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ABSTRACT Scene graph generation from images is a task of great interest to applications such as robotics,
because graphs are the main way to represent knowledge about the world and regulate human-robot
interactions in tasks such as Visual Question Answering (VQA). Unfortunately, its corresponding area of
machine learning is still relatively in its infancy, and the solutions currently offered do not specialize well in
concrete usage scenarios. Specifically, they do not take existing ‘‘expert’’ knowledge about the domain world
into account; and that might indeed be necessary in order to provide the level of reliability demanded by the
use case scenarios. In this paper, we propose an initial approximation to a framework calledOntology-Guided
Scene Graph Generation (OG-SGG), that can improve the performance of an existing machine learning
based scene graph generator using prior knowledge supplied in the form of an ontology (specifically, using
the axioms defined within); and we present results evaluated on a specific scenario founded in telepresence
robotics. These results show quantitative and qualitative improvements in the generated scene graphs.

INDEX TERMS Scene graph generation, ontology, computer vision, telepresence robotics.

I. INTRODUCTION
Telepresence robots allow people to remotely interact with
others. They are often called ‘‘Skype on a stick’’ because
they combine the conversation capabilities of teleconference
software with the mobility of robots controlled by humans
for a better social interaction [26]. They are also sometimes
referred to as ‘‘your alter-ego on wheels’’ because they have a
clear application in assistance tasks. For example, they allow
disabled people to attend events remotely, or caregivers to
interact remotely with people under their care. In particular,
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this work considers the application of telepresence robots for
elderly care [42] (see Fig. 1).

However, controlling these systems is a complex task. The
human user needs to focus on both low-level tasks (such as
controlling the robot) and high-level tasks (such as maintain-
ing a conversation) at the same time; and this can lead to
a cognitive overload, therefore reducing the attention that is
given to the high-level tasks [47]. One approach to reduce this
overload involves leveraging semi-autonomous capabilities
to allow the user to control the robot using only high-level
commands (i.e., Approach a given object, Follow a given
person, etc), while the robot takes care of low-level control.
This is in fact a necessity if one considers visually-impaired
people as users of the robotic system.
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FIGURE 1. Telepresence robot for elderly care. The robot in this picture is
used to remotely assist with the activities of a day care centre.

In all these cases, the robot needs to extract and provide
semantic information about the scenario so that the scene can
be described in human terms to the users, and they can in turn
indicate the robot where to go next for interactions. At the
same time, we need a representation of this information that
allows the robot to perform automated reasoning.

This work considers recent advances in visual scene graph
generation (i.e. [24], [43], [50], [54]) and investigate their
application to telepresence robots. These methods extract a
semantic graph for a given image, composed of the main
objects present in the scene and relations between them. The
main problem with current solutions is that they are aimed at
general scenarios and do not take existing ‘‘expert’’ knowl-
edge about the domain world into account; and that might
indeed be necessary in order to provide the level of reliability
demanded by the usage scenarios. For example, it is easy and
intuitive for a human to understand that a Person can only
be sitting on a single Chair at a given time. These current
solutions have no means of providing common-sense axioms
that can help filter out inconsistent detections, and thus they
can erroneously predict that a person is sitting on multiple
chairs at the same time. These axioms can be collected using
what is known as an ontology, and it is the main pillar that
enables this work.

The main goal of this work is thus finding a way to
reuse and repurpose existing scene graph generation models
and datasets for specific robotic applications, and applying
additional techniques that take into account existing domain
knowledge of the application, so that we can improve the
performance of a machine learning model within the reduced
scope of a given problem and ontology. In particular, this
work proposes the following contributions:
• A methodology for augmenting an existing scene graph
generator with the addition of steps involving ontology-
founded reasoning, as opposed to simply defining a new
model.

• A recipe to prepare an existing dataset for a desired
application by applying an ontology, filtering irrelevant
information and including inferred knowledge as a form
of data augmentation.

The approach is validated in a real transfer learning case for
ontology-based generation, considering a small specialized
dataset and ontology founded in a robotics application.

In Section II, we explain the theoretical background
surrounding ontologies and scene graph generation.
In Section III, we survey the state of the art in several
directions, including methodologies and scene graph gener-
ation datasets and models. In Section IV, we introduce and
explain the components of OG-SGG. In Section V, we detail
the complete setup used to perform experiments, including
the chosen scene graph generation model, as well as the
metrics used. In Section VI, we show the results of our
first experiment using data collected with our own robot.
In Section VII, we apply the same experiment to an existing
robotics scenario. Finally, in Section VIII, we perform addi-
tional experiments applying OG-SGG to other scene graph
generation models.

II. BACKGROUND
A. ONTOLOGIES AND SCENE GRAPHS
Ontologies are broad constructs that can be used to represent
the cognitive model of a given domain world [18]. In simpli-
fied terms, an ontology defines a class hierarchy of objects
that can exist in the world, as well as the different types of
relations between the objects of the world (called predicates).
Most importantly, an ontology is able to define axioms that
restrict how the predicates can be applied, in addition to pro-
ducing implicit, reasoned knowledge from a set of assertions
made within the scope of the ontology. For this reason they
are the tool of choice to represent knowledge bases in robotics
and other fields [20], [35] and perform context-awareness
reasoning [2], [12]. Ontologies can also be used to model
knowledge graphs with richer and more formal semantics,
allowing for higher order reasoning.

This work is based on OWL 2 [48], the standard knowledge
representation language for defining ontologies created by
the World Wide Web Consortium (W3C). OWL is built upon
RDF [22], which is an earlier W3C XML standard with the
purpose of facilitating data interchange on the Web. Ontolo-
gies are a suitable tool to achieve explainable ML models [3]
in the form of knowledge graphs and other semantic web
technologies [40].

Given a scene and an ontology, it is possible to build a scene
graph by defining a set of objectsO = {o1, o2, . . . , on} (from
the classes defined in the ontology) that appear within it,
alongwith a setR of asserted relation triplets (oi, p, oj), where
oi is the source object of the relation, oj is the destination
object, i 6= j, and p is the predicate that describes the relation.
In addition, we can define Pij = {pk | (oi, pk , oj) ∈ R}, which
is the set of predicates for which a corresponding relation
triplet exists along the object pair (oi, oj). Since there are n
objects in the scene, we can conclude that there are n(n− 1)
object pairs, each with an associated Pij predicate set.

B. SCENE GRAPH GENERATION
A scene graph generator is a system that, given an input corre-
sponding to a particular scene (most often an image together
with object detection information), predicts the contents of
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FIGURE 2. Image captured by the robot, manually annotated with a scene graph, part of the TERESA dataset.

the Pij predicate set for all given object pairs (oi, oj). There
are several ways to implement a scene graph generator,
including classical methods based on hardcoded rules, but the
most promising area of research nowadays involves neural
networks based on supervised deep learning. This is the
approach considered in this work.

Scene graph datasets are collections of annotated scenes
(images) intended for evaluating scene graph generators,
as well as training the aforementioned scene graph generation
networks. Each image in the dataset is annotated with its
associated set of objects O and set of relation triplets R.
In particular, O is usually annotated as a series of bound-
ing boxes with class information, each corresponding to an
object; whereas R is annotated as a list of (oi, oj) object pairs
with their corresponding Pij predicate set.

A common approach to building scene graph generation
networks involves predicting a ranking score for all possible
relation triplets across the entire image, where higher ranking
triplets are deemed as more likely to occur than lower ranking
triplets. A trimming operation takes place afterwards, which
removes triplets according to a given set of criteria. The
conventional way to define this operation is Top-K, which
results in the K highest ranking triplets being retained and
the rest being discarded.

