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Abstract 

By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus 

on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and 

models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area 

scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order 

to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are 

discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the 

devices, which provided a coherent picture, and more interestingly, showed that the models converge each to 

other, despite the many issues that one can find for the physical origin of each model. Several derivations are 

made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and 

distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints 

for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty 

and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical 

variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling 

law and limits the production yield, from one side, and from other side, the “frozen noise” contributes 

generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing 

to the purely statistical accumulation of variance that follows from cause-consequence principle, and 

irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation 

variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters 

gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-

frequency noise characterizations. At present, the many models generally coincide each with other, and what 

makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should 

make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics 

behind the numbers”, because the general physical assumptions in each model always fail at some point by the 

device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales 

consistently with the 1/area law. 
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I. Introduction 

The above aphorism is the famous summary of the ancient Greek philosopher Plato, said approximately 2500 

years ago, regarding the thoughts of Heraclitus (the Ephesus) [1]. Being not loaded with the many interpretations 

of this aphorism, we can simply rephrase that everything varies, including the random variation, which one 

usually calls noise; it just needs time this to happen. Later, in section VIII, we will show that this can be origin of 

1/f noise – the most difficult for physical interpretation noise in the nature, which always “snakes out” when 

attempting to describe it absolutely in finite values, but at infinite limits both in time and frequency. 

The low-frequency noise (LFN) is always present in electronic devices. However, obviously, the LFN is not 

“appreciated” due to the fact that it is assumed as undesirable effect, and small enough not to bother much, as 

compared to other more important and definitely physically better sound effects and useful for the practice 

properties of the electronic devices, such as gain, high frequency of operation, versatility in making of functions, 

etc. We can cite again the “present-day assessment” from [2] made in 1981, by re-quoting the Mac Donald’s text 

in “Noise and Fluctuations” from 1962 that 

“It is probably fair comment to say that to many physicists the subject of fluctuations (or “noise” to put it 

bluntly) appears rather esoteric and, perhaps, pointless; spontaneous fluctuations seem nothing, but an unwanted 

evil, which only an unwise experimenter would encounter!” 

However, the low-frequency noise became prominently large, especially in small devices, and it “snakes in” in 

many cases as a limiting factor for applications, such as high resolution sensors, precise and stable oscillators 

and other; and considerable interest is given to the “slow” (as compared to the operating frequency of the 

devices) noise, with either 1/f power spectrum density (PSD) in frequency domain, or with bistable random 

telegraph signal (RTS) behavior in time. Therefore, in this work we focus on the achievements related to low-

frequency noise in electronic devices, mainly in transistors, in order to identify issues related to low-frequency 

noise in the aggressive device downscaling nowadays, and also to attempt giving an outlook for the evolution of 

the issues in the near future. 

Before we approach to the discussions in this work, we first briefly introduce the types of noise in respect to 

their spectrum. The main types of electronic noise are summarized in Table 1 in terms of current noise PSD. The 

thermal noise is due to random motion of charge carriers driven thermodynamically in the devices by 

uncorrelated scattering, and, therefore, it has uniform, or “white” spectrum, in analogy with the spectrum of the 

white light. The shot noise originates from the fact that the minimum charge of the carriers is the charge of the 

electron, q≈1.6×10−19C, and when many of these discrete charges overcome randomly an emission barrier and 

traverse the device quickly, then there are current “shots”, each of short time, nearly Dirac pulses, and 

accordingly, each of which having uniform spectrum. Since the “shots” are randomly occurring and 

uncorrelated, then the spectrum of the shot noise is also uniform “white” spectrum. 

The white noise, either thermal or shot noise, or both, is broadband, and it occurs from low frequencies to the 

maximum frequency at which the device can operate, by the assumption that the device is ideally uniform, and 

there is nothing else, except for charge carrier motion. In the real devices, however, there can be many other 

random processes, such as generation-recombination of carriers, charge trapping, phonon scattering, etc, 

normally with lower “speed” or “repetition rate”, which, therefore, cause increase in noise spectra at the low-
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frequency end. If the random process has a characteristic time constant τ, or equivalently, a rate 1/τ, then the 

process is random at time scale t>τ, or equivalently, at frequency f<1/(2πτ), and the noise spectrum is uniform 

for these low frequencies. In contrary, at short time scales t<τ, or equivalently, at frequency f>1/(2πτ), the 

variability of the noise signal is less, e.g. an RTS “spends” some time in “on” or “off” state before doing a 

transition to the other state. Consequently, the power spectrum density decays as 1/f² at high frequencies 

f>1/(2πτ), and the overall spectrum of random process with characteristic time constant τ is the Lorentzian 

spectrum, as depicted in Table 1. The Lorentzian spectrum is found to originate usually to bistable processes, 

such as generation-recombination, but more precisely, the requirement for this spectrum is exponential decay in 

the autocorrelation function of the random process x(t), that is, x(t)x(t±Δt)dt∝exp(−Δt/τ), thus, the characteristic 

time constant τ is the correlation time in x(t). 

In the last row of Table 1, the so-called “flicker” noise is given. The power spectrum density of the flicker noise 

is inversely proportional to the frequency in the entire frequency range, with a slope normally close 1/f, and 

again by analogy to the light spectrum, it is also called “pink” noise. Several concepts for the origin of the flicker 

noise are suggested in the literature. One of the most popular concept is superposition of Lorentzian processes 

with time constants distributed as 1/τ, by assumption of particular distributions of traps in the device structure. 

Another approach is to “stretch” the above exponential function for the autocorrelation, say τ=τo+Δτ, where Δτ 

is distributed in some way, e.g. normally. Other approaches are to define ½ differential operation, random rate 

perturbations that decay as square root of time, etc. Overall, a unique explanation for the 1/f noise is not 

available at present (and most probably, it will be never available after the many suggestions made so far), 

although the 1/f spectrum occurs in virtually any system, from electronics, through the level or river Nile, to 

biology, music and finances, and there are many reasonable models and consistent explanations for 1/f noise in 

particular cases. 

From above, the low-frequency noise in small devices is relatively increased, and explanations and models that 

predict this noise are available. Therefore, we review the models and their predictions extensively in this work, 

both numerically and by keeping the link to the physical assumptions behind the models. In order to derive a 

common point, we have also intentionally suppressed the controversy, which has accompanied the subject of 

low-frequency noise for the origin of 1/f noise, because we have observed that the predictions of the different 

models coincide, when the word is for numerical values and behaviors in respect to bias, temperature and device 

sizes; and all of the popular low-frequency noise models are somewhat mesoscopic, or better to say compact 

models, with the microscopic effects averaged after one or several mathematical integrations, which does not 

really allow to fully and precisely inspect the assumed microscopic physical origin of the fluctuations from the 

scattered data obtained after measurement of the noise. Indeed, after the analyses in section VIII, one may not 

always need to mandatory assume microscopic origin for the low-frequency noise. 

To approach to the review, we first provide in section II details and the generic models related to intrinsic and 

coupled noise in the forms, in which the low-frequency noise is lumped in compact models, that are widely used 

at present. Then, in section III, we review the state of the art low-frequency noise in bipolar junction transistors 

(BJTs), analyzing the different factors related to the issues with low-frequency noise, such as crossover between 

bulk, surface and barrier noise, fabrication, superposition of Lorentzian noise, and decomposition to individual 

noise components in small-area BJT, problems with averaging techniques, and also, we have provided some 

derivations that explain details in the bias behavior of the low-frequency noise in BJT, using the generic models 
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from the previous section II. 

Having the observations and results for BJTs, we have pursued in section IV a detailed review for the level and 

models of the low-frequency noise in MOS transistors, since these transistors are at the frontier of the device 

downscaling nowadays. From these, we found that the different models converge each to other, including for 

ranges (e.g. of gate oxide thickness and trap densities), at which the assumptions for the models are actually 

violated. Interestingly, we have observed, that the models for the noise in BJT also converge to the models for 

MOS transistors at some instances, such as by noise from interfacial oxides. Also, we showed that models based 

on superposition of distributed traps cannot discriminate clearly whether the noise is due to distribution of 

energy or depth of the trap in the gate oxide, since both are always together in the models. We have also 

provided some extensions in gaps found in the literature, such as for unequal amplitudes in RTS noise in 

nominally identical MOS transistors, relations between figures of merit for low and high frequency noise, and 

for frequency performance of the MOS transistors. 

Since the downscaling of MOS transistors required modifications in the classical MOS structure (one gate MOS 

with uniformly doped silicon body), as well as, germanium is used widely at present to improve the mobility in 

npn BJTs, the low-frequency noise in the modified SiGe heterostructural bipolar transistors (HBTs) and MOS 

transistors with multiple gates is addressed in section V. Overall, the observation is that the low-frequency noise 

increases, when mixing materials or adding new layers in the transistor structures, which is different from claims 

made last decade, and thus, it is a potential issue for the future. Nevertheless, forward body biasing and multiple 

gates, seem, improve the low-frequency noise performance of MOS transistors, but cannot compensate for the 

increase of the scattering in the noise levels in advanced silicon based transistors, as discussed in section VI, in 

which it is shown that the ultimate downscaling, e.g. in carbon nanotube devices, leads to stochastic behavior of 

the device, although, surprisingly, the data for these device still match with the general trend (1/area). 

The consequences of the increased low-frequency noise for the practice are discussed in section VII for two 

cases – the tradeoff between low noise and low power in low-power amplifiers and for phase noise in oscillators, 

providing some derivations that help to quickly estimate the noise performance of the amplifier from its 

consumption, and the phase noise of the oscillator from the harmonics and symmetry of the generated RF signal. 

Finally, in section VIII, we provide extrapolation of the results gathered during almost one century, to identify 

that the low-frequency noise in nanodevices can impact the reliability even of digital circuits. Analyses in this 

section showed that the variations during fabrication, called as “frozen noise”, also contribute to the temporal 

noise in the devices; that the values for noise parameters are corresponding to the range of the Heisenberg 

uncertainty for the free electrons in semiconductors; and that the purely statistical accumulation of variance with 

time can be a mechanism generically creating 1/f noise in the nature. This accumulation mechanism is known as 

“innovation variance”, and it seems is overlooked for electronic devices as potential source of background 1/f 

noise, while it provides a reason, which explains why the geometric averaging of scattered noise data should be 

preferable. 

Summarizing our review and analyses in section IX, we conclude that the low-frequency noise in electronic 

devices follows consistently the phenomenological law (1/area) in relative units for the noise power in ratio to 

DC power, which basically sets a barrier for downscaling of deterministically behaving devices at sizes below 

about 10×10nm², which is nothing, but the size range of the viruses – the smallest structures, in which the nature 

was able to embed reproducibility and functionality over a period in the range of about 109 years. The different 
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models for low-frequency noise appear to coincide in their predictions for noise magnitudes, which actually 

implies that the statistics is more important for the noise than the physical phenomena through which it causes 

noise in the devices. Thus, the numbers might be more important and a change in the coordinate system for noise 

perhaps will be helpful to describe the low-frequency noise even better than the descriptions are at present, 

without arguing for and against that strongly, as it happened in the near past whether the 1/f noise is due to 

mobility or number fluctuation. It is due to both, and in addition, perhaps due to other fluctuations, which stay 

hidden from us at present. It might be reasonable to state that we can observe only a “microscopic” window, if 

not smaller, by probing the variations as 1/f noise in electronic devices, which accumulate variations from the 

continuously changing matter. Therefore, we have the aphorism above, behind which is the unity of continuity 

and variation, and with the information available to us, let our discussion begin “flowing” with the first topic on 

intrinsic and coupled noise in device currents, for which, it seems, we have agreement in principle at present. 

 

II. Intrinsic (uncorrelated, uncoupled) and coupled (correlated) behavior in a fluctuating system 

(behind and beyond ∆µ – ∆n controversy) 

In this work, we use a conceptual approach of “intrinsic and coupled noise” that helps to identify the noise in 

electronic devices. The approach is based on the general assumption that the fluctuations in one quantity can 

originate intrinsically from its nature, or the fluctuations can be induced, thus, coupled from fluctuations of 

another quantity.  

II.1. Coupled behavior 

For the noise SI in a quantity I, when SI is coupled to another fluctuation SV, one has 
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where K is a parameter (usually taken K=1, if no suppression or enhancement in SI due to correlation to other 

process exists), IDC is the average value of I, and g=∂I/∂V is the coupling coefficient between I and V, by 

assuming also that I and V are immediately, instantly and fully correlated each to other. Obviously for an 

electronic device (e.g. resistor, diode or transistor), I, V and g are electrical current, voltage and conductance, 

respectively. So, the units for the power spectrum densities (PSDs) become A2/Hz for SI and V2/Hz for SV.   

We illustrate eq. (1) for the voltage noise in bipolar junction transistors (BJTs) and MOS transistors, using the 

data from a past report of the International Technology Roadmap for Semiconductors (ITRS 2006) [3], which 
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normalized (multiplied) with device active area A of 1µm2 for npn BJTs and nMOS transistors, as shown in 

Figure 1a. Let us express SI/IDC
2 with the simplest SPICE model for 1/f noise, and use the transconductance of 

the transistors gm in eq. (1), also taking K=1 and multiplying the equation with the device area A. That is 
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Here, the parameter KF is a measure for the ratio noise/DC in the output current of the transistors. The ratio 

gm/IC≈1/ϕt≈38.5 V-1 in BJT, where ϕt=kT/q≈0.026V is the thermal voltage at room temperature T=300K. The 
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ratio gm/ID varies with the bias of the MOS transistor, but at low gate overdrive of (VG−VT)=0.1V, gm/ID~13 V-1. 

So, we write 
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The results for (A×KF) calculated by eq. (3) are shown in Figure 1b, when the values for (A×SV) from Figure 1a 

are used. Interestingly, the input referred voltage noise in BJT is about 2 orders of magnitude less than that in 

MOS transistors, but the difference is smaller in the output current noise; and the difference varies further at 

higher gate overdrive of MOS transistor, because gm/ID∝1/(VG−VT). 

Now, we discuss eq. (1) in more details. Assume that the noise is caused by a fluctuation SQ of trapping charges, 

and these charges change the voltage V on a capacitance C. Then, the coupling Q=CV is given by the 

capacitance C, and  
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Consequently, the charge Q=qN is coupled to the number of charges N by the elementary charge of the electron 

q (1.6×10-19 C), and one writes the general form of the equation for the so-called “number fluctuation” (Δn) 
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which is widely used to study the effect of charge trapping in interfaces on the current in a device, e.g. charge 

trapping in the gate insulator of a MOS transistor and its drain current. This equation is for number fluctuation, 

since it assumes that the fluctuation SN in the number of trapped charges causes the noise in the current I. 

Obviously, the unit is Hz-1 for the power spectrum density SN, and SI is also PSD in units A2/Hz. 

The different Δn-models for different devices (at particular set of physically based assumptions) derive different 

expressions for SN and coupling parameters (C, g, K), which can be physics-, bias-, process- and design-

dependent. Overall, all complex derivations based on the assumption for charge trapping end with a form similar 

to eq. (5). These will be presented along with the discussions on the specific devices. However, one important 

note should be made. The fluctuation in the number N of trapped charges is assumed in the origin of the noise in 

Δn-models, and this fluctuation is indirectly transferred to a fluctuation in the number n of charge carriers that 

provide the current I in the device, by electrostatic (Coulomb) balancing the charge using the Gauss law. So, one 

can mistakenly assume from the expression for drift current with a density J=qnμE that the Δn-model is for the 

number n of charge carriers, by neglecting the variations in charge carrier mobility μ and in the electric field E, 

caused by the trapped (and thus immobile) charge. For example, the trapped charge can cause change in the 

mobility, so that dg∝μ∂n/∂N+n∂μ/∂N≠μ∂n/∂N and the estimate for g obtained from electrostatic balance 

∂n/∂N=1 and μ=constant will be inaccurate. To resolve these problems, a correlated (to the number of charges) 

mobility model (Δn-Δμ) is used widely in nMOS transistors, and a scattering parameter is introduced. 

Furthermore, both (Δn-Δμ) and (Δn) models assume that the current flow is continuous and free of inherent 

fluctuations. Certainly, this is a good approximation when analyzing the average IDC, but it is not exactly true, 
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since the scattering of the moving charge carriers is random, so the value for the mobility is a constant only on 

average, while the charge carrier velocity in the direction of the current flow varies (as well as, the current flow 

is discrete, because each charge carrier has a magnitude of q).  

II.2. Intrinsic behavior 

To describe these fluctuations in different physical magnitudes for the 1/f noise, one can use the Hooge equation 
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where the normalized PSD of the noise Snorm=SZ/ZDC
2 for any quantity Z, i.e. current I, total carrier charge Qn, or 

mobility µ, is the ratio of the power spectrum density SZ to the square of the average ZDC of this quantity. Here, n 

is the total number of carriers and αH is a material dependent parameter, called Hooge parameter, which ranges 

usually between 10-5 and 10-3 for semiconductors, and it is approximately 2×10-3 in metals. 

Note that Hooge eq. (6) does not discriminate between quantities when their averages are in product or ratio, i.e. 

Z=z1⋅z2/z3. Instead, it provides an estimate αH for the variance in Z that can be attributed to one mobile particle. 

At an assumption that the variance (noise) originates to mobility fluctuation in the drift current J=qnµE, then the 

Hooge equation is for mobility noise, and if the assumption is not correct (i.e. µ=constant, but n or E varies), 

then the Hooge equation is not for mobility noise, but the equation is still valid, because it is based on the 

general principle of statistics that the variance of the average is inversely proportional to the size (average 

number n) of the population. Thus, care should be exercised when claiming a specific physical process as the 

origin of the noise, and the claim should not be based solely on the application of the Hooge equation. This point 

has been explained many times in the literature, for example in [4]. 

The Hooge equation is widely used to investigate the low-frequency noise (LFN) at assumption that the noise 

originates from and it is intrinsic for the conducting and semiconducting material in the transistors. For example, 

polysilicon resistive films are widely used in integrated circuits and the low-frequency noise of the polysilicon 

resistive films is characterized by the Hooge parameter αH, e.g., as in [5], assuming that the carrier concentration 

is equal to the doping of the polysilicon. A second example is the LFN in organic thin-film transistors (OTFTs), 

which was analyzed in terms of the Hooge noise in [6,7], where the drain DC current ID=IDC is assumed as a drift 

current proportional to the number of carriers in the channel, and 
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where VDS is the DC voltage between drain and source of the OTFT, and E=VDS/L is the electric field in the 

channel of length L due to VDS, assuming also an operation of the OTFT in the linear regime at low VDS. 

Substituting in the Hooge equation (6), one gets that the normalized intrinsic noise Snorm due to the organic 

semiconductor in the channel of the OTFT is proportional to the drain-source resistance RDS of the OTFT 

channel, that is 
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f

1

nfI

S
S =∝

⋅
⋅µ⋅⋅α

×=α==  ,   (8) 

while the absolute magnitude SID of the PSD of the LFN in the drain current is proportional to DC power 
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dissipated on the OTFT channel, that is 

DCDSDDSD2
H2

DnormID PVIVI
L

q

f

1
ISS =⋅∝⋅×µ⋅⋅α×=⋅= .    (9) 

Eqs. (8) and (9) indicate the significance of the device resistance and applied DC power for the levels of the 

LFN, which are handy and were used in [6, 7, 8] to determine dependence between the mobility µ and Hooge 

parameter αH in OTFT and CdSe TFT, as well as to inspect a suitable for OTFT figure of merit for the noise, 

given by [7] 

( ) ( ) area devicepower DC

PSD noise

LWVI

S

DSD

ID =
⋅⋅

.     (10) 

This figure of merit includes (and compensates for) the most significant scaling factors of the LFN in electronic 

devices, in particular, the proportionality to applied DC power and inverse proportionality to device area. The 

latter is widely discussed, whereas the former is rarely addressed in the literature. 

 

II.3. Combination of coupled and intrinsic fluctuations 

By assumption that the coupled and intrinsic fluctuations in the quantity I are uncorrelated, the Hooge equation 

can be combined with the expressions (1) and (5) for coupled fluctuation, resulting in 
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for the general case of coupled fluctuation, and in 
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for the case when the coupled fluctuation is due to fluctuation (Δn) in the number N of trapped charge. 

Note again that the two terms for coupled (Δn, let’s say) and intrinsic (Hooge) fluctuations in equations (11) and 

(12) present different sides and origins for the low-frequency noise in the current transport, and they do not 

contradict each other. Also, the normalized noise Snorm, as defined with these equations, is a power spectrum 

density with a unit Hz-1, and is a convenient figure of merit, which estimates the noise “power” per a bandwidth 

of 1 Hz in ratio to the DC “power”, that can be obtained by multiplying the nominator and denominator of the 

equations with the resistance of the device. 

The above equations have constant parameters only for uniform samples at constant biasing. If the biasing 

changes, then the parameters also change and Snorm does not have a constant value along the sample. For 

example, in the case of current crowding, the intrinsic 1/f noise of the current cannot be given in its simple form 

of eq.(6). Rather, Snorm will be required to be expressed in an integral form [9], given by 

2

4 2

( )
H

norm

WLT WLT

S J dv J dv
n v f

 α=  
 ⋅  

         (13) 

where WLT is the volume of the conductive channel, v is integration variable in this volume, and n(v) and J are 
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the carrier concentration and the current density in the conductive channel, respectively. To the best the authors’ 

knowledge, however, for the LFN, there has been no recent publication on the impact of the current crowding 

around a single trapped charge in nanometer-scale devices on the low-frequency noise, which should be 

prominent for single carbon nanotube transistors. 

One useful observation can be made in eq.(12) for the 1/f noise in planar devices, such as bipolar junction 

transistors (BJTs), MOS transistors and thin film transistors (TFTs). In these transistors, one of the dimensions is 

almost fixed by the vertical layout, e.g. thickness of emitter-base junction and base in BJT, channel depth and 

oxide capacitance in MOS transistor. Therefore, the active area A plays an important role for the 1/f noise, 

because the numbers of carriers n, traps N and capacitance C become proportional to A. Assuming that the noise 

is due to uncorrelated random fluctuations, the “variance” SN is proportional to N, and one can write from 

eq.(12) that 
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where CA is capacitance per unit area, e.g. oxide capacitance Cox in MOS transistors, and nA is carrier density per 

unit area, e.g. nA∝IE/(qAE) with IE and AE being the emitter current and area, respectively, in BJT. 

Eq. (14) implies that the low-frequency noise is inversely proportional to the device area, if one noise 

mechanism prevails in the device, which is usually the practical case, by keeping other conditions, e.g. biasing 

level, nominally the same. The biasing level in MOS transistors is a function of gate overdrive voltage (VG-VT), 

and it is the current density JE=IE/AE in BJTs. Thus, owing to the 1/area dependence, it is observed that Snorm 

increases in sub-micron area devices. 

 

III. Noise in BJT 

The areal dependence with increasing normalized noise in npn BJTs with smaller emitter area AE is shown in 

Figure 2, using the SPICE parameter KF defined from  

E

F
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norm A
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f

K

I

S

I

S
S CB ∝=≈=        (15) 

The data for more than 150 devices are collected from [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 

25, 26, 27], and shown in Figure 2 with some points omitted for clarity. Since the numbers spread over several 

decades, we use geometric averaging technique [28] to extract the trend in the data from the product AE×KF; and 

the trend is AE×KF≈5.6×10-9 µm2 with logarithmic standard deviation of σdB=3.4dB. These values are practically 

the same as AE×KF≈5.5×10-9, σdB=3.7dB from a previous evaluation of the trend [29], when about a half of the 

data for 70 devices measured before 2005 was used, as well as in the range predicted by ITRS – see again Figure 

1b. Also, the distribution of the data is very close to log-normal distribution, as shown in the insert of Figure 2. 

Although the trend appears to be stable, 122 of 164 data points are within ±2σdB around the average, the large 

deviations are apparent in Figure 2. We have inspected the details in the publications to get an insight on what 

causes the scattering in the data. Obviously, we found four factors: differences in measurement setups, 
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differences in device fabrication, crossover between different noise sources in BJT, and measurement and 

characterization uncertainty. The analysis of  the scattered data in Figure 2 provides about the theory of the noise 

in BJTs developed in the past. This is discussed below. 

III.1. Differences in measurement setups 

It is well established that the input voltage noise SVB
 in BJT is low, while the input current noise SIB

 is high, 

when compared to other transistors, such as MOS and junction field effect transistors. Therefore, the values for 

the low-frequency noise depend strongly on the impedance ZB of the biasing circuit in the base terminal of the 

BJT, even if the base DC current is unchanged. This is illustrated in Figure 3 from [12]. Consider the noise 

equivalent circuit for the noise measurement in Figure 3a. The DC voltage source and the impedance ZB in base 

biasing circuit are changed simultaneously, so that the base current IB is kept at a constant value of 1µA or 6µA. 

Then, the output noise SIC
 in the collector current IC is measured, as shown with symbols in Figure 3b, and 

accordingly modeled by 

BBC V
2
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2

2
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ebB
I S gS 
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


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
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++= ,      (16) 

where rb and re are the resistances of the base and emitter passive regions, zB=rb+ϕt/IB+(β+1)re is the input 

impedance of the BJT, β≈IC/IB is the current gain of BJT, ϕt=kT/q≈0.026V is the thermal voltage at room 

temperature T=300K, and gm≈IC/ϕt is the transconductance of the BJT. Although the DC currents, and thus β and 

gm, do not change in the experiment, the output noise SIC
 changes with ZB. In particular, when ZB>>zB, then the 

ratio in the brackets of eq.(16) is of value close to one, the term β2SIB
 dominates, and the normalized values for 

the 1/f noise in the collector and base currents become equal, because 
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Thus, a high impedance, ZB>>zB, is required in the base biasing circuit in order to measure the 1/f noise 

coefficient KF correctly. Earlier publications, e.g., [30] explicitly state the condition ZB>>zB for noise 

measurement, but later, some experimental setups violate the condition, especially when combining DC, low 

frequency and RF measurements together. Therefore, we discuss also for the cases, when ZB≤zB. 

If ZB<<zB, then the ratio in the brackets of eq.(16) is approximately  

( ) ( )ebB
m

BCeBt

ebB

eBt

ebB

BB

ebB rrZ
g

IIrI

rrZ

r1I

rrZ

zZ

rrZ ++
β

≤
+ϕ

++≈
+β+ϕ

++≈
+

++
,      (18) 

the output noise SIC
 is given by 

( )
BBC V

2
mI

2
ebB

2
mI SgSrrZgS +++≤ , (if ZB<<zB),     (19) 

and compared to the case ZB>>zB, SIC
 becomes much lower, as one can see from Figure 3b. In fact, since the 

equivalent circuit in Figure 3a is taken at hoc, one can speculate that the physical origin of current and voltage 

noise in BJT is the same, assuming that SVB
=(rb+re)

2SIB
, and eq. (16) can be rewritten with the term for SVB

 

omitted, as 
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The speculation is quite reasonable for the modern polysilicon emitter BJT, because gm is desired high, while rb 

and re scale inversely with the emitter area, and re is affected by the interfacial oxide (IFO) between polysilicon 

and monosilicon layers in the emitter region. The impact of IFO on the low-frequency noise will be discussed 

shortly in sub-section III.2 “Differences in BJT fabrication, IFO”. 

Let us estimate the reduction of SIC
 by low impedance biasing of the base terminal, using eq. (20). The base 

current is usually less than or in the range of 10µA. The values for rb and re are usually maintained less than 20-

50 Ω and let ZB=50Ω. So, the product IB(ZB+rb+re)~1mV, then IB(ZB+rb+re)/ϕt~5% and the number in the square 

brackets of eq. (20) becomes in the range of 1/300 (when squared). In other words, SIC
 is reduced about 2½ 

decades by low impedance biasing of the base terminal, as compared to the case of high impedance biasing. This 

is clearly shown in Figure 3b.  

Now, let us look again at the solid triangles denoted as “Low ZB” in Figure 2. The values for KF are about 1-2 

decades below the trend. The values were estimated from the normalized output noise SIC
/IC

2, assuming 

SIB
/IB

2≈SIC
/IC

2 as at a high impedance biasing of the base of the BJTs, since data for SIB
 are not reported in [22], 

and not much details are given for the measurement setup. The objective of this publication is RF circuits; and 

we have assumed that the noise performance was measured at low impedance conditions for biasing of the BJT 

base, which is consistent with the objective, but from the discussion above, the low impedance bias of the base 

provides uncertain values for the 1/f noise coefficient KF in BJT. Therefore, we refrain from using these data in 

the evaluation of the trend for KF in BJT. We have included the data points in the figure only to note that the 

measurement conditions have to be carefully inspected prior using published data in aggregated analyses and 

comparisons; otherwise, the numbers may mislead.  

III.2. Differences in BJT fabrication, IFO 

The second factor for deviation of noise level around the trend in Figure 2 can be attributed to differences in the 

fabrication of BJT. The impact of several technology steps on the low-frequency noise in polysilicon emitter 

BJTs was reviewed several times, for example in [31], and extensively analyzed in the past [18, 19, 20, 21, 32, 

33, 34, 35, 36, 37, 38, 39, 40]. From these studies, it is found that among the many sources that can contribute to 

the low-frequency noise, such as fluctuation in diffusion, surface recombination and charge trapping, the major 

noise source is associated with or located in the interfacial oxide (IFO) between poly and monosilicon layers in 

the emitter of BJT. The noise in polysilicon emitter BJT is attributed to IFO, because the thickness tIFO (~0.3-

0.8nm) of IFO strongly affects the level of the low-frequency noise. Therefore, we explicitly show and label with 

“var.IFO” in Figure 2 the data obtained from samples with different tIFO. The samples usually are of the same 

emitter area, and we added eye-guide dash lines in Figure 2. Observe that a small increase of tIFO with about 

0.5nm results in a large increase in the level of the low-frequency noise, approximately 2 decades for the values 

of the noise coefficient KF. A better view of the data in npn BJTs is given in Figure 4, together with data for 

other types of BJT from [32, 33, 34], and the data are analyzed in a manner similar to previous discussion in 

[29]. The data are available in numerical form in [41]. 
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It is observed that the noise from IFO results into quadratic dependences SIB
∝IB

2 and SIC
∝IC

2, and it cannot be 

described as an intrinsic (Hooge) noise caused by the fluctuation in the diffusion process in BJT [10, 42] – see 

again eqs. (6) and (11). Therefore, it is concluded that the noise in the base and collector currents, SIB
 and SIC

, 

respectively, is coupled to fluctuation of charge or conductance of IFO, as given with the left-hand term in eq. 

(7) or (8), and SIC
∝SIB

∝IB
2. Several models for the coupled noise from IFO are reviewed in [31] and summarized 

in [29]. These models (described below) predict different dependences of KF on the thickness tIFO of the 

interfacial oxide IFO. 

(i) The direct tunneling model [10] is based on thermally driven (Nyquist) random modulation of the tunneling 

barrier height of IFO, which in turn modulates the transparency of IFO and the current flow in the stack of 

polysilicon, IFO and monosilicon layers in BJT. According to direct tunneling model, it is shown in [31] that the 

normalized current noise increases as KF∝SIB
/IB

2 ∝ tIFO
3. The trend in Figure 4 confirms this cubic dependence, 

and the prefactor in this dependence is 

dB4.3 ,m 38
t

KA
dB

1-
3

IFO

F ≈σµ≈
×

, for the overall dependence of the noise on tIFO.   (21) 

(ii) The two-step tunneling model, as explained in [31], is derived from low-frequency noise in tunnel MOS 

diodes [43]. In the first step, there is a recombination of carriers from the semiconductor bands into interface 

states at the SiO2 interfacial layer next to the monocrystalline silicon by the Shockley–Read–Hall process. In the 

second step, there is elastic tunneling of carriers from these interface states into bound or slow states in the oxide 

that are located close to the interface. The resulting dependence for the normalized current noise in BJT is 

quadratic [31], and 

2
IFOF tKA ∝× , is observed in several separate data series,  (22) 

as illustrated with dash-lines in Figure 4.  

(iii) An exponential function, e.g. exp(tIFO/λ), proposed in [14] empirically, can also fit some data. This is 

illustrated with another dash-line which fits the triangles in Figure 4 for the noise in SiGe HBTs [33, 34]. The 

values for λ, however, scatter; λ≈0.5nm for the data from [14] (open diamonds in Figure 4), while λ≈0.4-0.5nm 

for the data from [33, 34] (solid triangles in Figure 4), reaching a value, which is difficult to explain physically, 

even for the direct tunneling of holes. The effective mass of holes is high in SiO2 and therefore have shorter 

tunneling attenuation distance λ<0.1nm. The conservative lowest value for λ from Wentzel-Kramer-Brillouin 

(WKB) approximation is 

nm059.0
mm24

h

*
o

>
Φπ

=λ ,      (23) 

where h=6.63×10-34 Js is the Planck constant, mo=9.11×10-34 kg is electron mass. From [44, 45], we get that 

m*<0.6 is the maximum effective mass of charge in SiO2, e.g. holes in nitrided SiO2, and Φ≤4.5eV=7.2×10-19 J is 

the maximum offset between bands of Si and SiO2, e.g. between valence bands. Nevertheless, the range of 

values for tIFO is narrow and the accuracy of these values is low, with an error of 0.1-0.3 nm. Therefore the 

different theories cannot be distinguished reliably with existing experimental results.  
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It is interesting to observe in eq. (21) that the prefactor 38 µm-1=1/(26nm) ±3.4dB for the trend in Figure 4 

corresponds to a diameter 2πrth, which has been regarded as the effective diameter, in which the electrostatic 

band bending due to a single excess (trapped) electron charge disturbs the silicon properties [46].  At room 

temperature, rth~5nm and corresponds to the distance in which the electrostatic band bending due to a single 

charge is equal kT=26meV. Also, with ε being permittivity, a common term is q2/(AEε/tIFO)2 in the expressions in 

all models for the noise from IFO, which implies that the charge capture at IFO causes coupled noise in the BJT 

current, according to eq. (5). The differences between the models come from the different assumptions for the 

actual physical mechanism, which is behind the charge fluctuation SN in eq. (5). These models lead to a variety 

of figures of merit for parameters related to the noise from IFO, e.g. tanδ~0.3-3 for direct tunneling [10]. 

According to [34], SN∝ λNt/Cmo
2 or SN∝Dit/Cmo

2 for two step tunneling and random walk models, respectively, 

where Cmo is surface capacitance of IFO (may differ significantly from εSiO2/tIFO), and the figures of merit are 

Nt/Cmo
2~5×1029 cmF-2eV-1 and Dit/Cmo

2~1022 cm2F-2eV-1. These values for tanδ, Nt/Cmo
2 and Dit/Cmo

2 are solely 

introduced to fit data from noise measurements, and they are not examined from other experiments, to the best of 

our knowledge. 

(iv) Non-uniform IFO model.  There is some uncertainty in the models for the noise from IFO. The models 

predict power-law dependence between noise level and tIFO, and do not suggest exponential dependence, 

observed in some of the experiments, especially from the samples with thicker IFO. An approach to implement 

exponential dependences was taken in [20] for samples of different widths W of the emitter. The results are 

shown with solid squares in Figure 2 and Figure 4 as function of emitter area and average IFO thickness, 

respectively. It is suggested in [20] that tIFO=0.55nm in the middle of the emitter for samples with wide emitter, 

while IFO is ∆tIFO=0.25nm thicker at the periphery of the emitter. Then, the IFO thickness along the emitter 

width is assumed to decrease from tIFO+∆tIFO at the edge of the emitter toward tIFO in the middle of the emitter, by 

an empirically assumed exponential function, given by 

( ) ( )oIFOIFOIFO w/wexpttwt −∆+= ,  w≤W/2,    (24) 

where w is the distance from the edge (w=0) toward the middle of the emitter (w≤W/2), and wo≈80nm is a 

characteristic width of the thicker peripheral IFO. Schematically, the non-uniform IFO layer in the emitter 

opening is illustrated in Figure 5. (For convenience during integrations, the authors of [20] have chosen 

hyperbolic functions instead of exponential function, but they have mentioned that the choice is not unique, and 

other function can be used.) Then, as explained in [20] in details, the effective recombination rate is 

RR={a1+a2×exp[a3×tIFO(w)]}-1, with a1, a2 and a3 being constants; and the current densities of the DC and noise 

currents are obtained by integration along the width of the emitter, using J(w)∝RR(w) and j(w)∝tIFO(w)3×J(w)2, 

respectively. 

The above model for noise from non-uniform IFO is shown in [20] to have a good agreement with the 

experimental data. We also observe that the data are very close to the trend in Figure 4, when re-calculating the 

average thickness of IFO from the information in [20]. However, despite that exponential functions of tIFO are 

used in the above model for several quantities, the overall dependence of noise level vs. average tIFO remains a 

power law and we note that the exponential dependence of noise on tIFO, although observed in [14, 33, 34] 

experimentally, is not explained theoretically yet. Nevertheless, the approach in [20] provides a way to analyze 

noise from non-uniform IFO in BJT, and can help to identify different contributions to the total low-frequency 
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noise in deep sub-micron BJT, in which a crossover between several noise sources is obvious; and this will be 

discussed next. 

III.3. Crossover between different noise sources in BJT 

Another reason for the scattering in the data for the normalized noise in Figure 2 is that several noise sources in 

BJT can contribute in different proportions. The proportions between the contributions can vary with the biasing 

level, and with the layout and fabrication of BJT. Note that the relation SI/IDC
2∝1/A in eq. (14) is valid only if 

strictly one noise source dominates, which is usual case for a particular device at particular bias, but not always 

the case, when the bias, layout, fabrication and interconnection vary, especially for sub-micron area devices. For 

example, the generation-recombination (GR) currents dominate the base current at low bias, while the injection 

through the emitter junction of BJT is low, but the noise due to GR currents modulates the injection barrier, and 

the GR noise is coupled to the collector current by the transconductance, resulting in a quadratic (or nearly) 

dependence SIC
∝IC

2. However, at higher biasing, the injection current dominates, and the intrinsic (Hooge) noise 

in the emitter resistance or injection current takes over the GR noise, resulting in a linear (or nearly) dependence 

SIC
∝IC and eventually a decrease of normalized noise Snorm=SIC

/IC
2 can be observed at high bias of BJT. Such 

cross-over between the noise sources in BJT is reported in [21], for example, when the base current was varied 

over 2-3 decades, and the cross-over causes a bias-dependent variation for KF, as illustrated earlier in Figure 2 

with the solid diamonds labeled as “SIB
∝IB

1.2”. A portion of these data is presented later in Figure 6 as function 

of the base DC current. One explanation for such cross-over could be that the increased carrier density screens 

the coupling from trapped charges, but this is not elaborated for BJT, to the best of our knowledge, although 

explored for MOS transistors [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. We will show that the evolution 

of the peripheral noise, as uncoupled to the emitter area in BJT, can lead to reduction of the slope in the bias 

dependence of the noise, while the noise from IFO has opposite evolution. 

Typical types of cross-over in the noise in BJT are between areal and peripheral noise sources in the emitter 

region [14, 21, 35, 36, 42, 60], noise from tunneling through IFO and series resistances (carrier number 

fluctuation, or coupled noise to the injection process, precisely) and diffusion noise (mobility fluctuation, or 

intrinsic noise of the current flow in emitter and base regions) [10, 19, 21, 32, 42, 61, 62], surface and bulk noise 

sources [14, 21, 24, 36, 37, 42, 60], and for very small-area BJTs (AE≤0.1µm2), the extension length of the base 

to the contact via becomes an issue for the low-frequency noise [36, 37], since that extension is with large area 

compared to AE, and it is vulnerable to the surface noise from the oxide on the top of the structure. Also, in 

small-area BJTs, the crossover between generation-recombination (GR), random telegraph signal (RTS) and 1/f 

noise becomes apparent [11, 12, 17, 18, 30, 35, 63]. The identification of noise sources uses many techniques, 

such as noise partitioning (or decomposition the total noise in several components), superposition of noise 

components, evolution of noise components and correlation between them with bias, area and perimeter of the 

emitter, fitting to physical models and equivalent circuits. The variety of techniques is large and a fully 

systematic approach in reviewing these is not possible. Nevertheless, there are several useful relations that are 

accumulated during the years. These are reviewed in [31] and some of them are also discussed below. 

III.3.1. Intrinsic noise for the current flow 

The intrinsic noise for the current flow is assumed to be due to mobility fluctuation, which follows the Hooge eq. 

(6) for the carriers in the emitter and base along the direction of the current flow in BJT, while the concentration 
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of carriers varies, as given by the theory for operation of BJT. Then, since the BJT theory is based on diffusion, 

the fluctuation in the mobility is transferred to fluctuation in the diffusion coefficient Dm for the minority carriers 

in the emitter and base regions outside the depletion region of the base-emitter junction, using the Einstein 

relation D=µφt. The resulting expressions for the intrinsic noise of the current flow in the base and collector 

currents are in the form of 
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= , for the base and collector current noise, respectively, (25) 

where the quantities α’ are in unit Ampere and given by [62] 
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Respectively for SIB
 and SIC

, d=dE or d=dB are the thicknesses of the emitter and base regions (along the 

coordinate of the current flow), Dm corresponds to the diffusion coefficients of the minority carriers in the 

emitter and base, αH corresponds to Hooge parameter for minority carriers in the emitter and base, nm(0) are 

minority carrier concentrations at the emitter-base junction in the emitter and base sides, nm(d) are minority 

carrier concentrations at the other sides of the emitter and base (metal contact for the emitter and collector-base 

junction for the base), and ν are recombination velocity (~105cm/s) of minority carriers at the emitter metal 

contact or carrier saturation velocity (~107 cm/s) that the minority carriers in the base usually reach at the base-

collector junction. Slightly different expressions for α’ can be found in [61]. 

Eq. (25) shows that the intrinsic noise for the current flow (due to mobility or diffusion fluctuation) in the base 

and collector currents is a linear function of the DC currents, and it corresponds the right-hand term of eq. (11). 

This linear dependence is usually used to identify the diffusion noise in BJT [19, 32, 42] after splitting the total 

noise into linear and quadratic functions of the DC current, because other noise sources result in non-linear 

dependence between noise and DC currents. For example, SI∝IDC
2 for recombination noise at the base surface or 

at the surface of the emitter-base space-charge region [42]. The expressions for the diffusion SIB
 are modified in 

[10], when IFO is present in the emitter, but the linear dependence remains. Worth mentioning, a linear 

dependence between noise power spectrum density and DC current in BJT is rarely observed and we will show 

later that such dependence can be derived from peripheral noise uncoupled to the emitter area. 

III.3.2. Base and collector currents are strongly correlated 

It is well established that the low-frequency noise in the base and collector currents are strongly correlated. Their 

normalized cross-correlation spectrum, called often coherence (and corresponding to correlation coefficient for 

random quantities), is close to one [19, 32, 37, 60]. The coherence between two noise spectra is given by 

( )
yx

2
xy

yx SS

S
s,sCoherence = ,        (27) 

where Sx and Sy are the individual power spectrum densities (PSDs) of the two noise spectra sx and sy, and 

|Sxy|=|sxsy
*| is the magnitude of the cross-correlation PSD of these noise spectra sx and sy. If the coherence is 

close to 1, then sx and sy are strongly correlated and most probably originate from the same noise source, since 

the different noise sources are independent each from other, either by assumption, or because they contribute in 
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different proportion at different terminals in BJT. Simply, a coherence=1 for base and collector noise currents 

means that SIB
 and SIC

 are coupled in BJT; and we can use eq. (11) to investigate the coupling. The reason to 

address the coupling is that in the literature the correlation between base and collector currents is usually 

analyzed in terms of feedback on the emitter resistance re (see Figure 3a) and current gain β, while both the 

feedback and β are secondary effects of the primary diffusion process that explains the operation of BJT. The 

diffusion process depends on the diffusion properties of the base-emitter junction and the voltage applied on this 

junction. For example, generation-recombination (GR) currents in base current do not affect the DC collector 

current, if re=0, as seen from Gummel plots for DC currents in BJT, whereas the GR noise in the base current 

occurs in the collector current well correlated. So, in a simplified form for diffusion current in the base of BJT, 

we can write 
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where IB0∝Dm and exp(VBE/φt)∝nm(0), as defined after eq. (26). Assume that Dm ∝ µ fluctuates as given by eq. 

(25), VBE is coupled to this fluctuation, but other parameters, e.g. φt, ν, d in eq. (26), do not fluctuate. By taking 

the logarithm of eq. (28), one writes 
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Provided that the square of the differentials corresponds to power spectrum densities and the variation of VBE is 

coupled to the variation of the base current (correlation coefficient = ±1), using eq. (25) we get 
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where SVBE
|IB,DIFF

 is the noise in VBE coupled from the diffusion noise in IB. Since the collector current is also 

coupled to VBE by a relation similar to eq. (28), then SVBE
|IB,DIFF

 will add a noise component in the collector 

current IC, which is coupled to the diffusion noise in the base current, and the total noise in IC is given by 
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where SVBE
 = SVBE

|IB,DIFF
 + SVBE

|IFO +… is the total noise in VBE coupled from different noise sources, i.e. ID,DIF, 

IFO and other, and SIC,DIF
 is the intrinsic noise in IC due to mobility fluctuation in the base of the transistor, as 

given by eq. (25). Since the concentration of minority carriers mn depends on VBE, then SVBE
 can be regarded as a 

coupled number fluctuation in BJT. The above discussion is for unilateral case for noise propagation from input 

to output, for which the noise sources associated to the base and emitter of BJT couple noise into the collector 

current, and the intrinsic noise in the collector current is not coupled back to the base. This a reasonable 

approximation, because of two reasons (at least). First, the contribution of the intrinsic noise SIC,DIF
 is usually 

negligible, and second, the backward isolation from collector to base and emitter is high as compared to the 

forward transmission, conservatively in the bandwidth of the low-frequency noise. Also, the first example below 
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demonstrates that the diffusion noise in IB and IC might not be discriminated each from other in experiments and 

cumulative experience suggests that the noise in BJT can be successfully referred to the input as a noise in the 

base current. 

Now, let us see how eq. (31) helps to deal with noise partitioning and superposition in BJT.  

Example. Diffusion dominates DC and noise currents 

The first example is by an assumption that the diffusion dominates both the DC and noise currents in BJT and 

the current gain β=IC/IB=constant. Using eqs. (30) and (31) for the noise in IC we write 
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Similarly, including the coupled noise from IC into IB, for the noise in IB we get 
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which is the same as eq. (32) for the noise in IC. Since β=constant, then the ratio of the noise in IC and IB is 
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and from DC and noise measurements, one cannot separate the parameters α’ for the diffusion noise in IB and IC. 

One can estimate approximate values from eq. (26), but the final values for the Hooge parameter αH will remain 

in an arbitrary ratio. A good guess for initial values of αH can be obtained by attributing the noise first only to IB 

and then only to IC, and then check which number makes sense, but this is a guess – the measurement cannot 

reliably separate the two parameters from one device, in which the diffusion dominates both the DC and noise 

currents; and it is reasonable to estimate only one value of αH for the dominant noise contribution.  

The approach of finding the noise source with dominant contribution is presented in [19] in convenient form. 

This approach is based on choosing an appropriate equivalent circuit of the device (and measurement setup), 

with several, i.e. 3, possible noise sources. Then, the measured noise is attributed to each noise source, and one 

of them usually fits the data well, which is consistent with the assumption that one noise source practically 

dominates in the total noise. The approach of the dominant noise source is used several times and it identified 

that the dominant noise source can be presented as current noise source in the base current [19, 32, 37, 61], 

although the actual physical process can be in the emitter, e.g. IFO, or at the surface above base-emitter junction. 

Nevertheless, once the dominant noise source is known, the physical identification of the noise is much easier 

and focused on finding which physical model can describe the behavior of dominant noise source. This is 

discussed below with the second example for noise partitioning based on eq. (31) for the coupled and intrinsic 

noise in BJT. 

Example. Noise partitioning. Non-linear dependence of current noise on diffusion noise 

The second example for the use of eq. (31) is for cases when the current noise in BJT has non-linear bias 
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dependence with a slope different from one of the diffusion noise, and the slope changes with the bias current 

too, indicating cross-over between different physical origins for the noise. According to the discussions above 

for dominant current noise in the base of BJT, first, we rewrite eq. (31) with the term for the intrinsic noise in IC 

omitted, but replaced with the diffusion noise in the base current. That is 
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Here, SVBE
 denotes all noise sources coupled to VBE, except for the diffusion noise in the base current, which is 

explicitly shown. Also, we assume that IC is a diffusion current, while IB=IB,DIF+IB,GR consists of diffusion current 

IB,DIF, but may have generation-recombination DC component IB,GR due to either bulk or surface recombination.  

Second, we refer the noise to the base as the current noise, using AC and DC current gain, βAC=∂IC/∂IB and 

βDC=IC/IB, respectively. The equation for the base-referred current noise is 
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Owing to the presence of IB,GR, both βAC and βDC vary with bias, even if one assumes that the ratio β=IC/IB,DIF 

between the diffusion currents is constant (valid assumption until high bias is applied, that causes high level of 

injection of majority carriers in the base, and  consequently, Dm and β decrease. The high-injection regime is 

usually not used in low-frequency noise measurement, but it can be reached in submicron-area BJT – see [35]).   

One can observe many possible cases that follow from eq. (36), since the evolution of SIB
 with IB is dependent 

on several ratios, e.g. βDC/βAC, IB,GR/IB,DIF, which are bias dependent. Let us look at several of these cases. 

Case 1 in second example: The diffusion is dominant in the DC currents, that is IB,GR<<IB,DIF=IB and 

βDC=βAC=β=constant. In this case, eq. (36) reduces to 

( ) ( )B

'
B2

B2
t

V
I I

f
I

S
S BE

B

α
+

ϕ
= , if diffusion dominates DC  (37) 

One situation is that no noise is coupled to the diffusion process in BJT. In this situation, SIB
∝IB, and this is the 

situation of dominant diffusion (intrinsic) noise discussed above – see eq. (33). A second situation is when the 

coupled noise has a constant value as a voltage noise, SVBE
=constant, and it is dominant. In the second situation, 

SIB
∝(IB)2. Constant SVBE

 is following from bias-independent fluctuations that can be regarded as resistance 

fluctuations, e.g. noise form IFO in the emitter [10], or charge trapping and recombination that modulate 

potential of the base, emitter or emitter-base junction [42]. The normalized noise of these fluctuations is nearly 

constant [42], that is SI/IDC
2=constant. Let us take the noise form IFO. It is shown in [10] that the noise of IFO is 

a fluctuation in the resistance of the emitter region (see re in Figure 3a). 
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as far as β=constant is assumed for the case when the diffusion dominates the DC currents. Here, we have 

recalled the left-hand equality of eq. (30), which describes the coupling between voltage and current noise on a 



21  of  286 

pn junction. So, adding the coupled noise from IFO in eq. (37), one gets 
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There is a critical value IBcr=α’B/α”IFO in eq. (39) for crossover between diffusion noise and noise from IFO. If 

IB<IBcr, then SIB
∝IB because the diffusion noise dominates. In contrary, if IB>IBcr, then SIB

∝(IB)2,  because the 

noise from IFO dominates. The crossover is observed for the large-area samples in [10], as shown in Figure 6 

with squares, and similar data are reported in [19]. Based on the different slopes of SIB
 as function of IB for 

diffusion noise and noise form IFO, these noise sources are separated and accordingly characterized [10, 19, 32], 

respectively, in terms of Hooge parameter αH for the diffusion noise, since  α’B∝αH in eq. (26), and in terms of 

KF=f×SIB
/IB

2=α”IFO for the noise from IFO, as follows from eq. (38). The data suggest cumulatively that the 

diffusion noise is important for BJT with larger emitter area and thin IFO, while the noise from IFO dominates 

BJTs with emitter area less than 10µm2 and tIFO>0.5nm. The nowadays BJTs usually are in the latter category. 

Case 2 in second example (peripheral-areal noise): The diffusion is not always dominant in the DC currents. For 

example, at low bias, a generation-recombination (GR) process can contribute to IB a component, given by 
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where ηGR is non-ideality factor with values usually between 1.5 and 2. Following the procedure after eq. (28), 

the GR process couples voltage noise in the VBE, given by 
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since SIGR
/(IGR)2≈constant for charge trapping [42], as mentioned above. In the presence of IB,GR, the ratio 

βDC/βAC is 
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From eq. (36), in the case of existing GR component in IB, the base current noise becomes 
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At high bias IB≈IB,DIF>>IB,GR, and one observes SIB
∝(IB)2, since also IB,DIF>IBcr=α’B/α”GR. At low bias, however, 
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when IB,DIF<< IB,GR≈IB, several situations are possible. If IB,DIF>IBcr=α’B/α”GR, then SIB
∝(IB)2, but slightly 

attenuated with (ηGR)2, and one may observe small step in the SIB
∝(IB)2 dependence at the crossover between 

IB≈IB,GR and IB≈IB,DIF. In a situation when the coupled noise is low and IBcr is larger than the DC current for 

crossover between IB≈IB,GR and IB≈IB,DIF, one can find a dependence that differs from SIB
∝(IB)2 and SIB

∝(IB). For 

this situation, we rewrite eq. (44) with α”GR omitted, as 
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At the higher bias end, where IB,GR< IB,DIF≈IB, then SIB
∝(IB). In contrary, at the lower bias end, where ηGRIB,DIF< 

IB,GR≈IB, then 
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This equation implies that the intrinsic diffusion noise in BJT levels off when the base DC current is dominated 

by generation-recombination currents. This effect is observed several times when the BJT was stressed 

electrically or after proton irradiation, and the generation-recombination currents are increased. An example 

from [21] is shown in Figure 6. Before stress, circles in Figure 6, a slope close SIB
∝(IB) is observed, indicating 

low level of coupled noise owing to screening of surface noise from emitter-base junction, achieved by a high 

doping concentration at the surface of the base, using superficial base doping (SBD). Also, the step in the 

SIB
∝(IB) dependence is observed in this sample at the transition region from low IB≈IB,GR to higher IB≈IB,DIF. 

After the stress, triangles in Figure 6, the SIB
∝(IB) dependence levels off due to increased IB,GR. 

The departure from SIB
∝(IB) and SIB

∝(IB)2 is attributed to generation-recombination currents at the surface above 

the base-emitter junction [14, 36, 37, 42, 60], because it is found that apart from 1/AE dependence for the 

normalized noise (KF=f ×SIB
/IB

2∝1/AE) in the base current, both the DC and noise currents in the base scale with 

the perimeter PE of the emitter [11, 14, 36, 37, 60], rather than only with the emitter area AE. So, partitioning 

between areal and peripheral noise in BJT takes place, by using equations in the form of 
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where KF,A (≡KF,AE
) is the normalized areal noise, with KF,A∝1/AE, and KF,P (≡KF,PE

) is the normalized peripheral 

noise, with KF,P∝1/PE. The peripheral noise is usually analyzed as a surface noise attributed to an area 

AP=PE×WP at the spacer oxide [36, 37, 42], where the characteristic width WP is taken as the width of the 

depletion region of base-emitter junction [37]. The fluctuation of charge trapping, or tunneling associated with 

the oxide at this surface AP, is regarded as the origin for GR current and corresponding surface noise. This 

illustrated in Figure 7. The fluctuation of charge at/in the oxide modulates the potential in the base-emitter 

junction in vicinity of the trapped charge causing fluctuation in the carrier concentrations in this vicinity, and 

thus, current noise in BJT due to number fluctuation of carriers. The assumption that the traps affect the 

depletion region of width WP of base-emitter junction is reasonable, but the value of WP~15-20nm in [37] is 
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small as compared to values 50-100nm for peripheral effects. Our estimate [46] is that the potential bending 

around a single trapped charge results in a strong and almost constant effect in a distance of about 15nm, and the 

effect gradually decreases in a distance up to 50nm. This is shown with dashed lines in Figure 7. So, a “remote” 

coupling of the fluctuation of trapped charges is expected, and the width, as well as the depth, of coupling of 

surface noise is normally in the range of 50-80nm [20, 37]. Nevertheless, this range of distances is smaller than 

the width of the emitter, and it implies a peripheral noise that scales with the perimeter of the emitter, rather than 

with the area of the emitter. The surface noise can couple noise in the resistance of the base too, since the length 

of base extension to the metal contact can be large as compared to the emitter width, but this effect is not 

dominant noise source in BJT, because the doping of the base and the extension is high, and they are not 

depleted from carriers in principle. Therefore, outside the vicinity of depletion region of the base-emitter 

junction, the large number of carriers screens the fluctuation of trapped charges, although some additional noise 

is observed in minimum-sized BJTs [37]. 

To separate the peripheral noise from areal noise in BJT during experiments, one writes eq. (47) in two 

equivalent forms, given by 
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Then, the DC currents and low-frequency noise of samples with known AE and PE and different ratio AE/PE are 

measured in several decades for IB. A check for quadratic dependence SIB
∝(IB)2 is helpful to verify that the noise 

is coupled (from IFO and surface) and not intrinsic (from diffusion) in order to guarantee the validity of eq. (47). 

Next, the diffusion and surface DC currents are separated from Gummel plots for each sample in a manner so 

that IB,DIF∝AE and IB,GR∝PE in order to verify that the assumptions for scaling with emitter area and perimeter are 

valid in the experiment, e.g. IB,GR might not be a peripheral current in BJT. Finally, the quantities in the left-hand 

sides of eqs. (48) and (49) are calculated and plotted against the quantity [AE×(IB,GR)2]/[PE×(IB,DIF)
2] and its 

reciprocal, respectively. If the assumptions for areal and peripheral noise apply for the samples, the intersection 

of the linear fit in the first plot with the vertical axis should match with the slope of the linear fit in the other plot 

(and vice versa). If so, then one can use (AE×KF,A) as the measure for the areal noise in BJT and (PE×KF,P) as the 

measure for the peripheral noise; and proceed to physical identification of noise sources. Certainly, the 

procedure for separation of areal and peripheral noise is quite demanding, and we observe only portions of this 

procedure reported in the literature [11, 36, 37, 60].  

Also, some peripheral effects in BJT, such as thicker IFO at emitter edges [20, 36] and current crowding at 

emitter periphery [35], may result in higher noise, but not necessary cause higher base DC current IB,GR. In these 

cases, the method above may result in unrealistic values from physical point of view [37] and it has to be 

modified to converge the approaches in [36] to that in [31], the latter discussed earlier by the help of eq. (24) for 

non-uniform IFO. The modifications are the following. From DC characteristics of small and large area BJT 

with different ratio AE/PE, one has to determine the characteristic width WP of the peripheral regions and the 

areal and peripheral DC current density pre-factors J0A and J0P, respectively, using the equation 
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so that one set of values for WP, J0A, J0P, J0GR, ηA≈ηP≈1, and ηGR≈2 fits the measured curves. An initial value for 

WP can be between 50nm [36] and 80nm [31]. The last term in the equation is for surface currents, and at high 

bias can be neglected, where also an approximation η=ηA=ηP≈1 holds, and the equation can be reduced to 
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The right-hand side of this equation reduces to JOA for large-area, nearly square-shaped BJTs, and thus, JOA is 

easy to find. With the initial value for WP, one can find initial value for JOP, using data from smaller-area, 

rectangular-shaped transistors; but the next step will require optimization procedure, first, to fit the data from DC 

measurements at high bias, varying WP and JOP in eq. (51), and then, another optimization procedure to fit all 

data, both at high and low bias, using eq. (50). This is not convenient. Therefore, another approach is taken in 

[36]. It is estimated that PE×WP/AE<<1, which reduces eq. (51) to 
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The quantity in the left-hand of the equation is the current density prefactor JB0 for the base current in the 

samples, and JB0 is obtained for each sample from DC measurements. The values of JB0 are plotted against the 

ratio PE /AE, and from the slope of this plot, the values for the product WP×JOP are obtained and directly used, 

since, actually, WP×JOP is needed in eq. (50), in order to analyze the noise form peripheral IFO; and the GR 

currents can be easily removed from the measured data too. 

Having WP×JOP estimated, one can obtain the peripheral IP and areal IA emitter currents by 
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and from measured base current IB one can get the areal emitter current IA , using 

PBA III −=   ( –IB,GR, if necessary).      (54) 

Care should be taken so that IA is greater than zero.  

By making substitutions IP↔IB,GR and IA↔IB,DIF, eqs. (48) and (49) can be rewritten as 
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by also neglecting the noise from surface currents. At this point, all modifications for the noise partitioning 

between areal and peripheral noise from IFO are made, and the procedure continues as described above for 

surface noise. One note should be made. We have assumed that PE×WP/AE<<1, which might be not precise, if 
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the width of the emitter is less than 0.5µm [20, 64, 65]. For such devices, either the method from [20] has to be 

used, or an increase in the average IFO thickness can be assumed in proportion to the decrease of the emitter 

width. 

One interesting feature for the peripheral noise is that it causes variable slope in the bias dependence of SIB
. This 

is continuously addressed in the literature, for example in [11, 14, 18, 21, 31, 42, 60, 62]. Since the peripheral 

noise is not coupled to the areal current, then the different non-ideality factors ηA≈1≠ηP=ηGR≈2 for areal and 

peripheral DC currents cause the variable slope, so that SIB
∝(IB)m, and 1<m<2. The assumption is that the 

peripheral noise is dominant and eq. (47) can be written as 
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where IB=IB,DIF+IB,GR is the total base DC current (areal + peripheral) and KF,P=constant is solely due to 

peripheral noise, which, however, is not coupled to the diffusion in the emitter area. Worth mentioning, such 

decoupling of peripheral noise from the BJT emitter area results in a noise current source between base and 

collector, as explained in [42]. 

The DC currents in eq. (57) are with different non-ideality factors ηA≈ηDIF=1≠ηP≈ηGR=2, and given by 
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So, at low bias, IB≈IB,GR>>IB,DIF, then SIB
∝(IB)2 , and one should expect a high slope m≈2 in the bias dependence 

of the noise. In contrast, at high bias, IB≈IB,DIF>>IB,GR, then one can see that 
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and SIB
 becomes sub-quadratic function of IB, given by 
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, with m=2ηA/ηP at IB≈IB,DIF>>IB,GR.  (61) 

As the consequence, one can observe a lower slope m≈1 in the bias dependence of the noise at high bias, 

IB≈IB,DIF>>IB,GR, when the surface recombination is the dominant but peripheral noise source in BJT. The 

decrease of the slope in the bias dependence of the noise is the argued in [21] as an indication for peripheral 

noise, and we show sample of the data from this publication in Figure 6 with circles and triangles. Note that the 

bias evolution of the peripheral noise, since it is uncoupled from the areal current in BJT, is different from 

evolution of areal noise coupled from IFO shown in Figure 6 with squares. 
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III.3.3. Lorentzian noise superimposes 1/f noise 

So far, we have assumed that the low-frequency noise in BJT is 1/f noise with a constant slope as function of the 

frequency. This is a good approximation for large-area BJT, but significant deviations in the frequency slope are 

prominent in submicron-area BJT. It is observed many times, for example in [11, 12, 17, 18, 30, 31, 35] that 

reducing the emitter area, low-frequency noise with a Lorentzian shape of the power spectrum density (PSD) 

superimposes on the 1/f noise. Therefore, the noise PSD in the base current of BJT is given with 
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as a superposition of shot noise 2qIB with constant, “white”, spectrum in respect to frequency, flicker noise with 

1/f  or “pink” PSD and a sum of several Lorentzian PSDs, in each of which τi is a characteristic time constant so 

that at low frequency f<1/(2πτi), the Lorentzian noise component has approximately constant magnitude 

Si(0)=Biτi, while the magnitude of the Lorentzian noise decreases at higher frequencies  f>1/(2πτi) with a slope 

1/f2. The shot noise originates from discrete nature of the current, quantized by the electron charge q, when the 

carriers overcome the injection barrier of the emitter-base junction and then move fast through the short base in 

the BJT, resulting in very dense burst of current “shots”. Each shot can be represented as a Dirac pulse, resulting 

in a white spectrum. The 1/f portion in SIB
 we have discussed above. The Lorentzian components originate from 

random bistable processes with amplitude ∆I∝ iB , such as generation-recombination (GR), which is well 

established for semiconductor devices, and in particular for BJTs it is shown in [11, 17] that Shockley–Read–

Hall statistics holds. It follows from this that Bi∝IB
2 and τi∝1/IB, because of the following general reasons. 

The time constant τi of a Lorentzian component is smaller than the emission and capture time constants of the 

trapping GR center, and it is given by  
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where νth≈107cm/s is the thermal velocity of carriers in silicon; and other constants associated with each trap are 

capture cross-section σ, energy level ET in eV and degeneracy factor g~1. It is reasonable to state that the base 

DC current IB is proportional to both carrier concentration n’ and exp[(EF-ET)/φt], since the Fermi level EF in eV 

is nearly linear function of the bias voltage VBE. Combining the constants, one can write 
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where a1 and a2 are constants, and τi≈constant at “low” DC currents and decreases as τi∝1/IB at “high” currents. 

Therefore, the increase of the bias current in BJT causes an increase of the corner frequency of the individual 

Lorentzian spectra in eq. (62). 

The quadratic dependence Bi∝IB
2 can be easily understood in terms of coupled noise. As discussed above, the 

trapped charge bends the potentials around it, and it couples a change in the voltage at the emitter-base junction 
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with approximately constant amplitude ∆VBE ∝q/C, where C is the capacitance of the emitter-base junction. 

Taking the resistance of the base-emitter junction rπ=φt/IB, one gets ∆IB=∆VBE×IB/φt, and for the noise coefficient 

Bi, one writes 
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where a3 is constant for a particular trapping GR center, a3 can vary between the traps, but a3 is a weak function 

of the bias. Combining eqs. (64) and (65), the bias dependence of the low-frequency plateau Si(0)=Biτi of a 

single Lorentzian noise component becomes 
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where a1, a2 and a3 are approximately constant in respect to bias. Thus, one observes a steeper bias dependence 

of Si(0) at low currents, by comparing to the slope in this dependence at high bias. 

The bias dependence of Lorentzian noise coupled from single generation-recombination center in BJT is 

illustrated in Figure 8 with an example from [12]. The evolution of the power spectrum density in Figure 8Figure 

8a includes an increase of the corner frequency and an increase of plateau of the Lorentzian spectrum, as 

suggested by eqs. (64) and (66), respectively. The bias dependence of different parameters in Lorentzian 

spectrum is illustrated in Figure 8b. The noise coefficient Bi increases strongly with the bias according to eq. 

(65), as shown with squares in Figure 8b. The corner frequency 1/(2πτi) also increases with bias, but with lower 

slope according to eq. (64), as shown with circles in Figure 8b. The knee in the bias dependence of Si(0) is also 

clearly visible from the triangles, and it is in agreement with the prediction of eq. (66). Similar bias dependence 

of the Lorentzian noise is observed in [35], where it is observed that the ratio Si(0)/τi is a function IB, and this 

function is with a constant slope. This is expected from eqs. (64) and (66), because 
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depending on whether areal or peripheral noise is coupled in BJT, as discussed above. If the Lorentzian noise 

originates from the emitter area, then m≈2, as shown by eq. (65). If the Lorentzian noise originates from the 

emitter periphery, the slope is expected to be lower, m~1, as discussed after eq. (61). In [35], the slope is m=1.3 

and indicates peripheral Lorentzian noise, which agrees with the investigation on the current crowding in BJT 

addressed in this publication. 

Crossover between 1/f and GR noise 

The relative contribution between 1/f noise and Lorentzian noise is found to be dependent on the emitter area 

[17, 18, 30, 31, 33]. In large-area BJTs, the portion of 1/f noise is dominant in the low-frequency noise, as shown 

in the right-hand plot of Figure 9. By decreasing the emitter area, however, the low-frequency noise becomes 

dominated by Lorentzian noise as shown in the left-hand plot of Figure 9. Nevertheless, by averaging the noise 

from several small-area BJT one gets nearly 1/f spectrum, and what is even more interesting, the values for the 

product (AE×KF) obtained from the average noise of small devices match the values obtained from large-area 

BJT, in which the Lorentzian noise is low. Therefore, it is deduced in [17, 18, 30, 31, 33, 60] that the 1/f noise 
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can be due to superposition of many Lorentzian components originating from a large number of trapping GR 

centers in large-area BJT at a given trap density, while in small-area BJTs, having approximately the same trap 

density, the number of traps becomes small and the individual Lorentzian components become distinguishable. 

So, the origin 1/f noise can be superposition of Lorentzian noise, and the term for the 1/f noise in eq. (62) can be 

modeled in terms of this superposition. The model is developed in [17, 66, 67] and reviewed in [18, 31]; and 

similar model is used in [33, 60] to get insight for the noise in SiGe HBTs. 

The model [17, 66, 67] uses the assumption that the trap density is constant in the emitter area, and complies 

with the observations that the low-frequency noise, on average, is with 1/f power spectrum density (1/f), having 

magnitude inversely proportional to the area (AE) and quadratic function of the base current (IB
2). The variation 

of noise around the average is expected to be inversely proportional to the square root of the area. Also, when the 

emitter area is small, bistable Random Telegraph Signal (RTS) noise is expected from individual traps. Let us 

see how one can get 1/f noise from the superposition of Lorentzian components at the above assumptions. 

Consider the right-hand term in eq. (62) 
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where NtA is the constant trap density per unit emitter area, AE×NtA is the total number of traps in the emitter area 

AE which couple RTS noise, ∆Ii is the amplitude of the RTS from the ith trap. The multiplier 4 depends on the 

ratio between capture τc and emission τe times in RTS [4, 68, 69], it can decrease, but usually is taken constant 

for simplicity [70].  

From the discussion for eq. (65), ∆Ii is coupled from single trapped charge q, and it is  
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where C=CA×AE is the capacitance of the emitter-base junction, CA=εSi/WJ is the capacitance per unit area of the 

depleted region of the emitter-base junction, εSi=1.04×10-12 F/cm is permittivity of silicon and WJ is the width of 

the depletion region, which is bias dependent. The parameter ai represents the strength of amplitude coupling, it 

corresponds to K  in the general equations (1), (4), (5), and it is expected that ai<1 in the following analysis, 

since the coupling is attenuated by the diffusion impedance rπ||(2πfCDIF)
−1 of the forward biased junction. The 

expressions for WJ are given in [71], for example, and for an abrupt junction, they are 
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where Nd and Na are the volume doping concentrations at the emitter-base junction, and ni=1.5×1010≈1010cm-3 is 

the carrier concentration in intrinsic silicon at room temperature. 

