MSA 68.4 73.7 83.3 87.5 43.8 53.3 17.1 18.6
ProtBERT 28.7 43.6 34.7 52.3 17.6 27.1 11.4 20.0
ProtT5 68.7 76.7 79.7 87.5 51.9 61.0 25.7 32.9

(b) SCOP_2.06 Test Set

Embeddings

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

UniRep 59.1 69.6 78.6 84.8 51.9 63.7 10.8 43.2
SeqVec 77.9 84.6 91.8 93.9 73.2 81.4 21.6 54.1
ESM-1b 94.0 96.6 95.7 97.7 94.6 97.0 35.1 54.1
ESM-MSA 95.9 96.8 96.9 97.6 96.9 97.6 27.0 43.2
ProtBERT 57.5 70.3 83.2 89.1 47.4 62.8 21.6 48.7
ProtT5 93.9 96.8 95.4 98.0 94.0 96.8 56.8 75.7

6

158 6 An analysis of protein language model embeddings for fold prediction

Table 6.S3: Pairwise fold recognition (PFR) top 1 accuracy (%) results on the LINDAHL test set. At each level
(family, superfamily and fold), we compare the performance of the 6 protein-LM embeddings and the 3 neural
architectures trained using either softmax cross-entropy loss or large margin cosine loss (LMCL). Underline
indicates best performance for each loss function and model, boldface indicates best overall.

Embeddings

MLP Model RBG Model LAT Model

Family Superfamily Fold Family Superfamily Fold Family Superfamily Fold

Softmax Loss

UniRep 49.5 38.9 28.0 36.6 40.1 37.4 34.1 37.6 29.0
SeqVec 64.3 50.7 34.6 45.8 46.3 43.0 61.4 48.6 42.4
ESM-1b 82.3 71.4 58.9 64.1 62.4 60.7 81.6 77.2 63.9
ESM-MSA 85.6 63.8 34.6 82.0 76.3 67.9 82.3 79.7 58.3
ProtBERT 68.5 45.2 29.6 56.4 54.8 49.5 69.7 54.8 30.8
ProtT5 86.7 77.0 60.1 68.5 68.2 73.5 85.0 81.1 64.5

LMCL

UniRep 48.5 42.6 41.1 46.5 45.4 45.8 45.0 40.1 40.2
SeqVec 61.8 55.8 51.1 53.3 52.1 48.9 59.1 59.2 60.1
ESM-1b 80.9 74.7 73.5 75.1 74.2 74.1 82.0 76.3 74.5
ESM-MSA 85.2 72.1 60.4 83.2 81.3 73.8 78.0 75.8 75.4
ProtBERT 65.0 57.8 49.5 67.7 69.4 66.7 67.0 63.8 61.1
ProtT5 82.9 78.6 73.5 79.3 79.7 80.4 81.1 80.2 82.6

Table 6.S4: Ensemble results for the pairwise fold recognition (PFR) task using LINDAHL. Here we include
the results of the 3 best performing protein-LM embeddings (ESM-1b, ESM-MSA, and ProtT5) with 2 neural
architectures (RBG and LAT); as well as the average ensemble for different combinations of the 6 individual
models. For each one, the top 1 and top 5 accuracy (%) results are provided at the family, superfamily and fold
levels. Underline indicates best performance per group, boldface indicates best overall.

Embeddings Models

Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Individual Models

ESM-1b RBG 75.1 87.2 74.2 84.6 74.1 83.2
LAT 82.0 90.6 76.3 86.4 74.5 84.1

ESM-MSA RBG 83.2 93.2 81.3 87.3 73.8 87.2
LAT 78.0 91.9 75.8 86.2 75.4 85.0

ProtT5 RBG 79.3 91.7 79.7 88.5 80.4 88.5
LAT 81.1 91.7 80.2 90.6 82.6 88.5

Average Ensemble

ESM-1b
RBG + LAT

81.4 89.9 75.3 84.8 75.4 86.0
ESM-MSA 84.1 93.9 80.2 86.6 76.9 88.5
ProtT5 81.4 92.4 80.2 91.0 84.7 89.7

ESM-1b + ESM-MSA + ProtT5
RBG 82.9 93.5 83.6 91.2 84.7 92.5
LAT 87.2 95.0 80.9 90.8 82.9 91.0
RBG + LAT 86.5 94.6 81.1 90.8 86.3 93.1

6.S Supplementary material

6

159

Table 6.S5: Ensemble results for the direct fold classification (DFC) task using (a) LINDAHL_1.75 and (b)

SCOP_2.06. Here we include the results of the 3 best performing protein-LM embeddings (ESM-1b, ESM-MSA, and
ProtT5) with 2 neural architectures (RBG and LAT); as well as the soft voting ensemble for different combinations
of the 6 individual models. For each one, the top 1 and top 5 accuracy (%) results are provided for the full test set,
and the family, superfamily and fold subsets. Underline indicates best performance per group, boldface indicates
best overall.