This work proposes a series of techniques to improve this
pipeline by involving axioms defined in the ontology that
govern the semantics of the predicates. These axioms are
used to augment the source data used during training and
control the trimming operation that affects the network’s
output. Specifically, the following types of axioms that affect
predicates, which are defined by [48], have been considered:
• Domain and range restrictions: these axioms assert
that only objects belonging to certain classes can
be the source or destination of a predicate (respec-
tively). For example, we can say that for the predicate
sitting on, the domain is Person and the range
Chair – it is not possible to say (plant1,sitting
on,food1).

• Inverse relationships: these axioms assert that one pred-
icate is the inverse of another (with the source and

destination objects inverted). For example, we can say
that the predicateson top of andbelow are inverses
of one another.

• Transitivity: these axioms assert that, if two rela-
tion triplets (oi, p, oj) and (oj, p, ok ) are given, then
(oi, p, ok ) also holds. For example, we can say that
the predicate behind is transitive, since if both
(person1, behind, chair1) and (chair1,
behind,table1) hold, then (person1,behind,
table1) must also hold.

• Functionality: these axioms assert that there can only
be one object related by a predicate to a different
one. For example, the predicate holding can only
accept one source object for each destination object
– if (person1,holding,pencil1) holds, then
no other Person object can be related to pencil1
through holding.

• Symmetry: these axioms assert that a certain pred-
icate does not mandate an order in which the two
objects are related. This means that if the source
object is related to the destination object through the
predicate, then the destination object is also related
to the source object through the same predicate.
For example, (chair1,next to,table1) implies
(table1,next to,chair1).

III. RELATED WORK
Given the previously mentioned use case in telepres-
ence robotics, we initially surveyed simpler, more direct
approaches such as automatic image captioning [52], com-
bined with refinement based on data sampled from our own
robot. Themain problemwith this approach had to dowith the
lack of structure and lack of coherence in generated captions
(which was confirmed by other researchers using indicators
such as Semantic Fidelity [1]), resulting in unsatisfactory
results from the point of view of potential users, as well as
lack of usability for downstream robotic tasks.

We quickly learned that a more formal and richer way
of representing knowledge about environments was neces-
sary. This led us to shift our attention towards scene graphs,
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specifically existing work concerning their automatic gener-
ation. This section contains a detailed survey of the state of
the art, as well as what we believe to be their relevance and
contribution to solving domain specific problems like ours.

A. METHODOLOGIES
A line of research that we deemed relevant revolves around
neurosymbolic (NeSy) computation approaches. This interest
arose from our need to improve the specialized application of
a deep learning model towards a certain application. Several
approaches exist, including ones that are oriented towards
improving the explainability of AI solutions (XAI) [5], [13],
an increasingly important topic.

Some approaches such as [17] propose applying NeSy
logic constraints in the form of Logic Tensor Networks [4]
to scene graph generation. These approaches map discrete
logical operators to continuous differentiable operators based
around fuzzy logic. However, they only consider the tradi-
tional approach of using training and testing splits of the
same dataset, leaving out the desired goal of transferring
knowledge learned from one dataset to a different scenario.
Moreover, a new model architecture specifically designed
to incorporate NeSy components had to be created, which
might not always be feasible to implement depending on the
constraints of the intended application.

B. SCENE GRAPH DATASETS
The main ingredient that makes or breaks a machine learning
application is the dataset. A good dataset, although not a
guarantee of success, is a necessary precondition. Currently
there exist several of them which have some relevance to the
domain-specific scene graph generation task:

• MS COCO [30] is the de-facto standard dataset
for image classification, segmentation, captioning and
object detection. However, despite offering 5 free-form
textual captions per image, it does not contain any
usable semantic information needed to make a machine
learn how to generate scene graphs. Nonetheless, other
researchers have built uponMS COCO in order to create
scene graph datasets, such as those which will be dis-
cussed next.

• Semantic PASCAL-Part [16] is an OWL conversion of
an earlier PASCAL-Part dataset [9]. Formal ontological
constructs are used to define each object class, which
makes this dataset appropriate for object classification
tasks based on detection of constituent parts. Unfortu-
nately, this also means that the dataset is not suitable
either for downstream scene graph tasks, as there is
effectively only one possible ‘‘relation’’: isPartOf
(and its inverse hasParts).

• VRD [32] (Visual Relationship Detection) is one of the
first datasets developed during scene graph generation
research. It is a relabelling of an earlier Scene Graph
dataset [21], which was itself sampled from the inter-
section of MS COCO and YFCC100m [45].

• VG [25] (Visual Genome)1 is a follow-up work to VRD
that opens up the annotations to cover the entire inter-
section between MS COCO and YFCC100m instead of
a hand picked sample. It was created by crowd sourcing,
and it brings additional ground truths such as relations
between the objects or visual question answering exam-
ples. It makes use of WordNet [33] to identify objects
and relations, which adds a considerable depth to the
labelling compared to MS COCO with its 80 broad cat-
egories. However, since the semantic data is generated
automatically from the crowd sourced input, it is quite
noisy and thus requires serious preprocessing before
it can be used. The maintainers of VG also offer a
list of duplicate/aliased object and relation classes that
is nearly always used as the first step of the required
preprocessing.

• VG-SGG is a preprocessed version of VG introduced
by [51] which has subsequently been adopted by
researchers as the VG split of choice for training and
evaluating scene graph generation networks, hence the
name. Bounding box information is cleaned up, and only
the 150 most frequent object classes and 50 predicate
classes are used.

• VrR-VG [29] (Visual-relevance Relations) is another fil-
tered and improved version of VG specifically intended
for scene graph generation. It improves VG by removing
from the dataset high frequency, low quality ambiguous
relations that can be easily detected with mere proba-
bilistic analysis; and leaving smaller, high quality ones
that require visual and semantic reasoning to detect.

• GQA [19] (Graph Question Answering) is yet another
dataset based on VG, but focused on visual question
answering. Even though it is intended to be used to
solve a different task it is still of interest, because it con-
tains scene graphs with object information that has been
further cleaned, filtered and even manually validated.
In addition, it augments imageswith alocation anno-
tation that discloses the type of environment (indoors or
outdoors).

Overall, the scope of existing datasets tends to be very
broad, aiming to fulfill the general use case (without any
specific domain in mind). In addition, they exhibit great
imbalance of object and relation classes, which makes it more
difficult to train domain specific models, as well as resulting
in undesirable bias towards the few most overwhelmingly
common classes. Furthermore, the labels are usually noisy
and sparse (incomplete), which results in a risk of the network
learning fictitious unintended patterns. Finally, none of the
existing datasets have a formally defined ontology, instead
relying on free form annotation of objects and relations
devoid of any specific semantics that could be used to extract
additional inferred knowledge, or improve the quality of the
generated graphs.

1http://visualgenome.org/
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This work proposesmethods bywhich existing scene graph
datasets can be adapted to fit within an existing ontology,
as well as enriching the annotations through inferred knowl-
edge derived from the axioms in the ontology. The desired end
goal of this endeavor is making it possible to reuse existing
data to solve new domain-specific scene graph generation
problems.

C. SCENE GRAPH GENERATION
Researchers have been iterating over different ideas on how
to approach the scene graph generation problem. Below is
a summary of some of the most interesting approaches that
have been published:

• The original VRD model [32] introduced alongside the
dataset proposed a simple network based on two mod-
ules that looked at visual and language features respec-
tively, and incorporated likelihood priors based on the
predicate frequency distribution for a given pair of object
classes.

• Iterative Message Passing [51] proposed using RNNs to
iteratively ‘‘pass’’ information between proposed edges
of the graph in order to further refine them using their
neighboring context.

• Neural Motifs [54] introduced a new architecture based
on bidirectional LSTMs that was capable of detect-
ing patterns in the structure of the scene graphs called
‘‘motifs.’’