Substituting in eq. (68), one gets 
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The number of acting traps AE×NtA around the Fermi level and their coupling ai vary between samples and with 

bias. For large emitter area BJT, however, one can use average value aavg=average(ai) and assume a continuous 

distribution g(τ) for the traps in respect to their time constants τi, within a range from τmin to τmax, by writing 
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So, eq. (71) becomes 
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Furthermore, it needs g(τ)×τ=b=constant in order to obtain 1/f spectrum from the integral. This is because 
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at conditions (2πfminτmax)>>1 and (2πfmaxτmin)<<1. Assume that the noise is measured in 4 decades, e.g. decimal 

log(fmax/fmin)=4, then the time constants of the traps should be distributed as g(τ)=b/τ at least 2 decades above 

and below to satisfy the conditions for obtaining 1/f noise from superposition of Lorentzian spectra. This means, 

that log(τmax/τmin)≥8. The reasons for the g(τ)=b/τ distribution in a wide range are summarized in [70] and 

discussed in length in [2, 68]. The parameter b is then estimated from eq. (72) as 
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and the substitutions in eq. (73) yield that the power spectrum density of the noise in the base current due to 

superposition of Lorentzian components in large-area BJT is 
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while in small-area BJT, the Lorentzian components are accompanied with RTS noise in time domain with an 

amplitude of 
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From eq. (76), it is clear that the superposition of Lorentzian components from individual trapping or generation-

recombination centers reassembles that the low-frequency noise, on average, is with 1/f power spectrum density, 

having magnitude inversely proportional to the area and quadratic function of the base current, as it has been 

stated above. The model in [17, 67] defines the quantity NtAdec as areal density of traps per frequency decade, 

which can be experimentally obtained from large-area BJT, using 
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and varying the coupling coefficient aavg so that the number of Lorentzian components in smaller-area BJT 

matches the number AE×NtAdec×log(fmax/fmin), and the measured RTS amplitudes ∆IB agree with eq. (77) in sub-

micron area BJT. Our experience implies that aavg~0.07 is a reasonable initial value, when using the barrier 

capacitance of the junction in eqs. (77) and (78). If one includes the diffusion capacitance, then the values for 

capacitance and coupling coefficient should be scaled up about one decade, but their ratio will be approximately 

the same, and therefore, ∆IB and NtAdec will remain unchanged. The areal density of traps per frequency decade 

NtAdec is used also in statistical model for MOS transistors in [72].  

Here we give some numbers relevant to the data in Figure 9 in order to provide impression for the order of 

magnitudes. Nd=1020 cm-2, Na=1.5×1018 cm-2, Vbi=1.07 V, VBE=0.81 V, WJ=15 nm, AE×KF=4×10-9 µm2, coupling 

aavg=0.07, NtAdec =2.4×108 cm-2dec-1, log(τmax/τmin) =10 dec, NtA =2.4×109 cm−2, NtAeV=NtA/(0.026 eV) =9.2×1010 

cm−2eV−1, since the charge only in the traps within 26meV around the Fermi level fluctuates [4, 69]. For the 

measurement frequency range of log(fmax/fmin)=4 decades, one can have 1.5, 6 and 23 Lorentzian components for 

devices of emitter area AE=0.16, 0.64 and 2.4 µm2, respectively, but these components are distinguishable only 

in the smallest device in Figure 9, since one needs about one frequency decade separation between individual 

components in order to see them clearly in the spectrum.  The values above are obtained from new analysis of 

the data. These values are within the order of magnitudes reported in [17], but they differ up to a half decade 

(perhaps because the aforementioned multiplier 4 in eq. (68) has to be reduced to 1 according to Fermi statistics 

[4, 68, 69]), while the measured data are the same. This indicates that there is an inherent characterization 

uncertainty for the low-frequency noise, which is normally in the range of several dB, and this is discussed next. 

III.4. Measurement and characterization uncertainty – experimental accuracy, fitting and averaging 

The last reason for the scattering in the data for the normalized noise in Figure 2, which we want to address, is 

that the measurement and characterization of low-frequency noise have inherent uncertainty. The sources of this 

uncertainty are several and include instrument inaccuracy, deviations from the ideal 1/f slope in the spectra, use 

of different characterization methods; and all these interfere with the experience and preferences of the 

individual researcher. We shall discuss now several difficulties that one has to overcome in experimental works. 

III.4.1. Accuracy and the smoothness of the measured spectra 

The first problem is the accuracy and the smoothness of the measured spectra. The measurement setup usually 

uses DC bias sources, low-noise preamplifier and spectrum analyzer. The bias sources are normally of good 

accuracy, with error not more than 1%, which causes less than 0.1dB uncertainty for normalized noise. However, 

battery bias (or filter) is required to ensure low level of noise floor in some experiments; and wire-wound 

potentiometers and resistors are used to provide the desired bias current or voltage. The DC accuracy of such 

setup usually is in the range 5%-10%, which causes up to about 1dB uncertainty for normalized noise. The next 

source of inaccuracy is the gain in the preamplifier and its finite impedance. At medium frequency of 100Hz, the 

gain in a typical low-noise preamplifier has inaccuracy of about 1%-3%, but at low frequency (1Hz) the blocking 

capacitor at the input of voltage amplifiers causes roll-off and the impedance of the amplifier together with its 

input cable is a problem in measurements of devices at low currents (nA) even in the range of 1kHz. The right 

choice in such case is a current preamplifier, but the DC current has to pass through the amplifier, no blocking of 
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this current is possible, resulting in decreased sensitivity of the setup in some cases, especially at high DC 

currents (>1mA). Overall, even after careful preparation of the measurement setup, the error associated with the 

preamplifier and its front-end is in the range 3%-5%, which adds another 0.4dB uncertainty for the normalized 

noise. The error from the spectrum analyzers is usually low, within 1%, but it requires that the measurement 

range is chosen accordingly. However, in some cases such as RTS noise with small or high duty cycle and 

occasional spikes, the range has to be increased to avoid saturation. Practically, the error from spectrum analyzer 

is about 3%, which is another 0.25dB uncertainty for the normalized noise. Adding all the errors, the instruments 

usually cause 2dB uncertainty in low-frequency noise experiments, in which 3-6 decades for the DC biasing 

currents are considered. 

The smoothness of the measured spectra is also a problem in low-frequency noise experiments. At the low-

frequency end of the spectrum, one usually desires a resolution of 1Hz or better. This, in turn, results in time 

window for signal capturing of 1 s or more. Then, since the noise is a random signal, the Fourier transformation 

of single captured record is with large scatter around the average, e.g. 10 dB or more. Therefore, many records, 

e.g. 100, need to be captured and averaged, which increases the measurement time to 10 and more minutes per 

spectrum, in order to obtain spectrum with scattering about 2dB. So, the measurement time becomes an issue for 

low-frequency noise, and it causes about 30% uncertainty for the normalized noise, if no additional method for 

averaging is used. One example for insufficient averaging during measurement is shown in Figure 10 at the 

tradeoff with measurement time. The scattering in this figure is about ½ decade and one will meet with 

difficulties to examine the normalized noise from this figure with accuracy better than 1/4 decade. 

III.4.2. Deviations from the ideal 1/f slope in the spectra 

The second problem related to the experimental accuracy for the normalized noise is the variability of the slope 

in the 1/f-like spectra. The variations are typically two: the steepness of the slope is different from 1/f; and the 

slope of the spectrum varies with the frequency, having humps owing to large Lorentzian components in the 

spectrum. There are physically based models with variable slope in noise spectrum, e.g. analytical in [2, 73], 

numerical in [68] and the aforementioned for superposition of Lorentzian components [17, 66, 67]. These 

models are based on deviation from uniform trap density or gaps in the uniform distribution, but a mature 

characterization technique based on any of those models is not available. There is no standard technique that 

resolves the problem of the variability of the slope in the 1/f-like spectra. However, some approaches are 

popular. These are choice of frequency of interest, fitting of formal, semi-empirical or Monte Carlo model, and 

post-measurement averaging.  

Choice of frequency of interest 

The approach of choosing a frequency of interest from the whole spectrum is suitable for volume noise 

characterizations, e.g. industrial tests. This approach minimizes the time of measurement and compresses the 

data into a small volume, so that comparisons between many samples and biasing regimes become feasible. The 

approach is particularly suitable when the goal is to examine the evolution of the noise level with bias or to 

obtain a statistics for the noise levels among devices on one or from several wafers. Due to its simplicity, the 

approach of choosing a frequency of interest is widely used, almost in every single publication, and it allowed 

verifying that the variation of the noise is a reciprocal function of the device area, as shown with one example 

from [74] in Figure 11 for MOS transistors. However, the approach of choosing a single frequency from the 

spectrum is vulnerable to large uncertainty owing to deviation of noise spectrum from 1/f slope, since the 
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approach inherently assumes 1/f slope when estimating the normalized noise at 1Hz, as required for the noise 

parameter KF. A deviation δ=10-20% from 1/f slope causes error 10dB×δ also multiplied by the number of the 

frequency decades of extrapolation when referring the noise to 1Hz. A frequency 10Hz is typically chosen in 

experiments to minimize the measurement time, and therefore, 10-20% (0.4-0.8dB) error is easily introduced for 

the value of KF. In addition, the randomness of the corner frequency fc of Lorentzian noise in sub-micrometer 

area devices causes variation from high values for estimated KF, if fc≈10Hz, to low values, if fc is one-two 

frequency decades apart from 10Hz. The uncertainty for the value of KF in this case is very large – one and more 

decades, as one can deduce from Figure 11, and one can estimate meaningless value for KF, if only one 

frequency point from the noise spectrum is used for the purpose. Therefore, one has to do statistical analysis of 

many data obtained by the approach of choosing a frequency of interest in order to obtain representative value 

for the normalized noise and the noise parameter KF. 

Fitting of formal, semi-empirical or Monte Carlo model 

The other approach of fitting of formal, semi-empirical or Monte Carlo model to the measured noise spectra is 

more reliable and less vulnerable to variations in the slope of the spectrum, and therefore is used often in the 

research on low-frequency noise. The fitting model is chosen usually in the form of eq. (62), and it is enhanced 

with two more parameters, resulting in 
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where BF=0.8…1.2 reflects the deviation of the flicker noise spectrum from the ideal 1/f slope, and AF=1…2 

reflects the bias dependence of the flicker noise. The approach of fitting a model, however, has several 

drawbacks. The first drawback is that it cannot be formalized into algorithm, because the selection of values for 

AF, BF and number of Lorentzian components is not unique, and the selection is also dependent on the pre-

selected optimization criterion, the latter also chosen by preferences of the individual researcher. The second 

drawback, which follows from the first, is that the fitting procedure requires intensive human assistance in an 

interactive manner, which makes the approach very slow and vulnerable to human errors and individual 

preferences and skills. The last, but not the least, drawback is that the value and the unit for KF varies with 

values of BF and AF. As the consequence, the quantitative comparison for the level of the flicker noise from 

different measurements and samples is almost impossible. Nevertheless, the first two terms of eq. (79) are 

implemented in the device models for circuit simulations and the evaluation of the corresponding parameters KF, 

AF and BF helps in the design practice. Therefore, the approach of fitting a formal noise model for BJTs is taken 

in [32, 34, 37]. Interestingly, persons from industry are co-authoring these publications. 

III.4.3. Data processing 

The third problem related to the experimental accuracy for the normalized noise is the data processing from 

which KF is evaluated. As mentioned above, the scattering in the measured noise spectra is about 2dB and the 

variations between individual values from different measurements and devices can be larger than 1 decade – see 

again Figure 11. In such situation, one has to perform post-measurement averaging in order to evaluate the noise 

and to obtain a representative value for the normalized noise and KF. 

The simplest way to perform averaging of a noise spectrum is to plot the spectrum in a log-log scale and to draw 

a line where the density of measured points is the highest. Form the intersect of the extrapolated line with the 
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axis for noise level at 1Hz, one gets the power spectrum density S(1Hz) at frequency 1 Hz, then the normalized 

noise and KF are calculated. This approach is used very often, due to its simplicity, but it is vulnerable to human 

errors. An example that demonstrates the range of errors by manual fitting of data from noise measurements is 

given in Figure 12. The squares in this figure are the data reported by the authors in a numerical form in a table. 

The diamonds are the same data, but reported in a graphical form. The discrepancy between numerical and 

graphical data is apparent, although the manual fit of the data and the fitting of the two data series using least 

mean square method yield equations, which result in almost overlapping lines when plotted together. Looking 

closer at the numbers of the fitting equations, the values of the parameters vary about 5% both for the prefactor 

and exponential coefficient. So, one expects at least 0.2dB uncertainty for the normalized noise when the data 

from noise measurements are processed manually in a graphical form. This uncertainty could be much higher, if 

the data scatter, as in Figure 10 or in Figure 11. 

Another approach that is equivalent to averaging is to analyze the noise in a bandwidth, rather than at individual 

frequencies. This is a standard procedure for resistors [75, 76, 77, 78], but rarely used for electronic devices, 

perhaps because the noise in a bandwidth is an integral measure, the frequency slope of the noise is essentially 

inaccessible from the noise in a bandwidth, and also the noise in a bandwidth is not implemented in device 

models, since it is expected to be a result from simulations. An attempt for modeling the noise in a bandwidth is 

presented in [72]. 

Numerical methods for averaging 

The numerical methods for averaging of noise spectra can be divided into two groups – arithmetic (precisely, 

root-mean-square RMS) and geometric averaging of power spectrum density (PSD) (or derivates of PSD, such 

as f×PSD×Area/IDC
2). 

For several power spectrum densities Si, with i=1, 2 …imax, the arithmetic (RMS) averaging uses  
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The geometric averaging [28, 29, 34, 36, 79] uses logarithm of the power spectrum densities, given by 

( )ii,dB SlogdB10S ×= , PSD in dB.    (82) 

Then, 
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When the variations between individual spectra Si are small, e.g. in large-area BJT, then both methods yield 

similar results, that is 

( )avgavg,dB SlogdB10S ×≈  and ( )σ+×≈σ+ avgdBavg,dB SlogdB10S .  (85) 

However, if the variations between individual spectra Si are spread over one decade or more, then the arithmetic 

averaging results in variation larger than the average [72], σ>Savg, it becomes impractical (because the noise is 

attributed to σ rather than to Savg), and the geometric averaging is more suitable for sub-micrometer area devices, 

since the distribution of noise variation tends to log-normal distribution [28, 29, 79, 80]. Therefore, many 

authors use geometric averaging [17, 28, 29, 34, 36, 66, 67, 79, 80, 81, 82]. Worth mentioning, it is empirically 

observed that the noise variations are better described by log-normal distribution, and substantial work is 

expected to explain the origin of this empirical observation [79, 80]. A reason is given later in section VIII.6. 

“Consequences from statistical nature of LFN – distributions in spectra, techniques of averaging, data 

volume and coordinates, instrumentation”. Interestingly, assuming Poisson distribution of threading 

dislocations in strained silicon wafers, the geometric model of noise variation explains the data in [82].  

However, one should be careful when using the equations for geometric averaging and modeling of noise, in 

order to preserve the physical consistence of figures of merit (FOM). For example, defining FOM for relative 

variation (in respect to mean level of noise), the arithmetic (RMS) averaging suggests [72, 79] 

avg
ari S

FOM
σ= , for relative variation from arithmetic (RMS) averaging,   (86) 

The FOM for relative variation from geometric averaging is actually σdB [28, 79, 80, 81], because it follows from 

eq. (85) that [17, 66, 67] 

( )dB10

avg
dBgeo

dB101
S

FOM σ=+σ
σ≡ , for relative variation from geometric averaging, (87) 

whereas the FOM=σdB/|SdB,avg| as attempted in [33, 34, 36] is just a number that will violate the rules for physical 

units, if one tries to convert it to ratio of noise level. In the above equations, note again that σ is standard 

deviation and Savg is average of noise S, the latter being a variance (usually per unit frequency) in principle.  

To provide impression for the noise variation in BJTs, we present in Figure 13 several views of the few data 

available from literature. These data have been also obtained using geometric standard deviation according eq. 

(84). The shaded areas in the figure represent cases when the variation of the noise is larger than the average 

level, that is σ>KF. The top-left plot in the figure shows the data vs. emitter area, as originally reported. One can 

see that the noise variation increases in small-area BJT and in sub-micron area BJT the variation is dominating 

over the average. The slope in this plot is somehow low, only -2.5dB/dec, but the bottom-left plot, obtained 

using eq. (85) or eq. (87), clearly shows that the absolute variations are a strong function of the emitter area, 

σ∝(AE)-1.5, and taking into account that KF∝(AE)-1, then one observes the aforementioned increase of (AE)-0.5 in 

noise variation as function of decreasing device area, as predicted by Monte Carlo simulations [17, 66, 67] and 

analytically in [72]. 

More interesting, and to the best of our knowledge not explored explicitly yet, are the observations that one can 

make in the right-hand plots in Figure 13. The main observation is that the noise variation scales with the 

average noise. This is clear in the bottom-right plot, where the slope 3:2 suggests a trend σ∝(KF)
1.5 for the 
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absolute variation σ of the noise as function of the average noise KF, and reassembles the corresponding slope -

3:2 for the dependence σ∝(AE)-1.5. Owing to the limited number of experimental data points, it is difficult to 

identify properly the factors that cause the relation between noise variation and average noise. For example, 

there is no unique line that can be drawn in the top-right plot. The overall behavior in Figure 13 suggests 

that 5.1
EEF AAK −∝∝σ , but the limited amount of experimental data does not allow parameterizing the 

dependence reliably. Nevertheless, for BJTs with emitter area AE<0.3µm2 and KF>3×10-8, the noise variation 

appears to be more important than the average noise, since the noise variation affects the repeatability in the 

noise performance of the devices. Consequently, large discrepancy between simulations based only on average 

noise and the real noise performance of the individual device is expected for nowadays BJT. More discussions 

on averaging techniques are given in section VIII. “Outlook for the LFN” after eq.(469). 

Summing all factors discussed above we estimate that the uncertainty of each data point in Figure 2 is about 

3dB, owing to different measurement setups and techniques for model fitting and averaging. This uncertainty, 

perhaps, contributes significantly to the value of σdB that is shown in the figure. Nevertheless, we use the data for 

npn BJTs from Figure 2 as a benchmark in comparisons to other devices. When comparing the values for KF, we 

use the data which are within and close to the interval AE×KF≈5.6×10-9 µm2 ±2σdB. When comparing the values 

for input voltage noise SV, the same reference data are referred as the base voltage noise using the relation 

f×AE×SVB
(f)=AE×KF×(φt)

2 from eq.(3), which applies when the noise in BJT is coupled from the emitter area to 

the diffusion currents, according to the discussions on eq. (36). 

Comparative study of noise in npn and pnp BJTs 

Past  publications , for example [83], conclude after comparative studies on devices from complementary 

technologies (BiCMOS) that the noise in pnp BJTs is lower than the noise in their npn counterparts. We have 

searched for published data for low-frequency noise in silicon pnp BJT. The data are collected from [12, 32, 83], 

stored in numerical form in [84], and shown in Figure 14 together with data and trend for the noise in silicon npn 

BJTs. The information for noise in silicon pnp BJTs is less available in the last two decades, as compared to the 

data for silicon npn BJTs and the more recent interest on SiGe HBTs. In contrary to the above comparative 

studies, we did not found data for the noise in pnp BJT, which could confirm the conclusion of the comparative 

studies. This is illustrated in Figure 14. The open circles and gray lines are from Figure 2 and represent data and 

trend for noise coefficient KF in npn BJTs. The solid symbols and black lines in Figure 14 represent data and 

trend for noise coefficient KF in pnp BJTs, and they are above the trend for npn BJTs. Also, studies [34] on noise 

in complementary SiGe HBTs indicate that the noise in pnp transistors is higher than the noise in npn transistors. 

Interestingly, the data for pnp BJTs tends also to log-normal distribution, as shown in the insert of Figure 14. 

Nevertheless, the difference in noise coefficients KF between npn and pnp transistors is within the range of 

scattering of the data for low-frequency noise, and it does not lend much confidence to make a general 

conclusion whether the noise is lower in npn or in pnp BJTs. Some differences in the bias dependence of the 

noise and for the impact of IFO in npn and pnp transistors are reported in [32], which makes the fair comparison 

of the noise in these transistors difficult. 

IV. Noise in MOS transistors 

The low-frequency noise in MOS transistors is widely studied because of several reasons. First, a physical model 

has been proposed in [85] long time ago and before any model for noise in BJT was accepted. Second, the MOS 
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technologies are the driving force in the downscaling of electronic devices in the last decades. Third, the low-

frequency noise in MOS transistors is higher than the noise in BJTs, as one can see in Figure 15. In this figure, 

the data are for 134 nMOS transistors from [22, 47, 48, 49, 50, 51, 72, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 

97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 

120, 121, 122, 123], and for 53 pMOS transistors from [47, 52, 86, 88, 95, 96, 97, 100, 102, 104, 105, 109, 123, 

124, 125, 126, 127, 128, 129, 130, 131, 132]. Many data points overlap in Figure 15, the lowest levels for noise 

in MOS transistors is higher than the highest levels of noise in BJT, and the data scatter about 3.5 decades for 

MOS transistors, while the data scatter less than 2 decades for BJT. Owing to these observations in the figure, it 

is clear that the control of the noise in MOS transistors is more difficult than it is in BJT. The main reason is that 

the operation of the MOS transistor is governed by a surface current transport, which is exposed to interface 

phenomena at the semiconductor-gate dielectric interface, while in BJT the current transport is mostly in the 

bulk of the semiconductor and it is “less” sensitive to the surface of the semiconductor. The consequence is that 

the current research on low-frequency noise in MOS transistors is focused on the fabrication of the gate stack at 

the semiconductor surface and although important and studied, the variation of the noise with the channel size is 

not dominant in the scope of many publications. Therefore, many researchers use samples of “standard” gate 

area, e.g. around 2-3µm2, or 10-20 µm2, but different gate stacks, and unique trend in Figure 15 cannot be placed 

accurately. Nevertheless, the product W×L×SVG
 for MOS transistors tends to log-normal distribution, as shown 

in the insert of Figure 15, and the mean in this distribution is about 2.5 decades above the average noise in BJT, 

which is in agreement with past ITRS predictions about the difference in the noise between MOS and bipolar 

transistors [3] – see again Figure 1a. Interestingly, when looking at the distributions for the product W×L×SVG 

separately for nMOS and pMOS transistors in Figure 16, the average noise in pMOS transistors is about 3dB (2 

times) lower than the noise in nMOS transistors, but at the same time, the distribution of the noise values is 

broader for pMOS transistors, which practically does not lend much confidence to conclude which type of MOS 

transistors is with lower levels of noise. Comparisons for noise in pMOS and nMOS transistors report opposite 

observations – noise in pMOS transistors is lower [95] and higher [83, 98] than in nMOS transistors.  Having the 

above observations in mind, and the data for noise available, we begin the discussion on the physics and models 

underneath these observations and the scattered data of low-frequency noise in MOS transistors. 

IV.1. Models and predictability 

It is widely accepted that the low-frequency noise in the drain current of the MOS transistor is coupled by the 

charge and mobility fluctuations related to the interface between semiconductor and gate dielectric. The 

approach of intrinsic and coupled noise allows comparing the low-frequency noise of MOS transistors to other 

devices, e.g. bipolar junction transistors, as it is discussed in the previous section. So, with the obvious for MOS 

transistor notations, we rewrite eqs. (11) and (12) as 
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for the purpose of analyses of charge trapping at interface between semiconductor and gate dielectric. Here, ID 

[A] is the DC drain current, SID
 [A2/Hz] is the power spectrum density (PSD) of the output drain current noise.  

For the coupled portion of noise, popular as noise from number fluctuation ∆n, the relevant quantities are 

transconductance gm=∂ID/∂VG [A/V=S], PSD of input referred (gate) voltage noise SVG
 [V2/Hz], gate capacitance 

per unit area Cox [F/cm2], PSD of trapped charge per unit area SNt
 [cm-4/Hz], and K is coupling parameter which 

depends on many factors, including bias, according to different physical models, but practically it is taken K≈1.  

IV.1.1. Intrinsic noise (mobility fluctuation) 

For the intrinsic portion of noise, popular as noise from mobility fluctuation ∆µ, αH is the Hooge parameter and 

neff is effective number of carriers in the channel [9]. The effective number neff ≤n takes into account the non-

uniform distribution of the total number n of carriers in the channel, when the drain voltage is not zero, and can 

be deduced by using eq. (13), but the procedure of evaluation is complicated, and one usually takes neff ≈n when 

investigating the low-frequency noise in MOS transistors in strong inversion regime at gate biasing VGS>VT 

above the threshold voltage VT, especially when the transistor operates in linear (ohmic) mode at low drain bias 

VDS~50mV<VGS-VT. Evidently, even before assuming any physics for the noise, quite a lot approximations and 

assumptions can be taken differently by different researchers in the equations for the low-frequency noise in 

MOS transistor, and this causes large spread in the values reported for the parameters related to the noise, and 

sometimes even to controversial conclusions. We illustrate this with one example for the intrinsic component of 

the noise. 

Assume that VGS-VT≥0.1V and 0≤VDS≤ VGS-VT-0.05V. Such biasing of MOS transistor is usually regarded as 

operation in ohmic mode, and one takes n=WLCox(VGS-VT)/q, neglecting that the charge concentration is lower 

at the drain side of the channel. Assume also that the intrinsic (Hooge) low-frequency noise is dominant (e.g. 

pMOS transistor), so that the Hooge parameter is estimated from eq. (88) as 
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Now, let us increase the “accuracy” of the calculation of the total number of carriers, assuming gradual 

approximation for charge concentration. The average number of carriers navg is the mean value of the number of 

carriers at source and drain sides, navg=(nsource+ndrain)/2, and navg becomes  
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Accordingly, the Hooge parameter is estimated as 
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Let us increase further the “accuracy” of the calculation using the integral for current crowding given by eq. 

(13), rewritten for 1D case, by assuming constant current density J, charge sheet approximation (the thickness of 

inversion layer T≡Dirac function, yet not accurate for sub-100nm MOS transistors) and thus WTJ=constant. 



38  of  286 

( )

( )





α

=















⋅
α

==
L

0
2
H

2L

0

2

L

0

4H

2
D

I
norm )x('n

dx

fL
dxWTJ

dxWTJ
f)x('n

I

S
S D  ,     (93) 

where the coordinate x=0…L is along the channel length, and 
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So, one gets the following expression for the Hooge parameter 
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where the effective number of carriers in the channel, neff [9], is lower than the above approximations 

n=WLCox(VGS−VT)/q and navg=WLCox(VGS−VT−VDS/2)/q. Provided that one processes the same data from one 

sample, but using different assumptions for number of carriers, Figure 17 illustrates possible discrepancies in the 

values estimated for Hooge parameter, since the value of αH is proportional to the estimated number of carriers 

in eqs. (90), (92) and (96).  

One can see from Figure 17 that 20% to 50% variations (1dB to 3dB) in the estimated values for αH can be easily 

introduced by changing only the characterization model. Similar vulnerability is discussed in [133] for the 

coupled part of the low-frequency noise in MOS transistors (popular also as number fluctuation ∆n) when the 

drain bias is not low, and brings the transistor in saturation mode, resulting in doubling the noise levels (3dB 

increase). Thus, ½ decade in the scattering of the data in Figure 15 we attribute to the use of different 

characterization models and procedures, since no standard method is currently accepted for MOS transistors. 

IV.1.2. Coupled noise component (number fluctuation) 

The coupled noise component in MOS transistors is widely studied in terms of trapping at semiconductor-oxide 

interface states [134] or charge trapping in gate oxide, as originally suggested in [85]. These approaches are 

known as random walk and tunneling ∆n models for 1/f noise in MOS transistors, respectively. They are 

illustrated in Figure 18 and discussed below.  

Another possibility for charge trapping and associated coupled noise component is when the traps are in the 

semiconductor [135], either in the inversion or/and in the depletion layer of the MOS transistor channel. The 

exploration of this possibility is feasible, when Lorentzian noise spectra are present, but random-telegraph signal 

(RTS) noise waveforms are not observed, and the noise is attributed to traps with particular energy, in contrary 
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to the expectation for uniformly distributed in energy and space traps in gate dielectrics. This possibility of 

trapping in the semiconductor of the MOS transistors is rarely addressed in the literature, since the interface 

effects are dominant in the MOS transistors, and not discussed below. 

Random walk model 

The random walk model [134] assumes that a charge carrier is captured at an interface state and after a time τ it 

moves to a neighboring interface state. The mean free path of the charges “walking” at the semiconductor-

insulator interface is taken as atomic distance l≈0.2nm and the cross-section of charge trapping is taken σ=10-16 

cm2=(0.1nm)2. For charge sheet (2D) approximation of the inversion layer in MOS channel, the distribution of 

time constants is 
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For the random walk, it is derived in [134] from superposition of Lorentzian spectra (see eqs. (73), (74) and (75) 

earlier) that the gate referred voltage noise in eq. (88) is 
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where the interface states are assumed to be distributed uniformly with density Dit[cm−2eV−1]=constant. 

Tunneling model 

The tunneling ∆n model for 1/f noise in MOS transistors, which was originally suggested in [85], has been 

followed up widely [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 72, 74, 80, 82, 83, 87, 89, 91, 95, 101, 103, 106, 107, 

110, 124, 126, 127, 128, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145]. It assumes that some charge carriers 

are trapped in the depth of the gate oxide. The tunneling probability is exponentially decaying function of the 

distance xti from semiconductor-insulator interface to the position of the trap in the oxide. Therefore, the rate 1/τ 

of tunneling events is   
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where 1/τo is attempt rate (frequency) taken by different assumptions in the range of  from 107s−1 [134] to 1010s−1 

[49, 55, 140], and λ is tunneling (electron wave) attenuation distance, given by eq. (23). The values for λ range 

between 0.06 nm and 0.22 nm for different semiconductor-insulator pairs, electrons and holes – see Table 2, 

because λ is function of the product of effective mass of the carrier in the insulator and the energy offset between 

the bands in semiconductor and insulator, according to Wentzel-Kramer-Brillouin (WKB) approximation. For 

Si-SiO2 and electrons, one usually takes λ=0.1nm – see [146], for example. 

At an assumption for uniformly distributed traps in the oxide depth, ∂Nt/∂xti=constant, as shown in many 

publications, for example in [70], it follows from eq. (99) that ln(τ)∝xti/λ∂τ/τ=∂xti/λ, and the distribution of 

the traps vs. their time constants becomes  
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Then, the superposition of Lorentzian spectra of the individual traps in the oxide produces 1/f noise – see again 

the procedure by eqs. (72), (73), (74) and (75). In this way (see [28] for example), the gate referred voltage noise 

in eq. (88) becomes as 
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where the traps in the oxide are assumed to be distributed uniformly with density Nt[cm-3eV-1]=constant. 

Comparison of random walk and tunneling models 

Comparing eqs. (98) and (101), one sees that the random walk and tunneling models converge, although the 

physical assumptions behind these models are different. The reason is that Dit in the random walk model and Nt 

in the tunneling model are assumed uniformly distributed both in space and energy, in order to obtain 1/τ 

distribution for the time constants of the traps, and from this – 1/f noise.  This is discussed in more detail in [28, 

147], where also is observed that Dit  from the low-frequency noise technique converges with charge pumping 

technique in the frequency range 10kHz to 100kHz that is accessible by both techniques. The deduction in [147, 

148] is that the 1/τ distribution arises from traps’ effective cross-section σeff apparent at semiconductor-dielectric 

interface, and σeff is exponential function from both activation energy EB of interface states and distance xti from 

semiconductor-insulator interface, given by 
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Accordingly, 
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and following the procedure in eq. (100), one sees that the 1/τ distribution can be achieved either or both 

assuming uniform distribution for the activation energy at the interface, ∂Dit/∂EB=constant, or uniform spatial 

distribution of the traps in the depth of the gate insulator, ∂Nt/∂xti=constant. Figure 19 illustrates how the 

uniform distributions in trap energy EB=0.2...0.6eV and tunneling distance xti=0.8…2.3 nm produce 1/f noise. 

Therefore, one can quite arbitrary attribute the 1/f noise to interface states or oxide traps, and this demonstrates 

the convergence between random walk and tunneling models for the gate referred 1/f noise voltage SVG
 in MOS 

transistors. In fact, both trapping mechanisms can superimpose, one can combine tunneling and random walk 

models, and we write for SVG
 in eq. (88) that 
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Rewritten in terms of charge fluctuation, SNt
 in eq. (89) is then given by 
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One can assume even a two-step process: first carrier capture in interface state and then random walk and 

tunneling. Perhaps, this is the reason why the range for τo in eq. (99) is taken with values in several decades by 
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different researchers. There are also other issues with the model for SVG
 in eq. (104), which we will discuss 

below, but before that, we will inspect the variation of the data in Figure 15 caused by the term (Cox)
2 in the 

denominator of eq. (104).  

Effect of the oxide capacitance, Cox 

For the purpose, we plot the ITRS [3] figure of merit for SVG
 (FOMSVG

) against the equivalent oxide thickness 

EOT of gate insulator, with EOT=εSiO2
/Cox, where εSiO2

=3.45×10−13 F/cm is the permittivity of SiO2 and Cox is the 

gate insulator capacitance per unit area. From eq. (104), FOMSVG
 is given by 
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and FOMSVG
 represents input referred gate voltage PSD at 1Hz of MOS transistor of unit gate area 

(WL)ref=1µm2 at low gate overdrive voltage (VGS-VT)≈0.1V. According to scaling rules, one expects that 

FOMSVG
∝(Cox)

−2∝EOT2, and the deviation from this proportionality can be attributed to material and technology 

variations via Nt or Dit.  

We have collected data from [22, 47, 48, 49, 50, 51, 72, 82, 86, 87, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 

101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 149] for nMOS transistors and from [47, 52, 86, 88, 

94, 95, 96, 97, 100, 102, 104, 105, 109, 124, 125, 126, 128] for pMOS transistors, and plot the result for FOMSVG
 

in Figure 20. The data are stored in numerical form in [150]. Many data points overlap in Figure 20 and the 

scattering in the data is large – about 4 decades. No trend can be estimated directly form the data points in the 

figure. The trend line for the average and variations ±σdB in this figure are obtained from statistical analysis of 

the data according to FOMSVG
 of eq. (106), following the procedure of eqs. (83), (84) and (85), and using 

geometric averaging of the quantity XdB, where XdB is given by 
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The distributions obtained from the statistical analysis are shown in Figure 21. The histogram in Figure 21a 

illustrates that the overall distribution tends to log-normal distribution with an average 6×10-5 V2/Hz and 

standard deviation σdB≈10 dB (1 decade). These values are obtained when using 106+38 data points shown in 

Figure 20 for nMOS+pMOS silicon transistors, 13+12 data points shown later in Figure 22 for MOS transistors 

with strained lattice and germanium content in the channel, and 16+5 data points from ITRS predictions made 

for the period 2006-2020 [3] for RF and Analog MOS.  

The trend line “Average” and the margins ±2σdB for MOS transistors in Figure 20 correspond to the above stated 

values. For a comparison, the data and the trend for BJT vs. IFO thickness from Figure 4 are referred as input 

voltage noise, using AE×SVB
(1Hz)=AE×KF×(ϕt)

2/1Hz according to eq. (3), and added to Figure 20. Two 

speculative observations can be made in Figure 20. One is that the noise in MOS transistors is, on average, what 

was expected in past ITRS predictions [3]. The second is that the noise levels (and LFN models) in MOS 

transistors and BJT converge. The crossover between the noise in these transistors corresponds to the minimum 

EOT and the maximum IFO, which is about 0.8nm equivalent thickness of SiO2. Although the crossover is 
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apparent at the boundary between conduction and insulation of thin dielectrics, these observations are 

speculative, because the physical assumptions in the models are different and the scattering of the data is large. 

For example, the distributions of noise in nMOS and pMOS transistors have different statistical modes, two 

decades apart from each other, as shown in Figure 21b, while at the same time, the data for these devices scatter 

in the same range of 5 decades in a very similar manner. The latter implies that the type of conduction, electron 

or hole, in MOS transistors might not be the major concern for the noise in these devices in the same way as the 

channel area and dielectric thickness are unable to capture the noise levels in different MOS transistors. So, the 

major factor for the LFN level in MOS transistors appears to be the fabrication of the gate stack, rather than the 

thickness of the gate insulator; and the current research is mostly focused on this issue. However, this research is 

quite empirical, since no model is available to explain physically 3 and more decades of variations. For example, 

there are reports with oxide trap density Nt>1020 cm-3eV-1, which should result into degeneration of insulator 

band-gap, since, for example, the band gap of HfO2 is about 6eV (Table 2), then the oxide trap concentration 

becomes in the range of 6eV×Nt~1021 cm-3, while the atomic density is in the range 1022 cm-3. 

IV.1.3. Empirical factors that impact the scattering of data in noise measurements 

To illustrate the empirical nature of the current research on low-frequency noise in MOS transistors we use 

Figure 20 as the template on which we project the impact of several factors. The impact of fabrication factors is 

usually investigated using a bottom-up approach by varying the factors in otherwise identical or similar 

structures. Since we have the data from many publications collected, we present here the alternative top-down 

case study on the impact of the factors on the values of the noise level, by intentionally breaking the link 

between the samples and formally using only the scaling rule WLSVG
∝EOT2 of eq. (106), in order to see the 

overall picture for the low-frequency noise in MOS transistors, which is with large scattering in the values, as 

discussed above. We pick three factors, for which the bottom-up studies made strong cases. These are: noise in 

pMOS transistors is lower than in nMOS; noise in MOS transistors with metal gates is lower than in transistors 

with polysilicon gates; strain engineering (mechanical stress) increases the noise, whereas noise in SiGe 

transistors is lower. We will add one more factor – the fabricator. Our top-down study on published data is 

illustrated in Figure 22. 

(i) pMOS versus NMOS.  

Several studies of CMOS technology nodes suggested that pMOS transistors are less noisy than their nMOS 

counterparts from the same technology [95]. This has been observed earlier for SVG
 at lower gate bias voltages 

[91], while at higher bias, the noise levels were similar. In contrast, researchers observe the opposite situation – 

pMOS transistors are noisier [83, 98]. We collected published data in [150] and put the data together in the top-

left plot of Figure 22. From this plot we observe only that the data for pMOS and nMOS transistor scatter in the 

same range, and the histograms earlier in Figure 21b do not argue much in favor of any of these transistors. 

(ii) Gate material effect.  

In an effort to reduce EOT, past investigations attempted metal and metal nitrides [50, 52, 57, 94, 99, 100, 109, 

126, 128] and metal silicides [96, 106, 108, 128] for the gate conductor, in order to overcome the unavoidable 

depletion in polysilicon gates [151, 152].  Cumulative experimental research also indicates that there might be 

noise due to tunneling from polysilicon gate into high-k dielectrics or charge trapping and defects at this 

interface [97, 99, 126, 153, 154], or remote scattering caused by Coulomb coupling between gate trap and MOS 
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channel (oxide is thin and single excess charge at gate side of the oxide is “visible” as a local, e.g. 2-5 nm in 

diameter, potential “bump” in conduction channel on the other side of oxide). Therefore, the metal gate would 

probably reduce these effects (not yet theoretically explored for low-frequency noise, only qualitatively used in 

the so called Nt-profiling with LFN that we will discuss later in section IV.2). So, from the collected in [150] 

published data for noise in MOS transistors with metal and metal nitride gates [50, 52, 57, 94, 99, 100, 109, 126, 

128] we have drawn the top-right plot in Figure 22, and we observe that the metal gate MOS transistors 

correspond to polysilicon gate transistors with higher noise, in contrast to the expectations deduced in the 

individual publications for metal gates. 

(iii) Mobility degradation.  

Another issue related to thin oxides and corresponding high electric fields in sub-100nm MOS transistors is the 

mobility degradation. Two approaches are taken to remedy the problem – introduction of strain (mechanical 

stress) in the surface lattice of the MOS transistor channel or addition of germanium Ge in the channel. The 

effect of the strain on the low-frequency noise was addressed in [82, 108, 126, 127, 155], since it is expected an 

increase of lattice defects and, therefore, increase of the noise levels. The addition of Ge in the channel of pMOS 

transistors is expected to increase the mobility [52, 57, 109], thus reducing the scattering and the noise. From the 

collected in [150] published data for noise in MOS transistors with strained lattice and Ge content in the channel 

we have drawn the bottom-left plot in Figure 22. We see in this plot that the noise is virtually unaffected in 

strained MOS transistors, as observed for nMOS transistors in [108, 126, 127, 155], since the diamonds are in 

the bottom half of the distribution, while an occurrence of Ge in the channel (or in the drain or source regions 

[126]) results in increase of the noise, since the triangles are in the upper half of the noise distribution. 

(iv) The fabricator effect.  

At this point we would like to make a comment. The model of eq. (104) is based on certain assumptions in a 

simple structure of Si-SiO2 interface, while stacking, stretching and mixing of the materials in nm-scale is 

neglected in the model and violates the assumptions for uniformity and large statistical populations. The 

extrapolation of the model in empirical studies, as we did above using the scaling rule, is questionable and 

resulted in the large scattering of data from research samples, as shown with squares in the bottom-right plot of 

Figure 22. Fortunately, the constructive conservatism in commercial technologies prevents from the randomness 

in the empirical research and keeps the noise in the desired lower half of the distribution, as illustrated with 

diamonds in this plot. However, this conservatism results in a slowdown of device scaling [152], as was 

predicted in the past [3], because the costs of modifications for using metal gates are high and the predictability 

and repeatability of multilayer gate stacks are not certain, since no scalable model is currently available for these 

gate stacks. Thus, the risk is mostly moved in the research, and the commercial fabricators implement the 

modifications gradually and very carefully, as one can see in [152] for Fujitsu, for example, although the main 

reason is not the low-frequency noise, actually. 

IV.1.4. Modeling factors to interpret the scattering of data in noise measurements 

It is worth mentioning the conditions and assumptions at which the model for SVG
 in eq. (104) is derived. These 

are discussed in [56] and listed below. 

i. Charge carriers only from surface channel of the MOS transistor are trapped in oxide or at 

semiconductor-dielectric interface. Bulk traps in semiconductor, trapping from gate or at any other 

interface (such as buried oxide in SOI) are neglected at assumption that they are “far” from the 
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conduction channel. 

ii. The additional scatter around the trapped charge is small. This is remedied in the models with correlated 

mobility fluctuation. 

iii. Charge exchange between channel, interface states and oxide traps occurs only at Fermi level, and other 

transitions, e.g. interchange with gate, bulk, between different energy levels, are neglected. This allows 

for using the Fermi-Dirac statistics in Shockley–Read–Hall process. 

iv. The distributions are uniform and the populations of traps and carriers are large enough. This means that 

the traps are uniformly distributed both in space and energy, the conduction channel in MOS transistor is 

uniform (e.g. VDS is low), the mobility and electric field are constant along the channel, they do not 

fluctuate, and the device sizes are large enough to have the approximation with averages valid. 

v. The energy barrier for tunneling is constant and it is not affected by the electric field. The barrier is at 

the semiconductor-dielectric interface and the channel carriers are at this interface too. (For random 

walk model, the distance from carrier to interface state is constant) 

vi. The charge captured in the oxide is approximately at the semiconductor-dielectric interface. The distance 

xti from interface, where the charge is trapped, is negligible as compared to the thickness tox of gate 

dielectric. 

At these conditions, the trapping of one charge carrier causes an equivalent change in the gate voltage, with a 

magnitude given by 

FBG V
ox

V WLC

q δ==δ ,      (108) 

and the fluctuation in the number and rate of charge trapping can be referred to the gate and attributed to noise in 

flat-band voltage VFB, according to [156] 
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since the threshold voltage of MOS transistor is a linear function of VFB. In modern MOS transistors from sub-

100nm technology nodes, however, none of the above conditions is strictly valid anymore. Some of the 

deviations from these conditions are resolved, other – still not. This is now discussed. 

Issues with condition i.  

The oxides are very thin in modern MOS transistors and the tunneling of carriers from both sides of the oxide is 

observed [97, 99, 126, 153, 154]. The channel carriers are reasonable to be assumed as the source of charge 

trapping in the oxide, resulting in a capture rate of 
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However, as shown in Figure 23a, the emission of the trapped charge can be arbitrary back to the channel or out 

to the gate depending on several factors. By taking the distance as the dominant factor in the tunneling, the 

emission probability is the sum of the probabilities for tunneling back to the channel and forth to the gate. 

Therefore, the emission rate is 
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where tox is the physical thickness of the gate insulator (not EOT), and 1/τe,ch and 1/τe,gt are the emission rates to 

the channel and to the gate, respectively. In this way, the charge exchange rate with the oxide trap becomes as 
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and the maximum value for the tunneling time constant is 
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To illustrate the impact of tunneling to the gate, we assume a conservative high value for τo=10-8 s (see after eq. 

(99)) and plot in Figure 23b the evolution of tunneling time constant τ with the position of the trap in the oxide 

for several cases relevant to current research of physical oxide thicknesses tox=3, 4 and 5 nm and λ=0.1nm and 

0.21 nm for silicon and hafnium oxides, respectively. 

The straight lines in Figure 23b are for very thick oxide (1000nm), for which the gate tunneling is negligible, as 

it is assumed in the derivations [28, 56, 156] of the model in eq. (109). These lines correspond to the equation 
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where the last term is for the correction that takes into account the reduced amplitude when the trap is far from 

the channel and close to the gate [56]. The correction is insignificant for thick oxides. 

The peaking lines in Figure 23b are for the tunneling time τ constant in thin oxides, according to the equation 
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as follows from eq. (112) and also having the correction term for amplitude. The symbols are for the frequency 

f=1/(2πτ). One can see that the rising and falling slopes coincide well with exponential functions, and so, the 

distributions are close to 1/τ, and will produce 1/f noise for f<1/(2πτmax) – see again the discussion on eqs. (99), 

(100) and (101). However, the values for τmax decrease when the oxide is thinner and the tunneling attenuation 

distance λ is larger. The silicon oxides with thickness tox>3nm still can produce 1/f noise down to 1Hz, but the 

high-k HfO2 with a typical thickness of 4-5 nm cannot produce 1/f noise in the frequency range below 1kHz. On 

the other hand, there is no report that the noise in such samples levels off even at much lower frequencies of 

10Hz [47, 49, 50, 87, 92, 99, 100, 109, 126, 128]. The discrepancy between the model prediction and 

experimental results is evident, and the physical interpretations of the values for Nt or application of scaling rules 

based on this model, are questionable for MOS transistors with thin high-k oxides.  

Issues with condition ii.  

The oxide trapping and random walk models neglect the carrier scattering as the source of noise. Therefore, eq. 
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(109) is for pure ∆n fluctuation in carrier number n in the channel of MOS transistors – see again the discussion 

after eq. (5). At the increased electric fields in modern MOS transistors, however, it is observed that the mobility 

decreases, which is explained with intensive carrier scattering. So, the trapping in oxide and in interface states 

was recognized as factor that couples noise via changing the mobility, and the coupling coefficient K in eqs. (88) 

and (89) is different from 1. In most cases K>1, and varies with the bias of MOS transistor too. 

The general assumption is that the trap occupancy changes the number n of charge carriers and their mobility µ 

simultaneously. Since the origin of the fluctuation is the same, the ∆n and ∆µ noise are correlated. It has been 

shown in [59] that the correlation can be derived from first principles and the trap screening due to high charge 

concentration in the inversion layer also takes place in mobility fluctuation, basically reducing it at higher gate 

bias in strong inversion. There are several equivalent forms for the equations for oxide trap noise with correlated 

mobility fluctuation. 

One form is derived in [156] at the assumption that the ∆n noise can be regarded as noise SVFB
≈constant in flat 

band voltage, as given by eq. (109). The derivation uses the following approach. It assumes that the drain current 

ID can be written as the product of two functions, one for carrier mobility µ(VG−VFB) and another for the number 

of carriers Fn(VG−VFB) independent of mobility. That is 
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where Fμ(VG−VFB)=θ(VG−VFB)+F2(VG−VFB)≈θ(VG−VFB) is a function that describes the mobility dependence, 

mostly degradation, when increasing the bias in the MOS transistor, θ~0.3-3 V-1, but to the first order of 

approximation, ∂Fμ/∂(VG−VFB)≈θ and |Fμ|<1. Then, for the number fluctuation 
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and for mobility fluctuation 
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Combining the two components, one gets 
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and writes for the noise in MOS transistors with correlated ∆n-∆µ fluctuation 
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So, the coupling coefficient in eqs. (1), (4), (11), (125), (88) and (89) becomes 
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where the mobility degradation parameter θ may vary in sign, magnitude and with bias, depending on type of 

trapping and scattering mechanism in MOS transistor, e.g. Coulomb, remote, surface, phonon scattering and 

screening of charge of the inversion layer [47,  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 72, 89, 110, 124, 137], 

but θ is usually taken as a constant in one transistor, because of the following reasons. At low gate bias, VG-

VT<0.1V, the contribution of the correlated mobility fluctuation is low, because the ratio ID/gm<0.1, and since 

θ<1V-1, then K≈1. At high gate bias, ID/gm∝(VG−VT)>0.5V, K becomes a nearly quadratic function of (VG−VT), 

but the product θ(VG−VT) is usually less than 1, and variations in θ are difficult to inspect reliably from noise 

measurements data with an experimental uncertainty 1-3dB – see for example fig.4 in [89]. So, the experimental 

characterizations assume θ=constant; and the model of eq. (120) is very attractive since all quantities (SID
, ID, gm) 

can be estimated directly from the measured data without a need of device modeling. For example, the product 

(SID
/ID

2)(ID/gm)2 at low gate bias (VG−VT)<0.1V directly estimates SFB, and then at higher gate bias 

(VG−VT)>0.5V, the value for θ can be obtain from the slope of the graph 
GVS vs. VG, see for example [89], 

again using (SID
/ID

2)(ID/gm)2=SVG
, since ID/gm∝(VG−VT). The direct parameter extraction by using the model of 

eq. (120) is a routine approach in noise characterization and most of the results presented here were obtained 

using this approach. Actually, it is argued in [133] that assuming ∆n noise being regarded as noise SVFB
≈constant 

in flat band voltage, there is inherent error in the model that underestimates the noise level when the transistor is 

in saturation regime. The error is about 3dB, it is small, it is in the range of experimental inaccuracy, and using 

approximations for charge concentrations would cause similar uncertainty. So the model of eq. (120) is very 

attractive in experimental characterizations and it is widely used. 

The situation, however, has changed when high-k dielectrics and high doping of the channel are used in order to 

reduce the channel length of the transistors below 100nm. The electric fields and scattering increased in these 

devices and the correlated mobility fluctuation becomes an issue not only because the contribution from the 

scattering reduces significantly the effective mobility in MOS transistors, but also because the noise models are 

developed at an assumption of dominant phonon scattering, while Coulomb screening by the inversion layer and 

roughness scattering [157, 158] also take place. Therefore, the alternative forms of the model with correlated ∆n-

∆µ fluctuations for MOS transistors are discussed below, because they are derived at physical assumptions for 

charge transport in MOS transistors, while the model of eq. (120) above was introduced formally by using the 

concept for coupled noise at the assumption that the oxide charge trapping can be referred as noise in the flat 

band voltage. These models are known as “unified” model for 1/f noise in MOS transistors and use charge 

fluctuation due to trapping in gate oxide accompanied with scattering due to Coulomb interaction around the 

trapped charge. 

Unified model. The starting point in deriving the unified model is that in event of charge trapping in the oxide at 

distance xti from semiconductor interface at coordinate (w,l) in the channel region, in which the carrier areal 

concentration is n’=∂2n/∂w∂l, the drain current changes as [54, 55, 56] 
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where dn’ and dµ are functions of trap occupancy, given by 
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where Cd and Cit are the capacitance per unit gate area due to depletion under the conductive channel in the MOS 

transistor and fixed interface states at the semiconductor-insulator interface, respectively, and αs is a scattering 

coefficient, which takes into account for Coulomb interaction between oxide trapped charge and thus changing 

the mobility of the carriers in the inversion layer. In order to solve the integrals, several assumptions are made: 

the oxide trapping dNt is negligible as compared to n’, Nt, αs and µ can be replaced with constants, and 

d(Ntαsµ)=−d(n’αsµ/R). In this way, the general equation for the unified 1/f noise model for MOS transistor is 

written in several equivalent forms, one of which is 


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where VG, VB, VS and VD (on which the areal carrier concentration n’ in the channel of MOS transistor depends 

on) are the potentials of the gate, body, source and drain terminals, respectively, all other quantities are related to 

n’, and also by using the approximation 

( ) ( )2
st

2 R/'n1N'nC'BnA*N µα±=++= ,       (125) 

where the parameters A=NOIA, B=NOIB and C=NOIC (being assumed constant fitting parameters in BSIM3 

model) are approximately corresponding to A=Nt, B=2αsµNt/R≈2αsµNt and C=(αsµ/R)2≈(αsµ)2. The sign ± is 

chosen by whether the trap is repulsive or attracting for the carriers in the channel, as mentioned in [48]. In the 

next step, the unified model is split into three integrals, which always have analytical solutions at A, B and C 

constant. These solutions are appropriate for compact modeling, since they capture the coupling of noise in the 

MOS channel by the non-uniform carrier concentration at various drain biasing, depending only on n’ at drain 

and source sides, where the overdrive (VG-VT-V) with V=VS or VD, are known from the biasing. The model, 

however is slightly inconvenient for experimental characterizations, because it requires additional estimates for 

capacitances, the equations are long, see [48, 54, 55], and cannot be rewritten in a form so that A, B and C do not 

depend on each other. Nevertheless, the unified model converges to the flat band model of eq. (120) above in 

ohmic and sub-threshold operation of MOS transistor, and the derivations established for linear regime that 
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Therefore, since θ is directly obtained from measurements as discussed above, αs can be easily evaluated from 
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ox
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q

µ
θ=α ~10-15 Vs       (127) 

taking typical values for 180nm nMOS (Cox~0.8 µF/cm2, θ~1 V-1, µ~200 cm2/Vs). 

Effects of different scattering mechanisms. The issue with correlated mobility is now addressed. It is due to 

the fact that neither αs or µ are constants. This is because changing the gate bias, the electric field changes and 

there are several crossovers between different scattering mechanisms [157, 158]. These are illustrated in Figure 

24. 

The mobility is given by the Matthiessen rule, as 

bitrph
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where µph is due to phonon scattering, µr is due to surface roughness scattering, µit is due to Coulomb scattering 

caused by interface states and oxide traps and µb is due to scattering with ionized impurities in the 

semiconductor. The investigations in [157, 158] have established that the different components have different 

dependences with the biasing of the MOS transistor.  

- The phonon scattering mobility is given by 
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with T being the absolute temperature, aph, et, ηE=0.5….0.3 being constants, εSi being the permittivity of 

semiconductor (~ 1.04×10-12 F/cm for silicon), EG being the gate electric field, EG=q(Ndpl+ηEn’)/εSi, and Ndpl 

being the depletion charge per unit area, according to 
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where Nsub is the volume impurity concentration in semiconductor and ni is the free charge concentration of 

intrinsic semiconductor (~1010 cm-3 for silicon at room temperature). The line labeled with “phonon scattering” 

in Figure 24 illustrates µph. At fixed temperature, one can combine the constants into the phonon scattering 

parameter αph and rewrite eq. (129) as  
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where nη is a scaled version of Ndpl. 

- The surface roughness scattering mobility is given by 
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where ar and er are approximately constants. The line labeled with “surface roughness scattering” in Figure 24 

illustrates µr, showing that this mobility degradation is observed when the electric field is high, e.g. above 
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0.5MV/cm. Again combining the constants into a scattering parameter αr, one writes 

( )( )12
r

e

E

dpl
r

r
'nn'n

N1
r

±
η +α=










+

η
α=

µ
.      (133) 

- The Coulomb scattering is prominent when the inversion layer is with low concentration of carriers. 

The inversion layer screens the Coulomb scattering at higher gate bias. For the Coulomb scattering due to 

ionized impurities in the semiconductor, the mobility µb is given by 
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N
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where αb is the corresponding scattering parameter. The curve labeled with “impurity screening” in Figure 24 

illustrates µb, showing that this mobility degradation is observed when the electric field is low, e.g. below 

0.2MV/cm. At a little higher gate biasing, as shown with the curve “interface screening” in Figure 24, the 

Coulomb scattering caused by interface states and oxide traps takes place. Respectively, the mobility µit is 
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where αit is the corresponding scattering parameter and bit refers the oxide traps as apparent areal density at the 

semiconductor-oxide interface.  

- Combining all scattering mechanisms, one gets 
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where the terms are written in a sequence as they are dominant from low to high gate biasing, resulting in a bell-

shaped curve for µ, labeled with “effective mobility” in Figure 24. The last equation implies that the effective 

scattering parameter αs varies with the gate biasing, and αs is high at low and high areal carrier density n’ in the 

inversion layer in MOS transistor channel, as shown with circles in Figure 24. Despite these variations, the term  
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for correlated mobility fluctuation does not change very much, as shown with squares in Figure 24, because the 

product αsµ is constant, if one scattering mechanism is dominant. This can be seen from eq. (136) by neglecting 

1/µo. Usually, the term [1+θ(VG−VT)]≈[1+θID/gm] can be fitted approximately with a linear function within the 

experimental inaccuracy, especially in silicon MOS transistors with not very thin (>4nm) and well processed 

SiO2 for gate insulator. In these transistors, since the transistor channel is L>0.3 µm, then the phonon scattering 

usually dominates, because Nsub<3×1016 cm-3 and EG<0.6 MV/cm.  

A solution at dominant Coulomb scattering due to interface states and oxide traps is deduced in [159], proposing 

a modification of eqs. (124) and (125). The modified equation is 
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where the parameter µC0≡Nt/αit reflects the parameter for screened Coulomb scattering at interface states and 

oxide traps in eq. (135). This scattering mechanism would be pronounced in sub-100 nm MOS transistors, since 

Nsub≈5×1017 cm-3, and EG<0.8MV/cm. Assuming µ≈µit in eq. (136), then αitµit(n’)-0.5≈constant≈1/Nt, which is a 

paradox of cancelling the mobility when the other scattering mechanisms are neglected. 

In fact, the identification of scattering coefficients for MOS transistors from sub-100nm MOS is difficult, 

because Nsub>7×1016 cm-3 in these transistors in order to compensate for DIBL (drain induced barrier lowering 

that affects the threshold voltage VT), resulting in EG>0.6 MV/cm necessary to invert the channel conductance 

and control the inversion layer. These are accompanied with crossover between different scattering mechanisms, 

and the linear approximation is not precise anymore. Two examples for crossover are shown in Figure 25. In 

both examples, the correlated mobility noise due to Coulomb scattering is screened and ceases with increasing 

the gate overdrive voltage. In the second example in Figure 25b, the noise of phonon or roughens scattering 

causes a rising correlated mobility noise. These data have been explained in other manner in [57], and the 

crossover between different scattering mechanisms is not analyzed in details for the case of low-frequency noise, 

although some suggestions are available in [58, 159]. 

Issues with condition iii.  

This condition states that the charge exchange between channel, interface states and oxide traps occurs only at 

Fermi level and the charge trapping is a Shockley–Read–Hall (SRH) process. The assumption allows using 

Fermi-Dirac statistics in the superposition of the fluctuations of individual traps, by integration over energy. For 

example, the gate referred noise voltage is obtained in [54, 55, 56] from 
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using the probability function f(E) of Fermi-Dirac statistics, given by 
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where EF is the quasi Fermi level in the inversion layer of MOS transistor channel. So, the factor f(1-f) provides 

the term τeτc/(τe+τc)
2 of the emission and capture time constants of charge trapping in the limit of Shockley–

Read–Hall process. The term τeτc/(τe+τc)
2 participates in the expression for Lorentzian spectrum of a generation-

recombination process. The factor f(1-f) is sharply peaking function of E, which allows the inner integral of eq. 

(139) to be solved assuming all other quantities unchanged. Since,  

( ) kTdE)E(f1)E(f =−
+∞

∞−
,        (141) 

then the absolute temperature T occurs in the final expressions for the noise, as given by eqs. (104), (105), (109), 

(124), (138) and other derived from them. These equations suggest that the 1/f noise in MOS transistors should 

be proportional to the absolute temperature even assuming tunneling in gate oxides. The issue is that this 

proportionality is not observed experimentally [160], rather, the 1/f noise is found to be temperature independent 

in nMOS transistors [91] (with a small variation in the slope of the spectrum), while the tunneling model for 
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noise should be valid for nMOS transistors. Thus, the use of Shockley–Read–Hall process might be incorrect for 

the tunneling noise from oxide traps, since it is questionable whether the traps are in equilibrium. On the other 

hand, the capture and emission time constants in RTS noise in MOS transistors are found to follow Shockley–

Read–Hall process [68, 74, 107, 112, 148, 161, 162]. Other issues related to the assumptions for superposition of 

tunneling events in gate oxide in creating 1/f noise are discussed in [4]. 

Issues with condition iv.  

This condition for ∆n models of MOS transistors states that the trapping centers are uniformly distributed both in 

space and energy, the populations of traps and carriers are large enough to be assumed continuous and 

approximated with averages, and the mobility and electric field do not fluctuate. 

Let us inspect the numbers for a sub-100 µm MOS transistor from the L=65nm technology. Assume 

W=3L=195nm, WL=2.1×10-10 cm2, EOT=2nm, Cox=1.8µF/cm2, (VG-VT)=0.5V, inversion layer carrier density 

n’=Cox(VG-VT)/q=5.5×1012 cm−2, number of carriers WLn’≈700. Using ITRS past predictions for the 65nm 

technology node [3], we would have WLSVG
(at 1 Hz)=FOMSVG

=1.6×10−10 µm2V2/Hz, which would result in 

Nt=3.68×1017 cm−3eV−1, assuming tunneling attenuation distance λ=0.2nm close to that of HfO2. The traps only 

within ±3kT around quasi Fermi level fluctuate, the other are either occupied or empty. For a noise measurement 

in 3 frequency decades, the traps are located in a slice of oxide thickness ∆tox=λln(103)=1.38nm. So, the number 

of traps observed in the measurement would be 

01.1WLNtkT6 tox ≈∆ , for W/L=195/65 nm transistor in 3 decades of frequency.    (142) 

Evidently, the population of traps is small in sub-100nm MOS transistors and the assumption in the ∆n models 

for 1/f noise in MOS transistors for continuous distributions approximated with averages is not valid. One should 

(and do) observe Lorentzian spectra and RTS noise, instead of 1/f noise, in these devices. However, 1/f noise is 

still present in sub-100nm devices, and it is perhaps from the intrinsic (Hooge or mobility) noise, because the 

number of carriers is in the range of several hundred carriers, which are at least 10 carriers per frequency decade. 

So, the assumption, as made in the ∆n models for 1/f noise in MOS transistors, that the mobility (electric field or 

other quantity related to the intrinsic properties of carrier transport) can be neglected, is not valid for sub-100nm 

MOS transistors. Nevertheless, the ∆n model converges well with the observed RTS in small-area MOS 

transistors, as it will be shown later in section IV.3 , and the model should not be “retired”; rather, the model will 

be properly analyzed and extended to describe the noise variation when the populations of traps and carriers are 

small.  

In fact, the statistical modeling of noise based on the ∆n model has begun, both empirically, analytically and by 

means of simulations. In this paper, we introduced the problem of statistical noise modeling in the section for 

BJT – please see again eqs. (80), (81), (82), (83), (84), (85) and the discussion after eq. (85). More discussions 

on averaging techniques are given in section VIII. “Outlook for the LFN” after eq.(469). 

Issues with condition v.  

This condition for ∆n models of 1/f noise in MOS transistors states that the barrier for tunneling in the oxide (or 

for trapping in random walk model) is constant and not affected by the electric field. Also, the barrier is at the 

semiconductor-dielectric interface and the channel carriers are at this interface too. 

Certainly, these assumptions were good for gate oxides with thickness tox>10nm until the gate electric field was 
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less than EG≈(VG-VT)/tox<1V/10nm=1MV/cm, c.f. nodes with minimum gate length Lmin>0.35µm, which was the 

case when the ∆n models were developed. In a thin insulator and at high fields, however, the approximations 

with constant parameters become rough. Consider Figure 26 for a MOS transistor with gate insulator stack, such 

as HfO2 with interfacial layer of SiO2. The steep slope of the potential in the semiconductor creates a potential 

well near the dielectric. Owing to quantum effects, the energy levels of electrons increase with approximately 

∆Φq~0.2eV at electric field greater than 0.5MV/cm [51, 163]. One effect is that the tunneling barrier effectively 

decreases with ∆Φq, which is also accompanied with a departure from rectangular barrier, leading to another 

barrier lowering with ∆Φe, especially when the oxide is thinner than 1.5 nm [164].  Consequently, the tunneling 

attenuation distance λ increases according to from Wentzel-Kramer-Brillouin (WKB) approximation of eq. (23). 

The barrier lowering was modeled in [51] using the Schottky limit for emission over barrier, given by 
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Other quantum effect at high electric field is that the centroid of the inversion layer is moved 1.5-2.5 nm in the 

depth of semiconductor, as shown with ∆xq in Figure 26, which is 2-3 times deeper than for the case of using 

Poisson equation alone, without considering quantum effects. Similar effect due to depletion of polysilicon gates 

occurs at the gate side [151], shown with ∆xd~2mn in Figure 26. There are consequences for ∆n model of 1/f 

noise in MOS transistors.  

The first consequence is that ∆xq and ∆xd result in potential drops. For ∆xq the increase of the surface potential is 
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The order of magnitudes is similar for ∆xd. Thus, the voltage across gate dielectric is approximately  
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For transistors with thin oxide, e.g. nodes 90nm and below, the supply voltage is about 1V, VT~0.2V, and ⅓ to ½ 

of overdrive voltage (VG-VT) is “lost” in quantum effects and depletion of polysilicon gate. For overdrive in the 

range of 0.8V, the corresponding Eox=Vox/tox<0.6V/3nm~2MV/cm, and the barrier lowering ∆Φ due to Eox is in 

the range 0.2-0.25eV, according to eq. (143). This is about 6% barrier lowering for electrons at SiO2 interface, 

which would result in small increase of 3% for the tunneling attenuation distance λ, according to Wentzel-

Kramer-Brillouin (WKB) approximation by eq. (23). So, the 1/f noise SVG
∝ λ due to ∆n fluctuation would not be 

affected hardly by barrier lowering, when the gate dielectric is SiO2. Taking an average number from Table 2, 

the same calculation for HfO2 suggests a barrier lowering of about 0.25eV/1.25eV~20%, or increase of 10% for 

SVG
∝ λ. On the other hand, the barrier lowering is found pronounced in thin dielectrics, suggesting that WKB 

approximation is not accurate for these dielectrics [164], and the noise in MOS transistors with high-k dielectrics 

is relatively high. We see here an open question on how to implement the barrier lowering into ∆n fluctuation 

model for 1/f noise in MOS transistors. The use of constant value for tunneling attenuation distance λ estimated 

from WKB in ∆n fluctuation model is not precise when the physical oxide thickness is less than 5nm. Also, for 
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the case of stacking several dielectrics in the gate insulator, the assumption for one value for λ is rough. A 

suggestion is given in [49] for how one can modify the ∆n fluctuation model when two materials are used in the 

gate insulator stack. The suggested modification uses weighting functions A and B, and it is given by 

( ) 2t22ox1ox1t11oxefft N)t,t,f(BN)t,f(AN λ+λ=λ ,      (146) 

where for each dielectric layer in the stack, λ1 and λ2 are the corresponding tunneling attenuation distances, and 

Nt1 and Nt2 are the corresponding oxide trap densities. The functions A and B depend both on the thicknesses 

tox1, tox2 of the dielectric layers and the frequency f. More details will be given shortly in section IV.2 when 

discussing the gate dielectric profiling. 

The second consequence for ∆n fluctuation model, owing to ∆xq and ∆xd, is that the gate capacitance is bias 

dependent and it is less than the capacitance Cox of gate insulator stack. Thus, the derivation for SVG
 based on 

eqs. (139), c.f. eqs. (89), (98), (101), (104) and (109),  and the assumption R=n’/(n’+n*) in eq. (123) become 

approximate, since the depletion capacitance of polysilicon gate and the “capacitance” arisen from the distance 

of the inversion layer centroid are not very large (εSi/1nm~10µF/cm2) when compared to the gate insulator 

capacitance larger than 1µF/cm2. This consequence also reflects in the next issue. 

Issues with condition vi.  

This condition for ∆n models of 1/f noise in MOS transistors states that the charge captured in the oxide is 

approximately at the semiconductor-dielectric interface. The distance xti from interface, where the charge is 

trapped, is negligible as compared to dielectric thickness. This condition is clearly stated in [56], where also is 

given that 
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where tox is the physical thickness of the gate insulator, xti is the distance from semiconductor-insulator interface 

to the position of the trap in the oxide, δNt is variation in the number of trapped charges at xti and δn is the 

change in the number of carriers in the channel of MOS transistor. Eq. (147) arises from Coulomb (“image 

charge”) balancing of the trapped charge between capacitances from the position of the trap to inversion layer 

and gate, where the charge is “mirrored”. Consider that the charge is trapped between the two dielectric layers in 

the gate stack in Figure 26, where the right-hand layer is SiO2 interfacial layer with thickness xti and permittivity 

εSiO2
, and the left-hand layer is HfO2 with thickness (tox−xti) and permittivity εHfO2

. The capacitance (per unit 

area) Cxti from the trap to the inversion layer is 
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including the capacitance CSi,xq due to the displacement of the inversion layer centroid from the semiconductor-

insulator interface. The corresponding capacitance to the gate conductor is 

2
HfO

tiox

Si

d

HfO

tiox

xd,SiHfOgti cmF10

1xtxxt

C

1

C

1

C

1

222 µ
+

ε
−

≈
ε
∆

+
ε

−
=+= ,     (149) 

including the capacitance CSi,xd due to depletion of polysilicon gate. From the Coulomb balancing, we have 
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The fluctuation in the channel charge, therefore, is 
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where Rxti has the same meaning as R in eqs. (123) and (124) of coupling between oxide trap and channel 

charges, but Rxti depends on the position of the oxide trap, and therefore, from the time constant τ of the trap, 

since τ=τoexp(xti/λ), according to eq. (99). For the example taken above, we have 
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which reduces to the expression in the brackets of eq. (147), neglecting the depletion in polysilicon gate and 

quantum effects in the channel and taking uniform dielectric (εHfO2
= εSiO2

). The actual expression for Rxti is more 

complicated, if one considers that the trap is not at the boundary between dielectrics in the gate insulator stack. 

Also, Rxti is a function of bias and tunneling time constant. For the simple case of uniform dielectric and 

depletion in polysilicon gate and quantum effects neglected, one has 
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and Rxti has to be included in the evaluation of the integral for superposition of Lorentzian spectra, since it 

multiplies R in the general expression, c.f. eq.(124) of the unified 1/f noise model for MOS transistor. Thus, 
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but the integral in the square brackets is solved analytically only for the case Rxti=1, to the best of our 

knowledge. Provided that the position of xti~2 nm of the slow traps inside the oxide is a significant portion of 

thin oxides tox~3-5nm, and also the depletion of polysilicon gate and quantum effects are not explicitly 

considered in the coupling parameters of the unified model, then an issue arises that these has to be included, in 

order to preserve the physical consistence of the model when applied to aggressively down-scaled MOS 

transistors.  

Conclusions to issues (i)-(vi).  

Owing to the above issues, the accuracy of the ∆n-∆µ model for 1/f noise in modern transistors with thin and 

stacked gate dielectrics is not very large. However, when carefully calibrated, the model is convenient for 

compact modeling, circuit simulation, and it is vital in providing information for comparisons in a qualitative 

manner for the properties and quality of gate stacks. One interesting class of techniques based on ∆n model for 

characterization of the oxide trap profile is now discussed. 
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IV.2. Charge trap profiling of gate dielectrics 

The ∆n model for 1/f noise in MOS transistors, see eqs. (104) and (105), uses approximation with uniform 

distributions, both in energy and space, for oxide traps and interface states. Such distributions result in g(τ)∝1/τ 

distribution for the time constants of the traps, e.g. eq. (100) for oxide traps, and produce 1/f noise from 

superposition of the Lorentzian spectra of the fluctuation of the individual traps – see again eqs. (72) to (75) and 

Figure 19. The deviation of noise power spectrum density from 1/f is used to evaluate the departure from 

uniform trap distribution, and in this way, provides profiling of the traps, by means of energy or distance, since 

either of them modifies the 1/τ distribution for the time constants of the traps [73]. The duality of capture energy 

and tunneling distance is addressed in [147] and earlier by eqs. (102) and (103), and the separation of spatial and 

energy profiles of the traps is made at assumptions for physical consistence at pre-determined characterization 

model [73]. 