(a) LINDAHL_1.75 Test Set

Embeddings Model

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Individual Models

ESM-1b RBG 83.7 89.0 92.2 95.3 74.3 82.9 40.0 54.3
LAT 85.7 89.7 92.6 94.6 81.9 86.7 38.6 57.1

ESM-MSA RBG 86.6 93.3 96.5 98.1 74.3 89.1 40.0 65.7
LAT 84.6 91.4 94.4 97.6 71.4 83.8 41.4 61.4

ProtT5 RBG 87.6 92.4 94.3 97.1 79.5 88.1 55.7 65.7
LAT 87.6 94.3 95.6 97.8 77.6 91.9 50.0 71.4

Soft Voting Ensemble

ESM-1b
RBG + LAT

85.9 90.7 93.7 96.1 77.6 86.2 44.3 58.6
ESM-MSA 88.1 94.5 97.0 97.8 79.1 91.9 40.0 74.3
ProtT5 89.8 94.4 96.3 98.0 81.9 91.9 58.6 71.4

ESM-1b + ESM-MSA + ProtT5
RBG 92.2 97.0 97.8 99.3 88.1 96.7 57.1 78.6
LAT 90.8 96.3 97.5 99.3 85.7 95.7 50.0 72.9
RBG + LAT 92.3 97.5 97.6 99.3 89.1 97.6 57.1 81.4

(b) SCOP_2.06 Test Set

Embeddings Model

Full Set Family Superfamily Fold

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

Individual Models

ESM-1b RBG 96.1 97.6 97.6 98.4 96.5 98.1 48.7 62.2
LAT 96.5 97.2 97.8 98.4 96.9 97.6 51.4 56.8

ESM-MSA RBG 99.2 99.4 99.5 99.5 99.7 99.8 70.3 81.1
LAT 98.9 99.4 99.1 99.3 99.4 99.8 70.3 83.8

ProtT5 RBG 97.8 98.9 98.3 98.8 98.4 99.4 59.5 75.7
LAT 98.0 99.3 98.3 99.2 98.5 99.7 67.6 83.8

Soft Voting Ensemble

ESM-1b
RBG + LAT

97.0 98.2 98.4 99.1 97.4 98.5 51.4 67.6
ESM-MSA 99.1 99.5 99.3 99.5 99.5 99.9 75.7 83.8
ProtT5 98.5 99.2 98.9 99.3 98.8 99.5 73.0 83.8

ESM-1b + ESM-MSA + ProtT5
RBG 99.3 99.6 99.3 99.6 99.8 99.9 73.0 83.8
LAT 99.2 99.6 99.3 99.6 99.7 99.9 70.3 83.8
RBG + LAT 99.3 99.6 99.3 99.6 99.8 99.9 75.7 86.5

6

160 6 An analysis of protein language model embeddings for fold prediction

(a) LINDAHL Fold Level

ESM-1b + RBG

ESM-1b + LAT
ProtT5 + LAT

ProtT5 + RBG

ESM-MSA + LAT

ESM-MSA + RBG
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ed

ia
n

Ja
cc

ar
d

Di
st

an
ce

(b) LINDAHL_1.75 Fold Subset

ESM-MSA + RBG

ESM-1b + RBG

ESM-MSA + LAT
ProtT5 + LAT

ESM-1b + LAT

ProtT5 + RBG
0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Ja
cc

ar
d

Di
st

an
ce

(c) SCOP_2.06 Fold Subset

ESM-MSA + RBG
ProtT5 + RBG

ESM-1b + LAT
ProtT5 + LAT

ESM-MSA + LAT

ESM-1b + RBG
0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n

Ja
cc

ar
d

Di
st

an
ce

Figure 6.S2: Hierarchical clustering with complete linkage of the 6 best performing models (ESM-1b, ESM-MSA,
and ProtT5 embeddings with RBG and LAT architectures). As metric, we used the median of the Jaccard distance
distribution between each two models. (a) For the LINDAHL test set (PFR task), we compared the 50 closest
neighbors of each protein domain at the fold level, using the cosine similarity scores of their fold-representative
embeddings. For the (b) LINDAHL_1.75 and (c) SCOP_2.06 test sets (DFC task), we compared the 50 fold classes
with maximum score for each domain in the fold subset. In all cases, the models cluster at very high values of
median Jaccard distance, suggesting that the scores provided by each model are quite dissimilar.

161

III

Conclusions

7

163

7

Conclusions

We are just an advanced breed of monkeys
on a minor planet of a very average star.

But we can understand the universe.
That makes us something very special.