• VRD-DSR [28] proposed combining visual appearance,
spatial location and semantic embedding ‘‘cues’’ in a
single network, as well as treating scene graph gener-
ation as a triplet ranking problem.

• Unbiased Causal TDE [43] proposed a new scene
graph benchmark framework with better defined met-
rics, along with a new model agnostic technique that
aims to reduce bias during training.

• Schemata [41] were proposed as a way of introducing
an inductive bias in the form of relational encoding
that allows the network to learn better representations
from the training data as non-expert prior knowledge,
resulting in better generalization. This encoding can also
be propagated during model fine-tuning with additional
external triplet data, without the need for image data.

• VRD-RANS [50] improved upon VRD-DSR by chang-
ing the visual feature extraction, adding a recursive
attention module with a GRU, and integrating a form of
data augmentation based on negative sampling into the
training pipeline.

• RTN [24] applies the Transformer architecture to scene
graph generation for the first time. It follows a conser-
vative approach in regards to the inputs used and its
usage of a likelihood prior, and introduces the concept
of positional embedding for nodes and edges.

In general, analogously to the corresponding work on cre-
ating datasets, these models aim to solve the general problem
of scene graph generation. Most if not all models are based

around a traditional two-stage object detector such as Faster-
RCNN [38] (close, but not quite usable in realtime), andmany
make use of the intermediate feature maps extracted for spe-
cific regions of interest prior to the object classification stage.
In addition, existing codebases are geared towards training
and evaluating the models (including the object detectors) on
existing datasets, with little to no thought put into transfer
learning tasks, custom datasets, nor evaluations of individ-
ual components. These factors make it needlessly difficult
to adapt existing scene graph generation solutions to new
problem domains such as the previously mentioned robotics
application.

Another problem we identified with existing solutions is
that they are designed as pure deep learning architectures
and, as such, they cannot take advantage of subtle seman-
tics concerning the defined object and relation classes that
are implicit and intuitive for humans. Thus, it is common
for SGG models to output scene graphs full of inconsisten-
cies. The methodology proposed in this work is capable of
improving the usability of scene graph generation for specific
domains, and is independent of the model used. That is, it can
be adapted for use with any specific scene graph genera-
tion model that might be best suited within the constraints
imposed by the problem (such as efficiency, for example).

D. ROBOTICS RELATED RESEARCH
Several works with some relevance to this problem have
previously been published, including the following:

• Ontologenius [39] is a semantic memory module based
on OWL ontologies for the ROS [36] environment.
It can be used to store the knowledge of the robotic
agent, as well as to perform reasoning on it. However,
it does not contain any perception functionality, meaning
it needs to be supplied externally with knowledge by
other nodes within the ROS environment. Some research
papers such as [8] make use of it as the underlying
knowledge engine.

• RoboSherlock [6] is a framework for cognitive percep-
tion based on unstructured information management.
It offers perception related functionality, but the imple-
mentation is based on classical algorithms instead of
deep neural networks, which makes it difficult to gen-
eralize to new environments, situations or use cases.

• Other research such as [10] and [11] makes use of deep
learning models to construct scene graphs in robotic
contexts, but their approach is also limited in scope
and application. In addition, the potential for using the
internal structure of the ontology to guide the process
is left untapped; instead still relying on labels devoid of
any semantics, i.e. without a formally defined ontology
that describes the class hierarchy and axioms governing
the predicates.

Overall, there are interesting building blocks that can be
used as reference for developing new applications. However,
the usage of ontologies for semantic perception is still fairly
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young. Moreover, researchers prefer placing their focus on
solving specific problems by sacrificing the potential for
generality. Even though this work showcases a specific appli-
cation, it aims to provide methods that can be reused in other
applications without significantly changing how they work.

IV. METHODS
The proposed pipeline, illustrated in Figure 3, consists of
three main components: a scene graph generation network,
a training dataset filtering and augmentation process, and
a network output post-processing process. These last two
processes, the core of this work’s contribution, make use of
pre-existing expert knowledge defined in the domain ontol-
ogy, whereas the network itself can be adapted from the
existing state of the art with minimal changes according to
needs (such as efficiency).

A. SCENE GRAPH GENERATION NETWORK
OG-SGG augments an existing scene graph generation net-
work. The only requirements imposed by our proposed
methodology on this SGG network are the following:

• It needs to be able to detect and process objects within
the image (bounding box predictions being sufficient,
although other approaches such as image segmentation
could potentially provide more precision in the localiza-
tion of the objects, especially in crowded scenes). The
object detection can be done either as part of a com-
bined object detection–relationship detection network,
or as a standalone component that reuses the output
of an existing object detector. In later sections of this
paper, we focus on the latter case in order to evaluate
our methodology purely on the quality of the detected
relationships, and not the object detection.

• It needs to receive semantic information about the types
of objects within the scene in the form of dense semantic
vectors, as opposed to other ways such as one-hot encod-
ings. Each object class is assigned a different semantic
vector, in turn sourced from an existing corpus of pre-
trained word embedding vectors. This is intended to
enable the generalization capability of the network, and
is in fact required so that the network can be repurposed
for different sets of possible input objects without need-
ing retraining.

• It needs to output a single ranking value for every
possible knowledge triplet proposal, across all detected
objects and proposed relationship types – no range
restrictions are applied.

Once all triplet ranking scores are calculated, they are
sorted in descending order. The threshold below which triplet
proposals are judged as more unlikely than likely is usually
left undefined, therefore requiring users of the network to
establish their own post-processing rules. A later section of
this work will revisit this area, where post-processing rules
that take into account information expressed in the ontology
will be proposed.

B. DATASET FILTERING AND DATA AUGMENTATION
Wedecided to focus this work on reusing existing scene graph
datasets and repurposing them to be usable within the scope
of our problem, which consists in describing a scene with a
knowledge graph. For this, we defined a formal ontology for
the target problem, and applied a series of ontology-guided
transformations to the source dataset.

First of all, we parse the original source format of the input
data and convert it to a common representation. During this
step, an initial form of filtering based on ad-hoc constraints
can be carried out (such as, for example, removing all images
not tagged in a particular way, e.g. ‘‘indoor’’ images; or not
containing specific objects, and so on). This has the (possibly
desired) side effect of reducing the size of the dataset while
maximizing or maintaining its quality in terms of perfor-
mance. In a later section we will show how the filtering can
sometimes even lead to improvements in the results.

Next, it is necessary to convert object class annotations into
semantic vectors that can be fed to the network. We decided
to use an existing word embedding model pre-trained on the
English Wikipedia corpus2 in order to generate the semantic
vectors. Mapping objects from the source set of classes to the
ontology’s set of classes was deemed unnecessary, given the
generalization power of training the network on amuch richer
set of semantic vectors than the one that can be derived from
the reduced set of classes in the ontology.

Following that, predicates defined by the source scene
graph dataset need to be mapped into the corresponding
predicates of interest defined by the given problem domain’s
ontology (see Fig. 4). In order to do this, we manually defined
the correspondence between the two sets of predicates, which
is then used during this process to translate the predicate
component of each relation triplet. Additionally, we discarded
relation triplets that contain predicates not matched with
any in the ontology. This mapping is the only information
that needs to be externally defined and provided during the
process, besides the ontology itself.

Once all triplets are using predicates defined in the
ontology, we feed each scene in the dataset to an OWL
processor module previously initialized with the ontology.
We selected Owlready2 [27] as the software library pro-
viding ontology processing. This ontology processor is able
to load and parse ontologies in the OWL format, perform
inferences on the provided knowledge using the axioms
defined in the ontology, and generate implicit triplets. This
includes the generation of triplets for inverse, symmetric
and transitive predicates. For example, (chair1, next
to, table1) would generate (table1, next to,
chair1). Likewise, (cup1, on top of, table1)
would generate (table1, below, cup1). These new
triplets are then extracted from the ontology processor and
added back to the dataset, thus resulting in a form of data
augmentation.