IV.2.1. Spatial profiling of trap density 

Simple approach  

The simplest approach for spatial profiling of trap density Nt(xti) in the oxide depth at distance xti from 

semiconductor-insulator interface is used in [140] for a MOS transistor with gate stack of 2.1nm SiO2 interfacial 

layer at semiconductor interface and 5nm HfO2 on top of it. The assumption is that at given frequency f=fi, the 

traps with time constant τi=1/(2πfi) are dominant in the 1/f noise S(f), since the Lorentzian spectrum of these 

traps has maximum contribution in the quantity fi×S(fi). At this assumption, one writes from eqs. (99) and (101) 

that 
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and taking λ≈constant≈0.1nm, both xti and Nt(xti) can be obtained, as shown in Figure 27 for the abovementioned 

MOS transistor. Note that the oxide trap profiling by using this simple approach is qualitative, as mentioned in 

[140], since details are not elaborated when Nt is not uniform, when two materials with different tunneling 

attenuation distances λSiO2
≠λHfO2

 are used, and when the overlap in the spectra of traps with different time 

constants is neglected. The later caused that the increase of Nt in Figure 27 is detected at xti=1.8nm rather than at 

2.1nm, where the interface SiO2-HfO2 was. This is similar to the broadening of step changes in trap densities 

when measured by charge pumping techniques [147]. In the origin of this broadening is the integral form that 

describes the superposition of Lorentzian spectra of individual traps with similar time constants, c.f. eqs. (72) to 

(75). It is shown in [68] that the superposition integrals are equivalent to a convolution between the trap 

distributions in space and energy, since both distributions affect the distribution of trap time constants, which is 

used as integration variable. The effect of the convolution is that the slope of 1/f noise in respect to the frequency 

may vary, rather than a step in the level of 1/f noise magnitude at particular frequency to be observable [2, 56, 

68]. Mathematically, the reason is that the function fτ/[1+(2πfτ)²] is not sharply peaking at 2πf=1/τ, in order to 

produce a step when integrating it. To demonstrate the problem, we adopt the approach from [49], as follows. 

Gate stacks 
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In the approach for spatial trap profiling in [49], one from the assumptions above is not postulated, in particular, 

that the traps with time constant τi=1/(2πfi) are dominant in the 1/f noise at f=fi. This allows inspecting the 

evolution of 1/f noise in gate stacks made of different materials, with different trap densities (Nt,IL, Nt,Hk) and 

different tunneling attenuation distances (λIL, λHk) at relaxed assumption that the materials are otherwise uniform. 

The index “IL” stands for interfacial dielectric layer of thickness tIL between semiconductor and main dielectric 

of thickness tHk. The index “Hk” stands for the main gate dielectric, which is usually with high permittivity 

(high-k). We also make an approximation that the interface states are at semiconductor-insulator boundary and 

have narrow distributions (delta functions) for the cross-section and barrier energy, so that the prefactor τo for 

the tunneling time is constant for the entire gate stack. Consequently, we assume that the conditions i, ii, iii, iv, 

v, and vi for number fluctuation model, which are discussed above, are satisfied. Therefore, we can split the 

superposition integral for the gate referred voltage noise into two parts corresponding to interfacial layer and 

main dielectric, resulting in 
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where a=(q/Cox)²(kT)/(WL) is regarded as device constant at particular temperature T, and the tunneling time 

constant τ(x) increases exponentially with the distance x from semiconductor-dielectric interface as 
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The solution of the integrals in eq. (157) gives 
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For a low-frequency noise measurement in a bandwidth (fmax–fmin)~(100kHz–1Hz), assume that 2πfmaxτo<<1, so 

that artg(2πfmaxτo)≈0, and the thickness tox=(tHk+tIL) of the gate oxide stack is much larger than the tunneling 

attenuation distance λHk>λIL, so that [2πfminτoexp(tIL/λIL)exp(tHk/λHk) ]>10>>1 even for the minimum frequency of 

interest fmin~1Hz [see after eq. (115) for critical discussion on this assumption]. Then, the substitution of the 

limits in eq. (159) provides 

( ) 








λ
τ=τ








τπ

π
λ−λ

−λ≈
IL

IL
oILIL

IL,tILHk,tHk
Hk,tHkV

t
exp with ,f2artg

2

NN
N

f

a
S

G
  (160) 

Evidently from this equation, the 1/f noise in MOS transistors with stack of gate dielectrics depends not only on 

the properties of the materials via the products λNt, but also the 1/f noise magnitude is a function of the thickness 

of the layers and the frequency of measurement via the term artg[2πfτoexp(tIL/λIL)]. At low frequency, 

2πflowτoexp(tIL/λIL)≈0, the 1/f noise depends on the main gate dielectric, with SVG
≈aλHkNt,Hk/f. At high frequency, 
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in contrast, 2πfhiτoexp(tIL/λIL)>10>>1, and the interfacial layer dielectric determines the 1/f noise with 

SVG
≈aλILNt,IL/f, since artg[2πfhiτoexp(tIL/λIL)]≈π/2. At intermediate frequencies around 2πfmedτoexp(tIL/λIL)~1, 

both dielectrics contribute to the 1/f noise, causing a transition region in the noise spectrum with a slope different 

from 1/f, as shown in Figure 28. Usually λHkNt,Hk>λILNt,IL (solid symbols in the figure), and one observes noise 

spectrum with a slope steeper than 1/f in a range of about two frequency decades, which corresponds to 

dielectric thickness of about (4−5)λ~1nm around the IL-Hk interface. In contrast, if λHkNt,Hk<λILNt,IL (open 

symbols in the figure), then noise spectrum levels off in the transition region with a slope less than 1/f. The 

width of the transition region is proportional to the ratio λHkNt,Hk/λILNt,IL. Thus, one would characterize a gradual 

change in Nt, if applying the simplest approach of using eqs. (155) and (156). The tail of this gradual change is 

seen in Figure 27, although the IL-Hk interface perhaps is much abrupt and located above 2nm. Nevertheless, by 

comparing the results for the product fS(f) in 4-5 frequency decades, the simplest characterization approach of 

eqs. (155) and (156) can be useful to determine whether Nt is higher in the main dielectric or in the interfacial 

layer, since artg[2πfτoexp(tIL/λIL)] is either zero or π/2 at the ends of the frequency range. Such spatial profiling 

of oxide traps is demonstrated in [128], and it was estimated that the gate conductor also affects the low-

frequency noise, which generally leads to the issues with conditions i and vi for the ∆n model of 1/f noise in 

MOS transistors with thin gate dielectrics. These issues were discussed earlier by the help of eqs. (110) to (115) 

and (147) to (154), respectively. 

In the above discussion, we have assumed the oxide trap density changes abruptly at a depth tIL in the oxide. This 

would result in slopes 1/f² or zero only in the transition region. However, one may observe in low-frequency 

noise measurements a slope different from 1/f in the entire frequency range of 4-5 frequency decades, which 

suggests that the trap density changes gradually either along the depth of the oxide or the traps have non-uniform 

energy distribution. The effect of gradual trap distributions in the oxide depth was addressed in [56], and in [2] 

an analytical model was suggested for the case when the energy distribution of the traps is broad. The slope of 

the flicker noise power spectrum is affected in both cases, and it deviates from the 1/f slope [73]. 

Gradual oxide trap distribution 

To inspect the effect of gradual oxide trap distribution on the slope γ of the 1/fγ flicker noise, we rewrite ω≡2πf 

and ξ≡x/λ=0…ξmax with ξmax=tox/λ>>1 in the superposition integral and integrate it by parts, as 
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where b=a/(kT)=(q/Cox)²/(WL), and we denote the function in the large brackets with F={…}. Since the 
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integration is not on the frequency, then we use the Leibniz rule for differentiating under the integral sign, and 

obtain 
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Here, we will use that ωτoexp(ξmax)>>1>>ωτo≈0, since the measurement frequency range is well within the 

range between minimum and maximum values of tunneling time constants, and one can omit the first and second 

terms in the last large brackets. By multiplying the nominator and denominator of the expression under the 

integral sign with Nt, we get 
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where the expressions in the square brackets are the same as eq. (161), and we have assumed that 

∂ln(Nt)/∂ξ≈constant, which suggests searching for exponential dependence of Nt on the distance x from 

semiconductor-insulator interface [73]. By dividing both sides of eq. (163) on SVG
/ω and using ∂z/z=∂ln(z), we 

get for the slope γ of the 1/fγ flicker noise that 
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Therefore, at constant slope γ of the 1/fγ flicker noise, the oxide trap density evolves as an exponential function 

of the distance x from semiconductor-insulator interface, given by 
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where xti and Nt(xti) are the depth and trap density in the oxide, according to eq. (155) and (156), respectively, 

probed by measuring the magnitude and slope γ of the 1/fγ flicker noise at frequency fi. Provided that the power 



60  of  286 

spectrum density of the flicker noise in MOS transistor has a slope within γ=1±0.2, then the characteristic oxide 

thickness texp for gradual variation of Nt is 

λ≥
−γ
λ= 5

1
texp ~ 0.5 … 1 nm, for λ=0.1 nm (SiO2) to 0.2nm (HfO2), see Table 2,  (166) 

which suggests that one decade change in Nt for a distance larger than 2.3texp~1.15… 2.3 nm will produce 1/f-

like noise. The value for texp is somewhat small. Previous estimate reported in [73] is even smaller, texp≈0.154 

nm, which is about two-three atomic distances for one decade change in Nt, and it is unrealistic number for 

gradual variation of oxide trap density, since it suggests delta-like distribution for Nt in contrary to the 

assumption in the ∆n model for uniform distribution of Nt. Nevertheless, the ideas in [73] for dependence of 1/f 

noise in MOS transistors simultaneously on energy and spatial distributions of oxide trap density are interesting 

and have to be followed up. 

General rules 

To summarize the above three methods for trap density profiling in the depth of gate insulator by means of low-

frequency noise measurement, we provide the following rules. 

The simple profiling of oxide trap density Nt based eqs. (155) and (156) is accurate only for regions in flicker 

noise spectrum with constant frequency slope, which is very close to 1/f. If the slope in the spectrum is constant, 

but different from 1/f, then an exponential dependence of Nt on oxide depth x is expected, as given by eqs. (164) 

and (165). If a discontinuity in 1/f spectrum occurs, then an interface inside the gate insulator with abrupt change 

of the product (λNt) at this interface is expected, and the noise spectrum is given by eq. (162). In this case, the 

transition region in the low-frequency noise spectrum with slope different from 1/f begins at frequency fi 

corresponding to the depth xti of the internal interface and the noise level [fiS(fi)] is determined by the material 

with higher value of product (λNt)high. The frequency bandwidth of the transition region is a function of the ratio 

(λNt)high/(λNt)low in the two materials. The above rules do not apply, if the spectrum is constant (slope zero) at 

f<fi and the slope is 1/f² at higher frequency f>fi. In this case, the spectrum is dominated by a generation-

recombination or random telegraph noise with a specific time constant τi=1/(2πfi), resulting in a Lorentzian 

shape of low-frequency noise. Overall, the frequency range of flicker noise measurements is not large enough to 

reliably separate uniform, gradual and step profiles for oxide trap density Nt. This is mostly due to the 

convolution inherent for the superposition integrals, on which the ∆n models for noise in MOS transistors are 

based on. A good de-convolution scheme is currently lacking. 

IV.2.2. Energy profiling of trap density 

We have mentioned several times that there is a duality (and convolution) between capture barrier energy EB and 

distance xti of the oxide traps – see again eqs. (102), (103) and (104). Above we have discussed the trap profiling 

in terms of distance xti from semiconductor-dielectric interface. However, equations (155) and (156) can be 

rewritten in terms of energy. At an assumption for (apparent at semiconductor-dielectric interface) areal trap 

density Dt=0.1Dit or Dt=λNt(xti=0), as follows from eq. (104), it is shown in [2, 73, 165] that one can deduce 

energy profile Dt(EB) in MOS transistor, given by 















τπ
=

π
=τ=







τ
phi

B
i

i
B

ph f2

1
lnkTE

f2

1

kT

E
exp , with (2πfiτph)<<1,    (167) 



61  of  286 

( ) ( )
( )

kT

ffS
WL

q

C
EDED

WL

kT

C

q

f

1
S G

G

V
2

ox
BtBt

2

oxi
V 








=








≈ ,    (168) 

where τph~10−15−10−14 s [2, 165] is the reciprocal of phonon attempt frequency at semiconductor-dielectric 

interface. It is observed that Dt(EB) is a peaking function at EB~1eV in metal films, since many random processes 

occur with activation energies around this energy value [2]. In MOS transistors, different peaks are observed in 

the distribution of activation energies, which allows for the characterization of defects and traps that are the 

origin of the noise [165]. Also, an interesting relation between the temperature dependence of the magnitude 

S(fi,T) and the slope γ(fi,T) of the 1/fγ flicker noise at given frequency fi and temperature T is deduced in [2]. 

This relation is 
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and it is known as Dutta-Horn equation for the slope of flicker noise. The relation is valid at a condition that Dt 

varies slowly with EB for an energy interval of kT, that is |∂ln(Dt)/∂EB|kT<<1, in order to neglect higher-order 

derivatives in the expansion of Dt in Taylor series. This condition is rarely checked in experiments, although is 

noted in [165] that this is a mandatory step, and in contrast to the results in [165], it is argued in [70] that for 

“regular” traps in silicon with a peak barrier energy of up to 0.3eV there might be not enough room to provide 

broad distribution for Dt varying slowly for many multiples of kT.  

Now, we shall obtain the impact of barrier energy on the noise from traps located inside the gate insulator, in 

order to analyze the temperature dependence of flicker noise in MOS transistors, in which the tunneling 

mechanism for ∆n noise is dominant. We will also show that the Dutta-Horn equation (169) follows from the 

corresponding equation (164) for gradual trap profiles. So, with respect to eq. (102) that 

τ∝exp(EB/kT)×exp(x/λ), we write the superposition integral in more general form of 
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Evidently, one cannot discriminate between distance x/λ and energy EB/kT, and the integral convolutes them. 

However, one can define ξB=xB/λ=EB/kT that transforms the energy and temperature into “apparent distance” xB. 

Since ξB and xB are not real distances, then they are constants by the integration in eq. (161) and scale the results 

via τo and integration limits, but otherwise preserving the form of the results. So, we use eq. (164) to derive 

Dutta-Horn equation. 

The experimental conditions for the Dutta-Horn equation (169) are that the flicker noise of a device is measured 

at different temperatures, that is, T is changed, but the frequency of noise measurement is fixed to f=fi=constant, 

and all other conditions are repeated unchanged at each temperature, e.g. the biasing, device parameters and 

experimental accuracy are virtually the same. According to eq. (104), SVG
∝kTNt/f. Therefore 
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where fi is also a constant in Dutta-Horn equation, as stated above. Therefore, 
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Since fi is a constant, then 
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As far as the function 
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 is peaking at f=fi, it is the main contribution in the 

superposition integral of eq. (161), and thus, in the spectrum of the flicker noise at f=fi, as explained after eq. 

(156) and in [2]. Therefore,  
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showing that the noise at fi is probed from another distance in the oxide, when the temperature is changed. 

Substituting eqs. (172) and (174) into eq. (164) 
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which is the same as the Dutta-Horn equation (169). The difference from the Dutta-Horn equation, which is for 

bulk materials and thin metal films, is following from the fact that for the case of oxide traps, the distance x from 

the semiconductor-dielectric interface also takes place, according to eq. (173). In particular, when substituting 

from eq. (155), one gets 
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Since the tunneling time constant prefactor τo is in the range 10−7s−1 [134] to 10−10s−1 [49, 55, 140], while 

τph~10−15−10−14 s [2, 165], then ln(τo/τph)~9…18, and is not so large as compared the original estimate in [2] of 

|ln(2πfiτph)|~35…40 for metals measured in frequency range between 10Hz and 10kHz. Thus, traps with barrier 

capture energy EB<0.3eV may actually cause variations of the slope of 1/f noise in MOS transistors via number 

fluctuation, despite the concerns in [70] for limited room for the distribution of barrier energy of traps in silicon. 

Indeed, when recalling the duality between tunneling distance and energy, the variation of 1/f noise slope can be 

due to spatial non-uniformity of oxide trap density Nt, rather than in distribution in energy, although the former 

will cause the temperature variation. The random telegraph noise in MOS transistors discussed in the next 

section also leads to this conclusion. Furthermore, it is shown in [73] that the energy distribution can be 

inspected by varying the gate bias, instead of temperature, although in a very narrow range of few meV and with 

very low value for EB~50meV. 



63  of  286 

IV.3. RTS noise in MOS transistors 

As the size of MOS transistors is becoming smaller and smaller, then the charge capture and emission process by 

individual traps is increasingly distinguishable. This process results in a random bistable fluctuation in time 

domain, such as Random Telegraph Signal (RTS), and therefore the random bistable fluctuation is also called 

RTS noise. The RTS noise in the drain current of MOS transistors is usually measured and then referred to the 

gate terminal as a voltage by using the transconductance gm of the transistor [74]. It is cumulatively observed 

that the amplitude of the gate referred voltage from individual RTS noise matches well with addition and 

removal of one elementary electronic charge q to the gate oxide capacitance [74], that is,  

ox
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 .     (178) 

IV.3.1. Time constants of RTS noise 

The time constants of the two states of individual RTS match with the predictions of Shockley–Read–Hall theory 

for generation-recombination process [68, 74, 107, 112, 148, 166]. Consequently, the superposition of larger 

number of individual RTS, each of which having a Lorentzian spectrum, is found to coincide with 1/f noise in 

larger-area MOS transistors [68, 74, 112, 148]. The above findings are made over a period of about 50 years and 

has been reviewed in [68] at the time of entering the sub-micrometer technologies. In studies of MOS transistors 

with very thin oxides, RTS noise is observed also in the gate leakage current [148]. 

The above summary of findings implies a coherent picture for RTS noise in MOS transistors. However, looking 

at the details or individual measurements, one will observe significant deviations and will meet with difficulties 

to manage long time records, and to link them to spectra and models for noise. In fact, there is no standard 

procedure for analysis and compact model for RTS noise in MOS transistors. The RTS noise is also non-

monotonically bias- and temperature dependent [58, 68, 137, 161, 167], it varies between different time records 

captured from one sample [68, 74], and between nominally identical samples [137, 166]. On the other hand, the 

amplitudes of RTS noise can be large in sub-micron area MOS transistors [74, 112, 137] and RTS noise becomes 

important issue that the designs have to overcome, e.g. in CMOS imagers with correlated double sampling [162]. 

Generally, three parameters describe the individual RTS noise component. For MOS transistors, these are 

amplitude ∆ID (or ∆VG), and capture and emission time constants of the trapping GR center, respectively. The 

studies in [68, 74, 107, 112, 148, 166] confirmed that the time constants follow very well the Shockley–Read–

Hall (SRH) statistics, which established eq. (63). In most cases, the emission time constant τe is a weak function 

of the biasing (it increases when increasing VG-VT), whereas the capture time constant τc decreases when the 

biasing (VG-VT) increases, owing to the increase of the carrier concentration n’ in the channel of the MOS 

transistors. There is a possible exception in sub-threshold regime of operation of the MOS transistor when 

charges from the bulk are trapped, and the bias dependence of the time constants can be inverted for this case 

[161]. There are experimental difficulties by obtaining the values for time constants since a processing of long 

records captured in time domain is necessary, especially when two or more RTS are present simultaneously [68, 

74, 112], but overall there is no other significant issue with the RTS time constants. When the values are 

obtained, they match well the predictions of the theory and with the corner frequency of Lorentzian spectrum 

related to RTS, and given by 
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where F is the trap occupancy factor, given by Fermi-Dirac statistics. Therefore, we do not extend the discussion 

for the time constants of RTS further. 

IV.3.2. Amplitude of RTS noise 

There are some discrepancies between values for the RTS amplitudes ∆ID and ∆VG, measured in time domain, 

estimated from spectrum using eq. (179) and predicted by eq. (178). We focus on this issue, because the 

amplitudes of RTS noise will increase as the device size decreases with every next generation of technology 

nodes of minimum feature gate length Lmin, since RTS due to individual traps will dominate the low-frequency 

noise and, according to eq. (178), ∆VG and ∆ID will increase as 1/(WL)∝1/Lmin², because Cox cannot be increased 

proportionally furthermore [3]. 

The characterization of MOS transistors usually uses eq. (178) rewritten in normalized form for the RTS current, 

given by 
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where ∆VG=q/(WLCox)=∆VFB is regarded as modulation flat band voltage VFB in MOS transistor owing to 

trapping of single electron at semiconductor-dielectric interface [58, 156]. This equation corresponds to the 

generic expression for coupling of noise, being a square-rooted version of eq. (1) with coupling coefficient 

√K=1. The direct application of this equation against measured data usually shows some discrepancies, as 

illustrated in Figure 29. One can see in the figure that the overall evolution of the RTS amplitude is captured by 

eq. (180), but the amplitude is underestimated at low bias, whereas it is overestimated at high bias. This implies 

that the coupling between trap and conduction layer involves also other factors, and the coupling coefficient 

√K≠1 is also bias dependent. The reasons of this discrepancy correspond to the issues with the ∆n model for 1/f 

noise in MOS transistors, since the origin of the models is the same. 

Correlation between mobility variation and trap occupancy 

One effect neglected in eq. (180) is the mobility variation correlated to the trap occupancy. This correlation was 

investigated in [58] for RTS amplitude, considering Coulomb and phonon scattering at lower and higher biasing 

of MOS transistor. The essence of this investigation is that, increasing the bias from weak to strong inversion, 

the channel carrier mobility µ increases at low bias, since µ is limited by Coulomb scattering [see eqs. (134) and 

(135)], whereas the channel carrier mobility µ decreases at high bias, since µ is limited by phonon and roughness 

scattering [see eqs. (131) and (133)]. Consequently, via the surface potential, at low bias the derivative 

∂µ/∂∆VFB>0 and adds to the change ∂n’/∂∆VFB>0 in carrier concentration n’ in the MOS channel, causing the 

RTS amplitude to be higher than that given by eq. (180), whereas at high bias the derivative ∂µ/∂∆VFB<0 and 

subtracts from ∂n’/∂∆VFB>0, causing the RTS amplitude to be lower than that given by eq. (180). At a crossover 

bias (VG,cr, ID,cr, gm,cr), when ∂µ/∂VG≈0, eq. (180) matches the measurement. Noticeably, we can observe 

qualitatively exactly the same behavior in Figure 29, as well as in fig. 8 in [107], and to the first order of 

approximation we can suggest an empirical expression for coupling coefficient √Kµ for correlated mobility 

contribution to RTS amplitude that is in the form of eq. (121) for the coupling coefficient for 1/f noise in MOS 
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transistors with correlated ∆n-∆µ fluctuation. 
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For physical justification, the ratio ID,cr/gm,cr∝Cox(VG,cr−VT)∝n’cr corresponds to carrier concentration n’cr in the 

channel at which crossover between Coulomb and phonon scattering occurs and ∂µ/∂VG≈0. 

Position of the trap along the channel  and  depth of the trap in the oxide 

A second detail neglected in eq. (180) is the position of the trap in the oxide and in the channel.  

Position of the trap along the channel. Considering the channel conduction at different spots under the gate, it 

is deduced in [167] that the RTS amplitude is function not only on channel carrier concentration n’, but also on 

the lateral electric field at the position of the trap along the channel. Assuming that one carrier is trapped at a 

particular spot in the conductive channel of the MOS transistor, the relative RTS amplitude is then given by 

[167] 
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where GD=ID/VD is the channel conductance between drain and source terminals, ∆ID and ∆GD are the RTS 

amplitudes, µ and E are local carrier mobility and lateral electric field in the channel at the spot of charge 

trapping, µavg and Eavg are average values for carrier mobility and lateral electric field carrier, and n is the total 

number of carriers in the channel, respectively. By inspection of MOS transistor equations, it can be shown that 

1/n≈gmq/(IDWLCox). Therefore, eq. (182) can be rewritten in the form of eqs. (180) and (181), as 
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being a coupling coefficient corresponding to variation of the lateral electric field E in MOS channel. Obviously, 

the lateral electric field at the source side of the channel is lower than Eavg and traps located at this side will 

produce RTS with amplitude lower than that predicted by eq. (180). In contrary, the lateral electric field at the 

drain side of the channel is higher than Eavg and traps located at the drain side will produce RTS with amplitude 

higher than that predicted by eq. (180), especially when the MOS transistor is in saturation mode of operation. 

Perhaps this is the reason why the RTS amplitudes from different traps scatter in one sample and between 

identical samples, as illustrated in Figure 30 from [68]. 

In this figure, 58 different RTS are shown from 12 nominally identical nMOS transistors biased at the same 

condition (VG−VT)=(3.8−1)V, VD=0.1V, VS=0, ID=6.7µA. The transistors are from 2.5µm technology node, but 

the mask was W=L=2µm being below the minimum feature size. From DC measurements, it was estimated that 

the effective size of the samples was W=0.5µm and L=0.75µm, but tolerances are not reported in [68]. The 

circles in Figure 30 present the relative RTS amplitudes ∆ID/I organized in [Fig. 16 in 68] in a scatter plot sorted 

by increased values of ∆ID/ID and formally numbered from 1 to 58, as shown in the bottom horizontal axis of 

Figure 30. We assume that the traps are uniformly distributed along the channel length L, so number 0 

corresponds to source edge of the channel and number 59 corresponds to drain edge of the channel. In this way, 
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we scale the top horizontal axis of Figure 30, using z/L=(Number of RTS)/59, where (z) represents the position 

of the trap along the channel length L. Next assumption is that the carrier concentration in the channel is nearly 

constant, since (VG−VT)≈2.8V, while (VD-VS)=VD=0.1V and the transistors were operating deep in ohmic 

regime. Therefore, we expect linear increase of lateral electric field E from source to drain with an average value 

of Eavg=VD/L≈1.3kV/cm. According to eqs. (182) and (183), the square root avgDD EEII ∝∆ , and by 

multiplying with the value above for Eavg, we obtain the lateral electric field E for each data point, as shown with 

squares in Figure 30, which are fitted with the linear function E∝z/L. This linear-fit function was used in eq. 

(183) to calculate ∆ID/ID∝(E/Eavg)², as shown with thick line passing through the circles in Figure 30, estimating 

also Cox≈95nF/cm² and EOT≈37nm, which are not stated in [68], but are reasonable for 2.5µm technology node. 

Apart from 4 data points of high RTS amplitudes on the right side of Figure 30, the agreement between 

measured (circles) and calculated (thick line) from eq. (183) values for the relative RTS amplitudes ∆ID/ID is 

good, despite the many assumptions stated above. The agreement leads to the conclusion that the variation of 

RTS amplitude in MOS transistors is vulnerable to the position of the trap along the channel, since the lateral 

electric field is different at different positions. The 4 data points that deviate from the rest of the data in Figure 

30 are probably from one of the 12 devices. The sizes of this device probably deviate 20%-30% from the 

nominal values, which is reasonable for the case of transistors with effective sizes L and W being about 1/4-1/5 

of the minimum feature size of the technology node. Unfortunately, the information in [68] is aggregated among 

all 12 samples, and we cannot inspect the details further. 

The analysis above for relation between trap position along the MOS transistor channel and amplitude of RTS 

noise is in general agreement with other works. It is argued in [133] that the flat band perturbation, which is in 

the origin of eq. (180) via ∆VG=q/(WLCox)=∆VFB, neglects the local perturbation in the surface potential and the 

associated charge carrier density at a particular position in the channel, and thus underestimates both the RTS 

amplitude and 1/f noise as a superposition of RTS, when the transistor operates in strong inversion and 

saturation, i.e. inversion layer charge densities at source and drain sides are n’S>2φtCox/q and n’D<<n’S. At this 

condition, as mentioned earlier, the 1/f noise magnitude is underestimated about 2 times by the flat band 

perturbation model. For RTS amplitude, the difference can be larger, and this was used to locate positions of 

traps in the channel in [166]. The methods in [166] require knowledge for details in the transistor and employ 

formulation in terms of surface potential and numerical iterations. This approach, although accurate, is too 

complicated for the purpose of experimental noise characterization, in which the measured data scatter, and in 

this way, do not allow for obtaining very precise modeling. The advantage of the methods in [166] is that the 

position of the trap along the channel can be found simultaneously with the depth of the trap in the oxide. Now 

we discuss the latter. 

Depth of the trap in the oxide. Based on earlier works [168], it is suggested in [112] that the relative RTS 

amplitude ∆ID/ID can be given as 
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where tox is the physical thickness of the gate insulator, xti is the distance from semiconductor-insulator interface 

to the position of the trap in the oxide. The factor (1−xti/tox)=(tox−xti)/tox is a coupling coefficient √Kti and it is the 

same as in eq. (147). The parameter η corresponds here to the product of coupling coefficients √Kµ√KE in eqs. 
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(181) and (183) above, but it is left as a fitting parameter in [112]. Therefore, in order to obtain information for 

(tox−xti)/tox, the ratio of the capture τc and emission τe time constants is used in [112], since τc and τe depend on 

xti, see eq. (112), and on bias via Fermi level, see eq. (63). The explicit expressions are given in [166], but the 

overall bias dependence is [112] 
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where ϕt=kT/q≈0.026V is the thermal voltage at room temperature T=300K, VG is the gate bias voltage and ψs is 

the surface potential in the MOS channel. The surface potential ψs is a complicated function of VG (and other 

biasing voltages applied to MOSFET), and the precise evaluation of the derivative ∂ψs/∂VG is inconvenient and 

not necessary when the spread in the values for τc and τe is large, which is usually the case of noise 

measurements. Therefore, for practical cases of characterization, one can obtain an approximate value for the 

derivative ∂ψs/∂VG, using several general relations in MOS transistors from [169], as follows, in which inversion 

charge Qinv, oxide capacitance Cox and depletion capacitance Cd are given per unit area. 

Assume that the measurement was when the MOS transistor operated either in weak (sub-threshold) or in strong 

(above threshold) inversion regimes, that is |VG-VT|>0.1V.  

In weak inversion, when VG is below the threshold voltage VT, the inversion charge Qinv is negligible and the 

gate bias is spread across the series connection of oxide capacitance Cox and depletion capacitance Cd. Therefore 

[pp.75 and 86 in 169] 
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neglecting the interface states’ capacitance Cit. The parameter α can be obtained from sub-threshold slope 

∂VG/∂log10(ID)=2.3αϕt [p.175 in 169] of the transfer characteristic ID(VG). The parameter γ is the body bias 

coefficient and can be obtained from ∂VG/∂VB, where VB is a bias voltage applied to the bulk (body) under the 

MOS transistor channel. However, γ is not needed in this analysis. 

At the same time, the ratio gm/ID between transconductance gm and drain current ID in MOSFET in weak 

inversion also depends on α, and it is given by [p. 173 in 169] 
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So, from eqs.(186) and (187), we get that 
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For strong inversion regime, according to [p.87 in 169], we write 
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in linear (ohmic) mode, when (VD-VS)<<(VG-VT), and where VDS=(VD-VS) is drain-source bias voltage and VT is 

threshold voltage of MOS transistor. Also, the inversion layer charge Qinv is approximately constant along the 

channel, and it is 
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where µ is the carrier mobility in the transistor channel of length L and width W. So, eq. (190) becomes 
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To obtain an expression for ∂ψs/∂VG in at strong inversion regime saturation mode, we look closer at the charge 

sheet model for the drain (to source) current ID with neglected diffusion, given by [p.157 in 169] 
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in which the inversion layer charge densities Qinv,S and Qinv,D are at the source and drain sides of the channel, 

respectively, and Qinv,S and Qinv,D are given with the bias voltages VS and VD applied to these sides, as [p.121 in 

169] 
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The obvious approximation for the pinch-off voltage VP in the equation above is given by [p.158 in 169] 
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The transistor is in saturation mode, if VD>VP, and in ohmic mode, if VD<VP. Note, ID, Qinv,S and Qinv,D depend 

on VG only via VP, and α is assumed constant, because the depletion capacitance Cd in eq.(186) does not change 

significantly with VG, especially in strong inversion. 

In saturation mode, (VD>VP) and Qinv,S>>Qinv,D≈0. Therefore, eq. (194) is reduced, and using VS=0, which is the 

normal case when the body and source of MOSFET are tied together, one gets 
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This means that one can substitute in eq. (190) the quantity 

 
D

m

G

inv

inv I2

g

V

Q

Q

1 =
∂

∂
,       (200)  

and to obtain 
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By comparing eqs.(188), (193) and (201), one can summarize that 
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, in weak inversion regime (sub-threshold, VG is below VT),   (203)  

and ∂ψs/∂VG gradually decreases at gate biasing above threshold, as 
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The accuracy of eqs. (202), (203) and (204) is within a factor of 2 (6dB), which is sufficient for analysis of RTS 

noise measurement data, which scatter usually more. So, eq. (185) can be rewritten to useful for experimental 

characterization forms of 
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The equations include parameters that can be easily obtained from DC measurements of the MOSFET transfer 

characteristic (VT, gm, α from sub-threshold slope). So, once the capture and emission times are characterized 

from RTS noise measurements at several bias points for VG, then the derivatives in the left-hand side of the 

equations can be found by a simple fitting of slopes in semi-log plot of ln(τc/τe) vs. VG. Then, by substituting in 

one of eqs. (205), (206) or (207), the ratio xti/tox of the distance xti from the trap to semiconductor-insulator 

interface to the physical thickness tox of the gate insulator can be estimated, and the coupling coefficient √Kti for 

the trap position in the oxide can be found as 
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ti
ti t
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1K .      (208) 

Note that the above equations are appropriate for approximate experimental characterization and volume tests 

when the scattering in the data is large. If a precision analysis of few samples is required, one should use 

rigorous models, such as this in [166], which can also locate the position of the trap along the channel of 



70  of  286 

MOSFET. The price is, of course, that the surface potential ψs has to be obtained prior to analysis of the oxide 

trap, and this requires specific information, numerical simulations and optimizations, which might be not always 

available, or affordable, owing to time, expertise or other constraint in the experimental practice. 

Amplitude of RTS (concluding remarks). To summarize, the analysis of amplitude of RTS noise in MOS 

transistor requires large number of waveforms captured in time domain, from several samples and various 

biasing. The waveforms need to be processed so that the evolution of the amplitudes and time constants of RTS 

from individual traps with biasing and over the samples is observed. Then, the data have to be fitted to 
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D ==
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 ,      (209) 

where the coupling coefficient √K=√Kµ√KE√Kti accommodates several dependences, and n is the total number of 

carriers in the channel of the MOS transistor, with n≈WLCox(VG−VT)/q in the ohmic regime of operation of the 

MOS transistor at VD<<(VG−VT), and twice smaller n≈½WLCox(VG−VT)/q in the saturation regime of operation 

of the MOS transistor at VD≥(VG−VT). 

The coupling coefficient √Kµ takes into account for the contribution of mobility variation, √Kµ is given by eq. 

(181) and the parameters in this equation should be chosen so that the modeled and measured relative RTS 

amplitudes ∆ID/ID are proportional when the gate bias voltage VG is varied. As the initial values in eq. (181), one 

can use the first order mobility degradation coefficient θ~0.3…1 V−1 and the ratio ID,cr/gm,cr∝Cox(VG,cr−VT) of the 

current to transconductance at gate bias corresponding to maximum mobility in strong inversion regime (VG,cr 

above threshold VT). 

The coupling coefficient √KE takes into account for the variation of the lateral electric field and carrier velocity 

in the channel of MOS transistor, and √KE is given by eq. (183). If data from many samples measured in strong 

inversion and ohmic modes are available, then the value for √KE can be obtained from a scatter plot of relative 

RTS amplitudes ∆ID/ID as discussed above, and the position of the traps along the channel length can be 

estimated. Otherwise, knowledge for the lateral electric field and mobility has to be provided by other means, 

e.g. simulation of structure, in order to obtain surface potential along the channel [166]. Other approaches are 

also possible, e.g. swapping drain and source, to discriminate between traps located closer to source or closer to 

drain sides of the channel – see references in [166]. 

The coupling coefficient √Kti takes into account for the depth xti of the trap in the gate insulator of thickness tox. 

At assumption for tunneling mechanism for charge exchange between the trap and channel carriers, the ratio 

xti/tox, can be estimated using eqs. (205), (206) and (207) and DC parameters of MOS transistor from the gate 

bias dependence of capture τc and emission τe time constants of individual RTS, by the slope of ∂ln(τc/τe)/∂VG. 

Then, √Kti= (1−xti/tox), as given by eq. (208). 

The advantage of the procedure above is that it is based only on DC measurements and waveform captures, and 

device simulation is not needed. However, the procedure requires large number of measurements and extensive 

processing of waveforms by establishing relation between data from different measurements and keeping track 

of the evolution of RTS parameters of individual traps. Nevertheless, tools and methods for semi-automated 

extraction of RTS parameters are reported (in [74, 107, 112, 166] using correspondence between ∆I in time 

domain and low-frequency plateau of Lorentzian spectrum in frequency domain,  in [58, 74, 107] using 

histograms of drain current, in [28, 29] using discontinuity of waveform), although they should be further 
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organized to make the tests feasible for applications in the volume production in semiconductor industry. 

The above analysis of RTS noise is based on charge trapping. Alternative suggestion for RTS noise from 

mobility fluctuation is given in [170] for diodes, at condition when I<∆I<q/αHτ where τ is minority carrier life 

time and αH is the Hooge parameter – see eq. (6). Situation I<∆I of DC current smaller than RTS amplitude has 

been observed in carbon nanotube pMOS-like field-effect transistors [171]. 

IV.4. Figures of merit for MOS transistors 

The intensive research on MOS devices resulted in many figures of merit (FOM) that have been used to compare 

different technologies and explore the scaling of these devices. Each FOM was suggested in order to emphasize 

particular feature of the devices or circuit, which used these devices, or to facilitate a model or design. 

Consequently, the values from different FOM became difficult to compare each to other. In this section, we will 

discuss several FOM that are commonly used for the low-frequency noise in MOS transistors in attempt to relate 

the different FOM each to other. 

IV.4.1. Definition  

To set up the discussion, first it is helpful to state what FOM is and how it differs from device parameters or 

physical quantities. In principle, FOM is a customized expression that combines several device parameters and 

physical quantities according to particular model or targeting particular application. For example, the DC value 

ID of the drain current in MOS transistor and the power spectrum density SID
 of drain current are physical 

quantities, but the normalized noise SID
/ID² is a figure of merit for the ratio noise to DC in the transistor, and 

SID
/ID² may (or may not) vary with frequency and bias, depending on what noise in a transistor is addressed. If 

the flicker noise is the concern, then one assumes a model with 1/f scaling rule for SID
 and can evaluate the 

SPICE parameter KF=fSID
/ID² according to eq. (2), but KF is also a FOM, since it is derived from another figure 

of merit, by using additional scaling rule for the frequency dependence of SID
 and the 1/f dependence is canceled 

in KF just for convenience. Certainly, KF is a good figure of merit for flicker noise in BJT, since in most cases 

the 1/f noise is coupled from IFO via the transconductance gm, as discussed in section III.2. “Differences in BJT 

fabrication, IFO”, and gm/IC≈1/φt≈constant in wide range of biasing conditions. However, KF is not the best 

choice for MOS transistors in strong inversion regime, since gm/ID∝1/(VG-VT) and the bias dependence of 1/f 

noise is not cancelled in KF. On the other hand, if the shot noise in BJT is addressed at higher frequencies, then 

the appropriate figure of merit for normalized noise is SIC
/IC~2q, which is frequency independent in principle, 

but not KF. Moving further to RF range, one usually uses the so-called “Noise Figure” or “Noise Factor”, which 

is a completely different FOM in its basis, and RF Noise Figure is a function of the ratio between device and 

thermal (Nyquist) noise at certain conditions for impedance matching. Thus, the different FOM depend on 

device, models and ranges, and one should explicitly state the expressions, the origin and the purpose of the 

normalization used for particular case of interest, since all normalizations are FOM, they are valid at certain 

conditions, and even the most popular FOM have counterparts. 

IV.4.2. Input and output referred noise – scalability of normalized noise 

MOS transistor 

In both cases, the word is for the 1/f noise SID
 in the drain current ID, which is at the output terminal (drain) of 

the MOS transistor, and it should be clearly stated that noise SIG
 in the gate leakage IG of MOS transistors with 
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ultra thin oxides is not included in the input and output FOM, and it is separately analyzed, if present, with one 

exception in [110]. 

The practice is that output noise SID
 is referred to the input (gate) terminal as a “gate voltage” SVG

 by using the 

most general expression for coupling from input to output via transconductance gm, which is 

GD V
2
mI SgS = ,      (210)  

and it follows from eq. (1). Consequently, SVG
 is a FOM, because it is a derived quantity, it cannot be directly 

measured as a voltage, but it is convenient, since it is weakly dependent on the bias of MOS transistor, it scales 

properly with the area WL of the transistor and it has been well explained in terms of oxide trapping, oxide 

capacitance, mobility degradation, etc., as discussed in previous sections. To compare different MOS transistors, 

the most popular FOM is the product WLSVG
 at low gate overdrive (VG−VT)~0.1V and frequency 1Hz, which is 

used in ITRS [3] – see eq. (106) for more details. At these conditions and at lower gate overdrive, the number 

fluctuation due to trapping at the oxide dominates, and SVG
≈SFB, where SFB is regarded as flat band voltage noise 

– see eq. (109). At higher gate overdrive, (VG−VT)>0.2V, the mobility fluctuation may significantly contribute to 

the noise. As explained in [156], if the mobility is correlated to the oxide trapping, then SVG
 becomes a quadratic 

function of (VG−VT)∝ID/gm, and an additional FOM=(SVG
)0.5 vs. (VG−VT) is used to obtain the carrier scattering 

coefficient [57, 89, 92, 139, 156] – see eq. (121) and the paragraph after it. If the mobility noise is not correlated 

to oxide trapping, then SVG
∝(VG−VT) and the slope of this dependence is used to obtain the Hooge parameter αH, 

which follows from to eqs. (11) and (88), and it will be discussed further in IV.4.4. “Physical figures – trap 

density, Hooge parameter, scattering parameter” along with other FOM derived from SVG
. 

The normalization of output noise is a FOM of form  
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It is widely used for MOS transistors as the intermediate step in analyses, such as for inspection of number 

fluctuation, or obtaining SVG
 and other quantities. However, this normalized noise is rarely used to obtain the 

SPICE parameter KF except for cases when comparing noise in MOS and BJT at similar biasing current targeting 

specific circuit application, e.g. low power RF oscillators [22, 23], BiCMOS circuits [83] and radiation 

resistance or sensitivity [102, 103, 104, 165].  

Comparison BJT-MOS transistors 

As mentioned above, KF is an essential FOM for BJT, because it varies a little in wide range of biasing, but the 

problem is that KF in MOS transistors is a strong function of biasing above threshold voltage VT, and it is 

approximately a reciprocal function of gate overdrive (VG−VT). Strictly speaking, comparisons based on KF in 

MOS transistors are valid only at fixed gate overdrive. The better way to compare MOS and BJT is to refer KF in 

BJT to the base terminal as a voltage noise SVB
, and then to compare SVB

 and SVG
 as suggested in ITRS [3]. The 

conversion of KF into SVB
 is straightforward for BJT, because gm/IC≈1/φt≈constant – see again eq. (3) and the 

discussion between eqs. (28) and (30), because 
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We have used this conversion widely in this work. 

To compare with the predictions in ITRS [3], we write here the values for FOMSVB
 and FOMSVG

 for the input 

referred 1/f voltage noise in BJT and MOS transistors, as evaluated from the trends in the experimental data 

shown in Figure 15. 

The trend for 1/f noise in npn BJTs in Figure 15 is 

Hz/Vm108.3S
Hz1

f
AFOM 2212

VES BVB
µ×== −  , with standard deviation σdB=3.4dB   (213) 

The prediction in ITRS is between 10−11μm²V²/Hz to 10−12μm²V²/Hz for the period from year 2001 to 2020 – see 

Figure 1a. The above FOMSVB
=3.8×10−12μm²V²/Hz is within this interval, and thus, it is a representative value 

for 1/f noise in analog BJTs. 

The trend for 1/f noise in MOS transistors in Figure 15 is 

HzVmS
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f
WLFOM

GVG VS /100.1
1

229 µ−×==  , with standard deviation σdB=8.8dB   (214) 

The prediction in ITRS is between 10−9μm²V²/Hz to 1.8×10−10μm²V²/Hz for the period 2001-2020 for analog 

MOS – see Figure 1a. The above FOMSVG
=1.0×10−9μm²V²/Hz is slightly high. Nevertheless, this value is still 

representative for the 1/f noise in analog MOS transistors, considering the large spread in the experimental data, 

because the lower boundary FOMSVG
/10(σdB/10dB) is 1.3×10−10μm²V²/Hz, and it includes the prediction in ITRS. 

Moreover, when analyzing publications in the period 2007-2020 only, this value is reduced to 

4.1×10−10μm²V²/Hz, well inside the range predicted in ITRS. Note also that FOMSVG
 is much larger than 

FOMSVB
. The trends in Figure 15 imply FOMSVG

/FOMSVB
≈300, which is in agreement with the prediction in 

ITRS [3] for 1/f noise in MOS transistors for analog applications – see again Figure 1a. 

Flicker noise in gate leakage current 

It was mentioned above that the noise from gate leakage has its own FOM, which is additively included in the 

output and input FOM of MOS transistors. The review [164] on gate tunneling current implies that the DC value 

of gate leakage current IG usually follows Fowler–Nordheim tunneling with some enhancement at low field. 

Nevertheless, the power spectrum density SIG
 of the gate current noise is found to scale with the square of the IG , 

as shown in the top-left plot of Figure 31, and SIG
 is reasonably well described by the simple SPICE equation for 

1/f noise, given by 
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Thus, the generic FOM 1 for SIG
 is the SPICE parameter KFG itself. The data from [101, 110, 149] imply that 

KFG~10-9 for gate dielectrics based on silicon oxides, the nitridation of oxides virtually does not impact the noise 

and it can be three orders of magnitude higher when hafnium is added in order to increase the dielectric 
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permittivity. Note, FOM 1 does not use any rule for scaling with device size. 

We can construct a performance FOM 2, which relates the noise to gate leakage current density JG=IG/(WL). One 

may find FOM 2 handy for designs and quick comparison of different gate stacks, since the gate leakage is 

usually reported as a current density, while the scaling rule for SIG
 is not certain. Thus, we arrange the data for 

SIG
 vs. JG as illustrated in bottom-left plot of Figure 31, and 
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The observation by using of FOM 2=KFG×Area² is that not only Hf based, but also any composite material for 

gate dielectric causes 3 decades higher noise in the leakage current, which is somehow in contradiction with the 

observation made by using FOM 1=KFG. 

Further, we can use FOM 3=Area×KFG, which is the regular scaling rule for (reciprocal) areal dependence of 

noise, as follows from eqs. (2), (14) and (15). As mentioned above, the gate leakage is usually given in terms of 

current density, so we write 
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and plot SIG
/(WL) vs. JG as illustrated in bottom-right plot of Figure 31. In this plot we observe that FOM 3 

spreads from low value for SiO2 to high value for HfO2, suggesting that the noise relatively increases when the 

dielectric constant increases. The quantity “noise density”, SI/Area, vs. current density, J=I/Area, was used in 

[83] to present the noise in BJTs. 

Thus, with these three FOM, which indeed are not unique choice, we demonstrated that there is a room for 

investigations and speculations for the noise in gate leakage, both observed in publications. The different FOM 

lead to different conclusions and the modeling of the noise in gate leakage current is not certain. Based on 

temperature dependence of SIG
 in the device with HfO2, it is argued in [101] that the gate leakage current is due 

to trap-assisted tunneling or Poole–Frenkel conduction, whereas the conduction mechanism of the leakage is 

owing to direct tunneling in SiO2 and HfSiON with low Hf content, showing much weaker temperature 

dependence. The 3 orders of magnitude higher flicker-noise for the case of HfO2 with respect to the SiO2 

dielectric by means of FOM 1 and FOM 3 is found to be in contradiction with the smaller difference (~1.5 

decades) for the noise in the drain current and it is argued in [101] that SIG
 is “sensitive to all the defects” in the 

oxide, whereas the drain current depends only on the fewer interfacial defects. However, the modeling in terms 

of flat band fluctuation for both SIG
 and drain current noise implies the opposite in [101]. In order to inspect 

whether the low-frequency noise in the gate and drain currents has the same origin, we have measured the 

coherence between SIG
 and SID in [149], see eq. (27). The correlation between gate and drain noise currents is 

weak, the coherence is less than 30%, as shown in Figure 32, suggesting an independence between these noise 

currents. This is in agreement with the former observations in [101] that the gate current noise is a result from 

the fluctuation in the insulator leakage process, while the drain current noise reflects only the charge trapping in 

the gate insulators. Consequently, the later gate leakage current noise model based on flat-band fluctuation [101] 
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is not applicable, since the coherence between gate and drain noise currents is low, whereas it should be high, 

e.g. >60%, if the origin of these noise currents is the same. On the other hand, the model in [101] is able to 

explain biasing variations in the normalized noise SIG
/IG². Nevertheless, the good overlap in the bottom-left plot 

of Figure 31 suggests a handy relation between SIG
 and JG, but this relation breaks the rule for areal dependence 

of noise and it is questionable in physical significance. Again, the flicker noise in gate leakage current is an 

interesting topic, the investigations are performed in a lack of mature theory, and there are speculations and 

unresolved issues for the scaling rules in this noise. 

IV.4.3. Noise factor, noise resistance, noise temperature 

These FOM represent the noise in a device in ratio to the thermal noise, which has frequency independent 

“white” spectrum density of the energy Sth=4kT, where kT is the product of  Boltzmann constant k and absolute 

temperature T; and Sth is the fundamental lower limit for noise set by thermodynamic considerations in physical 

systems [172, 173]. In sensors, the reference value might not be the thermal noise, but a “unit value” of the 

sensed quantity – please see Sec. VII.3. Noise in sensors. 

Provided that the thermal noise is also electrical, then the noise current in and voltage vn are assumed fully 

correlated with the impedance Zn (or its reciprocal, the admittance Yn=1/Zn), and  
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where one of the spectra in or vn is taken complex conjugated in order to obtain power spectrum densities 

SIth=ithith
* for noise current and SVth=vthvth

* for noise voltage across the impedance Zn=1/Yn. 

At RF range, which is currently in the focus of wide research [174], Zn is a complex quantity and the imaginary 

part of SVth=SthZn is not measurable directly. Many publications [175, 176, 177, 178, 179, 180, 181, 182, 183 

184, 185, 186, 187] imply that the RF noise originates from resistances of gate conductors and gate-channel 

resistance, providing also models and characterization methods, and the RF noise is affected by the impedance 

matching to Zn and by the frequency. Looking chronologically, the earlier works [175, 176, 177, 178, 179, 180, 

181, 182] address the RF noise from the perspective of the general theory of RF networks, replicating impedance 

mismatches in test setups with impedance tuners, while the later publications [183, 184, 185, 186, 187] relate the 

RF noise closely to device parameters and circuit applications, involving also simpler test setups to obtain the 

device noise parameters in cost-effective manner. However, we do not pursue a discussion on RF noise 

resistance further, since we deal with low-frequency noise in this work, where the imaginary part of Zn is 

negligible and Zn≡Rn. In this case, eq. (218) is rewritten as 

nnIthnnVth RkT4SRkT4S =⇔= ,     (219)  

where SVth (or SIth) is measured noise power spectrum density of voltage (or current), which might be not due to 

thermal noise, Rn is equivalent noise resistance at assumption Tn=T being the actual temperature, or Tn is 

equivalent noise temperature at assumption Rn=R being the actual resistance of the device or circuit impedance 

at a node of interest (e.g. output impedance of signal source). Consequently, Rn and Tn are FOM, since they 

might not correspond directly to physically existing electrical resistance or temperature in the device. 

Example: Noise temperature of shot noise 

One example that demonstrates difficulties of using the FOM noise temperature is given in Figure 33 for the shot 
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noise in gate leakage current, which is due to electrons overcoming the insulator barrier, rather than thermal 

motion of charge carriers. Consequently, the measured power spectrum density SIG
 of the white noise (filled 

squares in left-hand figure) obeys the relation for shot noise SI,SH (line through squares), given by 

GSH,II qI2SS
G

== ,      (220)  

and SIG
≠SIth=4kT·gG does not follow the relation for thermal noise SIth (circles), where gG=∂IG/∂VG is the 

dynamic (AC) conductance of the gate insulator (open diamonds). From discussions, such as in [188], the noise 

temperature TSH of the shot noise can be estimated from a chain of relations, given by 
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Thus, the noise temperature of shot noise is a  FOM, and it is 50% of the ratio of “voltage drop” of DC current 

on dynamic resistance rAC to thermal voltage φt=kT/q. If the “voltage drop” is higher than 2φt, then the noise 

temperature of shot noise is larger than the device temperature, as illustrated with circles in the right-hand plot of 

Figure 33. For pn-junctions biased in forward, the shot noise temperature is nearly 50% of the device 

temperature, since rAC≈φt/IDC, and so, the shot noise is “colder” than the junction. In contrast, the shot noise in 

the collector current is “hot”, because  
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where VEA~100V>10V is the Early voltage, then VEA/2φt>400 and TSH>400×300K>104 K and there is no 

physical meaning for these high noise temperatures in this case, although one can see even higher values for the 

so-called “hot temperature Thot” of solid state noise sources with excess noise ratio 

ENR=10dB×log10(Thot/290K-1)>20dB. Furthermore, the noise temperature also depends on the resistance of 

bias circuit [189], since rAC=RB||rG is a parallel connection of device rG and bias RB resistances, as depicted above 

the right-hand plot in Figure 33. If RB>>rG, then the device determines the noise temperature, as shown in right 

figure for RB=∞. By reducing RB from 20MΩ to 0.2MΩ, the circuit noise temperature due to shot noise in gate 

leakage current decreases, and the shot noise becomes “cold” once IG×RB<2φt. Again, the noise temperature is a 

FOM, it might not correspond directly to physically existing electrical resistance or temperature in the device, 

although one may need to evaluate the noise temperature in particular applications, such as instrumentation for 

radiometry and cryogenic amplifiers [190, 191, 192], or to get insight on carrier energy in short channel MOS 

transistors and shot noise in the reverse biased junction from body to source in MOSFET, as reviewed in [174].  

Noise temperature of carrier motion in the MOS transistor channel. 

Nevertheless, when the dominant source is associated with carrier motion in the MOS transistor channel, then 

the FOM “noise temperature Tn” and “noise resistance Rn”, respectively, are very useful, because the values for 

Rn match the model predictions both at medium frequency range 10-100MHz [105], as well as in RF frequency 

range above 1GHz. For the latter, a good correction for the channel noise temperature Tn,ch [193] is 
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For cryogenic temperatures (T<10K) and millimeter waves (f>30GHz), the quantum fluctuations may also cause 

a difference between physical T and noise Tn temperatures, since the relation between them is [192] 
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where h=6.63×10-34 Js is Planck constant and k=1.38×10-23  J/K is Boltzmann constant. It follows from this 

equation that the vacuum noise temperature is Tn,vac≈hf/(2kT)~3K at f=100GHz and T=5K, but at room 

temperature T=300K and f<1GHz, the relative difference between Tn and T is less than 0.01%, and it is 

negligible for the noise measurements of much larger inaccuracy. Worth mentioning, eq. (224) follows from the 

original derivation in [173], where the thermal voltage is given as 
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Further details for the quantum limit of noise temperature in amplifiers can be found in [192, 194, 195]. 

Noise Figure or Noise Factor 

Among all other FOM that relate the noise in devices and circuits to the thermal noise, the Noise Figure or Noise 

Factor, abbreviated as NF, plays a crucial role both in device characterization and circuit design. This is because 

NF represents one transducer, e.g. amplifier or device that will be used in amplification circuit, how close to the 

ultimate floor of thermal noise is, since the generic definition of NF is the ratio of noise Sin “seen” at transducer 

input to the thermal noise Sth of the signal source. Thus, NF is 

th

in

S

S
NF =  in linear units, or ( )NFlogdB10NF 10dB ⋅=  in logarithmic units.   (226)  

Since Sth is always present at the transducer input, then Sin≥Sth, and the ideal, noiseless transducer, has NF=1 or 

NFdB=0dB. The real transducer “adds” noise with magnitude Sin_ref=Sth(NF−1) as referred at its input. So, devices 

and amplifiers with smaller NF are desired. 

From this generic definition for NF, many other definitions are derived, in order to obtain expressions suitable 

for particular application in physical analyses, device characterization and measurements, or design procedures. 

Now we will present several of them. 

Using the definition for spectral density for the power of the thermal noise, Sth=4kT for the signal source and 

Sin_ref=4kTin_ref for the input referred noise power of the amplifier, then the NF can be rewritten in terms of noise 

temperatures in a straightforward manner as 
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The problem for electrical circuits, however, is the determination of Tin_ref, since Tin_ref does not follow directly 
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from electrical parameters of the devices, as we have demonstrated above for shot noise. One can use eqs. (218) 

and (219) to write in terms of electrical quantities for impedance and power spectrum density of voltage, SV, and 

gets 
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where Rs≈Zs is the resistance of the signal source, assumed with only thermal noise, but the transducer noise 

impedance Rn≈Zn is usually different from its electrical input impedance, since the noise in the transducer is 

added from other noise sources and mechanisms not necessarily related to the thermal noise in the input 

electrical impedance. 

Example.  To illustrate this, we use the circuit in Figure 34 with nMOS transistor, which electrical resistance is 

large at the input terminal (>1V/100pA=10GΩ), while the noise resistance obtained from the last equation above 

is finite and less than 1MΩ, as estimated from the minimum NF later. We also address some issues with the fact 

that the Noise Figure (NF), the Input Referred Noise (IRN≡SV below) and the Signal to Noise Ratio (SNR) are 

different measures for the noise, and they are conditionally related each to other.  

In the circuit of Figure 34, the MOS transistor operates in ohmic mode, having also electrostatic discharge (ESD) 

protection diode, when acquiring from the signal source of resistance Rs via a “cable” with capacitance Cs=10pF. 

The 1/f noise of the nMOS transistor is modeled in terms of number fluctuation according to eq. (101) and the 

white noise is taken as the channel thermal noise with spectral density [169, 174] 

dI
2
mV kTg4SgS

DG
== , white noise of MOS transistor in linear regime,  (229)  

according to eq. (219), where gd=∂ID/∂VD≈(W/L)μCox(VG−VT) is the channel conductance when 

(VG−VT)=1V>>VD=0.1V, and no correction for excess noise due to short channel effects, body leakage, gate 

induced or avalanche noise is made [174], since the channel length is large (L=1μm) and the drain voltage and 

the frequency are low. The transistor and condition parameters relevant to the following calculations are given in 

Figure 34. Also, both 1/f and channel noise are referred as noise voltage SVG
 at gate terminal, and SVG

 is shown 

with checker-board patterned line in the left-hand plot of Figure 35.  

The reverse (leakage) current IESD of the ESD protection diode produces shot noise current with power spectrum 

density 2qIESD, which is converted into voltage noise at the input plane as SVSH
= 2qIESDZs

2, where the impedance 

Zs of the circuit input node is obtained from 1/Zs=1/Rs+j2πfCs. Since Zs is a function of the frequency f, then 

SVSH
 is frequency dependent, having a plateau SVSH

= 2qIESDRs
2 at low frequencies that scales with the resistance 

Rs of the signal source, and SVSH
 is attenuated at high frequencies by [1+(2πfCsRs)²],  as shown with thin lines in 

the left-hand plot of Figure 35.  

The thermal noise voltage 4kTRs of the signal source is at the signal plane “inside” the signal source, but it 

appears attenuated at the input plane, by an attenuation factor of [1+(2πfCsRs)²] from signal plane to input plane 

for the power of the signals. Therefore, the thermal noise at the input plane is SVTH
=4kTRs/[1+(2πfCsRs)²], and 

SVTH is shown with diagonal patterned lines in the left-hand plot of Figure 35 as the bottom boundaries of the 

shaded areas, because SVTH
 is the reference against which the noise figure NF is determined. According to the 

generic definition in eq. (226), the noise figure is calculated from  NF=SV/SVth=1+(SVG
+SVSH

)/SVth, where the 
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total noise SV= (SVG
+SVSH

+SVth) is the sum of all noise contributions to the input plane, as “seen” at the input of 

the amplifier (the gate terminal of the MOS transistor), and SV is shown with thick black lines in the left-hand 

plot of Figure 35 as the upper boundaries of the shaded areas. The shaded areas in this figure is the NF, and the 

values for NF [converted in dB – see again eq. (226)] as function of frequency f and Rs are given in Figure 35 on 

the right-hand side by the contour plot, in which the dashed lines correspond to shaded areas in the left-hand plot 

of Figure 35. 

Increasing the signal source resistance Rs, several observations can be made in the in the left-hand plot of Figure 

35, in which the noise spectra are shown for three values of signal source resistance Rs={10kΩ,1MΩ,100MΩ}. 

- First, at low frequency, f<10Hz, the 1/f noise of the MOS transistor dominates in the total input noise 

SV, as along as Rs<100MΩ, and SV is virtually unchanged, although NF decreases (shaded areas become smaller 

at higher Rs), because the reference thermal noise voltage increases. Thus, the reduction in NF at low frequencies 

at high Rs does not imply reduction of noise, and since the noise level is constant, then the signal to noise ratio is 

also unchanged. At Rs~200MΩ, the thermal noise dominates in the total noise SV at 10Hz, and NF reaches local 

minimum, but SV begins increasing with Rs. At higher Rs, the shot noise takes over at low frequencies, and both 

NF and SV increase. For clarity in the figure, this situation is not shown. 

- Second, at high frequency, f>100kHz, the total noise SV changes a little with Rs, since the thermal 

noise and shot noise are attenuated, owing to the low impedance of the parasitic capacitance Cs at the input 

plane. Thus, SV is constant or even decreases with Rs to the level of the white noise in SVG
 of the transistor, but 

NF increases, since the reference thermal noise is attenuated by approximately (2πfRsCs)². While a constant 

SV~SVG
 set by the noise of MOS transistor is similar to the first case at low frequency, the signal to noise ratio at 

high frequency decreases with Rs, since any signal from the signal source is attenuated in the same proportion 

(2πfRsCs)² as the thermal noise, which is different from the first case. 

- Third, at medium frequencies of few kHz, the 1/f noise of MOS transistor is lower, and the thermal 

noise SVth from Rs can reach levels above 1/f noise before being attenuated by the square of capacitance 

conductance (2πfCs)
2. In this case, the input noise SV~SVth follows closely the thermal noise, SV increases with 

Rs, while NF reaches minimum values. The global minimum is known as Minimum Noise Figure NFmin, and it is 

in the locus of the contour plot in the right-hand side of Figure 35. NFmin is a conditional figure of merit, because 

it depends on biasing, frequency and impedance Zs. The condition for Zs suggests noise impedance matching, at 

which the noise from the transducer has the least relative contribution to the total noise, and NFmin estimates this 

contribution in comparison to the thermal noise. From the contour plot in the right-hand side of Figure 35, we 

estimate NFmin<1.02=0.1dB at Rs≈2MΩ and f=10 kHz. Any deviation from these conditions increases NF, as 

depicted in the contour plot in the right-hand side of Figure 35 with labeled arrows for the factors that cause 

increase in NF. The substitution in eq. (228) with the values for NFmin and the corresponding Rs implies that the 

noise resistance of the MOS transistor is Rn<2MΩ×2%≈40kΩ, which is much lower than any electrical 

impedance of the gate terminal of the transistor at 10kHz, e.g. the impedance 1/(2πfCg)~20MΩ for the gate 

capacitance Cg~0.8pF in the example.   

Also, it should be noted again that the input referred noise level and SNR might be not at the optimum at the 

conditions for NFmin, because the thermal noise also varies with the impedance Zs of circuit at its input plane, the 

low-frequency applications consider several frequency decades at low loading of signal source, thus do not care 

for power matching between source and load, and the SNR usually is not determined in respect to thermal noise, 
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since other types of noise dominate both in the signal source and in the amplifier. In RF applications, in contrast, 

the thermal noise is dominant in signal sources, the frequency range is “narrow”, e.g. few to 30 percent around 

the central frequency even in the so-called ultra wide band systems, the impedances are predetermined in a range 

between 30Ω and 600Ω, usually close to the characteristic impedances of 50Ω or 75Ω, and the impedance 

matching is very important in order to prevent from electromagnetic wave reflections, standing waves and to 

obtain power gain at high frequency. Therefore, NF is convenient and of high importance for RF applications. 

Definition of NF for RF applications. To meet the objectives mostly in applications such as low noise RF 

preamplifiers, another definition for NF is derived from the generic definition of eq. (226). First of all, the 

impedance matching between signal source impedance Zs and amplifier input impedance Zi are taken into accout 

and the reference thermal noise power is not the full power 4kT, but the available power from the signal source 

at matched condition Zi=Zs
*, where Zs

* is complex conjugated of Zs; and the available thermal noise power from 

the signal source is [196] 
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avbl,th === , available thermal noise power from RF signal source,  (230)  

where Rs is the real component of Zs, and the noise voltage from the source is divided by 2, that is equally, 

between Zs and Zi at the matched condition Zi=Zs
*. This reduction of reference power in RF noise figures to ¼ of 

thermal noise is clearly stated in [197], but rarely mentioned in recent publications. 

So, some RF noise figures are, as following. The input referred noise figure is 
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where Sin,avbl is the noise in the amplifier being referred as available power from signal source, Se=Sin,avbl−Sth,avbl 

is the excess noise added from the amplifier, also referred as available power from signal source, and Te=Se/k is 

the equivalent excess noise temperature, corresponding to Se. The standard reference temperature To is 290K, 

and if the physical temperature is different, then a correction with ratio T/To is made, as discussed in [197]. The 

excess noise ratio ENR, for example for noise sources, is given in respect to To, and 

ENR=10dB×log10(Se/kTo)=10dB×log10(Te/290K). 

Since Sin,avbl is input referred (actually, source referred), it does not exist as a physical signal that can be 

measured at the input of the amplifier. Therefore, one usually uses the output referred noise figure NFout, which 

is obtained from the input referred by multiplying the nominator an denominator of eq. (231) with the so-called 

Transducer Power Gain GT, and NFout is 
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where Sout is the measured noise power at the output of the amplifier, and GTSth,avbl is the reference value for the 

output noise power that corresponds only to the thermal noise from signal source. The transducer power gain GT 

is the ratio of the power delivered to load with impedance ZL in the output of the amplifier to the power available 

from the signal source with impedance Zs at the input of the amplifier, and GT can be obtained from S-parameter 

measurements of the source, amplifier and load, according to 
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where S11, S12, S21, S22 are the S-parameters of the amplifier, Γs=(Zs-Zo
*)/(Zs+Zo)=“S22s” is the reflection 

coefficient of the signal source (“S22” of the source), ΓL=(ZL-Zo
*)/(ZL+Zo)=“S11L” is the reflection coefficient of 

the load at the output of the amplifier, all these measured with a network analyzer with characteristic impedance 

Zo=Zo
*=50Ω, for example. It is important to note that there are several noise figures for RF. For example, the 

publications usually report minimum noise figure [175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 

187], which is bias-frequency dependent and for optimum impedance of the RF network for the lowest noise 

figure. As mentioned above for the noise resistance, the earlier works [175, 176, 177, 178, 179, 180, 181, 182] 

address the RF noise from the perspective of the general theory of RF networks, replicating impedance 

mismatches in test setups with impedance tuners, while the later publications [183, 184, 185, 186, 187] relate the 

RF noise closely to device parameters and circuit applications, involving also simpler test setups to obtain the 

device noise parameters in cost-effective manner. The driving force for simplification of the RF noise analyses is 

normally that the RF noise is just one of many other performances that one needs to investigate, e.g., during 

reliability analyses by hot-carrier stress of RF amplifiers [198, 199]. 

We should also note that the optimum impedance for the minimum noise figure is neither the impedance Zo of 

the network nor the impedance for maximum power gain. Thus, the noise figure of an amplifier or mixer in a 

given RF application might be a lot larger (in the range 4-20 dB) compared to the minimum noise figure (in the 

range from fraction to few dB) of the used transistors. 

Signal to noise ratio. The most popular definition for noise figure is in terms of decrease of signal to noise ratio 

(SNR) in the output of the amplifier, SNRout, as compared to SNRin at amplifier input, or precisely, SNRs in the 

output of signal source. This form of NFSNR was historically first introduced [200] due to its clear meaning for 

the practice, when the noise in the signal source is thermal, e.g. antenna of receiver. NFSNR can be obtained from 

the generic definition for NF by assuming a signal with an arbitrary power level Ps provided from the signal 

source and amplified to output power PL=GTPs on the load of the amplifier. Since the gain GT=PL/Ps is the same 

also for the noise, then NFSNR is 
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Evidently, NFSNR does not explicitly state what is the reference noise power at the input, and one may carry out a 

procedure for evaluation of NFSNR by measuring SNR first at the source plane and then at the output of amplifier. 

Since NFSNR is formally derived from the generic definition of NF, then one may decide that NFSNR=?=NF and to 

substitute in the generic definition for NF in order to evaluate the input referred noise SV, getting 
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from which the power spectrum density of the input referred noise voltage SV of the amplifier will be estimated 
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as 
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We put the question in the equations, because the equality is valid only if SNRin is measured in respect to the 

thermal noise, which is not possible in the practice directly, because the thermal noise is the ultimate noise floor, 

and both the signal source and the measurement instrument for noise power are expected to have higher noise 

levels. Consequently, SV determined from NF is the correct, whereas SV,SNR calculated from NFSNR has a value 

different from SV. This is because, taking reference noise level Sref≠kTRs, we have 
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and, since the signal source used to supply with the signal Ps has most likely noise Sref>SVth=kTRs, then the use 

of NFSNR will underestimate the actual value for the input referred noise of the amplifier under test with the ratio 

SVth/Sref. 

FOMs for non-thermal sources of noise 

In summary, the above discussion on noise temperature, noise resistance and NF implies that these are 

conditional figures of merit that relate the noise to the thermal noise, and thus, they are applicable when the 

origin of the noise in the signal source is thermal. There is a wide range of applications in the medium frequency 

range, e.g. material characterization, ultrasound imaging and electronic identification tags (RFID), where these 

figures of merit are essentially useful. The noise figure is particularly important for RF applications and 

currently intensive research is undergoing to resolve many issues with matching and characterization 

uncertainty. Furthermore, the thermal noise is dominant in the channel noise of MOS transistors, and therefore, 

the figures of merit that use the thermal noise as the reference are important. However, when the origin of the 

noise is not thermal, the above figures of merit are not very suitable. These are cases for BJT, reverse biased and 

avalanche diodes and non-resistive leakages (due to tunneling in insulators, especially in SOI transistors), for 

example, in which the shot noise is the major concern. As for the low-frequency range, the dominant noise is not 

originating from thermal noise, both in signal sources and in the devices, and the input referred noise is usually 

given with a pair SVeq and SIeq of equivalent voltage and current noise sources, respectively. For MOS transistors, 

the input referred voltage noise is dominant, and it is given by SVeq=SVG
 in most cases, as discussed earlier in 

section IV.1. “Models and predictability”, while for BJT the input referred current noise is dominant, and it is 

given by SIeq=SIB
, as discussed in details in section III.3. “Crossover between different noise sources in BJT”. 