— Stephen Hawking

7.1 Conclusions

In this Thesis we aimed at developing protein fold identification systems that overcome
the challenges found in previous approaches, with a view to advance the state of the art.
To do so, we leveraged recent progress in deep learning techniques to learn meaningful
representations of the protein fold. The main conclusions drawn from this research are
listed below:

• Native contact maps are good predictors of protein fold type. Our results in
Chapters 2 and 3 confirm that the fold-related representations learned from native
contact maps outperform the previous state-of-the-art method DeepFR, which uses
estimated contact maps.

• However, relying on native structure alone is a limitation. There is a general
lack of solved protein structures, and results from Chapter 4 suggest that comparable
predictions can be obtained by using information from the protein sequence itself.

• Protein sequence can be directly exploited for fold type prediction, given a

model able to handle its arbitrary length. Our results in Chapter 4 show that the

7

164 7 Conclusions

embeddings learned by our CNN-BGRU model perform better than those learned
from estimated contact maps.

• Combining protein sequence representations with estimated structure in-

formation from contact maps is, nonetheless, an effective approach. The
integration of our fold similarity score (from residue-level features) with the DeepFR’s
score (from estimated contact maps) along with other pairwise similarity measures
provides better results than the previous state-of-the-art ensemble method DeepFR-
pro (Chapter 4).

• Learning a discriminative embedding space of the protein fold types is a

promising approach when dealing with a large number of classes. The hy-
perspherical embeddings learned by our FoldHSphere model described in Chapter 5
have proven to be discriminative of the protein fold and quite effective in finding tem-
plate proteins even when the sequence similarities are low. Moreover, the ensemble
method FoldHSpherePro yields high accuracy at the fold level, successfully bridging
the performance gap between the different levels of evaluation (fold, superfamily,
and family).

• Protein language model embeddings can replace traditional representations

from multiple sequence alignments (MSA) for fold type prediction. Our
experiments in Chapter 6 show that the use of protein-LM embeddings outperforms
all previous state-of-the-art approaches, which mainly used representations derived
from the MSA. It seems a more reasonable approach to use a deep neural network
(protein-LM) that learns evolutionary relationships from the millions of protein
sequences used during self-supervised training, rather than computing heuristic
alignments and processing them afterwards.

• Transformer-based protein-LM embeddings perform best at predicting fold

types. For both fold-related tasks presented in our analysis in Chapter 6, the protein-
LM embeddings learned by transformer-based models have proven more effective
than those extracted from LSTM-basedmodels. In addition to scalingwell to hundreds
of millions of parameters, transformer models rely on the self-attention mechanism,
which appears to successfully capture the relationships between amino acids within
the protein.

• Raw protein-LM embeddings are useful mainly when sequences are similar.

Nevertheless, they do contain protein fold information that can be exploited

for dissimilar sequences. Results in Chapter 6 indicate that the raw embeddings
could be used for homology searching when the amino acid sequence similarities

7.1 Conclusions

7

165

are high. However, fine-tuning helps in predicting structural similarity in the most
difficult cases, suggesting that these embeddings encode generally useful information
about the fold type. This is in agreement with our previous work on protein function
prediction, where we show that protein-LM embeddings alone provide the best
results, and these are not outperformed when other structure information is included.
This reinforces the idea that these embeddings already contain information about
the protein fold.

Conclusiones

En esta Tesis se ha propuesto el desarrollo de sistemas de identificación del tipo de plega-
miento de las proteínas que superen los desafíos encontrados en anteriores aproximaciones,
con el fin de avanzar en el estado del arte. Para ello, se han aprovechado los recientes
avances en técnicas de aprendizaje profundo para obtener representaciones significati-
vas del tipo de plegamiento de la proteína. A continuación se enumeran las principales
conclusiones extraídas de esta investigación:

• Los mapas de contactos nativos son buenos predictores del tipo de plega-

miento de la proteína. Los resultados de los Capítulos 2 y 3 confirman que las
representaciones relacionadas con el tipo de plegamiento aprendidas a partir de los
mapas de contactos nativos superan al anterior método del estado del arte DeepFR,
el cual utilizaba mapas de contacto estimados.

• Sin embargo, basarse únicamente en la estructura nativa supone una limi-

tación. Existe una carencia general de estructuras de proteínas resueltas, y los
resultados del Capítulo 4 sugieren que se puede obtener una predicción comparable
utilizando información de la propia secuencia de la proteína.

• La secuencia de la proteína puede ser explotada directamente para la predic-

ción del tipo de plegamiento, dado un modelo capaz de manejar su longitud

arbitraria. Los resultados del Capítulo 4 muestran que los embeddings aprendidos
por nuestro modelo CNN-BGRU tienen un mejor rendimiento que los aprendidos a
partir de mapas de contactos estimados.