2https://tfhub.dev/google/Wiki-words-250-with-normalization/2
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FIGURE 3. Full OG-SGG pipeline proposed protocol. The diagram shows its three main components in full detail, along with both internal
and external data flows. The proposed ontology-aware additions are highlighted in green, which include the filter/data augmentation
component, and the post-processing component. A pre-existing object detection and scene graph generation component is also included
in the pipeline. The latter receives semantic vectors as input, and optionally other data such as object location information and visual
feature maps.

FIGURE 4. Examples of predicate maps. Each key corresponds to a
predicate in the ontology, whereas each value is a list of equivalent
predicates in the source dataset.

Finally, once the enriched information obtained through
ontological inferences is extracted from the ontology pro-
cessor, the final combined data can be divided into training
and validation splits. Note that the test split of the original
dataset is never used, as we are only interested in converting
training data. We set up this arrangement in order to tune the
hyperparameters of the model and implement early stopping
in the training process. Stratification is applied in order to
preserve the frequency distribution of predicates, which needs
to be as similar (and complete) as possible between the
two splits. In order to stratify a multi-label multi-class data
structure such as scene graphs, we decided to first tally how
many images a given predicate appears in, and then assign

FIGURE 5. Different post-processing techniques proposed in this section.
Left: Domain/range constraint tensor C . Right: Axiom-based pruning.

the images into buckets corresponding to the least frequent
predicate classes that appear in each. Afterwards, the bucket
for the overall least frequent predicate can be selected and its
images added to the stratified splits according to the desired
proportion. Since we removed images from circulation by
doing this, the frequency distribution must be recalculated
and the bucket assignment redone. We repeat this process
until all predicates are processed.

C. OUTPUT POSTPROCESSING
The axioms defined in the ontology restrict the set of possible
relation triplets that can appear in a scene, and thus can be
used to filter out predictions that we know beforehand to be
invalid.

We propose appending a new output post-processing
stage to the prediction process that prunes relation triplets
that introduce violations of axioms defined in the ontol-
ogy (see Fig. 5). We studied in Section II the leveraging
of several kinds of axioms that affect predicates, such as
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Functional/InverseFunctional restrictions, or domain/range
restrictions. The general filtering approach consists of only
accepting the highest ranking mutually exclusive triplet
proposals and pruning the rest. For example, if there
are two triplet proposals, (person1, sitting on,
chair1) with score 0.78 and (person1, sitting
on, chair2) with score −0.4, the first triplet is accepted
and the second one is pruned.

Additionally, we decided to study domain/range axioms,
in particular using the internal semantic structure of the rela-
tionships between object classes in the ontology. We express
the domain/range axioms as a boolean tensorC with the shape
|O| × |O| × |P| (see Fig. 5), where the first two dimensions
correspond to the object classes in the ontology (i.e. a generic
pair of objects) and the last dimension to the predicate classes
– this unusual ordering is used in order to improve the effi-
ciency of the retrieval of predicate compatibility information
according to a given object pair used as key. An element of the
tensor is True if its associated predicate is compatible with the
domain and range corresponding to the given object classes,
and False otherwise. Predicted triplets from the output of the
model can thus be individually looked up in C and kept or
discarded according to the truth value.

We compute C beforehand by programmatically intro-
specting on the ontology, matching up all possible pairs of
object classes, and verifying their compatibility with all pred-
icate classes. We implemented support in the introspection
code for a basic set of logic constructs found in OWL that
are used to define the domain/range of a predicate. This
includes the And, Or and Not operators; as well as support
for walking through the class hierarchy (e.g. if the range of
a property is GrabbableObject, then it will be legal to
have a Cup in the object position).

V. EXPERIMENTAL SETUP
We settled on VRD-RANS [50] as the baseline scene graph
generation network for experiments in this work, which was
implemented as faithfully as possible. This network was cho-
sen for the following reasons:

• It only needs a single global feature map extracted
from the image, as opposed to other solutions which
mandate the use of two-stage object detectors based on
Regions of Interest (RoIs). This allows for using quick,
robotics oriented single-stage object detectors such as
those belonging to the YOLO [37] or SSD [31] families.

• It receives object localization information in the form of
binary masks, which could be expanded in future work
to contain additional information captured by the robot.

• It contains a recursive attention module, allowing the
network to focus on processing the most relevant parts
of the image at once.

• It uses a novel training strategy that consists of providing
the network with fixed-size batches, one for each image
in the dataset, and containing examples of both labelled
and unlabelled object pairs (referred to as positive and

negative examples, respectively). The idea behind this
is compensating for the sparse nature of datasets, and
taking advantage of the large number of unannotated
pairs for data augmentation and regularization purposes.

VRD-RANS, like other scene graph generation net-
works [43], [51], [54], operates on an object pair by pair
basis (each individual corresponds to a given object pair),
and is in charge of predicting ranking scores for each of the
predicates defined by the scene graph dataset. Generating a
scene graph involves feeding all object pairs to the network in
order to extract the ranking scores, which are raw unbounded
values ∈ R with no defined semantics other than comparison
operators (i.e. <, >,≤,≥,=, 6=).

A. NETWORK LAYERS
The network (illustrated in Figure 6) receives four inputs,
three of which are given for each individual (object pair), and
the other one is shared across all individuals belonging to a
given image. Specifically, the network accepts an object mask
(two channels, one for each object in the pair), two semantic
vectors, and the global feature map of the image. Objects
masks are simple matrices where each pixel falling within
the bounding box of a detected object is set to 1, and the rest
remain 0. These masks are resized to a fixed dimension in
order to improve efficiency.

The first component of the network is the non-visual vector
generator. This module fuses all per-object-pair inputs, and
outputs a new vector which is later used by the core part
of the network. This fusing is performed in two steps: first,
the object mask is processed by three convolutional layers
followed by a dense layer, and in parallel the two semantic
vectors are concatenated and fed to two consecutive dense
layers. The outputs from these two branches are finally con-
catenated in order to form the final non-visual vector.

The core part of the network receives the non-visual vector
and the visual feature map as inputs. Before the main loop,
a new visual vector variable is initialized by performing a 2D
global average pool of the entire feature map. Additionally an
accumulator vector is initialized with the output of a single
dense layer receiving the concatenated visual and non-visual
vectors. This dense layer, which is the final layer of the
network, has as many outputs as predicates defined in the
ontology.

The network performs a recursive process with a fixed
number of iterations (5 was used, same as [50]). In each
iteration, the concatenated visual and non-visual vectors are
processed by two other consecutive dense layers before arriv-
ing to a GRU. The GRU’s hidden state is zero-initialized, and
in each following iteration it will contain the output hidden
state from the previous iteration. The GRU’s output is then
processed by four chained transposed convolutional layers,
which in turn generate a new attention mask encoding which
locations in the image are to be ‘‘looked at’’ next. The size
of this attention mask does not match that of the feature
map, so it is necessary to resize it to the same dimensions
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FIGURE 6. Diagram of the overall network structure of VRD-RANS [50]. This is the chosen scene graph generation network for use in our
experiments. The network, which is divided into an initial feed-forward part and a main recursive part, contains several Dense layers
(marked with a D); two series of CNN layers (one of which is transposed), and a single Gated Recurrent Unit (GRU). The visual vector is
initialized with an average pooling of the feature map for the first iteration of the recursive part, and in subsequent iterations the
averaging is additionally weighted using the freshly calculated attention mask. The non-visual vector is initialized by the feed-forward
part, which takes the semantic vectors and object masks as input, and remains unmodified throughout the execution of the recursive part.