Most of the input referred noise voltages are physically non-existing quantities that represent equivalently noise 

sources inside the devices, while the most of input referred noise currents are actually fluctuations in biasing or 

leakage currents and are physically existing quantities in the input terminal of the devices and circuits. 

Interestingly, from the ratio SVeq/SIeq we can derive other figures of merit, Req and Teq, given by 
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The significance of Req is that it determines whether the voltage or current input noise will dominate at particular 

resistance Rs of signal source or circuit impedance. If Rs<Req, then the voltage noise is dominant, whereas if 

Rs>Req, then the current noise is dominant. At Rs=Req, both sources have equal contribution to the input referred 

noise, which can be referred to equivalent noise temperature Teq and equivalent power 4kTeq of the input referred 

noise. By expressing in terms of voltage noise and using eq. (228), for example, we can relate to noise figure, as 
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Taking into account that SVeq and SIeq vary with the frequency, for example 1/f noise at low frequencies, the 

significance of last line of expressions is the following. The left-hand expression shows that NF has a local 

minimum when Rs=Req(f), and the local minimum [1+Teq(f)/T] is given with the second expression. For 

illustration, consider again the contour plot in the right-hand side of Figure 35 for a frequency about 200Hz. At 

low Rs=1kΩ, the 1/f noise voltage SVG
 is dominant, but increasing Rs to 1GΩ, the shot noise current 2qIESD takes 

over. At Rs=Req~30MΩ, the 1/f noise and the shot noise have equal contributions, NF reaches local minimum of 

about 0.5dB=1.12, and since the curves are for room temperature, then T~300K and Teq(f=200Hz)~36K. 

Increasing the frequency, the local minimum decreases, and for f~10kHz and Rs≈2MΩ, the global minimum for 

NF=NFmin<0.1dB=1.02 is reached, which corresponds to min(Teq)<7K. This is given with the left-hand 

expressions in eq. (239). In this way, we demonstrate that the ratio between voltage and current noise is related 

to the noise resistance Req and noise temperature Teq by eq. (238), and at condition Rs=Req, the contribution of 

voltage and current noise are equal, the noise figure has a minimum with value of (1+Teq/T), as given with eq. 

(239). 

Recalling that the original derivation for RF noise figure has extracted NFmin from input referred voltage and 

current noise sources [201], then NFmin should have similar meaning in the case of frequency dependent 

impedances, as the discussed above for low frequencies. We did not find recent work that provides deep insight 

on the physical significance of the four RF noise parameters NFmin, rn and magnitude and angle of Γopt, that 

participate in the popular equation for RF noise figure 
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where at given frequency f, the RF noise figure NFRF has a minimum in respect to signal source matching Γopt, or 

admittance Yopt, and when the reflection coefficient Γs or admittance Ys=Gs+jBs of the signal source deviates 

from Γopt or Yopt, then NFRF increases with a “rate” given by the parameter rn=Rn/Zo, or Rn/Gs, respectively. The 

relation between power Ys=Yin* and noise matching Ys=Yopt is still not well elaborated for implementation in 

design procedures. 
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Another issue for RF noise figure is that the reference noise is solely attributed to the real component Rs=1/Gs of 

the impedance of the signal source, and all reactances are assumed noiseless. This is somewhat in contradiction 

with the general expression for thermal noise in eq. (218), which does not discriminate complex impedances and 

suggests looking at the input signal plane not discriminating between source and load at it. Thus, along with the 

many technical difficulties in measuring RF noise, some more general research is expected in near future, since 

the RF applications reached maturity in millimeter wavelengths, and the reactances and distributed loss dominate 

in these circuits, while the equation for noise uses lumped parameters. Again, the thermal noise is not dominant 

in the low-frequency noise, and all figures of merit related to thermal noise are lacking of physical significance 

from the perspective of non-linear device physics at low frequency. Therefore, other figures of merit are usually 

used for low-frequency noise, and these are discussed next for MOS transistors. 

IV.4.4. Physical figures – trap density, Hooge parameter, scattering parameter 

For MOS transistors, three physical parameters are usually used as figures of merit for the 1/f noise. These are 

oxide trap density Nt for number fluctuation model, scattering parameter for models with correlated mobility 

fluctuation and Hooge parameter αH for uncorrelated mobility fluctuation and noise from contact resistance. The 

physical significance and the issues that have arisen with these parameters were discussed in section IV.1. 

“Models and predictability”. Here we mention that the most popular procedure to discriminate number and 

uncorrelated mobility fluctuation is that in [156], which analyzes the behavior of normalized noise SID
/ID

2 against 

the behavior of (gm/ID)2 versus bias. Consider eq. (88). If SID
/ID

2∝(gm/ID)2, then the 1/f noise in MOS transistor 

can be referred as gate voltage noise SVG
 with origin number fluctuation according to eq. (104), whereas, if 

SID
/ID

2∝(gm/ID), then the uncorrelated mobility fluctuation is in the origin of 1/f noise, since in strong inversion 

(gm/ID)∝1/(VG−VT)∝1/neff is inversely proportional to number of carriers neff in MOS channel, while both in 

strong and in weak inversion regimes ID∝neff, and so, SID
/ID

2∝αH/neff∝1/ID.  

Obviously, the noise is referred to the gate terminal of MOS transistors, and when including the correlated 

mobility fluctuation, the gate referred 1/f noise voltage to the first order of approximation is 
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as follows from eqs. (88), (90), (104), (120) and (121) for strong inversion regime of operation of MOS 

transistor above threshold voltage VT in linear mode, for example. The tunneling attenuation distance λ and gate 

capacitance per unit area Cox depend on the gate dielectric, and the mobility degradation coefficient θ depends on 

the electric field, but to the first order of approximation they can be taken constants for the purpose of 

comparison in terms of figure of merit. Taking the values for silicon MOS transistor with SiO2 gate insulator of 

thickness tox=EOT and with permittivity εe=εSiO2
=8.85×10-14F/cm tunneling attenuation distance λe=0.1nm, one 

can rewrite the last equation as 
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where the quantities in the large brackets are taking care for device scaling, and Nt, θ and αH can be used as 

figures of merit, which have physical meaning of equivalent trap density, scattering parameter and Hooge 
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parameter, respectively, for number fluctuation, correlated mobility fluctuation and uncorrelated mobility. Note 

that, if the scattering parameter θ is constant, then the correlated mobility results in quadratic dependence on gate 

overdrive (VG−VT), while the uncorrelated mobility suggests a linear dependence, if αH is bias independent. This 

difference in the bias dependences is suggested in [156] as the criterion to discriminate correlated and 

uncorrelated mobility fluctuations. Many publications suggest that the Coulomb scattering causes bias variation 

of correlated mobility fluctuation, as discussed earlier by the help of eqs. (116) to (138).  

The figure of merit for the equivalent oxide density Nt is shown in Figure 36. For nMOS transistors, the data are 

collected from [22, 47, 48, 49, 50, 51, 72, 82, 88,  89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 

105, 106, 107, 108, 109, 110, 111, 112, 149, 145,  202, 203, 204, 205, 206] for silicon transistors and from [109, 

155, 207] for transistors that use germanium in the structure, e.g. to provide strain in the lattice. For pMOS 

transistors, the data are collected from [47, 52, 88, 94, 95, 96, 97, 100, 102, 104, 105, 109, 124, 125, 126, 128] 

for silicon transistors and from [52, 57, 79, 109, 208] for SiGe and SiGeC pMOS transistors. The data are stored 

in numerical form in [209]. While in the past, the uncorrelated mobility fluctuation was found to dominate in 

pMOS transistors, later publications imply the opposite, when EOT<6nm. The second observation in Figure 36 

is that there is a crossover for Nt at EOT<4−5nm. In “thick” oxide transistors with EOT>4nm, the equivalent 

oxide trap density is low with an average of Nt~1017cm−3eV−1, as shown by the right-hand histogram in Figure 

36. In “thin” oxide transistors, however, Nt (and thus, the 1/f noise) increases inversely with EOT with a steep 

slope of m=2.5 in magnitude. The scattering in the data is large and the slope was estimated by adjusting the 

symmetry in the left-hand histogram for the quantity NtEOTm. Since the slope m>2, then the trend at low EOT 

suggests that the 1/Cox² scaling rule for 1/f noise is not followed anymore for transistors with high-k gate 

dielectrics of high permittivity.  

Many reasons for higher Nt are suggested in the above references, e.g. larger tunneling attenuation distance λ in 

high-k dielectrics, non-uniformity of dielectric structure, and other. One of the other is the increased doping in 

the channel of MOS transistor, which is necessary in order to compensate for drain induced barrier lowering. 

The higher doping results in intensive Coulomb scattering at low bias, which effectively increases gate referred 

1/f noise voltage at (VG−VT)~0.1V, as discussed in section IV.3. “RTS noise in MOS transistors”. On the other 

hand, this biasing condition is usually assumed for extraction of the value for Nt, since the term θ(VG−VT)<<1 is 

assumed in eq. (242). However, as follows from eq. (138), the relative contribution of correlated mobility 

fluctuation due to Coulomb scattering increases when the bias is reduced, and the figure-of-merit form in eq. 

(242) may overestimate the oxide trap density. Interestingly, the slope of increase of Nt at low EOT in Figure 36 

is with value 0.5 higher than 2, which one can expect from the term for Coulomb scattering in eq. (138). 

To avoid the Coulomb scattering effects, we have used in Figure 37 only data for high overdrive voltage 

(VG−VT)>0.3V. At this condition, one expects that the effective parameter θ for correlated mobility fluctuation 

reflects phonon and surface scattering, according to eqs. (136) and (137); and θ is given by 
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depending on whether the electron charge q is included in the definition for the scattering parameter αs, that is, 

whether the number fluctuation model uses concentration n’ of channel carriers or their charge concentration 
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q×n’. In eq. (243), the gate oxide capacitance per unit area Cox suggests that θ∝1/EOT, and according to eq. 

(136), the carrier mobility μ suggests θ∝1/Nt. None of these dependences can be observed in Figure 37 from the 

published data in [47, 48, 49, 50, 51, 95, 100, 106, 149] for nMOS transistors, in [155] for strained on SiGe layer 

and control nMOS transistors, in [47, 52, 88, 94, 95, 100, 105, 124, 126, 128] for pMOS transistors, and in [52, 

57, 79, 208] for SiGe and SiGeC pMOS transistors. The data are stored in numerical form in [209]. 

The above discussion clearly indicates that there are problems in the characterization of 1/f noise in terms of 

physical figures of merit. One partial solution to the problems could be, if the expression for correlated mobility 

fluctuation is split into two terms, one for Coulomb scattering at low bias and another for phonon and roughness 

scattering at high bias. The resulting equation for the gate referred 1/f noise voltage is  
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but this equation has a problem when the parameter θC associated with the Coulomb scattering dominates, since 

the equation reduces to 
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and the correlated and uncorrelated mobility fluctuations cannot be discriminated experimentally, because they 

have the same bias dependence. Nevertheless, both fluctuations in this case are mobility fluctuations and perhaps 

it is not so critical to know their contributions separately. If this is acceptable, then one can define “apparent” 

Hooge parameter αHC from the parameter θC for correlated mobility fluctuation caused by Coulomb scattering by 

the equation 
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for strong inversion regime, where the mobility μo≈μ can be regarded as the maximum value for carrier mobility 

at low electric fields [57]. By taking typical values μ≈100cm²/Vs, μC0≈108cm/Vs and Cox≈10−6F/cm² for 

transistors with EOT~3.5nm, then θC≈2.5 V−0.5, and 1/f noise due to Coulomb scattering dominates at 

(VG−VT)>0.16V, since 1VV TGC >−θ . Therefore, eqs. (245) and (246) are applicable for (VG−VT)~0.2V, 

and since kT=0.026eV and λe≈0.1nm, then from eq. (246) we get αHC≈2.6×10−4 for Nt~1018cmˉ³eVˉ¹, the latter 

taken from the trend in Figure 36 for EOT~3.5nm. Interestingly, while “apparent”, αHC is in the range of 

meaningful values for Hooge parameter, which shows one more time that there is a convergence between 

different models for 1/f noise. 

IV.4.5. Performance figures – RF to LFN 

Denormalization rules for FOMS
VG

 

The mostly accepted performance figure of merit for 1/f noise in MOS transistor is FOMSVG
, it is related  to the 

gate referred voltage noise SVG
, as given by eq. (106), and it originates from number fluctuation model. FOMSVG

 

is the power spectrum density of SVG at 1Hz in a transistor with gate area of 1μm² and at low gate overdrive 
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voltage (VGS-VT)≈0.1V. FOMSVG
 takes into account the general scaling rule for reciprocal dependence between 

noise level and device active area, given by eq. (14), and therefore allows for examination other factors and 

scaling rules that impact the 1/f noise and for comparisons between devices, technologies and so on, as has been 

illustrated in Figure 20 and Figure 22. The details related to FOMSVG
 are discussed in section IV.1. “Models and 

predictability”. Here, we briefly give the denormalization rules for FOMSVG
 by the help of the following 

equation 
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=µ= , at specified bias condition for FOMSVG

.   (247) 

Note that the bias dependence of the noise is neglected in FOMSVG
 at an assumption that the bias dependence of 

the noise in relative units is similar in different MOS transistors, and also, it is assumed that the only one size 

dependence is the scaling rule with the reciprocal of the area of otherwise identical devices and the noise is 

exactly 1/f. Evidently from the discussions in preceding sections, the bias, frequency and size dependences vary 

several decades, and the models are devoted to capture these dependences. There are many issues when 

denormalizing FOMSVG
 with bias and when the noise is not 1/f. Therefore, FOMSVG

 is just a helpful figure of 

merit with significance for general comparisons, while, in practice, the actual realization of the low-frequency 

noise in particular MOS transistor and circuit made of it will be different from FOMSVG
. 

Corner frequency fc between flicker (1/f) noise and white noise (FOMfc) 

Other figure of merit is the corner frequency fc between flicker (1/f) noise and white noise, which we denote here 

as FOMfc≡fc. FOMfc is used often in the practice in the fields of electronic oscillators, frequency converters and 

sampling systems, because of two reasons. First, the design equations are given in terms of fc, and second, the 

white noise in MOS transistors follows very closely the theoretical derivations made on assumption for channel 

thermal noise. The power spectrum density of the channel thermal noise is given by [169, 174] 
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DqI2= , MOS transistor white noise in sub-threshold regime,    (250)  

where SID,wh is the white noise in drain current, SVG,wh is the gate referred voltage white noise, which is “coupled” 

back for convenience via the transconductance gm, according to eq. (1). These equations are for long-channel 

approximation, and one usually applies multiplicative correction factor γ for excess noise due to short channel 

effects, body leakage, gate induced or avalanche noise [174], but we omit it for clarity in analyses of low-

frequency noise, since the variations in flicker noise are much larger than γ, while γ plays essential role in RF 

range. 

We rewrite eqs. (248), (249) and (250) in terms of gate referred voltage white noise SVG,wh= SID,wh/gm², because 

we have the expressions for the gate referred flicker noise SVG
 in previous sections, e.g.,  eq. (241) above. The 

resulting equations for SVG,wh are  



88  of  286 

: in linear mode Doxm VC
L

W
g µ= . So 

( )
2
D

TG

ox
2
m

wh,I
wh,V

V

VV

W

L

C

kT4

g

S
 S D

G

−
µ

== , MOS transistor white noise in linear regime, (251)  

in saturation mode ( )TGoxm VVC
L

W
g −µ= . So 

( )
2 4 1

 
3GV ,wh

ox G T

kT L
S

C W V V
=

µ −
, MOS transistor white noise in saturation regime,  (252)  

in sub-threshold mode 
t

DD
m

I

qkT

I
g

ϕ
== . So 








 −
≈=








=

t

TG
t

ox

t

DD

whV
VVW

L

C

kT

I

q

q

kT

I

q
S

G

ϕ
ϕ

µ
ϕ

exp

14

4

122 2

2

, , white noise in sub-threshold regime, (253)  

when using ( ) 








αϕ
−

ϕαµ≈
t

TG2
toxD

VV
exp2C

L

W
I  for the MOS transistor current in sub-threshold regime 

[p.177 in 169] with α≈1 by neglecting depletion capacitance – see eq. (186). 

The corner frequency FOMfc≡fc between flicker noise SVG
 and white noise SVG,wh is defined obviously as the 

frequency at which SVG
= SVG,wh, because at f<fc the flicker noise dominates SVG

 in the power spectrum density of 

the noise, while SVG,wh dominates at f>fc. To obtain expressions for FOMfc≡fc, we use the last three eqs. (251), 

(252) and (253) for the white noise SVG,wh in different regimes of operation of MOS transistor, and the 

components for the 1/f noise SVG
 for different noise mechanisms in eq. (241). 

- In sub-threshold regime, we use the number fluctuation model ∆n for the flicker noise SVG
, and FOMfc 

is found using eq. (253) for the white noise SVG,wh, as  
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- When using eq. (252) for the white noise SVG,wh in saturation regime  above threshold, the number 

fluctuation ∆n for the flicker noise SVG
 results in FOMfc, given by 
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At high gate bias, the correlated mobility fluctuation ∆μ>∆n dominates when θ(VG−VT)>1, then 

[1+θ(VG−VT)]²≈θ²(VG−VT)², and FOMfc is given by 
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Consequently, using eq. (251) for the white noise SVG,wh in linear (ohmic) regime  above threshold, VD<<(VG-

VT), the number fluctuation ∆n for the flicker noise SVG
 results in FOMfc, given by 
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the correlated mobility fluctuation ∆μ>∆n at high gate bias, when θ(VG−VT)>1, results in 
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and the uncorrelated mobility fluctuation (represented by Hooge parameter αH), or the Coulomb scattering noise 

represented with its “apparent” Hooge parameter αHC at 1VV TGC >−θ , see eq. (246), results in 
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Evidently from the above eqs. (255), (256), (257), (258), (259) and (260), the corner frequency fc between flicker 

noise and white noise, taken as FOMfc, has different behaviors in different regimes of operation and by different 

dominating noise mechanisms in MOS transistors. These are illustrated in Figure 38. Nevertheless, there are 

scaling rules for FOMfc, which can be deduced from the equations. These rules are FOMfc∝λNt/Cox; FOMfc∝αH; 

FOMfc∝ θ²; FOMfc∝μ; FOMfc∝1/L², but FOMfc is independent of channel width W. The first and second rules 

imply that FOMfc scales with the parameters for flicker noise. The third and fourth rules imply that FOMfc is 

sensitive to scattering and mobility. The last rule FOMfc∝1/L², is very important for the practice, because it 

implies that the corner frequency increases in short channel transistors used in RF and high speed applications, 

and in this way limits the noise performance of these applications, e.g. phase noise in oscillators.  

While the above eqs. (255), (256), (257), (258), (259) and (260) provide insights for the scaling rules, they are 

not in a very compact form for rapid evaluation of FOMfc. The more general form for FOMfc is 
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where SVG
(f) is the gate referred flicker noise at frequency f, FOMSVG

= WL f SVG
(f) is the mostly accepted figure 

of merit for flicker noise, see before eq. (247) in the beginning of this section, the parameter m depends on the 

regime of operation of MOS transistor, m=1 in linear mode, m=1.5 in saturation regime above threshold, and 

m=2 in saturation regime below threshold, gm,sat is transconductance in saturation regime (both above or below 
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threshold), and the ratio gm/gm,sat≈A/Asat is a factor which shows what portion of the available gain in saturation 

regime is used when the transistor is operating in linear mode, and gm/gm,sat≈VD/(VG−VT) in linear mode. 

Normally, one uses saturation regime of operation in order to obtain maximum gain from the transistor, thus, 

gm=gm,sat and A≈Asat, and the last term is taken equal to one. Interestingly, since 4kT/gm can be regarded as 

“thermal noise voltage in transconductance”, then FOMfc evaluates the flicker noise at 1Hz in ratio to this 

equivalent “thermal noise in gm”, which is difficult to justify physically. 

Note for the above eq. (261) that fSVG
(f)=FOMSVG

/WL is constant only for the case of pure number fluctuation, a 

very rare case nowadays, while for cases of mobility fluctuations, both correlated and uncorrelated, SVG
 depends 

also on the bias, and FOMfc will capture only the order of magnitude for the corner frequency fc, but not the 

exact value of fc. Again, FOMfc is a figure of merit, but not a model. Also, eq. (261) implies that lower corner 

frequency between flicker noise and thermal noise can be achieved in larger-area MOS transistors when keeping 

the aspect ratio W/L unchanged, and thus gm≈constant, but this trades off with the high frequency performance 

of the transistor, e.g. lowering the transit frequency according to eq. (264) below, since the gate capacitance 

Cg≈CoxWL increases with the channel area WL. 

Figure of merit FOMfc/fT
≡fc/fT 

An important observation can be made in eq. (261):  the LF noise corner frequency fc between flicker noise and 

white noise increases with the transistor gain represented by gm in the equation. Since gm is also participating in 

the expressions for high frequency performance of the MOS transistor, one can relate the noise corner frequency 

fc to cut-off high frequencies, such as the transit frequency fT, at which the current gain is decreasing to unity. 

The ratio fc/fT is a useful figure of merit FOMfc/fT
≡fc/fT for comparison of flicker noise performance to the RF 

performance and was introduced for BJTs [210] by 
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where, as discussed by eq. (15) in the beginning of section III. “Noise in BJT”, AE is the emitter area, KF is the 

1/f noise coefficient of the transistor in the SPICE flicker noise model, AE×KF≈constant is a figure of merit 

FOMSIB
≈FOMSIC

 for 1/f noise in BJT from a given technology. The other parameters in the equation are 

collector current density JC=IC/AE, current gain of BJT at low frequencies β=IC/IB, transit time τt for the carriers 

injected from emitter junction to reach the collector junction, and total capacitance of the base CB with diffusion, 

barrier and other components in CB. The above eq. (262) is for the case of base-referred current noise, when the 

1/f noise SIB
 and shot noise 2qIB in the base are considered, and the shot noise of the collector current is 

neglected. Since the shot noise in the collector current is a sum of collector current shot noise and the coupled 

shot noise from the base current, then the white noise SIC,wh in the collector current given by 

( )β+=β+= 1qI2qI2qI2S CB
2

Cwh,IC
,      (263)  

and β→β+1 in eq. (262), when collector shot noise is added. Evidently, the white noise increases with current 

gain β of BJT. 

There are some issues with the above FOM when the flicker noise is not quadratic function of collector current 

[210], or the flicker noise has frequency slope different from 1/f, and that the improvement of FOMfc/fT
 at higher 
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β is at the price of higher white noise in the collector current, but not due to lower level of flicker noise. 

Nevertheless, eq. (262) suggests that the rise of the bias level to JC corresponding to maximum transit frequency 

fT is in tradeoff with low-frequency noise performance, since the corner frequency fc between flicker noise and 

white noise increases faster and fc becomes closer to fT, which is observed experimentally for BJT, as shown in 

the bottom half of Figure 39 and reported previously in [29], with data from [211, 212, 213]. 

Now we construct the corresponding figure of merit FOMfc/fT
≡fc/fT for the ratio of the corner frequency fc 

between flicker noise and white noise to transit frequency fT in MOS transistors. At a given AC gate voltage vg, 

the input AC gate current is iin=vg2πfCg and the output (short circuit) AC drain current is iout=vggm, where Cg is 

the total capacitance seen in the gate terminal and we assume that the frequency f is not very high, so that the 

current through gate-drain capacitance Cgd is negligible, that is, vggm>>vg2πfCgd. So, the current gain is 

iout/iin=gm/(2πfCg) and it decreases with increasing the frequency. The extrapolation of this frequency dependence 

to iout/iin=1 gives the transit frequency fT, given by [p.501 in 169] 
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where a good estimate for the gate capacitance is Cg≈CoxWL, as discussed in [p.501 in 169]. Considering also 

the saturation in the carrier velocity, νsat~107cm/s in silicon [p.280 in 169], we get 
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where the function FV represents the bias voltages, FV<2φt in weak inversion, FV~VD in linear regime and 

FV=max≈(VG−VT) in saturation regime. Provided that μ<200cm²/Vs and (VG−VT)<1V in technology nodes 

below 100nm, then μFV/νsat~200nm. 

In the next step, we multiply eqs. (261) and (265), and obtain FOMfc/fT
≡fc/fT for the ratio of the corner frequency 

fc between flicker noise and white noise to transit frequency fT in MOS transistors, as 
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where m, gm/gm,sat and FOMSVG
= WL f SVG

(f) are following from FOMfc
≡fc, as explained by eq. (261), and the 

parameter m1 depends on biasing and channel length of the MOS transistor, as following.  

For operation in linear regime, gm/gm,sat≈VD/(VG−VT), gm is low, m=1, and m1≈2π~6. Therefore 
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For operation in saturation regime, gm≈gm,sat≈(W/L)μCox(VG−VT), gm is high in short channel transistors, m=1.5, 

and m1≈3π(1+200nm/L). Therefore 
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For operation in sub-threshold regime, gm≈gm,sat is low, m=2, and m1≈4π~12. Therefore 
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From the above equations, in contrast to BJT, it is clear that there no unique form for FOMfc/fT
≡fc/fT that is valid 

for all regions of operation of MOS transistors, and that the bias dependence enters FOM via gate referred flicker 

noise, and thus, it is dependent on the dominant 1/f noise mechanism. Nevertheless, taking only saturation 

regimes both above and below threshold, which are of practical interest, and denoting with gm,max the maximum 

available transconductance at high (VG−VT)~1V, one can use for comparisons the following expressions 
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The last line of eq. (270) suggests that there is a proportionality between and fc∝fT∝gm∝ID, since fc/fT=constant, 

if FOMSVG
 is constant, which is deduced in [136], but it was not explicitly supported with measured data. 

However, note that fSVG
(f,VG)~FOMSVG

/WL is constant only for the case of pure number fluctuation, a very rare 

case nowadays. Also, as shown by the curve labeled with Δn in Figure 39, in short channel transistors FOMfc/fT
 

increases at higher biasing even for the pure number fluctuation, owing to saturation in the carrier velocity. 

Furthermore, the correlated mobility fluctuation degrades strongly the ratio fc/fT, as shown by curves labeled 

with Δμ and ΔμC in Figure 39 for phonon and screened Coulomb scattering, respectively, at rates ∝(VG−VT)² for 

Δμ and ∝(VG−VT) for ΔμC, when increasing the gate bias, and these rates are reinforced by 1/L dependence 

caused by saturation in carrier velocity.  
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The use of low-frequency model with realistic values for scattering coefficients given in the caption of Figure 39 

implies that the flicker noise enters the region of high frequency and high speed operation of the MOS 

transistors, since the combination of all components given by the curve labeled with Δn−ΔμC−Δμ in Figure 39 

suggests fc/fT=1%−30% when the MOS transistor is biased above threshold voltage VT in a regime of strong 

inversion. This occurrence of 1/f noise close to fT can cause many difficulties in the RF applications of MOS 

transistors. Unfortunately, and in contrast to the research on BJT, there is no publication for MOS transistors, 

which reports fc and fT simultaneously from measurements, which is needed to verify whether the extrapolation 

of low-frequency noise over many decades is accurate for the practice. The recalculation of the partially 

available data [86, 102, 105, 136, 214] is shown with symbols in Figure 39 and the recalculation uses the 

equations deduced in this section. The recalculated data suggest the same range for fc/fT predicted by using eq. 

(270) for FOMfc/fT
 and taking typical values for the parameters related to low-frequency noise in MOS transistor. 

However, different trend in the bias dependence of FOMfc/fT
 is observed from the reported data, as compared to 

the bias dependence deduced from (270). The trend is shown in Figure 39 with a thick gray line denoted by a 

question mark. This is an issue for the understanding of FOMfc/fT
. Interestingly, since 4kT/(WL2πfCox) can be 

regarded as “thermal noise voltage in gate capacitance conductance”, then FOMfc/fT
 evaluates the flicker noise at 

1Hz in ratio to this equivalent “thermal noise in gate capacitance WLCox”, a relation which is also difficult to 

justify physically. 

Look again at Figure 39 below the diagonal-patterned area, which separates MOS from BJTs. While it is clear 

that the ratio fc/fT in BJT and HBT increases with the bias level, fc/fT is much lower than FOMfc/fT
 in MOS 

transistors. Nevertheless, FOMfc/fT
 is independent of the device size both for MOS transistors and BJT. 

V. Noise in advanced Si-based transistors 

Silicon takes the major place in semiconductor technologies, owing to low leakage in silicon-based devices at 

room temperatures and excellent lattice quality when silicon monocrystals are grown, accompanied with 

mechanically and chemically stable silicon oxides for low leakage surface passivation and with low trap density 

for gate insulators. However, the downscaling of microelectronic devices for larger integration and the 

requirements to speedup the devices reached the limits for mobility of carriers in silicon. The body bias became 

an option to boost the performance of the MOS transistors. Also, the mobility is related to band structure of the 

semiconductor and the so-called “band engineering” is employed to enhance the mobility in silicon based layers. 

The low-frequency noise in these devices is discussed next. 

V.1. Noise in SiGe, stacked gate and strained transistors – higher performance, but higher noise too 

The band engineering takes two approaches simultaneously. One is to introduce strain or compress the silicon 

lattice, which modifies the electron and hole mobility. The second is to use silicon alloys with materials, which 

have higher mobility. Germanium (Ge) has been re-introduced in silicon devices [215], because Ge has higher 

electron and hole mobility, as compared to Si, the methods for addition of Ge in Si are compatible with silicon 

processing, Ge and Si have similar covalent bonding in monocrystal lattices, and Ge also induces strain when 

alloyed with silicon, which can be relaxed by using carbon, if necessary. Currently, SiGe heterojunction bipolar 

transistors (HBTs) are in the main stream of high-speed bipolar semiconductor technologies, SiGe HBTs are 

introduced in some CMOS technologies for RF applications [216, 217, 218], and SiGe MOS devices are also in 

a phase of intensive development [219, 220, 221, 222, 223]. 
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V.1.1. Observations in SiGe HBTs 

While it is well established that SiGe devices are faster than Si counterparts, the low-frequency noise 

performance of these devices is addressed widely and results from [33, 34, 35, 36, 37, 60, 81, 212, 224, 225] for 

1/f noise in SiGe HBTs are shown in Figure 40 in terms of the SPICE parameter KF=f×SIB
/IB², defined by eq. 

(15). The data are stored in numerical form in [226]. The larger symbols in Figure 40 correspond to SiGe HBTs, 

and for the purpose of comparison, the smaller symbols and trends are for Si BJTs, as given earlier by Figure 2 

and Figure 14. As seen in Figure 40, the 1/f noise in SiGe HBTs remains in the range observed in Si BJTs, and 

therefore, we did not discriminate SiGe HBTs from Si BJT in section III. “Noise in BJT”. 

The addition of Ge in the base of bipolar transistors has some processing issues [225] and difficulties to obtain 

uniform current flow in the base of the transistor [35], especially in proximity of trench isolation and small 

polysilicon emitter overlap [37], which may cause increased 1/f and RTS noise in small-area BJT [227].  This is 

illustrated in Figure 41. In the left-hand plot, as shown with thick lines by data from [224, 225] for npn SiGe 

HBTs, when changing the Ge content, but keeping other processing, bias and layout factors similar, the 1/f noise 

coefficient KF normalized with the emitter area, see eq. (15), does not change significantly, and, it seems, that Ge 

improves the low-frequency performance of npn HBTs by approximately 20%-30% (~1-2dB), but the noise 

remains in the range observed in Si BJTs, as seen in the previous Figure 40. On the other hand, changing the 

epitaxial growth temperature or annealing temperatures (vertical lines in left-hand plot of Figure 41 with data 

from [35, 225]), the noise changes 1−2 decades. In the right-hand plot Figure 41, aggregated data are given for 

SiGe HBTs with different sizes and biasing levels from [33, 34, 36, 37, 60, 81, 212, 224], showing that the 1/f 

noise does not scale with the maximum transit frequency fT of the technology nodes in a regular manner. Rather, 

other factors, such as aforementioned bias, layout (especially proximity of trench isolation and polysilicon 

emitter overlap), SOI, annealing, etc., impact the 1/f noise in HBTs. 

While overall Ge does not impact the noise in SiGe HBTs, the addition of carbon (C) to the SiGe semiconductor 

does improves the KF=f×SIB
/IB² in SiGeC HBTs, with (AE×KF)avg= 1.25×10−10μm², 16.5dB below the range for 

npn SiGe HBTs (data shown with (■) in Figure 40 and taken from [40, 64, 65, 228, 229, 230]). Also, as observed 

in [64], SiGeC HBTs have a much lower noise response compared with the HBTs from other technologies. 

On the other side,  the addition of Ge in the channel increases the flicker noise in SiGe MOS transistors. This 

increase was illustrated by the triangles in the bottom-left plot of Figure 22 earlier in section IV.1. “Models and 

predictability”, since the triangles are in the upper half of the noise distribution, above the trend for the noise in 

MOS transistors. In the same figure, we observed that the noise is not increased in MOS transistors with channel 

of silicon strained on SiGe layers. 

V.1.2. Observations in SiGe MOS transistors 

To get insight on how Ge affects the noise in SiGe MOS transistors, we arrange the data from [48, 52, 57, 79, 

109, 139, 155, 207, 208, 231] in several data series (a), (b) … (h) shown in Figure 42, for the oxide trap density 

Nt , which is proportional to the level of the input referred 1/f noise voltage SVG
, according to eqs. (104) and 

(241) based on the number fluctuation model for 1/f noise. Data (a) are for pMOS transistors with channel of 

ternary SiGeC alloy, in which Nt increases with increasing the content of carbon in the alloy, and it is higher 

than Nt in MOSFET made of pure silicon. This implies that the crystallinity in compound IV semiconductors is 

not as good as that of pure silicon or the quality of the cap layer degrades when it is grown on the top of the 
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ternary SiGeC alloy. 

Data (b) and (d) are for silicon nMOS and pMOS transistors, in which an increase of noise and Nt is observed 

when using nitridation of silicon oxide dielectric in order to increase the gate breakdown voltage. Data (c) are 

from the attempts to increase the oxide capacitance using high-k dielectrics in Si nMOS transistors, which are 

accompanied also with increase of noise and the corresponding values for Nt. Data (b), (c) and (d) imply that a 

departure from SiO2 in gate dielectrics causes increase of 1/f noise. 

Data (e) are from several publications, which reported variation of 1/f noise when changing the MOS channel 

alloy from Si to SiGe, then using high-k dielectrics in the gate stack in transistors with SiGe alloy in the channel, 

followed by semiconductor-on-insulator (SOI) structures based on Si and on Ge. The reported values for Nt 

increased in this order of increasing complexity of the MOS structures. 

Data (f) are from a research, in which annealing after complete fabrication of SiGe MOS transistor was carried 

out. The post-annealing with inert Argon gas reduced Nt, while the post-annealing with water vapor increased Nt, 

owing to removal or adding of oxide traps, respectively. 

Overall, data (a) to (f) imply that there is an increase of the 1/f noise when using composite materials either for 

semiconductor or insulator, or adding non-uniformity in the transistor structure, which, perhaps, degrades the 

lattice quality in the regions related to the current transport in MOS transistor, e.g. conductive region of the 

channel and semiconductor-dielectric interface. These observations are cumulatively established, since the 

introduction of interfacial layer (~0.8−1.2nm) of SiO2 between semiconductor and high-k dielectric [49, 50, 92, 

99, 100], as well as the insertion of Si cap layers (~2−8nm) on the top of SiGe conduction channel [231, 232] 

usually result in lower noise, perhaps due to smoother transition between different materials and reduced density 

of point defects at the interfaces. This is further confirmed by using the strained Si cap layer as the conductive 

channel rather than the SiGe layer. 

Since the Si lattice on the top of a SiGe layer is strained, then the electron mobility in Si can be increased, but 

the lattice quality of strained Si and the uniformity of SiO2 grown on the top of Si layer are well preserved. 

Consequently, as shown with data (h) in Figure 42, the noise in nMOS transistors with strained Si channel is 

only slightly higher than the noise in “regular, control” MOS transistors with unstrained silicon, given by data 

(g), respectively. 

It is interesting to mention that the way of introducing the strain in Si transistors is important for the 1/f noise. If 

the strain is applied from a region which does not participate in the current transport, then there is virtually no 

change in the 1/f noise. This has been demonstrated in [126], where a Si3N4 layer on the top of the gate for 

compression of Si layer below the gate (and enhancement of the hole mobility in pMOS transistors) did not 

increase the noise, while the use of SiGe for drain and source, which also compress the silicon in the channel, 

resulted in increase of the noise, because the SiGe regions participate in the path of the current flow and the out-

diffusion of Ge toward the channel is possible during device processing. For locally strained devices like the 

above pMOS transistors [126] or small area MOS transistors, the strained Si layer does not introduce additional 

noise, since the point defects are few in the small devices. In larger-sized MOS transistors, however, threading 

dislocations in the strained layer are statistically occurring, and the noise can increase. The areal dependence of 

this increase was modeled in [82] using Poisson distribution for the extra traps in the dislocations and geometric 

averaging. This one more time confirms that the increase of the noise in SiGe and strained-Si MOS transistors is 

due to material defects in the path of the current transport, but it is not a fundamental material property of SiGe 
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alloys and strained Si lattices, which is somehow in contrast to the explanations in [127] for the effect of the 

mechanical stress from shallow trench isolation in pMOS transistors. 

V.1.3. Modeling the 1/f noise in SiGe MOS transistors 

Although the above observations are well established experimentally, the modeling and the understanding of the 

physics behind the 1/f noise in SiGe MOS transistors are still not very certain. In most cases, the 1/f noise 

models for silicon transistors are used, c.f. portion or the whole eq. (241), with some enhancements for Hooge 

noise from drain and source contact regions [208] and modifications in the correlated mobility term, splitting it 

into two parts for screened Coulomb and phonon scattering [52, 57]. For the case of SiGe channel and Si cap 

layer on the top of it, it is suggested in [232] to use current partitioning between the potential well in SiGe at the 

Si interface and the well in Si at gate oxide. This partitioning can be lumped formally into two transistors, one in 

SiGe layer and another in the Si cap layer, which are driven by the same flat-band noise voltage SFB. The 

resulting equations are 
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Hooge,In,II DDD
SSS += µ∆−∆          (273)  

where SFB is the same as for Si MOS transistors and given by eq. (109), the total noise SID
 in the drain current is 

a sum of correlated number-mobility fluctuation SID,Δn−Δμ and Hooge noise SID,Hooge, αs is the scattering parameter 

given by eqs. (127) and (136), Cox is the gate oxide capacitance per unit area, and the parameter R~0.1−0.2 is 

taking into account the remote interaction between SiGe layer and oxide traps, separated by the Si cap layer.  

The other parameters are respectively for Si cap layer and SiGe channel, and they are transconductances gm,Si 

and gm,SiGe, carrier mobilities μSi and μSiGe, Hooge parameters αH,Si and αH,SiGe, DC currents ID,Si and ID,SiGe, and 

total number of carriers nSi and nSiGe in the corresponding layer. It has been shown in [232] that this model can 

produce non-monotonic dependences for the noise levels as function of bias, thickness of cap layer and Ge 

content in the SiGe layer.  

However, the above equations assume that the Si and SiGe parts of the transistor conduct independently by 

neglecting the charge transfer between the two potential wells, which occurs when the transistor is operating in 

saturation regime well above the threshold in strong inversion, and the charge from Si layer at the source side is 

transferred into SiGe well along the channel length in the region close to pinch off point. Furthermore, the model 

requires a precise knowledge for the structure, e.g. layers’ thicknesses, concentrations, mobility, etc., which are 

not always available, and the correct partitioning can be done only after numerical simulation of the structure by 

using a semiconductor simulator. The issue with this noise model for SiGe MOS transistors, in fact, is that there 

is no mature characterization technique which can obtain the model parameters with unique values.   

V.2. Forward body bias in MOS transistors – not a panacea, but it helps 

In many circuit applications, especially in low-voltage circuits, the potential of the body and source of MOS 

transistors are different. Examples are dynamic threshold configurations [233, 234, 235], in which the body and 



97  of  286 

gate of the MOS transistor are tied together in order to obtain higher transconductance, differential amplifiers, 

when the transistor pair and biasing current source are in one well or in the substrate, or the body of the MOS 

transistor is used as input [236, 237, 238], cross-coupled pairs for oscillators [239, 240], in which the body is 

used for tuning of the oscillation.  Different approaches for power management in digital circuits [241, 242, 243, 

244] also use the body bias as a control to bring inactive portions of the circuit in sleep mode, applying reverse 

body−source voltage VBS, or applying forward VBS to accelerate the circuit in active mode and at low supply 

voltages. 

The low-frequency noise in MOS transistors, however, is sensitive to the body biasing, as illustrated in Figure 43 

with data from [245] for a pMOS transistor from 0.18μm technology. In the left-hand plots, the data for several 

quantities, which represent the 1/f noise at 1Hz, are shown at different body−source bias voltages VBS, varying 

also gate bias voltage VG, and at unchanged drain bias voltage VD=0.6V. The different VBS are from -0.6V 

(reverse) to +0.6V (forward). Reverse or forward body bias is in respect to the direction for conduction of the 

body−source p−n junction. The quantities DC drain current ID, small signal transconductance gm and their ratio 

in the horizontal axes are obtained from I−V curves of the transfer characteristics. The insets in the figures show 

that the these quantities depend on the gate overdrive (VG−VT), thus on carrier concentration n’∝(VG−VT) in the 

transistor channel, since the values for ID and gm (and their ratio, consequently) overlap when VBS was varied, 

but (VG−VT) is kept constant. 

In similar manner, the effect of body biasing on 1/f noise in one nMOS transistor was attempted to be explained 

in terms of carrier density n’ in [51], but measured data at only one constant gate bias were reported in this 

publication. However, the case is different for the low-frequency noise, as one can see from the data series for 

the noise in Figure 43. In particular, the 1/f noise is not a unique function of areal carrier density n’ in the 

channel, because at given values for the quantities in the horizontal axes, and therefore constant n’ as follows 

from above discussion, the noise decreases by a transition from high gate bias and reverse body bias toward low 

gate bias and forward body bias. This transition indicates a decrease of noise when the current flow is moved 

from the semiconductor-dielectric interface (surface channel at reverse body bias and high gate bias) toward the 

bulk of the semiconductor (buried channel conduction at forward body bias and low gate bias). Such transition in 

more pronounced form (from Δn noise at surface MOS channel to Hooge noise in the bulk JFET channel) is 

observed in [246] for a MOS−JFET SOI structure with gates around the conduction body. Further discussion on 

the crossover from surface to bulk noise is given section VI. “Noise in advanced transistor structures”. 

As follows from the above observations, there is an issue related with the body biasing of MOS transistors. The 

problem is that all the flicker noise models are derived at the assumption for surface conduction and charge sheet 

approximation for channel, and the noise models allow for bias variation only of the areal concentration n’ of 

charge carriers in the MOS transistor channel. Consequently, the noise parameters, either in number fluctuation 

or mobility fluctuation models, have to be varied with the body bias VBS. Therefore, the compact noise models 

used for computer simulations are unable to reproduce effects related to the depth of the channel and the 

simulations of some specific connections of MOS transistor can be inaccurate. For example, applying reverse 

bias to MOS transistors in voltage controlled oscillator (VCO) will underestimate the phase noise, and using the 

dynamic threshold configuration (with gate and body tied together) will require another set of values for the 

coefficients in the noise model. 

Qualitatively, the channel depth in pMOS transistor is depicted in the right-hand plots of Figure 43 for reverse, 
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zero and forward body bias (plots from top to bottom) at similar charge sheet concentrations (the dotted shapes 

for the charge carrier layers denote same area). Quantitative examples for the charge concentrations in Si and 

SiGe MOS transistors can be found in [247]. To the best of our knowledge, there is no 1/f noise model for MOS 

transistors that considers the volume distribution of the carriers in the depth of the channel, which can possibly 

explain the body bias dependence with variation of current density in terms of Hooge noise in its integral form of 

eq. (13), neither 1/f model, which considers variable distance from oxide traps to carriers in the channel, a 

distance which is usually taken zero for surface channels or constant in SiGe channels capped with Si layer, and 

which can possibly explain the body bias dependence with variation of Coulomb interaction between oxide traps 

and channel carriers in terms of number fluctuation models. Overall, the charge sheet approximation works well 

for DC and AC modeling of MOS transistor [233, 248], but it is not accurate for the noise.  

Nevertheless, the practical rule is that the forward body bias VBS reduces the noise in relative units, while the 

reverse VBS increases the noise, as illustrated in Figure 44 with data from [52, 245] for the gate referred 1/f noise 

SVG
 in Si and SiGe pMOS transistors in saturation and linear regimes of operation, respectively. A similar 

observation for the dependence of gate referred noise voltage on body bias can be found in [247] for pMOS Si 

and SiGe, in [249] for nMOS and pMOS transistors from a 130nm technology in weak inversion, in [250, 251] 

for SOI MOS transistors operating in dynamic threshold (body tied to gate) and normal (body tied to source) 

connections. The data in [249, 250, 251] have been explained in terms of number fluctuation model for the 1/f 

noise in MOS transistors, see eqs. (104), (109), (120) and (126), and sheet approximation for channel charge 

carriers coupled to trapped oxide charge via oxide Cox and depletion Cd capacitances (per unit area). From the 

analyses in these publications, it can be shown that the gate referred noise voltage is a result of coupling to the 

total capacitance (Cox+Cd) seen at semiconductor-dielectric interface. That is, 
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This equation reproduces the behavior of the 1/f noise as function of the body bias, because the depletion 

capacitance Cd increases with forward VBS, resulting in decrease of SVG
, and Cd decreases with reverse VBS, 

resulting in increase of SVG
. Also, the equation is in agreement with the general equations (4) and (5) for noise 

coupled from charge fluctuation. Eq. (274) was derived in [251] for dynamic threshold (DT) configuration (body 

tied to gate) in the form of 
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where the oxide charge trapping is referred to the gate and attributed to noise in flat-band voltage VFB, see eq. 

(109), and it was experimentally validated by the similar values for oxide charge density Nt obtained from DT 

connection after correction (1+Cd/Cox)² and normal connection (body tied to source) without correction. The 

attenuation of the noise by (1+Cd/Cox)² was also confirmed in  [249] for weak inversion, where it was also 

observed that the body bias has no effect in strong inversion due to screening effect that the inversion layer 

charge has on Cd. There are also other issues with the physical consistence of eq. (274), such as the question why 
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Cd is omitted when body and source are tied together, and the explanations on these issues are mostly qualitative 

in the publications cited above. Overall, eq. (274) is useful for the practice, because (1+Cd/Cox)²<2, which is 

within the experimental inaccuracy for characterization of Nt from noise measurements at low gate overdrive 

voltage (VG−VT)<0.2V, while at higher overdrive, when the term for correlated mobility fluctuation dominates, 

the capacitances cancel in (274), and the values for the scattering parameter αs are unaffected by the choice 

C=Cox or C=(Cox+Cd). Thus, the addition of Cd in the number fluctuation model does not compromise with the 

convergence of the model, and gives a straightforward way to introduce the body bias dependence in this model. 

VI. Noise in advanced transistor structures 

There are several reasons to focus on advanced silicon transistor structures and noise in them [3]. The 

semiconductor industry has been based for more than 40 years on scaling of transistor dimensions to achieve 

performance gains, utilizing tremendous investment in infrastructure to the highest possible degree. While the 

role of nanoscale devices in meeting future computing and communications applications is not clear at present, 

there are significant limitations that arise with nanoscale devices and will impact their usefulness. In particular, 

the near-term applications require nanoscale devices to be functionally and technologically compatible with 

silicon transistors, at least for using semiconductor manufacturing and design infrastructures, and for interfacing 

to scales accessible by human. 

On the other hand, there are many difficulties by downscaling silicon devices, even CMOS transistors, for which 

the advances are the most, because fundamental limitations for charge transport, electrostatic control and 

accuracy of device fabrication are reached in planar technologies, in particular bulk CMOS, and binary logic 

(state variables) based on electric charge are vulnerable to random errors due to low signal to noise ratio, and 

thermal and material instability. 

In order to improve the electrostatic control, the advanced silicon transistors utilize the vertical dimension of the 

structures, by developing approaches originally introduced for SOI. In this section, we review the results 

obtained for several 3-D transistor devices, Fin FET, Two-, Three- and All-Around-Gate FETs, along with 

complications for the low-frequency noise in SOI MOS transistors. At the other end, the enhanced 1-D current 

transport in carbon nanotubes and semiconductor nanowires attracted the attention recently, and we also review 

in this section results presently available for the low-frequency noise in devices based on 1-D charge transport. 

VI.1. From SOI toward gate all around 

In attempt to enhance the electrostatic control of the surface charge transport in MOS transistors, the body of 

SOI MOS transistors is made thinner and the semiconductor bulk is removed and replaced with insulator. The 

removal of the semiconductor bulk resolves problems related to drain induced barrier lowering (DIBL) caused 

by the high electric field in the bulk of MOS transistors owing to drain bias and uncontrolled by the gate bias 

[252]. The corresponding structures are known as partially depleted (PD) and fully depleted (FD) SOI MOS 

transistors, which are depicted in Figure 45. 

VI.1.1. Partially depleted SOI MOS transistors 

The transition from bulk MOS (Figure 45a) to partially depleted SOI MOS (Figure 45b) is accompanied with 

reduced control of body potential VB. In bulk MOS, the bias voltage of the body terminal sets reliably the level 

of VB, because any excess charge generated or entered in the body (e.g. due to impact ionization or valence band 

tunneling through thin gate oxides) is sunk-out through the low impedance of the conductive bulk, as illustrated 
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by arrows in the figure. Thus, the depletion region under the MOS channel (dashed line in Figure 45a) is fixed 

by the gate bias accordingly, and it does not vary randomly, once the body terminal (normally tied to source 

terminal) is connected to low impedance bias. Consequently, the low-frequency noise in the channel current is 

coupled only from the gate oxide trapping and charge transport in the inversion layer, as discussed in previous 

sections. 

However, the control of the body potential VB is weak in PD SOI MOS (Figure 45b), because the thin bulk has 

high impedance to the body terminal, or the body terminal is removed in order to reduce the size of the 

transistor. Therefore, the excess charge generated or entered in the body increases the body potential VB so that 

the junction body-source becomes forward biased and the excess charge flows toward the source terminal 

overcoming the impedance of the body-source junction. In this way, the body potential VB becomes dependent 

on the body current IB and the effects related to this dependence are depicted in Figure 46 with data from several 

publications [250, 252, 253, 254, 255].  

As shown in Figure 46a, when the drain VD and gate VG bias voltages increase, then the electric fields at the 

drain side of the channel and in the gate of the MOS transistor increase, causing leakage, impact ionization and 

valence band tunneling currents IB, which flow into the body [250, 251, 252, 253,  254, 255, 256, 257, 258, 259]. 

The body current IB has to be readily sunk by the body-source junction, since all other interfaces surrounding 

body in SOI MOS transistor are either insulators or reverse biased junctions. Once IB becomes larger than the 

(reverse) saturation current IB0 of the body-source junction, then the body voltage VB increases, as shown in 

Figure 46b, and the variation in IB with bias causes changes in VB. The increase of VB reduces the threshold 

voltage VT of the transistor and undesirable kink in the transistor DC characteristics occurs, as illustrated in 

Figure 46c. Consequently, the noise SIB
 in IB causes voltage noise SVB

=ZB
2SIB

 in the body potential, where ZB is 

the AC impedance of the body to ground, which is further coupled to the inversion layer as excess voltage noise 

SVG,ex by the body coefficient ∂VT/∂VB. 

Since IB is low, usually less than a nanoampere, then the 1/f noise in IB is negligible, and the shot noise in IB 

dominates, because the charge carriers related to IB cross the gate and drain potential barriers to enter the body, 

and body-source barrier to exit from the body. Assuming uncorrelated processes, then shot noises for currents 

entering from gate and drain into body (G&D→B) and exiting from the body toward source (B→S) are summed, 

and the noise SIB
 in IB is 

BSBBBD&GBI qI4qI2qI2S
B

=+≈ →→ ,     (276) 

where q=1.6×10−19 C is the electron charge, SIB
 is frequency independent (white noise) conservatively for the 

range of low frequencies, and SIB
 is proportional to the body current IB. 

The body impedance ZB=1/(GB+j2πfCB) can be lumped into a simple RC equivalent circuit [97, 251, 258, 255] 

of parallel connection of body-source junction dynamic conductance GB≈IB/φt and body capacitance CB. The 

later has several components, e.g. depletion capacitance under the MOS channel, junction capacitances of the 

drain and source junctions, bottom oxide (back-gate) capacitance and other, depending of the SOI MOS 

transistor layout, but CB varies less with bias, as compared to GB, which is proportional to IB, and IB is close to 

exponential function of VG and VD. Thus, ZB acts as a low-pass filter for SIB
, and the voltage noise SVB

 in the 

body potential has a Lorentzian spectrum, given by 
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where with φt=kT/q being the thermal voltage, the low-frequency plateau SVB
(0)=4qIB/(GB)2≈4qφt²/IB of the 

Lorentzian noise is inversely proportional to IB, while the corner frequency f0=GB/(2πCB)≈IB/(2πCBφt) is 

proportional to IB, and SVB
 is reproduced by the body coefficient ∂VT/∂VB as gate referred excess voltage noise 

SVG,ex given by 
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where (∂VT/∂VB)≈constant is a weak function of the bias of the transistor. Thus, since IB increases with gate and 

drain biases of the PD SOI MOS transistor, then the excess Lorentzian noise evolves with the bias of the PB SOI 

MOS transistor. The evolution of the excess Lorentzian noise is as shown in Figure 46e as function of the drain 

bias at constant gate overdrive (VG−VT)=constant. Apparently, at given low frequency and varying the drain 

bias, one will observes noise “overshot” due to the evolution of the SVG,ex with VD. The overshot is correlated to 

a biasing condition at the onset of the kink in DC characteristics, as illustrated in Figure 46d, but note that the 

position of maximum of the overshot is dependent on the selected frequency and it is not unique function of the 

biasing condition [250]. In fact, one can mistakenly conclude that that the noise power has a maximum at 

particular bias. This issue is discussed in [88, 259], where is shown that the total “power” PVG,ex of the gate 

referred excess noise voltage in a wide frequency band is a weak function of the bias, when considering that  
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which follows from above analysis, because the body capacitance CB and the body coefficient (∂VT/∂VB) do not 

vary much with gate and drain biases. The experimental data in [88] imply that PVG,ex increases with gate and 

drain biases mostly due to faster increase of f0, as compared to the decrease of SVG,ex(0), which can be attributed 

to the change of the body capacitance with bias. 

Detailed analyses in [255, 259] demonstrated that the thermal noise in SIB
 can be also included, as well as the 

matching to experimental data is very well, when using the accurate models for the capacitances and resistance 

associated to the body of the MOS transistor. The above characterization approach was also confirmed for many 

SOI structures, in which the impact ionization [250, 251, 254, 255, 259] or the gate valence-band tunneling [88, 

250, 253, 257] prevails, as well as for twin-gate MOS transistors [253, 257] and at different depletion levels of 

the body of PD SOI MOS transistor, achieved by varying the bias of the back gate of the SOI MOS transistor 

[88, 97, 256]. 

To summarize, for MOS transistors with floating partially depleted or undepleted bodies, an excess noise is 

coupled from the fluctuation SVB
 of the body potential into drain current noise SID

=(gmb)²SVB
 by the body-drain 

transconductance gmb. SVB
 can have several components, but the major contribution is from shot noise in body 

currents, owing to drain and gate leakages at high electric fields, and SVB
 has a Lorentzian spectrum, since the 
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shot noise is with white spectrum and it is filtered by the body impedance ZB=1/(GB+j2πfCB), where GB is larger 

or equal to the conductance of body-source junction and CB depends on the layout of the structure, and it is 

larger than the depletion capacitance of the MOS transistor. Any additional connection to the body reduces ZB, 

and thus, reduces the excess noise. The excess noise is in close connection with the general equation (1) for 

coupling of noise, and it does not require “superficial” explanations or identification of extra generation-

recombination noise sources, as one can find in old publications, e.g. [254]. Also, if the excess noise is due to 

body currents, then the corner frequency of the excess Lorentzian noise is the same as the corner frequency of 

the output AC conductance gd of the drain [255, 258], and both corner frequencies are associated with ZB and 

kink effect due to frequency dependent variation of body potential when the body is floating. 

The above discussion provides a coherent picture, when extrapolating back from partially depleted SOI MOS 

transistors to bulk MOS transistors. Consider again Figure 45. The body capacitance is large in bulk MOS, and 

the body impedance is reduced, when the body terminal is connected to the source terminal. Thus, the excess 

noise in bulk MOS is low, although this noise was observed [260].  

VI.1.2. Fully depleted SOI MOS transistors 

The body is missing in fully depleted (FD) SOI MOS transistors, Figure 45c, and one cannot attribute noise to 

fluctuation of body potential. The experiments [255] and computer simulations [259] also showed that the kink 

effect and excess Lorentzian noise are suppressed when the body is fully depleted, but the FD SOI MOS 

transistors are not completely free from excess Lorentzian noise. This noise is just with smaller magnitude and 

high corner frequency (>100kHz), indicating high conductance GB of the “body”-source junction [255].  

The reduction of GB is explained with reduction of “body”-source junction barrier, since the “body” potential VB 

at source junction is modified by the front and back gate biasing in FD SOI MOS transistors, and it is different 

from the Fermi potential VF set by doping of the body in partially depleted and bulk MOS transistors. Thus, the 

reduction of the barrier potential is ΔVrb=VB-VF and the corresponding (reverse) saturation current IB0,FD of the 

“body”-source junction in FD SOI MOS transistor is increased 
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as compared to body current IB and junction saturation current IB0 in partially depleted MOS transistors. 

Consequently, at a given body current IB, the “body”-source junction conductance GB,FD in FD SOI MOS 

transistor increases significantly, according to 
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and according to eq. (277), the excess Lorentzian noise has reduced magnitude and higher corner frequency, 

which are weakly dependent on the body current IB in FD SOI MOS transistors. 

An alternative explanation for the reduction of the Lorentzian noise FD SOI MOS transistors is given in [259], 

referring to the strong coupling between the front and back gates, which reduces the “body” transconductance 

gmb, and prevents the shot noise from source junction being transferred to the drain. The explanation is 

qualitative and does not provide insight for the shift of the Lorentzian corner frequency. Nevertheless, both 

explanations in [255] and [259] consider bipolar effects and modulation of potentials at body-source junction, 
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which is viewed by the dashed lines in Figure 45c. The issue is that such modulation is generally neglected in 

MOS transistor models, and the source-channel interface is not considered in low-frequency noise models, to the 

best of our knowledge. 

VI.1.3. Effects of oxide traps in the back gate insulator 

As the silicon film becomes thin in fully depleted SOI MOS transistors, the oxide traps in back gate insulator 

(usually called buried oxide, BOX) also contribute to the low-frequency noise, and the most common approach 

is to divide the conduction in MOS transistors in front and back channels. Then, one applies the noise models 

separately for the two channels, and the noise in the drain terminal is the sum of the contributions of the two 

channels plus the noise from the semiconductor bulk between them in depletion mode MOS transistors. This 

approach was taken long time ago, for example in [93], and results in a simple equation, such as 

BulkVolumeBackGateFrontGateI SSSS
D

++= ,      (282) 

which is correct only if the three conduction paths are independent and isolated each from other, so that the noise 

source related to one of them does not affect the other. Obviously, this is not true, because the capacitances of 

the insulators and of the semiconductor couple the potentials from the front gate all along to the back gate, and 

the coupling is significant in FD SOI MOS structures, since the semiconductor film is thin. Partial solutions 

based on the above eq. (282) are possible and used in device characterization when the dominant conduction 

path is one, i.e. only front channel [88, 93, 246], only back channel [93], or only the bulk volume [93, 246], the 

later in the case of depletion mode MOS transistors. At crossover biasing regimes [93, 246], one always observes 

excess noise mostly with Lorentzian spectrum, and since the Lorentzian spectrum varies with the bias, then one 

attributes this variation to “superficial” traps [93, 246], while the excess noise is probably due to frequency 

limited coupling, similarly to the case for the excess Lorentzian noise in partially depleted SOI MOS transistors, 

as discussed just above. 

The partial solution of eq. (282) is proposed in [88] for the front channel of FD SOI MOS transistors, following 

the approach for noise coupling to the bottom of the channel [251]. The proposal assumes two capacitances, 

CF≈Cox of the front gate oxide above the conduction channel, and below the conduction channel 

CS≈(1/Cd+1/CBOX)−1≈CBOX, where the back oxide capacitance CBOX is much smaller than either Cox or the 

capacitance Cd of the depleted silicon film in FD SOI MOS transistor. Then, the coupling (attenuation) 

coefficient γ=∂VT/∂VB of the front gate threshold voltage VT to the back gate bias voltage VB is taken as from 

the capacitive divider CF−CS, given by 
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where the highly conductive inversion charge layer is assumed disconnected from the source terminal, thus from 

ground, an assumption not stated, but seen from equations in [88]. Finally, the flat band voltage noise SFBB from 

back oxide is referred to the front gate as γ²SFBB and added to the flat band voltage noise SFB of the front oxide, 

resulting in gate referred voltage, given by 

FBB
2

FBVG SSS γ+= ,       (284) 

where SFB and SFBB are expressed also according to eq. (101) for the number fluctuation model, and the noise in 

the drain current becomes 
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since the coupling coefficient γ=∂VT/∂VB=gmb/gm also is the ratio between the front gate transconductance gm 

and back gate (or body) transconductance gmb in the MOS transistor (see page 369 in [169], for example). The 

latter result can be derived easily from the general eq. (1) for coupling of two independent voltage noise sources 

into fluctuation of one current. 

It is worth mentioning that a guide line [88] can be provided by the substitution of the oxide trap number 

fluctuation model from eq. (101) in eq. (284), which gives  
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Assuming that the same type of oxides are used for front and back gates, λBOX=λ and Nt,BOX=Nt, the last equation 

suggests that the 1/f noise can increase twice in fully depleted SOI MOS transistors with thick back gate 

dielectrics and ultra-thin semiconductor films, when only the front gate is used as input. On the other hand, there 

should be a reduction of noise in double gate and Fin FETs, since the two gates are tied together, the gate area is 

doubled, thus SFB is a half, and the denominator in the last expression is always larger than four when CBOX=Cox. 

Evidently, the back-front coupling in advanced structures with increased electrostatic control should not increase 

the noise, provided that the quality of gate dielectrics and gate area are not reduced. Such reduction of the noise 

is demonstrated for Fin FET [94] and cylindrical gate-all-around MOS transistor [137], reporting low values for 

oxide trap density 1.5×1017eV−1cm−3 and less than 0.5×1017eV−1cm−3, respectively. 

Also, the analysis of the 1/f noise from the back gate in FD SOI MOS transistors indicates one more time a 

convergence between noise models for different structures in a close relation with the general principle of noise 

coupling, expressed by eqs. (1), (2), (3), (4) and (5). We demonstrate below that the capacitive coupling in the 

semiconductor body can reduce the noise in multiple gate MOS transistors, by using eq. (4) with the DC current 

cancelled. 

VI.1.4. Capacitive coupling in the semiconductor body 

Bulk MOS transistor 

Consider first the obvious bulk MOS transistor with gate capacitance WLCox and small depletion capacitance 

WLCd, as depicted on the top in Figure 47. As a statistical variance, the oxide charge fluctuation SQ=WLSQo is 

proportional to the gate area WL, where SQo is the charge fluctuation per unit area, and it is a constant at an 

assumption for uniform spatial distribution of oxide traps. At given biasing condition, the transconductance eq. 

(4) is g=gm=goW/L, where go is the transconductance of square-shaped gate. The capacitance in eq. (4) is the 

capacitance seen by the charges at semiconductor-dielectric interface and C=WL(Cox+Cd)≈WLCox. The 

substitution in eq. (4) gives the equation for the drain current noise SID
|N=1, one gate, given by 
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Two-gate MOS transistor 

Consider now the two-gate MOS transistor with thin semiconductor film, such as FD SOI MOS transistors in a 

configuration of two gate “Fin FET” [261, 262 263], which is depicted in the middle of Figure 47. The channel 

width is W/2, since there are two identical conduction channels (top and bottom) and the gates are tied together, 

and from AC point of view, the gates are grounded. The capacitance seen at semiconductor-dielectric interface is 

the oxide capacitance plus the capacitance of the path in the bulk, which is series connection of the depletion 

capacitance and the capacitance of the other gate dielectric. Therefore, by summing the noise of the two 

channels, one gets 
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Four-gate structure 

Considering the four-gate structure in the bottom of Figure 47, one sees three paths of series connections of Cd 

and Cox. Following the procedure for the two-gate MOS transistors, one gets for the four-gate MOS transistor 

that 
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By comparing eqs. (287), (288) and (289), we write 
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where N=1, 2, 3 or 4 is the number of gates. The last equation shows that the coupling under the channel reduces 

the noise. The parameter γ~(N−1) depends of the channel geometry, in particular, how the channel is surrounded 

with conductive layers and what is the coupling Cd/(Cd+Cox) between the channel and these layers. Nowadays, 

Cd/(Cd+Cox)~0.3, and it is expected that it will increase to 0.5 in ultra-thin body SOI, Fin FETs and nanowire-

based MOS structures. Provided that three-four gate structures will be employed in these transistors, then the 

noise in them will be (1+3×0.5)²~6 times less at the same trap density in the gate insulators, as compared to the 

prediction of the model for one-gate transistors, which is currently only available. The reduction could be even 

larger in cylindrical-channel structures, as observed in [137], since γ>3 is possible for this geometry, along with 

Cd>Cox, as calculated in [264] for nanowire based gate-all-around transistors.  

Note that eq. (290) is qualitative. Unfortunately, the impact of the coupling on noise in advanced structures is not 

addressed at present accordingly, except for the excess noise in SOI MOS transistors due to filtered shot noise, 
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which was discussed in the beginning of this section. Due to surface channel conduction at dielectric interface, 

the analyses of the noise in MOS Fin FETs operating in inversion mode [94, 137] is carried out in terms of 

number fluctuation model for single gate MOS transistors,  while for depletion mode Fin FETs the Hooge model 

of eq. (6) is usually taken, when the conduction is in the bulk [246].  

VI.1.5. Two-MOS two-junction gate transistor 

It is interesting to observe the crossover between surface and bulk noise reported in [246] for the four-gate 

structure with two MOS and two junction gates. The structure is depletion mode field effect transistor with 

doped n-type channel and n+ drain and source, and it is shown in Figure 48a. At positive bias voltage applied to 

the top MOS gate G1 and negative bias voltage applied to junction gates JG1 and JG2, the carriers are 

accumulated under the MOS gate, as shown in the upper-right insert of Figure 48b, resulting in surface channel. 

At this condition, the noise is high, as shown with dashed line in the figure. By reducing the biasing of G1, the 

surface becomes depleted, and channel moves into the bulk of the silicon bar, as shown in the bottom-left insert 

of Figure 48b. Consequently, the noise also decreases, as shown with dotted line in the figure. Further change in 

the biasing of the MOS gates to negative voltages causes inversion at channel surface, and the inversion layer 

screens the charge fluctuation at the gate dielectric. Consequently, the surface noise is effectively eliminated, and 

the noise in the drain current is reduced to the value of the bulk noise, as shown with solid line in Figure 48b. 

The bulk noise shows nearly 1/ID dependence, which is typical for intrinsic noise, and therefore the authors of 

[246] analyzed the data in terms of Hooge eq. (6), estimating for JFET operation mode that the Hooge parameter 

is αH~2×10−5 for the bulk noise, when the surface is inverted, with a slight increase to αH~4×10−5, when the 

surface is depleted. These values are obtained from data corresponding to ID=6μA with estimated number of 

carriers n=4.5×105 in the transistor channel. For comparison, in MOS operation mode, the effective value for the 

Hooge parameter is one order of magnitude higher, αH~2×10−4, and also, the normalized noise does not follow 

very close the 1/ID dependence, having a plateau at low currents, which is typical for coupled number fluctuation 

due to charge trapping in gate oxides. In addition, in either mode, Lorentzian noise is reported at biasing around 

the threshold. Therefore, the Hooge equation was used in a modified form for the noise in a frequency band from 

fmin=1Hz to fmax=500Hz, given by 
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Thus, along with the clearly demonstrated crossover between surface and bulk noise in [246], one also observes 

that there are additional effects at crossover points, and the application of simple models, such as that in eq. (11) 

may meet with difficulties in the practice of characterization of advanced structures. For instance, in later 

publications [265, 266] there were found operating regions in this transistor where the cutoff frequency of the 

Lorentzian spectra, originated by volume deep centers, changed with gate voltage. This result contradicts the 

classical assumption that no variation of the cutoff frequency occurs in Lorentzians related to a given trap level 

in the depletion layer of an MOS transistor. This is explained mainly by the fact that a bipolar structure (a p-n 

junction) is added to a unipolar device (an MOS transistor). 

VI.2. Nanotubes and nanowires – 1D seems too noisy 

The difficulties in the practice of characterization of advanced structures are even more pronounced, when the 

semiconductor nanowires (SNW) and carbon nanotubes (CNT) are used as the basis for the device structure. The 
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initial study on noise [267] in two terminal CNT structures (thick, thin films and single CNT between electrodes) 

indicated that the these devices behave as resistors with a resistance R and the 1/f noise is anomalously large, as 

compared to other resistors, such as metal film and carbon composite resistors. Otherwise, carbon nanotube 

resistor behaves “normally”. That is, the conductance 1/R is proportional to the number of parallel CNTs, the 

white noise is the thermal noise with voltage spectrum density 4kTR, and the magnitude of 1/f noise is 

proportional to the square of the DC bias and inversely proportional to the resistance, which suggests that the 1/f 

noise is intrinsic noise of the current transport, and according to Hooge eq.(6), the 1/f noise is given by 
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where the parameter A≡KF=αH/n=BR is proportional to a nearly constant parameter B~10−11Ω−1. Note that the 

parameter A is the same as the SPICE parameter KF in eq. (15). The nearly constant value B=A/R is empirically 

observed in [267], the proportionality between A and R is speculatively explained with a general statement that 

R∝1/n, since n is total number of carriers, while R also depends on the ratio of the cross-section to length of the 

conductive bar, and the estimated value for αH≈0.2 is large and in quantitative disagreement with values for 

conductive materials, in which αH≈0.002. Consequently, Snorm in the CNT resistors is 4 to 8 orders of magnitude 

larger, as compared to the values for carbon composite and metal film resistors, respectively. All these 

quantitative details for the noise in CNT are stated in [267]. Nevertheless, the ratio 
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is often taken as a reference figure of merit for comparisons when the 1/f noise in CNT and SNW structures is 

investigated, although the physical significance of this ratio is not clear at present. 