• Combinar representaciones secuenciales de la proteína con la información

estructural estimada de los mapas de contactos es, sin embargo, una aproxi-

mación efectiva. La integración de nuestro score de similitud del plegamiento (a
partir de características a nivel de aminoácido) con el de DeepFR (a partir de mapas
de contactos estimados) junto con otras medidas de similitud por pares proporciona
mejores resultados que el anterior método de ensemble del estado del arte DeepFRpro

7

166 7 Conclusions

(Capítulo 4).

• Aprender un espacio de embedding discriminativo de los tipos de plegamiento

de proteínas es un enfoque prometedor cuando tratamos con un gran número

de clases. Los embeddings hiperesféricos aprendidos por el modelo FoldHSphere
descrito en el Capítulo 5 han demostrado ser discriminativos del plegamiento de la
proteína y bastante efectivos en la búsqueda de proteínas modelo incluso cuando las
similitudes en secuencia son bajas. Además, el método de ensemble FoldHSpherePro
produce una alta precisión a nivel de plegamiento, reduciendo con éxito la brecha de
rendimiento entre los diferentes niveles de evaluación (fold, superfamily y family).

• Los embeddings de modelos de lenguaje (LM) aplicados a proteínas pueden

reemplazar a representaciones tradicionales de alineamientos múltiples de

secuencias (MSA) para la predicción del tipo de plegamiento. Los experimentos
realizados en el Capítulo 6muestran que el uso de protein-LM embeddings supera todas
las aproximaciones anteriores del estado del arte, las cuales utilizaban principalmente
representaciones derivadas del MSA. Parece un enfoque más razonable utilizar una
red neuronal profunda (protein-LM) que aprenda las relaciones evolutivas a partir
de los millones de secuencias de proteínas utilizadas durante el entrenamiento self-
supervised, en lugar de calcular alineamientos heurísticos y procesarlos después.

• Los protein-LM embeddings basados en modelos tipo transformer proporcio-

nan el mejor rendimiento a la hora de predecir el tipo de plegamiento. Para
las dos tareas de predicción del plegamiento presentadas en el análisis del Capítulo 6,
los protein-LM embeddings aprendidos por los modelos basados en transformer han
resultado ser más eficaces que los extraídos de los modelos tipo LSTM. Además de
escalar bien a cientos de millones de parámetros, los modelos de tipo transformer se
basan en el mecanismo de self-attention, el cual parece captar con éxito las relaciones
entre los aminoácidos dentro de la proteína.

• Los protein-LM embeddings en bruto son útiles principalmente cuando las

secuencias son similares. Sin embargo, estos contienen información sobre

el plegamiento de la proteína que puede ser explotada para secuencias disí-

miles. Los resultados del Capítulo 6 indican que los embeddings en bruto podrían
utilizarse para la búsqueda de homólogos cuando las similitudes de las secuencias
de aminoácidos son altas. Sin embargo, el fine-tuning ayuda en la predicción de la
similitud estructural en los casos más difíciles, lo cual sugiere que estos embeddings
codifican información útil sobre el tipo de plegamiento. Esto concuerda con nuestro
trabajo previo en la predicción de la función de la proteína, en el que mostramos
que los protein-LM embeddings solos producen los mejores resultados, los cuales

7.2 Future work

7

167

no son superados cuando se incluye otra información estructural. Esto refuerza la
idea de que estos embeddings ya contienen información acerca del plegamiento de la
proteína.

7.2 Future work

The conclusions obtained from this Thesis have opened the doorway to different research
directions for advancing the field:

• Augment the protein structure classification databases with predicted struc-

tures. It takes a lot of effort to manually annotate the thousands of new structures
that are added to the PDB database every year, let alone the almost one million struc-
tures produced by the latest structure prediction methods (e.g. AlphaFold DB). In this
regard, we could extend the fold classification systems developed here to increase the
pool of fold-labeled templates in the databases. We could also fine-tune the models
to learn from fold predictions in a self-distillation mode (when the network transfers
knowledge within the network itself), which has proven to be effective for protein
3D structure prediction.

• Protein language models for 3D protein structure prediction. It has been
demonstrated in this Thesis that protein language models can learn meaningful
representations of the protein fold. Since their full potential is yet to be determined,
they could succeed in predicting the 3D coordinates of protein atoms directly without
the need to rely on deep sequence alignments as has traditionally been done.

• Further extension to other protein-related tasks. Nowadays there exist many
predictions tasks related to protein structure that are far from being solved. Examples
are the structure prediction of protein complexes (two or more proteins interacting),
or the prediction of disorder regions in the protein conformation (i.e. segments that
lack of a fixed or stable 3D structure). We foresee that the use of proteins-LM may
shed light on these problems as well, while providing a better understanding of the
biology and chemistry involved in these processes.