(using linear interpolation). This new resized attention mask
is then used as the weights for a new 2D global average
pool of the feature map (from which a single scalar value
is obtained from each channel). This new output is stored in
the visual vector, and finally the accumulator is updated by
adding the new output of the final dense layer to it.

After performing all iterations, the accumulator is divided
by one plus the total number of iterations, calculating thus
the arithmetic mean of all outputs provided by the final dense
layer. This value is the final output of the network.

In general, the activation function used throughout the
entire network is ReLU, due to its simplicity and efficiency.
In order to improve the stability of the training process,
several batch normalization layers were placed between con-
secutive dense layers. Also worth mentioning is the fact that
the attention mask is generated using softmax activation so
that it can be used as weights for a weighted mean (in other
words, so that all coefficients add up to 1). The final layer
of the network does not use any activation function. This is
required so that ranking values can be generated.

B. LOSS FUNCTION
As in VRD-RANS [50], the loss function used to train the
network is the the multi-label hinge loss margin function. The
following scalar loss value is calculated, cross referencing all
object pairs that appear within the training minibatch:

L =
1
Nn

∑
∀i|yi=0

∑
∀j|yj=1

max
(
0, 1− (ŷj − ŷi)

)
whereN is the number of object pairs in the minibatch (i.e. its
size), and n is the number of predicates (i.e. network outputs).
Thus, Nn is the total number of triplet predictions in the

TABLE 1. Model hyperparameters used for VRD-RANS.

minibatch. yi is the ground truth value for a given triplet i
in the minibatch (evaluating as 1 if the triplet is present
and 0 if not present), and ŷi corresponds to the output of the
network, that is, the ranking scores ∈ (−∞,+∞) predicted
by the network for each triplet. This function, which takes
the entire mini-batch output of the network at once, is thus
designed to cause the network to incur a loss when the scores
ŷi corresponding to triplets not present in the ground truth
(i | yi = 0) are ranked higher than those which are present
(j | yj = 1).

C. IMPLEMENTATION DETAILS
We selected YOLOv4 [7] as the object detection network
of choice given its high real-time performance, suitable for
robotics applications. We used existing weights pretrained
on MS COCO [30], which include a CSPDarknet53 [49]
backbone pretrained on ImageNet [15].

The original VRD-RANS [50] authors seemingly did
not publish their code. For this reason, this work includes
a new implementation of their proposed network. This
new implementation was carried out using the Tensor-
Flow framework, with the high-level Keras API layered
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on top. A new subclass of tf.keras.Model, called
RelationshipDetector, implements the network, and
a further subclass of it in turn (called TelenetTrainer)
implements the special training procedure required by VRD-
RANS. Sampling probabilities or priors were not imple-
mented (unlike [50]) in order to maximize the zero-shot
perfomance of the model on fully unseen data – these priors
can also be seen as a way of artificially boosting performance
by knowing beforehand that the test split is sourced from
the same dataset as the training split, and thus both splits
share similar statistical properties. In our case this is counter-
productive, as we are precisely trying to apply the system to
a transfer learning problem.

The hyperparameters used in this work are listed in Table 1.
The AdamW optimizer was selected instead of the clas-
sic Adam because it is capable of performing weight nor-
malization automatically, and thus it is possible to avoid
needing to explicitly specify normalization strategies in each
layer. The rest of the hyperparameters were found empiri-
cally. The network was trained on a single NVIDIA Quadro
RTX 5000 GPU.

The training process dynamically generates a minibatch
for each image in the training set (prepare_minibatch
method). The minibatch is generated by separately sampling
object pairs with ground truth predicate labels (positive) and
unlabelled object pairs (negative). The same number of pos-
itive and negative pairs are sampled. If this is not possible
due to there not being enough pairs of a certain kind, the
minibatch is filled with pairs of the other kind. If there are
simply not enough pairs in total, it is filled with random
duplicate copies until the desired minibatch size is reached.

D. EVALUATION PROTOCOLS FOR SCENE GRAPH TASKS
Models dealing with scene graphs are known to be difficult to
evaluate. There exist several different tasks to evaluate them
on, and it is necessary to deal with problems arising from the
incomplete/noisy/biased nature of the datasets. In this section
we detail the methodology we devised to evaluate different
approaches, as well as the challenges we faced.

First of all, existing work [43] and [54] considers and
evaluates the following three tasks separately, under various
different names:

• Predicate Detection (PredDet): Given an image and
a list of objects in it (with bounding boxes and class
information), rank all candidate relation triplets that can
form a Scene Graph between the objects. This is the
simplest version of the task and it is intended to only
specifically evaluate the reliability of the relation detec-
tion. We chose to focus on evaluating this task.

• Visual Phrase Detection (VPDet): Given an image,
detect all relation triplets that exist and assign them a
single bounding box that covers the entire ‘‘action.’’ This
was first popularised by [32], however given the reliance
on full object detectors by most models intended for
generating scene graphs, we decided not to consider this

task as it is a trivial variation of the more general scene
graph generation task.

• Scene Graph Generation (SGGen): Given an image,
detect all objects in it with bounding boxes and class
information, and also all relation triplets between them
in order to form a Scene Graph. This is the main task that
a full model (incorporating an object detector) should
aim to solve. Given the fact that the additional object
detection phase introduces a new layer of noise and
uncertainty, and in order to produce fair comparisons
every model needs to be using the same object detector
(which may or may not be possible), we also decided not
to consider this task.

Much has been written about evaluation metrics for scene
graphs. The most widely used metric is Recall @ K (R@K),
which, as explained by [44] and [43], has problems rooted
in the heavily imbalanced distribution of relation classes in
datasets such as VG. For this reason, alternatives such as
the Zero-shot Recall @ K (zR@K) or Mean Recall @ K
(mR@K) metric have also been proposed.

In general, these metrics operate on an image by image
basis, and they involve ranking relation triplet predictions
by their confidence score generated by the network, and
calculating the percentage of a set of ground truth relation
triplets that is covered by the top K selection of predicted
relation triplets. The metric for a given dataset is calculated
by averaging themetrics calculated on every suitable image in
the dataset. Recall was chosen as the base metric (as opposed
to accuracy) because of the incomplete/inexhaustive nature
of the datasets used [32]. Annotations in scene graph datasets
do not exhaustively describe every single object and every
single relation between them. Using accuracy would result in
unfairly penalizing the network for possibly discovering new
information about the image that might have been missed by
human labellers. For this reason, the problem is approached as
an information retrieval or ‘‘search’’ problem, where the goal
is returning relevant search results in response to a query.

The following is a summary of how each of these metrics
work:

• Recall @ K (R@K): This is the base metric that calcu-
lates recall over all relation triplets in the ground truth.
There is an extra implicit decision affecting the metric,
which concerns how many highest scoring predicates to
select for each object pair. Some authors consider pick-
ing the highest scoring predicate as the only one assigned
to a given object pair [32], [54], other authors [43], [44]
decided to select all scores for all predicates, whereas
some others [50], [53] decided to make this an explicitly
tunable graph constraint hyperparameter k (lowercase,
not to be confused with K). This hyperparameter is
defined as the number of highest scoring predicates to
select from each object pair. Given the multilabel nature
of this problem, we decided to follow this last approach
and explicitly report which different values are used for
both K and k.
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• Zero-shot Recall @ K (zR@K): This metric eval-
uates the network’s ability to generalize its under-
standing of each predicate class by only evaluating
the recall on the set of ground truth triplets involv-
ing object classes that have not appeared with corre-
sponding predicates in the training set. As an example,
(person,laying in,bed) might appear in the
training set, but (cat,laying in,bed) might not.
zR@K will ignore the former, but consider the latter as
part of the ground truth set.