Further insight on the low-frequency noise in two terminal CNT devices is provided in [268], by analyzing the 

shape of the spectra and temperature dependences. The temperature measurement confirmed that FOMCNT=A/R 

ranges between (1.3-7.6)×10−11Ω−1 for the 1/f noise over a range from cryogenic temperatures of 77K to room 

temperature of 300K. Also Lorentzian components and change of the frequency slope is observed in these 

measurements. From the evolution of the corner frequency in the Lorentzian spectra with the temperature, 

several activation energies were found at 0.080eV, (0.2−0.21)eV, (0.27−0.31)eV, 0.42eV and 0.51eV, or 

roughly, at every 100meV, and it was suggested the energy difference between subbands in CNT may cause 

these activation energies. The crosses in Figure 49 illustrate the data for the activation energies, and the lines 

without symbols illustrate the density of states (DOS) in CNTs with different diameters [264]. The variations of 

the frequency slope of the 1/f noise was also analyzed in terms of Dutta-Horn equation, see eqs. (167) and (169), 

and it was observed [268] that the density of traps, if such are assumed as origin of the 1/f noise, decreases from 

low to high activation energy, similar to what one observes for a tail trap distribution in forbidden energy band 

gap of semiconductors. The lines with symbols in Figure 49 illustrate the distribution of trap density D(E). 

Assuming hole conduction in CNT (we will show shortly results that confirm p-type field-effect behavior of 

CNT), it was suggested that the distribution of hole activation energy could be associated with a tail defect 

density distribution referenced to the top of the nanotube valence band, similarly to the defect distributions 

observed on silicon and other semiconductor surfaces. The nanotubes used in the experiments [268] have a 

diameter of about 1 nm and thus an energy band-gap of about 1 eV [269]. A complementary experiment in 
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[268], however, showed that there is no measurable difference between samples with CNT placed on SiO2 and 

other, suspended samples, in which the oxide was removed by etching, ruling out the oxide-CNT interface as 

significant contributor to the noise in CNT devices. The FOMCNT was A/R=4.3×10−11Ω−1 for the suspended 

sample, and the activation energies were virtually at the same energy positions. The density of states in CNT, as 

illustrated in Figure 49, is also non-uniformly distributed. Therefore, the approximation of valence band edge 

with a step function is rough, and transitions between subbands in CNT is possible [270]. These details are not 

elaborated for the noise in CNT. The authors of [268] concluded that the interpretation of excess noise is 

complicated by the fact that carbon nanotubes operate as mesoscopic quantum devices, where traditional 

methods of noise measurements and interpretation may not readily apply. For example, the four-point probe 

measurement method to eliminate contact noise from the measurements will not be conclusive for a nanotube 

device. The source and drain contact reservoirs are an integral part of a nanotube device and the addition of two 

more contacts may completely change the operation of the device itself. 

From the above introduction to the noise in CNT one can readily see that there are difficulties to understand the 

noise in nanowire and nanotube devices. One is the constant value FOMCNT=A/R, which does not scale with area 

of the device, second is the large value for normalized noise SI/IDC. There are also other problems, such as 

nanowire and nanotube conduction network, weak contact to probing terminals, dependences on environment, 

giant RTS and temperature dependences. In fact, the noise depends on everything in these devices and no 

dominant factor for the low-frequency noise can be identified in nanowire and nanotube devices. Also, the 

extrapolation of mesoscopic noise models for these devices is uncertain. Some published results related to these 

difficulties are discussed below. 

Mesoscopic noise models. Contact effects. 

The extrapolation of mesoscopic noise models to individual CNT or SNW assumes superposition of noise 

sources  

 += CNT/NWtot SSS  ,     (294) 

where Stot is the measured total noise, SNW/NT are the noise contributions from individual nanowire or nanotube 

and SC are the noise contributions from contacts to the nanowire or nanotube. In the case of single CNT devices, 

the summation symbols are omitted. In the case of film-like devices, the individual contributions are lumped in 

one noise source. In intermediate cases, when the network of nanowires is known, coupling coefficients, KNW/NT 

and KC, are suggested for the contributions from individual noise sources to the total noise, the values of the 

coupling coefficients are determined and eq. (294) is rewritten in terms of normalized noise currents as 
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where Ii are branch currents flowing through individual CNTs or SNWs and contacts, and Itot is the total current 

flowing through the two-terminal sample. 

The determination of the coupling coefficients is conditional and depends on the structure and assumptions for 

this structure. For example, SEM (scanning electron microscope) images of devices with silicon nanowires 

bridging between electrode bars lead to assumptions for a network of parallel connected nanowires, and the 

coupling coefficients are evaluated from measurements of DC resistance and diameters and lengths of nanowires 
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observed in SEM images [271]. Having variation between sizes and number of nanowires in the samples and 

unknown resistances of the nanowires and contacts, one can see that there were many difficulties to resolve the 

network, and additional assumptions are taken in [271] that the carrier mobility μ and specific resistivity ρ in the 

semiconductor nanowires are constants and are the same as in bulk silicon, the contact resistances scale inversely 

with nanowire cross-sectional area, estimating a constant prefactor in this dependence ρc~1.7×10−5 Ωcm². All 

these assumption are valid for mesoscopic devices, but it is difficult to prove for nanowire networks, although 

the worst case estimate for depletion due to surface charge trap with density ~2×1012 cm−2 indicated that the 

difference between physical and electrical cross-sectional areas can be neglected for the nanowires with 

diameters ~100nm in [271]. In this way, the resistance of individual nanowire branch (i) becomes 

i,Ci,NWi RRR +=  ,      (296) 

with RNW,i=ρLi/(πri
2) being the nanowire resistance and RC,i=ρc/(πri

2) being the contact resistance, where Li is the 

length of the nanowire and ri is the radius of the nanowire. Then, the spectral densities Si of the noise currents 

associated with the individual nanowire branch are 
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where SNW,i are the spectral densities of noise currents from nanowires and SC,i are the spectral densities of noise 

currents from contacts.  

Next, one takes the simplest SPICE model for 1/f noise from eq. (15) , so that  
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where Ii is the DC current flowing in the nanowire branch (i) and the SPICE parameters KF,i, KFNW,i and KFC,i are 

associated with the branch, nanowire and contacts, respectively. Combining all parallel branches, one gets for 

the total normalized noise in eq. (295) that 
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In the last equation, Stot and Itot are the quantities, which can be obtained during noise measurements of a sample, 

and the SPICE parameter for 1/f noise of the sample can be determined as KF,tot=fStot/(Itot)
2. The remaining 

quantities require additional assumptions and measurements. One obvious and useful for the practice note is that 

in resistor networks, the individual noise sources have “attenuated” contribution at sample terminals, since the 

coupling coefficients KNW=(RNW/Ri)
2 and KC=(RC/Ri)

2 are less than one. 

Unfortunately, even when the branch resistances Ri and currents Ii, and the resistances of the nanowires and 

contacts are known, and even for single nanowire (i≡1), eq. (299) does not have unique solution for the two 

SPICE parameters KFNW,i and KFC,i of the nanowire and contact to it, because the equation is only one. The 

equation becomes highly undetermined when the number of parallel branches in the sample increases. Therefore, 

in addition to the assumptions for scalable and reproducible resistances, more assumptions for scalable and 

reproducible noise between different nanowires in different samples is required and made in [271], using again 



110  of  286 

extrapolation of a mesoscopic noise model for the intrinsic (Hooge) 1/f noise from eq. (6). So, having j=1,2… 

samples with different number i(j) of nanowires in different samples, and assuming single-valued parameters for 

specific bulk resistance ρ [Ωcm], mobility μ [cm²/Vs] and Hooge parameter αH in nanowires, as well as 

characteristic resistance ρc [Ωcm²] and unit-area noise αc [cm²] for the contact to the nanowires, one obtains two 

systems of equations – one for resistances and second for noise. 

The system of equations for resistances is in the form of 
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in which the resistances of the samples, Rtot|j=1,2… are electrically measurable, while the number i(j=1,2…), the 

lengths Li|j=1,2… and the radiuses ri|j=1,2… of the nanowires in these samples has to be obtained from microscope 

images, e.g. using SEM, as in [271]. Ideally, two samples are needed to determine the specific bulk resistance ρ 

and characteristic resistance ρc, but inaccuracy and non-repeatability between samples, as well as the cylindrical 

approximation and non-linear nature of the equation, require more samples and a use of guided optimization-

discrimination procedure, in order to obtain reliable values for ρ and ρc in each sample. Such procedure was 

carried out in [271], and one can see that it was not a simple task, as well as in fig. 4 in this publication, the 

accuracy and convergence between measured and calculated resistances is far from ideal and repeatable between 

different samples. Also, having aspect ratio Li/ri~8μm/50nm=160 for typical nanowire in these samples, it is 

somehow unrealistic the have ratio RNW/RC~2 by assumption of nearly uniform doping and mobility in the 

sample, unless there is a really difficult processing problems to make electrical contact to electrode sidewall at 

the impinging end of the nanowire, as stated in [271]. 

Nevertheless, once having the specific bulk resistance ρ in nanowires and characteristic resistance ρc for the 

contact, one can estimate the mobility μ and carrier concentration n’ in nanowires from graphs for bulk silicon 

available in many textbooks for semiconductors and write the second system of equations for the noise. For the 

purpose, at given voltage bias V across the sample, and since the number of carriers in the nanowire is 

n=n’Liπri
2, then the different quantities in eq. (299) are expressed as 
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 the ratio between individual nanowire branch current Ii and total current Itot in the sample is 
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 and from Hooge 1/f noise model in eq. (6) and SPICE 1/f model in eq.(15) 
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Thus, by substituting in eq. (299), the second system of equations for the noise is 
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Similarly to eq. (300) for the resistances, the system of equations in eq. (304) has two unknowns, Hooge 

parameter αH in nanowires and characteristic unit-area noise αc [cm²] for the contact to the nanowires, and 

ideally two samples are needed to determine αH and αc. And also similarly, in practice one needs to carry out a 

guided optimization-discrimination procedure over several samples, in order to obtain reasonable values for αH 

and αc in each sample. Note that even after careful characterization in [271], the values of the parameters related 

to the noise in nanowires and contacts scatter over several decades in fig.6 in this publication, while the values 

for the resistance scatter within less than a half decade in worse case in fig.4 for the same samples. Evidently, the 

results in [271] symptomatically imply that the issues in nanowire and nanotube devices are related mostly to the 

access to these devices. If there is a contact problem for the DC performance of these devices, increasing the 

device resistance with 50%, then this problem actually dictates the low-frequency noise, pushing the noise 1-3 

decades above the noise levels in the nano-conductor. The solutions of the contact problems were also 

recognized in ITRS predictions [3] as enabling factor to have access to advanced nano-devices. 

The problem with the contact is even more pronounced in single carbon nanotube devices. In [272], multiwall 

carbon nanotubes (MWCNT) were placed to cross the gap between gold contact pads, using atomic force 

microscope (AFM), and the resistance and low-frequency noise of these samples were measured at different low 

bias currents (IDC) from room temperature to cryogenic temperatures 77K and 4.2 K, down to 1.5K. It is 

observed in [272] that the low-frequency noise is 1/f at room temperature and at 77K, but at 4.2K and 1.5K, the 

noise spectra showed large Lorentzian components, as illustrated in the left-hand plot of Figure 50. Interesting 

observations for the behavior of the samples are made in [272] at 4.2K and 1.5K, when changing the direction of 

the bias current, as illustrated in the right-hand plots of Figure 50. The top plot shows that the time constants of 

the Lorentzian spectra are bias dependent, they are different at different bias polarities, but the time constants do 

not depend on the temperature. The middle plot shows that the prefactor S0/τ=4(ΔI/IDC)²τ/(τ1+τ2) also varies with 

bias, while from eq. (179) one expects (ΔI/IDC)=constant for a particular trap and τ/(τ1+τ2) =F(1-F)=constant in 

conductive materials, in which the Fermi level, and thus the trap occupancy, are weak function of the bias. In the 

bottom plot, the contact resistance is larger than the resistance of the nanotube. The differential resistance is bias 

dependent, nearly ∝1/IDC for |IDC|<1μA, and also not fully symmetrical in respect to the direction of the bias 

current. In addition, the resistance is proportional to ~7mV/IDC, rather than to 0.13mV/IDC, which one would 

expect from the ratio φt/IDC with thermal voltage φt≈0.13mV at temperature T=1.5K. This indicates tunneling 

junctions at the contacts, accompanied with Coulomb blockade, charge trapping and strong bias dependent 

Random Telegraph Signal (RTS) noise, which resulted in Lorentzian noise spectra at temperature 4.2K and 

below.  

Provided that 4.2K is very low temperature, then Shockley–Read–Hall (SRH) statistics for the process of 

trapping and de-trapping is not realistic, because the thermal velocity νth is low in eq. (63) and the experiments in 
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[272] did not show temperature dependence between 1.5K and 4.2K. A variation of the prefactor S0/τ with the 

bias is not expected from SRH statistics, since the Fermi level is almost independent of bias in conductive 

materials and the trap occupancy, c.f. F(1-F) in eq. (179),  should not vary with bias in these materials, unless 

there is a junction interface and potential bending in it. Therefore, RTS is explained in [272] with trapping and 

de-trapping in terms of tunneling to charge trap at the contact interface between nanotube and metal. So, instead 

of using of SRH relations from eq. (63), the capture and emission time constants are expressed in terms of 

tunneling, given by 
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Here, ωo is attempt frequency, d is effective tunneling distance, λ is tunneling attenuation distance, γ is 

parameter related to the shape of tunneling barrier, τo=exp(d/λ)/ωo is tunneling time constant at equilibrium (no 

bias), and the characteristic tunneling current Io=λ/(dγReff) is a fitting parameter that accounts for the effective 

resistance Reff =V/IDC of the region, where the tunneling occurs. While the slopes for τ as function of the bias 

current in the right-hand plot on top of Figure 50 confirm the exponential dependence of eq. (305), an interesting 

observation in [272]  is that the fitting parameters  τo and Io in eq. (305) are different for different time constants 

and they are not the same for capture and emission time constants τ1 and τ2, since the prefactor 

S0/τ=4(ΔI/IDC)²τ/(τ1+τ2) also varies with the bias, as shown in the right-hand plot of Figure 50 in the middle. This 

implies that tunneling distances, the attenuation distances and the barrier shapes vary, which is possible by 

having junctions at the weak contacts between nanotube and metal pads.  

Nanotube FETs 

The low-frequency noise in field-effect transistor configuration of nanotubes was recently also addressed. In 

these devices, one or several nanotubes, or thin film of random nanotube network bridges between metal 

contacts, and the gate is usually a conductive substrate, on the top of which the gate oxide and the metal pads are 

placed. These devices appear to be very noisy, affecting even DC measurements, as illustrated with several 

“I−V” curves in Figure 51. 

In Figure 51(a) and (b), transfer I−V characteristics of field-effect transistors (FETs) based on single CNT 

measured at room temperature are shown. The values for the currents scatter between 10% and 20% around a 

trend. The trend is similar to the I−V curve of pMOS transistors. Since the scattering is large in Figure 51(a), the 

current and the threshold voltage (cross point of two lines) are analyzed in terms of stochastic resonance in 

[273], demonstrating that CNT FET can be used as a detector for signals below threshold voltage. Figure 51(b) 

illustrates that the current and its scattering are larger in ambient atmosphere, and they are reduced in vacuum 

[274]. Figure 51(c) depicts the cracked “I−V” curves of single CNT FET at cryogenic temperatures [171], owing 

to giant and bias dependent RTS noise with amplitudes 30% to 60% of “DC” current. Note that the currents and 

the transitions between the segments in the plot are different at opposite directions of the current flow, which is 

similar to the observations for multiwall CNT devices, discussed just above. On the other hand, in contrast to 

single CNT devices, the I−V characteristics in Figure 51(d) are smooth when the FET is based on a random 

network of single-wall CNTs [275]. A hysteresis is evident when the device was operating in air, using the 

silicon wafer as solid-state gate. Interestingly, the hysteresis is reduced when a liquid solution is used to mediate 

between electrochemical gate comprised by a pair of reference (Ag/AgCl 4M KCl or a saturated calomel) and by 
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a working (Pt) electrodes. The improvement when using liquid gate was attributed in [275] to enhanced 

electrostatic control and suppression of charge trapping effects. It was observed that the threshold voltage of the 

liquid gate CNT FET is a function of pH and concentrations in the chemical solution. Referring to the discussion 

on the multiwall CNT given above, we note, however, that the problems in the single CNT FETs can be due to 

contacts, rather than due to traps around the CNT, since the contact of metal to a network of CNTs and addition 

of electrolyte at this contact, as it was in [275], would greatly improve the repeatability of the contact. 

Unfortunately, the noise from the contact was not addressed in [171, 273, 274, 275], perhaps, due to a lack of 

scalable model for noise from contacts when interfacing 1D to 3D current transports. Obviously following the 

style in the initial publication on noise for CNT films [267], the noise is first phenomenologically investigated, 

and then related to noise model for mesoscopic devices, e.g. for MOS transistor noise model, relying on the 

similarity that exists to some extend between CNT FET and MOS transistors. Note again in Figure 51 that all 

devices at all measurement conditions behave similarly to p-type MOS transistors – a fact, which is 

experimentally observed and reported many times in the literature, although not very well justified theoretically, 

since the band structure of semiconducting CNT is quite symmetrical above and below the band-gap – see fig. 3 

in [270], for example. 

To illustrate the situation when investigating the noise in CNT FET and MOS transistors, we present a typical 

outcome from noise experiments in Figure 52. The data are from [274] for measurement of single CNT FET in 

vacuum (18mTorr) at room temperature. It is stated in the publication that this CNT FET has 4μm gap between 

gold electrodes and it was made as described in [171]. That is, CNT diameter is d=1−3nm and the gate is silicon 

wafer with tox=500nm thermal SiO2. Considering the information from the publication, the CNT FET has  length 

L=4μm equal the gap between electrodes, and taking an average diameter d=2nm, the channel width of the CNT 

FET is W=πd≈6.3nm. Assume that there is no gap between wafer surface and CNT, and consider d<<tox, then 

the gate capacitance per unit area is Cox=7nF/cm² for the SiO2gate dielectric with thickness tox=500nm. 

The experiments in [274] were carried out in linear mode of operation of CNT FET, at low drain bias voltage 

|VD|<(|VG-VT|-0.5V). Therefore, a rough estimation for the total number of carriers n can be made by assumption 

for uniform charge density in CNT, resulting in n=WL|VG−VT|Cox/q, which is approximately 11 electron charges 

per one volt of gate overdrive voltage |VG−VT|. 

Figure 52a presents results based on measurement, in which the gate bias was varied, while the low drain bias 

was constant −VD=0.1V. For the set of biasing points {VG, ID}, both the input referred (gate) noise voltage SVG
 

and output (drain) noise current SID
 are reported in [274]. From these, we obtain the transconductance 

gm=(SID
/SVG

)0.5≈17nA/V (almost constant, as expected for linear mode of operation of FET transistors) and draw 

the evolution of the ratio ID/gm with bias current in the Figure 52a on top. For operation of FET in linear mode, 

we expect ID/gm=|VG−VT| and ID∝|VG−VT|, and we observe linear dependences with slope 60MΩ for ID/gm and 

slope 40MΩ=1/[(W/L)μCoxVD] for the relation between |VG−VT| and ID as function of the bias current ID. From 

the latter dependence, |VG−VT| vs. ID, shown just under the plot for ID/gm, we have estimated mobility μ≈24000 

cm²/Vs. Comparing to crystal semiconductors, the value for mobility is impressive, but it is somehow in the 

middle of the range 4000-120000 cm²/Vs reported in [270], thus it is reasonable. 

Having the above information for the sample handy, we pursue analysis of noise in terms of mesoscopic noise 

models for MOS transistors. 
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For the number fluctuation model with correlated mobility fluctuation, as shown in the middle of Figure 52a, we 

plot the square root √SVG
 of the power spectrum density of the input (gate) noise voltage SVG

 at 1Hz, referring 

the reported data for SVG
 from 40Hz to 1Hz, by SVG

(1Hz)=40Hz×SVG
(40Hz). The constant in the linear fit to 

√SVG
 yields flat-band noise voltage, and from eqs.(101), (109) for noise from tunneling and trapping in gate 

oxide, we get 
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when substituting the values for the parameters of sample and using kT=0.026eV for thermal energy at room 

temperature and tunneling attenuation distance λ=0.1nm. Therefore, we obtain Nt=(36×10−6V²/Hz)/(5.4×10−

22eVcm³V²/Hz)=6.7×1016eV−1cm−3, which is a reasonable value for the trap density is SiO2, see Figure 42, 

despite that SFB is high. 

To evaluate the parameters for the correlated mobility fluctuation, see the discussion after eq. (121), we use the 

bias dependent term in the linear fit of √SVG
, which is ID0.4MΩ. Since |VG−VT|= ID40MΩ, as seen from the 

transfer |VG−VT| vs. ID curve in Figure 52a, then  

TGTG
FB

V
VV1

Hz/mV6

M40Hz/M4.0
VV1

S

S
G −θ+=ΩΩ−+=  ,   (307) 

or θ=0.01/0.006=1.67V−1, which is in the range observed for MOS transistors (see Figure 37). There are two 

definitions for scattering parameter αs, as shown in eq. (243). Using one of them, given by eqs.(127) and (137), 

then αs=qθ/(μCox)=1.6×10−15Vs. The other definition gives αs=θ/(μCox)=104Vs/C. Both values are within ranges 

deduced from Si MOS transistors – see eq.(243). Thus, both by Nt and αs, the number fluctuation can be justified 

for CNT FET.  

The 1/f noise in CNT FET can be justified also in terms of intrinsic (Hooge) noise. We calculate the SPICE 

parameter KF=f×SID
/ID² and plot it in the bottom of Figure 52a. Obviously, from eqs.(6) and (15), KF=αH/n 

decreases, when the total number of charges n=11×|VG−VT| increases with gate bias, as mentioned above. The 

calculated values for the Hooge parameter αH are shown above the plot for KF in Figure 52a. The values scatter, 

but the average αH~2×10−3 is a reasonable value for conductors, and by this value, the 1/f noise in CNT FET can 

be also justified as mobility noise. 

The above discussion implies that 1/f noise in CNT FET is easily explained in terms of downscaled mesoscopic 

models for Δn and Δμ fluctuation, when data as function of gate bias are used. However, in the published 

analyses, which are similar to the above, there are details which are neglected. We show these details in Figure 

52b. In this figure, from top to bottom, although VD<<VG, the relation between gate bias and drain current is not 

linear, the relation between drain bias and drain current has a step at low voltage, the normalized noise in terms 

of KF is function of drain bias at low drain bias levels, and KF obtained from experiment with variable gate bias 

is different from KF obtained from experiment with variation of drain bias, even for the bias point {–VG=2V, 
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−VD=0.1V}, which was common in the two experiments. For this bias point, even the DC currents were 

different, as shown with arrows in the figure. All these indicate that the access contact to CNT, trapping and 

barrier at it, might be significant noise sources, as deduced for CNT films, networks and multiwall CNT [268, 

272]. To the best of our knowledge, there is no publication that explains these “small” details in the behavior and 

noise related to them in CNT FET. The explanations for the contact effects and functionalized surface of CNT 

by adsorption or by changing of chemical environment (air or other atmosphere [274], or pH of liquid [275, 

276]) on noise in CNT FET are still qualitative. 

Analysis of the ratio KF/R≡A/R 

We address now the consequences from the empirical observation made in [267] that ratio KF/R≡A/R is 

approximately constant in CNT devices – see again eqs. (15), (292) and (293), where A≡KF is the SPICE 

parameter as defined in eq. (11). The CNT devices are typically arranged in thin-film structures, as shown in 

Figure 53a, b and c. The CNT networks have conductive branches, which are shown with arrows in these 

figures. Since the transport in CNT is 1-D, then the conduction branches are independent each from other. 

Having on average L carbon nanotubes in each conduction branch and W conduction branches in the device, 

then we can represent the CNT percolation network by and idealized resistor network, as shown in Figure 53d. 

For simplicity, we will assume that the resistance RO and the noise vo² of each CNT have the same values, that 

the number L of serially connected CNTs in each conduction branch is the same in the network, that the number 

of identical parallel conduction branches is W, and that the noise vc², which may originate to contact between 

nanotube and metal electrode, is the same for every single conduction branch. By these idealizations, when 

applying external bias voltage V (or current I), the DC and noise currents in each branch are IO=I/W=V/(LRO) 

and io²=(vc²+Lvo²)/RO²=i²/W, respectively, and one can easily find the total resistance R=V/I=LRO/W and voltage 

noise v²=R²i² of the circuit for the case of current biasing I. In this way, the normalized noise of the CNT 

network is 
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and in terms of the empirically observation in [267] that KF/R≡A/R is approximately constant, we get 
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where we assume 1/f noise, and the parameters resistance RO=constant of single CNT and number L=constant of 

nanotubes in a conductive branch are constants for given sample (and given gate bias, if the CNT device is a 

TFT transistor). Note that Snorm/R and KF/R do not depend on the number W of parallel conductive branches. 

It is evident from eq. (309) that the empirical observation in [267] requires two conditions for the noise sources 

in CNT networks. The first condition is that the noise from individual CNT has to scale with the bias, but not 

with the number L of serially connected CNTs. The second condition is that the noise from contacts also has to 

scale with bias and it has to decrease with the number L of serially connected CNTs.  

The bias dependence is easily reproducible by mesoscopic models for noise. The dependence on the number of 

CNTs serially connected in conductive branch is, however, not. Let us take the first condition, for example, and 

try to analyze in terms of Hooge eq.(15) at given bias voltage, assuming number of carriers no in a single 
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nanotube. 

For branch with one nanotube we have vo1²/V²=αH/no. For a branch with L nanotubes, LvoL²/V²=αH/Lno, 

according to the equivalent circuit of the network. In contrast to the expectation from eq. (309) for voL²/V²= 

vo1²/V², we get voL²/V²=αH/L²no≠αH/no=vo1²/V². The condition will be satisfied, if one assumes that the total 

number Lno of carriers in the branch decreases when increasing the number L of serially connected CNTs, that is 

no∝1/L². We did not find a way or publication to justify physically such dependence for the number of carriers, 

although many publications use the empirical observation in [267] for comparisons. The issue is that no∝1/L² 

dependence cannot be derived from any mesoscopic model for noise.  

Nevertheless, it seems that the noise in nanowire [271, 277, 278, 279, 280, 281] and CNT [268, 272, 274, 275, 

282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292] devices scales according to the rules for mesoscopic 

devices. This is illustrated in Figure 54. The publications discussed above argue that the dominant sources of 1/f 

noise in CNT and nanowire devices are number fluctuation and from contacts. Therefore, we calculate the 

surface area and cross-section area of the CNT and nanowires, and plot versus these areas and versus data for 

MOS and bipolar transistors in Figure 54a and b, respectively. When the information for the size and number of 

CNTs in the devices was not stated, we assumed that CNT diameter is 3nm and the resistance due to one CNT is 

about 100kΩ. Interestingly, the data in Figure 54 show that the geometrical scaling rule for 1/f noise, the smaller 

is the area –  the noisier the device is, also applies for nanowires and nanotube devices. 

The comparison of surface area dependence of the 1/f noise in Figure 54a to data for MOS transistors implies 

that the noise in nanowire (NW) and carbon nanotube (CNT) devices can be explained in a manner similar to the 

models for the 1/f noise in MOS transistors, because the noise in NW and CNT devices is less than and in the 

range of the noise in MOS transistors, although the scattering is large (σdB=9.7dB). Thus, one can assume surface 

origin for the noise in NW and CNT devices. 

The comparison of cross-section area dependence of the 1/f noise in Figure 54b to data for bipolar transistors 

implies that the contact noise in NW and CNT is less than the noise in bipolar transistors, the scattering of the 

data is less (σdB=5.6dB), but the noise rapidly increases in single-wall CNT FETs with single or small count of 

CNTs. Thus, one can deduce a crossover between dominant noise sources, since the normalized noise (KF) 

increases steeper than 1/area in small-area CNT devices, as compared to the lower noise in NW samples with 

several parallel nanowires. Qualitatively, the crossover is from bulk noise in NW devices, to surface noise in 

multiple CNT, toward injection noise (either tunneling or thermionic) in single CNT devices. The published data 

scatter over several decades, and a reliable estimate for the crossover points is not possible. Therefore, one can 

find a variety of models and explanations for the noise in semiconductor nanowire (NW) and carbon nanotube 

(CNT) devices, which causes difficulties when comparing devices from different publications. 

Again looking at Figure 54, one can see that the CNT devices are noisy, but in relative units, not noisier than 

MOS and BJT, if the latter are scaled down to the sizes of carbon nanotubes. This demonstrates one more time 

that there is convergence of noise models and behaviors from very large down to very small devices. The issue is 

that the normalized 1/f noise (at 1Hz) in nano-devices is larger than KF>10−4. Therefore, these devices will be 

difficult to use deterministically, since for an application that requires 4-5 frequency decades, the peak-to-peak 

noise becomes more than 20%, according to 
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In three sentences, although the physical origin is not very well determined, the 1/f noise in semiconductor 

nanowire (NW) and carbon nanotube (CNT) devices scales according the rules for mesoscopic devices. Since the 

area (either surface, or cross-section of contacts) of NW and CNT is very small, then the 1/f noise in these 

devices is a limiting factor for the use in the practice.  The single nanotube devices seem are not anymore 

deterministic, that is, they are behind the down-scaling barrier set by the 1/f noise. 

VI.3. Between 3D and 1D – the graphene and transition metal dichalcogenide 2D transistors 

The reduction of the mobility in ultra-thin silicon body SOI and FINFETs (transistors with 3D charge transport), 

and the difficulties in the mass-production of nanowire and nanotube transistors with 1D charge transport, 

brought the interest in exploring graphene and transition metal dichalcogenide transistors, which have 

semiconducting “body” of single to few atomic layers and 2D charge transport. The 2D transistors attempt to 

utilize the better electrostatic control in field-effect transistors with thinner body, the high intrinsic mobility of 

the graphene and the apparent advantage of atomic layer growth of metal dichalcogenides, along with the 

compatibility with the lithography for planar devices in the microelectronic manufacturing. 

However, the properties of the 2D semiconducting layers deviate from the properties of well-understood 

crystalline layers in the 3D silicon transistors, inheriting also from the quantum effects in the 1D nanowires and 

nanotubes. Typical issues in the 2D transistors are the poor contact with the metal electrodes of the device 

terminals and the non-covalent (van der Waals) bonding between the atomic layers. The latter, basically, implies 

that the 2D semiconductor is a stack of several atomic layers with increased spacing and energy barriers between 

the atomic layers, but not a homogeneous layer as in the crystalline 3D semiconductors. Below, we illustrate the 

consequences for the low-frequency noise in 2D transistors with an example from [293] for a MoS2 (a metal 

dichalcogenide) transistor. 

Figure 55 (a) shows the barriers ϕv in the energy diagram and the spacing dc between the MoS2 monolayers in the 

spatial cross-section schematic diagram. The barriers and the spacing are due to van der Waals bonding between 

the MoS2 monolayers, which is weaker than the covalent bonding in the MoS2 monolayers and in the crystalline 

3D semiconductors. According to these diagrams, the authors of [293] consider the following physics and 

relations. The noise is due to Δn fluctuation of the trapping in the gate oxide, combining several processes that 

affect the time constants of the trapping and the noise measurement. One process is the Shockley–Read–Hall 

(SRH) recombination at semiconductor-dielectric interfaces with time constant τo∝1/n inversely proportional to 

the carrier density n∝(VGS-VT) in the semiconducting layers and the gate overdrive voltage (VGS-VT), thereof. A 

second process is the charge tunneling to/from traps at different distances in the gate dielectric, which 

randomizes τo in a range of larger values, resulting in band-limited 1/f noise. A third process is the additional 

increase of the time constant values for charges from semiconducting monolayers non-adjacent with the gate 

dielectric, owing to the energy barriers and spacing due to van der Waals bonding of the semiconductor 

monolayers. The fourth consideration is that 1/f noise is band limited and measurable only when the frequency 

band of the spectrometer (2Hz – 1000Hz) and the band limited 1/f noise overlap. This fourth consideration is 

essential for the explanation of the non-monotonic dependence of the normalized noise So as function of the gate 

bias VGS shown in Figure 55 (b). 
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Figure 55 (b) shows the normalized noise So referred to 1Hz, So=average(f×SI(f)/IDS²), averaged over 

logarithmically spaced frequencies f in the range from 2Hz to 1000Hz, vs. the gate bias voltage VGS. From left, 

So reduces with the gate overdrive voltage (VGS-VT), because the time constant τo∝1/n of the (first) Shockley–

Read–Hall (SRH) process is inversely proportional to the carrier density n’∝(VGS-VT) in the monolayer adjacent 

with the gate dielectric. The measured noise is 1/f, owing to the (second) process of the charge tunneling to/from 

traps at different distances in the gate dielectric, which randomizes τo in a range, resulting in band-limited 1/f 

noise. One can deduce mathematically the reduction of So and higher n’ by using fraction of τ∝1/n’ in the 

numerator of the integrand in eq. (73).  

The (third) process of additional increase of the time constant values for charges from semiconducting 

monolayers non-adjacent with the gate dielectric brings the upper boundary 1/(2πτ”min) of frequency range of the 

band-limited 1/f noise from the non-adjacent semiconducting monolayer below the lower boundary of 2Hz of the 

spectrometer (the fourth consideration above), when the carrier concentration n”∝(VGS-VT)  in the non-adjacent 

monolayer is low at low gate overdrive voltage (VGS-VT). Therefore, the noise associated with the non-adjacent 

semiconducting monolayer was not measured and missing in the left-hand side of the plot of So in Figure 55 (b). 

However, increasing the overdrive voltage (VGS-VT), the carrier concentration n”∝(VGS-VT)  in the non-adjacent 

monolayer increases, τ”min∝1/n”, the upper boundary 1/(2πτ”min) of the frequency range of the band-limited 1/f 

noise increases, reaching the spectrometer range 2Hz-1000Hz at VGS≈5V, and the overlap of the 1/f noise and 

spectrometer frequency ranges increases, resulting in increase of So to a peak value at VGS=20V. At higher 

VGS>20V, the overlap of the frequency ranges of the 1/f noise from the non-adjacent semiconducting monolayer 

and the spectrometer is full, but So reduces at increasing VGS, because the time constants τ”∝1/n” of the noise, 

owing to the (first) Shockley–Read–Hall (SRH) process (as above for the noise from the adjacent monolayer in 

the left-hand side of the plot of So in Figure 55 (b)) 

In summary, the low-frequency noise in 2D transistors follows the noise behavior in 3D transistors, but energy 

barriers and spatial spacing between monolayers bring the noise parts from different monolayers outside the 

ranges for noise spectrum measurement, which may cause apparently spurious non-monotonic data series for the 

noise levels, e.g., as function of bias, as shown in Figure 55 (b). The main difference from the noise in the 3D 

transistors is that each monolayer in the semiconductor film of the 2D transistor is likely contributing by band-

limited 1/f noise in different frequency ranges, and the measurements can miss band-limited 1/f noise at very low 

frequency, e.g., below 1Hz. Thus, an extrapolation of 1/f noise spectra measured at higher frequency toward 

lower frequency is uncertain for 2D transistors. The band-limited 1/f noise in 2D transistors is actually a 

predicator to the “peculiarities” observed in 1D nanowire and carbon nanotube transistors, discussed in the 

preceding Sec. VI.2. Nanotubes and nanowires – 1D seems too noisy.  

 

VII. Impact of LFN in circuits 

The impact of low-frequency noise (LFN)  depends on the purpose of the electronic circuit. Since the variety of 

electronic circuits is large, then it is generally impossible to look at every single case of application. We have 

selected two of them: radio-frequency (RF) circuits and sensors. Current efforts in RF circuits are to reduce the 

supply and power of the electronic circuits and to increase their speed. In the first part of this section, we shall 

discuss the impact of the low-frequency noise on the performance of low-voltage and low-power circuits and the 

up-conversion of LFN in RF circuits. Finally, the implications of the noise in sensors are briefly addressed in 
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sub-section VII.3. Noise in sensors. 

VII.1. Trading power for noise 

The advances in CMOS technologies put them as the preferable choice for building low-voltage and low-power 

electronic circuits. This is because the threshold voltages (~0.2V-0.4V) of modern MOS transistors is a fraction 

of the turn-on voltage (~0.6V) of silicon bipolar transistors (BJT), the static current consumption of CMOS pairs 

is negligible especially in digital circuits and the input gate leakage current of MOS transistors is much lower 

than the base current of BJT at given input bias. Also, the diversity of functions integrated in CMOS circuits is 

larger than that in BJT circuits at higher density of integration. 

However, the low-frequency noise emerges as a problem in low-voltage and low-power electronic circuits. Some 

manufacturers of integrated circuits provide in datasheets, for example in [267], that the product IQ×SVIN
 of the 

quiescent current IQ and input referred noise SVIN
 is a good figure of merit for the noise in amplifiers, but it is not 

possible to minimize the product below certain limit. Here, we shall study details that are related to the product 

IQ×SVIN
 in BJT and MOS amplifiers by using characteristic values deduced in previous sections for the 

parameters of the transistors. 

The circuit in Figure 56 is a typical topology of low-frequency amplifier with voltage feedback. The transistors, 

which mostly determine the noise performance, are the amplification transistor TA and the loading transistor TL 

in the first differential stage. These transistors are surrounded by a dashed line and can be MOS or BJT in 

BiCMOS technologies, as depicted in the figure. For simplicity, assume that the common node in the differential 

pair TA−T’A is grounded for AC signals and the voltage Vi and the resistance Ri are ½ of the actual voltage 

magnitude and impedance of signal source connected between input nodes IN−IN’.  The differential amplifier 

DA in the second stage usually is with low impedance RL, and DA suppresses the noise from biasing current 

source I1. The noise from reference circuit can be filtered out by the capacitor C connected to node REF. When 

the loading transistors are identical, the noise from node REF also results in in-phase signal, which is suppressed 

by DA. 

The noise contribution of the amplification transistor TA at the input terminal IN of the circuit has voltage SVIN
 

and current SIIN
 components. The input referred voltage noise SV,TA

 of the amplification transistor TA contributes 

directly to SVIN
. To the first order of approximation, the current component is SIIN

=SV,TA
/(gIN)², where is gIN is the 

input conductance of the transistor TA. Since the loading transistor  TL does not have a connection to the input, 

then TL does not contribute to input noise current, and the noise from the TL is referred to the input node IN of 

the circuit in Figure 56 as a voltage noise by SI,TL
/(gm,TA

)², where SI,TL
 is the output noise current of TL. 

Therefore, the total input referred voltage of the amplifier noise is 
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where gm,TA
 and gm,TL

 are transconductances and SV,TA
 and SV,TL

 are input referred noise voltages of transistors 

TA and TL, respectively. From this equation is clear that the relative contribution of TL to the input referred noise 

of the amplifier is proportional to the ratio of noise levels in TL to TA and it is a quadratic function of the ratio of 

the transistors’ transconductances. Note that the ratio gm,TA
/gm,TL

 cannot be varied freely, because the same DC 
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current flows through TA and TL, since TA and TL are connected in series, as seen in Figure 56, and 

ITA
=ITL

=IDC=I1/2. Depending on whether TA and TL are MOS or BJT, SV,TA
 and SV,TL

 are given later by eqs. (314) 

and (315) for 1/f noise, and  by eqs. (317), (319) and (320) for white noise. 

The current noise at the input of the circuit is  
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We have discussed this conversion for BJT by eqs. (19) and (20), and will illustrate again with several examples 

below, when the conversion holds. 

The additional noise from gate leakage or protection diode leakage is  
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which is the sum of 1/f and shot noise components, since the noise is due to overcoming of junction or insulator 

barrier – see eqs. (215) and (220) for gate leakage. For simplicity, we will neglect the noise from leakage, 

although it can be significant in MOS transistors with very thin gate insulators. 

The characteristic relations and values for the parameters of the transistors, as deduced from the previous 

sections, are now summarized. 

Form the trends in Figure 15, discussed by eqs. (213) and (214), the input referred 1/f noise voltage of a 

transistor is 
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Here, WL is the gate area of MOS transistor and AE is the emitter area of BJT. The term 1Hz is added to match 

the dimensions. One expects that the input referred 1/f noise voltage of the amplifier will be higher, if replacing 

the BJTs of emitter area AE with MOS transistors of same gate area WL~AE, according to 
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When using the data from ITRS [3] shown in Figure 1a, the ratio in the last equation is between 100AE/(WL) 

and 300AE/(WL), which implies that one should use large MOS transistor in order to achieve the low-noise 

performance of smaller-area BJT in terms of input referred 1/f noise voltage. 

As shown by eq. (263), the white noise in the collector current is a sum of the collector current shot noise and the 

coupled shot noise from the base current. When referred to the input base terminal by the transconductance of 

BJT, the input referred white noise voltage of BJT is 
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By multiplying with the square of the input conductance of BJT, gIN= IB/φt=IC/(βφt), we obtain (as expected) the 

white shot noise in the base current 
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which constitutes the white noise component in the input noise current SIIN
 of the amplifier, when the BJT is 

used as the amplification transistor TA. 

As shown by eqs. (249) and (250), and since the MOS transistor transconductance is gm,MOS=μCox(VG−VT)W/L 

in saturation regime of operation and gm,MOS=ID/φt in sub-threshold regime, then the white noise in the drain 

current is referred to the input gate terminal by the transconductance of MOS transistor, and the input referred 

white noise voltage of the MOS transistor is 
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and 
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To obtain higher gain from the input stage in the circuit, see again Figure 56, a high transconductance in the 

amplification transistor TA and high impedance of loading transistor TL at circuit node OUT are desired. 

Therefore, when using MOS transistors for TA or TL, the MOS transistors are chosen to operate in regimes either 

of saturation or weak inversion (sub-threshold), but not in linear (ohmic) regime. Therefore, we omit the case of 

linear regime. 

Note the similarity between eqs. (319) and (320). By multiplying these equations with the square of the input 

conductance of MOS, gIN≈2πfWLCox, we obtain the “white” noise in the gate current as 
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gSS

GG
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ϕ
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which is known as gate-induced noise in MOS transistors, it is frequency dependent and its power spectrum 

density increases with frequency, that is, SIG,white actually is not white. The precise analytical expression for gate-

induced noise is given in [174], it implies 4.22 times smaller value as compared to eq. (321), since the gate 

capacitance in saturation regime is 2WLCox/3, the charge fluctuation is distributed along the transistor channel 

non-uniformly and the gate current fluctuation at given position x along the channel length coordinate is the 

difference between the corresponding drain-side current fluctuation and the source-side current fluctuation. The 

calculation is complex, it uses Bessel function. Nevertheless, the final analytical expression for gate-induced 
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noise in [174] has the same form as eq. (321), and since SIG,white is low at low frequencies, then we will assume 

that eqs. (312) and (321) hold when estimating conservative values for gate-induced noise at low frequency. 

By comparing eq. (317) for BJT to eqs. (319) and (320) for MOS transistor, one observes that the input referred 

white noise voltage in BJT is higher than in MOS transistors, since 
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by a factor equal to the current gain β=IC/IB in BJT, assuming similar transconductances gm,MOS≈gm,MOS at given 

DC current. Note that this observation for input referred white noise voltage in eq. (322) is the opposite to the 

observation for 1/f noise in eq. (316), and the observation is valid for the input current noise of BJT, converted to 

voltage by SVB
=SIB

zB², see below for details, which is the case of high resistance Ri of signal source in Figure 56. 

Note also that the quantity 

21
t 103.8kT2q2 −×==ϕ  AV/Hz at room temperature   (323) 

is twice the thermal energy and the unit AV/Hz≡Joule. 

When TA and TL are BJTs, one uses eqs. (315) and (317) . Then, from eq. (312) and (318), the input current 

noise is 
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and from eq. (311), by adding the contribution of loading transistor, the input referred voltage noise of the 

amplifier is 




























+














ϕ

βϕ
+==

==

>>

noise for white , 1

noise 1/ffor  ,
A

A

1
I

q2

A

FOM

f

Hz1
zS

BJTT,BJTT

zR

S L

A

A

VB
ININ

T,E

T,E

tC

t

T,E

S2
BI

LA

Bi

V ,  (325) 

where zB=rb+ϕt/IB+(β+1)re≈ϕt/IB≈βϕt/IC is the input impedance of the BJT, rb and re are the resistances of the 

base and emitter passive regions, including resistances connected intentionally in the circuit in series with base 

and emitter terminals – see the discussion between eqs. (16) and (20).  

Note that eq. (325) for  SVIN
 in BJT amplifiers is for the case when the signal source impedance Ri is large, 

Ri>>zB, and, thus, eq. (325) represents the input current noise, which is the dominant noise source in BJT. For 

the case of low impedance signal source, Ri<<zB, SVIN
 is much lower, because SVIN

≈SIIN
(Ri+rb+re)² and 

zB/(Ri+rb+re) ~10 to 100, see again the discussion between eqs. (16) and (20). We use the high impedance case 

when comparing to MOS amplifiers. In the application practice, however, (rb+re)<Ri<βϕt/IC and one should 

consider values for input voltage noise 100 to 1000 times lower than that from eq. (325) for high impedance 

case. 

Several observations for the noise in a BJT amplifier can be made from eqs. (324) and (325) for the high-

impedance case Ri>>zB. Larger transistor areas reduce the 1/f noise, but they do not have effect on white noise. 
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The area of the loading transistor TL has to be several times larger than the area of the amplification transistor in 

order to reduce the effect of 1/f noise from TL. The input referred 1/f voltage noise is bias independent, while the 

input referred 1/f current noise is a strong quadratic function of the bias current. Therefore, a reduction of the 

bias current in micropower circuits will reduce the input current noise, but it will increase the input referred 

white voltage noise. The transistor current gain β has no effect on 1/f voltage noise, a higher β will decrease the 

white noise in the input current, but it will increase the input referred white voltage noise. The input current 

noise and voltage noise have similar frequency shape and corner frequencies. The loading transistor TL always 

doubles the white voltage noise of the amplification transistor TA, and this effect cannot be remedied. The 

critical source impedance Ri=Req, at which the input noise current and input noise voltage have equal 

contribution, is lower than the input resistance zB≈ϕt/IB≈βϕt/IC of the base terminal. In approximate calculations, 

a reasonable choice is Req~rb~zB/30, where rb is the resistance of the base passive region. From the discussion 

between eqs. (238) and (239), the noise figure has a local minimum at given frequency, when Ri=Req. 

To optimize the performance in low power amplifiers, one can minimize the product of bias current and noise 

level. For BJT amplifier, assuming equally sized amplification and loading transistors in eq. (325), the product is 
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  (326) 

To preserve the contribution of shot noise from the collector current, we have put back the term (β+1), which 

was reduced to β in eq. (325).  

Eq. (326) shows that the product ICSVIN
 is bias independent for white noise, and for 1/f noise, the product is 

proportional to the current density JC, which is typically between 30μA/μm² and 3mA/μm² - see Figure 39, and 

higher for high-speed and RF applications, according to ITRS [3].  At given bias current IC, in order to increase 

the frequency, one has to increase JC by reducing the emitter area of TA, which in turn, increases the 1/f noise. 

Thus, BJT are not very suitable for micropower amplifiers, and since ICSVIN
 is bias and size independent (at 

given JC), then the tradeoff between low bias currents and high noise in micropower BJT amplifiers is evident.  

Using typical values for FOMSVB
 from eq. (315) and range of values for the current gain β, we plot in Figure 57 

the product ICSVIN
=ICSIIN

zB²  separately for 1/f noise (middle-left in the figure) and white noise (bottom-left). In 

the plots for BJT in this figure, the diamonds, squares and triangles correspond to βmin=50, βtyp=150 and 

βmax=500, respectively. The corner frequency fc between 1/f noise and white noise is then plotted at the top-left 

in the figure, according to 
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as follows from eq. (326) for the condition S(1/f)=S(white). Note that the plots for BJT amplifier in Figure 57 

are for the high-impedance case, Ri>>zB, which represent the input current noise, while the actual input voltage 

noise at Ri<<zB will be about 2-3 decades lower, since SVIN
≈SIIN

(Ri+Req)²≈SIIN
(Req)² and Req~rb~zB/30, as 

mentioned above, but never below the limit 2qφt²=2.1×10−22 V²A/Hz, which is set by the shot noise of the 
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collector current, since 2qφt²=IC×2qIC×(φt/IC)²=IC×SICshot/gm²=ICSVIN
. 

When TA and TL are MOS transistors operating in weak inversion (sub-threshold) regime, VG<VT, one uses eqs. 

(314) and (319) . Then, from eq. (311), the input referred voltage noise of the amplifier is 
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and from eq. (312), the input current noise is 

( )
( )

( ) .
noise  whitefrom ,fLW

I

q2

noise 1/f from ,fLWFOM Hz1

C2                                             

gS

MOST,MOST

2VV

S

2
TT

tD

t

TTS

2
ox

2
INT,V

LA

tTG

I

AA

AAVG

AIN



















ϕ

ϕ
+

×π≈

==
==

ϕ−<

  (329) 

The corresponding equations, when TA and TL are MOS transistors operating in strong inversion (saturation) 

regime, VD>VG−VT>0, by using eq. (320) instead of eq. (319), are: for the input referred voltage noise of the 

amplifier 
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and for the input current noise 
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As compared to eqs. (324) and (325) for the noise in a BJT amplifier, several similarities and differences for the 

noise in MOS amplifier can be made. In sub-threshold regime, the input referred voltage noise has the same 
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expression as for BJT, with differences that the white noise component is not multiplied by current gain β, see 

again eq. (322), and FOMSVG
>>FOMSVB

, see eq. (316). In contrast to BJT, when MOS transistors are operating 

in saturation regime, the amplifier input referred 1/f voltage noise component, SVIN
 in eq. (330), depends on the 

ratio between gate lengths of TA and TL, rather than on ratio of gate areas, and the amplifier input referred white 

voltage noise component is decreasing “slowly” as ID
−0.5∝(VG−VT)/ID, rather than as 1/ID. Also, the relative 

contribution of the loading transistor depends on the square root of aspect ratio W/L of TL and TA, rather than 

being equal to 1. Note that eqs. (330) and (331) are derived at condition of equal DC currents flowing through 

TA and TL, as mentioned earlier for the circuit in Figure 56, and the current noise SIIN
 in the case of MOS 

amplifier increases with the frequency, while in the case of BJT amplifier, SIIN
 was decreasing as 1/f at low 

frequency or constant in the frequency range of white noise.  

Other important difference between MOS and BJT amplifiers, is that the critical source impedance Ri=Req, at 

which the input noise current and input noise voltage have equal contributions, is frequency dependent in the 

case of MOS amplifiers. For sub-threshold regime, Req is 
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and for saturation regime, Req is 
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Evidently from eqs. (332) and (333), the critical source impedance Req∝1/gIN, Req is inversely proportional to 

frequency f  and to the gate area (WTA
LTA

) and gate capacitance (WTA
LTA

Cox) of the amplification transistor TA 

in MOS amplifier. Note that in a MOS amplifier, Req does not depend on the bias at given geometry of MOS 

transistors.  

The geometry of MOS transistors, however, depends on the range of bias currents and biasing conditions, while 

the geometry of BJT depends mostly on the desired current density IC/AE, as discussed above. For a given MOS 

process, there is a characteristic current IDO, given by 

2
toxDO C2I ϕµ= ,      (334) 

which can be regarded as the drain current of square-shaped MOS transistor (W=L) at VG=VT [169], see after eq. 

(253). The characteristic current IDO depends on the MOS technology, and it ranges between 100−1000nA, since 

μCox ~0.07−0.7mA/V² for mobility μ~150−300 cm²/Vs, EOT~1.4−7nm and φt≈26mV at room temperature. 

Typically, IDO~330nA, corresponding to μCox ~0.25mA/V². At a gate bias VG apart about ±2φt≈±50mV from 

threshold voltage VT, the drain current in the square-shaped MOS transistor is 
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Here, W=WTA
=WTL

 and L=LTA
=LTL

 are the gate widths and lengths, and the drain current in the MOS transistors 

is ID=IDsqW/L. Substituting in eqs. (328) and (330), by also assuming nearly equally sized amplification and 

loading transistors, and following the long-channel MOS transistor model (page 427 in [169]), the product of 

bias current and noise level in a MOS amplifier is 
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where the term 
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I
25.05.0  is denoted as f(u) on page 427 in [169],  it changes from 1 in 

subthreshold regime to (VG−VT)/(2φt) in strong inversion regime above threshold, and it provides for the 

transconductance gm a smooth transition from exponential to linear dependence as function of gate bias below 

and above threshold voltage, respectively. Other soothing functions for gm can be found in [294]. 

Eq. (336) shows for MOS amplifiers that the product ID×(white input voltage noise) is bias independent in 

subthreshold regime, and the product increases linearly as (VG−VT)/(2φt) at gate bias above threshold. For the 1/f 

noise, the product increases with the level of channel inversion (IDsq/IDO) and with “surface current density” 

(IDsq/L²), which is similar to the dependence on current density in BJT. There is no dependence on gate width W 

in eq. (336), but W links ID, L and IDsq by eq. (335), and W<L, if IDsq>ID, which is possible at high gate bias and 

low currents in micropower circuits, e.g., (VG−VT)/(2φt)>3 for (VG−VT)>0.15V, IDO~0.33μA for EOT=2.8nm 

and μ=200cm²/Vs, and ID<3μA, since IDsq~3²×0.33μA~3μA.  

Similarly to BJT amplifiers, the product IDSVIN
 implies a tradeoff between low bias currents and high noise in 

micropower MOS amplifiers, at given current density (IDsq/L²) and level of channel inversion (IDsq/IDO), the later 

corresponding to a fixed gate overdrive voltage (VG−VT). Using typical values for FOMSVG
 from eq. (314), we 

plot in Figure 57 the product IDSVIN
 given by eq. (336) for MOS amplifiers separately for 1/f noise (middle-right 

in the figure) and white noise (bottom-right). We assume that the gate length of MOS transistors for analog 

circuits is about 3-5 times the minimum gate length Lmin of particular CMOS technology. The diamonds are for 

minimum IDO=0.1μA and L=1.5μm, and correspond to pMOS of from nodes with Lmin=0.35μm to 0.5μm 

(EOT~7nm, Cox~0.5μF/cm², μ~150cm²/Vs). The squares are for IDO=0.333μA and L=0.5μm, and correspond to 
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nMOS from nodes with Lmin=90nm to 130nm (EOT~2.8nm, Cox~1.2μF/cm², μ~200cm²/Vs). The triangles are for 

IDO=1μA and L=0.2μm, and correspond to advanced MOS nodes with Lmin<65nm (EOT~1.4nm, Cox~2.5μF/cm², 

μ~300cm²/Vs), which is expected to be used also in analog applications in the near future. For convenience, and 

in order to show the gate overdrive (VG−VT) in the horizontal axis at the top of Figure 57, the plots for MOS 

amplifiers are given versus the level of channel inversion (IDsq/IDO), which is a dimension-less quantity, rather 

than versus current density. 

The corner frequency fc between 1/f noise and white noise is then plotted at the top-right in Figure 57, for MOS 

amplifiers that use transistors with the abovementioned parameters, according to 
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as follows from eq. (336) for the condition S(1/f)=S(white).  Note that the plots for MOS amplifier in Figure 57 

are for low-impedance case, when the signal source resistance Ri<<2πfWLCox, and the plots represent the input 

referred voltage noise of MOS amplifier, whereas, the plots for BJT amplifier are for high-impedance case, when 

the signal source resistance Ri>>zB=βφt/IC, and the plots represent the input current noise of BJT amplifier via 

SVIN
=SIIN

zB², as discussed earlier after eq. (327). 

Several useful comparisons between MOS and BJT amplifiers can be made in Figure 57 for the product IDCSVIN
. 

For the white noise, the product is independent of transistor size, but increases with bias level (IDsq/IDO) in MOS 

amplifiers, whereas, the product is independent of bias level JC=IC/AE, but it depends on the current gain β of 

BJT used in the amplifier. For the 1/f noise, the product increases with the bias level in both MOS and BJT 

amplifiers, but the product is independent of the current gain β in BJT amplifiers, whereas, it increases as 

IDO/L²∝μCox/L² in MOS amplifiers. The corner frequency fc decreases with the current gain β in BJT amplifiers, 

owing to higher white noise, whereas, fc increases as Cox/L² in MOS amplifiers, owing to higher 1/f noise. 

Consequently, fc is usually in the kHz range for BJT amplifiers, whereas, fc can reach GHz range in MOS 

amplifiers. Thus, one can observe both 1/f noise and white noise in low-frequency BJT amplifiers, whereas, the 

1/f noise dominates in the entire low-frequency range below 1MHz in MOS amplifiers with short gates, e.g. 

L<1μm. Note again that the comparison is between voltage noise in MOS amplifiers and current noise in BJT 

amplifiers, the later multiplied by the square of input resistance of BJT. 

The relations for the product IDCSVIN
 in eq. (326) for BJT amplifiers and in eq. (336) for MOS amplifiers are 

generic, and we illustrate in Figure 58 how they are reflected in commercially available integrated amplifiers 

from different fabricators, Analog Devices, Linear Technology, and Texas Instruments and Burr-Brown. From 

the datasheets of the amplifiers, we have collected the values for 1/f and white noise, maximum quiescent 
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current IQ and bandwidth. As shown in the left-hand plots of Figure 58, on the top for BJT and below for MOS 

amplifiers, increasing IQ, the bandwidth increases, the white noise decreases, while the 1/f noise scatters 

generally. 

Obviously, the datasheets provide performance parameters of the amplifiers and the details for the designs are 

omitted. Since the current IDC and the sizes of the transistors in the input stage are not stated in datasheets, then 

we assume that IDC is a portion of the quiescent current IQ of the amplifier, and IDC scales approximately linearly 

with IQ, in order to preserve the bandwidth of the amplifier. Then, the current density in the input transistors of 

BJT amplifiers is estimated from the corner frequency fc between 1/f and white noise, according to eq. (327), and 

using typical values for β=150 and FOMSVB
=3.8×10−12 μm²V²/Hz from eq. (315). Re-arranging the data against 

the current density, as illustrated at the top-right plot of Figure 58, the product 0.5IQ×SVIN
 for BJT amplifiers fits 

with the predictions of eq. (326) given earlier for the design window in Figure 57. In particular, the 1/f noise is in 

agreement with the general trend (solid squares) for 2JCFOMSVB
, having a distribution illustrated with bell-

shaped curve with standard deviation 5.5dB on right of the trend. The product 0.5IQ×SVIN
 for white noise 

(triangles) also became with trend independent of the current density, having a distribution with a peak within 

the limits given by the design window for β=50 (solid diamonds) and β=500 (solid triangles), and standard 

deviation also 5.5dB. The similar values for the standard deviations for 1/f noise and white noise, as well as the 

increase of the bandwidth as function of current density, imply that the scattering around the trends is due to 

differences in the design of the amplifiers, but in general, the predictions from of eqs. (326) and (327) hold for 

BJT amplifiers, by taking 50% of IQ in the product IDC×SVIN
. The high value of 50% is empirical, and it is 

justified by the fact that the input referred voltage noise of BJT is normally lower in low impedance circuits, see 

again the discussion after eq. (327), and one has to take 10-20 times the biasing current IDC of the input stage of 

the amplifier in order to compare to eq. (326), which is derived for the dominant current noise in high-impedance 

circuits. Indeed, as given in the datasheet of the ultimately low noise amplifiers LT1028 and LT1128 from 

Linear Technology, the DC current is 1.8mA in the input stage, and it is a significant portion (~25%) of the 

quiescent current 7.5mA.  

As for MOS amplifiers, it is not possible to calculate gate overdrive and gate length from the information in 

datasheets. Therefore, the portion of IQ in the product IDC×SVIN
 was varied until no data point left below the 

ultimate minimum of 2qφt² for the product, as follows from eq. (336) and assuming negligible noise contribution 

of the loading transistor. Using 0.02IQ×SVIN
, the results are shown in the bottom-right plot of Figure 58. In 

agreement with the prediction from eq. (336), the product with the white noise (triangles) is low at low IQ, and it 

increases slowly at higher IQ. There is bimodal distribution in the data, which corresponds to IDO(W/L)=2μA and 

150nA, and for these values, the predictions from the term 2×2qφt²[0.5+(0.25+IDsq/IDO)0.5] of eq. (336) is 

illustrated by solid lines through the triangles. Along with the increase of the bandwidth, this confirms that the 

current density (IDsq/L²) increases with IQ, and according to the prediction from eq. (336) for the 1/f noise, the 

product 0.02IQ×SVIN
 is nearly proportional to IQ for 1/f noise, as shown in the bottom-right plot of Figure 58 with 

circles and a trend line through them. The distribution in the data is wide, having standard deviation about 7dB, 

with limits shown by solid lines. The upper limit corresponds to 5V MOS with EOT=10nm, L=3µm, 

WL=450µm², low input capacitance of 1.6pF, and FOMSVG
=500 μm²µV²/Hz. The low limit corresponds to 30V 

MOS with EOT=30nm, L=40µm WL=16000µm², high input capacitance of 18pF , and FOMSVG
=100 
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μm²µV²/Hz. The capacitances are within the range given in the datasheets, the oxide thicknesses correspond to 

the maximum supply voltages in the datasheets, and the values for FOMSVG
 are within the range for analog MOS 

in ITRS [3]. 

Overall, the right-hand plots in Figure 58 demonstrate that the relations given in eq. (326) for BJT amplifiers and 

in eq. (336) for MOS amplifiers for the product IDC×SVIN
 are valid, and the relations are observed in the 

commercially available integrated amplifiers as extension of the design window in Figure 57 toward low current 

densities, IC/AE for BJT or IDO/L² for MOS. Therefore, the IC manufactures use IQ×SVIN
 as the figure of merit for 

their low-power low-noise amplifiers – see [295] for a datasheet from Linear Technology, for example. 

VII.2. Up- and cross-conversion in phase noise 

VII.2.1. Definitions 

The noise in ideal linear circuits is additive, that is, the noise and the signal occur simultaneously and 

independently each from other. However, many circuits used for signal generation and processing are not linear, 

they are also time variant, and the low-frequency noise is “multiplied” in these circuits, even when the circuit 

operates at high frequency. This effect is known as up-conversion of low-frequency noise, in which the 

properties of the high frequency signal, e.g. amplitude, phase, delay, are affected by the low-frequency noise. 

The up-conversion of noise degrades the spectral purity of the signal, widening the spectrum of the signal, and in 

time domain it causes jitter in the transitions of the stationary cycling signals. There are many works devoted on 

up-conversion of low-frequency noise, and the up-conversion was reviewed in [296] with emphasis on BJT 

circuits.  

The problem of up-conversion can be introduced when looking at the modifications of ideal signal, when passing 

through a circuit. The modifications are assumed as modulations, and given generally by 

[ ] [ ])t(tf2sin)t(V)t(V sas ϕ∆+π∆+= ,    (338) 

where Δa is fluctuation in amplitude and Δφ is fluctuation in phase of the original signal Vo=Vssin(2πfst), the 

latter with amplitude Vs and frequency fs. The frequency fs of RF signals is usually high as compared to the  

frequency range of the spectrum of the low-frequency fluctuations Δa and Δφ. Therefore, Δa and Δφ appear as 

amplitude and phase modulations of the original signal, and respectively, are regarded as amplitude and phase 

noise. (Other forms of signal modification can be also assumed, for example, as in perturbation phase noise 

theories, which we will discuss later.) 

The noise from devices contributes to both amplitude and phase noise in eq. (338). Both contributions result in 

broadening of the spectrum of the signal around frequency fs. For the amplitude noise, the product Δa(t)sin(2πfst) 

results in convolution Δa(Δf)*δ(fs−Δf) in frequency domain between noise spectrum Δa(Δf) at low frequency  

Δf<<fs and spectral line δ(fs−Δf) of the signal. The convolution creates side-lobes around signal frequency fs at 

offset frequencies Δf, which can be further modified by the shape of the amplitude-frequency response of the 

load, e.g. LC tank in RF circuits. In similar manner, the phase noise also creates side-lobes around signal 

frequency fs, since sin[2πfst+Δφ(t)]=sin(2πfst)cos[Δφ(t)]+cos(2πfst)sin[Δφ(t)] in time domain, and when converted 

in frequency domain, it also results in convolution δ(fs−Δf)*Δφ(Δf)/Δf. (The division on Δf occurs, because one 

can take the spectrum of phase noise at Δf as constant at fs>>Δf, having spectrum inversely proportional to Δf 

after Fourier transformation. Precisely, the division is due to the fact that the frequency is time derivative of the 
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phase, as shown later.) The term Δφ(Δf)/Δf results in “addition” of 1/Δf² slope to the frequency dependence of 

low-frequency noise, when addressing power spectrum densities (PSD) at high frequency. In other words, the 

PSD of phase noise decreases as 1/Δf² steeper, when compared to PSD of the noise source that causes the phase 

fluctuation. The above explanations are heuristic, but they capture the main properties of amplitude and phase 

noise. The typical spectrum of an oscillator is shown in Figure 59a for a CMOS oscillator [297]. When taking 

one side of the spectrum, either below or above oscillation frequency fs, one obtains the single side band (SSB) 

noise. The ratio of the power spectrum density of SSB noise to the magnitude of the carrier signal at the 

oscillation frequency defines the normalized spectrum of the phase noise, PhN, according to 
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where Pcarrier is the power of the signal at the output of the oscillator and SSSB is the power spectrum density of 

SSB noise at Δf=f−fs frequency offset from oscillation frequency fs. One usually reports the data for PhN in units 

[dBc/Hz], which are according the second line of the equation. Figure 59b illustrates the PhN spectrum obtained 

from the spectrum of the oscillator in Figure 59a, showing also the two typical slopes, 1/Δf³ and 1/Δf², in PhN, 

which are result of up-conversion of 1/f and white noise, respectively, by “addition” of 1/Δf² to the slopes of the 

low-frequency noise, as mentioned above and discussed later. 

The amplitude noise is not a severe problem, since most practical circuits possess amplitude limiting mechanism 

[296], e.g. automatic gain control in oscillators and limiters for mixers, resulting in substantial suppression of the 

amplitude noise. However, the phase noise is serious problem, since a phase feedback is difficult, and the 

spectral broadening of the oscillation signal due to phase noise is perhaps the most critical issue for reference 

oscillators, in which the oscillator is free-running. Therefore, from here to the end of this sub-section, we focus 

on phase noise in oscillators. 

VII.2.2. Phase-noise in oscillators 

There are three approaches studying the phase noise in oscillators. These are time invariant, cyclostationary and 

perturbation approaches. 

Time invariant approach 

The time invariant approach was first suggested in [298], it is used widely, and a detailed review of the approach 

is given in [296]. It is assumed the obvious configuration of an electronic oscillator, in which an amplifier with 

noise figure NF, see eq. (228), has a frequency dependent LC−Rs feedback so that at frequency (2πfs)²=1/(LC) 

the feedback is positive without phase shift, and the circuit generates sinusoidal signal at fs. An assumption is 

made in [298] that power spectrum density (PSD) of the phase fluctuation is equal to the ratio of amplifier noise 

to oscillation power. This assumption is based on eq. (338) in the following manner.  
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which rewritten for noise becomes 

[ ]
2

S
S)t(tf2cos

V

S
s

2
2
s

V ϕ
ϕϕ ≈∆+π= ,     (341) 



131  of  286 

since the time invariant approach takes the average value of cos²(x)=0.5. Then, by taking into account that 

VRMS=Vs/√2 for sinusoidal oscillation, then the voltage noise of the amplifier is expressed with noise figure, as 
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where NFwh is effective noise figure of for white noise in respect to the resistance Rs of the LC tank at resonance 

frequency fs, and Δfc is effective corner frequency between 1/f and white noise, as introduced in [298]. Thus, the 

PSD of the noise in the phase is 
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where Sφ/2 is SSB component corresponding to one side-lobe of noise.  

The fluctuation Sφ in the phase is applied to the LC tank, which converts it in frequency noise SΔf, as follows. 

The LC tank has (-3dB) bandwidth 

Q

f

2

BW s=± ,       (344) 

where Q is the quality factor of the resonator used in the feedback of the oscillator. When the frequency offset is 

small, Δf<±BW/2, then the relation between phase and frequency in the LC tank is approximately 
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ϕ∂± , at f≈fs and f−fs=Δf<±BW/2.     (345) 

Therefore, d(Δf)=dφ×fs/(2Q), which rewritten for noise Sφ/2  in ±BW/2 is 
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For frequency deviation larger than ±BW/2, the phase of the LC tank does not change significantly with 

frequency. Therefore, the frequency and phase fluctuations are directly coupled each to other, without 

modification from LC tank. Owing to the general relation 2π(df)=∂(dφ)/∂t between phase φ and frequency f, 

which also holds for the output of the oscillator, then phase fluctuation can be equally rewritten as frequency 

fluctuation [298] 
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Rewritten for the oscillator output, the last relation is 
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where Sθ is noise in the phase and SSSB is the single-side band PSD of the oscillator output signal. Combining 

eqs. (346) and (347), as suggested in [298], and substituting in eq. (348), one gets 
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When substituting with eq. (343), the expression for time invariant approach for phase noise in oscillators 

becomes as  

( )























∆
+









∆
∆

+==∆
2

sc
wh

carriercarrier

SSB

fQ2

f
1

f

f
1NF

P

kT2

P

S
fPhN , at f≈fs and any f−fs=Δf,  (350) 

where the noise figure NFwh is for white noise in respect to the resistance Rs of the LC tank at resonance 

frequency fs, as mentioned above. In RF oscillators generating in the frequency range of GHz, one usually uses 

LC tanks with Q<100, and fs/(2Q)>10MHz. Therefore, the last term in the square brackets dominates, and 

practically for Δf<1MHz 
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Consequently, one observes two slopes, 1/Δf³ and 1/Δf², in oscillator phase noise, as illustrated in Figure 59b. 

Eqs. (350) and (351) are known as Leeson formula for phase noise [298]. 

Certainly, the time invariant approach captures very essential features related with the phase noise. These are the 

abovementioned two frequency slopes, and the requirements for high quality factor Q of the resonator, low noise 

figure and low corner frequency between 1/f and white noise in the amplifier. However, there are issues, because 

Δfc is different, usually lower, than the corner frequency fc between 1/f and white noise in the amplifier, and 

also, there is no accurate expression that relates NFwh to the noise figure NF of the amplifier, the latter given for 

low-frequency noise by eq. (228), for example. 

Cyclostationary approaches 

The above issues were found to originate to circuit asymmetry and high-order harmonics in oscillators, after 

applying cyclostationary analyses. Earlier experiments, such as that in [299], showed that improving the circuit 

symmetry, and thus reducing harmonics related to non-linearity, decrease the SSB lobes and phase noise. The 

cyclostationary analyses are area of active research [300, 301, 302], they are lengthily to be presented here in 

full, and there is no review available at present, which compares different approaches, in computer simulators. 

The approach is introduced in [303], it is sketched in [304], the derivation of the equations is presented at [305], 

and summarized in [212], as 
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where ∂fs/∂im are sensitivities of the (oscillation) frequency fs to changes in harmonic with number m=0,1…N, 

[∂fs/∂in]* are complex conjugated values of the sensitivities of the (same) harmonics with number n=0,1…N, and 

the white noise power spectrum densities Sm,n are from all noise sources weighted by magnitude of the 

harmonics (e.g. for shot noise in BJT, Sm,n=2qIm−n, where Im−n is the magnitude of the (m−n)th harmonic in the 

BJT current). Note that the 1/f noise, S1/f, and any other low-frequency noise, contributes only by the DC 
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component i0 of the signal, as shown with the term in front of the sum, whereas the high frequency white noise 

around all harmonics also contributes to the phase noise around the fundamental harmonic with frequency fc.  

In other words, the up-conversion of low-frequency noise is only via “DC component”, the 0th harmonic, of the 

signal derivatives in oscillators, while the white noise around all harmonics adds on the top of the up-converted 

low-frequency white noise, according to harmonic balance method for cyclostationary analyses of phase noise. 

Thus, in oscillators, in which the signals are large and harmonics are present, the phase noise is not solely due to 

up-conversion of low-frequency noise; and the corner frequency Δfc between 1/Δf² and  1/Δf³ phase noise 

components is lower in oscillators as compared to the corner frequency fc between low-frequency white and 1/f 

noise of the transistors biased at the same DC conditions as in the oscillators. This is also confirmed by 

perturbation methods for analysis of phase noise, which are summarized below. Owing to the importance of 

balance between DC, amplitude of oscillation and linearity for phase noise, we will discuss the tradeoff 

immediately after the paragraphs for the perturbation approach, as the third design consideration – see later and 

below eq. (398). 

Perturbation approach 

The perturbation approach for analysis of phase noise assumes that the noise perturbs the operation of the 

noiseless oscillator. As mentioned earlier, eq. (338) is not the only way to describe the modification of ideal 

signals. The perturbations can be assumed and introduced in various manners, e.g. in amplitude Δa and phase Δφ 

by eq. (338), or in other form, such as 
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where vo(t)=ΣVkexp(j2πkfst) is the un-perturbed (ideal) signal of the oscillator with fundamental frequency of 

oscillation fs, and also having harmonics with amplitudes Vk, which are the Fourier coefficients of vo. The noise 

perturbation is usually assumed in Δa as an amplitude perturbation, and the response of the oscillator converts it 

into jitter Δt or, equivalently, in phase deviations 2πkΔt. Thus, the phase deviation Δφ=2πfsΔt around fundamental 

harmonic (k=1) is the phase noise modulation in eq. (338), and eq. (353) also implies that there is phase noise 

modulation around all harmonics of the oscillator, which, indeed, are k-times larger than the phase noise 

modulation Δφ of the fundamental harmonic, where k is the number of the harmonic. Among the several phase 

noise theories that use perturbation, we discuss two, since the mathematical derivations are lengthy, while the 

results from the different analyses appear to converge each to other. A list of publications that deal with phase 

noise theory is provided at the end of this sub-section. 

First approach. One approach to perturbation phase noise analysis is to look at the differential equations that 

describe the oscillator, by adding perturbation in the equations, and obtain insights for the behavior of the 

oscillator signals in time and frequency domains. Such approach was taken in [306], the comprehensive 

derivations are published in [307] and [308] for white noise and colored noise (1/f noise and band-limited 

Lorentzian noise), respectively, and the approach was summarized in [309], as follows. 
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where k(=1, 2, 3…) is the number of the harmonic of interest with frequency (kfs), cw is a parameter that reflects 
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the contribution of white noise sources in the oscillator, the sum is over noise sources in the oscillator, cf are 

parameters that weight the contribution from colored noise sources, the latter having power spectrum densities 

Sf, and cfSf is normalized noise, that is, if Sf is in unit A²/Hz, then cf is in unit 1/A². The expression in the square 

brackets is small, e.g. less than 10Hz, and it causes the phase noise spectrum to level-off at small frequency 

deviations. The parameter cw can be determined from the circuit analysis both in time and frequency domains 

[307], but the calculation involves finding solution of the equations based on the oscillator circuit equations, 

which are also differential and non-linear in principle. Nevertheless, at particular biasing and in particular circuit, 

cw has a single value, and it is shown in [307] that cw is also related to the variance of the jitter, or 
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where tm is the duration of observation (measurement) of the jitter, and σΔt,w is the standard deviation of the jitter 

Δt in eq. (353) during the observation and due to white noise. One can assume only the white noise causing the 

jitter, that is σΔt,w≈σΔt, by neglecting other components in σΔt, resulting from 1/f or Lorentzian noise. Then, if the 

jitter measurement is at the nth period of the clock of a digital signal (after slope triggering of an oscilloscope by 

the clock signal, for example), then tm=nTs=n/fs and from histogram of the time of the signal transitions around 

nTs, one can calculate σΔt and estimate cw from eq. (355). Then, one can measure the phase noise spectrum and 

from the region with 1/(Δf)² slope in the spectrum, to obtain other estimate for cw=PhN×(Δf/fs)², according to eq. 

(354), and verify whether the contribution of white noise is the dominant in the jitter, which would be true, if the 

values for cw obtained by both measurements are close. One note should be made here, that Gaussian white noise 

was used in the deviations of eqs. (354) and (355), while in the practice, the jitter may have pattern dependent 

component, which might be not Gaussian. Thus, a simple pattern should be used in jitter measurement, but not 

pseudo random sequence. For the clock signals, one useful relation between cycle-to-cycle jitter and phase noise, 

which has been derived in a simple manner and verified experimentally in [310], is 
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The expression for cycle-to-cycle jitter follows directly from eqs. (354) and (355) when setting observation 

(measurement) interval tm=1/fs reciprocal to of the oscillation frequency fs and consider the phase noise in the 

fundamental harmonic (k=1) at dominance of cw in the nominator and dominance of (Δf)² in the denominator of 

eq. (354). 

Apart from the complications to calculate the parameters cf from differential equations of the oscillator, another 

problem in eq. (354) is a singularity that occurs at very small offsets Δf→0, if the colored noise Sf =K/f is 1/f 

noise. In such case, eq. (354) reduces to Δf/[(πkfs)²cfK]∝Δf→0, and the phase noise reduces, instead to increase 

or level off, when the frequency offset Δf decreases. Such reduction was never observed for phase noise in the 

practice of free running oscillators. (The reduction is evident in fractional PLL with sigma-delta modulator.) To 

remedy, a low-frequency corner fcf for the spectrum of 1/f noise was introduced in [308], below which frequency 

Sf is constant. Thus, the 1/f noise at very low-frequency Δf→0Hz and DC was limited to Sf(0Hz)=4/fcf in 

perturbation theory, by terming the flicker noise spectrum as 
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The autocorrelation function Rf=R1/f and the variance σf =σ1/f (related to the jitter) of 1/f noise with low-

frequency corner fcf, respectively, are [308]  

( ) ( ) ( )tfEI2tRR cff/1f == , autocorrelation function of 1/f noise,     (358) 
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with the exponential integral EI(x) being 
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For comparison, for RTS, burst and GR noise, which have low-frequency band-limited normalized Lorentzian 

spectrum of  

( ) ( )
2

cf

BLf

f

f
21

1
fSS









π+

== , Lorentzian spectrum      (361) 

the autocorrelation function and the variance are [308] 
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BLf −== , autocorrelation function of noise with Lorentzian spectrum,  (362) 

( ) ( )
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cfcf2
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tfexp1tf
t

−+−
=σ , variance of noise with Lorentzian spectrum,  (363) 

and the white noise has jitter variance (σΔt,wh)²=cwt, as follows from eq. (355) given earlier. Note that variances 

are functions of the time, and the complexity of the functions increases when the type of the noise changes from 

white noise, through Lorentzian noise, to flicker (1/f) noise.  

In addition, the observation of phase noise or jitter is never for infinite time, but for the time window tm of the 

measurement, that is for the acquisition time by spectrum analyzers or oscilloscopes. The time window tm 

modifies the results for variance, and at high time and frequency resolution, so that both frequency and time 

being assumed continuous, it was shown in [308] that the variance σΔt for the jitter Δt, see again eq. (353), during 

the observation time tm can be calculated  by 
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using eqs. (358) and (362) for autocorrelation functions of 1/f noise and Lorentzian noise, respectively, by 

performing the calculation in time domain, or equivalently by calculation in frequency domain 
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using eqs. (357) and (361) for power spectrum densities of 1/f noise and Lorentzian noise. The summation in the 

last two equations is along noise sources in the oscillator circuit. To meet the assumptions for Gaussian random 

variables, which is used in the derivations, tm has to be in large enough steps Δtm, so that the results for 

σΔt,i=σΔt(i×Δtm) and σΔt,k=σΔt(k×Δtm) by any values of i and k must satisfy the condition 
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Second approach. Noticeably, the use of the equations above meets with difficulties in the practice, they might 

be mapped in numerical methods, but then, they become vulnerable for quantization errors. Therefore, other 

approach for building of solvers for phase noise and jitter was used in [309]. The approach is based at macro 

model for the relation phase-frequency, in particular, the phase deviations are integrated frequency deviations. 

That is, the macro model is an ideal integrator in time domain. The circuit noise sources are weighted and 

summed into power spectrum density Sω of a macro noise source at the input of the integrator, and the output of 

the integrator is the phase deviation Δφ or jitter Δt=Δφ/(2πkfs) of the oscillator, where k is the harmonic number 

and fs is the frequency of oscillation. The weighting is with the parameters sw and cf are according to eq. (354), 

and the macro noise source at the input of the integrator is 

( ) ( ) ∆+=∆ω fSccfS ffw .       (367) 

Note that Sω is a normalized power spectrum density in unit 1/Hz, as mentioned after eq. (354).  

In frequency domain, the transfer function of the integrator is HI=1/(j2πΔf). The observation (or measurement) is 

practically for finite time tm, and then, it is repeated, if desired. In other words, the integration captures the 

evolution of the increment of the phase and its variations (e.g. jitter or phase noise) only for time tm. Then, the 

integrator is “zeroed” before the next observation. This is exactly what happens by triggering the measurement 

in real instruments.  

Let us neglect the pause between single measurements. Every single measurement will give the increment of the 

phase and its variation between current and delayed with tm integrations. In such situation, the delay-difference 

operator in frequency domain is Htm=1−exp(−j2πΔf×tm), and Htm is a transfer function that multiplies the transfer 

function HI of the integrator. In this way, the observation time window is introduced in [309], and the power 

spectrum density Sφ of the phase at the output of the integrator for observation time tm becomes, as  
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Interestingly, the mathematical problem of singularity at Δf→0Hz is resolved, once Sω(0Hz) is finite, since 
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→
. Thus, at finite time of measurement tm, the power spectrum density Sφ of the phase at 

the origin Δf→0Hz will be observed as 

( ) ( )Hz0StHz0S 2
m ωϕ = ,     (369) 

which is a version scaled by square of the duration of the observation of the power spectrum density of the 

macro noise source Sω at the origin Δf→0Hz, where Sω causes the phase noise in the oscillator, but Sφ is not an 

integrated value of Sω, thus the integration function in the macro model is “lost” when the product (Δf×tm) is 

small, although mathematically everything is perfect. Similarly, there is no mathematical problem to obtain the 

variance in the phase from 
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The last integral can be calculated to a finite value either by analytical or numerical method, by taking 

appropriate minimum offset frequency Δfmin, which in the practice is set by the frequency resolution of the 

spectrum analyzer or by tm in the case of jitter measurement by oscilloscope, so that 

[sin(πΔfmintm)/(πΔfmintm)]²≥(1−error). However, note again that the phase-frequency relation (of integration) is 

lost at low frequency, and at Δf=0, it is replaced with a term that scales the “frequency” noise Sω by the product 

(tm×tm×Δfmin) of measurement settings, instead of having integration of Sω. It is worth mentioning, without 

expanding a discussion on measurement uncertainty and errors, that Δfmintm≈N, where N is the number of 

spectral lines resolved by the spectrum analyzers that use discrete Fourier transformation, whereas in digital 

oscilloscopes, tm is the time from triggering and  Δfmin=fsamp/N, where N is the number of points acquired by the 

oscilloscope at the sampling rate fsamp of ADC, but Δfmin does not have direct relation with the time scale on the 

screen or with the time resolution or bandwidth of the oscilloscope. There are important issues related to the 

above consequences from finite time observation of phase noise, and one has to carefully take into account the 

consequences when analyzing experimental data and comparing to simulations. The simulators preserve the 

calculation consistence in circuits, trying to provide a result that is independent from the length of the data 

window, whereas the measurements are affected by the time window, because of limited accuracy and resolution 

that also depend on measurement settings. Simply, the spectrum analyzers and oscilloscopes do not “know” that 

they measure phase noise, and certainly, the instruments do not make corrections to remedy artifacts from 

measurements, unless the user programs the instrument to do post processing in specific way. 

So, when using the integrator with delay-difference operation, as shown in [309], one obtains from eq. (370) the 
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following expressions for the variance of the jitter 

( )
( )

( ) ( )

( )

( )
( )

( ) ( )

( )
( )
( ) ( )[ ] ,fcorner frequency  low with noise 1/ffor  ,tfln28456.0tckf

and noise, for white ,tckf

2

fdfS
f 

t f sin
 2

2

fd fS

2
t,kf

cfmcf
2
mf

2
s

mw
2

s

2

2
m

2

0
22

2

ms
2

t

−≈

=

π

∆∆
∆π

∆π

=
π

∆∆

=
π

σ
=σ

ω

+∞+∞

∞−
ϕ

ϕ∆
∆



   (371) 

where kfs is the frequency of the kth harmonic of the oscillator, fcf is the low-frequency corner for the spectrum of 

1/f noise, below which frequency Sf(0Hz)=4/fcf is constant, and 0.8456 is twice the difference between one and 

Euler’s constant, the latter ≈0.5772. The expression in square brackets is truncated for high-order terms [309], it 

is a rough approximation, and for practical purposes one can take the expression in square brackets equal to one. 

Observe that the standard deviation σΔt of the jitter Δt is linear function of the measurement time tm, when the 

white noise sources dominate, while σΔt becomes nearly quadratic function of the measurement time tm, when the 

1/f noise sources dominate. The parameters cw and cf are as defined by eq. (354), which describes the phase noise 

spectrum. 

The variances in eq. (371) correspond to the so-called Allan variance, which is defined in [311] as frequency 

variance (σΔf)² between delayed observations (measurements) with given durations tm. A simple comparison 

between eq. (371) and eq. (10) in [311] establishes that  
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The analysis of the delayed observations in [311] has adopted the approach for incremental evaluation of 

variance by delay-difference of observations, as introduced in [312]. The approach in [312], in principle, is the 

same as the commented above, although the differences were taken algebraically in [312] for statistical variables 

of averages, rather than by converting the integration and delay operators to transfer functions in frequency 

domain, as explained above, using Fourier transformation. Other works that make use of the Allan variance and 

other variance definitions for analysis of the phase noise in oscillators or for phase noise with different slopes of 

the spectrum are [313] and [314]. 

One issue, which should be considered by measuring of the phase noise spectra of stable oscillators by spectrum 

analyzers with discrete Fourier transformation, is that the acquisition time tm of the spectrum analyzer may 

become a multiple of oscillator period 1/fs. In such cases, the sin²(x) term in eq. (368) causes modification of the 

original phase noise spectrum of eq. (354), and peaks and notches or slow variations in spectra can be observed. 

Proper windowing and averaging should be used in these cases. Worth mentioning, the parameters cf in eq. (354) 

to (371) are related to 0th harmonics Vo, that is, to DC components of the solution of the stochastic differential 

equations of the oscillator, cf=2|Vo|², as explained in [308], which is the same as what was noted after eq. (352) 

earlier for the up-conversion of low-frequency noise when harmonic balance method for analysis of phase noise 

is used. Thus, the cyclostationary and perturbation approaches converge in their results, in principle, although 

some discrepancies in values and computational complexity and time can be found in practice. The convergence 

also allows to simplify the assumptions in perturbation approach, and to relax the computational complexity, by 

avoiding the computation of stochastic differential equations. One perturbation approach that illustrates the 
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avoidance of computation of stochastic differential equations is now summarized. 

Third approach: Impulse sensitivity function. The perturbation approach, which avoids calculation of 

stochastic equations and not necessary requires a calculation of contribution of harmonics in frequency domain, 

is introduced in [315]. The approach is based on determination of the impulse response of the phase of the 

oscillator when a perturbation impulse with very short duration (that is, a Dirac function δ(t) disturbance) is 

applied at the place of noise source. The impulse response of the oscillator phase to the Dirac function-like 

disturbance Aδδ(t) is termed as impulse sensitivity function (ISF). It is noted in [315], that the disturbance Aδδ(t) 

results both in instantaneous amplitude Δa and excess phase Δφ of the oscillator, see again eq. (338), and the 

response of the oscillator, including ISF, is time variant and different for different phases within a period of 

oscillation. However, the response is nearly cyclostationary, that is periodic with the period 1/fs of the 

oscillation, as long as the perturbation Aδδ(t) is not very strong, as compared to the signals in the oscillator, an 

assumption that is obvious for noise. (Mathematically, in other words, the derivatives of the of the differential 

equations that describe the oscillator can be linearized, which corresponds to a use of Jacobian matrices in 

[307]). Thus, the non-linear perturbation differential equations can be split in two parts, one for amplitude 

impulse response ha(t) and, second, for phase impulse response hφ(t), neglecting the combined amplitude-phase 

impulse response, which corresponds to second derivatives in the non-linear perturbation differential equations. 

To have the determination of ISF more practical, it was taken in [315], that the disturbance in electronic circuits 

is a disturbance in electrical current, which affects the charge, and thus the voltage of the capacitance Ctot 

associated with node of the circuit, where the current is applied (having the other node of the current source 

connected to ground, for convenience). That is Aδδ(t)=Iδδ(t)=CtotΔV=ΔQ, where ΔV and ΔQ are the 

instantaneous changes of the voltage across and the charge in the capacitance Ctot. By denoting with Qmax 

=Ctot|Vmax| the magnitude of the maximum charge that can occur in Ctot during one period of oscillation T=1/fs, 

and by tδ the exact position of the disturbance within the period T, 0≤tδ≤T=1/fs, then the phase increment due to 

the disturbance is 
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where the function rem(x/T)=x−T×integer(x/T) is Remainder after division function, which is the difference 

between x and the last full period nT, and takes into account the periodic and cyclostationary behavior of the 

phase sensitivity to disturbances. Therefore, the remainder time tR(t)=rem(t,nT) corresponds to the time tδ of the 

disturbance. So, the definition of impulse sensitivity function (ISF) becomes as 
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−

=π ,    (374) 

since after the moment tδ of the impulse disturbance with Dirac impulse, the unity step function 1(t−tR)=1 for 

t≥tR≡tδ. For the dual case of a voltage noise source in series with an inductor, Qmax should be replaced with 

Φmax=L×Imax, where Φmax represents the maximum magnetic flux swing in the inductor by swing Imax for the 

current in the inductor of inductance L. 
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As discussed in more details in  [315], ISF can be relatively easily obtained from transient simulations by 

injecting impulse at different relative phases of the oscillation waveform and the oscillator is simulated for a few 

cycles afterwards. By sweeping the impulse injection time tδ across one cycle of the waveform, tδ≡tR, and 

recording the resulting time shift Δt(tR), hφ can be calculated as function of tR noting that Δφ=2πfsΔt. There also 

other methods given in [315], based on phase (state) variables by φR=2πfstR, which use the derivatives ∂vi/∂(φR) 

of the normalized nodal voltages v=Vi(φR)/|Va| at each node (i) in the circuit. As the first approximation, 
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Having ISF for one period of oscillation, one can use the phase variable φR=2πfstR , and calculates the DC 

(average) value ISFdc and the root-mean-square (effective) ISFrms from 

( )
2

c
dISF

2

1
ISF o

2

0
RRdc =ϕϕ

π
= 

π
,     (376) 

and  
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where ck are the Fourier coefficients of ISF, and the later equation is the Parseval relation. 

It is shown in  [315], that  the phase noise, as defined by eq. (339), due to white noise sources with power 

spectrum density Swhite of the current white noise is then 
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while the phase noise due to up-converted flicker low-frequency current noise sources with power spectrum 

density S1/f∝1/f depends only on ISFdc, and the corner frequency Δfc/Δf³  between 1/Δf² and 1/Δf³ components in 

the phase noise spectrum is reduced, as compared to the corner frequency fc between 1/f and white noise, and 

these corner frequencies are related by 
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Thus, combining eqs. (378) and (379) one gets that 
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which is another way to write the Leeson’s formula of eq. (351) for near-carrier phase noise, by using other 

quantities, however. 

From the last equation, also provided that Swhite×fc=S1/f(1Hz) is the flicker low-frequency noise at frequency 1Hz, 

see again the discussion in section IV.4.5, then one gets a second useful form for phase noise in terms of ISF 
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showing that the phase noise follows the evolution of the white and flicker noise in the circuit components, for 

example, with the bias, although in different proportions, as compared to low frequency, since ISFdc<ISFrms, as 

mentioned above. 

Next interesting arrangement of the last equation, which can be used to separate the up-conversion of low-

frequency noise from cyclostationary noise high frequency noise sources, is 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

( )
( ) .kf harmonics oscillatorat  sources noise frequency high  from ,kfS

fQ32

c2c

,fSSS noisefrequency  low of conversion-up from ,fS
fQ32

c

f

Hz1S

Q8

ISF

f

Hz1S

Q8

ISF

f

RFS

Q8

ISFISF
fPhN

s
1k

sRF22
max

2
1k

2
k

2
o

f/1whiteLFLF22
max

2

2
o

3
f/1

2
max

2

2
dc

2
white

2
max

2

2
dc

2
white

2
max

2

2
dc

2
rms


 ∞

=

∞

=

∆π














+

+

∆+=∆
∆π

=

∆π
+

∆π
+

∆π

−
=∆

   (382) 

The high frequency noise sources SRF are sources of white noise, in principle, with an exception, the gate 

induced noise in MOS transistors, which increases with frequency. They have stationary components, given by 

the quiescent (average) operation point, and also cyclostationary components that follow the variations around 

the quiescent point. It is clear from eq. (382) that the up-conversion of low-frequency (or base-band) noise is 

only a portion of the total phase noise, as mentioned by the discussion of harmonic balance method earlier. 

Interestingly, if re-arranging eq. (382), one will obtain an equation in the form of eq. (352) for harmonic balance 

analysis of phase noise, demonstrating convergence between the ISF-based perturbation method and harmonic 

balance method.  

Considering the different terms in eq. (382), the conversion of circuit noise into phase fluctuation and side-band 

noise around oscillator harmonics is illustrated in Figure 60. The top spectrum SNOISE is the noise from different 
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noise sources connected to one node of the oscillator circuit, e.g. sum of noise currents of pMOS and nMOS 

transistors, which drain terminals are connected together in each inverter in CMOS ring oscillator. The low-

frequency portion of SNOISE , which corresponds to SLF in eq. (352) and has white and 1/f components, causes 

phase fluctuation SPHASE that is proportional to (co)², and respectively, SPHASE due to SLF has 1/f and white noise 

components. The stationary and cyclostationary high frequency portions of SNOISE around oscillator harmonics 

kfs (which correspond in eq. (352) to white noise SRF) cause phase fluctuations SPHASE that are proportional to 

(co)² and (ck)², respectively. In the figure, only (ck) are shown for clarity. (To say bluntly, this is down-

conversion of RF amplitude noise into LF phase noise SPHASE; the term usually used is “folding of noise spectra” 

[316], in analogy to what happens when sampling signals with frequency spectrum higher than the Nyquist 

frequency. Actually, the process is similar.) Since the high frequency portions of SNOISE are with white spectra, 

then the noise in SPHASE due to SRF is also white. Thus, SPHASE “collects” white noise from low and high 

frequencies via all (ck), whereas, the 1/f noise in SPHASE “comes only once” from low-frequency noise SLF via 

(co). Therefore, the ratio 1/f noise to white noise is decreased in SPHASE, as compared to SNOISE, and the corner 

frequency between 1/f and white noise decreases in SPHASE, again as compared to the corner frequency in SNOISE. 

Note that the decrease of the corner frequency is due to increase of the white noise contribution in SPHASE, rather 

than due to decrease of the contribution of 1/f noise, which one may mistakenly suggest. The bottom spectrum in 

Figure 60 illustrates the conversion of SPHASE in the spectrum of the oscillator SOSC. As follows from the general 

relation 2π(df)=∂(dφ)/∂t between phase φ and frequency f, see between eqs. (346) and (347), each component in 

SOSC is obtained from the corresponding component in  SPHASE by multiplying with 1/(2πΔf)², resulting in side-

band phase noise lobes in the spectrum of the oscillator. This is illustrated in the figure by arrows for the 

fundamental harmonic fs of the oscillator (the side-band lobes around fs in SOSC are shaded for clarity), and the 

same happens around higher harmonics, scaled by the amplitude of the particular harmonic. 

To take into account the cyclostationary components without making harmonic balance, it is suggested in [315] 

that one can modify ISF(2πfstR) defined by eq. (374) and calculated from eq. (375), for example, with the 

normalized evolution α(2πfstR) of cyclostationary noise (in respect to stationary noise) with tR, 0≤tR≤T, within 

the period T of oscillation, T=1/fs, obtaining effective impulse sensitive function effISF(2πfstR), given by 
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where the quantities in the numerator of α are cyclostationary noise and the quantities in the denominator are 

stationary noise. The corresponding DC and RMS values of effISF are then obtained from (376) and (377), 

respectively for effISFdc and effISFrms.  

The relation between effISF and ISF depends on how the devices operate during oscillation cycle. In ring 

oscillators, effISF≈ISF, but in Colpitts oscillators, effISF is very different from ISF [315]. The rule is simple. If 

the peaks in ISF and cyclostationary noise source are in phase, that is, the peaks occur at the same time in the 

oscillation cycle, then effISF≈ISF. This is the case of ring oscillators, in which the current and its noise are at 

maximum during the signal transitions between high and low, and also the derivatives of nodal voltages are with 

maximum absolute values, |∂vi/∂φR|=max by Σ(∂vj/∂φR)²≈constant in eq .(375), during the signal transitions, and, 
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thus, from eq. (375), ISF also peaks during transitions. Detailed investigations of phase noise in ring oscillators 

can be found in [315, 317, 318, 319, 320], from which one can have simple analytical expressions for phase 

noise as function of number of stages, supply, frequency, transistor sizes, etc., and comparisons to other type of 

oscillators, and regimes of operation, as well as relations for jitter, that match with the discussion on eqs. (371) 

and (372) earlier. In contrast to ring oscillators, in LC oscillators, the cyclostationary currents and voltages are 

not in phase, which results in large differences between ISF and effISF, especially in single transistor oscillators, 

such as the Colpitts oscillators, in which the cyclostationary transistor current is only for a fraction of the half 

period of oscillation, and max(|effISF|)=max(|ISF|×α)<max(|ISF|)×max(α). 

VII.2.3. Suggestions for the design of oscillators 

Several useful considerations in design of oscillators can be deduced from eq. (382).  

Minimize the up-conversion of low-frequency noise 

The first is that the DC component ISFdc=co/2 has to be minimized in order to minimize the up-conversion of 

low-frequency noise, according to the middle line of eq. (382). This will also reduce the conversion of stationary 

RF white noise (e.g. thermal noise or shot noise due to quiescent current) by the term (co)²∑SRF(kfs) in the 

bottom line of the equation. As shown in [321], ISFdc is minimized when having particular symmetry in the 

waveforms of the oscillator, either even periodic waveforms f(t)=f(−t±nT), or half-wave symmetric waveforms 

f(t)=−f(t+T/2±nT). From practical point of view, both symmetries put requirements for identical transitions in 

oscillator waveform. This is depicted in Figure 61, in which the ideal waveforms are given with solid lines, and 

the distorted waveforms are drawn with black dash-lines, giving a rise of non-zero ISFdc, and thus, of up-

conversion of low-frequency noise into phase noise. The even symmetry requires identical transitions by 

mirroring in time, and the half-wave symmetry requires identical transitions by mirroring in amplitude, the latter 

also at delay of exactly half period. From spectral point of view, the even symmetry results in harmonic 

expansion of the oscillator waveform, ∑cos(2kπfst+kφo) with φo=constant, that is in-phase or equally delayed 

harmonics. The half-wave symmetry requires that the oscillator signal is free from even harmonics and the duty 

cycle of the signal is 50%. As seen from Figure 61, differences in rise and fall times of the circuit signals cause 

deviation from desired ideal waveforms. The circuits shown with gray color in the figure help to improve the 

signal symmetry. In particular, the complementary pMOS cross-coupled transistor pair works in anti-phase of 

the nMOS transistor pair. Therefore when nMOS switches on, pMOS switches off (and vice versa), which 

provides that one has always a transistor switching on and other transistor switching off during the time of signal 

transitions, and thus, smaller difference between rise and fall times and better even periodic symmetry, as 

illustrated by gray dash-lines in the bottom-left figure. Experiments that confirm the effect of reduction of phase 

noise when using complementary cross-coupled pairs can be found in [322]. The introduction of current limiting 

(“starving”) transistors in series with the main switching transistors in the ring oscillator minimizes the 

difference between the charging (IP, from pMOS) and discharging (IN, to nMOS) currents that flow through the 

node capacitance during transitions, and, thus, the rates dv/dt during signal rise and fall are equalized, resulting 

in signal with better half-wave symmetry, as illustrated by the gray dash-line in the bottom-right figure. 

Obviously, limiting the current, the circuit is slower, and the oscillation frequency in the ring oscillator with 

current “starving” is expected to decrease, as compared to the initial circuit without current “starving”. 

Experiments and analysis that confirm the effect of reduction of phase noise in ring oscillators when using 

current limiting (“starving”) transistors to adjust the currents of nMOS and pMOS transistors can be found in 
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[317]. Thus, the symmetry of the up and down transitions between the signal levels is important consideration 

for reduction of phase noise due to up-converted low-frequency noise [315]. 

The occurrence of high-order harmonics is not favorable for oscillators 

The second useful consideration in design of oscillators, which can be deduced from the bottom line of eq. (382), 

is that the occurrence of high-order harmonics is not favorable for oscillators with low phase noise. In the 

presence of harmonics with numbers k=1, 2, 3…Kmax in oscillation signal, one can estimate the AC component 

of ISFrms from eq. (375) [315], as follows. Assume that the signal is 
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where Vk are the harmonic amplitudes and v(φ)=V(φ)/V1 is the normalized signal in eq. (375), from which the 

impulse sensitivity function ISF(φ) is 
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To obtain ISFrms, one can transform ISF(φ) in the space of harmonic numbers, using Fourier transformation by 

making analogy k→kω and φ→t, and then using Parseval relation, see again eq. (377). Assume constant norm of 

the derivative in the denominator of eq. (385), which seems reasonable for cyclostationary process in LC 

oscillator. Next equation shows the result, but note that the simple transformation misses important fact of 

convolution with noise, as it will be corrected afterwards. 
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When substituting in eq. (378) we obtain the following incomplete result for phase noise 
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where reminding that the white noise Swhite is in units A²/Hz. This incomplete result has wrong behavior when 

the number and the amplitudes of the harmonics increase. In particular, the incomplete result suggests that the 

phase noise will decrease when Kmax and Vk increase, which is the opposite to what one would observe in 

experiments.  
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The correct result will be obtained when considering that the white noise at different harmonics is uncorrelated. 

Therefore ISFk of each harmonic k can be separately estimated from eq. (385), taking φk=kφ, vk(φk)=cos(φk), 

which is the same as for Kmax=1 in eq. (385), and gives 
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where ψk is the initial phase of the kth harmonic at φ=0. Note that for a cycle φ=0…2π of the oscillator, φk makes 

k cycles, thus adding k times the noise from kth harmonic, which results in phase displacement Δψk=k½Δφk at the 

end of the oscillator cycle φ=2π. (We use k½, because the contributions Δφk are statistically independent, since 

the white noise is uncorrelated, and the variance (σΔt,wh)²∝t∝k is proportional to the time t and, thus, number of 

cycles k, see eqs. (355), (369)−(372) earlier). The phase displacement Δψk causes the “pulling” of the white (or 

other) noise around the kth harmonic in the phase noise, as depicted in Figure 60 earlier, by changing of the state 

of all other harmonics, including the fundamental one, as illustrated in Figure 62 in simplified form. Provided 

that the phase “pulling-pushing” between the oscillator harmonics via the change ΔL of the state on the 

oscillation contour is small, then one can write for the oscillator contour, kth and pth harmonics that 
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Rewritten in terms of noise, Δφk→(ISFkrms)²Swhite(kfs) and Δφp→Sφp, from the first and second lines of the last 

equation, one gets 
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where Sφp,k is the noise in the phase in the pth harmonic caused by the kth harmonic, and (ISFkrms)²=½, as follows 

from eq. (388). Neglecting the cyclostationary component in the white noise, we can assume that Swhite is nearly 

constant within oscillation cycle. It is of particular interest the fundamental harmonic, p=1. By adding the 

contributions from all harmonics, each given by Sφ1,k in eq. (390), and according to eq. (382), the phase noise 

component in the fundamental harmonic fs of the oscillator due to RF white noise becomes, as 
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where reminding that the white noise Swhite is in units A²/Hz. This is the corrected version of the incomplete eq. 

(387). Consequently, instead of eq. (386), the correct expression for ISF in presence of harmonics in the 
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oscillation signal is  
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Now, both eqs. (391) and (392) demonstrate in a simple manner that the phase noise in oscillators increase when 

the high-order harmonics occur and increase, while the incomplete eqs. (386) and (387) predicted the opposite 

incorrectly. The problem in eqs. (386) and (387) is mathematical. In particular, is was neglected the phase 

variation of the denominator in the preceding eq. (385) and it was assumed constant by Fourier transformation. 

The correct way of making the transformation is complicated, and it uses characteristic multipliers and 

characteristic exponents (Floquet theorem) in order to invert and find reciprocal of the state transition matrix of 

differential equations of the oscillator – details on how to do this in time and frequency domains can be found in 

[306, 307]. It is noted in [315] that ISF is inversely proportional to the sum of signal derivatives (in time domain) 

in the oscillator circuit, which consequently, is replicated squared in phase noise. This observation, however, 

should be not extrapolated in frequency domain, assuming that the larger are the high-order harmonics the higher 

are the derivatives ISF in time domain. In fact, at high frequency and large signals, the amplifier slew rate limits 

the speed of the transitions, which causes increase of high-order harmonics, but the maximum values of the 

derivatives are hardly increased. 

Circuits with more than one node. Worth mentioning, eqs. (391) and (392) are for single node circuit 

calculation. If the circuit is with more nodes, then the calculations has to be performed for each node and the 

results has to be properly referred to output of the oscillator. Usually, there is circuit symmetry in LC oscillators 

and circuit repetition in ring oscillators, which allows easily to scale the result for one circuit node to the whole 

circuit. Furthermore, if the operation of the transistors in the circuit is non-linear, obviously this is the case in 

oscillators, then the noise sources are cyclostationary and correction for the value of Swhite will be necessary. 

Nevertheless, eqs. (391) and (392) are so simple that are appropriate even for approximate manual and 

qualitative calculations, without using complicated simulators and in cases when the circuit details are not 

available, by measurements, for example. For such cases, since (ISF1rms)²= ½ for the ideal sinusoidal signal, then 

it might be helpful to use the excess value of ISF that is caused by the occurrence of the harmonics, e.g. as the 

figure of merit. The excess ISF, (eISFrms)², is a difference between (ISFrms)² of the signal with harmonics and 

(ISF1rms)²= ½ for the ideal sinusoidal signal; and eISFrms is defined as 

( )
( ) 













−≈=−=−=

∆

∆

=
 1

sinusoidalPhN

harmonicsPhN

2

1

V

V
k

2

1

2

1
ISF1ISFISFeISF

2

2max

f/1

f/1
K

2k
2

1

2
k2

rms
2
rms

2
rms

2
rms ,   (393) 

by assuming no change in other parameter, e.g. Qmax, Δf and Swhite are the same for the two signals. To illustrate 

the contribution of signal harmonics to the phase noise, we plot (ISFrms)² and (eISFrms)²  for several harmonics in 

Figure 63a versus the harmonic distortion (HDk)²=(Vk/V1)². Observe that higher order harmonics cause stronger 

increase of phase noise for the same level harmonic distortion. Since the quantity THD²=∑(Vk/V1)² −1 is the 

popular total harmonic distortion factor that is used for quantification of the deviation of signals from ideal 

sinusoidal waveform, we show the dependence of phase noise for two typical waveform distortions, in which the 

harmonic amplitudes vary as the reciprocal of the harmonic number, Vk∝1/k. In Figure 63b, only the odd 

harmonics are present, resulting in a “rectangular” type of distortion. In Figure 63c, all harmonics are present, 
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which results in “peaking” distortion, if the harmonic co-sinusoids are in phase, or “saw tooth” distortion, is the 

harmonic sinusoids are in phase.  

Observe in all plots of Figure 63 that a harmonic distortion in the range −10dB to −4dB causes 3dB (two times) 

increase of phase noise. These are high levels of waveform distortion, especially for LC oscillators. However, 

the transistors that drive the LC tank operate usually in highly non-linear mode, close to regime of switching, 

and consequently, the cyclostationary noise associated with current pulses replicates the harmonic of the 

cyclostationary current of the transistors. As explicitly stated in [315], ISF(φ) multiplies the transistor noise in 

phase (time) domain, which results in convolution in the domain of harmonic numbers after Fourier 

transformation. Then, even if the oscillation signal is free of harmonics, the product ISF×Swhite will have 

harmonics, since Swhite(kφ)∝Icyclo(kφ) repeats the harmonics in the transistor cyclostationary current Icyclo. For 

example, as follows from eq. (263), for cyclostationary shot noise in the collector of BJT one defines noise 

generating current icyclo, given by  
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where βf is high frequency current gain, normally βf~fs/fT<βDC,  Ik are the amplitudes of the cyclostationary 

collector current, and ψd≈2πfs/fT is the phase delay due to transit time of the BJT. In phase (time) domain, one 

writes for phase noise deviation that 
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which is a multiplication, and it results in convolution after Fourier transformation in harmonic domain 
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where we assume that the DC component in ISF is zero at the waveform conditions discussed earlier. Converted 

in noise power spectrum density, one gets 
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The term in the square brackets is the same as eq. (392). The term between the square and large brackets is the 

stationary white noise. The sum in the large brackets is the relative contribution of cyclostationary noise. In the 

last line we have neglected the delay in cyclostationary current, assuming fs<<fT, to make the comparison to eqs. 

(390) and (392) clear that the harmonics Im in the transistor cyclostationary current contribute on the top of the 

noise from the stationary current IC,DC, and also, to show the origin of the last sum ∑SRF(kfs) in  eq. (382). The 

precise expression for the cyclostationary noise with ψd≠0 is obtained from harmonic balance method for circuit 

analyses with computer simulators, and it was shown earlier by eq. (352). To conclude the discussion on the 
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importance of oscillator harmonics for phase noise we combine the last line of eq. (397) with eq. (391), and 

obtain the following expression, which shows in explicit generic form the harmonic contributions to oscillator 

phase noise. 
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Here, Qmax=VmaxCtot is the swing of the charge during oscillation by voltage swing Vmax=Vpk−pk across the node 

capacitance Ctot, presumably the capacitance is the same as the capacitance of oscillator LC tank; Δf is the 

frequency offset from fundamental harmonic fs of oscillation, k=1…Kmax are harmonic numbers; Vk are the 

harmonic amplitudes of the voltage across the LC tank, the term in the square brackets is impulse sensitivity 

function (ISF) corresponding to the waveform of the voltage of the oscillator; IDC and Ik are DC and harmonic 

amplitudes in the current of the transistor, which drives the LC tank with negligible delay td/T~fs/fT, thus 

cos²(x)≈1, the sum in the large brackets is the relative contribution of cyclostationary noise; and Swhite is 

stationary white current noise, associated with IDC, and Swhite is with negligible correlation coefficient 1>corr≈0 

at oscillation harmonics. We are reminding that the white noise Swhite is in units A²/Hz. Now, eq. (398) allows to 

carry out the discussion on the next design consideration for phase noise, the oscillator power.  

Optimum magnitude of the oscillation 

The third useful consideration in design of oscillators is to find optimum magnitude of the oscillation, so that the 

phase noise is minimized. From the Leeson formulas, eqs. (350) or (351), it is clear that, if everything else being 

the same, increasing the power Pcarrier of the fundamental harmonic signal, the phase noise decreases. Therefore, 

one would increase the oscillation amplitude V1 in order to minimize the phase noise PhN. However, the 

increase of the amplitude will increase the non-linearity in the oscillator circuit, and thus, the high order 

harmonic content will increase, which will increase the phase noise, as discussed just above, and summarized by 

eq. (398). Experiments reported in the literature, such as in [297, 323], show that the relation phase noise – 

oscillator power is non-monotonic, and the relation has a minimum at certain optimum power. Deviations of 

Pcarrier from Popt result in increase of phase noise and in v-shaped plots of the relation PhN–Pcarrier, as shown in 

Figure 64. 

Consider the LC oscillator. The quality factor of the LC tank is Q=2πfsRsCtot, where Rs is the loss resistance in 

parallel to the LC tank. Then, the charge swing Qmax=VmaxCtot=VmaxQ/(2πfsRs) and 

(Vmax)²≈8(Vrms)²=4(V1)²(1+THD²)=8RsPtot, where the total power of the signal Ptot=Pcarrier(1+THD²) is the sum of 

the power of the fundamental harmonic Pcarrier and the power of high-order harmonics PcarrierTHD², the latter is 

given by the total harmonic distortion factor THD. Assume that THD<0.3, then Ptot≈Pcarrier. Inserting these 

relations in eq. (398), we get 
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where Pnoise=SwhiteRs=(4kT/Rs)NFwh is the spectral density of the noise power that is applied on Rs from all noise 

sources connected to the LC tank, e.g. from transistors and Rs itself. Evidently, we have obtained the Leeson 
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formula for phase noise from white noise, see eq. (351), with the impact of harmonics disclosed. Note, we are 

assuming that the DC component of ISF is zero for clarity, and one should add (ISFdc)² to the sum in the square 

brackets, to obtain the complete expression for PhN1/Δf². 

In the special case of LC oscillators, Ik can be large, in the order of IDC/k when the transistor is operating close to 

switching mode, but the LC tank suppresses the high order harmonics as Vk≈IkRs/(kQ) for k≥2 and Q>3. Since 

V1=I1Rs, then the terms k(Vk/V1)²≈1/(k³Q²) are small, and for k≥2, the sum 

∑k(Vk/V1)²≈1/(2k²Q²)<1/72<<1=1(V1/V1)² for k=1. Thus, one can take value ½ for the expression in the square 

brackets of eq. (399), and also Pcarrier≈(V1)²/(2Rs)=(I1Rs)²/(2Rs)=(IDC)²(I1/IDC)²Rs/2 for the power of the oscillation 

signal. Therefore, for practical cases of single transistor LC oscillators, such as Colpitts oscillators, eq. (399) can 

be reduced and arranged as 
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For the mostly used topology of LC oscillators with cross-coupled pair transistors, see Figure 61a, the DC 

current of each transistor is a half of the supply current, IDC=ISUP/2, and both transistors contribute with their 

noise, thus Swhite=2Swhite(ISUP/2). Eq. (400) becomes as 
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∆ , pair-transistor LC oscillator, (401) 

where note that the harmonic amplitudes Ik of the currents in each transistor are taken doubled, owing to 

IDC=ISUP/2. 

Eqs. (400) and (401) show in convenient form the impact of different factors on 1/Δf² phase noise in LC 

oscillators. First, PhN increases with oscillation frequency as (fs)². Second, PhN can be decreased using LC tank 

of higher quality factor Q. Third, PhN can be decreased, increasing the consumption IDC or ISUP of the circuit, 

since the term in the round brackets is the normalized white current noise in transistors, which is inversely or 

nearly inversely proportional to the bias current – see eqs. (248)–(250) for MOS transistors and eq. (263) for 

bipolar transistors. Fourth, PhN can be minimized by increasing the oscillation amplitude, or precisely, 

maximizing the use of the bias current I1/IDC, or 2I1/ISUP, as shown by the squared ratio in the square brackets. 

Fifth, however, maximizing I1/IDC, one should not exceed I1>IDC much, because the transistor current will 

saturate and distortions will occur in the transistor drive current. The harmonics Ik associated with this distortion 

will increase the sum ∑Ik/IDC in the large brackets, and PhN will increase, consequently. 

The overall behavior of eqs. (400) and (401) shows that there is a minimum for phase noise as function of the 

level of use I1/IDC of the bias current. This is clearly depicted in Figure 64a for a CMOS oscillator [297], where 

the minimum phase noise is not at the maximum oscillation voltage (V1), but at maximum ratio I1/ISUP.  

To illustrate further, we assume “rectangular” distortion of the transistor current. That is, odd harmonics Ik, 

k=3,5,…, occur when increasing the amplitude of the fundamental harmonic I1 above IDC. We shall assume that 
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the high-order harmonic power (Ik)²/(2Rs) is proportional to the power of the fundamental harmonic [(Ik)²/(2Rs)]
k 

on exponent k, which is well established from the intermodulation analyses of RF circuits, e.g. IIP3 at which 

extrapolated power of first and third harmonics are equal. The second assumption, which follows from Fourier 

series of rectangular waveforms, is that at particular value I1R=(4/π)IDC of the fundamental harmonic, the 

amplitude of the rectangular signal is IDC and the amplitudes of the harmonics are IkR=I1R/k. With these 

assumptions, it can be shown that for a given value I1, one has 
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from which it follows that  
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since IDC is constant. 

Using these rations, we have obtained the phase noise from eq. (401), shown with a solid curve in Figure 64b,   

considering shot noise 2qISUP/2 in BJT and quality factor Q=16 and loss resistance 720Ω, as reported for the 

circuit in [323]. We also put in the figure the data from [323]. Evidently, the calculation with eq. (401) for the 

minimum phase noise matches well with the experimental data, shown by squares, and again, the minimum 

phase noise is at maximum ratio I1/ISUP, just below the severe harmonic distortion in the current begins. In the 

particular circuit, the automatic amplitude control keeps the oscillator amplitude constant, and the minimum 

phase noise is observed when the current consumption is minimum, as shown by circles in the figure, thus, the 

usage of the supply current is at maximum. Worth mentioning, the distortion in the transistor current is 

accompanied also with increase of the current consumption, and ratio I1/IDC>1.2 (or I1/ISUP>0.6) is practically not 

accessible by real circuits, since “hyper-rectangular” distortion (I1/IDC>4/π) is very unlikely. 

VII.2.4.  Summary 

To summarize, the models for phase noise converge each to other. The simplest Leeson formula, given by 

eq.(350) or eq. (351), captures the essence, and eqs. (400), (401) enhance it to predict the optimum operation 

point for minimum phase noise. However, the accuracy of these simple equations is not very high, since the non-

linear operation and the phase of harmonics are neglected. The consequence is that the slopes, when deviating 

from optimum, cannot be calculated accurately, as seen from Figure 64b. The accurate calculations can be 
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obtained only by circuit simulators, by employing harmonic balance or perturbation analysis. The computer 

simulators have achieved maturity in phase noise analysis last decade. The analyses showed that the up-

conversion of low-frequency noise in phase noise occurs when asymmetry in the transitions in the waveforms 

are present. The RF noise, however, contributes always, resulting in unavoidable 1/Δf² component in the phase 

noise, which can be minimized only by high quality factor resonators. Important insights for phase noise through 

experiments and several analytical theories have been obtained by many researchers and reported in the literature 

at varying levels of generality and rigor. The following commented list of publications traces the efforts and 

achievements over the years. Despite the tremendous progress made during the past decades on the theory, 

modeling, analysis, and characterization of phase noise, certain gaps still remain and a “standard” theory for 

phase noise is not established at present and an incomplete collection of references is provided below. 

- Leeson, 1966 [298] – simple generic expression for phase noise in LC oscillators. 

- Barnes, 1966 [312] – delay-difference approach for evaluation infinite variances, and used in Allan variance of frequency. 

- Allan, 1966 [311] – introduction of finite time variance measurements as the measure of infinite time variance of 

frequency. The approach is known as determination of Allan variance now. 

- Lax, 1967 [324] – nonlinear, nonstationary oscillator noise analysis based on Langevin theory and Fokker–Planck 

equations. 

- Abidi, Meyer, 1983 [325] – jitter in relaxation oscillators. 

- Vanicola, Varshney, 1983 [326] – dispersion of modulated signals in  Lorentzian noise spectra due to oscillator white and 

random walk phase noise. 

- Chen, Ziel, Amberiadis, 1984 [299] – identification of circuit non-linearity as additional contributor to phase noise. 

- Kartner, 1990 [327] – nonstationary phase noise model based on Floquet theory. 

- Weigandt, Kim, Gray, 1994 [328] – CMOS jitter in ring oscillators with time variant noise sources and confirmed by 

Monte Carlo circuit simulations. 

- McNeill, 1994 [329], 1997 [330] – jitter in ring oscillators. 

- Razavi, 1996 [331] – practical aspects of time invariant analysis of noise in CMOS oscillators. 

- Poore, 1997 [304] – method for harmonic balance in calculation of phase noise in mixers and oscillators. 

- Takagi, Serikawa, Kurita, 1997 [332] – experimental evidence for correlation between 1/f and phase noise in BJT 

amplifier, showing that 1/f noise can be reduced, detecting phase noise. The correlation is via the diffusion coefficient in 

BJT and was modeled with transmission line model in [333] in 2005. 

- Samori, Lacaita, Villa, Zappa, 1998 [316] – contribution from harmonics to phase noise in LC oscillators, by spectral 

“folding”, caused by convolution between broadband noise and oscillator harmonics. 

- Samori, Lacaita, Zanchi, Pizzolato, 1998 [310] – verification of the relation between phase noise and cycle-to-cycle jitter – 

see eq. (356). 

- Herzel, 1998 [334] – phase noise is treated as spectral optical linewidth broadening of lasers. At low-frequency offset, due 

to 1/f noise, the phase noise spectrum has Gaussian probability shape exp[-(Δf/σ)²] similar to Doppler broadened laser light 

lines, while at larger frequency offset the phase noise spectrum has Lorentzian shape 2Dφ/[(Dφ)²+(2πΔf)²], where Dφ is 

“diffusivity” of phase in the circuit. The latter Lorentzian shape for phase noise from white noise is basically in the same 

form as eq. (354) when removing from the equation the sum ∑cf Sf that was related to “colored” noise. The convolution in 

frequency domain between circuit impulse response and noise is addressed. 

- Hajimiri, Lee, 1998 [315] – introduction of impulse sensitive function (ISF) for the phase in oscillators in perturbation 

analysis of phase noise. The method emphasizes the dominant role of phase perturbation and neglects the amplitude 
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perturbation in oscillators. This simplification made the phase noise analysis straightforward, relaxing the complexity in 

computer simulations. The simplification was subject of criticism, but the results from ISF analysis converge to other 

methods of perturbation analysis. 

- Post, Linscott, Oslick, 1998 [321] – requirements for waveform symmetry that minimize phase noise, according to the ISF 

method for analysis of phase noise. 

- Hajimiri, (Limotyrakis), Lee, 1998 [322], 1999 [317] – application and verification of the ISF method for analysis of phase 

noise, with analysis of circuit asymmetry that causes extra phase noise in ring oscillators. 

- Margarit, Tham, Meyer, Deen, 1999 [323] – identification of non-monotonic behavior of phase noise level as function of 

bias and gain in the oscillator amplifier. The optimum condition is when the ratio harmonic amplitude/DC bias is at 

maximum, as we have shown here in Figure 64 and follows from eqs. (398)–(401). 

- Demir, Mehrotra, Roychowdhury, 2000 [307] – full perturbation theory for phase noise and jitter in oscillators from white 

noise. The method is mathematically complex and it is appropriate for computer simulations of circuits.  

- Demir, 1998 [306], 2002 [308] – inclusion of 1/f and other “colored” noise sources in perturbation theory [307]  for phase 

noise and jitter in oscillators. 

- Coram, 2001 [335] – a critical discussion that the ISF method for phase noise analysis misses the contribution of 

amplitude noise in phase noise. That is true, when simplifying the vector norm in the denominator of eq. (375) to constant 

and assuming that the vector of disturbance is always in the direction of the amplitude of the oscillation, which is never the 

case, since the noise has random phase, while the oscillation signal and its derivatives are cyclostationary, thus, the 

disturbance is never well in phase with the amplitude of the oscillation. Therefore, the potential underestimation by ISF 

method perhaps is not more of 3dB, which, practically, is similar to (or less than) the measurement accuracy, and this 

underestimation is not a serious issue at present, while the vast linearization and computational difficulties by numerical 

integration may cause unforeseen instability of solutions when using Floquet theory mapped in discrete numerical methods. 

Indeed, the demand of resources (CPU time, memory) and the accuracy of the different methods for phase noise analysis in 

computer simulators are not consistently addressed in the literature, especially in relation to accuracy of device models. 

- Vanassche, Gielen, Sansen, 2002 [336] –ISF and full perturbation methods are identical for stationary noise sources, and 

ISF method fails for long non-stationary noise (or systems with locking), since no period of cyclostationary process is 

present, which violates the assumption for ISF. On the other hand, stationary noise was used in the derivation of closed 

expressions for phase noise from full perturbation in [307, 308], so, perhaps the assumption that the amplitude noise can be 

neglected in ISF method is not very critical. 

- Dai, Harjani, 2002 [318] – effective quality Q-factor for phase noise in ring oscillators and coupled ring oscillators. 

- Vanassche, Gielen, Sansen, 2003 [337] – a generalized semi-analytical method for derivation of phase noise expressions 

obtained by perturbation theory, and the results also are similar to that in [334] by assumption of spectral line widening. 

This method indicates that phase noise expressions can be derived by different means, but the final result will be the same. 

Various issues in oscillator noise analysis, ranging from “averaging” of differential equations, through split of process into 

fast and slow parts for behavioral modeling, to near-carrier spectrum. 

- Grozing, Berroth, 2004 [319] – calculation of minimum possible phase noise in CMOS ring oscillators with relations to 

transistor geometry. 

- Navid, Lee, Dutton, 2005 [320] – calculation of minimum possible phase noise in relaxation (RC, ring, no inductors) 

oscillators.  

- Demir, 2006 [309] – use of frequency integrator macro model for phase that reflects and simplifies the perturbation 

methods for analysis of phase noise and jitter. 

- Chorti, Brookes, 2006 [314] – formal mathematical modeling of phase noise when the phase noise spectrum could have 

several different power-law slopes (PhN(Δf)=∑(an/Δf)ⁿ, where an are constants). 
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- Zhao, 2009 [338] – differential Colpitts voltage controlled oscillator  based upon the understanding on symbolic 

expressions of negative resistance and phase noise theory. 

- Liu, 2016  [339] – Theoretical analysis using time-varying phase noise theory derives closed-form symbolic formulas for 

the 1/f2 phase noise region, showing that this feedback path could improve the phase noise performance 

- Siddiq, 2019 [340] –  phase  noise  theory  developed  for FMCW radar systems. New design equation derived to specify 

the maximum bound on the allowable source phase noise level in radar systems. 

From the above publications, one could see that the results from different theories and methods for phase noise 

analysis converge, but a really general and unique theory for phase noise might be not possible to achieve. The 

bottom line is that the up-conversion of low-frequency noise is not the only process, which generates phase 

noise, although the 1/f and other “colored” noise sources dominate in near-carrier spectrum of phase noise, and 

the contribution of up-converted low-frequency noise is higher when the transitions in oscillating process are 

asymmetrical. Thus, the vertical symmetry in circuits and less harmonics in the non-linear oscillator circuit help 

to minimize the up-conversion, but this is a trade-off with the level of power supply used. Nevertheless, better 

designs [341] can achieve micro-power VCO with oscillation frequency in the GHz range and phase noise -115 

dBc/Hz to -125 dBc/Hz at frequency offset of 1 MHz, by the simultaneous optimization of contradicting factors - 

reduction of phase noise level and power consumption, even when the VCO frequency increases. 

VII.3.  Noise in sensors 

Electronic circuits are widely used in sensors for different purposes, e.g., for measurement of pressure, 

temperature, bio-chemical concentrations, light detection and imagers, to mention some sensor applications. The 

variety of sensors is large and it is impossible to address the implication of the noise in all types of sensors. 

Therefore, we briefly discuss the noise in sensors with examples for electrochemical and photo sensors, in order 

to illustrate the significance of noise in transistors and other electronic devices in sensors. The sensor’s figures of 

merit, e.g., signal-to-noise ratio (SNR) are defined in respect to the sensed quantity. Consequently, the sensor 

definitions differ from the definitions for electronic devices presented earlier in Sec. IV.4.3. Noise factor, noise 

resistance, noise temperature. 

VII.3.1.  Noise in electrochemical sensors  

The electrochemical sensors acquire the potential difference (voltage ΔVNion) between the sensing electrode and 

the chemical solution of a given ion concentration, relying on the Nernst relation that the change in the potential 

difference ΔVNion ∝ (ϕt/η) ln(Nion) is a component proportional to the logarithm of the ion concentration Nion in 

the chemical solution, where ϕt=kT/q≈0.026V is the thermal voltage at room temperature T=300K and η is the 

valence of the ion, e.g., η =±1 for Na+ and Cl− ions, and η =±2 for Ca2+ and O2− ions. If the chemical does not 

dissociate in the solution, then the chemical molecules have to be polarized dipoles, which is usually the case for 

bio molecules, such as DNA, η can be fractional number, and the dipoles have to be properly aligned in order 

the potential difference (voltage ΔVNion) to occur. Thus, the sensitivity of the electrochemical sensors, e.g., Si 

nano-wire pH sensor [342] at room temperature T=300K with η =1 and 1pH=1decade of Nion, is 

KNion = ΔVNion / log10(Nion) = (ϕt/η) ln(10) ≈ 60mV/pH = 60mV/dec of Nion  (403) 

In practice, the sensitivity KNion of the electrochemical sensor varies below the value predicted by eq. (403), e.g., 

between 30mV/dec and 55mV/dec for the Si nano-wire pH sensor in [342], because the ion activity, which 

actually participates in the Nernst equation in place of Nion, is a fraction of the ion concentration Nion. 
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If the chemical does not dissociate in ions and does not have polarized molecules, then it is electrochemically 

inactive, the Nernst equation does not apply, the solution behaves as an electrical insulator and the chemical 

concentration cannot be acquired by means of electrical potential difference (voltage ΔVNion) measurement. 

Other requirement for the electrochemical sensors is that the liquid solution has to be in equilibrium, that is, 

chemical reactions have finished (e.g., reduction and oxidation, if any, have reached stationary rates), the 

temperature is constant (and known), and there is not a directed flow of ions, that is, there is no or at least 

negligible electrical current flow through the chemical solution. 

The above discussion implies a structure of reference electrode (RE), a solution with ion/dipole concentration 

Nion, an ion selective layer, which adsorbs the desired chemical on an insulating layer (and repulses other 

chemicals), and the second electrode, e.g., a silicon layer. Adding two contacts of width W and at distance L, one 

obtains a MOSFET-like structure, with the gate being the reference electrode, a gate stack of (solution + ion 

selective layer + SiO2 insulator), and transistor channel in the semiconductor between the two contacts in the 

silicon layer. This structure is known as the ion-selective field-effect transistor (ISFET). One advantage of this 

structure is that it can be manufactured by the usual MOS/CMOS fabrication processes, optionally omitting 

deposition of the polysilicon or metal gate and adding only two extra steps for deposition of the Ag/AgCl 

reference electrode and the ion-selective layer for functionalization of the surface of the SiO2 gate dielectric of 

the ISFET. Thus, a second advantage of the ISFET is that the ISFET is of micrometer-size and it can be 

integrated in silicon and microfluidic chips as a single sensor or an array of sensors. A third advantage is that the 

ISFET avoids wiring (and environmental noise disturbances, thereof) by stacking the Nion−ΔVNion sensing 

interface (liquid-ion selective layer-dielectric-semiconductor) in the gate stack of the ISFET. A fourth advantage 

is that ΔVNion is equivalent of a change ΔVG of gate biasing of the ISFET, thus, the ISFET provides a signal gain 

through the transistor trans-conductance gm=ΔID/ΔVG=ΔINion/ΔVNion. 

From the fourth advantage, one deduces that the gate voltage noise SVG of the MOS transistor can be referred as 

a noise SNion of the sensed quantity through the derivative of the Nernst equation, and vice-versa, depending 

which noise source is considered.  

SVG = (ϕt/η)² SNion / N²ion = K²Nion Slog10(Nion) ,   (404) 

where Slog10(Nion) is PSD in unit [(decades of Nion)²/Hz] when SVG is PSD in unit [V²/Hz], or Slog10(Nion) is a squared 

RMS value in unit [(decades of Nion)²] for a given frequency band fmin−fmax when  SVG is a squared RMS value in 

unit [V²/Hz] in the same frequency band. The noise from other ISFET parts (reference electrode, liquid solution) 

is negligible [343]. One should use low-noise voltage sourcing circuit for biasing the ISFET gate (the reference 

electrode), because the noise of this source sums with and might be larger than the voltage noise SVG of the MOS 

transistor in the ISFET.  

Note in eq. (404) that the voltage noise in absolute unit of volts at the ISFET gate causes normalized noise for 

the concentration Nion, which means that the voltage noise causes multiplicative error for Nion and uncertainty for 

the sensitivity (conversion “coefficient”) of the electrochemical sensor. Therefore, the voltage noise limits the 

minimum relative change ΔNion/Nion that can be sensed, but it does not cause a threshold for minimum Nion, that 

can be detected. Consequently, the signal-to-noise ratio (SNR) of the electrochemical sensor is defined in [342] 

for the sensor sensitivity KNion (but not for the concentration Nion), as a ratio of the RMS value of the gate voltage 

noise SVG of the MOS transistor for a frequency band fmin−fmax and the voltage for one decade change of Nion, 

(that is one pH unit in [342]), which is the value of KNion in unit of volts. Thus, the first line of the next eq. (405) 
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shows that the definition is ratio of the sensor sensitivity KNion to the root-mean-square (RMS) value of the gate 

voltage noise SVG of the MOS transistor for a frequency band fmin−fmax. Furthermore, using the relations for the 

noise in the electrochemical sensor in the previous eq. (404), one sees in the second line of eq. (405) that this 

definition of SNR is actually a reciprocal of the RMS value of the normalized noise of the ion concentration Nion 

in the frequency band fmin−fmax. Thus, SNR and the normalized noise for Nion are figures of merit for the noise in 

the electrochemical sensor that have reciprocal values, but hold the same information for the noise. 
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We now provide for expected typical values for the noise in electrochemical sensors. The chemical processes 

have time constant in the range of milliseconds, so one desires the acquisition of chemical concentration with a 

rate of more than readings per 10 seconds for changes in the chemical concentration to be detected. Accordingly, 

the frequency band for noise of the electrochemical sensor is from 0.01Hz to 100Hz, in which the 1/f noise of the 

MOS transistor dominates in the gate-referred voltage noise SVG. The sensor usually covers up to 5 decades for 

Nion, which results in approximately 0.3V span of the gate voltage ΔVG = ΔVNion = KNion × 5 decades ≈ 60mV/dec 

× 5 decades = 0.3V from and above the threshold voltage of the MOS transistor. For such span of the gate 

voltage, the gate voltage noise SVG of the MOS transistor can be considered of approximately constant value, 

especially for MOS transistors with not very thin oxides of thickness 5-20nm, 5nm in [342] and 17.5nm in [343], 

which prevent from gate currents and currents through the liquid (a requirement discussed above) and withstand 

possible electrostatic damages in the ISFET, when using it in the sensor with simple ESD protection. Putting all 

together, the RMS value of the gate voltage noise SVG of the MOS transistor in the ISFET is 
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where SVG(1Hz) is the power spectrum density (PSD) at frequency 1Hz of the 1/f gate-referred voltage noise of 

the MOS transistor in the ISFET.  

The value of SVG(1Hz) can be obtained by several approaches. One approach is the experimental determination 

of PSD of SVG(ftst) at several test frequencies ftst , and the averaging calculation of SVG(1Hz) by 

SVG(1Hz)=average(ftst×SVG(ftst)/1Hz). This approach was undertaken in [342], obtaining values in the range of 

SVG(1Hz) = {3×10−8 V²/Hz to 3×10−6 V²/Hz} for a nano-wire ISFET. A second approach uses noise models, and 

determines SVG(1Hz) from simulations. This approach was undertaken in [343], obtaining values in the range of 

SVG(1Hz) = {2×10−11 V²/Hz to 3×10−10 V²/Hz} for a bioFET. A third approach uses statistical data for noise and 
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predicts typical values of SVG(1Hz) by scaling rules. Consider FOMSVG
 from eq. (106) in Sec. IV.1.2. Coupled 

noise component (number fluctuation).and Figure 20. From the trend (thick gray line labeled by “Average” in 

Figure 20), FOMSVG
=6×10−9 μm²V²/Hz for an oxide thickness EOT=10nm of a typical ISFET. The values of 

FOMSVG
 can be four times smaller for EOT=5nm (for the NW ISFET in [342]), three times larger for 

EOT=17.5nm (for the bioFET in [343]) and four times larger for EOT=20nm. These values may also vary a 

decade above and below the average, since the logarithmic standard deviation of FOMSVG
 is 10dB, as indicated 

with σdB in Figure 20 and Figure 21. As follows from eq. (106), the PSD at 1Hz of the 1/f gate-referred voltage 

noise of the MOS transistor in a typical ISFET with EOT=10nm gate oxide is SVG(1Hz)=FOMSVG
/(WL)=6×10−9 

μm²V²/Hz /(1000 μm²)=6×10−12 V²/Hz, with gate area WL=1000 μm² for the typical ISFET. 

Summarizing the approaches for the determination of SVG(1Hz), one expects that the PSD at 1Hz of the 1/f gate-

referred voltage noise of the MOS transistor in a ISFET is in the range of SVG(1Hz) = {10−11 V²/Hz to 10−6 

V²/Hz}, depending on gate oxide thickness and sizes of the MOS transistor. Substituting in eq. (406), the RMS 

value of the gate voltage noise SVG of the MOS transistor in the ISFET is expected in the range 

( )

mV3  toV10             

Hz/V1003.3  toHz/V1003.3             

Hz1S03.3RMS

26211
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−− .  (407) 

Considering from eq. (403) that the sensitivity of the electrochemical sensors does not exceed KNion ≤ 60mV/pH 

= 60mV/dec of Nion, then from eq. (404), the RMS value of the noise in the electrochemical sensor is in the range 
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showing that small-size and “noisy” MOS transistor in ISFET may ruin the accuracy of the electrochemical 

sensor, just because of high level of the low-frequency noise. 

Finally, from the reciprocal dependences in eq. (405), the signal-to-noise ratio (SNR) of the electrochemical 

sensor with ISFET is in the range 

( )
6000    to10

RMS

1
 

RMS

K
SNR

Nion10logVG

Nion === .   (409) 

showing that the electrochemical sensor with ISFET can theoretically have good SNR, but similarly to above, 

the high level of the low-frequency noise small-size and “noisy” MOS transistor in ISFET can reduce the SNR to 

unacceptable low values, e.g., causing unstable readings of the pH sensor for all digits after the decimal point. 

VII.3.2. Noise in photo detectors and imaging arrays sensors  

Sensors for light are increasingly used at present, because they provide non-contact and remote sensing and 

imaging, which other types of sensors cannot, converting the optical power into photo current, followed by 

electrical circuit, which amplifies the photo current and convert it into useful electrical signal, e.g., voltage. 

Inherent for the noise in photo detectors is that the optical power is low, which results in low photo current, 
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which is comparable with leakage currents and noise in electronic devices and circuits. The problem is 

reinforced, when reducing the area of the photo sensors, which is the case in multi-million-pixel imaging arrays. 

Therefore, photo detectors with built-in amplification and/or impedance buffering are of main interest at present, 

in order to sense very low optical power by micrometer-sized opto-electrically active areas of the photo sensors, 

which can be integrated also in the semiconductor chip together with other electronic circuits for signal and data 

processing and communication. 

Below, we briefly discuss the noise in the associated circuits of two types of commonly used photo detectors 

with built-in amplification and buffering. These photo detectors are the avalanche photo diodes (APDs), which 

can detect even a single photon, and the active pixel sensors (APSs), which are compatible for integration with 

the electronic circuits in silicon chips to create imaging arrays with millions of pixels, but still small in size and 

cheap to be used in handheld personal devices, e.g., cell phone cameras, and at the tip of medical devices, e.g., 

cameras for endoscopes, dentistry and elsewhere. 

The avalanche photo diodes (APDs) are PN, PIN and more complex junction structures, reverse-biased with 

excess voltage Vex slightly above the junction breakdown voltage VBR. At this biasing condition, an avalanche 

process multiplies the primary carriers generated thermally and optically in the junction depletion layer. The 

avalanche multiplication coefficient is M∝exp(Vex), resulting in larger reverse current IR=M(Ileak+Iph) compared 

to the primary reverse currents, the thermally generated current Ileak (observable when the junction is in dark) and 

the optically generated (photo) current Iph∝Popt proportional to the optical power Popt absorbed in the depleted 

layer. Thus, the gain of the APD is the avalanche multiplication coefficient M. Since the junction is reverse 

biased, then the carriers traverse the junction quickly, producing short “spikes” of current, and shot noise with 

white power spectrum density (PSD) of magnitude [344, 345, 346, 347, 348]: 

SAPD,white = 2q(Ileak+Iph)M²F = 2qIR × (MF), with F=1…M, thus, F<APD gain   (410) 

where F is called “excess noise factor”, please see the above cited references for details on what and how F 

depends on, and F is lower than the APD gain M (avalanche multiplication coefficient).  

Eq. (410) is a good model for the APD noise at medium and high frequencies, e.g., when using the APD in fiber-

optical communications or for RF noise sources with PIN diodes, and when the APD gain M<100 is not high. 

However, for photo sensors operating in the continuous regime, one observes the low-frequency 1/f noise of the 

APD, as one can see in [346, 347, 348]. In these references, the APDs are hetero-structures with separate light 

absorption and charge multiplication layers, the APD noise with 1/f power spectrum density (PSD) is described 

as SAPD,1/f=KF×I²R/f, and the values of the KF are in the range from below 10−6 to above 10−4, varying with the 

APD structure, processing and bias. However, noise with Lorentzian spectra are also observed in APD, 

occasionally at low IR [348] and regularly at elevated Vex that corresponds to high gain M>200. The problem is 

that a micro-plasma random switching occurs [46], when attempting elevated Vex for high gain M of the APD. 

Therefore, Vex of the APD bias in continuous operating photo sensors has to be kept so that the APD gain is low, 

e.g., M=20…50<100. Other low-level light applications of photo sensors require high gain M>1000, e.g., single 

photon detection/counting in photo sensors for Raman spectrometers and time decaying fluorescence imaging 

(FLIM), in which the APD operates in Geiger mode. In this single photon detection regime, Vex is elevated and 

the micro-plasma is forced to extinguish by special high-speed (~ GHz) active quenching and reset circuits. Even 

though, there are problems with missing detection of photons and spurious after-pulsing of the micro-plasma. 

Many publications are devoted recently for single-photon APDs (SPADs), but the low-frequency noise in SPAD 
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is not elaborated well in these publications in order to extend a discussion here. 

The active pixel sensors (APSs) are a combination of a photodiode and an electronic circuit, which allows 

integrating the photo sensing with essential functionality in each pixel of an imager array. The APS functionality 

comprises cyclic operation similar to that of a CCD (charge-coupled device). Each cycle includes “phases” of 

reset, intergradation and readout. The reset phase connects a voltage source to apply a certain and maximum 

potential/voltage across the depleted layer of the photo sensing structure (creating a potential well under the gate 

in the CCD, or a reverse voltage on the capacitance of the photodiode in the APS). By disconnecting the voltage 

source in the integration phase, the photo generation of charge reduces the depletion, through collecting photo 

charge in the potential well of the CCD, or through discharging the photo diode capacitance by the photo current. 