• Mean Recall @ K (mR@K): This metric is an attempt
to solve the class imbalance problem by calculating
R@K independently on each predicate class. In other
words, the metric is subdivided into as many metrics as
there are predicates. During the final aggregation step
over the entire dataset, the individual R@K values of
each image are aggregated separately for each predicate
(note that the number of values in each group might be
different, as some images might not contain examples
of certain predicates, and thus they are not considered
when calculating the R@K for said groups). The final
mR@K value is the arithmetic mean of allR@K values
calculated individually for each and every predicate.

In addition, we found that edge cases can arise during the
calculation of these metrics in certain situations, the handling
of which we believe to be important to fully disclose in order
to enable fair comparisons between results.

• Sometimes, images have an empty ground truth triplet
set. This can happen because the dataset simply does not
record any relation triplets for a given image, or because
there are no unseen triplet combinations during zero-
shot metric calculation, or because a certain predicate
does not appear in the image. We decided to simply
skip the image during performance evaluation, since it is
not possible to assign a metric to it, as the recall would
involve a division by zero.

• The chosenK parameter could be lower than the number
of triplets in the ground truth set of some image. In prac-
tice this should not happen with the sparse datasets we
have, as they contain a low number of triplets per image.
Nevertheless, we considered two possible solutions:

- - Imposing a constraint on the value of K so that K
is equal or greater than the size of the smallest non-
zero ground truth set.

- - Taking the minimum between K and the size of
the ground truth set as the divisor when calculating
recall. This is the solution we chose, because it does
notmake sense to calculate ametric in suchway that
full performance cannot be obtained.

• Some object pairs in the ground truth set might have
more predicates than the graph constraint hyperparam-
eter k. We did not run into this situation because the
test sets we used only have at most a single predicate
in each labelled object pair. Nonetheless, we considered
a solution, which is to calculate the size of the ground

truth set in such way that no more than the given k are
considered as the number of predicates accounted for
evaluation within each labelled object pair.

• Some authors calculate the recall over the entire dataset
instead of averaging the recall values of individual
images. This has the effect of slightly underestimating
the performance of the model, by giving greater weight
to the contribution of images with a larger number of
ground truth annotations. This was first notably done
by [32], and followed by all papers that compare them-
selves against [32]. Subsequent works focused on other
datasets [44] opt for the more traditional way of aggre-
gating values. We decided to follow existing practice to
ensure fairness between results.

• Some authors only calculate recall over the set of object
pairs that have corresponding label(s) in the ground
truth, instead of taking the scores in all possible object
pairs. This has the effect of inflating the reported recall
values. This is most notably done when evaluating on
the VRD dataset, for consistency with [32].

VI. TERESA DATASET EXPERIMENTS. EVALUATING
OG-SGG’s TRANSFER LEARNING CAPABILITIES
In order to evaluate the effects of the ontology-guided scene
graph generation (OG-SGG) framework, we applied it to a
telepresence robotics use case. Specifically, we utilized data
from the TERESA [42] European Project, which involved
a telepresence robot being used within an elderly day-care
centre. The robot is used by both residents and caregivers in
order to remotely connect and interact with other people in
the centre’s cafeteria (see Figs. 1 or 2 for some examples).
13 sessions were carried out in total, during which large
amounts of data were collected from the robot’s cameras and
other sensors. For the purposes of these experiments, a small
sample of 25 images were extracted and manually annotated
with the objects and relationships present within them.

The end goal of this experiment is determining whether
these techniques allow us to transfer learned knowledge from
existing datasets into a completely new problem domain, with
minimal work put into defining the rules required to perform
this conversion. We also aim to achieve the double-sided
benefit of refining the VQA tasks that allow robotic agents
to automatically reason about user input, e.g. users of the
telepresence system may want to ask about the locations of
objects or people, or refer to them by their relation to other
entities in the scene. In order to enable the reproducibility of
this work, we published the entirety of the source code we
developed, along with the TERESA dataset.3

We created a simple ontology using Protégé [34], and
annotated all objects on the images with bounding boxes,
as well as the corresponding relation triplets. This ontol-
ogy, although fairly simple, nevertheless encompasses all the
important objects and relations of the application scenario.
The scheme of the ontology can be seen in Figure 7. The

3https://github.com/robotics-upo/og-sgg
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FIGURE 7. TERESA ontology, reflecting the dataset’s main entities and relationships among them. The class hierarchy distinguishes
GrabbableObject and Furniture in order to separate manipulable objects from pre-existing fixtures that form part of a room visited by the robot,
whereas Person, the main focus of a telepresence robotics application, is the domain of certain special purpose predicates such as holding or
sitting at/on.

TABLE 2. TERESA dataset statistics. Training datasets are reported in their original base form, their (e.g., domain-) filtered, and their filtered +

(ontological axioms-) augmented form.

TABLE 3. Evaluation results on TERESA test set. The model was trained on 6 different dataset splits (3 for each source training dataset), and evaluated
with and without post-processing (‘‘Post’’ column). The different splits are intended to test the efficacy of the filtering and data augmentation techniques
proposed in this work. The different metrics are computed for different top K predicted relation triplets (20, 50 and 100) per image and different graph
constraint hyperparameter k values (1 and 8 predicates per object pair). The best results for each source training dataset are marked in bold.

ontology was validated using the FaCT++ [46] reasoner.
Several top level classes were defined: Furniture (sta-
tionary objects present in a room), GrabbableObject
(objects that can be grabbed and moved by the robot)
and Person (corresponding to humans). A few object
properties were also defined, corresponding to common
relationships between entities in a scene graph. For exam-
ple, on top of is a Functional object property with
the domain Appliance or GrabbableObject and
the range Appliance or Counter or Table. This

defines several axioms: 1) something can only be on top
of a single surface (not several at the same time), 2) only
appliances (e.g. microwaves) or small, movable objects can
be on top, whereas 3) said acceptable ‘‘surfaces’’ can only
be tables, counters or other appliances. Another exam-
ple is sitting on: a Functional and InverseFunctional
property with the domain Person and the range Chair.
This enforces that people can only be sitting on a single
chair, and a chair cannot host multiple people at the same
time.
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FIGURE 8. Qualitative results on TERESA test set, gathered using the TERESA robot of Fig. 1. Top row: Image with object
annotations. Middle row: ‘‘VG-SGG baseline without OG-SGG.’’ Bottom row: ‘‘VG-SGG with full stack OG-SGG.’’.

We also performed an ablation study of these techniques,
for the purpose of which we prepared six different training
splits for the network. In each split, we tried combinations

of input datasets as well as enabling or disabling parts of
the dataset filtering/augmentation logic (note that the aug-
mentation logic needs predicates to be already adapted to
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the ontology, that is, the filtering logic needs to be done
previously). We tested VG-SGG’s training split, as well as
a filtered version of it only containing images classified as
‘‘indoors’’ by GQA, which we called VG-indoor. This fil-
tered subset, after being processed with the ontology guided
procedure, contains around 2500 training images (out of
which around 250 are reserved for validation and hyperpa-
rameter tuning), and is intended to test OG-SGG in cases
where the source dataset is considerably smaller in size and
scope.

Table 2 shows several statistics about the different dataset
splits used for training, as well as our custom TERESA
test set used for evaluation. We report the average number
of objects per image that are connected by relation triplets,
which naturally decreases the more filtering is done. On the
other hand, the average number of relation triplets increases
even prior to applying the ontology guided data augmentation
process. We hypothesize this to be caused by the removal of
especially noisy or underlabelled images, itself a side effect
of the ontology guided filter. The data augmentation process
causes a milder increase than expected, probably due to the
relative simplicity of the ontological model we designed for
TERESA. Similar things can also be said about the other
metrics, such as the average number of object pairs that are
annotated with predicates, or the average percentage of such
pairs in the image. This last metric is intended to measure the
degree of annotation density (or rather, sparsity) in the triplet
annotations by taking the set of objects connected by relation
triplets, and expressing the number of pairs with annotations
as a percentage of the total number of possible pairs within
the set.

A. QUANTITATIVE RESULTS
Table 3 reports evaluation results on the TERESA test set
for the network trained on each dataset split, as well as with
and without the ontology founded output post-processing
procedure. We also emphasize that no images from TERESA
were used during training. The metrics for the splits corre-
sponding to unmodified source training datasets were com-
puted by first adapting the output of the model to fit the
predicates in the ontology with minimal post-processing and
no ontological filtering. Specifically, each predicate in the
ontology was assigned an output score of the average of the
predicate scores corresponding to its mapped set of predi-
cates (the same used during dataset filtering). Although we
report R@K metrics, the network is trained on a completely
different dataset to the one used for testing; and the set of
semantic vectors corresponding to object classes seen by the
network during training is also entirely different from the
one provided during testing – in other words, the metrics
are calculated purely on zero-shot triplets never seen during
training, thus effectively calculating a sort of zR@K. It can
be readily observed that using a training dataset specifi-
cally prepared to target a desired set of predicates uplifts
performance.

1) CHOICE OF TRAINING DATASET
The choice of original dataset onto which OG-SGG is applied
also produced interesting results. The results for VG-indoor
trained models are highly competitive against those trained
on regular VG-SGG. In some metrics such as mR@K it
outperforms VG-SGG trained models, with the full stack
OG-SGG version of its model taking the performance crown
overall. Even more, the model trained on VG-indoor with full
stack OG-SGG outperforms the VG-SGG baseline without
OG-SGG, despite having seen over twenty times less images
during the training process.

On the other hand, models trained on VG-SGG with full
stack OG-SGG dominate in R@K. This might be caused
by the previously explained problem caused by predicate
bias in R@K. Specifically, mR@K attempts to paint a more
balanced picture by weighing the importance of all predicates
equally in its formula, therefore allowing the tails of the
predicate frequence distribution to have a fair say in the result.
Thus, it could be said that training on VG-indoor helped the
model generalize better on the less frequent predicates.

2) ABLATION STUDY
a: POST-PROCESSING
The ablation study reveals the great importance of the post-
processing stage, which enforces the axioms defined in
the ontology, purging lower-ranking inconsistent triplet pro-
posals, and thus results in increased performance across
the board. An interesting observation can be made for the
improvements obtainedwhen training on unmodified datasets
(i.e. when no other components of OG-SGG are used), which
bring the metrics close to those observed in filtered datasets
(with no post-processing stage). We, as a result, believe this
component to be the most significant contribution of this
work.

b: FILTERING
As previously mentioned, filtering the dataset with the ontol-
ogy is also majorly responsible for the improved perfor-
mance. In other words, this process optimizes the transfer
learning capabilities of scene graph generation networks,
allowing users to obtain better results by ‘‘recycling’’ existing
datasets. Specifically, it can be seen that filtering brings sig-
nificant boosts tomR@K, which is indicative of greater gen-
eralization capability.R@K also receives a boost, although it
is not as dramatic in comparison.

c: AUGMENTATION
On the other hand, the extra training data produced by
the augmentation does not seem to have produced a sig-
nificant improvement as hoped, i.e. it could be said to lie
within the margin of error caused by the variability of the
training or stratification processes. This could be caused
by not enough complexity/richness in the definition of the
TERESA ontology. Nonetheless, we still consider it relevant
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to continue researching more robust ways of augmenting
existing datasets using ontological reasoning.

B. QUALITATIVE RESULTS
Fig. 8 shows two selected qualitative examples. The graphs
were generated by running the images through the model
and picking the 16 highest scoring generated triplets. In the
case of the version with post-processing, adding a triplet also
adds all associated implicit triplets. Additionally, disallowed
triplets, as well as triplets that were previously added implic-
itly, are not considered in the score ranking, meaning they do
not count towards the triplet limit. In the baseline generated
graphs, some violations can be spotted (such as multiple
people sitting onmultiple chairs, or windows sitting at tables).
On the other hand, the graphs generated with the proposed
techniques in this work have some discernible structures,
such as people holding objects, or chairs being next to tables.

With this said, some shortcomings can be seen, such as the
generator being unable to tell if an object is being held by
a person or is located ‘‘on top’’ of a certain table. In these
situations, the generator simply asserts both of these possi-
bilities. In addition, some potentially useful information such
as proximity relations between people seems to be deempha-
sized in favor of other structures that the network was able to
learn with the same predicates. Likewise, the network fails to
learn cues for discerning the various levels of depth present in
images, resulting in the understanding of proximity relation-
ships being reduced to mere 2D spatial proximity, as can be
seen in how objects close to people’s hands are nearly always
detected as being held. This indicates that more input (such as
Depth information) might be necessary for the network, and
that higher order ontological rules need to be implemented in
order to decide between different possibilities. Nonetheless,
there is still a noticeable improvement compared to baseline
non-ontology-guided methods.

Sample textual representations of each scene graph revolv-
ing around detected people were also generated by enumer-
ating all triplets that have Person entities as their subject.
These representations are intended to be an example of down-
stream automatic scene captioning tasks that are common in
telepresence robotics.

VII. ADDITIONAL EXPERIMENTS USING AI2THOR
We decided to apply OG-SGG to a similar but differ-
ent robotics scenario. Specifically, the AI2THOR frame-
work [23] is a near photo-realistic interactable framework for
embodied AI agents, with the goal of facilitating the creation
of visually intelligent models and pushing the research for-
ward in that domain. One of the environments present in this
framework is RoboTHOR [14] which has a specific focus on
simulation-to-real transfer of visual AI (especially semantic
navigation).

The AI2THOR system provides a simulation framework,
from which different synthesized inputs from the robot can
be extracted and actions can be subsequently fed to the robot.
In order to test OG-SGG, we collected 113 images in total

from the 3 RoboTHOR validation scenes, in all 5 differ-
ent configurations. Each image was captured using different
material randomization, and the camera was moved so that at
least 6 objects are visible within the view. Afterwards, ground
truth scene graphs were automatically generated with fixed,
hard-coded rules that leverage information about the objects
provided directly by the system, such as absolute positions
or container relationships. Another simple ontology was also
created to ground the concepts present in these scene graphs.

We performed the same experiments carried out for the
TERESA dataset, including the ablation study. Table 4 con-
tains dataset statistics, which show a similar increase in
dataset density after applying filtering, which brings it to
a level close to that of the desired target dataset. On the
other hand, the data augmentation process seems to not result
in a significant increase in density. This is probably once
again due to lack of higher level rules in the ontology that
can deduce new triplets from existing ones. Table 5 like-
wise confirms the performance improvements brought by the
filtered dataset, and the post-processing stage. The metrics
corresponding to the model trained on augmented splits seem
to be within margin of error compared to ontology-guided
filtering without data augmentation – this is consistent with
the aforementioned lack of increase in density. Interestingly,
the choice of filtered indoor dataset here has clearly resulted
in worse performance across the board, except in the baseline
comparison case. This might be due to the harsher filtering
caused by the AI2THOR ontology, which has effectively
halved the number of images available and thus might not
be able to form a critical mass necessary for the network to
be successfully trained.

Fig. 9 showcases a few qualitative examples, taking
the VG-SGG split with filtering and no data augmentation
as the basis for the trained model. It can be seen that in gen-
eral the network has a tendency to be overly enthusiastic in
predicting has and near, the former in the baseline and the
latter in our improved system. In any case, it can be observed
that ontology violations (such as (Cup_1,has,Apple_1) in
the second image) do not appear in our improved output
thanks to the post-processing.