Then, by a set of switches that connect the pixels sequentially to a readout amplifier, the readout phase acquires 

the amount of charge collected in the CCD, or the reduction of voltage across the photo diode in APS, where the 

reduction is in respect to the maximum reverse voltage set in the reset phase. 

While the phases of reset-integration-readout in cyclic operation of CCD and APS are similar, the structures and 

circuits for CCD and APS are very different. From the circuit perspective, the CCD requires switching of high 

gate voltages (in the range of 10-30V), and the CCD structure is incompatible with mainstream CMOS 

processes, which is a problem for the single-chip integration of CCD with other electronic circuits. The 

advantage of the APS is that all devices in the APS are readily available in mainstream CMOS processes, e.g., 

the photo diode is just one of the PN junctions used for drain, source or well for MOS transistor in the silicon 

substrate. Accordingly, all parts in the APS use the ordinary supply for other analog and digital circuitry in the 

CMOS chip. This made the APS the cost-effective and attractive choice for building imagers nowadays, and we 

briefly discuss the noise in APS below. 

The noise in APS with a typical circuit shown in Figure 65 (a) is analyzed in [349] in terms of the voltage 

across the capacitance CPH of the node vs. of the photo diode D. The pixel consists of a photodiode D and three 

MOS transistors. M1 is the reset transistor, which resets the photo diode voltage level close to the supply voltage 

VDD before integration. The transistor M2 is the buffering source follower, which isolates the high-impedance 

photo diode node from the low-impedance readout bus. The transistor M3 is the pixel select transistor, which 

connects the pixel to the readout bus. During the readout phase, the channel resistance of M3 is low, and the 

pixel output voltage Vo=(Vs−VT.M2) at node vo follows the photo diode voltage Vs at node vs, offset-shifted with 

the threshold voltage VT.M2 of M2. The transistor M4 is the pixel load shared by the pixels connected to the 

readout bus.  

Shot noise and “KTC” noise in APS. The shot noise 2qIR=2q(Ileak+Iph) in the photo diode reverse current 

IR=(Ileak+Iph) is mainly considered in [349] at different reset and integration times. The shot noise current is 

converted into voltage noise by the differential resistance rd=dVs/dIR~ϕt/IR, where Vs is the voltage of node vs. 

and ϕt=kT/q≈0.026V is the thermal voltage at room temperature T=300K. Accordingly, as given in [349], the 

voltage noise of node vs. is 
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where the factor F depends weakly on the reset and integration times. Note that due to rd~ϕt/IR, the shot noise has 

been converted into thermal-like noise, often termed as the “KTC” noise in imagers. Note also that the KTC 

noise is in principle independent of bias and photo current. Consider in addition that the voltage of the vs node is 

sampled twice in the so-called correlated double sampling (CDS), once in the beginning and then at the end of 

the integration phase, so that the voltage swing ΔVs of the discharge of the capacitance CPH of node vs is 

obtained. This swing is proportional the photo current, since the swing is given by 

  int
PH

phleak

end.ntegiresets t
C

II
VVV swing CDS

+
=−=∆    (412) 

where tint is the integration time, and many offset voltages in the circuit are compensated, except for the offset 

due to leakage current Ileak. Thus, considering ΔVs as a signal, the signal to noise ratio (SNR) due to shot noise in 

the photo diode in the APS is 

  

( )ms  tos
pF  tofF1064

pA fA to
 ~          

t
CmV26C106.1

II
t

Cq

II
t

C
q

kT
q

II
            

t
CkT

II

noise KTC2

V
SNR

12-

int

PH
19

phleak
int

PHt

phleak
int

PH

phleak

int

PH

phleaks
shot

µ
×

×××

+
≈

ϕ

+
=

+
=

×

+
=

×
∆

≈

−
, (413) 

The SNRshot increases with the photo current and integration time, and the orders of the magnitudes of the 

different quantities are swing ΔVs = 100mV, noise 2×KTC=(0.2mV)² and SNRshot≈500=54dB for 

IR=(Ileak+Iph)=1pA, CPH=0.1pF and tint=10ms. Eq. (413) suggests that SNR increases with the integration time, 

but the detailed analysis in [349] indicates non-monotonic SNR as function of the reset and integration times, as 

shown in Figure 65 (b) and (c), mainly due to non-linearity in the photo diode and MOS transistor I−V and 

C−V characteristics and saturation of the voltage of the photo diode node vs or of the APS output node vo near 

the GND supply rail at long integrations time and high photo currents. 

In addition to the shot noise of the photo diode discussed above, a significant contribution to the APS noise has 

the buffering transistor M2 in Figure 65 (a), because it operates in the active mode of source follower. This 

transistor contributes with 1/f noise, and if the gate area is small, e.g., (W×L)<3µm², then it contributes also with 

random-telegraph-signal (RTS) noise, which can cause pixel “blinking”, if a step transition between the levels of 

the RTS waveform occurs during the integration phase between the two samples of the correlated double 

sampling (CDS). The other transistors have small to negligible noise contribution, because they are operating as 

switches (M1 and M3) and the load transistor M4 can be of large area, being one for hundreds of pixels in the 

imaging array, and not affecting the fill factor of the array. 

To refer the 1/f noise of the buffering transistor M2 in Figure 65 (a) to the photo diode node vs, one considers 

the gate-referred 1/f voltage noise SVG(f)=SVG(1Hz)/f, for which we have scaling rules and statistical data for 

FOMSVG
 in eq. (106) in Sec. IV.1.2. Coupled noise component (number fluctuation) and in Figure 20. From the 

trend (thick gray line labeled by “Average” in Figure 20), FOMSVG
=6×10−9 μm²V²/Hz for an effective oxide 
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thickness EOT=10nm of the gate dielectric in a MOS transistor. Having scaling rule FOMSVG
∝EOT² and 

typically a gate dielectric thickness EOT=3nm to 5nm for the buffering transistor M2, depending on the CMOS 

technology node, then the values of FOMSVG
=1.5×10−9 μm²V²/Hz to 6×10−10 μm²V²/Hz, for EOT=5nm and 3nm, 

respectively, are four to ten times smaller than FOMSVG
=6×10−9 μm²V²/Hz for EOT=10nm. According to eq. 

(106), and knowing the area (W×L) of the buffering MOS transistor M2, the power spectrum density (PSD) at 

1Hz of the gate-referred 1/f voltage noise of M2 is SVG(1Hz)=FOMSVG
/(W×L), and the PSD of the 1/f noise 

associated with the photo diode node vs is 

PSD of the 1/f noise in APS  
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Having delay tint in the correlated double sampling (CDS), the squared magnitude |HCDS(f)|² of the transfer 

function of the delay-subtraction operation of the CDS is a cycling spectrum (spectral “comb”) given in [350] by 

( ) ( ) )t/25.0f(HPF22ft2sin4fH intint
22

CDS ≥×≈π=   (415) 

which, for the purpose of 1/f noise analyses, can be approximated by a high-pass filter HPF(f≥fmin) with power 

gain 2 and corner frequency fmin=0.25/tint. The values of the HPF parameters are easily deduced, considering the 

two samples in CDS, thus, the power gain=2, and fmin as the min frequency, at which 

|HCDS(fmin)|²=average(|HCDS(f)|²)=gain=2. 

The cycling of |HCDS(f)|²=4sin²(2πftint/2)=2(1−cos(2πftin)) can be understood, considering that the subtraction in 

CDS suppresses fully a DC signal and “full-period” signals with frequencies of f=n/tint, n=0, 1, 2,…, but adds 

“half-period” signals with f=(n+½)/tint, because cos(2π((n+½)/tint)tin)=cos(π)=−1. Then, the identity 

(1−cos(x))=2sin²(x/2) explains the “twice faster” cycling of |HCDS(f)|², that is |HCDS(f)|² is a spectral “comb” filter 

with frequency step of Δf=0.5/tint. Finally, the increase of the signal (actually, the 1/f noise) frequency from 

0=DC to 0.5/tint causes reduction of the signal suppression toward signal addition, passing through the corner 

frequency fmin=0.25/tint of the high-pass filter approximation, at which the CDS does neither suppresses nor 

enhances the average power gain=2 of the high-pass filter approximation. Comparing the frequency step 

Δf=0.5/tint of |HCDS(f)|² of the spectral “comb” with the slower-varying spectrum of the 1/f noise, the given in 

[350] Riemann-like integration at the |HCDS(f)|² spectral “comb” for determination of the root-means-square 

(RMS) value of the 1/f noise can be replaced with continuous integration, that is 
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where ωmax=1/τacq=2πfmax is the bandwidth of the readout amplifier for acquisition of the pixel output voltage at 

node vo, considered as a first-order low-pass filter LPF with pole at fmax and time constant τacq. As shown in the 

fifth line in eq. (416), the acquisition time constant τacq has to have low value to instantly sample the pixel output 

voltage at node vo for a short time of tint/(10 to 20), and with low dynamic error, that is, the acquisition time 

constant τacq has to be (3 to 5) times shorter than the short acquisition time short time of tint/(10 to 20). 

The lines in eq. (416) indicate the following. The first line explains the method for determination of the squared 

RMS²1/f,CDS value of the noise by power-spectrum transfer functions |HCDS(ω)|² of the CDS and LPF(ω<ωmax) of 

the band-limited to ωmax acquisition channel for the pixel output voltage at node vo. The second line substitutes 

the equations for the 1/f noise PSD and the power spectrum transfer functions, also converting the angular 

frequency ω into regular frequency f in unit Hz The third line indicates that the integration results in a 

complicated function, which is a mixture of trigonometric and hyperbolic functions even for white noise, as one 

can see in eq. (10) in [350], and in eq. (11) in the same reference, also a sinc(x) function occurs in the mixture, 

when considering a finite time in the rectangular waveform of sampling in the CDS acquisition channel. Such 

complicated functions (although seemingly accurate) are not worth for analyses, since the scatter in the noise 

PSD around the geomean value of the PSD is in excess of ±6dB, as seen by the rocky curve for (and labeled by) 

Single acquisition in Figure 76 later in Sec. VIII.6. Consequences from statistical nature of LFN – 

distributions in spectra, techniques of averaging, data volume and coordinates, instrumentation. 

Therefore, approximations are undertaken in the fourth line of eq. (416) with an ideal high-pass filter 

HPF(f>fmin) of power gain=2 for the power-spectrum transfer functions |HCDS(ω)|² of the CDS and with an ideal 

low-pass filter LPF(f<fmax) for the power-spectrum transfer function of the acquisition channel, which allows to 

write a simple definite integral in the fifth line, with integrand 1/f for the noise PSD and limits fmin to fmax (the 

values are discussed above) for the frequency pass-band determined by the CDS and the bandwidth of the 

acquisition channel. This pass-band applies for the calculation of RMS²1/f,CDS value of the 1/f noise in the APS. 

The sixth line of eq. (416) shows the resulting formulas for the calculation of RMS²1/f,CDS value of the 1/f noise in 

the APS.   

The seventh line substitutes the values from eq. (414) for the PSD at 1Hz of the gate-referred 1/f voltage noise of 

the MOS transistor (gate oxide thickness EOT=3nm to 5nm, gate area (W×L)=3µm² to 10µm²) typically used for 
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the buffering transistor in APS, see again M2 the circuit in Figure 65 (a). The last, the eighth line shows that the 

RMS1/f,CDS due to the 1/f noise in APS is expected to be 3 to 10 times (10dB to 20dB) lower than the 2×KTC 

noise of the shot noise in the photo diode reverse current, estimated above after eq. (413). However, noticing that 

the scatter of FOMSVG
 is σdB=10dB in Figure 20, which may cause the same 10dB increase in SVG and in 

RMS1/f,CDS, and if the buffering transistor area is reduced 10 times (10dB) in the range (W×L)=0.3µm² to 1µm², 

which would increase the 1/f noise of the MOS transistor with the same 10dB, then RMS1/f,CDS of the 1/f noise 

could be increased 20dB and may become comparable or even dominant in the APS. Other problem in APS with 

buffering transistor of sub−µm² gate area is the RTS noise, which can cause having “blinking” pixels in the 

imager array; and the problem is now discussed. 

Mentioned above, the RTS noise in the buffering transistor, M2 in the APS circuit in Figure 65 (a), could cause 

pixel “blinking”, if a step transition between the levels of the RTS waveform occurs during the integration phase 

between the two samples of the correlated double-sampling (CDS). Similarly to above for the KTC and 1/f 

noise, one refers the RTS noise as a voltage noise at the photo diode node vs, see Figure 65 (a), although it 

occurs actually at the output node vo., since the pixel output voltage Vo=(Vs−VT.M2) at node vo follows the photo 

diode voltage Vs at node vs, offset-shifted with the threshold voltage VT.M2 of M2. Thus, the RTS noise voltage 

ΔVRTS of the APS is the RTS noise voltage ΔVT,M2,RTS in the threshold voltage of M2, it occurs as voltage noise 

ΔVo,RTS=ΔVRTS=−ΔVT,M2,RTS at the APS output, and the output RTS noise voltage is identically referred to the 

photo diode node vs, that is ΔVs,RTS=ΔVo,RTS=ΔVRTS=−ΔVT,M2,RTS.  

As discussed in length Sec. IV.3 RTS noise in MOS transistors, the RTS change of the threshold voltage of the 

MOS transistor is due to RTS capture/emission of single electron in the gate capacitance WLCox of the MOS 

transistor. Therefore, from eq. (178), the voltage of the RTS change is ΔVRTS=−ΔVT,M2,RTS=±q/(WLCox), where 

the signs ± are alternating at random intervals between the changes. Considering also the CDS and eq. (412) for 

the voltage swing ΔVs of the discharge of the capacitance CPH of node vs (due to the photo diode reverse current) 

during the integration phase, one writes for the CDS-acquired voltage swing ΔVAPS at the output of the APS 

(node vo) that  

ΔVAPS=ΔVs+ΔVRTS=ΔVs±q/(WLCox), when RTS occurs with probability PRRTS, otherwise ΔVAPS=ΔVs  (417) 

This equation corresponds to the histogram [351] for single RTS shown in Figure 66 (a), heuristically explained  

in Figure 66 (b). There is a central peak corresponding to ΔVAPS=ΔVs, and two lobes at ΔVs±q/(WLCox). The 

probability PRRTS=(ΣCNTlobe)/(CNTpeak+ΣCNTlobe) for occurrence of the RTS noise in the APS is the ratio of the 

counts ΣCNTlobe of occurrences (often called frequency in the histogram) in the lobes over the total count 

(CNTpeak+ΣCNTlobe) in the histogram, including the central peak. The RTS probability PRRTS is split between the 

two lobes, but not necessarily equally split.  

If two or more traps are involved in the RTS noise, then one has multi-level RTS, the number of lobes is 

2×(number of traps), as shown heuristically in Figure 66 (c) for a triple RTS in an APS with a larger-area 

buffering transistor (M2 in Figure 65 (a)), having reduced spacing q/(WLCox) between the lobes. The reduced 

spacing results in overlaps of the peaks in the histogram. The overlaps eventually lead to inability to distinguish 

the peaks in the histogram envelope (gray curve), the individual RTS noises superimpose and, consequently, 

attribute into 1/f noise. 

While the spacing q/(WLCox) between the lobes is certainly predictable in the histograms for the CDS-acquired 

voltage swing ΔVAPS at the output of the APS, the probabilities CNTlobes /(CNTpeak+ΣCNTlobe) of the lobes cannot 



163  of  286 

be elaborated well theoretically by diverse reasons, e.g., the RTS transitions are random, they randomly occur 

(or not) during the integration time, the occurrences of high-to-low and low-to-high level transitions of RTS are 

not necessarily alternating in consecutive CDS, the RTS time constants vary between the pixels and with the bias 

and illumination in imaging arrays, etc. Therefore, although the RTS noise in the buffering transistor causes RTS 

noise in APS, the rates of the pixel “blinking” are impossible to predict. The RTS “blinking” of the APS can be 

slow or fast, or in bursts, and one can arbitrary percept the RTS noise in APS as a bi-stable “blinking” or as a 

“flickering” noise, which is a counterpart of the fact that noise waveforms cannot be reconstructed from the 

noise spectra, due to omitting the random phase in the noise spectra. 

Following from above, one can state amplidude and RMS figures-of-merit (FOMs) for the RTS noise in imagers. 

The amplidude FOM is the signal-to-noise ratio, which uses the amplidude q/(WLCox) of the RTS noise 
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The calculation shows very wide range, from complete dominance (SNR=−14 dB) of the RTS noise at low photo 

current in small-area APS and short integration time tint, to insignificant RTS noise at high photo current in large-

area APS under strong illumination and long integration time tint. The published data imply that the RTS noise is 

dominant in APS arrays with pitch lower than 3µm, in which the buffering transistors have an area lower than 

(W×L)<1µm², and many pixels are “blinking”. The problem of pixel blinking is rare for imaging arrays with 

pixel pitch 10µm and larger, since the buffering transistors are of large area (W×L)>3µm². 

The RMS FOM for RTS noise in APS uses the root-mean-square value q/(WLCox)×(√2/2) of the RTS noise and 

the probability PRRTS for the CDS readings in the lobes of the histogram. There is not really an established RMS 

FOM for the RTS noise in APS, but the FOM can be constructed, as follows 
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The RMS FOM is usually a scaled version of the amplitude FOM, but the scaling coefficient (the expressions in 

denominator of the equation with the probability PRRTS of the lobes in the histogram) is uncertainly varying 

around unity, and the expressions can be written differently by different authors. Again, there is not really an 

established RMS FOM for the RTS noise in APS, although many works use RTS time constants [352, 353] and 

spectra for the RTS noise [353]; thus, we do not extend further the discussion on RMS FOM for the RTS noise 

in APS.  
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Diverse approaches have been also undertaken to remedy the RTS noise in imagers, e.g., trapped charge “flush” 

by the reset phase followed by a short integration phase [353] and multiple sampling for CDS [354]. However, 

all these complicate the operation, increase the circuit overhead and the chip area of the imager, without 

remedying the inability of the CDS to remove RTS transitions during the integration phase. In fact, the only 

sustainable for the practice approach for reduction of the RTS noise in APS remains the use of larger-area 

buffering transistor (M2 in Figure 65 (a)), and consequently, limiting the imaging array to pixel pitch larger than 

3µm. 

In summary for the noise in APS, the dominant noise sources are the KTC noise due to shot noise in the photo 

diode, and the 1/f noise and RTS noise due to a small area of the transistor buffering the photo diode from the 

readout amplifier in the imaging array. The levels of these noises are inversely proportional to the photo detector 

and transistor areas, limiting the APS pitch to min 3-5 µm in the imaging arrays. 

VIII. Outlook for the LFN  

Looking about a century back, one can see that the noise in electronic devices was always in the scope of 

investigations, hand by hand with the development of these devices and the range of their applications. 

Therefore, obviously, we begin the outlook by the extraction of trends from the past. 

VIII.1. Trend for the LFN level and variations 

In the era of vacuum electronic devices, which is the first half of the 20th century, the fundamental relations for 

white noise as shot noise [355], SI=2qI, and thermal noise [172, 173], SV=4kTR, were established by the charge 

quantization of the current flow and thermodynamic approaches. The presence of flicker noise was noted, 

attempting to explain it by thermodynamic approaches, e.g. in [356], as it was done successfully for the white 

noise, and thus, it was promising approach for the flicker noise, but it was not possible. Therefore, the approach 

of superposition of Lorentzian noise sources was developed in the period from late 1930’s [357], during 1940’s 

[358] to late 1950’s [85].  

Nevertheless, the universality of thermal noise provided suitable reference, and the noise factor (or noise figure), 

NF – see eqs. (226) and (228), became a norm in measurement and reporting the results for 1/f noise, which 

continued to mid-1970’s, and caused some inconvenience and delay to establish that the factors for 1/f noise are 

different from the factors that determine the white noise. Apart from the shape of the spectra, the main difference 

between white and 1/f noise is that the white noise can be described by electrical DC quantities, current for shot 

noise or resistance for thermal noise, while the 1/f noise is in addition inversely proportional to the size of 

statistical populations of carriers and/or traps. In particular, taking given densities of charge carriers and traps, 

the 1/f noise normalized value Snorm=S/DC²=KF/f∝1/Area - see eq. (14), is inversely proportional to the noise 

generating Area. The noise generating Area is the cathode area in the case of vacuum tubes [359], the emitter 

junction area in the case of bipolar transistors and diodes, and the gate area in the case of field-effect transistors, 

as discussed in details in previous sections. Accumulating experience from about two preceding decades, 

experiments and analyses, such as those in [359, 360, 361], established the areal dependence of 1/f noise. This 

dependence was used for the design of low-noise amplifiers, in which the input transistors are large [362], 

despite the critical statements in some publications, e.g. in [363], that the area is irrelevant to 1/f noise, using by 

inertia the noise factor as a figure of merit, and overlooking that the resistance for the minimum NF increases 

when the Area decreases. 

Thus, the factor (Area×KF), see eq. (2), can be used as the figure of merit (FOM) to compare the data for 1/f 
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noise in different electronic devices. The evolution of the factor (Area×KF) and the normalized RMS noise 

(inoise/IDC) is shown in Figure 67 over almost of a century of research on 1/f noise. In this figure, the data are from 

[359, 364] for vacuum tubes. The data for Si, Ge and SiGe bipolar transistors is aggregated from Figure 2, 

Figure 14 and Figure 40, and from [365, 366, 367] for the period before year 1980. The aggregated data from 

Figure 15 for MOS transistors and from Figure 54 for silicon nanowires and carbon nanotubes are also shown, as 

well as data from [360, 362] for the period before year 1980 for MOS transistors. Data from [368, 369] for III-V 

semiconductor HBTs and from [370] for optical noise of light-emitting diodes are also added for comparison. 

The prediction lines (top to bottom) are for MOS-Analog, MOS-RF and BJT and the Moore’s law (right-hand 

axes) are from ITRS predictions for the period 2006-2020 [3]. Please, see eq. (3) for the conversion from ITRS 

FOM (μmμV²) to FOM (Area × KF). As assumed in ITRS [3], the regression line in Figure 67a is with slope 

(−0.5)dB/year, reflecting improvement in device structures and fabrication, and the Moore’s law line is for 

minimum-sized MOS transistor with gate area L², where L is ½ of DRAM pitch.  

The graph in Figure 67a is arranged so that the left-hand and right-hand scales are with 6 decades difference. 

Once the line for Moore’s law crosses with regression line, or it is below a data point, then the ratio (Area × 

KF)/L² is larger than 10–6, indicating significant level of 1/f noise in small area devices. To illustrate, the 

(Area×KF) data from Figure 67a are recalculated in Figure 67b as ratio of noise to DC currents, according to 
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where inoise is the RMS (root-mean-square) value of the 1/f noise at 1Hz and in bandwidth of 1Hz, and L has the 

values from Figure 67a. The line for Moore’s law in Figure 67b is from ITRS [3] for the number of MOS 

transistors per cm² in microprocessor integrated circuits. Interestingly, the data around year 2000, especially for 

BJT, imply that the ratio inoise/IDC follows the slope of the Moore’s law for integration, that is slope +1dB/year, 

which means that FOM (Area×KF) is constant, and the 1/f noise rapidly increases with the integration level to 

critical for device application magnitudes. This is discussed in the next paragraphs for reliability issues. Overall, 

as the devices become smaller, highly integrated (and faster), the 1/f noise increases [170] in ratio to the DC 

current, thus circuits with minimum sized transistors become noisier. From crossing the level inoise/IDC~0.1%  at 

about year 2000, it follows that one does not use minimum sized devices when the application is sensitive to 

noise, an obvious observation in analog and RF designs nowadays. This fact is clearly seen in the trend followed 

by the data collected after 2000, in which the measured noise is lower than the predictions.  

Having the data from a century of research on 1/f noise arranged in Figure 67, one will be able to deduce trends 

and predict possible issues related with 1/f noise in circuit applications. An earlier prediction for possible future 

scenarios was made in [29]. An observation in Figure 67a is that (Area×KF) is relatively higher at the beginning 

when new devices are introduced, and later, it decreases according to the regression line. However, note two 

large concentrations of data points, one located around the beginning of 21st century, and the other one around 

the last decade. In the first one, although the data are largely scattered, the minimum values tend to be in the 

range (Area×KF)=10–9 to 10–8 μm², irrespectively of the type of the device. In the second group, the minimum 

values have been reduced significantly, almost two orders of magnitude below the first group of data and also 

well below the regression line. The devices that have contributed to this reduction are NWs and CNTs, but 

mainly HBTs, in which the introduction of C in the SiGe semiconductor has reduced the noise significantly. The 

consequence is that the normalized 1/f noise inoise/IDC (at 1Hz in bandwidth 1Hz) is also reduced, not following 
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the regression line prediction, as depicted in Figure 67b.  

Despite the large scattering of data, MOS transistors do seem to agree with the assumption in ITRS [3], that 

(Area×KF) decreases, following the slope −0.5dB/year of the regression line in Figure 67a. Considering the data 

from ITRS [3], as given by the lines for MOS-Analog and MOS-RF in Figure 67a and b, and using ∫x−1dx=ln(x), 

then one can write for the RMS (root-mean-square) value of the 1/f noise that 
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where (Area×KF) is the FOM taken from the ITRS prediction lines for MOS-Analog and MOS-RF in Figure 67a, 

the gate area (WL) depends on the application of MOS transistor and it is greater than the minimum L², depicted 

as Moore’s law in Figure 67a, the constant 2.3=ln(10) follows from changing natural to decimal logarithm, and 

log10(fmax/fmin) is the number of frequency decades in the bandwidth that device application considers. Let us 

consider (fmax/fmin)=100kHz/1Hz, 1MHz/1Hz and 1012=1/(bit error rate) for analog, RF and digital applications, 

respectively, as shown in Table 4. 

In the majority of applications, one needs the peak-to-peak magnitude of the noise. Assuming the common belief 

that the noise is Gaussian, as follows from central limit theorem for superposition of random events, then one 

can write for the peak-to-peak magnitude (LF Noise) 
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where Nσ is the number of standard deviations that one needs to take in order to achieve a desired Confidence 

Probability, given by 

Confidence Probability for LF Noise 
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For analog applications, one usually takes Nσ=2, which represents the noise “peak power” (LF Noise)² with 

sufficient confidence of ~95%, considering repetition and averaging of analog signals. Also, one usually uses 

large transistors (WL)~500×20L² to avoid short channel effects. Substituting the FOM (Area×KF) from ITRS for 

MOS-Analog, one obtains the data shown with diamonds in Figure 68. Provided that one requires high accuracy 

in analog applications, e.g. not more than 0.01% error from noise, the 1/f noise causes larger uncertainty, and it 

is a concern for analog applications, which always consider noise reduction techniques, such as integration, 

averaging, offset tracking and cancelling, etc. 

For RF applications, especially with the explosion of digital wireless communications, there are tough 

requirements for increased carrier frequencies, wider bandwidth and small channel spacing and phase instability. 

Therefore, one usually takes Nσ=3, which guaranties 99.7% confidence and implements error correction 

techniques that successfully maintain the communication channel operating at error rates of 0.1%-0.2%. The 

high frequency usually requires large aspect ratio W/L~1000 in MOS transistors and use of short channel 

devices normally at the minimum gate length L. Thus, (WL)~1000×1L², and substituting the FOM (Area×KF) 

from ITRS for MOS-RF, one obtains the data shown with squares in Figure 68. Provided that correction of more 

than 0.2% error rates increases considerably the overhead in the communications channels, the 1/f became a 
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concern for RF applications, and after year 2005, it is always in the focus in the design of low power oscillators 

and mixers, since the 1/f noise degrades the phase noise in RF front-ends. 

In the past, 1/f noise was not assumed to be a problem for digital applications, since the immunity of digital 

circuits against noise is relatively high, having SRAM Static Noise Margin (SNM) more than 10%-20% of the 

DC supply, as estimated in [371] for 0.5-0.8μm CMOS technologies, that is SNM~0.3−1V at VDD=2−5V. 

Simulations of sub-50nm CMOS [372], however, indicate that the opening in the “butterfly” graph of SRAM is 

reduced to few tens mV, since the DC supply is less than 1V, and process variations are becoming more 

important. On the other hand, one relies that digital circuits do not do random error. This might be not true for 

circuits with very small MOS transistors, unfortunately. A normal requirement for SRAM is bit error rate of 

10−12, the reciprocal value of which is 12 frequency decades. One usually takes at least Nσ=4, which guaranties 

confidence 99.994% that double error will not occur. To save chip area, and to comply with Moore’s law, one 

uses small MOS transistors in SRAM cells, e.g. (WL)=3×1L². Since there is no specification in ITRS for 1/f 

noise in digital MOS, we take the specification for MOS-RF (note that  in virtually all domains of technology, 

RF electronics is going digital via analog-to-digital converters (ADC) and digital-to-analog converters (DAC) 

[373] ). Then, using eq. (422), we obtain the data shown with circles in Figure 68. Provided that the SRAM 

Static Noise Margin (SNM) can be as low as 10%, we see from the figure that the reliability of digital circuits is 

also a topic of concern after year 2013 [374, 375, 376, 377]. In other words, the 1/f noise might become 

unforeseen limit in device down-scaling. 

Connecting the points for (LF Noise/DC) with 0.01% for MOS-Analog (it was some time in year 1995), 0.2% 

for MOS-RF (it was circa year 2005) and 20% for MOS-Digital (around 2015), one draws the solid line in 

Figure 68, which illustrates the escalating issues with low-frequency noise by the device down-scaling with 

MOS technology nowadays. And this is on the top of the many other difficulties that accompany the device 

miniaturization, such as lithography, alignment, power density, wiring, accessing, volume of designs, testing, 

cost and complexity of the technology, etc., which are addressed in ITRS [3]. 

It is important to mention that average data for 1/f noise are used in the calculations shown in Figure 68. As we 

have presented in previous sections, and also seen in Figure 67, individual devices may have large deviations for 

the 1/f noise, normally 6−10dB, that is, about a decade for noise power spectrum density, or about 3-4 times for 

the ratio (LF Noise/DC). The issues with the scattering of the noise level around the average were put forward in 

the 1990’s, when the device areas became less than 1μm², by publications such as [74], from which Figure 11 is 

adopted for illustration earlier in section III.4. “Measurement and characterization uncertainty – 

experimental accuracy, fitting and averaging”. These large deviations for the 1/f noise also imply that the 

“average” noise does not describe completely what the noise in the devices is. Looking again at shaded areas in 

Figure 13, one clearly sees that the relative variation becomes more than 100% (3dB) of the “average” noise in 

BJTs, when the emitter area is less than 1μm², consequently, with “average” KF>10−8. Similar data for MOS 

transistors can be found in [72, 378]. In this situation, there are two-three simple, but confusing, questions: 

“What is the meaning of noise variation larger than average noise, since the noise power is always greater than 

zero?”; “Why the noise variation is greater than the noise itself, assuming that the average is representative for 

the noise in the devices?”; and “What we should use or do when the noise variation is greater than the average 

noise?”. Surprisingly, these simple questions are related to the fundamental understanding for low-frequency 

noise in electronic structures (and other systems [160]), and to the principles and techniques of gathering 
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information for noise and modeling in these devices. 

VIII.2. Common assumptions for noise 

Let us list with A1, A2, …A6 the assumptions for noise, used in the literature, starting from fundamental to 

specific, and briefly discuss them from present point of view.  

A1. The noise is not deterministic, that is, random variables describe mathematically the noise currents and 

voltages, and statistical parameters (e.g. average, variance, etc.) over a population of data (realizations, samples, 

time of observation) can only describe the noise. 

A2. The noise is statistically invariant in wide sense, that is, the average rate (e.g. DC current, which is number 

of electrons passing a cross-section per unit time) and the variance (standard deviation in square, σ²) are 

constants in wide sense, both in time and for identical samples and at identical conditions. This assumption is 

established by the first half of the 20th century, it seems for mathematical convenience in order to use the Carson 

theorem, as one can see in several publications, e.g. in [379, 380]. The Carson theorem states that, if identical 

pulses with duration, or lifetime τ, and shape F(t) occur randomly at average rate Ravg (with Poisson distribution), 

then the power spectrum density of the noise is 

( ) ( ) 2
avg fFR2fS ≈ , with ( ) ( ) ( )
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∞−
π−=π dtft2jexptFf2F ,   (424) 

where F(f) is the Fourier transformation of F(t). Taking an example for current shots ΔI due to electrons 

traversing a PN junction or the base of a BJT for transit time τ=τt at average rate Ravg=IDC/q, with q being the 

electronic charge, for τ=0 we have Dirac current pulses F(t)=qδ(t)F(f)=q, and one obtains the relation for shot 

noise 
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For a finite value τ>0, at an additional assumption for exponential decay in the autocorrelation in the pulse [379] 

in order to satisfy Langevin equation ∂ΔF/∂t=−ΔF(t)/τ+F(t), with ΔF(t)=F(t)-Favg, one gets the Lorentzian noise 

power spectrum density  
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where the variance σ² might be difficult to be found, but it is assumed to be constant, as stated above. 

A3. The noise is small in magnitude (e.g. as compared to DC), and therefore, it can be described with linear AC 

models. In addition, the DC component of the noise (e.g. average of noise waveform in time domain) is zero. 

Combined with the assumption above for constant variance σ², and according to Wiener-Khintchine theorem, the 

noise power in time and frequency domains are equal. A direct consequence is that the power spectrum and the 

square of noise waveform are equally representative for the noise properties. Other consequences are that the 

noise power is additive to any other power in the device, and the DC is always deterministic. 

A4. The microscopic noise sources may have autocorrelation different from zero, but only in time. At 

mesoscopic scale (device level), the microscopic noise sources are independent, that is, there is no spatial, time 

or frequency correlation between the individual microscopic noise sources. This assumption implies that the size 
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of the microscopic noise sources is negligible, as compared to the distance between the noise sources or the sizes 

of the device. Also, combined with the assumption above for linearity, it allows for superposition of noise 

sources, see next. 

A5. The population (the number of) of microscopic noise sources is sufficiently large from statistical point of 

view, and the realization of all microscopic sources is time invariant, that is, it depends on the duration of the 

observation (measurement), but not when the observation was made. Combined with the previous assumption, 

this allows to sum or integrate microscopic noise sources over any variable, e.g. along sizes of the device, 

energy, time constants, number of the observations (measurements), independently from integration over time or 

frequency associated with individual observations (single capture of data during measurement). Also, due to the 

additive property of the noise power assumed in A3, and according to the central limit theorem for this case, the 

noise in the device should be Gaussian. 

A6. Following from the last assumption, continuous mathematical treatment of the noise is allowable, by using 

effective quantities, such as energy, velocity, mobility, time constants, etc., that represent the particle-wave-

quantized nature of the solid matter on average, and in deterministic manner. Thus, the frame for noise analyses, 

modeling and measurement is consistently defined, and the science, physics and practice on electronic noise 

grows rapidly in proportion with the growth of the electronics. 

VIII.3. The fabrication “frozen noise” – from spatial variations to yield problems 

While the above assumptions (at the end of the previous sub-section) draw a coherent picture from physical and 

mathematical points of view, the device downscaling actually has questioned several of them. Some of the issues 

are now discussed. In this discussion, we pay particular attention to the numbers, because they are where the 

problems usually come from when dealing with random quantities, thus, with statistics for noise. 

VIII.3.1. Length uncertainty variances 

Please, look again at Figure 67a. Except for the uncertain data (solid circles) for nanowires, when their cross-

section area is used to calculate the figure of merit (Area×KF), all other data are above (Area×KF)=10–9μm², 

mostly in the range of 10–8μm². Then, we calculate from eq. (421) a characteristic distance σd of random 

uncertainty for a frequency decade, taking fmax/fmin=10, (RMS LF Noise)/DC=1, and setting WL=(σd)². So, we 

get 
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The meaning of σd is that after 10 transitions between atoms in the semiconductor, the electron (or hole) carrier 

will be displaced at distance σd from the ideal position, which would be, if no randomness exists in electron 

motion, and the electron travels “smoothly” at the deterministic velocity and trajectory, which one can calculate 

by the continuous equations, e.g. for drift and diffusion, for example. For comparison, the atomic radius of 

silicon is 0.11nm and the average atomic distance in silicon crystals is 0.27nm. Thus, the ten transitions 

correspond to 2.7nm travelling distance, and for a given length L of the device, the uncertainty length σL1e for 

one electron traversing the device is 
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Here, we note that the number of transitions, which the independent electrons do, when traversing the device, is 

proportional to the product of number of electrons (n) in the sample and to the ratio t/τt of the time of observation 

t and transit time τt. Therefore, the uncertainty length σacc accumulated from all electrons during the observation 

is 
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Note that the logarithmic functions are result from the constraint that the noise is 1/f, and they do not imply 

particular physics. We will discuss this later by eq. (438). 

On the other hand, one “sees” all (n) electrons, when measuring the device, so, the measurement is integration 

over the number of electrons, and the observed length uncertainty variance is  
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where ν=L/τt is the carrier velocity. The differentiation against the measurement time t gives 
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We use now that 1/t corresponds both the resolution df and the minimum non-zero frequency fmin in the spectrum 

in frequency domain. 
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Here, SL is the power spectrum density of the length uncertainty σL, as promoted by random deviation of electron 

motion from deterministic trajectory, and the minus sign is due to the fact that the longer is the time of the 

observation, the lower is fmin, and (−df) denotes increase in the resolution in frequency domain. Since the 

observation time can be chosen with various values, then we obtain 1/f noise, given by 
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and σd being random displacement of electron (uncertainty of electron position) after 10 transitions between 

atoms in the semiconductor, as defined by eq. (427). The total number of carriers n=n’WL is proportional to the 

carrier concentration (n’) and device area WL, e.g., as in MOS transistors, for example. 

Surprisingly, eq. (433) is for spatial noise, the unit is area/frequency, and this unit is in direct disagreement with 

assumption A4 above, but on the other hand, the values for the random displacement of electron σd are 

meaningful. For example, the momentum of electrons, pth, due to thermal motion in silicon is 
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where, with the values given above, νth is the thermal velocity, mo is the electron mass, and me is the relative 

electron mass for conductivity calculations. From Heisenberg uncertainty principle, we have 
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where, with the values given above,  we use that νth is the same as RMS of the thermal velocity (the thermal 

motion is random), σth is the uncertainty for the position of the electron, and h is Planck constant. One “sees” the 

thermal noise only in the direction of the current flow, e.g. along x-coordinate, so, in this direction, the 

instantaneous uncertainty for the position of the electron is  

 nm47.1
3
th

xth ≈
σ

=σ ,     (436) 

but after 10 transitions, which is equivalent to average of ten, or reduction of the bandwidth 10 times, one 

expects that the electron is closer to its average equilibrium position, thus, the uncertainty for the electron 

position should be 

nm36.0
10
xth

dth ≈
σ

=σ .     (437) 

By comparing to eq. (433), we observe that the values for σd and σdth are in the same order of magnitude, which 

justifies the values for the random displacement of electron σd, that causes 1/f noise. The smaller values for σd 

indicate that the 1/f noise might be “smoother”, or more deterministic, than the thermal noise in short time scale, 

which is obvious from practical point of view, since the power spectrum density of the 1/f noise decreases at 

high frequencies.  

Note that the variance σacc in eq. (429) for 1/f noise increases with the time of observation t, whereas σdth in eq. 

(429) is independent of t. Qualitatively, this is similar to what is established by Allan variance, recalling the 
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corresponding eqs. (372) and (355) and the discussion on them. The increase of the variance for 1/f noise is in 

contrast with the assumption A2 that the noise is statistically invariant in wide sense, from which it followed that 

the variance is constant in time. Also, the range for σd is at atomic distances, which does not lend much 

confidence to assumption A6 that the particle-wave-quantized nature of the solid matter can be neglected in 

noise analyses and models. Explanation of the 1/f noise in terms of quantum effects was attempted [381], and 

reviewed together with other fundamental 1/f noise sources [382], but the quantum 1/f noise was also strongly 

criticized [2], by objecting the assumption for the “power loss” introduced in the wave equations for the cases 

beam in vacuum and metal at zero absolute temperature; and at present, the concept for quantum 1/f noise is not 

followed up widely, except for special cases, e.g. for lasers, by different mathematical treatment. Later works 

[383, 384, 385], however, indicated that vibration-wave nature of the crystals can produce 1/f noise, and, 

perhaps, there will soon be a reassessment of the approach for quantum noise, since some of the down-scaled 

devices are with dimensions similar to quantum devices, such as quantum dots and wires (e.g. CNT), and the 

noise in these devices is very large, see again Figure 51. 

VIII.3.2. Consequences from the length uncertainty variances 

Now, we discuss the consequences from the length uncertainty variances and 1/f noise, which were introduced 

by eqs. (427) to (433). First, we observe that the logarithmic function disappeared at the step of differentiation 

after eq.(430), hiding all device and bias dependent quantities in the logarithmic function, but giving a rise to 1/f 

noise for the power spectrum density in eq. (433) by the observation time t. Otherwise, eq. (433) is in very 

regular form, as expected, and we will use this after the following remark. 

Instead of σd, the random displacement of electron (uncertainty of electron position) after 10 transitions, one can 

choose characteristic standard deviations σFo for different quantities F in eq. (427), e.g., F can be mobility, 

carrier concentration, velocity, etc., and a spectral density SF for the corresponding quantity will be obtained in 

eq.(433), as long as the variance of the chosen quantity is a logarithmic function of the time. This is nothing, but 

to write 
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where the characteristic standard deviation σFo and reference time constant tFo has to be chosen by physical and 

other reasons. Obviously, the middle equation implies 1/time distribution for σF. For the physically plausible 

relaxation processes, in which F(t)/Fo=exp(−t/τ) occurs randomly at average rate Ravg, one has Lorentzian noise 

spectrum, according the Carson theorem – see again eqs. (424) and (426), but by distributing the variance as 1/τ, 

also assuming proper time for observation, one obtains the superposition integral for 1/f noise from bistable RTS 

fluctuation, as we have used many times in the previous sections – see eqs. (72)−(74) in section III.3 for BJT and 

eqs. (97) and (100) section IV.1 and later for MOS transistors, for example. Indeed, distributing amplitudes as 

1/time at sufficiently high average rate will produce also σF∝log(t), and therefore, 1/f noise spectrum. Thus, one 

has to be careful using the observation of 1/f noise as justification for existence of particular random phenomena 

in the device, the justification should be provided by other method too. The 1/f noise only provides that the 

variance of the fluctuation is a cumulative function of time, in particular a logarithmic function, if the spectrum 

is exactly with slope 1/f. Other conclusions require additional physical justification. 

The regular form of eq.(433) allows to arrange it in normalized form, by adding it as another term SZ/Z² to the 

canonic form of the Hooge equation (6). 
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Here, n is the total number of carriers, αH is the Hooge parameter, and WL is the area of the device, in which the 

1/f noise is generated. Surprisingly, αH becomes a function of the area of the device, as 
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spanning pretty well the “good” values for αH reported in the literature. One of the questions from the past, 

whether one should use the number of atoms, or number of carriers in Hooge equation, and answered in favor of 

number of carriers [2] in the 1980s, seems is not completely answered. The noise in few-nanometer-sized 

devices may help to find whether the sample size matters for Hooge parameter. 

VIII.3.3. Fabrication frozen noise. Definition 

Another difficult problem, which emerged in sub-100 nm devices, is the “contrast” of doping profiles and 

lithography [3]. For maximum resolution, the doping profiles are achieved by ion implantation, usually using the 

gate mask or the polysilicon gate itself as the implantation masks, with the purpose of self-alignment in MOS 

transistor fabrication. To minimize the drain-induced barrier lowering (DIBL), but not increasing the threshold 

voltage [252], the MOS transistor body doping profiles are retrograded, or even δ−doped, with a peak 

concentration in the range of 1018 cm−³ at depth around 30-60nm (or less) from the gate oxide interface.  

We assume that Poisson distribution will hold for the ideal case of ion implantation, and several δ−doping 

profiles are given in Figure 69 on left. With every next generation, the depth of the δ−doping needs to decrease, 

so that the depletion distance tdep is reduced to minimize DIBL, in order to satisfy the semi-empirical rule for 

minimum gate length [386] 

3 2
depoxjmin,GATE tttAL = ,     (441) 

where tj is the depth of source and drain junctions, tox is the thickness of gate dielectric (silicon dioxide), and A is 

a fitting constant. Assuming that tox might be difficult to scale down nowadays, and that tj∝tdep, then the 

depletion distance tdep needs to scale proportionally with gate length. For δ−doping, from electrostatics of point 

charges, we also assume that the effective depletion depth tdep at each atomic column under the gate is 

(1/tdep)²~∑(1/tia)², where tia is the implantation depth of individual impurity atoms. Then, we have generated 

random numbers with Poisson distributions that correspond to the desired tdep in atomic distances (0.2715nm for 

Si), and also, corresponding to peak concentration in 1018 cm−³ at tdep. Sample results are shown in Figure 69 on 

right. In these figures, the dots are the impurity atoms, the grid corresponds to the atomic distances in silicon, 

and the lines correspond to the values for the effective depth at each atomic column under the gate dielectric, 

obtained from abovementioned (1/tdep)²~∑(1/tia)². We observe strong departure from continuity toward 

quantization, decreasing LGATE from 90nm to 12nm, accompanied with increase of the normalized standard 

deviation (σdep/tdep) from 7% to 20% for the effective depth.  

Since several parameters in MOS transistor, e.g. the threshold voltage, are proportional to tdep to the first order of 
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approximation, then (σdep/tdep) will be replicated as variation in voltage overdrive and current flow in the MOS 

transistor. We will present an analysis later, beginning from eq. (443). Further, in smaller size transistors, the 

regions of the current transport (graded areas in Figure 69 on right) become very close to the lines of the 

effective depth tdep, which implies that the variation in tdep will be replicated as variation in the current transport, 

thus, in noise. Since the variation in tdep is due to fabrication, then we have this variation embedded in the device, 

thus the noise is fixed, or “frozen noise”, in other words. The fabrication “frozen noise”, in particular the 

increase of the normalized standard deviations (σ/average) in MOS transistors with LGATE<20-30nm, is  usually 

observed as increased leakage and gain reduction, smear in the device I−V curves, resulting in parameter 

variations from device to device and between circuits [372, 387], which should be nominally identical. The 

“frozen noise” from fabrication, perhaps, also increases the temporal low-frequency noise, which at present is 

not investigated for such relation, unfortunately. 

VIII.3.4. Investigation of fabrication frozen noise 

The investigations on the fabrication “frozen noise” are usually performed in three ways, namely, Monte-Carlo 

simulations, statistical evaluation of large number of measurements of identical samples, and theoretical 

extrapolation of models toward small devices. Each of these approaches provides valuable insights on the 

“frozen noise”, but also has specific limitations. 

Monte-Carlo simulations 

In the Monte-Carlo simulations, one usually  takes an ideal structure and adds particular randomness in the 

structure. Then, the device or the circuit are simulated, and from the obtained characteristics, the variations of 

the model parameters or characteristic quantities are estimated for magnitude, correlations and behavior. It is 

believed that 3D simulation of structures described at atomic level, with embedded drift-diffusion and gradient 

formalism in the simulation, should provide correct and sufficient information, which reflects the “frozen noise”. 

Typical results from 3D simulations of few-nm to few-deca-nm structures are shown in Figure 70. In Figure 70a, 

the strong impact of single traps on carrier velocity in MOS transistor is evaluated [388, 389] for square-shaped 

bulk MOS transistor shown on the top of Figure 70b, where also is evaluated that the single-trap occupancy 

changes significantly (~18-20%) the current in 30nm×30nm transistor, and this variation is “dramatically” 

larger, ~50%, for 10nm×10nm transistor, thus causing unacceptably large RTS noise. In Figure 70c, the impact 

of 1-2 atomic layers random non-uniformity in the gate oxide and body of ultra-thin-body SOI MOS transistor 

(this is one of the mostly spelled alternatives for MOS transistors in future [3]) on the BSIMSOI model 

parameters is evaluated [372]. The scatter in the values is evident in Figure 70c, while the correlation between 

different model parameters is weak. In this way, the Monte-Carlo and atomistic simulations provide reach sets of 

values, implying forthcoming difficulties with the increasing “frozen noise”, but one should note that 

interpretation of the data is difficult and not always very certain, because, first, the assumed structure for 

simulations can be unrealistic or not representative for real structures, second, the simulations generate sets of 

large data, which requires post-processing for extraction of statistical or other parameters, and third, the physics 

is beyond this point, since the numerical data sets do not “say” what, where and how the numbers depend on the 

structure. This is a drawback of computer simulations in principle, and it requires somewhat empirical search for 

correlations in the numerical data, which eventually can be related to models and physics. In addition, if one tries 

to obtain temporal variations and noise from them, the simulation becomes 4D, the data volumes and 

computation overhead become too large to be feasible for the practice. Finally, one should always keep in mind 
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that the quantum-wave nature of the matter, important at the few-nm scale, is lumped in continuous gradients for 

carrier concentrations in order to avoid the 5th D in the simulations, which would make the simulations 

impossible even for super computers. 

Statistical evaluation of large number of measurements of identical samples 

The experimental investigations on the fabrication “frozen noise” have the advantage that they are practical, 

although vulnerable to experimental uncertainties both due to sample fabrication and measurement errors. The 

obvious and main advantage of the experimental investigations is that they are “real”, but not “virtual”, as the 

simulations are. On the other hand, there are three barriers for the experiments, as compared to simulation 

approaches. First, the technology for sample preparation has be physically available and accessible, thus, 

“future” devices cannot be experimented now. Second, the devices cannot be interactively tailored, e.g. one 

cannot change doping profiles, oxide thicknesses etc., either because the fabrication process does not allow for 

this, or because it is too expensive or takes too long to do it, thus, in the space of experimental conditions, the 

fabrication parameters are at few or even in one fixed point, and in addition, many details from fabrication 

process are not available as information for experimentalist, either due to policies for proprietary information by 

the fabricator, or just because the fabrication does not keep track for the particular parameter. The third barrier 

for the experimental investigations on “frozen noise” is that the experiments are mesoscopic, that is, the device is 

seen from its terminals, but not inside, and one has to provide electrical access from measurement instruments to 

the nanostructure terminals, which, however, is accompanied with many problems for contacting the device and 

de-embedding the parasitics from probes, cables and etc. in the experimental setup; certainly, the simulations are 

completely free from the third barrier. Nevertheless, by mapping several wafers with identical devices or 

circuits, there are publications that experimentally characterize the “frozen noise” [387, 390, 391]. One 

illustrative insert from [387] is shown in Figure 71 for a 90nm CMOS SOI fabrication process, the “frozen 

noise” in which was evaluated using ring oscillators. The contribution of the “frozen noise” was attributed to 

several factors (variation in transistor threshold voltages, capacitance, resistance, interconnection, RTA) and 

these factors were divided in three types –variation between groups of identical ring oscillators in several chips 

from 2-3 wafers, and correlated and uncorrelated variations within the groups. The horizontal axis in Figure 71 

for the average delay in the groups represents the first type of factors for variation between groups and chips, and 

the span of the inter-chip variation in this axis is about 8ns around 20ns, that is, ±20% max, or ≈10% standard 

deviation. The correlated and uncorrelated portions of in-group variation were deduced in the following way. 

First, only the data for maximum and minimum delays of individual ring oscillators in each group are 

considered, and two regression lines are found, one for maximum and one for minimum delays, as shown in the 

figure. These lines appeared to be linear functions of the average delays in the groups, and therefore, the vertical 

separation of about 1.6ns represents the correlated variation, which is ±2% max, or ≈1% standard deviation from 

the average delay of 20ns of all samples. Then, the 0.6−0.8ns scattering of the data around the regression lines 

represents the uncorrelated (random) variation between individual ring oscillators, which is less than 1% 

standard deviation from the average delay of 20ns of all samples. A close look at the publication also indicates 

that number of samples in this investigation is large, in the range of several thousands, and also, a variation and 

track to the fabrication conditions were made in order to compare to Monte Carlo simulations based on 

predetermined models (namely “Ring Oscillator Delay Model to Hardware Correlation”, and “Back-End-of-

Line” interconnect model, along with Layout-vs-Schematic, SPICE simulator and BSIMSOI model with and 

without lattice stress equations), which indicated that the experimental statistical characterization of the “frozen 
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noise” is quite costly, and possibly, accessible only to industrial research groups from foundry companies – well, 

the publication [387] is from IBM Semiconductor Research and Development Center. 

Theoretical extrapolation of models toward small devices 

The third way in the investigations on the fabrication “frozen noise” is the theoretical extrapolation of models 

toward small devices, as mentioned earlier. The models are usually very generic, and they are based on standard 

deviation of transistor sizes and trends deduced from publications. Since the most of the parameters occur in 

products or ratios in the device equations, then, the total standard deviation becomes a quadratic sum of the 

normalized standard deviations of the particular set of factors for the “frozen noise”; that is for MOS transistor, 

for example, 
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since in saturation regime 
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and eq. (442) can be further “enhanced” or “reduced” with cross-correlation terms by particular assumptions for 

systematic dependences, e.g. the etching affects in the same manner W and L of the gate, so the ratio W/L will 

be affected mostly by the variation of the gate length L as (σetch/L)², and this effect will be compensated partially 

with [-(σetch/W)²c2(L/W)²] by variation of the gate width W in same direction, assuming that the etching error 

σetch is systematic for small transistors and, therefore, the correlation coefficient c≈1. One particularly important 

conclusion from eq. (442) is that the processing variations need to be proportionally reduced by device down-

scaling, e.g. σetch∝Lmin, σtox∝tox …, so that the total “frozen noise”, (σtot/ID in the equation) is maintained 

unchanged. In this way, the extrapolation models provide easily an estimate for what would be necessary in 

order to fabricate operational nano-devices. It is another question, however, whether this will be feasible for 

mass-production at the growing technical, financial and other constraints. 

The answer of the later question is in the statistics of the random numbers, therefore we address it as noise, in 

relation to the aforementioned first assumption A1 for noise, but once the device is fabricated, then the statistics 

is fixed in the device spatially, that is, the noise is frozen, in contrast to the other assumptions that the noise is in 

time-frequency domain. (From general conservation principles in physics, one has to consider conservation of 

mass and charge, rather than only for power, as stated in assumption A2, questioning us whether some 

coordinates in the noise space are overlooked, conservatively for the “frozen noise”.) 

As mentioned above, now we present an analysis that uses the theoretical extrapolation approach for the impact 

of the “frozen noise” in δ-doping on the yield, in order to illustrate the importance of the statistics of the random 

numbers. Recall the values for depletion depth, tdep, and its standard deviation σdep from Figure 69. For each 

implanted atom, at the assumed Poisson distribution for the implantation, so that depdep t=σ , these values 

are 
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The corresponding average rates of occurrence of impurity atoms per atomic column are 0.963, 0.681, 0.482 and 

0.306, and these correspond the desired peak concentration of 1018 1/cm³ in Figure 69 on left. Taking square 

shaped transistors, the total number of impurities Nimp in these transistors, on average, will be 
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Here, the average standard deviation in the device is [(σdep/tdep)avg]²=(σdep/tdep)²/Nimp, and this deviation is only 

due to Poisson distribution in ion implantation for δ-doping. The threshold voltage of the transistors, on the other 

hand, is given by [252] 
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since the ratio of depletion capacitance Cd to oxide capacitance Cox is approximately Cd/Cox~1/3 for MOS 

transistors nowadays, the Fermi potential in the body is in the range φF~0.4V for impurity density ~1017 1/cm³ in 

these transistors, and also, the depletion depth tdep is approximately equal to the depth of the δ-doping [252]. 

Therefore, the average standard deviation for the δ-doping is replicated as standard deviation for the threshold 

voltage of the transistors, and from eq. (444), we have 
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With these values, the results from calculations using the extrapolation approach are illustrated in Figure 72. The 

different lines in this figure correspond to the different (W×L) sizes of the transistors (90nm×90nm), 

(45nm×45nm), (22nm×22nm), and (12nm×12nm), denoted with diamonds (�), squares (�), triangles (�) and 

circles (�), respectively. Figure 72a shows that at given limit for tolerance in the threshold voltage (horizontal 

axes in the figure), the ratio of σVT
 to the tolerance for VT increases as the device size decreases, since the 

number of σVT
 for the given tolerance decreases. Figure 72b shows that decreasing the device size, one has to 

relax the design rule for variation of VT from 0.3% for (90nm×90nm) devices to more than 10% for 



178  of  286 

(12nm×12nm), in order to achieve probability 10−12 for failure due to exceeding the allowed tolerance for VT. 

Figure 72c shows that the impact of randomness in δ-doping is negligible for SRAM built on (90nm×90nm) 

transistors, since 0.25% variation of VT is well below variations ~3% in VT caused by other processing factors, 

while 3.25% variation of VT is comparable to that variations in (22nm×22nm) transistors, which correspond 

roughly to 45nm MOS technologies. The required limit of 12.5% for the variation VT in (12nm×12nm) 

transistors is, however, too large. Therefore, bulk MOS is generally rejected as an option for commercial MOS 

technologies after node 32nm [3], in which the minimum gate length should be 11nm, or less. 

VIII.4. Statistical accumulation of variance “innovates” 1/f noise 

The above discussion showed that the “frozen noise” is becoming a limiting factor for device downscaling, since 

the small populations in small devices cause larger relative variations between the devices. The question is 

whether the “frozen noise” also affects the temporal low-frequency noise, because all rules for the low-frequency 

noise imply an increase as inverse of device area. In order to answer this question, we plot in Figure 73 the “Spot 

frozen noise” for the implantation depth from eq. (443) and the “Device average frozen noise” for VT from eqs. 

(444) and (446) together with the values for low-frequency noise predicted in ITRS [3], shown earlier in Figure 

67, against the minimum device area. The observation in Figure 73 is that LFN and the “Spot frozen noise” have 

the same areal dependence, which implies that the low-frequency noise replicates the spatial “Spot frozen noise”, 

but in time domain. The fact that the low-frequency noise is larger in non-uniform devices is obvious and well 

established semi-empirically in the 1980’s – see [9], for example. The physical explanation of this fact, however, 

meets with difficulties, since no general theoretical approach to the problem is available. 

In the origin of the problem is that the charge transport in electronic devices, in particular the transit time for 

electrons and holes traversing the device, is much faster than the frequency range of low-frequency noise. 

Therefore, other phenomena that interfere with the charge flow are attributed to the low-frequency noise, but not 

the charge flow itself. At present, two “schools” attribute the LFN to scattering (mobility fluctuation noise) and 

to trapping (number fluctuation noise). The mobility noise is usually related to the “slow” phonon scattering, see 

[70], for example, where, however, it was also mentioned that this might be equivalent to assume phonon 

number fluctuation. The number fluctuation is usually related to “slow” charge trapping in dielectric (e.g. gate 

oxide) with distribution of the time constants τ∝1/τ, and then it modulates the number of carriers in the 

conductive channel, replicating the distribution, and generating 1/f noise after superposition, as we have 

discussed several times in previous sections. However, the traps may cause also modulation of mobility, thus, 

again we have convergence to mobility noise. What is common in the two approaches, is that the 1/f noise is 

explained by distributions of time constants, strictly following assumptions A3 and A4 for small noise 

amplitudes and correlations only in time domain, see again the end of sub-section VIII.1. “Trend for the LFN 

level and variations”, and many useful models are developed, as we have discussed in the previous sections. 

There are also other useful relations, such as 
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,    (447) 

which relates the measured effective Hooge parameter αH,eff and mobility μeff to Hooge parameters αH,latt and 

αH,imp and mobility μlatt and μimp of lattice and impurity scattering – see again [70], for example, or condition for 

dominance of single RTS over 1/f noise [170, 392] 
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H4

1
n

πα
< ,     (448) 

where (n) is number of carriers in the conductive channel, by assumption of single electron trapping, thus 

σΔn/n=0.5/n. However, there is no clear answer whether or how the spatial non-uniformity is (or not) in the origin 

of the distributions that generate 1/f noise. On the other hand, eqs. (428), (429) and (430) indicated a logarithmic 

dependence in the variance that can be obtained from spatial “frozen noise” and causes temporal 1/f noise, since 

this dependence is converted into 1/f noise power spectrum in eq. (433). 

VIII.5. Statistical origin of the temporal 1/f noise in relation with the spatial “frozen noise” 

We now discuss the statistical origin of the temporal 1/f noise in relation with the spatial “frozen noise”, the 

latter probed by the fast, and thus with regular average rate, current flow, considering again the observation in 

Figure 73 that LFN and the “Spot frozen noise” have the same areal dependence, which implies that the low-

frequency noise replicates the spatial “Spot frozen noise”, but in time domain. For convenience, the standard 

deviation of the “Spot frozen noise” we will term with spatial “Roughness” and denote with σr. The spatial 

“Roughness” corresponds to the quantity (σdep/tdep) in eq. (443), for example, e.g. σr=(σdep/tdep). When the 

electron traverses the device, it also probes and accumulates the variations in the structure, e.g. as variation in 

velocity. Since the variances are statistically additive, then one writes for the electron at its exit from the device 

after K steps that 
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with ck being regression coefficients that describe the transfer of the random “Roughness” into variance (σk)² at 

each instance k=1…K of probing, e.g. atomic position along the channel length of the MOS transistor for the 

“frozen noise”, or scattering event in mobility models, or sampling in signal processing. Eq. (449) is a basic 

relation in the statistics of the so-called “innovation variance” [393, 394, 395]. The “innovation variance” was 

introduced as prediction for the variance in time series at the output of a correlating filter in [396], where also 

important finding for logarithmic spectra are given, and we will use soon. A simple introduction to “innovation 

variance” is given in [397], from which we insert that for a random sequence {X1, X2, …, XK} with, let say, first 

order (one-step) auto-regression with coefficient c, one has 

1KK XcINNOV_RNDX −+= ,    (450) 

where RND_INNOV is an uncorrelated random “innovation” added to X at step K, and RND_INNOV has  

variance (σinnov)², then the “innovation” is also added to the average at the previous step (K-1), and, thus to the 

previous random “innovations”. So, the random variation ΔXK of XK from the average is 
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and the variance (σK)² for ΔXK is 
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The last term is valid for large K and |c|<1, owing to the convergence the power series ∑(c²)k=1/(1−c²), when 

K→∞, since k=1,2,…,K, showing also that the variance in the random sequence {Xk}will be finite for this case, 

but the variance (σK)² will grow, if |c|≥1. By comparing to eq. (449), we see that (σinnov)²=(σr)²(cK)², and it is 

reasonable to assume that cK=ck=c=constant, if the sample is uniform, although it is not necessary in general, 

otherwise. 

So, since every electron in the sample accumulates variance (σK)² given by eq. (449), but the sample has a 

population of (n) carriers, which we sense simultaneously at the device terminals, then the observed 

instantaneous variance (σKn)² for average of (n) carriers is  
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, with cK=ck=c=constant for uniform sample. (453) 

Then, the carriers traverse the sample for a transit time τt=K×Δt, where Δt is the time between the probing 

instances k, as defined above. Therefore, for an observation time (t), the variance (σKnt)² seen at the device 

terminals can be rewritten as 
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where all quantities in the brackets are device parameters, which may depend on material structure, fabrication, 

biasing, environment and other experimental conditions, but once the experimental conditions are fixed, then 

these device parameters are with constant values in time, and therefore, they can be combined in a single 

constant parameter A, as shown by the last right-hand term in eq. (454), and ∂A/∂t=0. Rewriting eq. (454) in 

logarithmic form, and taking derivative, we get 
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, because  ∂A/∂t=0,    (456) 

where we have also a substitution of the time (t) with the reciprocal variable f=1/t, with the obvious meaning that 

twice longer time of observation gathers ½ lower frequency in the spectrum of the variance (σKnt)². Furthermore, 

the variance in a given unit bandwidth Δf around frequency (f) and power spectrum density S(f) at this frequency 

are related by  (σKnt)²=S(f)Δf. When substituting this relation in eq. (456), and since the unit bandwidth Δf is a 

given constant, then Δf is cancelled, and we get 
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f

S −=
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.      (457) 

It is obvious to show that the solution of this differential equation is ln(S)=−ln(f), from the finite difference of 

which we obtain the expression for the noise related to accumulation of variance in the sample as 
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f

f
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fS ooo

o
== ,   (458) 

where the reference frequency fo can be chosen arbitrary, and S(fo) is the power spectrum density at fo. 

Noticeably, the statistical accumulation of variance produces 1/f noise, owing to the ability of the matter to probe 



181  of  286 

the built in variance, and forward the variance to next step in the time. In our example, the spatially uncorrelated 

“Roughness”, which will be equivalent to temporal white noise, if ck=0 in eq. (449), results in 1/f noise, when 

|ck|>0, without any need of special entities, such as traps, phonons, 1/τ distributions of time constants, uniform 

energy or spatial distributions, etc., usually assumed as the origin of the 1/f noise in electronic devices. In fact, it 

seems that we can make a conclusion that the common mechanism, but not necessarily the only one, in the 

nature that causes fluctuations with 1/f power spectrum is the statistical accumulation of variance in random 

sequences, known also as statistics with “innovation variance”. In relation to this, we make the following notes. 

* The accumulation of variance requires only non-zero cause-consequence property in the object, which is 

natural for deterministic objects, thus, the 1/f noise should be very common physical phenomenon, as well 

established from the practice [160]. The 1/f noise from accumulation of variance is completely statistical in its 

origin, it is based on “innovation variance” statistics, and therefore is different from the commonly used 

approach for superposition of independent fluctuations with 1/τ distribution and accompanied with instant 

probing of these superimposed fluctuations. Indeed, these two approaches are not contradicting each with other, 

since at the time, when the superposition integral was proposed for description of 1/f noise, Du Pre has clearly 

stated in 1950, in the title of [358], that the superposition is “A Suggestion Regarding the Spectral Density of 

Flicker Noise”, and such clear statements should be not overlooked.  

* The derivations presented above have assumed constant rates, that is, all parameters have constant non-zero 

values in eq. (454) at any time scale of observation, which results in a constant relative rate of variance 

accumulation, and thus, in noise with exactly 1/f spectrum. If a parameter in this equation has a time scale 

dependence, e. g., if ∂ln(A)/∂ln(t)=∂ln(σr²)/∂ln(t)=β in a given time scale interval, which can be caused by 

autocorrelation, for example, then the slope of the spectrum deviates from 1/f with the same factor β in the 

corresponding frequency range. This is because eqs. (455), (456) and (457) will be modified to 
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and, consequently,  the solution of the last differential equation is ln(S)=−ln(f1+β), resulting in power density 

spectrum 
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in the particular frequency range. 

* The derivations presented above have assumed linear system of first order. Non-linear and high order effects 

are not considered, which however, may lead to stochastic resonance, bistability (RTS), bifurcation, chaos – all 

of great interest [273, 398, 399, 400, 401, 402]. The derivation provides qualitative result for 1/f noise behavior, 

rather than a complete quantitative description of the 1/f noise, since the value of S(fo) in eq. (458) has to be 

obtained by an alternative method, not cancelling the quantities in the brackets of eq. (454), as it happened in the 



182  of  286 

step from eq. (455) to eq. (456). Thus, in principle, the derivation shows that the 1/f noise could have statistical 

origin, but the derivation could be also qualified as heuristic to some extent, and more work is needed to obtain 

mature treatment of 1/f noise in terms of “innovation variance” statistics. For this point, we consider and cite the 

comment in [356] that Schottky made in 1926 regarding mathematical treatments of fluctuations, including his 

original derivation of the shot noise [355] in 1918. The citation is: “This (mathematical) procedure, though it is 

perhaps not mathematically the simplest and perhaps will later be replaced by a more elegant one (as in the case 

of small-shot effect), has the advantage of greater generality and in addition makes it possible to carry out an 

entirely separate investigation of the fluctuation process itself and of its action upon the circuits.” Interestingly, 

more than a century later, the comment still applies. 

* The derivation, and in particular eqs. (449), (452) and (453), can be interpreted, and by using many equivalent 

terms. One interpretation is “backward” auto-correlation with the history of the process, but correlation with the 

future is physically incorrect, although, mathematically and in terms of signal processing with FIR filters is 

possible. Second interpretation is in a form of convolution, e.g. ( ) ( ) ( ) ττ−τσ=σ
t

0

22
r

2
K dtct , but convolution of 

quantities in square does not have clear meaning in terms of linear transformations, such as Fourier 

transformation, and justification of the physical significance is unclear, although there is no problem from formal 

mathematical point of view, statistics and signal processing. It is highly desired to unify the terms used in 

different sciences, in order to achieve coherent communication and avoid misinterpretation between researchers, 

and to make the delivered results convertible for the practice of noise characterization, modeling and in the real 

world of implementation by engineers. As one can see, many terms we needed to put in quotations, since these 

terms are denoted differently by different authors from different fields. 

Nevertheless, by choosing fo=1Hz in eq.(458), and dividing both sides of the equation on the square of the 

average value, (DC²), we obtain the expression for normalized 1/f noise 
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in the generic form, as introduced earlier by eq. (15). 

VIII.6. Consequences from statistical nature of LFN – distributions in spectra, techniques of averaging, 

data volume and coordinates, instrumentation 

An important relation found in [396] for the statistical accumulation of variance in data series is that after the 

Fourier transformation of a random sequence {X1, X2, …, Xk,…,XK}, representing sampling of continuous 

random signal at K→∞ with normalized “duration” Tn=K, the “innovation variance”, (which is added at each 

step k=1,2,…,K of the normalized sampling “period” Δtn=1, denoting the normalized “time” as tn=kΔtn=k), is 

given by the exponent of the integral with limits ±1/2 of natural logarithm of the spectral density Sx(fn) of {X}, 

where the normalized frequency is fn=±0.5k/K≤±0.5/Δtn=±0.5. Rewritten in equations, that is [393, 395] 

( ) ( )[ ]













=σ=σ 

−

21

21
nnx

22
r

2
innov dffSlnexpc , using normalized frequency is fn,  (460) 

or, as equivalently written in [394] 
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To the best of our knowledge, the above relations are used in statistics [403] and particularly, in economics 

[397], signal processing [396], and control systems [404],   but newer for low-frequency noise in electronic 

devices and other physical systems, perhaps, because the time and the frequency are normalized, which is a 

departure from physical coordinate systems that makes the physical interpretations difficult, and second, because 

the accumulation of variance in time is somewhat overlooked in electronic circuits, by postulating finite variance 

in assumption A2 (see again the end of section VIII.1. “Trend for the LFN level and variations”) in order to 

have invariant system, although the Allan variance for 1/f noise, jitter and phase noise (see the discussion on eq. 

(372) for details) and the divergence of the power of 1/f noise at zero frequency clearly indicate that the 

assumption for invariant system might be false. So, we put more weight on the most general assumption A1, that 

the statistics is what describes the noise, although the statistics may not explain all details physically, and we 

carry out the noise analysis further by the help of eq. (460). 

By the symmetry of spectral density, Sx(fn)=Sx(−fn), for real signals or series {X} acquired from real physical 

processes [393], eq. (460) can be rewritten as 

( ) ( )[ ] ( )[ ]












 σ

==σ
21

0
n

n

n
2
x

21

0
nnx

2
innov df

df

fd
ln2dffSln2ln ,    (462) 

by also taking logarithm of eq. (460) and also showing explicitly that Sx=d(σx)²/dfn is the spectral density of 

variance in {X}. Next, we scale the normalized frequency (fn) to physical frequency (f), by scaling the 

normalized variable fn to f=fmaxfn, where fmax corresponds to the sampling frequency (respectively, sampling 

period tmin=1/fmax) used in the acquisition of the random sequence {X} from the real and continuous physical 

noise signal X(t). Using the rules for change of integration variables, dfn=df/fmax and f=fmax/2 when fn=1/2, we 

get 
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where the Sinnov=(σinnov)²/fmax is an average measure for the spectral density of the process, which variance is 

accumulated with the time, so that it causes the spectral density Sx in the random time sequences {X(t)}, the 
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latter observed in the experiment (that is, in the measurement of X(t), for example noise current measurement, by 

sampling with period tmin=1/fmax). It can be shown that the result also corresponds to the rule for scaling between 

time and frequency in Fourier transformation, Z(αt)↔(1/α)[Z(f/α)], from which it follows that 

σx(tn=t/tmin=tfmax)↔[σx(fn=f/fmax)]/fmax; scaling the normalized “time” tn with  physical sampling period α=1/fmax, 

in order to obtain physical time (t), then σx(t)=σx(t=αtn)↔(1/α)[σx(fn/α=f)]/fmax=σx(f). Consequently, we write 
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Evidently, the heuristic interpretation of the last equation is difficult, even wrong, if one tries to match physical 

units, missing the detail that the equation is for noise variance increment at given rate in a variance accumulation 

process, that is (σinnov)²=σ²/rate, and Sinnov is spectral density of power rate. This is confusing, therefore, we read 

carefully reference [393], considering that we always have finite number of points, when measuring the noise. 

The finite number of points K suggests to convert the integrals in Riemann sums. It is shown in [393] that the 

logarithmic function causes bias in the finite estimators, and the correct conversion of eq. (466) with the bias 

compensated is 
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where 0.57721… is the Euler constant, k=0 is excluded from the sum, since it corresponds to DC, and σln is the 

standard deviation for this estimator. Then, the upper boundary of the sum fmax/(2fmin)=int(K/2) is the maximum 

integer number less than or equal to half of number of sampled points (K/2), which is the number of the Nyquist 

frequency, fminint(K/2), which corresponds to the maximum frequency discriminated in the noise spectrum by 

sampling rate fmax. We will skip many details related to the last equation, such as requirements for random 

variables, tapering (windowing), discussed in length for random sequences in [393, 394, 395], in order to 

emphasize the following important for the noise relations. 

If one has imax data points for noise, by setting a correspondence to above as imax=int(K/2), i=k and Sx(k)=Si, then 
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or, in absolute magnitudes,
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which imply that  
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* The average noise should be obtained by geometric averaging, which is arithmetic, when the noise is expressed 

in dB, see SdB,avg in eq.(83), 

* The geometric average underestimates the average noise Savg with 2.5dB, that is Savg=SdB,avg+2.5dB, and  

* The geometric average has a standard deviation σgeo.avg~σln≈10dB×[0.5−log10(num.points)]. Thus, the 

geometric average of 10 data points has an uncertainty of ±σgeo.avg(imax=10)≈10dB×[0.5−1]=−5dB≈30%, whereas 

σgeo.avg will decrease to 10% and 3%, when increasing the number of points imax to 30 and 100, respectively. 

Three more findings in [393], which are relevant to physical signals, are important to mention. These are 

* The magnitude distribution of Sx(k)=Si is exponential, 

* The distribution of the logarithm of noise spectrum, that is log(Sx(k))=log(Si), is normal, which means that the 

distribution of the noise spectrum Sx(k)=Si is log-normal (but not normal). 

* When converting to Riemann sum, a “periodogram” is used for Sx(k)=Si, which is 
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which is not exactly power spectrum, the later for discrete Fourier transformation given as 
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and the small difference should be checked in future as to whether it causes unforeseen issue. 

RTS noise. Averaging techniques. 

Now, we inspect the above findings. We chose RTS noise, which is well known to originate to charge traps in 

electronic devices, and therefore, one can assume the accumulation of variance is negligible, that is, σx=σinnov, 

since c≈0 in eq.(452). As follows from Langevin equation, see before eq. (426), one expects exponential 

distribution for the RTS time constants, which is also experimentally confirmed in [68], as illustrated in Figure 

74. Accordingly, we generate many RTS records, e.g. as shown in Figure 75, with time constants exponentially 

distributed. Next, we obtain the spectra of each record, as shown in Figure 76 with light-gray line, where also the 

root-mean-square (RMS) average and geometric mean (Geomean) are shown with thick lines, illustrating that 

Geomean underestimates RMS average with 2.5dB, as stated above. Interestingly, the upper limits Geomean+σdB 

and RMS(average+σ) for the most probable deviations from average have virtually the same values, whereas the 

lower limits are different, and the RMS average is not well centered between the limits when plotting in 

logarithmic scale. When calculating the histograms of spectral line magnitudes around their averages, we obtain 

the distributions as shown in Figure 77. The histogram for RMS averaging, Figure 77a, indicates clearly the 

distribution of spectral line amplitudes is exponential, which means that limit lower than (RMSAVG−σ) does not 

have physical meaning, since it is equivalent to “negative” noise. The histogram for geometric averaging, Figure 

77b, indicates that amplitudes can be also well described by log-normal distribution, slightly skewed on right 

with 2.5dB, so that the mode of the distribution matches with RMSAVG.  

The two distributions in Figure 77 imply that the RMS averaging is more suitable for measurements of a device 

at given DC operating point, because it conserves the variance, whereas the geometric average underestimates 
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the variance with 2.5dB. However, the RMS average will be not very suitable when describing variations, since 

the exponential distribution is asymmetric, which is a problem at larger scattering of data between different 

operating points, owing to occurrence of bias-dependent Lorentzian components in noise spectra, or between 

different devices, e.g. for small area devices, as it was shown earlier in Figure 9 on left. At large scattering in the 

data, despite the inherent underestimation of 2.5dB, the geometric average is preferable, as illustrated further in 

Figure 78 [28], because the geometric averaging finds the values, where the density of data points is higher, 

whereas the RMS averaging suggests values above that values. 

The reason for this difference between geometric and RMS averaging is in the statistical distributions in the data. 

This is shown in Figure 79 from [79]. The RMS averaging implies a hypothesis that the variance is finite, an 

assumption that is not necessary between samples, and in addition, the distribution of noise power is exponential, 

as discussed above, and also seen in Figure 79a. In contrary, in Figure 79c shows that large number of data 

points for noise tends to log-normal distribution, which was stated just before eq. (470). The distribution of noise 

amplitude, Figure 79b, is “between” the cases for noise power and logarithmic magnitude. The histograms, 

basically, confirm the statements based from the statistics of “innovation variance”, given after eq. (469), which 

imply that the statistics of the noise is “multiplicative”, according to this equation. Unfortunately, this statistics is 

not elaborated at present for the low-frequency noise, while the “additive” statistics is attempted to be used, as 

one can see [72], and these analyses deduced that the variation in the noise level is larger than the average noise, 

which is somewhat not acceptable, because it sounds as that the noise in the noise is larger than the noise itself. 

Therefore, more works should be devoted to investigate the noise variation from statistical point of view, after 

examination of the noise distributions, rather than to assume unproven hypotheses. The issue is that the statistics 

for high frequency thermal and shot noise should not be transferred at hoc to low-frequency noise, and the noise 

description begins and remains to be first statistics of random numbers, and then one may search for physical 

phenomena that are behind the noise, explaining the statistical noise behaviour as function of device size, bias, 

temperature, etc. The opposite approach will always fail at some point.  

Instrumentation 

The noise measurements for statistical evaluations, however, require large number of samples and measurement 

conditions, normally in the range of thousands, which will affect also the instrumentation, since the access to 

nanodevices is difficult, and also, the methods for noise characterization will change, in order to maintain and 

process the large volume of data, especially when it is expected that the nanodevices will show prominent 

stochastic behavior [3].  So, we return to the first sentence in this section, that the noise in electronic devices was 

always hand by hand with the development of these devices. The data for noise were few in the 1920’s, and they 

were analyzed almost for one decade, while the equipment was bulky, comprising vacuum tube amplifiers, large 

and manually operated LC ladders. In the 1950’s, the analog spectrum analyzers were the tool to measure the 

noise and compare to the thermal noise in terms of noise figures. With the development of microprocessors, and 

since the fast Fourier transformation was discovered in the mid 1960’s [405], the boost in the instrumentation in 

1980’s allowed to obtain the data in digital format, advancing the investigations of 1/f noise and mostly RTS 

noise for large time intervals and to low frequencies. At present, the low-frequency noise measurements are not a 

problem to be performed on wafer, having low noise amplifiers that are arranged near the probes, and to acquire 

and store as much data, as the time budget allows. The next step will be to mount the amplifiers in the probes 

itself, and the problem will be to process the large volume of measured data, rather to acquire them. In not very 
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far future, however, one will need to change the approach to the noise, since the devices below 22nm node are 

expected to have distinct stochastic behavior. Perhaps, the time-spectrum measurement and analysis of low-

frequency noise will be insufficient; new “coordinate” for the noise will be needed, and electrical measurement 

might need to be substituted with other, since the electrical contacting to the device will be impossible, or with 

too much overhead of parasitic noise sources, in order to be reliable. Certainly, arrangements of few atoms, as 

that shown in the bottom-right corner of Figure 67b must be considered as devices from now on. Such devices 

might not be possible to probe directly electrically, but the noise in them will be almost everything that the 

devices do. So, major changes in the instrumentation and approaches for low-frequency noise is expected very 

soon. 

IX. Conclusion  

Here, the themes on low-frequency noise through this work are summarized together. It was shown in section II 

that the main equations used for description of low-frequency 1/f noise can be easily deduced by approach of 

separation of the noise sources as intrinsic (Hooge noise), or these sources couple their fluctuation in the current 

transport of the transistors. For both noise mechanisms, the normalized noise magnitude, in ratio to DC in 

square, for example DC current,  is inversely proportional to the device area, which implies that the noise in sub-

micron area devices relatively increases with every next generation of device down-scaling. By analyzing large 

number of published results for bipolar junction transistors (BJTs) in section III, several issues are identified for 

the low-frequency noise, as follows. The scattering of the data is large even after compensating for 1/area 

dependence, and the variation in 1/f noise levels in the publications originate from differences in measurement 

setups, mostly due to impedance of biasing circuit (section III.1), differences of fabrication approaches, mostly 

due to interfacial oxide in the emitter at the emitter-base junction (section III.2), crossover between noise sources 

by changing of biasing, mostly with surface and bulk origins (section III.3) by occurrence of large Lorentzian 

components due to charge trapping, and measurement and characterization uncertainty (section III.4), owing to 

scattering in noise spectra, fitting and averaging procedures. Overall,  the 1/(emitter area) dependence of the 1/f 

noise in BJTs is confirmed, but the scattering of the data, especially for sub-micrometer emitter area BJTs, 

indicates an increased variability of the noise levels as (area)−3/2, causing standard deviations for noise levels 

larger than the average, which puts the question whether root-mean-square (RMS) or logarithmic averaging 

should be preferred at such large data scattering.  

Since the MOS technology has the major advances in the last decades, the noise in MOS transistors was 

addressed in details in section IV. Obviously, one observes input referred noise voltage power spectrum densities 

(PSDs) in MOS transistors about two orders of magnitude larger than in BJTs, when the emitter and gate areas 

are similar, although the difference is about a decade or less for the output referred normalized noise current 

PSD, the latter in terms of SPICE parameter KF. Looking closer at the models and predictions for 1/f noise in 

MOS transistors (section IV.1), one observes that the noise in MOS transistors is a complicated mixture of 

interface and oxide trapping, and mobility fluctuation, both correlated and uncorrelated to the trapping. 

Interesting observations are that there is no single model that can describe uniquely the noise in MOS transistors, 

all models have advantages and issues with nano-scaled MOS transistors. Nevertheless, the trapping model 

provides an approach to obtain trap profiles in oxide depth, but equally, distributions in trap energy, and these 

cannot be distinguished each from other, as shown in section IV.2. Even the amplitude of RTS noise in identical 

MOS transistors can vary with the position of the trap along the channel, as follows from the analyses in section 
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IV.3, and has explained data published in the past. In section IV.4, we have discussed a variety of figures-of-

merits (FoMs) for noise, showing the relations between low-frequency and high-frequency noise and 

performance of MOS transistors, also in comparison with the corresponding for bipolar transistors. From this 

discussion, it becomes clear that the “low-frequency” noise in modern transistors is dominating even in the range 

of GHz, especially for MOS transistors, which puts several questions for the scalability of low-frequency noise 

models, as well as, issues for the applications of these devices. 

In the never pace for faster and smaller devices, many modifications of the generic BJT and MOS structures are 

made, and advanced transistor structures are developed, the noise in which was reviewed in section V. 

Germanium has returned back in SiGe transistors to improve the hole mobility, or to add strain in silicon layers 

(along with other techniques), again with the purpose of boosting the mobility. Many approaches in material 

engineering are undertaken to decrease the effective electrical oxide thickness in MOS transistors, but the data 

for low-frequency noise imply that the noise also increases when mixing materials and deviating from 

homogeneous material layers, which is somewhat in contrast to several reports made in the past that SiGe 

transistors and MOS transistors with higher oxide capacitance should have less noise. Among the many 

techniques for boosting the MOS transistor performance, only the forward body biasing consistently reduces the 

low-frequency noise, although this technique is limited by the maximum allowable magnitude of the forward 

biasing and some complications, e.g. how to provide noise-free bias, along with the layout overhead for separate 

wells for the transistors, extra biasing lines in already crowded with wires chips, or the extra input capacitance in 

gate-body tied MOS transistors.  

Since it is found to be unrealistic the bulk MOS transistor to be scaled down below 32nm node, many other 

advanced structures have been attempted, and results from low-frequency noise characterizations of these 

structure are discussed in section VI. SOI MOS has been developed to thin and ultra-thin bodies, which have 

been surrounded with two−three gates, and even with gate all around, e.g. as a cylindrical vertical MOS 

transistor. The calculations for multiple gate transistors indicate that the noise should decrease as compared to 

the one-gate MOS transistor, which is explained by capacitive coupling between the gates, or by moving the 

current flow from the surface toward the “bulk”. Unfortunately, the currents flowing in the body of SOI create 

undesirable noise component by filtered shot noise when the currents pass through body-source and body-drain 

junctions, an effect very prominent in partially depleted SOI. Also, the review of ultimately down-scaled 

devices, such as carbon nanotube transistors, shows that the low-frequency noise increases in relative units to 

DC, approximately following the same 1/area dependence as deduced for much bigger bulk and SOI transistors. 

While this observation is useful, the result is actually not acceptable for the practical applications of CNT, since 

the noise becomes larger than DC even for narrow frequency bands of 1-3 decades. In other words, the single 

nanotube devices, seems, are not anymore deterministic, that is, they are behind the down-scaling barrier set by 

the 1/f noise. 

The impact of low-frequency noise in circuit designs was illustrated in section VII. In the first place, section VII 

analyzes a typical circuit topology in the input stage of low-frequency amplifiers, for which it is shown the 

significance of the product (quiescent supply current)×(input referred noise voltage PSD), which suggests a 

general tradeoff between consumption and noise in micropower amplifiers. The contribution of low-frequency 

noise in up-conversion to phase noise was also discussed in this section, by reviewing the main approaches used 

at present for modeling of phase noise. With some simplifications, it is shown also that the phase noise can be 
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deduced from harmonic content in oscillator output, and the prediction of this model for minimum phase noise 

coincides with the practical rule to get the maximum possible amplitude from oscillator, but at not very high 

distortion in sinusoidal signal. Several practical considerations for phase noise are also discussed, among which 

are that the circuit asymmetry is responsible for up-conversion of low-frequency noise, while the white noise at 

every harmonic contributes to the phase noise, and also that the 1/f noise causes phase variance growing with 

time, so the increment of the variance (known as Allan variance) can be measured, but never the whole variance. 

This fact is somewhat overlooked in the treatment of low-frequency noise, and it is discussed further in the last 

section VIII. Section VII ends with the analysis of the impact of the LFN in sensors, in particular, 

electrochemical and photo sensors. 

The discussion in section VIII is an attempt to summarize the achievements from investigations on low-

frequency noise made for about one century, in order to outline the issues that are related with low-frequency 

noise in the near future. Interesting observation is that the figure of merit (Area×KF) stays in the range 10−8 μm² 

irrespectively of device types, e.g. vacuum tubes, BJTs, MOS transistors, carbon nanotubes, etc., and if one 

needs to say the possible minimum level of 1/f noise, the number is (Area×KF)≥10−9 μm². Looking back in 

previous sections, one will also observe that the many models for 1/f noise in different types of electronic 

devices converge closely when the word is for numerical values, irrespectively of physical background of the 

models and characterization techniques used. Other observation in section VIII on the trends implies that the 1/f 

noise will impact soon the reliability of the operation of digital circuits, that is, the circuits with minimum sized 

devices might be not anymore deterministic, once the device downscaling crosses the 1/f noise barrier, which is 

most probably between nodes 32nm and 22nm. In other words, owing to the relatively larger low-frequency 

noise in nanodevices [406], the “room at the bottom” [407] for deterministic electronic devices is not anymore 

“plenty”. Therefore, we have inspected the assumptions for low-frequency noise, and identified that the 

statistical variations, both in manufacturing and due to accumulation of variance during operation of devices, 

cause generically 1/f noise. Again, the answers for the low-frequency noise, seems, originate from the statistics 

of numbers, fairly overlooked point of view at present searching for deep physics in the devices by extrapolating 

laws for average quantities in semiconductors toward few nanometer structures. We have shown that the 

statistics in the fabrication, e.g. ion implantation, results in rapid increase of uncertainty margin for sub-20nm 

device parameters that cause unacceptable limits for yield, by means of fabrication “frozen noise”. 

Consequently, the variance of the “frozen noise” is statistically accumulated by operation of the devices, by a 

mechanism known as “innovation variance” in the statistics, resulting in 1/f temporal noise and log-normal 

distributions in the noise spectra and variation in these spectra between nominally identical devices. 

Consequently, the geometric averaging should be preferred by characterization of noise, as suggested by 

“innovation variance” statistics. 

The overall conclusion of this work can be given by the following citation from [2] made almost four decades 

ago that, “while we can describe the physical consequences of parameter fluctuations in intricate detail, we have 

comparatively little knowledge about the microscopic origins of voltage fluctuations in a simple resistor”. Since 

the low-frequency noise and variations are becoming limiting factors in device downscaling, it might be 

necessary to change the obvious coordinates time-amplitude and frequency-spectrum used in noise 

investigations, or to allow the 10nm devices to be not fully deterministic in practical applications. Many times it 

was needed to change the physical coordinate systems, e.g. from voltages and currents into scattering parameters 

(S-parameters) [196] for RF applications. At present, the many models generally coincide each with other, and 
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what makes the difference, are the values, which, however, scatter prominently in nanodevices.
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Table 1. Main types of noise in electronic devices, in terms of PSD of noise current. The noise in real 
devices is combination of these types, and the low-frequency noise is with 1/f and/or Lorentzian spectra 
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Table 2. Parameters related to tunneling attenuation distance λ in insulators. ( )Φπ=λ *mm24h o , 

according to Wentzel-Kramer-Brillouin (WKB) approximation, where h=6.63×10-34 Js is Planck 
constant, mo=9.11×10-34 kg is electron mass, m*=m/mo is effective mass and Φ is the energy offset 
(barrier) between conduction bands for electrons and valence bands for holes. The band gap for Si is 
taken from 1.1eV to 1.12 eV. Some discrepancies exist between the values reported in the literature. 
 

Barrier Φ Effective mass m* Attenuation distance λ Content 
proportion electrons holes 

Insulator 
band gap electrons holes electrons holes 

Interface 

% eV eV eV me/mo mh/mo nm nm 

Reference 

SiO2-Si  3.50 4.50 9.00 0.36 0.50 0.087 0.065 [45] 
SiO2-Si  3.05 4.46 8.65 0.38 0.51 0.091 0.065 [45] 
SiONx-Si x=1.8% 2.99 4.28 8.42 0.40 0.52 0.089 0.066 [45] 
SiONx-Si x=3.0% 2.94 4.15 8.23 0.41 0.53 0.089 0.066 [45] 
SiONx-Si x=4.0% 2.87 4.03 8.06 0.43 0.56 0.088 0.065 [45] 
SiONx-Si x=4.5% 2.80 3.81 7.74 0.48 0.58 0.085 0.066 [45] 
SiO2-Si  3.25 4.63 9.00     [146] 
SiO2-Si  3.50 4.40 9.02     [44] 
Si3N4-Si  2.40 1.80 5.32     [44] 
TaO5-Si  0.30 3.00 4.42     [44] 
SrTiO3-Si  -0.1 2.30 3.32     [44] 
BaZrO3-Si  0.80 3.40 5.32     [44] 
ZrO2-Si  1.40 3.30 5.82     [44] 
HfO2-Si  1.50 3.40 6.02     [44] 
Al2O3-Si  2.80 4.90 8.82     [44] 
Y2O3-Si  2.30 2.60 6.02     [44] 
La2O3-Si  2.30 2.60 6.02     [44] 
ZrSiO3-Si  1.50 3.40 6.02     [44] 
HfSiO4-Si  1.50 3.40 6.02     [44] 
LaAlO3-Si  1.90 3.20 6.22     [44] 
HfO2-Si  1.13   0.18  0.217  [50] 
HfO2-Si  1.13   0.18  0.210  [47] 
Al2O3-Si  2.80   0.28  0.110  [47] 
HfAlOx-Si       0.145  [47] 
SiO2-Si       0.100  [47] 
          

 
 
 
Table 3. Device parameters and legend 
 
(Note: Table 3 is embedded in  
Figure 31) 
 
 
Table 4. Typical assumptions for 1/f noise in Analog, RF and Digital applications of MOS transistors 
 
(Note: Table 4 is embedded in Figure 68) 
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(a) 

 
(b) 

 
 
 
 
 

 

 
Figure 1. Level of 1/f noise in silicon transistors: a) prediction in ITRS [3] for the input referred voltage 
noise in npn BJT (�), RF nMOS () and Analog nMOS (�) transistors; b) corresponding values for 
the output current noise in terms of the simple SPICE parameter KF=f×SI/IDC

2. 
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Figure 2. Evolution of normalized noise in silicon npn BJTs with polysilicon emitter. Crosses and 
asterisks are from earlier publications before year 2000, (× [10], � [11, 12, 13], + [14]). Open symbols 
are for the period from 2000 to 2004 (� [15],  [16, 17], � [18], � [19]). Solid symbols are from 
publications in the period 2005-2020 (� [20], � [21], � [22], � [23], ▼ [24, 25, 26, 27]). Geometric 
averaging of the product AE×KF is used to evaluate the trend in the dependence of KF on the emitter 
area AE (solid gray line) and the variation limits ±2σdB (thin grey lines). The insert shows the 
distribution of AE×KF. 
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(a) 
 

 
(b) 

 
 

 

 
Figure 3. Noise equivalent circuit and evolution of low-frequency noise in BJT with the impedance ZB 
of the bias circuit in the base terminal at a constant base DC current [12] 
 
 
 
 

ZB<<zB → SVB dominates → SIC= min 
ZB>>zB → SIB  dominates → SIC= max 
SIC variation with ZB: 2 and more decades 
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Figure 4. Evolution of the 1/f noise level with the thickness tIFO of the interfacial oxide (IFO) between 
poly and monosilicon layers in the emitter of BJT. Data for: npn Si (�)[10], (�) [14], () [19],  (�) 
[31]; pnp Si (�)[32]; npn and pnp SiGe BJT (�) [33, 34]. 
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w ≤ W/2
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∆tIFO
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w ≤ W/2

wo  
 
Figure 5. Non-uniform IFO, which is thicker at the periphery of the emitter. The average thickness of 
IFO increases when the width W of the emitter decreases, since wo can be assumed constant. 
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Figure 6. Crossover in the bias dependence of the noise in the base current of BJTs. (�) AE=104 µm2 
[10], showing crossover between intrinsic diffusion noise and coupled from IFO noise. (�)AE=10 µm2 
with superficial base doping (SBD) [21], showing crossover between generation-recombination and 
diffusion base DC current. (�) Same SBD device after 2 minutes electrical stress, showing off-leveling 
of noise, caused by high generation-recombination base DC current. 
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Figure 7. Coupling of surface traps to the base-emitter junction.  
 
 
 
 
 

 
(a)  

(b) 
 
 
 
 

 

 
 
Figure 8. Bias dependence of Lorentzian noise, when coupled from single generation-recombination 
center in BJT. Data from [12]. a) Evolution of power spectrum density. Solid circles represent the 
evolution of one Lorentzian component.  b) Evolution of parameters of Lorentzian noise. 
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Figure 9. Crossover from Lorentzian noise in BJTs with small emitter area to 1/f noise in BJTs with 
large emitter area [17]. The measured noise in individual BJT is shown with thin black lines. The 
average noise among several devices is shown with thick gray line. The range for variation of the noise 
in individual devices is within ±2σdB, and it is shown with thin gray lines. 
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Figure 10. Scattering of measured noise spectrum around its mean, when small numbers (e.g. 10) of 
captured records are averaged. The figure is from a journal publication, but the reference is omitted to 
avoid misinterpretation of our intentions. 
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Figure 11. Increase of noise variation in small-area MOS transistors from 0.18µm technology node, as 
obtained by applying the approach of choosing a frequency of interest from the low-frequency noise 
spectrum, in this case f=10Hz. Biasing conditions are DC drain currents ID×L/W=0.4µA, DC drain 
voltage VDS=50mV. The figure is from [74]. 
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Figure 12. Variation of values in manually processed data from noise measurements. Data are sub-set 
from Figure 2. Original data from [14]. Numerical (�) and graphical data () are fitted using least 
mean square method. Manual fit is made directly in the plot with all data, but before they have been 
fitted by least mean square method. 
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Figure 13. Variation of noise around its average in BJTs. Silicon npn BJTs (fT=25GHz) from [17, 66, 
67] using arithmetic mean () and geometric mean (�) – see Figure 9 for the later. SiGe npn HBTs 
with fT=20GHz (�) from [34],  fT=70GHz (�) from [36], fT=120GHz (�) from [81]. SiGe pnp HBTs 
with different IFO thicknesses (�) from [33] and fT=20GHz with different emitter areas AE (�) from 
[34]. Shaded areas in the figure represent situations when the standard deviation σ of noise is larger 
than the average level of the noise. The average noise is given by KF=geometric-mean(f×SIB

/IB
2), 

calculated according to eq. (83). 
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Figure 14. Evolution of normalized noise in silicon pnp BJTs with polysilicon emitter. (�) from [12] 
for the period before year 2000, (�) from [83] for the period 2000-2004, (�) from [32] for the period 
2005-2006. Geometric averaging of the product AE×KF is used to evaluate the trend in the dependence 
of KF on the emitter area AE (solid black line) and the variation limits ±2σdB (thin black lines). The 
insert shows the distribution of AE×KF in pnp BJTs. Gray circles () and grey lines are from Figure 2 
and represent npn BJTs. 
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Figure 15. Input-referred voltage noise SVG

 (gate voltage 1/f noise at 1Hz) in silicon MOS transistors 

compared to the corresponding SVB
 in silicon npn BJTs. (�) for nMOS transistors from [22, 47, 48, 49, 

50, 51, 72, 82, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 
107, 108, 109, 110,  111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123], (�) for pMOS 
transistors from [47, 52, 86, 88, 95, 96, 97, 100, 102, 104, 105, 109, 123, 124, 125, 126, 127, 128, 129, 
130, 131, 132]. Geometric averaging of the product W×L×SVG

 is used to evaluate the trend in the 

dependence of SVG
 on the gate area W×L (solid black line) and the variation limits ±2σdB (thin black 

lines). The insert shows the distribution of W×L×SVG
 in MOS transistors. Gray circles () and gray 

lines represent data from Figure 2 for npn BJTs, using SVB
@1Hz=KF×(φt)

2/1Hz, according to eq. (3). 
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Figure 16. Distributions of the product W×L×SVG

 for the input-referred voltage noise SVG
 (gate voltage 

1/f noise at 1Hz) in silicon MOS transistors, as deduced from the data in Figure 15. 
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Figure 17. Possible variations in estimating Hooge parameter αH for the intrinsic (mobility) noise in 
MOS transistors operating in linear (ohmic) mode (VDS≤VGS–VT–50mV), when different models and 
approximations for the charge carriers in the channel are used. (�) simplest approximation for the 
number of charges n=WLCox(VGS−VT)/q uniformly distributed from source to drain. (�) 
approximation with average of number of charges at source and drain sides navg=(nsource+ndrain)/2. (�) 
Gradual (linear) charge sheet approximation neff≤navg≤n. 
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Figure 18. Possible trapping mechanisms, which couple low-frequency noise in MOS transistors and 
result in gate referred 1/f noise voltage SVG  
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Figure 19. Uniform distribution in capture barrier energy ∆EB=0.4eV of traps (interface states) and 
tunneling distance to oxide trap ∆xti=1.5 nm results in 1/f noise after superposition of the individual 
Lorentzian spectra  
 
 



227  of  286 

 

 
 
 
Figure 20. Input referred 1/f noise voltage in MOS transistors of unit gate area W×L=1µm2 at 1Hz 
(FOMSVG

) for nMOS (�)  and pMOS (�) transistors, according to eq. (106). Supplementary data from 

Figure 4 for input referred 1/f noise voltage in BJT () of unit emitter area AE=1µm2 (FOMSVB
) vs. 

thickness of interfacial oxide IFO, where FOMSVB
 is according to eq. (3), rewritten as 

FOMSVB
=AE×SVB

(1Hz)=AE×KF×(ϕt)
2/1Hz. See Figure 21 for values of Average and σdB. 



228  of  286 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Distributions of input referred 1/f noise voltage in MOS transistors of unit gate area 
W×L=1µm2 at 1Hz, corresponding to data in Figure 20, when a) all data are analyzed and b) when data 
for nMOS and pMOS transistors are analyzed separately. The labels (other than pMOS and nMOS), 
scales and ranges are the same in all plots, and are omitted in sub-figure b) for clarity. 
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Figure 22. Top-down case study for input referred 1/f noise voltage in MOS transistors of unit gate 
area. The scales, trend lines and data for BJT () are as in Figure 20. Top-left plot: pMOS () vs. 
nMOS () – data scatter similarly. Top-right plot: metal () [50, 52, 57, 94, 99, 100, 109, 126, 128] 
vs. poly silicon gates () – no indication that metal gate reduces the noise. Bottom-left plot: strained 
lattice () [82, 155] and SiGe (�) [52, 57, 109] vs. Si () – no indication that strained lattice 
increases the noise and Ge decreases the noise. Bottom-right plot: commercial () vs. research () 
MOS transistors – conservative maturity in commercial fabricators and risk for innovation is at 
research centers. 
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Figure 23. Problem in tunneling model for obtaining large time constants in thin oxides with larger 
attenuation distance. a) emission time constant is set by the shorter of distances to semiconductor and 
gate. b) the maximum time constant of tunneling can be low (<ms) in high-k dielectrics of thickness 
less than 5 nm. Straight lines are for the case when the tunneling to the gate is neglected. 
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Figure 24. Variation of mobility µ (lines, in unit cm²/Vs), scattering parameter αs (circles, in unit 
Vs×10−15) and  the term for correlated mobility [1+θ(VG−VT)] (squares, dimensionless numbers) with 
gate electric field EG 
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Figure 25. Variation of noise at crossover between different scattering mechanisms, when the gate 
overdrive voltage (VG-VT) is increasing. a) Peaking of noise around threshold voltage due to 
dominance of Coulomb scattering, which ceases when the transistor is well above threshold [48]. b) 
Crossover between ceasing Coulomb scattering and rising phonon or roughness scattering [57].  
 
 

a)  b)  



233  of  286 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Depletion, quantum and barrier lowering effects at high electric field and thin gate insulator 
stacks 
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Figure 27. Qualitative oxide trap profiling of a MOS transistor with gate stack of 2.1nm SiO2 interfacial 
layer at semiconductor interface and 5nm HfO2 on top of it [140], according to eqs. (155) and (156), at 
assumptions that at given frequency fi, the contribution of traps with time constant τi=1/(2πfi) is 
dominant in the 1/f noise, and the tunneling attenuation distances λSiO2

≈λHfO2
 of the materials in the 

gate insulator stacks are similar 
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Figure 28. Oxide trap profiling of gate insulators with abrupt interfaces. Although λNt has a step change 
at depth tIL, the noise spectra and trap profiles exhibit transition regions. Shaded area corresponds to 
ranges accessible by low-frequency noise measurements. The solid triangles in highlighted regions of 
the shaded area correspond to measurement in Figure 27, and show two slopes in noise spectrum (top-
left plot), probing only within the depth of interfacial SiO2 layer (steep slope in bottom-right plot), and 
observation only of the tail in the transition region for λHkNt,Hk below the abrupt interface at tIL=2.1nm 
(top-right plot) 
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Figure 29. Some discrepancy between measured and predicted with the simplest model of eq. (180) 
values for the RTS amplitudes in nMOS transistor. W=0.2μm, L=0.25μm, EOT=4.5nm, Vd=50mV, 
from [74] 
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Figure 30. Variation of amplitudes of different RTS in identical MOS transistors at fixed experimental 
condition – see the text for values of device parameters and test conditions. Measured data for relative 
RTS amplitudes ∆ID/ID (circles) are from [68]. The different values E(z) of lateral electric field at 
different trap positions (z) along MOS transistor channel can explain the variation, according to [167] - 
see text. It is assumed that z∝Number, since the original data (circles) are given in scatter plot sorted 

by ∆ID/ID. The data points for lateral electric field (squares) are obtained from DDavg IIEE ∆∝ , 

according to eqs. (182) and (183). The linear fit E∝z/L (thin line through the squares) is expected for 
ohmic regime of operation. This linear fit for E is used to calculate the RTS amplitudes (thick line 
through circles), according to eq. (183).  
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            Table 3. Device parameters and legend 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31. Flicker noise SIG

 in the leakage gate current IG for MOS transistors with thin oxides 

analyzed by different figures of merit (FOM). Top-left: Physical quantities according to the table on 
right. Bottom-left: Using scaling rule for gate current (JG=IG/WL). Bottom-right: Using the regular 
scaling rule from eq. (14) for (reciprocal) areal dependence of noise. 
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10 ~ 0.2 § 20.6 §  HfO2 [101] 
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50 1 19.4 §  SiON § [149] 
10 10 16.3  SiON [110] 
10 10 13.8  SiON [110] 
10 ~ 0.2 § 17.5 §  SiO2 [101] 
§ Not explicitly stated in publication or calculated from EOT 
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Figure 32. Weak correlation in the flicker noise between gate and drain currents obtained in [149] by 
measurement of coherence – see eq. (27). Coherence less than 30% indicates independent noise 
sources. The measurement with maximum value for the coherence is shown among the different 
biasing conditions that correspond to the data denoted with circles in Figure 31. 
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Sample: nMOS transistor 

Channel Width W=50μm 
Channel Length L=1μm 
Equivalent Oxide Thickness EOT=1.8nm 

Bias conditions 
Source and Body VS=VB=0V 
Drain VD=0.05V 
Gate VG=0.3V, 0.5V, 0.7V, 0.9V and 1.1V 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33. Evaluation of noise temperature of shot noise in the gate leakage current of nMOS transistor 
with thin oxide. Left-hand plot – the measured white noise SIG

 (filled squares) follows the relation for 

shot noise SI,SH=2qIG (line through squares), and SIG
 does not follow the relation for thermal noise 

SIth=4kT·gG (line through circles), where gG=∂IG/∂VG is the dynamic (AC) conductance of the gate 
insulator (open diamonds). Right-hand plot – the noise temperature also depends on the resistance of 
circuit, since rAC=RB||rG is a parallel connection of device rG=1/gG and bias RB resistances, and by 
reducing RB, the circuit noise temperature decreases, and the shot noise becomes “cold” once 
IG×RB<2φt, which can be seen in the figure by comparing upper and bottom plots for noise temperature 
and “voltage drop” IG×rAC, respectively. 
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Parameters of nMOS transistor, in linear (ohmic) regime 

Parameter Notation Value 
Channel Width W 100 μm 
Channel Length L 1 μm 
Equivalent Oxide Thickness EOT 4 nm 
Effective Mobility μ 300 cm²/Vs 
Oxide Trap Density  Nt 1017 eV-1cm-3 
Tunneling Attenuation Distance  λ 0.1 nm 
Gate Overdrive (Bias) Voltage VG-VT 1 V 
Drain Bias Voltage VD 0.1 V 
Source and Body Bias Voltages VS=VB 0 V 
Drain (Channel) DC Current ID ≈ 2.5 mA 
Gate to Drain Transconductance gm ≈2.6 mS 
Drain to Source (Channel) Conductance gd ≈ 23mS 

 
 
 
Figure 34. Circuit and nMOS transistor parameters used in the calculation of the noise levels and noise 
figure contours in Figure 35. The transistor is assumed operating in linear (ohmic) regime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35. Voltage noise spectra (left-hand figure) and noise figure contours (right-hand figure) at the 
input plane of the circuit with nMOS transistor operating in ohmic regime shown in Figure 34. The 
lines and shaded areas are explained in the text. 
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Figure 36. The variation of the values for equivalent oxide trap density Nt with equivalent oxide 
thickness suggests a crossover at EOT~4-5nm, and Nt increases in MOS transistors with 
Cox>500nF/cm². The insets show the distribution around the average values for EOT<20nm (left-hand 
histogram) and for EOT>4nm (right-hand histogram). The data for 191 devices are from [22, 47, 48, 
49, 50, 51, 72, 82, 88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 
108, 109, 110, 111, 112, 149, 145, 202, 203, 204, 205, 206] for nMOS transistors (�), from [109, 155, 
207] for Ge on insulator (GOI) and strained on SiGe layer and control nMOS transistors (�), from [47, 
52, 88, 94, 95, 96, 97, 100, 102, 104, 105, 109, 124, 125, 126, 128] for pMOS transistors (�), and 
from [52, 57, 79, 109, 208] for SiGe and SiGeC pMOS transistors ().  
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Figure 37. Random variation of the parameter θ for correlated mobility fluctuation in MOS transistors 
at high gate bias (VG−VT)>0.3V. According to eq. (243) θ∝μCox∝(NtEOT)−1, but no proportionality is 
observed in the published data in [47, 48, 49, 50, 51, 95, 100, 106, 149] for nMOS transistors (�), in 
[155] for strained on SiGe layer and control nMOS transistors (�), in [47, 52, 88, 94, 95, 100, 105, 
124, 126, 128] for pMOS transistors (�), and in [52, 57, 79, 208] for SiGe and SiGeC pMOS 
transistors (). 
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Figure 38. Evolution of corner frequency fc≡FOMfc between flicker and white noise as function of gate 
bias (left-hand plot) and drain current (right-hand plot). Symbols represent contributions of different 
flicker noise sources, according to eqs. (255), (256), (257), (258), (259) and (260), as labeled in the 
left-hand plot. Thick lines represent the combined contribution of number and correlated mobility 
fluctuations. For saturation regime, VD=1V, and for linear regime VD=50mV. Diagonal patterned areas 
are the gate bias regions around transistor threshold voltage. MOS transistor parameters relevant to the 
figure are: Gate oxide capacitance per unit area Cox=10−6F/cm²; Mobility μ=100cm²/Vs; Correlated 
mobility parameter θ=2.5V−¹; Oxide trap density Nt=1018cm−³eV−¹; Tunneling attenuation distance 
λ=0.1nm; Hooge parameter αH=10−4; Gate length L=1μm. For devices with other parameters, one can 
use the scaling rules given in the text. 
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Figure 39. Ratio fc/fT≡FOMfc/fT

 of flicker-white noise corner frequency fc to transit frequency fT. The 

diagonal patterned area separates data for MOS transistors from data for BJT and HBT. Data for BJT 
and HBT originate to several publications and were reported earlier in [29]. Since no publication for 
MOS transistors reporting fc and fT simultaneously from measurements was found, then the missing 
portion of data for MOS transistor was recalculated using long channel approximation [169] applied to 
available data for () nMOS transistors from 0.8μm node [136], (�) for nMOS and pMOS transistors 
from 0.35μm SOI node [86], (�) for RF nMOS transistors with drawn channel length L=0.13μm, 
width W=72 and different number of fingers [214], (�) for nMOS and pMOS transistors from 0.13μm 
node [102], and (�) for nMOS transistor from 0.09μm node [105]. The lines are calculated according 
to eq. (270) for a virtual MOS transistor of channel length L=30nm, mobility μ=300cm²/Vs, 
Cox=3μF/cm² (EOT~1.15nm), saturation velocity νsat=107cm/s, with oxide trap density 
Nt=3×1017cm−³eV−¹ and tunneling attenuation distance λ=0.1nm for the number fluctuation Δn, with 
Coulomb screening parameter μC0=3×108cm/Vs for mobility fluctuation ΔμC, with θ=3V−¹ for phonon 
or roughness scattering (αs=qθ/μCox=5.3×10−16Vs) for mobility fluctuation Δμ, and then all the 
components were combined together Δn−ΔμC−Δμ. Note that a linear scale is used for (VG−VT) in sub-
threshold, when VG<VT. Agreement between prediction by eq. (270) and experiments exists at low gate 
bias, but a discrepancy is apparent at high gate overdrive. 
 

L
= 

30
n

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.001 0.01 0.1 1 10

Collector Current Density JC, mA/μm²

F
lic

ke
r-

W
h

it
e 

N
o

is
e 

C
o

rn
er

 t
o

 T
ra

n
si

t 
F

re
q

u
en

cy
f c

/f
T

-0.5 0 0.1 1 10

Gate Voltage Overdrive VG-VT, V

Δn-ΔμC-Δμ

ΔμC

Δμ

Δn

linear scale

for VG≤VT

BJT, HBTBJT, HBT

MOSMOS??

L
= 

30
n

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.001 0.01 0.1 1 10

Collector Current Density JC, mA/μm²

F
lic

ke
r-

W
h

it
e 

N
o

is
e 

C
o

rn
er

 t
o

 T
ra

n
si

t 
F

re
q

u
en

cy
f c

/f
T

-0.5 0 0.1 1 10

Gate Voltage Overdrive VG-VT, V

Δn-ΔμC-Δμ

ΔμC

Δμ

Δn

linear scale

for VG≤VT

BJT, HBTBJT, HBT

MOSMOS

L
= 

30
n

m

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.001 0.01 0.1 1 10

Collector Current Density JC, mA/μm²

F
lic

ke
r-

W
h

it
e 

N
o

is
e 

C
o

rn
er

 t
o

 T
ra

n
si

t 
F

re
q

u
en

cy
f c

/f
T

-0.5 0 0.1 1 10

Gate Voltage Overdrive VG-VT, V

Δn-ΔμC-Δμ

ΔμC

Δμ

Δn

linear scale

for VG≤VT

BJT, HBTBJT, HBT

MOSMOS??



246  of  286 

 
 

Figure 40. Normalized noise KF=f×SIB
/IB² in SiGe HBTs (heterojunction bipolar transistors) is within 

the range for polysilicon emitter bipolar junction transistors (BJTs), when plotting versus emitter area 
AE. Data for npn HBT (�) are from [34, 35, 36, 37, 60, 81, 212, 224, 225]. Data for pnp HBT (�) are 
from [33, 34, 60]. Small circles () are data for npn BJTs from Figure 2 with trend npn(AE×KF)avg= 
5.6×10−9μm² and σdB=3.38dB. Small squares (�) are data for pnp BJTs from Figure 14 with trend 
pnp(AE×KF)avg= 3.8×10−8μm² and σdB=3.56dB. Data for SiGeC HBTs (■) were treated separatedly as 
they show a clear improvement over the rest, with (AE×KF)avg= 1.25×10−10μm², 16.5dB below the range 
for npn HBT. Data for SiGeC are from [40, 64, 65, 228, 229, 230]. 
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Figure 41. The flicker noise in SiGe HBTs is nearly independent of Ge content in the base (left-hand 
figure) and transit frequency fT (right-hand figure). Other factors, but not Ge, affect the 1/f noise in 
SiGe HBT-see the text. In left-hand figure, the data are for npn SiGe HBTs from [224] processed in 
similar conditions (�), and () from [35] and (�) from [225] processed at variety of conditions, 
which resulted in scattering of data. In the right-hand figure, the data are from [33, 34, 36, 37, 60, 81, 
212, 224] from technology nodes with different maximum transit frequency, and the vertical scattering 
of data is due to layout, size and bias dependences of 1/f noise in these SiGe HBTs. 
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                            Figure 42. Flicker noise penalty in M
O

S transistors w
hen using com

posite m
aterials either in the 

channel or in the gate dielectric. O
xide trap density N

t  is proportional to the level of the input referred 
1/f noise voltage S

V
G , and it is according to eqs. (104) and (241). D

ata (a) are from
 [79] for pM

O
S

 

transistors w
ith channel of ternary S

iG
eC

 alloy, and N
t  increases w

ith increasing the content of carbon 
C

 in the alloy. D
ata (b) and (d) are from

 [139] for silicon nM
O

S and pM
O

S
 transistors, respectively, in 

w
hich an increase of N

t  is observed w
hen using nitridation of silicon oxide dielectric in order to 

increase the gate breakdow
n voltage. D

ata (c) are from
 [48] w

here the use of high-k dielectrics in Si 
nM

O
S transistors w

as accom
panied also w

ith increase of N
t . D

ata (e) are from
 several publications, 

w
hich reported variations of N

t  w
hen increasing com

plexity of the M
O

S structures, changing the M
O

S
 

channel alloy from
 Si to S

iG
e [208, 231], then using high-k dielectrics in the gate stack of SiG

e M
O

S
 

transistors [52], follow
ed by sem

iconductor-on-insulator (SO
I) structures based on Si and on G

e, and 
w

ith high-k gate dielectric [109]. D
ata (f) are from

 [57] reporting variation of N
t  by post-annealing 

after com
plete fabrication of S

iG
e pM

O
S transistor. D

ata (g) and (h) are from
 [155, 207] for nM

O
S

 
transistors w

ithout and w
ith strained S

i lattice on the top of SiG
e layer for channel. 
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Figure 43. Variation of flicker noise with body bias VBS in pMOS transistor 3×3μm² (left-hand plots) 
vs. DC drain current ID, small signal transconductance gm and their ratio, which are independent of VBS, 
as depicted in the insets [245]. The different VBS are from −0.6V (reverse, open symbols) to +0.6V 
(forward, filled symbols) in steps of 0.2V. Reverse or forward body bias is in respect to the direction 
for conduction of the body−source p−n junction. At given values for the quantities in the horizontal 
axes, and therefore constant carrier density in the channel, the noise decreases by a transition from high 
gate bias and reverse body bias toward low gate bias and forward body bias. This transition indicates a 
decrease of noise when the current flow is moved from the semiconductor-dielectric interface (surface 
channel at reverse body bias and high gate bias) toward the bulk of the semiconductor (buried channel 
conduction at forward body bias and low gate bias), as illustrated in the right-hand figures. 
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Figure 44. The relative variation of flicker noise with body bias VBS in pMOS transistors (at constant 
drain current ID, adjusted by gate bias voltage (VG) implies that the noise increases at reverse body bias, 
while the forward body bias can be favorable for low noise circuits. Data for Si pMOS transistor 
3×3μm² () are from [245] at VD=0.6V and geometric average of SVG

 at ID≈0.1μA, 0.3μA and 1μA. 

Data for SiGe pMOS transistors W×L=10×1μm² are from [52] at VD=0.05V for device with TiN gate 
and HfAlO gate dielectric (�) by geometric average of SVG

 at ID≈2μA and 17μA, for device with TiN 

gate and HfO2 gate dielectric (�) at ID≈41μA, and for device with poly-Si gate and HfO2 gate 
dielectric (�) by geometric average of SVG

 at ID≈4.2μA and 41μA. The inset shows the data for the 

gate referred noise SVG
 in absolute values. 
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Figure 45. Evolution of MOS transistor structure from bulk device a), toward partially depleted b), and 
fully depleted c) SOI structures. LD stands for low-doped extensions of drain and source regions. The 
arrows show the paths of the non-channel charge carries (e.g. holes in nMOS transistors), generated by 
impact ionization or due to gate leakage owing to tunneling (valence-band tunneling, for example in 
nMOS). The dashed lines illustrate the noise sources which are associated with the non-channel carries. 
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Figure 46. Effects related to the current IB flowing in the body of partially depleted (PD) SOI MOS 
transistors with unconnected body terminal. The gray arrows depict the relation between the different 
effects. a) The increase of the bias voltages increases the body current IB, illustrated with data for gate 
leakage current form [250]. b) Due to the increase of IB, the body voltage VB increases with the drain 
bias (lines [252]) and gate bias (circles [253]), biasing in forward the body-source junction in the PD 
SOI MOS transistor. c) The increase of VB causes a decrease of the threshold voltage of the transistor, 
resulting in a higher (and dependent on IB) overdrive (VG−VT) at constant gate bias VG=constant, and a 
kink in the output characteristics of PD SOI MOS transistor emerges [254]. d) At the onset of the kink, 
a “sudden” increase of the noise occurs at given low frequency, as originally reported in [254] as noise 
“overshot” for f=100Hz. e) The noise “overshot” at fixed frequency is apparent owing to evolution of 
filtered white noise associated with the impedance of the body and shot noise in IB [255]. 
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Figure 47. Capacitive coupling paths, which reduce the noise in multiple-gate MOS transistors. From 
top to bottom: single gate (number of gates N=1), two-gate (N=2) and four-gate (gate all around, N=4) 
MOS transistors. In the bottom figure for N=4, the capacitive paths only for the top gate are shown. 
The semiconductor channel is under the top gate and between the gates. Cox and Cd are capacitances per 
unit area of gate dielectric and depleted semiconductor, respectively. 
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Figure 48. Crossover between surface (MOS) and bulk (JFET) noise in depletion mode field-effect 
transistor [246]. a) Structure of four-gate MOS-JFET with top and bottom MOS gates (G1, G2) and left 
and right junction gates (JG1, JG2). b) The noise decreases when the conduction is moved from surface 
(dashed line, surface in accumulation) into the bulk (dotted line, surface in depletion) by exchanging 
the role of the MOS and junction gates. Further reduction of noise is achieved by inverting the surface 
(solid line). The insets show channel carrier distributions for surface and bulk conduction. 
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Figure 49. Distributions vs. energy in carbon nanotubes (CNT). Crosses are activation energies 
obtained from variation of the corner frequency of Lorentzian noise vs. temperature [268]. Lines with 
symbols are distributions of trap density D(E) vs. activation energy, obtained from the variation of 
slope of 1/f noise vs. temperature [268]. Lines without symbols are distributions of density of states 
(DOS) in CNT with different diameters, calculated in respect to Fermi level, according to [264]. 
Different lines are plotted with vertical offsets for clarity. 
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Figure 50. Evidences for tunneling junctions at the contact between gold pads and multiwell carbon 
nanotube placed on the pads [272]. Left figure: The noise at 77K and above is 1/f and it scales 
obviously as IDC². 1/f noise at low current 0.32μA is shown to avoid overlap with spectra at low 
temperatures. The noise at 4.2K and below is with Lorentzian spectrum, which corner frequency 
(2πτ)−1 increases with bias, while the low-frequency plateau S0 decreases. Right figure, from top to 
bottom: Lorentzian (RTS) time constants τ (bias dependent, but temperature independent), magnitude 
prefactor S0/τ  and differential resistance (measured with a lock-in amplifier at 30Hz, and proportional 
to 7mV/IDC, instead to 0.13mV/IDC, as the thermal voltage is φt=kT/q≈0.13mV at T=1.5K). The 
asymmetric characteristics as function of bias polarity suggest junctions at contact between nanotube 
and metal pads.  
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Figure 51. Spiky, stochastic transfer “I−V curves” of field-effect transistor structures based on carbon 
nanotubes (CNT FET). At given voltage, the current varies randomly around a value, owing to large 
noise in these devices, and no stable DC value is present in single CNT FET. a) The current and the 
threshold voltage (cross point of two lines) are analyzed in terms of stochastic resonance in [273]. 
Details for device and measurement are not reported. b) FET based on single CNT with diameter 1-3 
nm, bridging distance 4μm between Ti/Au electrodes patterned on the top of CNT [274]. The currents 
in air are larger and scatter more than the currents measured when the device is in vacuum (18mTorr). 
The measurements are at room temperature. c) Similar FET with single CNT (diameter 1-3 nm and 
distance 4μm between Ti/Au electrodes) measured at cryogenic temperature in vacuum and opposite 
directions of the channel current [171]. Several (three) giant and bias dependent RTS are observed with 
amplitudes 30% to 60% of “DC” current. d) Smooth DC characteristics are measured at room 
temperature for a FET based on a random network of single-wall CNTs [275]. The gate voltage bias is 
with triangular waveform (0.5Hz). The Si substrate serves as solid-state gate, while electrochemical 
gate (reference and working electrodes) was used as liquid gate via solution with pH 7.4. The hysteresis 
is evident when the device was operating in air (200-500nm SiO2 gate oxide), while it was small for 
liquid gate (gate insulator capacitance ~10-20μF/cm² was estimated from quasistatic CV measurement, 
56nF gate capacitance, and the count of nanotubes in AFM images). 
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Figure 52. Typical outcome from noise experiments with single CNT FET. Data are from [274] for 
measurements performed in vacuum (18mTorr) of device fabricated and with parameters, as described 
in [171]. Details and comments are given in the text. a) Outcome from experiment with variable gate 
bias at low -VD=0.1V. From top to bottom: ratio gm/ID; transfer I−V curve ID↔|VG−VT|; spectral 
density of input referred (gate) noise SVG

0.5 at 1Hz in unit V/Hz0.5; Hooge parameter αH, as obtained 

from SPICE parameter KF=fSID
/ID² in bottom. b) Deviations observed in experiments with variable gate 

bias and with variable drain bias, all carried out in linear mode (|VD|<|VG-VT|-0.5V). From top to 
bottom: non-linear transfer I−V curve ID↔|VG−VT| , same data as in sub-figure a); non-linear output 
I−V curve ID↔VD with step at low |VD|; variation of SPICE parameter KF with drain bias at low VD 
and constant VG; Different value for KF when changing VG at constant VD, same data as in sub-figure 
a); Arrows denote the same voltage bias condition {–VG=2V,–VD=0.1V}, showing different currents 
and noise levels in different experimental trials. None of the deviations in sub-figure b) is supported by 
field-effect transistor theory and models. 
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Figure 53. Typical arrangement of carbon nanotube devices and idealized model. a) Single CNT 
device. b) Short channel CNT device. c) Long channel CNT device with percolation network. d) 
Idealized resistor network, representing the percolation network in CNT devices. The arrows in a), b) 
and c) denote W-independent conduction branches in percolation network, which are shown with 
parallel branches in d). Each conduction branch in d)  has L serially connected CNTs. Capital letters V, 
I in d) represent DC voltages and currents, and small letters v,i represent noise voltages and currents. 
The voltage noise sources vo² are associated with every single CNT (with resistance RO) in the network, 
while voltage noise sources vc² are associated with contact between metal and CNT in a single 
conduction branch. 
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Figure 54. The geometric scaling rule for 1/f noise, the smaller is the area –  the noisier the device is, 
applies to nanowire and nanotube devices too. a) Comparison of noise vs. surface area of nanowire (�) 
and nanotube (�) devices to gate area of MOS transistors (�, data from [22, 48, 57, 79, 87, 89, 92, 
208, 214]), inspecting surface number fluctuation. b) Comparison of noise vs. cross-section area of 
nanowire () and nanotube (�) devices to emitter area of bipolar transistors (	, data from Figure 2), 
inspecting injection noise due to weak contact. The data (�,) for Si nanowire devices are from [271, 
277, 278, 279, 280, 281]. The data for carbon nanotube devices (�,�) are from [268, 272, 274, 275, 
282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292], with details as discussed earlier in the text. The 
insets illustrate the distribution of the data around 1/area trend, in terms of log-normal distribution – see 
eqs. (83) and (84). 
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Figure 55. Example from [293] for a 2D field-effect transistor with two atomic layers of MoS2 
semiconductor. (a) Energy diagram and spatial schematic diagram of the cross-section of the layers, 
showing energy barriers and spatial spacing due to van der Waals bonding. (b) Normalized noise 
referred to 1Hz, So=average(f×SI(f)/IDS²), averaged over logarithmically spaced frequencies f in the 
range from 2Hz to 1000Hz, vs. gate bias voltage VGS. 
 
 
 
 

a) b) 
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Figure 56. Typical configuration at the input of low-frequency amplifier. The amplification transistor 
TA and the loading transistor TL in the first differential stage are surrounded by a dashed line and can 
be MOS or BJT in BiCMOS technologies, as depicted in the three insets. 
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Figure 57. Design window for noise in micropower low-frequency amplifiers, in which the product 
IDCSVIN

 of bias current IDC and power spectrum density of noise SVIN
 is desired to be low. The left-hand 

plots are for BJT amplifiers, and represent the input current noise by SVIN
=SIIN

zB², where zB~βφt/IC is 

the input resistance of the amplifier. The input voltage noise of the BJT amplifier is expected lower by 
a factor of (rb/zB)², where rb is the contact resistance to the base of BJT. The right-hand plots are for 
MOS amplifiers, and represent the input referred noise voltage, because the input current noise is low 
at MOS gate, since SIIN

/SVIN
~(2πfWLCox)² is low at low frequencies. The plots in the shaded area are 

for 1/f noise components. The plots for white noise components are below the shaded area. The plots 
above the shaded area are for the corner frequency fc, at which the 1/f noise and the white noise have 
equal magnitudes. The symbols and the values of the parameters are explained in the legend. The ticks 
in the top axis are in steps of 50mV~2φt for gate overdrive voltage (VG−VT), corresponding to the ratio 
IDsq/IDO in the bottom horizontal axis for MOS transistors. The arrows illustrate the impact of several 
factors. 
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Figure 58. Bandwidth (�), flicker noise at 1Hz (	) and white noise (�) in commercial operational 
amplifiers from several manufacturers (Linear Technology, Analog Devices, and Texas Instruments 
and Burr-Brown). Left-hand figures are data as given in datasheets. Upper figures are for 131 BJT 
amplifiers, in which the black symbols are for 81 amplifiers in regions, where the density of the data is 
higher. Bottom figures are for 67 MOS amplifiers. In right-hand figures, the noise level is multiplied by 
portion of amplifier quiescent current IQ, 50%IQ for BJT and 2%IQ for MOS. The current density in 
BJT amplifiers is deduced from the corner frequency between 1/f and white noise, according to eq. 
(327), using typical values for β=150 and FOMSVB

=3.8×10−12 μm²V²/Hz. The curves on right illustrate 

the distribution of the data around the trends. The trends are explained in the text and are in agreement 
with eq. (326) for BJT and eq. (336) for MOS amplifiers. The distribution for white noise in MOS 
amplifiers is bimodal, with IDO(W/L)=2μA and 150nA. 
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Figure 59. Typical spectrum at output a) and normalized single-side band noise b) of a CMOS 
oscillator. The dash-lines in b) denote the components in SSB noise with slopes Δf³ and Δf². Data are 
for 7.2GHz CMOS voltage controlled oscillator [297]. 
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Figure 60. Conversion of circuit (nodal) noise (SNOISE) to phase fluctuations (SPHASE) and phase-noise 
sidebands (SOSC) around the fundamental harmonic (fs; shaded area) and higher order harmonics (2fs, 
3fs,…, kfs, blank areas) of the oscillator. The conversion is conceptually explained according to [315], 
but the conversion process is valid for other phase noise theories, that use harmonic balance and 
perturbation. Note that the low-frequency noise contributes only a portion to the phase noise. 
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Figure 61. Examples for difficulties of obtaining waveforms with zero value for the DC component 
ISFdc of impulse sensitivity function (ISF). Left-hand figures are for LC oscillator, in which the current 
from transistors is “tilted”, and this does not allow to obtain perfect even periodic symmetry 
v(t)=v(−t±nT) in LC oscillator signal. Right-hand figure is for ring oscillator, in which the currents 
from pMOS and nMOS transistors are not equal in magnitude, resulting in different rise and fall times 
in the waveform, which does not allow to obtain perfect half-wave symmetry v(t)=−v(t+T/2±nT) in 
ring oscillator signal. The ideal signals are shown with solid lines, the distorted waveforms are shown 
with black dash-lines, and gray lines illustrate improvements that can be achieved by using the 
additional circuitry, the later also given by gray color in upper figures. 
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Figure 62. Contours of third harmonic (k=3, inner spiral, V3, with 3 turns) and fundamental harmonic 
(p=1, outer spiral, V1, with 1 turn) of an oscillating signal with limit cycle (cycloid, V1+V3) and 
distorted waveform (inset). The contours are drawn open to illustrate that for one period of oscillation, 
V1 makes p=1 turn and V3 makes k=3 turns. If no phase noise is present, then the vectors at state φ=0 
and φ=2π would overlap. The RF noise, uncorrelated at harmonic frequencies fs and 3fs, diverges 
independently the harmonics from their ideal phase, as shown for states φ=π and φ=2π. The 
accumulated phase deviation Δψ3 in k=3rd harmonic changes the state φ=2π of the oscillation contour 
(V1+V3), “pulling” V1 to that state, and inducing a phase deviation Δψ1 in the fundamental p=1 
harmonic. Vice versa, the accumulated phase deviation in V1 will “push” the phase of V3. In the limit 
of small deviations, both V3 and V1 are displaced at the same distance ΔL along their contours, thus, 
V1sin(Δψ1)≈ΔL≈V3sin(Δψ3).  
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Figure 63. Relative increase of phase noise in presence of harmonics. a) Higher order of harmonics 
cause higher increase in eISF at same harmonic distortion. b) Case of “rectangular” waveform 
distortion with odd harmonics only, amplitudes V2k+1∝1/(2k+1). c) Case of “peaking” or “sawtooth” 
waveform distortions with harmonic amplitudes Vk∝1/k. The waveform of the distortions are shown in 
the insets. 
 
 
 

-30

-20

-10

0

10

-30 -20 -10 0 10

kth Harmonic Distortion (HDk=Vk/V1), dBrms

kt
h

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

ISF²=0.5+eISF²

eI
SF²

=0
.5

k(
HD k

)²

k=1

k=2,3,4,5

-30

-20

-10

0

10

-30 -20 -10 0 10

kth Harmonic Distortion (HDk=Vk/V1), dBrms

kt
h

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

ISF²=0.5+eISF²

eI
SF²

=0
.5

k(
HD k

)²

k=1

k=2,3,4,5

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

ISF²=0.5+eISF²

k=3,5,7,9

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

k=1

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

ISF²=0.5+eISF²

k=3,5,7,9

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

k=1

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

ISF²=0.5+eISF²

k=3,5,7,9

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

k=1

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

k=2,3,4,5

k=1

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

ISF²=0.5+eISF²

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

k=2,3,4,5

k=1

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

ISF²=0.5+eISF²

-30

-20

-10

0

10

-30 -20 -10 0 10

Total Harmonic Distortion (THD)², dBrms

H
ar

m
o

n
ic

 IS
F

²
an

d
 e

IS
F

²,
 d

B
rm

s

k=2,3,4,5

k=1

eI
SF²=

0.
5k

(H
D k

)²eI
SF² o

f a
ll

ISF²=0.5+eISF²

a) b) c) 



270  of  286 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 64. Minimum phase noise at maximum ratio I1/ISUP of fundamental current harmonic I1 to 
supply current (ISUP=2IDC for oscillators with cross-coupled transistor pairs). a) CMOS oscillator from 
[297]. b) BJT oscillator from [323]. Note in both cases the phase noise is at minimum when the ratio 
I1/ISUP is at maximum, but the oscillation voltage (triangles in a) for V1) is not necessarily at maximum. 
The solid curve in b) is when assuming “rectangular” approximation for the distortion in transistor 
current. 
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Figure 65. Typical circuit of an APS (a), and variations of the SNR with reset time (b) and integration 
time (c), as reported in [349] 
 
 

a) b) c) 
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Figure 66. Histograms of the RTS inn APS. (a) experimental results for an APS with single RTS [351]. 
“Digital Number (DN)” denotes ΔVs after ADC and “Frame” denotes the number of CDS acquisitions 
(CNT). (b) heuristic explanation of the histogram of single RTS noise in APS, showing the q/(WLCox) 
spacing between the peaks in the histogram and indicating the peak widening due to KTC and 1/f noise. 
(c) same as (b) for multiple RTS, indicating the reduction of the q/(WLCox) spacing in APS with larger-
area buffering transistor (M2 in Figure 65 (a)), which causes overlap between the peaks in the 
histogram that eventually leads to inability to distinguish the peaks in the histogram envelope (gray 
curve), and superimpose and attribute the individual RTS noise into 1/f noise. 
 
 

a) 
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Figure 67. Evolution of a) the factor (Area×KF), see eq. (2), and b) relative RMS noise inoise/IDC (at 1Hz 
for bandwidth of 1Hz) over almost of a century of research on 1/f noise. Data are: for vacuum tubes (+) 
from [359, 364]; for Si, Ge and SiGe bipolar transistors () data are aggregated from Figure 2, Figure 
14 and Figure 40, and from [365, 366, 367] for the period before year 1980; by using surface area of 
nanowire and CNT devices (), and for MOS transistors (), the data are aggregated from Figure 54a, 
and from [360, 362] for the period before year 1980 for MOS transistors; by using cross-section area of 
nanowire and CNT devices (�), the data are aggregated from Figure 54b; data are from [368, 369] for 
III-V semiconductor HBTs (�); data are from [370] for optical noise of light-emitting diodes (
). See 
the text for the regression lines. The prediction lines (top to bottom) for MOS-Analog, MOS-RF and 
BJT (left-hand axes) and the Moore’s law (right-hand axes) are from ITRS for the period 2006-2020 
[3].  

a) 

b) 
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Figure 68. Concerns for the application of MOS transistors related to the increase of 1/f noise by the 
device down-scaling [29]. When the thick line crosses and is above the data, the concern with 1/f noise 
becomes important for the particular application. In the vertical axis, (LF Noise) denotes peak-to-peak 
values that would be present at the conditions listed in Table 4. The data are based on predictions in 
ITRS [3] for the figure of merit (Area×KF) – see the text for further details. 
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Table 4. Typical assumptions for 1/f noise in 
Analog, RF and Digital applications of MOS 
transistors 
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Figure 69. Delta doping as the best choice to reduce DIBL with minimum threshold voltage shift in 
MOS transistors. The profiles on left are calculated assuming Poisson distribution during ion 
implantation. On right, the corresponding location of impurity atoms are given, decreasing the gate 
length from 90nm to 12nm (from bottom to top), and showing with lines the effective depth of the 
depletion capacitance, and with gradually-shaded areas the region, where the current transport in the 
MOS transistors occurs. The grid represents the atomic distance in silicon, and it is visible in the 
smallest device (LGATE=12nm). 
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Figure 70. Typical outcome from “atomistic” and Monte-Carlo simulations of MOS transistors. a) 
Carrier velocity in 30nm×30nm bulk MOS transistor without and with one trap in the channel [388, 
389]. b) Structure simulated in a), and increase of the relative difference in the drain current for the two 
cases (with and without trap), when decreasing the transistor sizes from 30nm×30nm to 10nm×10nm. 
c) Scatter plots for several BSIMSOI parameters for 200 devices of Ultra-Thin-Body SOI nMOS 
transistors with 10 nm channel length [372]. The BSIMSOI parameters shown, are: A1 and A2 are non-
saturation factors for saturation regime; Dsub is the channel length factor for drain-induced barrier-
lowering (DIBL) effects; Nfactor is an ideality factor, used to improve BSIMSOI in sub-threshold 
regime; Prwg characterizes the gate-bias effect on access resistance, and reflects access resistance 
variation caused by the body thickness; Voff is the offset in sub-threshold regime from the threshold 
voltage in strong inversion. 
 

a) b) c) 
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Figure 71. Variations of maximum and minimum ring delays of individual ring oscillators found in 
groups of ring oscillators vs. the average ring delay in each group [387]. The correlation is between 
individual and average – see the text. 
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Figure 72. Impact of Poisson distribution in ion implantation for δ-doping on variability of the 
threshold voltage of MOS transistors. a) ratio of standard deviation σVT

 in VT to given tolerances of VT 

(x−axes). b) Probability exceeding the tolerance for VT. c) Yield of 6−T SRAM chips at given limit for 
VT tolerance. The assumed sizes of SRAM are: 1MByte for cells made with transistors WL=90×90nm²; 
10MByte for WL=45×45nm²; 100MByte for WL=22×22nm²; and 1GByte for WL=12×12nm². The 
percentages in the last figure are the minimum tolerances for VT, which should be allowed in the 
SRAM design in order to achieve chip yield higher than 50% by Poisson distribution in ion 
implantation for δ−doping, and 2σ standard deviations are considered in the calculations for b) and c) 
to achieve confidence 95% in the calculation. 
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Figure 73. Comparison between “frozen noise”, eqs. (443) and (444), and low-frequency noise from 
ITRS [3]. The “Spot frozen noise” is as obtained from Poisson distribution for the depth of ion 
implanted δ-doping – see eq. (443). The “Device average frozen noise” is as obtained for variation of 
VT, and its variance is the variance of the (Spot frozen noise)² divided on (Number of impurity atoms), 
[(σdep/tdep)avg]²=(σdep/tdep)²/Nimp,  – see after eq. (444). The low-frequency noise is as projected by ITRS, 
and it corresponds to Figure 67. Evidently, the low-frequency noise and the “Spot frozen noise” have 
the same dependence on device area, namely, (σ/mean)²∝1/(Area). 
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Figure 74. Exponential distribution of emission time, τE,  experimentally observed for RTS noise  in 
MOS transistor [68]. 
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Figure 75. Sample of RTS with time constants τE=τC=20ms. The record length is 4096 points at 
sampling frequency 10kHz, and 2048 records were generated in order to evaluate averaging techniques 
for noise spectra – see also the next two figures. 
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Figure 76. Spectra of RTS noise. Geometric averaging (Geomean) underestimates the root-mean-
square average (RMS) with 2.5dB. Note that the upper limits RMS(avg+σ) and (Geomean+σdB) are 
similar, Geomean is well centered between its limits, whereas the lower limit RMS(avg−σ) is 
unrealistically low. 
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Figure 77. Distributions of power spectrum amplitudes, normalized to standard deviations of the 
distributions. a) After root-mean-square (RMS) averaging (x-axis is linear), compared to exponential 
distribution. b) After geometric averaging (x-axis is logarithmic), compared to log-normal distribution. 
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Figure 78. Behaviors of RMS averaging a) and geometric averaging b), when the scattering in the noise 
spectra is large [28]. RMS average is pulled up above where data usually are. The geometric mean is 
well in the middle where the majority of the data points are. The error bars correspond to one standard 
deviation. 
 
 
 
 
 

a) b) 



285  of  286 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 79. Evaluation of the distribution of noise magnitudes in terms of SPICE parameter KF=S(f)×f, 
by means of a) Noise Power ∝ KF, b) Noise Amplitude ∝ (KF)0.5, and c) as logarithm of KF. The 
distribution of Noise Power KF tends to exponential distribution, log(KF) tends to normal distribution, 
and the distribution of the Noise Amplitude (KF)0.5 is between these cases. The histograms are from 
[79] and are based on the same 6843 data points from a measurement of SiGe40%C1.5% pMOS transistor 
(W=5μm, L=1μm) at different biases. “Unused points” are those data points, which deviate more than 
±3σ from particular average, and were removed from histogram calculation. The solid lines represent 
normal distributions. 
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