VIII. ADDITIONAL EXPERIMENTS USING
DIFFERENT MODELS
We decided to test OG-SGG with a different scene graph
generation network, in order to further exemplify its model
agnosticity. Specifically we prepared and tested two sim-
ple models (see Fig. 10) while reusing the existing training
pipeline:

• Simple Semantic model: The two semantic vectors are
concatenated and fed to a hidden fully connected layer of
size 800, followed by ReLU activation, batch normaliza-
tion and a final fully connected layer of size N (number
of relationship predicates to be detected). The intention
behind this model is focusing purely on language pri-
ors between object classes and relation classes; while
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TABLE 4. Dataset statistics for AI2THOR. Training datasets derived from VG are reported in their original base form, their (e.g., domain-) filtered, and their
filtered + (ontological axioms-) augmented form.

TABLE 5. Evaluation results on AI2THOR test set. The model was trained on 6 different dataset splits (3 for each source training dataset), and evaluated
with and without post-processing (‘‘Post’’ column).

TABLE 6. TERESA evaluation results on Simple semantic model. The model was trained on 4 different dataset splits (2 for each source training dataset),
and evaluated with and without post-processing (‘‘Post’’ column). The baseline results for VRD-RANS trained on both source datasets are also shown in
the table.

ignoring all other inputs (i.e. object locations, image
features, etc.).

• Simple Semantic-Positional model: In addition to the
above, an object mask processor component based on
several CNN layers generates a new vector of the same
size as the semantic vectors, which is concatenated
alongside the two semantic vectors (forming the input
of the hidden layer). The hidden layer is also expanded
to 1200 neurons. The intention behind this model is aug-
menting the Simple Semantic model with object location
information.

Table 6 shows the Simple Semantic model evaluated
on TERESA, Table 7 shows the Simple Semantic model
evaluated on AI2THOR, and Table 8 shows the Simple
Semantic-Positional model evaluated on AI2THOR. The
first thing to note is the performance uplift delivered by
the post-processing logic, further proving the usefulness of

enforcing ontological axioms on generated scene graphs.
In the TERESA dataset, the combined efforts of the fil-
tering and the post-processing are able to easily outper-
form the baseline. Applying filtering without post-processing
also generally produces improved results, however there are
regressions in some R@K metrics with low K and k – we
believe this to be a side effect of increasing generalization
capability by reducing overfitting. In the case of AI2THOR,
both simple models have trouble learning useful information
through the training process. As expressed in Section VII, this
may be due to the harsher filtering caused by the AI2THOR
ontology. Nevertheless, the Simple Semantic model is able
to dominate in mR@K, indicating greater generalization
capability. Interestingly, even though the Simple Semantic-
Positional model performs better in its baseline without
OG-SGG than the Simple Semantic model, this initial advan-
tage is unable to materialize into improved across-the-board
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FIGURE 9. Qualitative results on AI2THOR test set. Top row: Image with object annotations. Middle row: ‘‘VG-SGG baseline.’’
Bottom row: ‘‘VG-SGG with filter + post processing.’’

FIGURE 10. Left: Simple semantic model, only containing two fully connected layers (marked with D). Right: Simple
semantic-positional model, also containing a CNN module for processing the object position masks.

performance with full OG-SGG applied, only managing to
improve when post-processing without a filtered dataset is
used.

Another comparison was made between the OG-SGG
enriched Simple Semantic model and the baseline perfor-
mance of a non-trivial model (VRD-RANS). Despite having
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TABLE 7. AI2THOR evaluation results on Simple semantic model. The model was trained on 4 different dataset splits (2 for each source training dataset),
and evaluated with and without post-processing (‘‘Post’’ column). The baseline results for VRD-RANS trained on both source datasets are also shown in
the table.

TABLE 8. AI2THOR evaluation results on Simple semantic-positional model. The model was trained on 4 different dataset splits (2 for each source
training dataset), and evaluated with and without post-processing (‘‘Post’’ column). The baseline results for VRD-RANS trained on both source datasets
are also shown in the table.

an order of magnitude fewer parameters (VRD-RANS:
25M parameters, Simple Semantic model: 1.3M parameters),
the obtained performance clearly exceeds that of baseline
VRD-RANS without OG-SGG. The same can be said for
the Simple Semantic-Positional model, however the gap in
parameter count (25M vs 9.2M) is smaller.

IX. CONCLUSION AND FUTURE WORK
In this work we joined the world of ontologies together with
the world of scene graph generation, and showed how the
strategies we proposed (using only filtering and processing
based on the most common OWL axioms affecting predi-
cates) can achieve quantitative and qualitative improvements
in domain specific environments. Whereas existing scene
graph generation networks (such as VRD-RANS) generate
all possible pairs, the OG-SGG methodology is able to lever-
age the ontology to reduce the set of possibilities and thus
improve the quality of the generated scene graphs. We can
observe improvements across the board in R@K, and inter-
estingly enough, training the model with a smaller version
of the dataset resulted in improvedmR@K, especially when
compared to the baseline (that is, the model trained on the
original version of the dataset without OG-SGG). Evaluating
the performance without graph constraint priors (i.e. by set-
ting the graph constraint hyperparameter k to its highest
allowed value) also produced better results. We also show
how OG-SGG improves the results for different application

scenarios (TERESA and AI2THOR datasets), and also for
different scene graph generation models.

Another important observation is that only a small amount
of effort had to be spent in engineering an ontology for the
experiment in order to obtain these results. Specifically, the
only two things that need to be done for OG-SGG to work are
designing an ontology for the desired problem, and mapping
the predicates of the original scene graph dataset to the ones in
the ontology. It can be explained that OG-SGG leverages the
effect that biased datasets have on neural networks, precisely
by creating a new version of the dataset that is biased in favor
of existing prior knowledge. On the other side of the equation,
OG-SGG also removes outputs that can be safely discarded
using the aforementioned prior knowledge. This contrasts
with the traditional methods used for transfer learning in neu-
ral networks, which are primarily based on hyperparameter
tweaking, freezing and unfreezing the weights of individual
layers, and other ‘‘black box’’ architectural changes. All of
these methods, as with other non-XAI techniques, cannot be
driven by human intuition or by pre-existing knowledge; and
as such take a considerably higher amount of effort to refine,
mostly through pure trial and error.

Nevertheless, there is margin for further refinements and
filtering. It still takes a high K cutoff to capture a sizable
majority of the triplets present in ground truth annotations,
indicating a need for better filtering. The quality of the filter-
ing also depends on how detailed the ontology is – naturally,
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the more axioms and predicates that exist the more precise the
predictions will be. In addition, a major flaw with existing
scene graph generation networks can be observed, which
is the difficulty of defining a score threshold for dropping
unlikely relation triplets. Currently, a basic Top-K strategy is
still used, which tends to leave out perfectly valid predictions
in crowded scenes. For this reason, a possible future direction
would be to design a new post processing stage based on a
neural network that draws the line for us, and possibly even
go further by filtering with (higher order) axioms from the
ontology. Another area of interest for possible future research
is integrating existing ontological knowledge directly into the
main scene graph generation network, perhaps in the form of
a new term in the loss function [13], or through incorporating
neurosymbolic propositional and first order logic directly as
part of the training process [4]. Simultaneous Localization
and Mapping (SLAM) systems could be yet another area of
interest for future work related to ontology-guided machine
learning. Specifically, Semantic SLAM systems capable of
segmenting rooms and labelling/tracking all objects within
could be proposed, and this potentially involves the detection
of relationships between objects in a similar way to the scene
graph generation problem.

On an ending note, we propose further research on down-
stream usages of OG-SGG such as knowledge-graph driven
image captioning or robotic visual question answering, fur-
ther leveraging structured approaches to incorporating prior
relevant knowledge.
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